WorldWideScience

Sample records for pulsed neutron fluence

  1. Neutron fluence measurement in nuclear facilities

    International Nuclear Information System (INIS)

    Camacho L, M.E.

    1997-01-01

    The objective of present work is to determine the fluence of neutrons in nuclear facilities using two neutron detectors designed and built at Instituto Nacional de Investigaciones Nucleares (ININ), Mexico. The two neutron detectors are of the passive type, based on solid state nuclear tracks detectors (SSNTD). One of the two neutron detectors was used to determine the fluence distribution of the ports at the nuclear research reactor TRIGA Mark III, which belongs to ININ. In these facilities is important to know the neutron fluence distribution characteristic to carried out diverse kind of research activities. The second neutron detector was employed in order to carry out environmental neutron surveillance. The detector has the property to separate the thermal, intermediate and fast components of the neutron fluence. This detector was used to measure the neutron fluence at hundred points around the primary container of the first Mexican Nuclear Power plant 'Laguna Verde'. This last detector was also used to determine the neutron fluence in some points of interest, around and inside a low scattering neutron room at the 'Centro de Metrologia de Radiaciones Ionizantes' of the ININ, to know the background neutron field produced by the neutron sources used there. The design of the two neutron detector and the results obtained for each of the surveying facilities, are described in this work. (Author)

  2. Beryllium neutron activation detector for pulsed DD fusion sources

    International Nuclear Information System (INIS)

    Talebitaher, A.; Springham, S.V.; Rawat, R.S.; Lee, P.

    2011-01-01

    A compact fast neutron detector based on beryllium activation has been developed to perform accurate neutron fluence measurements on pulsed DD fusion sources. It is especially well suited to moderate repetition-rate ( 9 Be(n,α) 6 He cross-section, energy calibration of the proportional counters, and numerical simulations of neutron interactions and beta-particle paths using MCNP5. The response function R(E n ) is determined over the neutron energy range 2-4 MeV. The count rate capability of the detector has been studied and the corrections required for high neutron fluence measurements are discussed. For pulsed DD neutron fluencies >3×10 4 cm -2 , the statistical uncertainty in the fluence measurement is better than 1%. A small plasma focus device has been employed as a pulsed neutron source to test two of these new detectors, and their responses are found to be practically identical. Also the level of interfering activation is found to be sufficiently low as to be negligible.

  3. The fluence research of filter material for fast neutron fluence measurement

    International Nuclear Information System (INIS)

    Tang Xiding

    2010-01-01

    When the fast neutron fluence is measured by radioactivation techniques in the nuclear reactor the fast neutron is also filtered a little by the thermal neutron filter material, and if the filter material thickness increase the filtered fast neutron increases therewith. For fast neutron fluenc measurement, there are only cadmium, boron and gadolinium three elements filtering fluence can be calculated ordinarily. In order to calculate the filtered fast neutron fluence of the all elements in the filter material, the many total cross sections of nuclides had checked out from nuclear cross section data library, converted them into the same energy group structure, then element's total cross section, compound's total cross section and multilayer filters' total cross section had calculated from these total cross sections with same energy group structure, a new cross section data library can be obtained lastly through merging these cross sections into the old cross section data library used for neutron fluence measurement. The calculation analysis indicates that the results of the unit 2 surveillance capsule U of DAYA Bay NPP and the unit 1 surveillance capsule A of the Second Nuclear Power Plant of Qinshan by considering the all elements subtracting iron are smaller about 1.5% and 2.6% respectively than the ones only to consider cadmium, boron. The old measured results accord with the new values under the measurement uncertainty, are reliable. The new results are more accuracy. (authors)

  4. Passive detectors for neutron fluence measurement

    International Nuclear Information System (INIS)

    Holt, P.D.

    1985-01-01

    The use of neutron activation detectors (slow neutron detectors and threshold detectors) and fission track detectors for radiological protection purposes, principally in criticality dosimetry, dosimetry of pulsed accelerators and calibration of neutron fluxes is discussed. References are given to compilations of cross sections. For the determination of the activity induced, either beta ray or gamma ray counting may be used. For beta-ray counting, thin foils are usually necessary which result in low neutron sensitivity. When fission track detectors are used, it is necessary to know the efficiency of track registration. Alternatively, a detector-counter system may be calibrated by exposure to a known flux of monoenergetic neutrons. Usually, the sensitivity of activation detectors is low because small foils are used. For criticality dosimetry, calibration work and shielding studies on accelerators, low sensitivity is acceptable. However, there are some instances where, by the use of long integration times, or very large quantities of detector material with gamma ray detection, neutron fluences in operational areas have been measured. (author)

  5. Neutron fluence spectrometry using disk activation

    International Nuclear Information System (INIS)

    Loevestam, Goeran; Hult, Mikael; Fessler, Andreas; Gasparro, Joel; Kockerols, Pierre; Okkinga, Klaas; Tagziria, Hamid; Vanhavere, Filip; Wieslander, J.S. Elisabeth

    2009-01-01

    A simple and robust detector for spectrometry of environmental neutrons has been developed. The technique is based on neutron activation of a series of different metal disks followed by low-level gamma-ray spectrometry of the activated disks and subsequent neutron spectrum unfolding. The technique is similar to foil activation but here the applied neutron fluence rates are much lower than usually in the case of foil activation. The detector has been tested in quasi mono-energetic neutron fields with fluence rates in the order of 1000-10000 cm -2 s -1 , where the obtained spectra showed good agreement with spectra measured using a Bonner sphere spectrometer. The detector has also been tested using an AmBe source and at a neutron fluence rate of about 40 cm -2 s -1 , again, a good agreement with the assumed spectrum was achieved

  6. Neutron fluence spectrometry using disk activation

    Energy Technology Data Exchange (ETDEWEB)

    Loevestam, Goeran [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium)], E-mail: goeran.loevestam@ec.europa.eu; Hult, Mikael; Fessler, Andreas; Gasparro, Joel; Kockerols, Pierre; Okkinga, Klaas [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Tagziria, Hamid [EC-JRC-Institute for the Protection and the Security of the Citizen (IPSC), Via E. Fermi 1, I-21020 Ispra (Vatican City State, Holy See,) (Italy); Vanhavere, Filip [SCK-CEN, Boeretang, 2400 Mol (Belgium); Wieslander, J.S. Elisabeth [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Department of Physics, P.O. Box 35 (YFL), FIN-40014, University of Jyvaeskylae (Finland)

    2009-01-15

    A simple and robust detector for spectrometry of environmental neutrons has been developed. The technique is based on neutron activation of a series of different metal disks followed by low-level gamma-ray spectrometry of the activated disks and subsequent neutron spectrum unfolding. The technique is similar to foil activation but here the applied neutron fluence rates are much lower than usually in the case of foil activation. The detector has been tested in quasi mono-energetic neutron fields with fluence rates in the order of 1000-10000 cm{sup -2} s{sup -1}, where the obtained spectra showed good agreement with spectra measured using a Bonner sphere spectrometer. The detector has also been tested using an AmBe source and at a neutron fluence rate of about 40 cm{sup -2} s{sup -1}, again, a good agreement with the assumed spectrum was achieved.

  7. Studies for improvement of WWER-440 neutron fluence determination

    International Nuclear Information System (INIS)

    Ilieva, Kr.; Belousov, S.; Apostolov, T.

    2001-01-01

    For assessment of radiation embrittlement and prediction of reactor vessel lifetime with reasonable conservatism a 'best estimated' neutron fluence is necessary. New studies purposed to improve the fluence determination are presented: 1) study on the reliability of multigroup presentation of the neutron cross sections, and 2) impact of negative gradient of reactor power in the periphery assemblies on the neutron fluence evaluation. The results of these studies are base for improvement of neutron fluence determination methodology applied by the INRNE, BAS at Kozloduy NPP. (author)

  8. Neutron fluence measurement in nuclear facilities.; Medicion de flujos de neutrones en instalaciones nucleares.

    Energy Technology Data Exchange (ETDEWEB)

    Camacho L, M E

    1997-12-01

    The objective of present work is to determine the fluence of neutrons in nuclear facilities using two neutron detectors designed and built at Instituto Nacional de Investigaciones Nucleares (ININ), Mexico. The two neutron detectors are of the passive type, based on solid state nuclear tracks detectors (SSNTD). One of the two neutron detectors was used to determine the fluence distribution of the ports at the nuclear research reactor TRIGA Mark III, which belongs to ININ. In these facilities is important to know the neutron fluence distribution characteristic to carried out diverse kind of research activities. The second neutron detector was employed in order to carry out environmental neutron surveillance. The detector has the property to separate the thermal, intermediate and fast components of the neutron fluence. This detector was used to measure the neutron fluence at hundred points around the primary container of the first Mexican Nuclear Power plant `Laguna Verde`. This last detector was also used to determine the neutron fluence in some points of interest, around and inside a low scattering neutron room at the `Centro de Metrologia de Radiaciones Ionizantes` of the ININ, to know the background neutron field produced by the neutron sources used there. The design of the two neutron detector and the results obtained for each of the surveying facilities, are described in this work. (Author).

  9. Thickness optimization of various moderator materials for maximization of thermal neutron fluence

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    Plasma focus device is widely being used as pulsed neutron source for variety of applications. Measurements of neutron yield by largely preferred Helium-3 proportional counter and Silver activation counter are mainly sensitive to thermal neutrons and are typically used with a neutron moderator. Thermalization of neutron is based on scattering reaction and hydrogenous materials are the best thermalizing medium. The efficiency of aforementioned neutron detectors is considerably affected by physical and geometrical properties of thermalizing medium i.e. moderator material, its thickness and shape. In view of the same, simulations have been performed to explore the effective utilization of Polyethylene, Perspex and Light water as moderating mediums for cylindrical and spherical geometry. In this study, estimated thermal fluence value up to 0.5 eV has been considered as the benchmark factor for comparing efficient thermalization by specific material, its thickness and shape. In either of the shapes being cylindrical or spherical, use of Polyethylene as moderating medium has resulted in minimum optimum thickness along with highest thermal fluence. (author)

  10. NGI-9 pulsed neutron generator with a fluence to 1010 n/s

    International Nuclear Information System (INIS)

    Allakhverdov, A.Sh.; Ogarkin, V.I.; Silicheva, G.P.; Timofeev, Yu.I.

    1975-01-01

    A neutron pulse generator with 14 MeV energy used for the activation analysis, is described. Its functional diagram and the technical characteristics are presented. The studies of the generator that resulted in determination of the effect of the accelerating voltage amplitude, the delay in the ion source firing with respect to the pulse of the accelerating voltage, the amount of operating ion sources and the energy imparted to them on the neutron flux magnitude are conducted. It is confirmed by the studies that the neutron generator operating in the nominal regime makes it possible to obtain a neutron flux of 5x10 9 -10 10 neutr./s. The dependence of the neutron flux variation on the frequency of pulse sequence for various ion sources is shown

  11. Neutron Fluence Evaluation using an Am-Be Neutron Sources Assembly and P ADC Detectors

    International Nuclear Information System (INIS)

    Seddik, U.

    2008-01-01

    An assembly of four 241 Am-Be sources has been constructed at Nuclear Reactions Unit (NRU) of Nuclear Research Center (NRU) to perform analysis of different materials using thermal and fast neutrons. In the present paper, we measure the value of transmittance (T) in percentage of etched CR-39 detectors using a spectrophotometer at different neutron fluences ,to relate the transmittance of the detector with the neutron fluence values. The exposed samples to neutrons with accumulated fluence of order between 10 10 and 10 12 cm -2 were etched for 15 time intervals between 10-600 min in 6.25 N NaOH at 70 degree C. The etched samples were analyzed using Tech 8500 II spectrophotometer. A trend of the sample transmission and the etching time is observed which is different for each fluence value. A linear relation between the transmittance decay constant and the neutron fluence is observed which could be used as a calibration to determine unknown neutron fluence

  12. Spectral fluence of neutrons generated by radiotherapeutic Linacs

    International Nuclear Information System (INIS)

    Kralik, Miloslav; Solc, Jaroslav; Smoldasova, Jana; Vondracek, Vladimir; Farkasova, Estera; Ticha, Ivana

    2015-01-01

    Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac. (authors)

  13. Measuring neutron fluences and gamma/x-ray fluxes with CCD cameras

    International Nuclear Information System (INIS)

    Yates, G.J.; Smith, G.W.; Zagarino, P.; Thomas, M.C.

    1991-01-01

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCDs) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4--12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate ∼.05 V/rad responsivity with ≥1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or ''peaks'' binned by area and amplitude as functions of fluence in the 10 5 to 10 7 n/cm 2 range indicate smearing over ∼1 to 10% of CCD array with charge per pixel ranging between noise and saturation levels

  14. Neutron fluence determination for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.

    1994-01-01

    A general description of limitations that exist in pressure vessel neutron fluence determinations for commercial light water reactors is presented. Complexity factors that arise in light water reactor pressure vessel neutron fluence calculations are identified and used to analyze calculational limitations. Two broad categories of calculational limitations are introduced, namely benchmark field limitations and deep penetration limitations. Explicit examples of limitations that can arise in each of these two broad categories are presented. These limitations are used to show that the recent draft regulatory guide for the determination of pressure vessel neutron fluence, developed by the Nuclear Regulatory Commission, is based upon procedures and assumptions that are not valid. To eliminate the complexity and limitations of calculational methods, it is recommended that the determination of light water reactor pressure vessel neutron fluence be based upon experiment. Recommendations for improved methods of pressure vessel surveillance neutron dosimetry are advanced

  15. Neutron fluence measurements

    International Nuclear Information System (INIS)

    1970-01-01

    For research reactor work dealing with such subjects as radiation effects on solids and such disciplines as radiochemistry and radiobiology, the radiation dose or neutron fluence is an essential parameter in evaluating results. Unfortunately it is very difficult to determine. Even when the measurements have been accurate, it is difficult to compare results obtained in different experiments because present methods do not always reflect the dependence of spectra or of different types of radiation on the induced processes. After considering the recommendations of three IAEA Panels, on 'In-pile dosimetry' held in July 1964, on 'Neutron fluence measurements' in October 1965, and on 'In-pile dosimetry' in November 1966, the Agency established a Working Group on Reactor Radiation Measurements. This group consisted of eleven experts from ten different Member States and two staff members of the Agency. In the measurement of energy absorbed by materials from neutrons and gamma rays, there are various reports and reviews scattered throughout the literature. The group, however, considered that the time was ripe for all relevant information to be evaluated and gathered together in the form of a practical guide, with the aim of promoting consistency in the measurement and reporting of reactor radiation. The group arranged for the material to be divided into two manuals, which are expected to be useful both for experienced workers and for beginners

  16. RAMA Methodology for the Calculation of Neutron Fluence

    International Nuclear Information System (INIS)

    Villescas, G.; Corchon, F.

    2013-01-01

    he neutron fluence plays an important role in the study of the structural integrity of the reactor vessel after a certain time of neutron irradiation. The NRC defined in the Regulatory Guide 1.190, the way must be estimated neutron fluence, including uncertainty analysis of the validation process (creep uncertainty is ? 20%). TRANSWARE Enterprises Inc. developed a methodology for calculating the neutron flux, 1,190 based guide, known as RAMA. Uncertainty values obtained with this methodology, for about 18 vessels, are less than 10%.

  17. Neutron dosimetry intercomparison run for verification of the neutron fluence

    International Nuclear Information System (INIS)

    Penev, I.; Kinova, L.

    2001-01-01

    For the neutron fluence verification the intercomparison runs Balakovo and KORPUS have been carried out. The participation in the international intercomparison runs shows that in order to more precisely verify the calculated values of the neutron fluence more intercomparison exercises are necessary. Due to such exercises the results improved after calibration of Nb performed and are in a very good agreement with RIIAR results in spite of the different approaches in the determination of its activity

  18. Deduction of solar neutron fluences from large gamma-ray flares

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Watanabe, Hiroyuki; Takahashi, Kazuyoshi.

    1986-01-01

    Solar neutron fluences from large gamma-ray flares are deduced from accelerated proton spectra and numbers derived from the gamma-ray observations. The deduced solar neutron fluences range from 1 to 200 neutrons cm -2 . The present result indicates a possibility that high sensitivity ground-based neutron monitors can detect solar neutron events, just as detected by the Jungfraujoch and Rome neutron monitors. (author)

  19. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    Science.gov (United States)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  20. Development of a Secondary Neutron Fluence Standard at GELINA

    International Nuclear Information System (INIS)

    Heyse, Jan; Eykens, Roger; Moens, Andre; Plompen, Arjan J.M.; Schillebeeckx, Peter; Wynants, Ruud; Anastasiou, Maria

    2013-06-01

    The MetroFission project, a Joint Research Project within the European Metrology Research Program, aims at addressing a number of metrological problems involved in the design of proposed Generation IV nuclear reactors. One of the objectives of this multidisciplinary project is the improvement of neutron cross section measurement techniques in order to arrive at uncertainties as required for the design and safety assessment of new generation power plants and fuel cycles. This objective is in line with the 'Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations' published by a working party of the OECD Nuclear Energy Agency in 2008. These requests are often very challenging, being at or beyond the state-of-the-art in neutron measurements, which is set by self-normalizing methods and the neutron data standards used at laboratories where the data are measured. A secondary neutron fluence standard has been developed and calibrated at the neutron time-of-flight facility GELINA of the JRC's Institute for Reference Materials and Measurements (IRMM). It consists of a flux monitor, a reference ionization chamber containing a 10 B layer and a 235 U layer, and a parallel plate ionization chamber with 8 well characterized 235 U deposits. These devices are used to determine the neutron fluence, based on the well-known neutron induced fission reaction on 235 U. All deposits have been prepared and characterized at the IRMM target preparation lab. The secondary fluence standard at the GELINA facility can be used for reliable determination of the efficiency of fluence measurement devices used in neutron data measurements at IRMM and elsewhere. It is an essential tool to reliably calibrate fluence normalization devices used in neutron time-of-flight cross section measurements. (authors)

  1. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T., E-mail: casey21@llnl.gov; Munro, D. H.; Grim, G. P.; Landen, O. L.; Spears, B. K.; Fittinghoff, D. N.; Field, J. E.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Volegov, P. L.; Merrill, F. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  2. Phototransistor response under a neutron fluence

    International Nuclear Information System (INIS)

    Santos, Luiz A.P.; Barros, Fabio R.; Ursulino, Luciano C.; Silva Junior, Eronides F.; Antonio Filho, Joao

    2009-01-01

    The purpose of this communication is to show some effects on a bipolar phototransistor after it has been under a neutron fluence. Unlike a transistor, a phototransistor is designed so that the collector has a large area and consequently it has a higher radiation detection probability. Then, it is possible to have a certain number of interactions so that any changes in the internal structure of the phototransistor can be observed after a neutron irradiation. If a phototransistor is under a certain spectra of neutron fluence the interaction depends on the cross section of the either silicon chip or its encapsulation, and recoil protons could be the charged particle responsible for changes in the semiconductor structure. Furthermore, neutron irradiation could give to the device a state of vanishing in its electrical characteristic which can be performed tracing the current versus voltage curve (I x V). The experimental arrangement basically consists of a photonic device, a neutron-gamma radiation source and a Flip-Flop electrometer second generation (EFF-2G). One of the main parameters of evaluation was the phototransistor dark current. In fact, the first results demonstrate that when the phototransistor is neutron irradiated there is a significant variation in its I x V characteristic curve. (author)

  3. Safety factors for neutron fluences in NPP safety assessment

    International Nuclear Information System (INIS)

    Demekhin, V.L.; Bukanov, V.N.; Il'kovich, V.V.; Pugach, A.M.

    2016-01-01

    In accordance with global practice and a number of existing regulations, the use of conservative approach is required for the calculations related to nuclear safety assessment of NPP. It implies the need to consider the determination of neutron fluence errors that is rather complicated. It is proposed to carry out the consideration by the way of multiplying the neutron fluences obtained with transport calculations by safety factors. The safety factor values are calculated by the developed technique based on the theory of errors, features of the neutron transport calculation code and the results obtained with the code. It is shown that the safety factor value is equal 1.18 with the confidence level of not less than 0.95 for the majority of VVER-1000 reactor places where neutron fluences are determined by MCPV code, and its maximum value is 1.25

  4. Neutron fluence-to-dose conversion coefficients for embryo and fetus

    International Nuclear Information System (INIS)

    Chen, J.; Meyerhof, D.; Vlahovich, S.

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus. (authors)

  5. Neutron fluence-to-dose conversion coefficients for embryo and fetus.

    Science.gov (United States)

    Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus.

  6. Burnup influence on the VVER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of the Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of VVER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in 1/4 depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (authors)

  7. Burnup influence on the WWER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of WWER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in ? depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (Authors)

  8. Nickel Foil as Transmutation Detector for Neutron Fluence Measurements

    Directory of Open Access Journals (Sweden)

    Klupák Vít

    2016-01-01

    Full Text Available Activation detectors are very often used for determination of the neutron fluence in reactor dosimetry. However, there are few disadvantages concerning these detectors; it is the demand of the knowledge of the irradiation history and a loss of information due to a radioactive decay in time. Transmutation detectors TMD could be a solution in this case. The transmutation detectors are materials in which stable or long-lived nuclides are produced by nuclear reactions with neutrons. From a measurement of concentration of these nuclides, neutron fluence can be evaluated regardless of the cooling time.

  9. Measuring neutron fluences and gamma/x-ray fluxes with CCD cameras

    International Nuclear Information System (INIS)

    Yates, G.J.; Smith, G.W.; Zagarino, P.; Thomas, M.C.

    1991-01-01

    Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCDs) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (16-MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate ∼0.5 V/rad responsivity with ≥1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or ''peaks'' binned by area and amplitude as functions of fluence in the 10 5 to 10 7 n/cm 2 range indicate smearing over ∼1 to 10% of CCD array with charge per pixel ranging between noise and saturation levels. 9 refs., 12 figs., 4 tabs

  10. Development of the processing software package for RPV neutron fluence determination methodology

    International Nuclear Information System (INIS)

    Belousov, S.; Kirilova, K.; Ilieva, K.

    2001-01-01

    According to the INRNE methodology the neutron transport calculation is carried out by two steps. At the first step reactor core eigenvalue calculation is performed. This calculation is used for determination of the fixed source for the next step calculation of neutron transport from the reactor core to the RPV. Both calculation steps are performed by state of the art and tested codes. The interface software package DOSRC developed at INRNE is used as a link between these two calculations. The package transforms reactor core calculation results to neutron source input data in format appropriate for the neutron transport codes (DORT, TORT and ASYNT) based on the discrete ordinates method. These codes are applied for calculation of the RPV neutron flux and its responses - induced activity, radiation damage, neutron fluence etc. Fore more precise estimation of the neutron fluence, the INRNE methodology has been supplemented by the next improvements: - implementation of more advanced codes (PYTHIA/DERAB) for neutron-physics parameter calculations; - more detailed neutron source presentation; - verification of neutron fluence by statistically treated experimental data. (author)

  11. A new method for the determination of unknown neutron fluence for 14.0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Fariha [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan)]. E-mail: fariha@pinstech.org.pk; Khan, Ehsan U. [Department of Physics, CIIT, Islamabad (Pakistan); Qureshi, Imtinan [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Husaini, Syed N. [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Ahmad, Waqar [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Rajput, Usman [Physics Reasearch Division, PINSTECH, Nilore, Islamabad (Pakistan); Raza, Qaiser [Applied Physics Division, PINSTECH, Nilore, Islamabad (Pakistan)

    2006-11-15

    Measuring the correct neutron fluence in various energy intervals in and around the neutron sources is important for the purpose of personnel and environmental neutron dosimetry. In this paper, we present a new method for the measurement of the fluence of mono-energetic neutrons having the energy of 14.0 MeV. The samples exposed to neutrons from the 14.0 MeV neutron generator at PINSTECH with various fluence values ranging from 10{sup 7} to 10{sup 10} n cm{sup -2} were etched for 10 min in 6 N NaOH at 70.0{+-}1.0 {sup o}C and the transmittance of UV radiation was measured using a spectrophotometer. This procedure was repeated 20 times after etching the same sample each time for increasing time intervals till the stage when transmittance reached the constant minimum value. An exponential decay of the transmittance has been observed with respect to the increasing etching time interval in each of the samples exposed to various neutron fluence. Further, it has also been observed that there is a linear relationship between the transmittance decay constant and neutron fluence. Hence, the linear graph can be used as a calibration for measuring the unknown fluence of 14.0 MeV neutrons.

  12. International intercomparison of fluence of fast neutrons using 115In(n,γ) activation

    International Nuclear Information System (INIS)

    Lesiecki, H.; Cosack, M.

    1985-07-01

    The Physikalisch-Technische Bundesanstalt (PTB) has participated in an international intercomparison of fluence measurements of fast neutrons. This was organized under the auspices of the ''Comite Consultatif pour les Etalons de Mesure des Rayonnements Ionisants (CCEMRI)'', Sect. 3 (Mesures Neutronique). The National Physical Laboratory (NPL), Teddington, UK volunteered to assume responsibility for the experimental realization and final evaluation. This report deals with the measurements performed at the PTB for the neutron fluence intercomparison at neutron energies of Esub(n) = 144 keV and 570 keV which was based on the 115 In(n,γ) 116 Insup(m) reaction. The count rate of a 4πβ-counter which had to be used to determine the activation of the In sample was to be compared with the neutron fluence by which the sample was irradiated. A description of the neutron production, the fluence determination, the 4πβ-counting, and the evaluation of the results will be given. (orig.) [de

  13. Study on measurement technique contrast of 14 MeV neutron fluence

    International Nuclear Information System (INIS)

    Jiang Li; Hu Jun; Wen Dezhi

    2005-10-01

    The stability and repetition of the associated-particle method to measure DT neutron fluence was tested. The neutron activation iron method was contrasted with the associated-particle method, the preparatory experiment was done. The neutron fluence measured with associated-particle method was contrasted with neutron activation Al method, the Al activated foil was measured with 4πβ (PC)-γ coincidence standard device. The contrast result's standard deviation of the two method was less than the expand uncertainty of the associated-particle method. Therein, the uncertainty of the associated-particle method is 1.6%, the uncertainty of the activation Al method is 1.8%. (authors)

  14. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    Science.gov (United States)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  15. The activation method for determining neutron spectra and fluences

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1980-01-01

    3 mm thick foils of 4 and 17 mm in diameter were used for measurements. NaI scintillation detectors 45 mm in diameter by 50 mm thick and 40 mm in diameter by 1 mm thick, and a Ge-Li spectrometer of 53 cm 3 in volume were used for gamma detection. A photopeak or a certain part of the integral spectrum was measured for each radionuclide. Computer code PIKAR was applied in automatic calculation of a simple gamma spectrum obtained using the semiconductor spectrometer. The FACT code was used for calculating foil activity. Codes SAND II and RFSP were used for neutron spectra unfolding. Ge-Li detector spectrometry was used for determining neutron fluence. Code FLUE was used for determining the mean value of neutron flux density and fluence. (J.P.)

  16. Estimates of neutron fluence for the SDC detector

    International Nuclear Information System (INIS)

    Job, P.K.; Price, L.E.; Handler, T.; Gabriel, T.A.

    1994-01-01

    The high energy and high luminosity of SSC cause radiation problems to detectors. Almost all the radiation in the SDC detector comes from the 20 TeV on 20 TeV pp collisions. The design luminosity corresponds to 10 8 collisions per second. This luminosity is maintained for 10 7 seconds (one SSC year). It is important to know the radiation fields experienced by the tracking volume, calorimeter, electronics and the phototubes. The loss of light due to the radiation damage to the scintillators can adversely affect the physics performance of the calorimeter. Studies have been carried out earlier to estimate the radiation dose in the SDC detector. In this note the authors use ISAJET in combination with CALOR89 to make an accurate prediction of neutron fluence at the various locations of the SDC detector. The low energy neutrons are important because they can produce radioactive nuclides in large quantities. In CALOR89 the low energy neutron fluence is accurately estimated by MORSE code

  17. A new expression for determination of fluences from a spherical moderator neutron source for the calibration of spherical neutron measuring devices

    International Nuclear Information System (INIS)

    Khoshnoodi, M.; Sohrabi, M.

    1997-01-01

    A new expression modifying the inverse square law for determination of neutron fluences from spherical moderator neutron sources is reported. The formalism is based on the neutron fluence at a point outside the moderator as the summation of fluxes of two groups of neutrons: direct neutrons from the central region of the moderator, and moderated neutrons which, to a first approximation, are scattered from the outermost layers of the spherical moderator. The expression has been further developed for spherical neutron measuring devices with an appropriate geometry factor which corrects the reading of the device for non-uniform irradiation of the detector. The combination of the new fluence function and those of the air and room scattered components introduce a calibration model. The fluence relationship obtained for moderated sources may conveniently be used for calculating the more rapid change of neutron dose at close distances than that which is based on the inverse square dependence. (author)

  18. Neutron fluence rate and energy spectrum in SPRR-300 reactor thermal column

    International Nuclear Information System (INIS)

    Dou Haifeng; Dai Junlong

    2006-01-01

    In order to modify the simple one-dimension model, the neutron fluence rate distribution calculated with ANISN code ws checked with that calculated with MCNP code. To modify the error caused by ignoring the neutron landscape orientation leaking, the reflector that can't be modeled in a simple one-dimension model was dealt by extending landscape orientation scale. On this condition the neutron fluence rate distribution and the energy spectrum in the thermal column of SPRR-300 reactor were calculated with one-dimensional code ANISN, and the results of Cd ratio are well accorded with the experimental results. The deviation between them is less than 5% and it isn't above 10% in one or two special positions. It indicates that neutron fluence rate distribution and energy spectrum in the thermal column can be well calculated with one-dimensional code ANISN. (authors)

  19. Tissue effects of Ho:YAG laser with varying fluences and pulse widths

    Science.gov (United States)

    Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1994-02-01

    We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.

  20. Solid State Track Recorder fission rate measurements at high neutron fluence and high temperature

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.

    1985-01-01

    Solid State Track Recorder (SSTR) techniques have been used to measure 239-Pu, 235-U, and 237-Np fission rates for total neutron fluences approaching 5 x 10 17 n/cm 2 at temperatures in the range 680 to 830 0 F. Natural quartz crystal SSTRs were used to withstand the high temperature environment and ultra low-mass fissionable deposits of the three isotopes were required to yield scannable track densities at the high neutron fluences. The results of these high temperature, high neutron fluence measurements are reported

  1. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  2. The determination of fast neutron fluence in radiation stability tests of steel samples

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1979-01-01

    The activation method is described of determining fast neutron fluence. Samples of steel designed for WWER type reactor pressure vessels were irradiated in the CHOUCA-rigs in the core of the WWR-S reactor. The neutron spectrum was measured by the multiple activation foil method and the effective cross sections of fluence monitors were calculated. The fluences obtained from the reactions 54 Fe(n,p) 54 Mn and 63 Cu(n,α) 60 Co are presented and the method is discussed. (author)

  3. Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 The purpose of this test method is to define a general procedure for determining an unknown thermal-neutron fluence rate by neutron activation techniques. It is not practicable to describe completely a technique applicable to the large number of experimental situations that require the measurement of a thermal-neutron fluence rate. Therefore, this method is presented so that the user may adapt to his particular situation the fundamental procedures of the following techniques. 1.1.1 Radiometric counting technique using pure cobalt, pure gold, pure indium, cobalt-aluminum, alloy, gold-aluminum alloy, or indium-aluminum alloy. 1.1.2 Standard comparison technique using pure gold, or gold-aluminum alloy, and 1.1.3 Secondary standard comparison techniques using pure indium, indium-aluminum alloy, pure dysprosium, or dysprosium-aluminum alloy. 1.2 The techniques presented are limited to measurements at room temperatures. However, special problems when making thermal-neutron fluence rate measurements in high-...

  4. Parameters measurement for the thermal neutron beam in the thermal column hole of Xi’an pulse reactor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The distribution of the neutron spectra in the thermal column hole of Xi’an pulse reactor was measured with the time-of-flight method.Compared with the thermal Maxwellian theory neutron spectra,the thermal neutron spectra measured is a little softer,and the average neutron energy of the experimental spectra is about 0.042±0.01 eV.The thermal neutron fluence rate at the front end of thermal column hole,measured with gold foil activation techniques,is about 1.18×105 cm-2 s-1.The standard uncertainty of the measured thermal neutron fluence is about 3%.The spectra-averaged cross section of 197Au(n,γ) determined by the experimental thermal neutron spectra is(92.8±0.93) ×10-24 cm2.

  5. The development report of an intelligent neutron fluence integration monitor

    International Nuclear Information System (INIS)

    Jiang Zongbing; Wei Ying

    1996-10-01

    An intelligent neutron fluence integration monitor is introduced. It is used to measure the received neutron fluence of the monocrystalline silicon in reactor radiation channel. The significance of study and specifications of the instrument are briefly described. The emphasis is on the working principle, structure and characteristics of the instrument is intelligent due to use of monolithic microcomputer. It has many advantages proved in the actual practice, such as powerful function, high accuracy, diversity of application, high level automatization, easy to operate, high reliability, etc. After using this instrument the monocrystalline silicon radiation technology is improved and the efficiency of production is raised. (1 fig.)

  6. International key comparison of neutron fluence measurements in mono-energetic neutron fields: C.C.R.I.(3)-K10

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Wang, Z.; Rong, C. [China Institute of Atomic Energy (CIAE), Beijing, People' s Republic of China (China); Lovestam, G.; Plompen, A.; Puglisi, N. [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Geel (Belgium); Gilliam, D.M.; Eisenhauer, C.M.; Nico, J.S.; Dewey, M.S. [National Institute of Standards and Technology (NIST), Gaithersburg (United States); Kudo, K.; Uritani, A.; Harano, H.; Takeda, N. [National Metrology Institute of Japan (NMIJ), Tsukuba (Japan); Thomas, D.J.; Roberts, N.J.; Bennett, A.; Kolkowski, P. [National Physical Laboratory (NPL), Teddington (United Kingdom); Moisseev, N.N.; Kharitonov, I.A. [Mendeleyev Institute for Metrology (VNIIM), St Petersburg (Russian Federation); Guldbakke, S.; Klein, H.; Nolte, R.; Schlegel, D. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2007-12-15

    C.C.R.I. Section III (neutron measurements) conducted a unique key comparison of neutron fluence measurements in mono-energetic neutron fields. In contrast to former comparisons, here the fluence measurements were performed with the participants' instruments in the same neutron fields at the P.T.B. accelerator facility. Seven laboratories- the C.I.A.E. (China), I.R.M.M. (E.C.), N.M.I.J. (Japan), N.I.S.T. (USA), N.P.L. (UK), P.T.B. (Germany) and the V.N.I.I.M. (Russia)-employed their primary standard reference methods or transfer instruments carefully calibrated against their primary standards, to determine the fluence of 0.144 MeV, 1.2 MeV, 5.0 MeV and 14.8 MeV neutrons and reported calibration coefficients for a selected neutron monitor and each neutron energy with a detailed uncertainty budget for the measurements. The key comparison reference values (K.C.R.V.) were finally evaluated as the weighted mean values of the neutron fluence at 1 m distance from the target in vacuum per neutron monitor count. The uncertainties of each K.C.R.V. amounted to about 1%. The degree of equivalence (D.o.E.), defined as the deviation of the result reported by the laboratories for each energy from the corresponding K.C.R.V., and the associated expanded uncertainty are also reported. The deviations between the results of two laboratories each with the corresponding expanded uncertainties complete the documentation of the degrees of equivalence. (authors)

  7. Pulsed neutron generator for use with pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Rochau, G.E.

    1980-01-01

    A high-output, transportable, pulsed neutron generator has been developed by Sandia National Laboratories for use with Pulsed Neutron Activation (PNA) techniques. The PNA neutron generator generates > 10 10 14 MeV D-T neutrons in a 1.2 millisecond pulse. Each operation of the unit will produce a nominal total neutron output of 1.2 x 10 10 neutrons. The generator has been designed to be easily repaired and modified. The unit requires no additional equipment for operation or measurement of output

  8. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4

    International Nuclear Information System (INIS)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R.

    2014-01-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H p (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm 3 , composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm 2 ). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  9. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots of both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.

  10. Determination of fast neutron fluence at WWER-1000 pressure vessel

    International Nuclear Information System (INIS)

    Valenta, V. et al.

    1989-01-01

    The influence function method is an effective tool making it possible, by means of tabulated values to rapidly perform three-dimensional calculations of fast neutron fluences for various reactor core loadings and for various nuclear power plant units. The procedure for determining the spatial dependence of the fast neutron fluences in a WWER-1000 pressure vessel is described. For this, the reactor core is divided into sufficiently fine volume elements within which the neutron source can be regarded as coordinate-independent. The influence functions point to a substantial role of sources lying at the reactor core periphery. In WWER-1000 reactors, only 1 or 2 rows of peripheral assemblies are important. The influence function method makes possible a rapid and easy determination of preconditions for the assessment of the residual lifetime of the pressure vessel based on the actual reactor core loadings. (Z.M.). 7 figs., 8 refs

  11. Measured thermal and fast neutron fluence rates ATR Cycle 101-B, October 11, 1993--November 27, 1993

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1994-01-01

    This report contains the thermal (2200 m/s) and fast (E>lMeV) neutron fluence rate data for ATR Cycle 101-B which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations proper header identification of all monitor positions contained herein

  12. Neutronics of pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source

  13. New neutron imaging using pulsed sources. Characteristics of a pulsed neutron source and principle of pulsed neutron imaging

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2012-01-01

    Neutron beam is one of important tools to obtain the transmission image of an object. Until now, steady state neutron sources such as reactors are mainly used for this imaging purpose. Recently, it has been demonstrated that pulsed neutron imaging based on accelerator neutron sources can provide a real-space distribution of physical information of materials such as crystallographic structure, element, temperature, hydrogen bound state, magnetic field and so on, by analyzing wavelength dependent transmission spectrum, which information cannot be observed or difficult to obtain with a traditional imaging method using steady state neutrons. Here, characteristics of the pulsed neutron source and principle of the pulsed neutron imaging are explained as a basic concept of the new method. (author)

  14. Pulsed neutron generator

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.

    1986-03-01

    The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig

  15. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1978-01-01

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  16. Neutron irradiation effects on intermetallic precipitates in Zircaloy as a function of fluence

    International Nuclear Information System (INIS)

    Etoh, Y.; Shimada, S.

    1993-01-01

    Intermetallic precipitates in Zircaloy-2 and -4, recrystallized at the α-phase temperature, have been examined using analytical electron microscopy. The specimens were irradiated in BWRs up to a fast neutron fluence of 1.4x10 26 n/m 2 (E>1 MeV). Neutron irradiation induces a crystalline-to-amorphous transition, depleting Fe in the amorphous phase of Zr(Fe, Cr) 2 precipitates in the alloys. Amorphization starts from the periphery of the precipitates and all of them are totally amorphized at higher fluences than 1.2x10 26 n/m 2 . The width of the Fe-depleted zone increases in proportion to the 0.45 power of fluence. This result indicates that diffusion of Fe is the rate-controlling process for Fe depletion in Zr(Fe, Cr) 2 precipitates. Dissolution of Zr 2 (Fe, Ni) precipitates in Zircaloy-2 occurs during neutron irradiation. At a high fluence, such as 1.2x10 26 n/m 2 , Zr 2 (Fe, Ni) precipitates are almost completely dissolved into the matrix and the dissolution rate of Fe is faster than that of Ni. (orig.)

  17. Electrical and optical analyses of low fluence fast neutron damage to JFETs

    International Nuclear Information System (INIS)

    Hoffmann, A.; Charles, J.P.; Kerns, S.E.; Kerns, D.V. Jr.; Bardonnie, M. de la; Mialhe, P.

    1999-01-01

    The effects of fast neutron irradiation (30 MeV) on silicon n-channel JFETs are studied. Electrical parameters of the gate-channel junction are analysed at 3 fluences: 4,06*10 10 , 8,12*10 10 and 1,22*10 11 n/cm 2 for a flux of 2,82*10 6 n/s*cm 2 and using a custom software. Electrical parameter changes are attributed to bulk semi-conductor defects. Irradiation effects on passivation overlayers are evacuate using analysis of gate-channel junction electroluminescence. This study shows that even for low neutron fluences (10 11 n/cm 2 ), n-channel JFETs, characterized in direct conducting mode and submitted to neutron radiation, present a decrease in the reverse saturation current associated with recombination. (A.C.)

  18. Pulsed neutron generator for mass flow measurement using the pulsed neutron activation technique

    International Nuclear Information System (INIS)

    Rochau, G.E.; Hornsby, D.R.; Mareda, J.F.; Riggan, W.C.

    1980-01-01

    A high-output, transportable neutron generator has been developed to measure mass flow velocities in reactor safety tests using the Pulsed Neutron Activation (PNA) Technique. The PNA generator produces >10 10 14 MeV D-T neutrons in a 1.2 millisecond pulse. The Millisecond Pulse (MSP) Neutron Tube, developed for this application, has an expected operational life of 1000 pulses, and it limits the generator pulse repetition rate to 12 pulses/minute. A semiconductor neutron detector is included in the generator package to monitor the neutron output. The control unit, which can be operated manually or remotely, also contains a digital display with a BCD output for the neutron monitor information. The digital logic of the unit controls the safety interlocks and rejects transient signals which could accidently fire the generator

  19. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  20. Effect of high fluence neutron irradiation on transport properties of thermoelectrics

    Science.gov (United States)

    Wang, H.; Leonard, K. J.

    2017-07-01

    Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.

  1. Neutron fluence determination for operation effectiveness assessment and prediction of WWER pressure vessel lifetime at the Kozloduy NPP

    Energy Technology Data Exchange (ETDEWEB)

    Apostolov, T; Ilieva, K; Belousov, S; Petrova, T; Antonov, S; Ivanov, K; Prodanova, R; Penev, I; Taskaev, E [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika; Ivanov, I; Tsokov, P; Nelov, N; Lilkov, B; Tsocheva, V; Monev, M; Velichkov, V; Kharalampieva, Ts [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    Embrittlement processes in reactor pressure vessel (RPV) metal have been investigated by neutron dosimetry. A software package for fluence calculations has been developed and used for evaluation of the accumulated neutron fluence, the critical temperature of radiation embrittlement and the RPV lifetime. A digital reactivity meter DR-8 has been introduced for continuous neutron fluence monitoring. Estimates of the neutron fluence and the radiation state of all 6 units of the Kozloduy NPP are presented. The Unit 4 RPV is in the best state regarding metal embrittlement, while the Units 2 and 3 can be safely operated up to the end of their design lifetime only using dummy cassettes. The neutron fluence accumulation in the Unit 1 RPV is quite big and can not be reduced with annealing. Activity measurements of the Unit 1 internal wall shavings are made after the 14-th cycle which show a good agreement with calculated values (1.10{sup 5} Bq/g). The critical embrittlement temperature of the Units 1 - 4 is estimated as a function of the working cycles. 11 figs., 1 tab.

  2. Investigation of neutron fluence using fluence monitors for irradiation test at WWR-K

    International Nuclear Information System (INIS)

    Romanova, N.K.; Takemoto, N.

    2013-01-01

    Irradiation test of a Si ingot is planned using WWR-K in Institute of Nuclear Physics Republic of Kazakhstan (INP RK) to develop an irradiation technology for Si semiconductor production by Neutron Transmutation Doping (NTD) method in the framework of an international cooperation between INP RK and Japan Atomic Energy Agency (JAEA), Japan. It is possible to irradiate the Si ingot of 6 inch in diameter at the K-23 irradiation channel in the WWR-K. The preliminary irradiation test using 4 Al ingots was performed to evaluate the actual neutronic irradiation field at the K-23 channel in the WWR-K. Each Al ingot has the same dimension as the Si ingot, and 15 fluence monitors are equipped in it. Iron wire and aluminum-cobalt wire are inserted into them, and it is possible to evaluate both fast and thermal neutron fluxes by measurement of these radiation activities after irradiation. This report described the results of the preliminary irradiation test and the neutronic calculations by Monte Carlo method in order to evaluate the neutronic irradiation field in the irradiation position for the silicon ingot at the channel in the WWR-K. (authors)

  3. Application of the adjoint function methodology for neutron fluence determination

    International Nuclear Information System (INIS)

    Haghighat, A.; Nanayakkara, B.; Livingston, J.; Mahgerefteh, M.; Luoma, J.

    1991-01-01

    In previous studies, the neutron fluence at a reactor pressure vessel has been estimated based on consolidation of transport theory calculations and experimental data obtained from in-vessel capsules and/or cavity dosimeters. Normally, a forward neutron transport calculation is performed for each fuel cycle and the neutron fluxes are integrated over the reactor operating time to estimate the neutron fluence. Such calculations are performed for a geometrical model which is composed of one-eighth (0 to 45 deg) of the reactor core and its surroundings; i.e., core barrel, thermal shield, downcomer, reactor vessel, cavity region, concrete wall, and instrumentation well. Because the model is large, transport theory calculations generally require a significant amount of computer memory and time; hence, more efficient methodologies such as the adjoint transport approach have been proposed. These studies, however, do not address the necessary sensitivity studies needed for adjoint function calculations. The adjoint methodology has been employed to estimate the activity of a cavity dosimeter and that of an in-vessel capsule. A sensitivity study has been performed on the mesh distribution used in and around the cavity dosimeter and the in-vessel capsule. Further, since a major portion of the detector response is due to the neutrons originated in the peripheral fuel assemblies, a study on the use of a smaller calculational model has been performed

  4. Absolute measurement and international intercomparison of 0.1-0.8 MeV monoenergetic neutron fluence rate

    International Nuclear Information System (INIS)

    Ma Hongchang; Lu Hanlin; Rong Chaofan

    1988-01-01

    The methods for absolute measurement of 0.1-18MeV monoenergetic neutron fluence rate are described. Which include proton recoil telescope, semicoducetor telescope, hydrogen filled proportional counter and associated particale method. A long counter used as secondary recent international intercomparison of neutron fluence rate organized by BIPM, and the results were given

  5. Development of neutron fluence measurement and evaluation technology for the test materials in the capsule

    Energy Technology Data Exchange (ETDEWEB)

    Hong, U.; Choi, S. H.; Kang, H. D. [Kyungsan University, Kyungsan (Korea)

    2000-03-01

    The four kinds of the fluence monitor considered by self-shielding are design and fabricated for evaluation of neutron irradiation fluence. They are equipped with dosimeters consisting of Ni, Fe and Ti wires and so forth. The nuclear reaction rate is obtained by measurement on dosimeter using the spectroscopic analysis of induced {gamma}-ray. We established the nuetron fluence evaluating technology that is based on the measurement of the reaction rate considering reactor's irradiation history, burn-out, self-shielding in fluence monitor, and the influence of impurity in dosimeter. The distribution of high energy neutron flux on the vertical axis of the capsule shows fifth order polynomial equation and is good agree with theoretical value in the error range of 30% by MCNP/4A code. 22 refs., 50 figs., 27 tabs. (Author)

  6. RAMA Methodology for the Calculation of Neutron Fluence; Metodologia RAMA para el Calculo de la Fluencia Neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Villescas, G.; Corchon, F.

    2013-07-01

    he neutron fluence plays an important role in the study of the structural integrity of the reactor vessel after a certain time of neutron irradiation. The NRC defined in the Regulatory Guide 1.190, the way must be estimated neutron fluence, including uncertainty analysis of the validation process (creep uncertainty is ? 20%). TRANSWARE Enterprises Inc. developed a methodology for calculating the neutron flux, 1,190 based guide, known as RAMA. Uncertainty values obtained with this methodology, for about 18 vessels, are less than 10%.

  7. Standard Test Method for Measuring Neutron Fluence and Average Energy from 3H(d,n)4He Neutron Generators by Radioactivation Techniques 1

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers a general procedure for the measurement of the fast-neutron fluence rate produced by neutron generators utilizing the 3H(d,n)4He reaction. Neutrons so produced are usually referred to as 14-MeV neutrons, but range in energy depending on a number of factors. This test method does not adequately cover fusion sources where the velocity of the plasma may be an important consideration. 1.2 This test method uses threshold activation reactions to determine the average energy of the neutrons and the neutron fluence at that energy. At least three activities, chosen from an appropriate set of dosimetry reactions, are required to characterize the average energy and fluence. The required activities are typically measured by gamma ray spectroscopy. 1.3 The measurement of reaction products in their metastable states is not covered. If the metastable state decays to the ground state, the ground state reaction may be used. 1.4 The values stated in SI units are to be regarded as standard. No oth...

  8. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, D. P. [Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California 92093 (United States); Lawrence Livermore National Laboratory, Livermore, California 94440 (United States); McNaney, J. M.; Swift, D. C.; Mackinnon, A. J.; Patel, P. K. [Lawrence Livermore National Laboratory, Livermore, California 94440 (United States); Petrov, G. M.; Davis, J. [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States); Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Jarrott, L. C.; Tynan, G.; Beg, F. N. [Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California 92093 (United States); Kodama, R.; Nakamura, H. [Institute of Laser Engineering, Osaka University, 2-5 Yamada-oka, Suita, Osaka 454-0871 (Japan); Lancaster, K. L. [STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11OQX (United Kingdom)

    2011-10-15

    The generation of high-energy neutrons using laser-accelerated ions is demonstrated experimentally using the Titan laser with 360 J of laser energy in a 9 ps pulse. In this technique, a short-pulse, high-energy laser accelerates deuterons from a CD{sub 2} foil. These are incident on a LiF foil and subsequently create high energy neutrons through the {sup 7}Li(d,xn) nuclear reaction (Q = 15 MeV). Radiochromic film and a Thomson parabola ion-spectrometer were used to diagnose the laser accelerated deuterons and protons. Conversion efficiency into protons was 0.5%, an order of magnitude greater than into deuterons. Maximum neutron energy was shown to be angularly dependent with up to 18 MeV neutrons observed in the forward direction using neutron time-of-flight spectrometry. Absolutely calibrated CR-39 detected spectrally integrated neutron fluence of up to 8 x 10{sup 8} n sr{sup -1} in the forward direction.

  9. Calculation of neutron fluence-to-dose conversion factors for extremities

    International Nuclear Information System (INIS)

    Stewart, R.D.; Harty, R.; McDonald, J.C.; Tanner, J.E.

    1993-04-01

    The Pacific Northwest Laboratory is developing a standard for the performance testing of personnel extremity dosimeters for the US Department of Energy. Part of this effort requires the calculation of neutron fluence-to-dose conversion factors for finger and wrist extremities. This study focuses on conversion factors for two types of extremity models: namely the polymethyl methacrylate (PMMA) phantom (as specified in the draft standard for performance testing of extremity dosimeters) and more realistic extremity models composed of tissue-and-bone. Calculations for each type of model are based on both bare and D 2 O-moderated 252 Cf sources. The results are then tabulated and compared with whole-body conversion factors. More appropriate energy-averaged quality factors for the extremity models have also been computed from the neutron fluence in 50 equally spaced energy bins with energies from 2.53 x 10 -8 to 15 MeV. Tabulated results show that conversion factors for both types of extremity phantom are 15 to 30% lower than the corresponcung whole-body phantom conversion factors for 252 Cf neutron sources. This difference in extremity and whole-body conversion factors is attributable to the proportionally smaller amount of back-scattering that occurs in the extremity phantoms compared with whole-body phantoms

  10. Lifetime Neutron Fluence Analysis of the Ringhals Unit 1 Boiling Water Reactor

    Directory of Open Access Journals (Sweden)

    Kulesza Joel A.

    2016-01-01

    Full Text Available This paper describes a neutron fluence assessment considering the entire commercial operating history (35 cycles or ∼ 25 effective full power years of the Ringhals Unit 1 reactor pressure vessel beltline region. In this assessment, neutron (E >1.0 MeV fluence and iron atom displacement distributions were calculated on the moderator tank and reactor pressure vessel structures. To validate those calculations, five in-vessel surveillance chain dosimetry sets were evaluated as well as material samples taken from the upper core grid and wide range neutron monitor tubes to act as a form of retrospective dosimetry. During the analysis, it was recognized that delays in characterizing the retrospective dosimetry samples reduced the amount of reactions available to be counted and complicated the material composition determination. However, the comparisons between the surveillance chain dosimetry measurements (M and calculated (C results show similar and consistent results with the linear average M/C ratio of 1.13 which is in good agreement with the resultant least squares best estimate (BE/C ratios of 1.10 for both neutron (E >1.0 MeV flux and iron atom displacement rate.

  11. Measured thermal and fast neutron fluence rates ATR Cycle 99-A, November 23, 1992--January 23, 1993

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1993-03-01

    This report contains the thermal (2200 m/s) and fast (E>me) neutron fluence rate data for ATR Cycle 99-A which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power ReactorPrograms (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All ''H'' holder monitor wires for this cycle are 54 inches long. All ''SR'' holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, ''BR'' holders were used in the W-1, 2, 3, and 4 positions. All ''BR'' holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle

  12. Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Markus [Technische Univ. Darmstadt (Germany); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Glenzer, Siegfried [Stanford Univ., CA (United States); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siders, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haefner, Constantin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-19

    A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron source the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >1010 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for

  13. Feasibility study on using imaging plates to estimate thermal neutron fluence in neutron-gamma mixed fields

    International Nuclear Information System (INIS)

    Fujibuchi, T.; Tanabe, Y.; Sakae, T.; Terunuma, T.; Isobe, T.; Kawamura, H.; Yasuoka, K.; Matsumoto, T.; Harano, H.; Nishiyama, J.; Masuda, A.; Nohtomi, A.

    2011-01-01

    In current radiotherapy, neutrons are produced in a photonuclear reaction when incident photon energy is higher than the threshold. In the present study, a method of discriminating the neutron component was investigated using an imaging plate (IP) in the neutron-gamma-ray mixed field. Two types of IP were used: a conventional IP for beta- and gamma rays, and an IP doped with Gd for detecting neutrons. IPs were irradiated in the mixed field, and the photo-stimulated luminescence (PSL) intensity of the thermal neutron component was discriminated using an expression proposed herein. The PSL intensity of the thermal neutron component was proportional to thermal neutron fluence. When additional irradiation of photons was added to constant neutron irradiation, the PSL intensity of the thermal neutron component was not affected. The uncertainty of PSL intensities was approximately 11.4 %. This method provides a simple and effective means of discriminating the neutron component in a mixed field. (authors)

  14. Neutron fluence measurement in the cavity of Balakovo nuclear power plant, unit 3

    International Nuclear Information System (INIS)

    Voorbraak, W.P.; Baard, J.H.; Paardekooper, A.; Nolthenius, H.J.

    1996-12-01

    An international benchmark exercise has been organized by the Russian GOSATOMNADZOR. The aim was to reduce the uncertainty of fluence measurements in Nuclear Power Plants in particular VVER-1000 reactors. The benchmark was set up in the cavity of the Balakovo NPP 3. Eight institutes were involved. This report presents the results obtained by ECN. From this report, it can be concluded that the results of the relative large monitor set (13 different reaction rates with overlapping response regions) point to possible imperfections in the calculated neutron spectra. However the experimental information is not powerful enough to reduce the uncertainty of the neutron fluence rate especially in the energy region between 0.1 and 0.5 MeV below 50 percent. (orig.)

  15. Time changes of vertical profile of neutron fluence rate in LVR-15 reactor

    International Nuclear Information System (INIS)

    Viererbl, L.; Stehno, J.; Erben, O.; Lahodova, Z.; Marek, M.

    2003-01-01

    The LVR-15 reactor is a light water research type reactor, which is situated, in Nuclear Research Institute, Rez near Prague. The reactor is used as a multipurpose facility. For some experiments and material productions, e.g. for homogeneity of silicon resistance in production of radiation doped silicon, the time changes of vertical profile of neutron fluence rate are particularly important. The assembly used for silicon irradiation has two self-powered neutron detectors installed in a vertical irradiation channel in LVR-15 reactor. Vertical profile of thermal neutron fluence rate was automatically scanned during reactor operation. The results of measurements made in 2002 and 2003 with these detectors are presented. A set of vertical profile measurements was made during two 21-days reactor cycles. During the cycle the vertical profile slightly changes both in the position of its maximum and in the shape. The time dependences of the position of profile maximum and the profile width at half maximum during the cycle are given. (author)

  16. Calculation of neutron fluence in the region of the pressure vessel for the history of different reactors by using the Monte-Carlo-method

    International Nuclear Information System (INIS)

    Barz, H.U.; Bertram, W.

    1992-01-01

    Embrittlement of pressure vessel material caused by neutron irradiation is a very important problem for VVER-440 reactors. For the estimation of the fracture risk highly reliable neutron fluence values are necessary. For this reason a special theoretical determination of space dependent neutron fluences has been performed mainly on the basis of Monte-Carlo calculations. The described method allows the accurate calculation of neutron fluences near the pressure vessel in the height of the core region for all reactor histories and loading cycles in an efficient manner. To illustrate the accuracy of the suggested method a comparison with experimental results was done. The calculated neutron fluence values can be used for planning the loading schemes of each reactor according to the safety requirements against brittle fracture. (orig.)

  17. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, A.C., E-mail: Alexis.C.Kaplan@gmail.com [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States); Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States)

    2013-11-21

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from {sup 252}Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background.

  18. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    International Nuclear Information System (INIS)

    Kaplan, A.C.; Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A.

    2013-01-01

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from 252 Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background

  19. Pulsed neutron porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  20. Neutron nuclear physics under the neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    The concept of fast neutron physics facility in the Neutron Science Research project is described. This facility makes use of an ultra-short proton pulse (width < 1 ns) for fast neutron time-of-flight works. The current design is based on an assumption of the maximum proton current of 100 {mu}A. Available neutron fluence and energy resolution are explained. Some of the research subjects to be performed at this facility are discussed. (author)

  1. Neutron Fluence and Energy Reconstruction with the LNE-IRSN/MIMAC Recoil Detector MicroTPC at 27 keV

    Energy Technology Data Exchange (ETDEWEB)

    Maire, D.; Lebreton, L.; Querre, Ph. [Institute for Radioprotection and Nuclear Safety - IRSN, site of Cadarache, 13115 Saint Paul lez Durance (France); Bosson, G.; Guillaudin, O.; Muraz, J.F.; Riffard, Q.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie - LPSCCNRSIN2P3/ UJF/INP, 38000 Grenoble (France)

    2015-07-01

    The French Institute for Radiation protection and Nuclear Safety (IRSN), designated by the French Metrology Institute (LNE) for neutron metrology, is developing a time projection chamber using a Micromegas anode: microTPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize the energy distribution of neutron fluence in the energy range 8 keV - 5 MeV with a primary procedure. The time projection chambers are gaseous detectors able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is used as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulation of the detector response. The μTPC is a new reliable detector able to measure energy distribution of the neutron fluence without unfolding procedure or prior neutron calibration contrary to usual gaseous counters. The microTPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27 keV and 144 keV are shown and compared to the complete detector response simulation. This work

  2. A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, Lena; Bachaalany, Mario [IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons), Cadarache Bat.159, 13115 Saint Paul-lez-Durance, (France); Husson, Daniel; Higueret, Stephane [IPHC / RaMsEs (Institut Pluridisciplinaire Hubert Curien / Radioprotection et Mesures Environnementales), 23 rue du loess - BP28, 67037 Strasbourg cedex 2, (France)

    2015-07-01

    The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that use CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final prototype with

  3. The effect of incremental gamma-ray doses and incremental neutron fluences upon the performance of self-biased sup 1 sup 0 B-coated high-purity epitaxial GaAs thermal neutron detectors

    CERN Document Server

    Gersch, H K; Simpson, P A

    2002-01-01

    High-purity epitaxial GaAs sup 1 sup 0 B-coated thermal neutron detectors advantageously operate at room temperature without externally applied voltage. Sample detectors were systematically irradiated at fixed grid locations near the core of a 2 MW research reactor to determine their operational neutron dose threshold. Reactor pool locations were assigned so that fast and thermal neutron fluxes to the devices were similar. Neutron fluences ranged between 10 sup 1 sup 1 and 10 sup 1 sup 4 n/cm sup 2. GaAs detectors were exposed to exponential fluences of base ten. Ten detector designs were irradiated and studied, differentiated between p-i-n diodes and Schottky barrier diodes. The irradiated sup 1 sup 0 B-coated detectors were tested for neutron detection sensitivity in a thermalized neutron beam. Little damage was observed for detectors irradiated at neutron fluences of 10 sup 1 sup 2 n/cm sup 2 and below, but signals noticeably degraded at fluences of 10 sup 1 sup 3 n/cm sup 2. Catastrophic damage was appare...

  4. The plasma focus as a large fluence neutron source

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Long, J.; Luce, J.; Sahlin, H.

    1977-01-01

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 10 15 neutrons per pulse for material testing purposes is described. With I 5 scaling, predicted from analysis of existing machines, yields of 10 16 -10 17 neutrons per pulse are postulated. The average power consumption, which has become a major issue as a result of the energy crisis is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed. (Auth.)

  5. Measured thermal and fast neutron fluence rates, ATR Cycle 102-A, 11/28/93 thru 1/16/94

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1994-02-01

    This report contains the thermal (2,200 m/s) and fast (E > 1MeV) neutron fluence rate data for ATR Cycle 102-A which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All ''H'' holder monitoring wires for this cycle are 54 inches long. All ''SR'' holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, ''BR'' holders were used in the W-1, 2, 3, and 4 positions. All ''BR'' holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle

  6. A novel wide range, real-time neutron fluence monitor based on commercial off the shelf gallium arsenide light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, B., E-mail: bhaskar.mukherjee@uk-essen.de [Westdeutsches Protonentherapiezentrum Essen (WPE) gGmbH, Hufelandstrasse 55, D-45147 Essen (Germany); Hentschel, R. [Strahlenklinik, University Hospital Essen (Germany); Lambert, J. [Westdeutsches Protonentherapiezentrum Essen (WPE) gGmbH, Hufelandstrasse 55, D-45147 Essen (Germany); Deya, W. [Strahlenklinik, University Hospital Essen (Germany); Farr, J. [Westdeutsches Protonentherapiezentrum Essen (WPE) gGmbH, Hufelandstrasse 55, D-45147 Essen (Germany)

    2011-10-01

    Displacement damage produced by high-energy neutrons in gallium arsenide (GaAs) light emitting diodes (LED) results in the reduction of light output. Based on this principle we have developed a simple, cost effective, neutron detector using commercial off the shelf (COTS) GaAs-LED for the assessment of neutron fluence and KERMA at critical locations in the vicinity of the 230 MeV proton therapy cyclotron operated by Westdeutsches Protonentherapiezentrum Essen (WPE). The LED detector response (mV) was found to be linear within the neutron fluence range of 3.0x10{sup 8}-1.0x10{sup 11} neutron cm{sup -2}. The response of the LED detector was proportional to neutron induced displacement damage in LED; hence, by using the differential KERMA coefficient of neutrons in GaAs, we have rescaled the calibration curve for two mono-energetic sources, i.e. 1 MeV neutrons and 14 MeV neutrons generated by D+T fusion reaction. In this paper we present the principle of the real-time GaAs-LED based neutron fluence monitor as mentioned above. The device was calibrated using fast neutrons produced by bombarding a thick beryllium target with 14 MeV deuterons from a TCC CV 28 medical cyclotron of the Strahlenklinik University Hospital Essen.

  7. Superconductivity in irradiated A-15 compounds at low fluences. I. Neutron-irradiated V3Si

    International Nuclear Information System (INIS)

    Viswanathan, R.; Caton, R.; Pande, C.S.

    1978-01-01

    The behavior of the superconducting transition temperature T/sub c/ of single-crystal and polycrystalline V 3 Si was investigated as a function of low-fluence neutron irradiation. It is found that the initial degradation of T/sub c/ is sample-dependent, some specimens showing no degradation in T/sub c/ up to a fluence of 2 x 10 18 n/cm 2 . This and many other earlier observations on low-fluence behavior are explained in terms of a recently proposed model of radiation damage in A-15 compounds

  8. Neutron fluence in a 18 MeV Electron Accelerator for Therapy

    International Nuclear Information System (INIS)

    Paredes G, L.C.

    2001-01-01

    An investigation was made on the theoretical fundamentals for the determination of the neutron fluence in a linear electron accelerator for radiotherapy applications and the limit values of leakage neutron radiation established by guidelines and standards in radiation protection for these type of accelerators. This investigation includes the following parts: a) Exhaustive bibliographical review on the topics mentioned above, in order to combine and to update the necessary basic information to facilitate the understanding of this subject; b) Analysis of the accelerator operation and identification of its main components, specially in the accelerator head; c) Study of different types of targets and its materials for the Bremsstrahlung production which is based on the electron initial energy, the thickness of the target, and its angular distribution and energy, which influences in the neutron generation by means of the photonuclear and electro disintegration reactions; d) Analysis of the neutron yield based on the target type and its thickness, the energy of electrons and photons; e) Analysis of the neutron energy spectra generated in the accelerator head, inside and outside the treatment room; f) Study of the dosimetry fundamentals for neutron and photon mixed fields, the dosimeter selection criteria and standards applied for these applications, specially the Panasonic U D-809 thermoluminescent dosemeter and C R-39 nuclear track dosimeter; g) Theoretical calculation of the neutron yield using a simplified geometric model for the accelerator head with spherical cell, which considers the target, primary collimator, flattener filter, movable collimators and the head shielding as the main components for radiation production. The cases with W and Pb shielding for closed movable collimators and an irradiation field of 20 x 20 cm 2 were analyzed and, h) Experimental evaluation of the leakage neutron radiation from the patient and head planes, observing that the accelerator

  9. Spallation neutrons pulsed sources

    International Nuclear Information System (INIS)

    Carpenter, J.

    1996-01-01

    This article describes the range of scientific applications which can use these pulsed neutrons sources: Studies on super fluids, measures to verify the crawling model for the polymers diffusion; these sources are also useful to study the neutron disintegration, the ultra cold neutrons. In certain applications which were not accessible by neutrons diffusion, for example, radiations damages, radionuclides production and activation analysis, the spallation sources find their use and their improvement will bring new possibilities. Among others contributions, one must notice the place at disposal of pulsed muons sources and neutrinos sources. (N.C.). 3 figs

  10. Instrumentation at pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Lander, G.H.; Windsor, C.G.

    1984-01-01

    Scientific investigations involving the use of neutron beams have been centered at reactor sources for the last 35 years. Recently, there has been considerable interest in using the neutrons produced by accelerator driven (pulsed) sources. Such installations are in operation in England, Japan, and the United States. In this article a brief survey is given of how the neutron beams are produced and how they can be optimized for neutron scattering experiments. A detailed description is then given of the various types of instruments that have been, or are planned, at pulsed sources. Numerous examples of the scientific results that are emerging are given. An attempt is made throughout the article to compare the scientific opportunities at pulsed sources with the proven performance of reactor installations, and some familiarity with the latter and the general field of neutron scattering is assumed. New areas are being opened up by pulsed sources, particularly with the intense epithermal neutron beams, which promise to be several orders of magnitude more intense than can be obtained from a thermal reactor

  11. Measurement of thermal neutron fluence with CaSO4 thermoluminescent phosphors

    International Nuclear Information System (INIS)

    Liu Jinhua; Su Jingling; Wei Zemin

    1984-01-01

    During neutron irradiation, some TL phosphors were activated. After leaving the irradiation field the TL phosphor produced self-irradiation. The TL output of self-dose was only related to the original neutron fluence and independent of the γ-radiation. Several CaSO 4 TL phosphors were made. They were CaSO 4 :Dy, CaSO 4 :Dy-Teflon, CaSO 4 :Dy mixed with Dy 2 O 3 , CaSO 4 :Mn mixed with Dy 2 O 3 . The linearity, and lower detection limits of these TL phosphors were measured. The thermal neutron response of CaSO 4 :Mn mixed with Dy 2 O 3 was 64 R/(10 10 cm -2 ) and the lower detection limit was 1.3x10 5 cm -2

  12. Effects of high thermal neutron fluences on Type 6061 aluminum

    International Nuclear Information System (INIS)

    Weeks, J.R.; Czajkowski, C.J.; Farrell, K.

    1992-01-01

    The control rod drive follower tubes of the High Flux Beam Reactor are contructed from precipitation-hardened 6061-T6 aluminum alloy and they operate in the high thermal neutron flux regions of the core. It is shown that large thermal neutron fluences up to ∼4 x 10 23 n/cm 2 at 333K cause large increases in tensile strength and relatively modest decreases in tensile elongation while significantly reducing the notch impact toughness at room temperature. These changes are attributed to the development of a fine distribution of precipitates of amorphous silicon of which about 8% is produced radiogenically. A proposed role of thermal-to-fast flux ratio is discussed

  13. Measured thermal and fast neutron fluence rates, ATR Cycle 100-BC, April 23, 1993--May 13, 1993

    International Nuclear Information System (INIS)

    Smith, L.D.; Murray, R.K.; Rogers, J.W.

    1993-07-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for ATR Cycle 100-BC which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All open-quotes Hclose quotes holder monitor wires for this cycle are 54 inches long. All open-quotes SRclose quotes holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, open-quotes BRclose quotes holders were used in the W-1, 2, 3, and 4 positions. All open-quotes BRclose quotes holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle. The results from the measurements in the W-1, 2, 3, 4 monitor positions indicate that the safety rod followers were rotated to a different azimuthal orientation relative to the normal orientation. The results indicate that the rotation was counterclockwise from their normal orientation. This is the same condition observed starting with Cycle 99-B

  14. Observation of pulsed neutron Ramsey resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)]. E-mail: yasuhiro.masuda@kek.jp; Skoy, V. [Joint Institute for Nuclear Reasearch, 141980 Dubna, Moscow Region (Russian Federation); Ino, T. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Jeong, S.C. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Watanabe, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)

    2007-07-15

    A Ramsey resonance for pulsed neutrons was observed. The separated oscillatory fields for nuclear magnetic resonance were synchronized with a neutron pulse, and then the Ramsey resonance was observed as a function of the neutron velocity. The phase of one of the oscillatory fields was modulated as a function of the neutron time of flight for a neutron velocity measurement.

  15. Pulsed neutron sources at Dubna

    International Nuclear Information System (INIS)

    Shabalin, E.P.

    1991-01-01

    In 1960 the first world repetitively pulsed reactor IBR was put into operation. It was the beginning of the story how fission based pulsed neutron sources at Dubna have survived. The engineers involved have experienced many successes and failures in the course of new sources upgrading to finally come to possess the world's brightest neutron source - IBR-2. The details are being reviewed through the paper. The fission based pulsed neutron sources did not reach their final state as yet- the conceptual views of IBR prospects are being discussed with the goal to double the thermal neutron peak flux (up to 2x10 16 ) and to enhance the cold neutron flux by 10 times (with the present one being as high that of the ISIS cold moderator). (author)

  16. Measurement of low neutron-fluences using electrochemically etched PC and PET track detectors

    International Nuclear Information System (INIS)

    Somogyi, G.; Dajko, G.; Turek, K.; Spurny, F.

    1979-01-01

    Systematic investigations have been carried out to study different properties of electrochemically etched (ECE) polycarbonate (PC) and polyethylene-terephthalate (PET) foils. The dependence of the density of background discharge spots on surface-thickness removal, electrical field strength and frequency of voltage is given. The effect of these parameters on the neutron sensitivity of polycarbonate and polyethylene-terephthalate foils irradiated at right angles to 14.7 MeV, 241 Am-Be and 252 Cf neutrons is also studied. With knowledge of the background and sensitivity data, the etching and electrical parameters are optimized for low neutron-fluence measurements. (author)

  17. A Wide Spectrum Neutron Polarizer for a Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.

    1994-01-01

    A wide spectrum neutron polarizer for a pulsed neutron source is considered. The polarizer is made in a form of a set of magnetized mirrors placed on a drum. Homogeneous rotation of the polarizer is synchronized with the power pulses of the neutron source. The polarizer may be utilized in a collimated neutron beam with cross section of the order of magnitude of 100 cm 2 within a wavelength from 2 up to 20 A on sources with a pulse repetition frequency up to 50 Hz. (author). 5 refs.; 3 figs

  18. A neutron source of variable fluence

    International Nuclear Information System (INIS)

    Brachet, Guy; Demichel, Pascal; Prigent, Yvon; Riche, J.C.

    1975-01-01

    The invention concerns a variable fluence neutron source, like those that use in the known way a reaction between a radioactive emitter and a target, particularly of type (α,n). The emitter being in powder form lies in a carrier fluid forming the target, inside a closed containment. Facilities are provided to cause the fluidisation of the emitter by the carrier fluid in the containment. The fluidisation of the emitting powder is carried out by a booster with blades, actuated from outside by a magnetic coupling. The powder emitter is a α emitter selected in the group of curium, plutonium, thorium, actinium and americium oxides and the target fluid is formed of compounds of light elements selected from the group of beryllium, boron, fluorine and oxygen 18. The target fluid is a gas used under pressure or H 2 O water highly enriched in oxygen 18 [fr

  19. Fluence measurement at the neutron time of flight experiment at CERN

    CERN Document Server

    Weiss, Christina; Jericha, Erwin

    At the neutron time of flight facility n_TOF at CERN a new spallation target was installed in 2008. In 2008 and 2009 the commissioning of the new target took place. During the summer 2009 a fission chamber of the Physikalisch Technische Bundesanstalt (PTB) Braunschweig was used for the neutron fluence measurement. The evaluation of the data recorded with this detector is the primary topic of this thesis. Additionally a neutron transmission experiment with air has been performed at the TRIGA Mark II reactor of the Atomic Institute of the Austrian Universities (ATI). The experiment was implemented to clarify a question about the scattering cross section of molecular gas which could not be answered clearly via the literature. This problem came up during the evaluations for n_TOF.

  20. DOUBLE-EXPONENTIAL FITTING FUNCTION FOR EVALUATION OF COSMIC-RAY-INDUCED NEUTRON FLUENCE RATE IN ARBITRARY LOCATIONS.

    Science.gov (United States)

    Li, Huailiang; Yang, Yigang; Wang, Qibiao; Tuo, Xianguo; Julian Henderson, Mark; Courtois, Jérémie

    2017-12-01

    The fluence rate of cosmic-ray-induced neutrons (CRINs) varies with many environmental factors. While many current simulation and experimental studies have focused mainly on the altitude variation, the specific rule that the CRINs vary with geomagnetic cutoff rigidity (which is related to latitude and longitude) was not well considered. In this article, a double-exponential fitting function F=(A1e-A2CR+A3)eB1Al, is proposed to evaluate the CRINs' fluence rate varying with geomagnetic cutoff rigidity and altitude. The fitting R2 can have a value up to 0.9954, and, moreover, the CRINs' fluence rate in an arbitrary location (latitude, longitude and altitude) can be easily evaluated by the proposed function. The field measurements of the CRINs' fluence rate and H*(10) rate in Mt. Emei and Mt. Bowa were carried out using a FHT-762 and LB 6411 neutron prober, respectively, and the evaluation results show that the fitting function agrees well with the measurement results. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Study of general digital DC/pulse neutron generator

    International Nuclear Information System (INIS)

    Li Gang; Liu Zheng; Li Wensheng; Liu Hanlin; Liu Linmao

    2014-01-01

    Preliminary experimental results of digital DC/pulse neutron generator based on a ceramic drive-in target neutron tube for explosives detection are presented. The generator is a portable and on-off neutron source, and it can be controlled by remote PC. The generator can produce DC neutrons, pulse neutrons and multiple pulse neutrons. The maximum neutron yield is about 2 × 10"8 n/s, the minimum pulse width is 10 μs and the maximum pulse frequency is 10 kHz. Neutron yield and time-spectrum is measured in China Academy of Engineering Physics. The generator is suitable for explosive detection with PFTNA technology, and it can be used in other areas such as reactor measurements and on-line industrial test systems. (authors)

  2. Pulsed neutron generator for logging

    International Nuclear Information System (INIS)

    Thibideau, F.D.

    1977-01-01

    A pulsed neutron generator for uranium logging is described. This generator is one component of a prototype uranium logging probe which is being developed by SLA to detect, and assay, uranium by borehole logging. The logging method is based on the measurement of epithermal neutrons resulting from the prompt fissioning of uranium from a pulsed source of 17.6 MeV neutrons. An objective of the prototype probe was that its diameter not exceed 2.75 inches, which would allow its use in conventional rotary drill holes of 4.75-inch diameter. This restriction limited the generator to a maximum 2.375-inch diameter. The performance requirements for the neutron generator specified that it operate with a nominal output of 5 x 10 6 neutrons/pulse at up to 100 pulses/second for a one-hour period. The development of a neutron generator meeting the preliminary design goals was completed and two prototype models were delivered to SLA. These two generators have been used by SLA to log a number of boreholes in field evaluation of the probe. The results of the field evaluations have led to the recommendation of several changes to improve the probe's operation. Some of these changes will require additional development effort on the neutron generator. It is expected that this work will be performed during 1977. The design and operation of the first prototype neutron generators is described

  3. Pulsed neutron sources at KAON

    International Nuclear Information System (INIS)

    Thorson, I.M.; Egelstaff, P.A.; Craddock, M.K.

    1991-01-01

    The proposed KAON Factory facility at TRIUMF consists of a number of synchrotrons and storage rings which offer proton beams of energies between 0.45 and 30 GeV with varying pulse amplitudes, widths and repetition rates. Various possibilities for feeding these beams to a pulsed neutron facility and their potential for future development are examined. The incremental cost of such a pulsed neutron facility is estimated approximately. (author)

  4. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study.

    Science.gov (United States)

    Tunnell, J W; Nelson, J S; Torres, J H; Anvari, B

    2000-01-01

    Higher laser fluences than currently used in therapy (5-10 J/cm(2)) are expected to result in more effective treatment of port wine stain (PWS) birthmarks. However, higher incident fluences increase the risk of epidermal damage caused by absorption of light by melanin. Cryogen spray cooling offers an effective method to reduce epidermal injury during laser irradiation. The objective of this study was to determine whether high laser incident fluences (15-30 J/cm(2)) could be used while still protecting the epidermis in ex vivo human skin samples. Non-PWS skin from a human cadaver was irradiated with a Candela ScleroPlus Laser (lambda = 585 nm; pulse duration = 1.5 msec) by using various incident fluences (8-30 J/cm(2)) without and with cryogen spray cooling (refrigerant R-134a; spurt durations: 40-250 msec). Assessment of epidermal damage was based on histologic analysis. Relatively short spurt durations (40-100 msec) protected the epidermis for laser incident fluences comparable to current therapeutic levels (8-10 J/cm(2)). However, longer spurt durations (100-250 msec) increased the fluence threshold for epidermal damage by a factor of three (up to 30 J/cm(2)) in these ex vivo samples. Results of this ex vivo study show that epidermal protection from high laser incident fluences can be achieved by increasing the cryogen spurt duration immediately before pulsed laser exposure. Copyright 2000 Wiley-Liss, Inc.

  5. Pulsed spallation Neutron Sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1994-01-01

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology

  6. Pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1996-01-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology

  7. Pulsed TRIGA reactor as substitute for long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1999-01-01

    TRIGA reactor cores have been used to demonstrate various pulsing applications. The TRIGA reactor fuel (U-ZrH x ) is very robust especially in pulsing applications. The features required to produce 50 pulses per second have been successfully demonstrated individually, including pulse tests with small diameter fuel rods. A partially optimized core has been evaluated for pulses at 50 Hz with peak pulsed power up to 100 MW and an average power up to 10 MW. Depending on the design, the full width at half power of the individual pulses can range between 2000 μsec to 3000 μsec. Until recently, the relatively long pulses (2000 μsec to 3000 μsec) from a pulsed thermal reactor or a long pulse spallation source (LPSS) have been considered unsuitable for time-of-flight measurements of neutron scattering. More recently considerable attention has been devoted to evaluating the performance of long pulse (1000 to 4000 μs) spallation sources for the same type of neutron measurements originally performed only with short pulses from spallation sources (SPSS). Adequate information is available to permit meaningful comparisons between CW, SPSS, and LPSS neutron sources. Except where extremely high resolution is required (fraction of a percent), which does require short pulses, it is demonstrated that the LPSS source with a 1000 msec or longer pulse length and a repetition rate of 50 to 60 Hz gives results comparable to those from the 60 MW ILL (CW) source. For many of these applications the shorter pulse is not necessarily a disadvantage, but it is not an advantage over the long pulse system. In one study, the conclusion is that a 5 MW 2000 μsec LPSS source improves the capability for structural biology studies of macromolecules by at least a factor of 5 over that achievable with a high flux reactor. Recent studies have identified the advantages and usefulness of long pulse neutron sources. It is evident that the multiple pulse TRIGA reactor can produce pulses comparable to

  8. Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons

    International Nuclear Information System (INIS)

    Mukherjee, B.; Simrock, S.; Khachan, J.; Rybka, D.; Romaniuk, R.

    2007-01-01

    Displacement damage (DD) caused by fast neutrons in unbiased Gallium Arsenide (GaAs) light emitting diodes (LED) resulted in a reduction of the light output. On the other hand, a similar type of LED irradiated with gamma rays from a 60 Co source up to a dose level in excess of 1.0 kGy (1.0 x 10 5 rad) was found to show no significant drop of the light emission. This phenomenon was used to develop a low cost passive fluence monitor and kinetic energy released per unit mass dosemeter for accelerator-produced neutrons. These LED-dosemeters were used to assess the integrated fluence of photoneutrons, which were contaminated with a strong Bremsstrahlung gamma-background generated by the 730 MeV superconducting electron linac driving the free electron laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron. The applications of GaAs LED as a routine neutron fluence monitor and DD precursor for the electronic components located in high-energy accelerator environment are highlighted. (authors)

  9. Fast neutron fluence calculations as support for a BWR pressure vessel and internals surveillance program

    International Nuclear Information System (INIS)

    Lucatero, Marco A.; Palacios-Hernandez, Javier C.; Ortiz-Villafuerte, Javier; Xolocostli-Munguia, J. Vicente; Gomez-Torres, Armando M.

    2010-01-01

    Materials surveillance programs are required to detect and prevent degradation of safety-related structures and components of a nuclear power reactor. In this work, following the directions in the Regulatory Guide 1.190, a calculational methodology is implemented as additional support for a reactor pressure vessel and internals surveillance program for a BWR. The choice of the neutronic methods employed was based on the premise of being able of performing all the expected future survey calculations in relatively short times, but without compromising accuracy. First, a geometrical model of a typical BWR was developed, from the core to the primary containment, including jet pumps and all other structures. The methodology uses the Synthesis Method to compute the three-dimensional neutron flux distribution. In the methodology, the code CORE-MASTER-PRESTO is used as the three-dimensional core simulator; SCALE is used to generate the fine-group flux spectra of the components of the model and also used to generate a 47 energy-groups job cross section library, collapsed from the 199-fine-group master library VITAMIN-B6; ORIGEN2 was used to compute the isotopic densities of uranium and plutonium; and, finally, DORT was used to calculate the two-dimensional and one-dimensional neutron flux distributions required to compute the synthesized three-dimensional neutron flux. Then, the calculation of fast neutron fluence was performed using the effective full power time periods through six operational fuel cycles of two BWR Units and until the 13th cycle for Unit 1. The results showed a maximum relative difference between the calculated-by-synthesis fast neutron fluxes and fluences and those measured by Fe, Cu and Ni dosimeters less than 7%. The dosimeters were originally located adjacent to the pressure vessel wall, as part of the surveillance program. Results from the computations of peak fast fluence on pressure vessel wall and specific weld locations on the core shroud are

  10. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core

    International Nuclear Information System (INIS)

    Lucatero, M.A.; Xolocostli M, J.V.; Gomez T, A.M.; Palacios H, J.C.

    2006-01-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, rΘ, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  11. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong [Multimedia University, Centre for Advanced Devices and Systems (CADS), Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Setapak, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-08-15

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm{sup 2} to 8 J/cm{sup 2}. The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  12. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    International Nuclear Information System (INIS)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong; Yong, Thian-Khok; Yap, Seong-Shan

    2010-01-01

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm 2 to 8 J/cm 2 . The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  13. New scientific horizons with pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carlile, C.J.; Finney, J.L.

    1991-01-01

    Pulsed spallation sources are not just another way of producing neutrons: the time structure of the neutron pulse has consequences which allow new scientific areas to be investigated and traditional areas to be explored afresh. In addition to the high epithermal neutron component traditionally associated with pulsed sources the recent development of cold neutron techniques at ISIS illustrates that very high energy and momentum resolutions can be achieved on pulsed sources over a surprisingly wide range. (orig.)

  14. Electronic instrumentation system for pulsed neutron measurements

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Kowalik, W.

    1982-01-01

    An essential point of pulsed neutron measurement of thermal neutron parameters for different materials is the registration of the thermal neutron die-away curve after a fast neutron bursts have been injected into the system. An electronic instrumentation system which is successfully applied for pulsed neutron measurements is presented. An important part of the system is the control unit which has been designed and built in the Laboratory of Neutron Parameters of Materials. (author)

  15. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4; Calculo de coeficientes de fluencia de neutrons para equivalente de dose individual utilizando o GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R., E-mail: rosanemribeiro@oi.com.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H{sub p} (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm{sup 3}, composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm{sup 2}). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  16. Neutron Fluence Evaluation of Reactor Internal Structure Using 3D Transport Calculation Code, RAPTOR-M3G

    International Nuclear Information System (INIS)

    Maeng, YoungJae; Lim, MiJoung; Kim, KyungSik; Cho, YoungKi; Yoo, ChoonSung; Kim, ByoungChul

    2015-01-01

    Age-related degradation mechanisms are including the irradiation-assisted stress corrosion cracking(IASCC), void swelling, stress relaxation, fatigue, and etc. A lot of Baffle Former Bolts(BFBs) was installed at the former plate ends between baffle and barrel structure. These would undergo severe experiences, which are high temperature and pressure, bypass water flow and neutron exposure and have some radioactive limitation in inspecting their integrity. The objectives of this paper is to evaluate fast neutron fluence(n/cm 2 , E>1.0MeV) for PWR internals using 3D transport calculation code, RAPTOR-M3G, and to figure out a strategy to manage the effects of aging in PWR internals. One of age-related degradation mechanisms, IASCC, which is affected by fast neutron exposure rate, has been currently issued for PWR internals and has 2 x 10 21 (n/cm 2 ) of the threshold value by MRP-175. Because a lot of BFBs was installed around the internal components, closer inspections are required. As part of an aging management for Kori unit 2, 3D transport calculation code, RAPTOR-M3G, was applied for determining fast neutron fluence at baffle, barrel and former plates regions. As a result, the fast neutron fluence exceeds the screening or threshold values of IASCC in all of baffle, barrel and former plate region. And the most significant region is the baffle because it is located closest to the core. In addition, some regions including former plate tend to be more damaged because of less moderate ability than water. In conclusion, Ice's has been progressed for PWR internals of Kori unit 2. Several regions of internal components were damaged by fast neutron exposure and increase in size as time goes by

  17. Neutron fluence-to-dose equivalent conversion factors: a comparison of data sets and interpolation methods

    International Nuclear Information System (INIS)

    Sims, C.S.; Killough, G.G.

    1983-01-01

    Various segments of the health physics community advocate the use of different sets of neutron fluence-to-dose equivalent conversion factors as a function of energy and different methods of interpolation between discrete points in those data sets. The major data sets and interpolation methods are used to calculate the spectrum average fluence-to-dose equivalent conversion factors for five spectra associated with the various shielded conditions of the Health Physics Research Reactor. The results obtained by use of the different data sets and interpolation methods are compared and discussed. (author)

  18. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  19. Development of a TPC for energy and fluence references in low energies neutronic fields (from 8 keV to 5 MeV)

    International Nuclear Information System (INIS)

    Maire, Donovan

    2015-01-01

    In order to judge the measurement reliability, metrology requires to measure quantities with their uncertainties, in relation to a reference through a documented and unbroken chain of calibrations. In neutron radiation field, instrument response has to be known as a function of the neutron energy. Then detector calibrations are required using reference neutron fields. In France, primary reference neutron fields are held by the LNE-IRSN, at the Laboratory for Neutron Metrology and Dosimetry (LMDN). In order to improve reference neutron field characterization, the LNE-IRSN MIMAC μTPC has been developed. This detector is a Time Projection Chamber (TPC), using a gas at low pressure (30 mbar abs. to 1 bar abs.). Nuclear recoils are generated by neutron elastic scattering onto gas atoms. By measuring the nuclear recoil energy and scattering angle, the μTPC detector is able to measure the energy distribution of the neutron fluence between 8 keV and 5 MeV. The main challenge was to perform accurate spectrometry of neutron fields in the keV range, following a primary procedure. First of all, a metrological approach was followed in order to master every physical process taking part in the neutron detection. This approach led to develop the direct and inverse models, representing the detector response function and its inverse function respectively. Using this detailed characterization, the energy distribution of the neutron fluence has been measured for a continuous neutron field of 27 keV. The reconstructed energy is 28,2 ± 4,5 keV, the difference between μTPC integral fluence measurement and other measurement methods is less than 6%. The LNE-IRSN MIMAC μTPC system becomes the only one system able to measure simultaneously energy and fluence at energies lower than 100 keV, following a primary procedure. The project goal is then reached. These measurements at energies lower than 100 keV shows also a non-linearity between the ionization charge and the ion kinetic energy

  20. The measurement of neutron and neutron induced photon spectra in fusion reactor related assemblies

    CERN Document Server

    Unholzer, S; Klein, H; Seidel, K

    2002-01-01

    The spectral neutron and photon fluence (or flux) measured outside and inside of assemblies related to fusion reactor constructions are basic quantities of fusion neutronics. The comparison of measured spectra with the results of MCNP neutron and photon transport calculations allows a crucial test of evaluated nuclear data as generally used in fusion applications to be carried out. The experiments concern mixed neutron/photon fields with about the same intensity of the two components. An NE-213 scintillation spectrometer, well described by response matrices for both neutrons and photons, is used as proton-recoil and Compton spectrometer. The experiments described here in more detail address the background problematic of two applications, an iron benchmark experiment with an ns-pulsed neutron source and a deep penetration mock-up experiment for the investigation of the ITER in-board shield system. The measured spectral neutron and photon fluences are compared with spectra calculated with the MCNP code on the b...

  1. Accelerator-based pulsed cold neutron source

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Iwasa, Hirokatsu; Kiyanagi, Yoshiaki

    1979-01-01

    An accelerator-based pulsed cold neutron source was constructed. The accelerator is a 35 MeV electron linear accelerator with 1 kW average beam power. The cold neutron beam intensity at a specimen is equivalent to that of a research reactor of 10 14 n/cm 2 .s thermal flux in the case of the quasi-elastic neutron scattering measurements. In spite of some limitations to the universal uses, it has been demonstrated by this facility that the modest capacity accelerator-based pulsed cold neutron source is a highly efficient cold neutron source with low capital investment. Design philosophy, construction details, performance and some operational experiences are described. (author)

  2. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, Sergey E-mail: sergey_korenev@steris.com; Sikolenko, Vadim

    2004-10-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  3. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    Science.gov (United States)

    Korenev, Sergey; Sikolenko, Vadim

    2004-09-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  4. Validation of neutron-transport calculations in benchmark facilities for improved damage-fluence predictions

    International Nuclear Information System (INIS)

    Williams, M.L.; Stallmann, F.W.; Maerker, R.E.; Kam, F.B.K.

    1983-01-01

    An accurate determination of damage fluence accumulated by reactor pressure vessels (RPV) as a function of time is essential in order to evaluate the vessel integrity for both pressurized thermal shock (PTS) transients and end-of-life considerations. The desired accuracy for neutron exposure parameters such as displacements per atom or fluence (E > 1 MeV) is of the order of 20 to 30%. However, these types of accuracies can only be obtained realistically by validation of nuclear data and calculational methods in benchmark facilities. The purposes of this paper are to review the needs and requirements for benchmark experiments, to discuss the status of current benchmark experiments, to summarize results and conclusions obtained so far, and to suggest areas where further benchmarking is needed

  5. Pulsed laser ablation of Germanium under vacuum and hydrogen environments at various fluences

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Hassan [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Dawood, Asadullah; Akram, Mahreen; Mahmood, Khaliq; Hayat, Asma; Ahmad, Riaz; Hussain, Tousif [Centre for Advanced Studies in Physics, Government College University, Lahore (Pakistan); Mahmood, Arshad [National Institute of Laser and Optronics (NILOP), Islamabad (Pakistan)

    2015-07-30

    Highlights: • Germanium targets were exposed under vacuum and H{sub 2} environment by nanosecond laser pulses. • The effect of laser fluence and ambient environment has been investigated. • The surface morphology is investigated by SEM analysis. • Raman and FTIR Spectroscopy are performed to reveal structural modification. • Electrical conductivity is probed by four probe method. - Abstract: Laser fluence and ambient environment play a significant role for the formation and development of the micro/nano-structures on the laser irradiated targets. Single crystal (1 0 0) Germanium (Ge) has been ablated under two environments of vacuum (10{sup −3} Torr) and hydrogen (100 Torr) at various fluences ranging from 4.5 J cm{sup −2} to 6 J cm{sup −2}. For this purpose KrF Excimer laser with wavelength of 248 nm, pulse duration of 18 ns and repetition rate of 20 Hz has been employed. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets was explored by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. Electrical conductivity of the irradiated Ge is measured by four probe method. SEM analysis exhibits the formation of laser-induced periodic surface structures (LIPSS), cones and micro-bumps in both ambient environments (vacuum and hydrogen). The formation as well as development of these structures is strongly dependent upon the laser fluence and environmental conditions. The periodicity of LIPSS or ripples varies from 38 μm to 60 μm in case of vacuum whereas in case of hydrogen environment, the periodicity varies from 20 μm to 45 μm. The difference in number of ripples and periodicity as well as in shape and size of cones and bumps in vacuum and hydrogen is explained on the basis of confinement and shielding effect of plasma. FTIR spectroscopy reveals that no new bands are formed for laser ablated Ge under vacuum, whereas C−H stretching vibration band is

  6. Pulsed White Spectrum Neutron Generator for Explosive Detection

    International Nuclear Information System (INIS)

    King, Michael J.; Miller, Gill T.; Reijonen, Jani; Ji, Qing; Andresen, Nord; Gicquel, Frederic; Kavlas, Taneli; Leung, Ka-Ngo; Kwan, Joe

    2008-01-01

    Successful explosive material detection in luggage and similar sized containers is a critical issue in securing the safety of all airline passengers. Tensor Technology Inc. has recently developed a methodology that will detect explosive compounds with pulsed fast neutron transmission spectroscopy. In this scheme, tritium beams will be used to generate neutrons with a broad energy spectrum as governed by the T(t,2n)4He fission reaction that produces 0-9 MeV neutrons. Lawrence Berkeley National Laboratory (LBNL), in collaboration with Tensor Technology Inc., has designed and fabricated a pulsed white-spectrum neutron source for this application. The specifications of the neutron source are demanding and stringent due to the requirements of high yield and fast pulsing neutron emission, and sealed tube, tritium operation. In a unique co-axial geometry, the ion source uses ten parallel rf induction antennas to externally couple power into a toroidal discharge chamber. There are 20 ion beam extraction slits and 3 concentric electrode rings to shape and accelerate the ion beam into a titanium cone target. Fast neutron pulses are created by using a set of parallel-plate deflectors switching between +-1500 volts and deflecting the ion beams across a narrow slit. The generator is expected to achieve 5 ns neutron pulses at tritium ion beam energies between 80-120 kV. First experiments demonstrated ion source operation and successful beam pulsing

  7. Determination of neutron fluence and radiation brittleness temperature of WWER-440 and WWER-1000 pressure vessels in Kozloduy NPP

    International Nuclear Information System (INIS)

    Ilieva, K.; Apostolov, T.; Belousov, S.; Petrova, T.; Antonov, S.; Ivanov, K.; Prodanova, R.

    1993-01-01

    In Units 1-4 of Kozloduy NPP (WWER-440/230), the weld 4 of RPV undergoes the most severe irradiation embrittlement. Neither witness-samples, nor detectors are designed for these reactors. Transport calculations of fast neutron fluence on WWER-440 RPV and ex-vessel measurements by threshold activation detectors are the primary means for adequate assessment of metal state and for prognosis concerning the reactor life span. In WWER-1000 reactors (Units 5-6) the maximum neutron fluence occurs on the weld 3. The systematical observation of metal state is performed through witness-samples and threshold activation detectors ( 54 Fe (n,p), 63 Cu (n,α), 93 Nb (n,n')) placed above the reactor top edge and at the first vessel ring level. There are big differences in energy spectrum and integral neutron flux falling onto the weld 3, the RPV base metal and the staff detectors. This requires additional neutron measurements in the air gap between the RPV and the thermal insulation. (author)

  8. Development of pulse neutron coal analyzer

    International Nuclear Information System (INIS)

    Jing Shiwie; Gu Deshan; Qiao Shuang; Liu Yuren; Liu Linmao; Jing Shiwei

    2005-01-01

    This article introduced the development of pulsed neutron coal analyzer by pulse fast-thermal neutron analysis technology in the Radiation Technology Institute of Northeast Normal University. The 14 MeV pulse neutron generator and bismuth germanate detector and 4096 multichannel analyzer were applied in this system. The multiple linear regression method employed to process data solved the interferential problem of multiple elements. The prototype (model MZ-MKFY) had been applied in Changshan and Jilin power plant for about a year. The results of measuring the main parameters of coal such as low caloric power, whole total water, ash content, volatile content, and sulfur content, with precision acceptable to the coal industry, are presented

  9. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    International Nuclear Information System (INIS)

    Walker, B. J.; Miller, D. T.

    2017-01-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  10. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, D. T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-06

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  11. YAP scintillators for resonant detection of epithermal neutrons at pulsed neutron sources

    International Nuclear Information System (INIS)

    Tardocchi, M.; Gorini, G.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N.; Schooneveld, E. M.

    2004-01-01

    Recent studies indicate the resonance detector (RD) technique as an interesting approach for neutron spectroscopy in the electron volt energy region. This work summarizes the results of a series of experiments where RD consisting of YAlO 3 (YAP) scintillators were used to detect scattered neutrons with energy in the range 1-200 eV. The response of YAP scintillators to radiative capture γ emission from a 238 U analyzer foil was characterized in a series of experiments performed on the VESUVIO spectrometer at the ISIS pulsed neutron source. In these experiments a biparametric data acquisition allowed the simultaneous measurements of both neutron time-of-flight and γ pulse height (energy) spectra. The analysis of the γ pulse height and neutron time of flight spectra permitted to identify and distinguish the signal and background components. These measurements showed that a significant improvement in the signal-to-background ratio can be achieved by setting a lower level discrimination on the pulse height at about 600 keV equivalent photon energy. Present results strongly indicate YAP scintillators as the ideal candidate for neutron scattering studies with epithermal neutrons at both very low (<5 deg.) and intermediate scattering angles

  12. Detection of SNM by Pulsed Neutron Interrogation

    International Nuclear Information System (INIS)

    Pedersen, Bent; Mayorov, Valeriy; Roesgen, Eric; Mosconi, Marita; Crochemore, Jean-Michel; Ocherashvili, Aharon; Beck, Arie; Ettedgui, Hanania

    2014-01-01

    A method for the detection of special nuclear materials (SNM) in shielded containers which is both sensitive and easily applicable under field conditions is presented. The method applies neutron induced fission in SNM by means of an external pulsed neutron source with subsequent detection of the fast prompt fission neutrons. Liquid scintillation detectors surrounding the container under investigation are able to discriminate gamma rays from fast neutrons by the so-called pulse shape discrimination technique (PSD)

  13. Fissile mass estimation by pulsed neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Israelashvili, I., E-mail: israelashvili@gmail.com [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Dubi, C.; Ettedgui, H.; Ocherashvili, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Beck, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Roesgen, E.; Crochmore, J.M. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Ridnik, T.; Yaar, I. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel)

    2015-06-11

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  14. Circuit designs for measuring reactor period, peak power, and pulse fluence on TRIGA and other pulse reactor

    International Nuclear Information System (INIS)

    Meyer, R.D.; Thome, F.V.; Williams, R.L.

    1976-01-01

    Inexpensive circuits for use in evaluating reactor pulse prompt period, peak power, and pulse fluence (NVT) are presented. In addition to low cost, these circuits are easily assembled and calibrated and operate with a high degree of accuracy. The positive period measuring system has been used in evaluating reactivity additions as small as 5 cents (with an accuracy of ±0.1 cents) and as large as $4.50 (accuracy ±2 cents). Reactor peak power is measured digitally with a system accuracy of ±0.04% of a 10 Volt input (±4 mV). The NVT circuit measures over a 2-1/2 decade range, has 3 place resolution and an accuracy of better than 1%. (author)

  15. Neutron fluence and energy reconstruction with the IRSN recoil detector μ-TPC at 27 keV, 144 keV and 565 keV

    Energy Technology Data Exchange (ETDEWEB)

    Maire, D.; Lebreton, L.; Richer, J.P. [IRSN, PRP-HOM, SDE, LMDN, 13115 Saint Paul-Lez-Durance (France); Bosson, G.; Bourrion, O.; Guillaudin, O.; Riffard, Q.; Santos, D. [CNRS/IN2P3-UJF-INPG, LPSC, 38000 Grenoble (France)

    2015-07-01

    The French Institute for Radioprotection and Nuclear Safety (IRSN), associated to the French Metrology Institute (LNE), is developing a time projection chamber using a Micromegas anode: μ-TPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize with a primary procedure the energy distribution of neutron fluence in the energy range 8 keV - 1 MeV. The time projection chambers are gaseous detectors, which are able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is used as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulated detector response. The μ-TPC is a new reliable detector which enables to measure energy distribution of the neutron fluence without deconvolution or neutron calibration contrary to usual gaseous counters. The μ-TPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27.2 keV, 144 keV and 565 keV are shown and compared to the complete detector simulation. This work shows the first direct

  16. Method for controlling an accelerator-type neutron source, and a pulsed neutron source

    International Nuclear Information System (INIS)

    Givens, W.W.

    1991-01-01

    The patent deals with an accelerator-type neutron source which employs a target, an ionization section and a replenisher for supplying accelerator gas. A positive voltage pulse is applied to the ionization section to produce a burst of neutrons. A negative voltage pulse is applied to the ionization section upon the termination of the positive voltage pulse to effect a sharp cut-off to the burst of neutrons. 4 figs

  17. Fast fluence measurement for JOYO irradiation field using niobium dosimeter

    International Nuclear Information System (INIS)

    Ito, Chikara

    2004-03-01

    Neutron fluence and spectrum are key parameters in various irradiation tests and material surveillance tests so they need to be evaluated accurately. The reactor dosimetry test has been conducted by the multiple foil activation method, and a niobium dosimeter has been developed for measurement of fast neutron fluence in the experimental fast reactor JOYO. The inelastic scattering reaction of 93 Nb has a low threshold energy, about 30 keV, and the energy distribution of reaction cross section is similar to the displacement cross section for iron. Therefore, a niobium dosimeter is suitable for evaluation of the fast neutron fluence and the displacement per atom for iron. Moreover, a niobium dosimeter is suited to measure neutron fluence in long-term irradiation test because 93 Nb, which is produced by the reaction, has a long half-life (16.4 years). This study established a high precision measurement technique using the niobium reaction rate. The effect of self-absorption was decreased by the solution and evaporation to dryness of niobium dosimeter. The dosimeter weight was precisely measured using the inductively coupled plasma mass spectrometer. This technique was applied to JOYO dosimetry. The fast neutron fluences (E > 0.1 MeV) found by measuring the reaction rate in the niobium dosimeter were compared with the values evaluated using the multiple foil activation method. The ratio of measured fast neutron fluences by means of niobium dosimeter and multiple foil activation method range from 0.97 to 1.03 and agree within the experimental uncertainty. The measurement errors of fast neutron fluence by niobium dosimeter range from 4.5% (fuel region) to 10.1% (in-vessel storage rack). As a result of this study, the high precision measurement of fast neutron fluence by niobium dosimeters was confirmed. The accuracy of fast reactor dosimetry will be improved by application of niobium dosimeters to the irradiation tests in the JOYO MK-III core. (author)

  18. The Neutron-Gamma Pulse Shape Discrimination Method for Neutron Flux Detection in the ITER

    International Nuclear Information System (INIS)

    Xu Xiufeng; Li Shiping; Cao Hongrui; Yin Zejie; Yuan Guoliang; Yang Qingwei

    2013-01-01

    The neutron flux monitor (NFM), as a significant diagnostic system in the International Thermonuclear Experimental Reactor (ITER), will play an important role in the readings of a series of key parameters in the fusion reaction process. As the core of the main electronic system of the NFM, the neutron-gamma pulse shape discrimination (n-γ PSD) can distinguish the neutron pulse from the gamma pulse and other disturbing pulses according to the thresholds of the rising time and the amplitude pre-installed on the board, the double timing point CFD method is used to get the rising time of the pulse. The n-γ PSD can provide an accurate neutron count. (magnetically confined plasma)

  19. Neutron flux uncertainty and covariances for spectrum adjustment and estimation of WWER-1000 pressure vessel fluences

    International Nuclear Information System (INIS)

    Boehmer, Bertram

    2000-01-01

    Results of estimation of the covariance matrix of the neutron spectrum in the WWER-1000 reactor cavity and pressure vessel positions are presented. Two-dimensional calculations with the discrete ordinates transport code DORT in r-theta and r-z-geometry used to determine the neutron group spectrum covariances including gross-correlations between interesting positions. The new Russian ABBN-93 data set and CONSYST code used to supply all transport calculations with group neutron data. All possible sources of uncertainties namely caused by the neutron gross sections, fission sources, geometrical dimensions and material densities considered, whereas the uncertainty of the calculation method was considered negligible in view of the available precision of Monte Carlo simulation used for more precise evaluation of the neutron fluence. (Authors)

  20. Simulation of neutrons and gamma pulse signal and research on the pulse shape discrimination technology

    International Nuclear Information System (INIS)

    Zuo Guangxia; He Bin; Xu Peng; Qiu Xiaolin; Ma Wenyan; Li Sufen

    2012-01-01

    In neutrons detection, it is important to discriminate the neutron signals from the gamma-ray background. In this article, simulation of neutrons and gamma pulse signals is developed based on the LabVIEW platform. Two digital algorithms of the charge comparison method and the pulse duration time method are realized using 10000 simulation signals. Experimental results show that neutron and gamma pulse signals can be discriminated by the two methods, and the pulse duration time method is better than the charge comparison method. (authors)

  1. Pulsed neutron uranium borehole logging with prompt fission neutrons

    International Nuclear Information System (INIS)

    Bivens, H.M.; Smith, G.W.; Jensen, D.H.

    1976-01-01

    The gross count natural gamma log normally used for uranium borehole logging is seriously affected by disequilibrium. Methods for the direct measurement of uranium, such as neutron logging, which are not affected by disequilibrium have been the object of considerable effort in recent years. This paper describes a logging system for uranium which uses a small accelerator to generate pulses of 14 MeV neutrons to detect and assay uranium by the measurement of prompt fission neutrons in the epithermal energy range. After an initial feasibility study, a prototype logging probe was built for field evaluation which began in January 1976. Physical and operational characteristics of the prototype probe, the neutron tube-transformer assembly, and the neutron tube are described. In logging operations, only the epithermal prompt fission neutrons detected between 250 microseconds to 2500 microseconds following the excitation neutron pulse are counted. Comparison of corrected neutron logs with the conventional gross count natural gamma logs and the chemical assays of cores from boreholes are shown. The results obtained with this neutron probe clearly demonstrate its advantages over the gross count natural gamma log, although at this time the accuracy of the neutron log assay is not satisfactory under some conditions. The necessary correction factors for various borehole and formation parameters are being determined and, when applied, should improve the assay accuracy

  2. High Intensity, Pulsed, D-D Neutron Generator

    International Nuclear Information System (INIS)

    Williams, D.L.; Vainionpaa, J.H.; Jones, G.; Piestrup, M.A.; Gary, C.K.; Harris, J.L.; Fuller, M.J.; Cremer, J.T.; Ludewigt, Bernhard A.; Kwan, J.W.; Reijonen, J.; Leung, K.-N.; Gough, R.A.

    2008-01-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  3. Three-dimensional RAMA fluence methodology benchmarking

    International Nuclear Information System (INIS)

    Baker, S. P.; Carter, R. G.; Watkins, K. E.; Jones, D. B.

    2004-01-01

    This paper describes the benchmarking of the RAMA Fluence Methodology software, that has been performed in accordance with U. S. Nuclear Regulatory Commission Regulatory Guide 1.190. The RAMA Fluence Methodology has been developed by TransWare Enterprises Inc. through funding provided by the Electric Power Research Inst., Inc. (EPRI) and the Boiling Water Reactor Vessel and Internals Project (BWRVIP). The purpose of the software is to provide an accurate method for calculating neutron fluence in BWR pressure vessels and internal components. The Methodology incorporates a three-dimensional deterministic transport solution with flexible arbitrary geometry representation of reactor system components, previously available only with Monte Carlo solution techniques. Benchmarking was performed on measurements obtained from three standard benchmark problems which include the Pool Criticality Assembly (PCA), VENUS-3, and H. B. Robinson Unit 2 benchmarks, and on flux wire measurements obtained from two BWR nuclear plants. The calculated to measured (C/M) ratios range from 0.93 to 1.04 demonstrating the accuracy of the RAMA Fluence Methodology in predicting neutron flux, fluence, and dosimetry activation. (authors)

  4. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    International Nuclear Information System (INIS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-01-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center

  5. Future opportunities with pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A D [Rutherford Appleton Lab., Chilton (United Kingdom)

    1996-05-01

    ISIS is the world`s most powerful pulsed spallation source and in the past ten years has demonstrated the scientific potential of accelerator-driven pulsed neutron sources in fields as diverse as physics, earth sciences, chemistry, materials science, engineering and biology. The Japan Hadron Project gives the opportunity to build on this development and to further realize the potential of neutrons as a microscopic probe of the condensed state. (author)

  6. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  7. Elemental analysis using temporal gating of a pulsed neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Sudeep

    2018-02-20

    Technologies related to determining elemental composition of a sample that comprises fissile material are described herein. In a general embodiment, a pulsed neutron generator periodically emits bursts of neutrons, and is synchronized with an analyzer circuit. The bursts of neutrons are used to interrogate the sample, and the sample outputs gamma rays based upon the neutrons impacting the sample. A detector outputs pulses based upon the gamma rays impinging upon the material of the detector, and the analyzer circuit assigns the pulses to temporally-based bins based upon the analyzer circuit being synchronized with the pulsed neutron generator. A computing device outputs data that is indicative of elemental composition of the sample based upon the binned pulses.

  8. Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: Effects of temperature and energy fluence

    Energy Technology Data Exchange (ETDEWEB)

    Guillén, G. García; Palma, M.I. Mendivil [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Krishnan, B. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Universidad Autónoma de Nuevo León – Centro de Innovación, Investigación y Desarrollo de Ingeniería y Tecnología, Apodaca, Nuevo León 66600 (Mexico); Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455 (Mexico); and others

    2015-07-15

    Zinc oxide nanoparticles were prepared by pulsed laser ablation of a zinc metal target at different water temperatures (room temperature, 50, 70 and 90 °C). Ablation was carried out using 532 nm output from a pulsed (10 ns, 10 Hz) Nd:YAG laser at three different laser fluence. Analysis of the morphology, crystalline phase, elemental composition, optical and luminescent properties were done using Transmission Electron Microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS), UV–visible absorption spectroscopy and photoluminescence spectroscopy. TEM analysis showed that a change in temperature resulted in ZnO and Zn(OH){sub 2} nanoparticles with different sizes and morphologies. XPS results confirmed the compositions and chemical states of these nanoparticles. These zinc nanomaterials showed emission in the ultraviolet (UV) and blue regions. The results of this work demonstrated that by varying the liquid medium temperature, the structure, composition, morphology and optical properties of the nanomaterials could be modified during pulsed laser ablation in liquid. - Graphical abstract: Display Omitted - Highlights: • Zinc nanomaterial colloids were synthesized by PLAL. • Effects of laser fluence and the distilled water temperature were analyzed. • The final structure varied with the distilled water temperature and laser fluence. • The morphology was dependent on the distilled water temperature and laser fluence. • Zinc nanocolloids showed emission in the UV and blue region.

  9. Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: Effects of temperature and energy fluence

    International Nuclear Information System (INIS)

    Guillén, G. García; Palma, M.I. Mendivil; Krishnan, B.; Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das

    2015-01-01

    Zinc oxide nanoparticles were prepared by pulsed laser ablation of a zinc metal target at different water temperatures (room temperature, 50, 70 and 90 °C). Ablation was carried out using 532 nm output from a pulsed (10 ns, 10 Hz) Nd:YAG laser at three different laser fluence. Analysis of the morphology, crystalline phase, elemental composition, optical and luminescent properties were done using Transmission Electron Microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS), UV–visible absorption spectroscopy and photoluminescence spectroscopy. TEM analysis showed that a change in temperature resulted in ZnO and Zn(OH) 2 nanoparticles with different sizes and morphologies. XPS results confirmed the compositions and chemical states of these nanoparticles. These zinc nanomaterials showed emission in the ultraviolet (UV) and blue regions. The results of this work demonstrated that by varying the liquid medium temperature, the structure, composition, morphology and optical properties of the nanomaterials could be modified during pulsed laser ablation in liquid. - Graphical abstract: Display Omitted - Highlights: • Zinc nanomaterial colloids were synthesized by PLAL. • Effects of laser fluence and the distilled water temperature were analyzed. • The final structure varied with the distilled water temperature and laser fluence. • The morphology was dependent on the distilled water temperature and laser fluence. • Zinc nanocolloids showed emission in the UV and blue region

  10. Linearity of photoconductive GaAs detectors to pulsed electrons

    International Nuclear Information System (INIS)

    Ziegler, L.H.

    1995-01-01

    The response of neutron damaged GaAs photoconductor detectors to intense, fast (50 psec fwhm) pulses of 16 MeV electrons has been measured. Detectors made from neutron damaged GaAs are known to have reduced gain, but significantly improved bandwidth. An empirical relationship between the observed signal and the incident electron fluence has been determined

  11. Accuracy of helium accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    A helium (He) accumulation fluence monitor (HAFM) has been developed for fast reactor dosimetry. In order to evaluate the measurement accuracy of neutron fluence by the HAFM method, the HAFMs of enriched boron (B) and beryllium (Be) were irradiated in the Fast Neutron Source Reactor `YAYOI`. The number of He atoms produced in the HAFMs were measured and compared with the calculated values. As a result of this study, it was confirmed that the neutron fluence could be measured within 5 % by the HAFM method, and that met the required accuracy for fast reactor dosimetry. (author)

  12. New opportunities in neutron capture research using advanced pulsed neutron sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1987-08-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. Prospective experiments are reviewed with particular attention to those with a strong connection to capture gamma-ray spectroscopy

  13. Experimental time resolved measurement of fluence and energy spectra of photons emitted by a pulsed X-ray generator in the range 5-300 keV

    International Nuclear Information System (INIS)

    Vie, M.; Baboulet, J.P.

    1989-01-01

    We have developed: - A sensor to measure locally X ray fluence rate amplitude and variation versus time during X ray pulses, - A spectrometer based on ROSS method to measure absolute X ray spectrum versus time during X ray pulses. This metrology is used to characterise single shot X ray pulsed sources emitting photons in the range of 5 to 300 keV. Fluence domain is between 10 -9 and 5 10 -4 J. cm -2 with a few nanoseconds time resolution [fr

  14. Study of the response of a piezoceramic motor irradiated in a fast reactor up to a neutron fluence of 2.77E+17 n/cm2

    International Nuclear Information System (INIS)

    Pillon, Mario; Monti, Chiara; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Carta, Mario; Fiorani, Orlando; Santagata, Alfonso

    2015-01-01

    Highlights: • Piezoceramic motors are compliant with magnetic field, temperature and vacuum. • We studied the response of a piezoceramic motor during the irradiation with neutrons. • The response was studied using 1 MeV neutrons up to a neutron fluence of 2.77E+17 n/cm 2 . • Neutron irradiation produces a shift of the optimal resonance frequency and a decrease of the motor speed. • The performance changes do not affect the proper operation of the motor. - Abstract: A piezoceramic motor has been identified as the potential apparatus for carrying out the rotation of the scanning head of a laser radar system used for viewing the first wall of the ITER vessel. This diagnostic is simply referred to as IVVS (In Vessel Viewing System). The choice fell on a piezoceramic motor due to the presence of strong magnetic fields (up 8 T) and of the high vacuum and temperature conditions. To be compliant with all the ITER environmental conditions it was necessary to qualify the piezo-motor under gamma and neutron irradiation. In this paper are described the procedures and tests that have been performed to verify the compatibility of the operation of the motor adopted in the presence of a fast neutron fluence which was gradually increased over time in order to reach a total value of 2.77 × 10 17 n/cm 2 . Such neutron fluence was obtained by irradiating the motor in a position close to the core of the fast nuclear reactor TAPIRO, in operation at the ENEA Casaccia Research Centre, Italy. The neutron spectrum in this position has been identified as representative of that found in the rest position of the IVVS head during ITER operation. The cumulative neutron fluence reached corresponds to that it is expected to be reached during the entire life of ITER for the IVVS in the rest position without any shield. This work describes the experimental results of this test; the methodology adopted to determine the total neutron fluence achieved and the methodology adopted for the

  15. Neutron flux calculation and fluence in the encircling of the core and vessel of a reactor BWR

    International Nuclear Information System (INIS)

    Martinez C, E.

    2011-01-01

    One of the main objectives related to the safety of any nuclear power plant, including the nuclear power plant of Laguna Verde is to ensure the structural integrity of reactor pressure vessel. To identify and quantify the damage caused by neutron irradiation in the vessel of any nuclear reactor, it is necessary to know both the neutron flux and the neutron fluence that the vessel has been receiving during its operation lifetime, and that the damage observed by mechanical testing are products of microstructural effects induced by neutron irradiation; therefore, it is important the study and prediction of the neutron flux in order to have a better understanding of the damage that these materials are receiving. The calculation here described uses the DORT code, which solves the neutron transport equation in discrete ordinates in two dimensions (x-y, r-θ and r-z), according to a regulatory guide, it should make an approximation of the neutron flux in three dimensions by the so called synthesis method. It is called in that way because it achieves a representation of 3 Dimensional neutron flux combining or summarizing the fluxes calculated by DORT r-θ, r-z and r. This work presents the application of synthesis method, according to Regulatory Guide 1190, to determine the 3 Dimensional fluxes in internal BWR reactor using three different spatial meshes. The results of the neutron flux and fluence, using three different meshes in the directions r, θ and z were compared with results reported in the literature obtaining a difference not larger than 9.61%, neutron flux reached its maximum, 1.58 E + 12 n/cm 2 s, at a height H 4 (239.07 cm) and angle 32.236 o in the core shroud and 4.00 E + 09 n/cm 2 s at a height H 4 and angle 35.27 o in the inner wall of the reactor vessel, positions that are consistent to within ±10% over the ones reported in the literature. (Author)

  16. BPW34 Commercial p-i-n Diodes for High-Level 1-MeV Neutron Equivalent Fluence Monitoring

    CERN Document Server

    Ravotti, F; Moll, M; Saigne, F

    2008-01-01

    The BPW34 p-i-n diode was characterized at CERN in view of its utilization as radiation monitor at the LHC to cover the broad 1-MeV neutron equivalent fluence (Phieq) range expected for the LHC machine and experiments during operation. Electrical measurements for both forward and reverse bias were used to characterize the device and to understand its behavior under irradiation. When the device is powered forward, a sensitivity to fast hadrons for Phieq > 2 times1012 cm-2 has been observed. With increasing particle fluences the forward I- V characteristics of the diode shifts towards higher voltages. At Phieq > 3times1013 cm-2, the forward characteristic starts to bend back assuming a thyristor-like behavior. An explanation for this phenomenon is given in this article. Finally, detailed radiation-response curves for the forward bias-operation and annealing studies of the diode's forward voltage are presented for proton, neutron and gamma irradiation.

  17. Shield design for next-generation, low-neutron-fluence, superconducting tokamaks

    International Nuclear Information System (INIS)

    Lee, V.D.; Gohar, Y.

    1985-01-01

    A shield design using stainless steel (SST), water, boron carbide, lead, and concrete materials was developed for the next-generation tokamak device with superconducting toroidal field (TF) coils and low neutron fluence. A device such as the Tokamak Fusion Core Experiment (TFCX) is representative of the tokamak design which could use this shield design. The unique feature of this reference design is that a majority of the bulk steel in the shield is in the form of spherical balls with two small, flat spots. The balls are purchased from ball-bearing manufacturers and are added as bulk shielding to the void areas of builtup, structural steel shells which form the torus cavity of the plasma chamber. This paper describes the design configuration of the shielding components

  18. Shield design for next-generation, low-neutron-fluence, superconducting tokamaks

    International Nuclear Information System (INIS)

    Lee, V.D.; Gohar, Y.

    1985-01-01

    A shield design using stainless steel (SST), water, boron carbide, lead, and concrete materials was developed for the next-generation tokamak device with superconducting toroidal field (TF) coils and low neutron fluence. A device such as the Tokamak Fusion Core Experiment (TFCX) is representative of the tokamak design which could use this shield design. The unique feature of this reference design is that a majority of the bulk steel in the shield is in the form of spherical balls with two small, flat spots. The balls are purchased from ball-bearing manufacturers and are added as bulk shielding to the void areas of built-up, structural steel shells which form the torus cavity of the plasma chamber. This paper describes the design configuration of the shielding components

  19. Pulsed neutron activation calibration technique

    International Nuclear Information System (INIS)

    Kehler, P.

    1979-01-01

    A pulsed neutron activation (PNA) for measurement of two-phase flow consists of a pulsed source of fast neutron to activate the oxygen in a steam-water mixture. Flow is measured downstream by an NaI detector. Measured counts are sorted by a multiscaler into different time channels. A counts vs. time distribution typical for two-phase flow with slip between the two phases is obtained. Proper evaluation for the counts/time distribution leads to flow-regime independent equations for the average of the inverse transil time and the average density. After calculation of the average mass flow velocity, the true mass flow is derived

  20. Neutron and gamma-ray transport experiments in liquid air

    International Nuclear Information System (INIS)

    Farley, W.E.

    1976-01-01

    Accurate estimates of neutron and gamma radiations from a nuclear explosion and their subsequent transport through the atmosphere are vital to nuclear-weapon employment studies: i.e., for determining safety radii for aircraft crews, casualty and collateral-damage risk radii for tactical weapons, and the kill range from a high-yield defensive burst for a maneuvering reentry vehicle. Radiation transport codes, such as the Laboratory's TARTNP, are used to calculate neutron and gamma fluences. Experiments have been performed to check and update these codes. Recently, a 1.3-m-radius liquid-air (21 percent oxygen) sphere, with a pulsed source of 14-MeV neutrons at its center, was used to measure the fluence and spectra of emerging neutrons and secondary gamma rays. Comparison of measured radiation dose with TARTNP showed agreement within 10 percent

  1. Design and characterisation of a pulsed neutron interrogation facility

    International Nuclear Information System (INIS)

    Favalli, A.; Pedersen, B.

    2007-01-01

    The Joint Research Centre recently obtained a license to operate a new experimental device intended for research in the field of nuclear safeguards. The research projects currently being planned for the new device includes mass determination of fissile materials in matrices and detection of contraband non-nuclear materials. The device incorporates a commercial pulsed neutron generator and a large graphite mantle surrounding the sample cavity. In this configuration, a relatively high thermal neutron flux with a long lifetime is achieved inside the sample cavity. By pulsing the neutron generator, a sample may be interrogated by a pure thermal neutron flux during repeated time periods. The paper reports on the design of the new device and the pulsed fast and thermal neutron source. The thermal neutron flux caused by the neutron generator and the graphite structure has been characterised by foil activation, fission chamber and 3 He proportional counter measurements. (authors)

  2. Bonding structure and mechanical properties of B-C-N thin films synthesized by pulsed laser deposition at different laser fluences

    International Nuclear Information System (INIS)

    Wang, C.B.; Xiao, J.L.; Shen, Q.; Zhang, L.M.

    2016-01-01

    Boron carbon nitride (B-C-N) thin films have been grown by pulsed laser deposition under different laser fluences changing from 1.0 to 3.0 J/cm"2. The influence of laser fluence on microstructure, bonding structure, and mechanical properties of the films was studied, so as to explore the possibility of improving their mechanical properties by controlling bonding structure. The bonding structure identified by FT-IR and XPS indicated the coexistence of B-N, B-C, N-C and N=C bonds in the films, suggesting the formation of a ternary B-C-N hybridization. There is a clear evolution of bonding structure in the B-C-N films with the increasing of laser fluence. The variation of the mechanical properties as a function of laser fluence was also in accordance with the evolution of B-C and sp"3 N-C bonds whereas contrary to that of sp"2 B-N and N=C bonds. The hardness and modulus reached the maximum value of 33.7 GPa and 256 GPa, respectively, at a laser fluence of 3.0 J/cm"2, where the B-C-N thin films synthesized by pulsed laser deposition possessed the highest intensity of B-C and N-C bonds and the lowest fraction of B-N and N=C bonds. - Highlights: • Improvement of mechanical property by controlling bonding structure is explored. • A clear evolution of bonding structure with the increasing of laser fluence • Variation of property is in accordance with the evolution of B−C and N−C bonds.

  3. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 158B/159A

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walker, Billy Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 158B/159A which were measured by the Radiation Measurements Laboratory (RML).

  4. Neutron induced current pulses in fission chambers

    International Nuclear Information System (INIS)

    Taboas, A.L.; Buck, W.L.

    1978-01-01

    The mechanism of neutron induced current pulse generation in fission chambers is discussed. By application of the calculated detector transfer function to proposed detector current pulse shapes, and by comparison with actually observed detector output voltage pulses, a credible, semi-empirical, trapezoidal pulse shape of chamber current is obtained

  5. Condensed matter research using pulsed neutron sources: a bibliography

    International Nuclear Information System (INIS)

    Mildner, D.F.R.; Stirling, G.C.

    1976-05-01

    This report is an updated revision of RL-75-095 'Condensed Matter Research Using Pulsed Neutron Sources: A Bibliography'. As before, the survey lists published papers concerning (a) the production of high intensity neutron pulses suitable for thermal neutron scattering research, (b) moderating systems for neutron thermalization and pulse shaping, (c) techniques and instrumentation for diffraction and inelastic scattering at pulsed sources, and (d) their application to research problems concerning the structural and dynamical properties of condensed matter. Papers which deal with the white beam time-of-flight technique at steady state reactors have also been included. A number of scientists have brought to the author's attention papers which have been published since the previous edition. They are thanked and encouraged to continue the cooperation so that the bibliography may be updated periodically. (author)

  6. Short pulse neutron generator

    Science.gov (United States)

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  7. Moving converter as the possible tool for producing ultra-cold neutrons on pulsed neutron sources

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.

    1991-01-01

    A method is proposed for producing ultra-cold neutrons (UCN) at aperiodic pulse neutron sources. It is based on the use of the fast moving cooled converter of UCN in the time of the neutron pulse and includes the trapping of generated UCN's in a moving trap. 6 refs.; 2 figs

  8. Study of the response of a piezoceramic motor irradiated in a fast reactor up to a neutron fluence of 2.77E+17 n/cm{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pillon, Mario, E-mail: mario.pillon@enea.it [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45, 00044 Frascati, Rome (Italy); Monti, Chiara; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45, 00044 Frascati, Rome (Italy); Carta, Mario; Fiorani, Orlando; Santagata, Alfonso [ENEA C.R. CASACCIA, via Anguillarese, 301, 00123 S. Maria di Galeria, Rome (Italy)

    2015-10-15

    Highlights: • Piezoceramic motors are compliant with magnetic field, temperature and vacuum. • We studied the response of a piezoceramic motor during the irradiation with neutrons. • The response was studied using 1 MeV neutrons up to a neutron fluence of 2.77E+17 n/cm{sup 2}. • Neutron irradiation produces a shift of the optimal resonance frequency and a decrease of the motor speed. • The performance changes do not affect the proper operation of the motor. - Abstract: A piezoceramic motor has been identified as the potential apparatus for carrying out the rotation of the scanning head of a laser radar system used for viewing the first wall of the ITER vessel. This diagnostic is simply referred to as IVVS (In Vessel Viewing System). The choice fell on a piezoceramic motor due to the presence of strong magnetic fields (up 8 T) and of the high vacuum and temperature conditions. To be compliant with all the ITER environmental conditions it was necessary to qualify the piezo-motor under gamma and neutron irradiation. In this paper are described the procedures and tests that have been performed to verify the compatibility of the operation of the motor adopted in the presence of a fast neutron fluence which was gradually increased over time in order to reach a total value of 2.77 × 10{sup 17} n/cm{sup 2}. Such neutron fluence was obtained by irradiating the motor in a position close to the core of the fast nuclear reactor TAPIRO, in operation at the ENEA Casaccia Research Centre, Italy. The neutron spectrum in this position has been identified as representative of that found in the rest position of the IVVS head during ITER operation. The cumulative neutron fluence reached corresponds to that it is expected to be reached during the entire life of ITER for the IVVS in the rest position without any shield. This work describes the experimental results of this test; the methodology adopted to determine the total neutron fluence achieved and the methodology adopted

  9. High count problems in elemental analysis using pulsed neutron inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vartsky, D; Wielopolski, L; Ellis, K J; Cohn, S H [Brookhaven National Lab., Upton, NY (USA). Medical Dept.

    1983-03-01

    Elemental analysis by neutron inelastic scattering using a miniature intense pulsed neutron source ('Zetatron') was evaluated. The particular problems associated with detector pulse-pile-up during the neutron burst and the limited ability of the analyzer to process on average more than one detector pulse per neutron burst were examined. The severity of these problems is described and a solution using a multiple ADC system is proposed.

  10. Development of resonant detectors for epithermal neutron spectroscopy at pulsed neutron sources

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Senesi, R.; Andreani, C.; Gorini, G.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are opened by the development of new detectors for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank planned to be delivered, within the next 4 years, within the eVERDI project, on the neutron spectrometer VESUVIO, at the ISIS pulsed neutron source (UK). VLAD will extend the (q,ω) kinematical region for neutron scattering to low wavefactor transfer (q -1 ) still keeping energy transfer >1 eV, thus allowing the investigations of new experimental studies in condensed matter systems. The technique being developed for detection of epithermal neutrons, within this low q and high-energy transfer region, is the Resonance Detection Technique. In this work, the state of the detector development will be presented with special focus on the results obtained with some prototype detectors, namely YAP scintillators and cadmium-zinc-telluride semiconductors

  11. Gamma–neutron imaging system utilizing pulse shape discrimination with CLYC

    International Nuclear Information System (INIS)

    Whitney, Chad M.; Soundara-Pandian, Lakshmi; Johnson, Erik B.; Vogel, Sam; Vinci, Bob; Squillante, Michael; Glodo, Jarek; Christian, James F.

    2015-01-01

    Recently, RMD has investigated the use of CLYC (Cs 2 LiYCl 6 :Ce), a new and emerging scintillation material, in a gamma–neutron coded aperture imaging system based on RMD's commercial RadCam TM instrument. CLYC offers efficient thermal neutron detection, fast neutron detection capabilities, excellent pulse shape discrimination (PSD), and gamma-ray energy resolution as good as 4% at 662 keV. PSD improves the isolation of higher energy gammas from thermal neutron interactions (>3 MeV electron equivalent peak), compared to conventional pulse height techniques. The scintillation emission time in CLYC provides the basis for PSD; where neutron interactions result in a slower emission rise and decay components while gamma interactions result in a faster emission components. By creating a population plot based on the ratio of the decay tail compared to the total integral amplitude (PSD ratio), discrimination of gammas, thermal neutrons, and fast neutrons is possible. Previously, we characterized the CLYC-based RadCam system for imaging gammas and neutrons using a layered W-Cd coded aperture mask and employing only pulse height discrimination. In this paper, we present the latest results which investigate gamma-neutron imaging capabilities using PSD. An FPGA system is used to acquire the CLYC–PSPMT last dynode signals, determine a PSD ratio for each event, and compare it to a calibrated PSD cutoff. Each event is assigned either a gamma (low) or neutron (high) flag signal which is then correlated with the imaging information for each event. - Highlights: • The latest results are presented for our CLYC RadCam-2 system which investigate gamma–neutron imaging using pulse shape discrimination. • CLYC RadCam-2 system successfully discriminates gammas, thermal neutrons, and fast neutrons by employing a fully integrated, FPGA-based PSD system. • Imaging of our 252 Cf source was possible using both pulse height and pulse shape discrimination with CLYC. • Imaging

  12. Background subtraction system for pulsed neutron logging of earth boreholes

    International Nuclear Information System (INIS)

    Hertzog, R.C.

    1983-01-01

    The invention provides a method for determining the characteristics of earth formations surrounding a well borehole comprising the steps of: repetitively irradiating the earth formations surrounding the well bore with relatively short duration pulses of high energy neutrons; detecting during each pulse of high energy neutrons, gamma radiation due to the inelastic scattering of neutrons by materials comprising the earth formations surrounding the borehole and providing information representative thereof; detecting immediately following each such pulse of high energy neutrons, background gamma radiation due to thermal neutron capture and providing information representative thereof; and correcting the inelastic gamma representative information to compensate for said background representative information

  13. Neutron diffraction on pulsed sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Balagurov, A.M.

    2016-01-01

    The possibilities currently offered and major scientific problems solved by time-of-flight neutron diffraction are reviewed. The reasons for the rapid development of the method over the last two decades has been mainly the emergence of third generation pulsed sources with a MW time-averaged power and advances in neutron-optical devices and detector systems. The paper discusses some historical aspects of time-of-flight neutron diffraction and examines the contribution to this method by F.L.Shapiro whose 100th birth anniversary was celebrated in 2015. The state of the art with respect to neutron sources for studies on output beams is reviewed in a special section. [ru

  14. Experiments for neutron fluence assessment on WWER-440 and WWER-1000 pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, K; Apostolov, T; Penev, I; Trifonov, A; Taskaev, E; Belousov, S; Antonov, S; Petrova, T; Stoeva, L [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika; Boyadzhiev, Z; Nelov, N; Tsocheva, V; Andreeva, I; Lilkov, B; Velichkov, V; Monev, M [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    The activity of shavings sampled out from the expected maximum embrittlement location (weld 4) on the inner pressure vessel wall of the Kozloduy-1 Unit after the 14-th cycle has been measured. The experiment was carried out along the INEI channel using Fe and Cu string and foil detectors. The axial neutron flux distribution at the Unit 3 after the cycle 11 has been measured and compared to the calculated values. The calculations of the expected activities have been carried out taking into account the local power distribution. A comparison between measured and calculated values using ACTIVAT code is made. It shows a discrepancy of about 20%. It is recommended to carry out ex-vessel neutron fluence measurements using a rack device with activation detectors in order to verify the calculation results. 8 refs., 3 figs., 2 tabs.

  15. Method to determine the strength of a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Chacon R, A.; Mercado, G.A. [UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)

    2006-07-01

    The use of a gamma-ray spectrometer with a 3 {phi} x 3 NaI(Tl) detector, with a moderator sphere has been studied in the aim to measure the neutron fluence rate and to determine the source strength. Moderators with a large amount of hydrogen are able to slowdown and thermalize neutrons; once thermalized there is a probability that thermal neutron to be captured by hydrogen producing 2.22 MeV prompt gamma-ray. The pulse-height spectrum collected in a multicharmel analyzer shows a photopeak around 2.22 MeV whose net area is proportional to total neutron fluence rate and to the neutron source strength. The characteristics of this system were determined by a Monte Carlo study using the MCNP 4C code, where a detailed model of the Nal(Tl) was utilized. As moderators 3, 5, and 10 inches-diameter spheres where utilized and the response was calculated for monoenergetic and isotopic neutrons sources. (Author)

  16. S-process studies using single and pulsed neutron exposures

    Science.gov (United States)

    Beer, H.

    The formation of heavy elements by slow neutron capture (s-process) is investigated. A pulsed neutron irradiation leading to an exponential exposure distribution is dominant for nuclei from A = 90 to 200. For the isotopes from iron to zirconium an additional 'weak' s-process component must be superimposed. Calculations using a single or another pulsed neutron exposure for this component have been carried out in order to reproduce the abundance pattern of the s-only and s-process dominant isotopes. For the adjustment of these calculations to the empirical values, the inclusion of new capture cross section data on Se76 and Y89 and the consideration of the branchings at Ni63, Se79, and Kr85 was important. The combination of an s-process with a single and a pulsed neutron exposure yielded a better representation of empirical abundances than a two component pulsed s-process.

  17. S-process studies using single and pulsed neutron exposures

    International Nuclear Information System (INIS)

    Beer, H.

    1986-01-01

    The formation of heavy elements by slow neutron capture (s-process) is investigated. A pulsed neutron irradiation leading to an exponential exposure distribution is dominant for nuclei from A=90 to 200. For the isotopes from iron to zirconium an additional ''weak'' s-process component must be superimposed. Calculations using a single or another pulsed neutron exposure for this component have been carried out in order to reproduce the abundance pattern of the s-only and s-process dominant isotopes. For the adjustment of these calculations to the empirical values, including new capture cross section data on Se76 and Y89 and the consideration of the branchings at Ni63, Se79, and Kr85 was important. The combination of a s-process with a single and a pulsed neutron exposure yielded a better representation of empirical abundances than a two component pulsed s-process

  18. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  19. Small accelerator-based pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Lanza, Richard C.

    1997-09-01

    Small neutron sources could be used by individual researchers with the convenience of an adequate local facility. Although these sources would produce lower fluxes than the national facilities, for selected applications, the convenience and availability may overcome the limitations on source strength. Such sources might also be useful for preliminary testing of ideas before going to a larger facility. Recent developments in small, high-current pulsed accelerators makes possible such a local source for pulsed cold neutrons.

  20. Test of Fibre Bragg Gratings samples under High Fast Neutrons Fluence

    Science.gov (United States)

    Cheymol, G.; Remy, L.; Gusarov, A.; Kinet, D.; Mégret, P.; Laffont, G.; Blanchet, T.; Morana, A.; Marin, E.; Girard, S.

    2018-01-01

    Optical fibre sensors (OFS) are worthy of interest for measurements in nuclear reactor thanks to their unique features, particularly compact size and remote multi-point sensing for some of them. But besides non negligible constraints associated with the high temperature environment of the experiments of interest, it is well known that the performances of OFS can be severely affected by high level of radiations. The Radiation Induced Attenuation (RIA) in the fibre is probably most known effect, which can be to some extent circumvented by using rad hard fibres to limit the dynamic loss. However, when the fast neutron fluence reaches 1018 to 1019 n/cm2, the density and index variations associated to structural changes may deteriorate drastically the performances of OFS even if they are based on rad hard fibres, by causing direct errors in the measurements of temperature and/or strain changes. The aim of the present study is to access the effect of nuclear radiations on the Fabry Perot (FP) and of Fibre Bragg Grating (FBG) sensors through the comparison of measurements made on these OFS - or part of them - before and after irradiation [1]. In the context of development of OFS for high irradiation environment and especially for Material Testing Reactors (MTRs), Sake 2 experiment consists in an irradiation campaign at high level of gamma and neutron fluxes conducted on samples of fibre optics - bare or functionalised with FBG. The irradiation was performed at two levels of fast neutron fluence: 1 and 3.1019 n/cm2 (E>1MeV), at 250°± 25°C, in the SCK•CEN BR2 reactor (Mol Belgium). An irradiation capsule was designed to allow irradiation at the specified temperature without active control. The neutron fluence was measured with activation dosimeters and the results were compared with MCPN computations. Investigation of bare samples gives information on the density changes, while for the FBGs both density and refractive index perturbation are involved. Some results for

  1. The irradiation creep characteristics of graphite to high fluences

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Cundy, M.; Kleist, G.

    1988-01-01

    High-temperature gas-cooled reactors (HTGR) have massive blocks of graphite with thermal and neutron-flux gradients causing high internal stresses. Thermal stresses are transient; however, stresses generated by differential growth due to neutron damage continue to increase with time. Fortunately, graphite also experiences creep under irradiation allowing relaxation of stresses to nominally safe levels. Because of complexity of irradiation creep experiments, data demonstrating this phenomenon are generally limited to fairly low fluences compared to the overall fluences expected in most reactors. Notable exceptions have been experiments at 300/degree/C and 500/degree/C run at Petten under tension and compression creep stresses to fluences greater than 4 /times/ 10 26 (E > 50 keV) neutrons/m 2 . This study complements the previous results by extending the irradiation temperature to 900/degree/C. 2 refs., 3 figs

  2. Pulsed neutron source well logging system

    International Nuclear Information System (INIS)

    Dillingham, M.E.

    1975-01-01

    A pulsed neutron source with a chamber containing a plurality of alpha emitting strips and beryllium targets coaxially mounted is described. A pulsed source is provided by rotation of the target to on-off positions along with electromagnetic and magnetic devices for positive locking and rotation. (U.S.)

  3. Effect of double false pulses in calibrated neutron coincidence collar during measuring time-correlated neutrons from PuBe neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam Cong, E-mail: tam.nguyen.cong@energia.mta.hu; Huszti, Jozsef; Nguyen, Quan Van

    2015-09-01

    Effect of double false pulses of preamplifiers in neutron coincidence collar was investigated to explain non-parallel shape of calibrated D/S–M{sub Pu} curves of two commercial neutron coincidence collars, JCC-31 and JCC-13. Two curves, which were constructed from D/S ratio (doubles and singles count rate), and Pu content M{sub Pu}, of the same set of secondary standard PuBe neutron sources, should be parallel. Non-parallelism rises doubt about usability of the method based on this curve for determination of Pu content in PuBe neutron sources. We have shown in three steps that the problem originates from double false pulses of preamplifiers in JCC-13. First we used a pulse train diagram for analyzing the non-parallel shape, second we used Rossi-Alpha distribution measured by pulse train recorder developed in our institute and finally, we investigated the effect of inserted noise pulses. This implies a new type of QA test option in traditional multiplicity shift registers for excluding presence of double false pulses.

  4. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    Science.gov (United States)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  5. Analysis of influence of fast neutron fluence irradiated to Beryllium element of The RSG-GAS reactor

    International Nuclear Information System (INIS)

    Sri Kuntjoro

    2010-01-01

    Analysis of influence fast neutron fluence irradiated to the RSG-GAS beryllium reflector have been done. Methods of analysis was carried out by measuring fluxes neutron in beryllium element and block position that function as reflector.The calculation done for determination it is there any influence of neutron as long as beryllium in the core. Besides that, visualization done to make sure it there is any deformation at beryllium as effect of irradiation. Fluxes and fluences of beryllium element measurement result in 200 kW reactor power are 2.30E+07 n/cm 2 .sec and 4.19E+17 n/cm 2 in position E-2, 3.70E+07 n/cm 2 s and 6.74E+17 n/cm 2 in position J-8, 2.19E+12 n/cm 2 s and 3.99E+22 n/cm 2 in position. Measurement results in the position B-3 are 2.12E+12 n/cm 2 s and 3.86E+22 n/cm 2 in position G-10 respectively. Other result are fluxes and fluence in beryllium block, those are 5,02E+07 n/cm 2 s and 9,15E+17 n/cm 2 in position (5-6), and 2,32E+07 n/cm 2 s and 4,23E+17 n/cm 2 in position (C-D). Deformation (L/L) results for beryllium element are 1,12E-08 in position E-2, 1,84E-08 in position J-8, 1,60E-03 in position B-3, and 1,55E-03 in position G-10. In beryllium block deformation results are 2,52E-08 in position (5-6) and 1,13E-08 in position (C-D). Those results are shown unseen deformation in beryllium element and beryllium block and demonstrably by visual observation in reactor hot cell. (author)

  6. EFFECTS OF IRRADIATION ON THERMAL CONDUCTIVITY OF ALLOY 690 AT LOW NEUTRON FLUENCE

    Directory of Open Access Journals (Sweden)

    WOO SEOG RYU

    2013-04-01

    Full Text Available Alloy 690 has been selected as a steam generator tubing material for SMART owing to a near immunity to primary water stress corrosion cracking. The steam generators of SMART are faced with a neutron flux due to the integrated arrangement inside a reactor vessel, and thus it is important to know the irradiation effects of the thermal conductivity of Alloy 690. Alloy 690 was irradiated at HANARO to fluences of (0.7−28 × 1019n/cm2 (E>0.1MeV at 250°C, and its thermal conductivity was measured using the laser-flash equipment in the IMEF. The thermal conductivity of Alloy 690 was dependent on temperature, and it was a good fit to the Smith-Palmer equation, which modified the Wiedemann-Franz law. The irradiation at 250°C did not degrade the thermal conductivity of Alloy 690, and even showed a small increase (1% at fluences of (0.7∼28 × 1019n/cm2 (E>0.1MeV.

  7. Approaches for accounting and prediction of fast neutron fluence on WWER pressure vessels and results of validation of calculational procedure

    International Nuclear Information System (INIS)

    Borodkin, P.G.; Khrennikov, N.N.; Ryabinin, Yu.A.; Adeev, V.A.

    2015-01-01

    A description is given of the universal procedure for calculation of fast neutron fluence (FNF) on WWER vessels. Approbation of the calculation procedure was carried out by comparing the calculation results for this procedure and measurements on the outer surface of the WWER-440 and WWER-1000 vessels. In addition, an estimation of the uncertainty of the settlement procedure was made in accordance with the requirements of regulatory documents. The developed procedure is applied at Kola NPP for independent fast neutron fluence estimates on the WWER-440 reactor vessels when planning core loads taking into account the introduction of new fuels. The results of the pilot operation of the procedure for calculating FNF at the Kola NPP were taken into account when improving the procedure and its application to the calculations of FNF on the WWER-1000 vessels [ru

  8. PNG-300 a nanosecond pulsed neutron generator

    International Nuclear Information System (INIS)

    Sztaricskai, T.; Vasvary, L.; Petoe, G.C.; Devkin, B.V.

    1985-01-01

    The design and operation of a nanosecond-pulse neutron generator is reported. It was constructed for the measurement of prompt neutron and gamma radiation in experimental studies of fast neutron reactions by time of flight techniques. The acceleration voltage is 300 kV and the total resolution of the generator-neutron spectrometer system is 2 ns. The ion-optical system, the vacuum system and the control of the neutron generator is described in detail. The equipment was used for prompt neutron and gamma radiation induced in construction materials. (R.P.)

  9. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    International Nuclear Information System (INIS)

    Li Gang; Zhang Zhongshuai; Chi Qian; Liu Linmao

    2012-01-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 × 10 8 n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 μs. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  10. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    Energy Technology Data Exchange (ETDEWEB)

    Li Gang; Zhang Zhongshuai [Northeast Normal University, Changchun 130024 (China); Chi Qian [Guang Hua College of Chang Chun University, Changchun 130117 (China); Liu Linmao, E-mail: ll888@nenu.edu.cn [Northeast Normal University, Changchun 130024 (China)

    2012-11-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 Multiplication-Sign 10{sup 8} n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 {mu}s. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  11. Limitations and developing directions of pulsed neutron logging

    International Nuclear Information System (INIS)

    Wu Wensheng; Xiao Lizhi

    2007-01-01

    The paper explains briefly the principle of pulsed neutron logging method, summarizes the system and uses of the method in petroleum logging. The paper points out the limitations of pulsed neutron logging such as low precise measurements, low logging speed, plenty of influence factors, low vertical resolution, bad adaptability, difficult logging interpretation and so on, and expounds its developing directions in hardware, software, method and principle. (authors)

  12. Neutron depolarization studies on magnetization process using pulsed polarized neutrons

    International Nuclear Information System (INIS)

    Mitsuda, Setsuo; Endoh, Yasuo

    1985-01-01

    Neutron depolarization experiments investigating the magnetization processes have been performed by using pulsed polarized neutrons for the first time. Results on both quenched and annealed ferromagnets of Fe 85 Cr 15 alloy indicate the significant difference in the wavelength dependence of depolarization between them. It also constitutes the experimental demonstration of the theoretical prediction of Halpern and Holstein. (author)

  13. Pulsed thermal neutron source at the fast neutron generator.

    Science.gov (United States)

    Tracz, Grzegorz; Drozdowicz, Krzysztof; Gabańska, Barbara; Krynicka, Ewa

    2009-06-01

    A small pulsed thermal neutron source has been designed based on results of the MCNP simulations of the thermalization of 14 MeV neutrons in a cluster-moderator which consists of small moderating cells decoupled by an absorber. Optimum dimensions of the single cell and of the whole cluster have been selected, considering the thermal neutron intensity and the short decay time of the thermal neutron flux. The source has been built and the test experiments have been performed. To ensure the response is not due to the choice of target for the experiments, calculations have been done to demonstrate the response is valid regardless of the thermalization properties of the target.

  14. Monte Carlo Simulation on Compensated Neutron Porosity Logging in LWD With D-T Pulsed Neutron Generator

    International Nuclear Information System (INIS)

    Zhang Feng; Hou Shuang; Jin Xiuyun

    2010-01-01

    The process of neutron interaction induced by D-T pulsed neutron generator and 241 Am-Be source was simulated by using Monte Carlo method. It is concluded that the thermal neutron count descend exponentially as the spacing increasing. The smaller porosity was, the smaller the differences between the two sources were. When the porosity reached 40%, the ratio of thermal neutron count generated by D-T pulsed neutron source was much larger than that generated by 241 Am-Be neutron source, and its distribution range was wider. The near spacing selected was 20-30 cm, and that of far spacing was about 60-70 cm. The detection depth by using D-T pulsed neutron source was almost unchanged under condition of the same sapcing, and the sensitivity of measurement to the formation porosity decreases. The results showed that it can not only guarantee the statistic of count, but also improve detection sensitivity and depth at the same time of increasing spacing. Therefore, 241 Am-Be neutron source can be replaced by D-T neutron tube in LWD tool. (authors)

  15. Calculation of the pulsed Feynman- and Rossi-alpha formulae with delayed neutrons

    International Nuclear Information System (INIS)

    Kitamura, Y.; Pazsit, I.; Wright, J.; Yamamoto, A.; Yamane, Y.

    2005-01-01

    In previous works, the authors have developed an effective solution technique for calculating the pulsed Feynman- and Rossi-alpha formulae. Through derivation of these formulae, it was shown that the technique can easily handle various pulse shapes of the pulsed neutron source. Furthermore, it was also shown that both the deterministic (i.e., synchronizing with the pulsing of neutron source) and stochastic (non-synchronizing) Feynman-alpha formulae can be obtained with this solution technique. However, for mathematical simplicity and the sake of insight, the formal derivation was performed in a model without delayed neutrons. In this paper, to demonstrate the robustness of the technique, the pulsed Feynman- and Rossi-alpha formulae were re-derived by taking one group of delayed neutrons into account. The results show that the advantages of this technique are retained even by inclusion of the delayed neutrons. Compact explicit formulae are derived for the Feynman- and Rossi-alpha methods for various pulse shapes and pulsing methods

  16. High power pulsed neutron source for electronuclear installation

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A.; Puzynin, I.V.; Samoilov, V.N.; Sissakian, A.N. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-09-01

    The pulsed neutron source based on the reaction T(d,n)He is described in this report. The source consists of pulsed a pulsed Arkad`ev-Marx generator and a vacuum diode with explosive ion emission. 9 refs., 3 figs.

  17. Fast neutron activating detectors for pulsed flow measurements

    International Nuclear Information System (INIS)

    Dyatlov, V.D.; Kunaev, G.T.; Popytaev, A.N.; Cheremukhov, B.V.

    1979-01-01

    The requirements to the activation detectors of the pulsed flows of the fast neutrons are considered; the criteria of optimum measurement time, geometrical moderator sizes and radioactive detector element properties have been obtained. On their analysis parameter selection has been carried out. The neutron detector to register the short pulses has been designed and calibrated. The ways of further increase of sensitivity and efficiency of such detectors are discussed

  18. Electrical characterization of 10B doped diamond irradiated with low thermal neutron fluence

    International Nuclear Information System (INIS)

    Reed, M.L.; Reed, M.J.; Jagannadham, K.; Verghese, K.; Bedair, S.M.; El-Masry, N.; Butler, J.E.

    2004-01-01

    A sample of 10 B isotope doped diamond was neutron irradiated to a thermal fluence of 1.3x10 19 neutron cm -2 . The diamond sample was cooled continuously during irradiation in a nuclear reactor. 7 Li is formed by nuclear transmutation reaction from 10 B. Characterization for electrical conductance in the temperature range of 160 K 10 B doped sample and the 10 B doped and irradiated sample. The unirradiated diamond sample showed p-type conductance at higher temperature (T>200 K) and p-type surface conductance at lower temperature (T 7 Li that is formed by nuclear transmutation reaction from 10 B atoms. Also, compensation of n-type carriers from 7 Li by p-type carriers from 10 B is used to interpret the conductance above 400 K. A low concentration of radiation induced defects, absence of defect complexes, and the low activation energy of n-type 7 Li are thought responsible for the observed variation of conductance in the irradiated diamond. The present results illustrate that neutron transmutation from 10 B doped diamond is a useful method to achieve n-type conductivity in diamond

  19. Superintensive pulse slow neutron source SIN based on kaon factory

    International Nuclear Information System (INIS)

    Kolmichkov, N.V.; Laptev, V.D.; Matveev, V.A.

    1991-01-01

    Possibility of intensive pulse slow neutron source creation based on 45-GeV proton synchrotron of K-meson factory, planned to construction in INR AS USSR is considered. Calculated peak thermal neutrons flux density value, averaged on 'radiating' light-water moderator surface of 100 cm 2 is 6.6 x 10 17 neutrons/(cm 2 sec) for pulse duration of 35 microseconds. (author)

  20. Earth formation pulsed neutron porosity logging system utilizing epithermal neutron and inelastic scattering gamma ray detectors

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector and an inelastic scattering gamma ray detector is moved through a borehole. The detection of inelastic gamma rays provides a measure of the fast neutron population in the vicinity of the detector. repetitive bursts of neutrons irradiate the earth formation and, during the busts, inelastic gamma rays representative of the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. the fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  1. Time derived sigma for pulsed neutron capture logging

    International Nuclear Information System (INIS)

    Randall, R.R.; Fertl, W.F.; Hopkinson, E.C.

    1981-01-01

    The purpose of this study is to review field applications of the Atlas Neutron Lifetime Log service and to examine recent technical advances in the instrumentation and data analysis system. The major improvement to be discussed is a new method for computing /SIGMA/, the thermal neutron capture cross section of an earth formation. In the new method, the time after the neutron burst is measured for each gamma ray pulse detected by the instrumentation system within a gate of fixed width. This ''average pulse time'' is uniquely related to the thermal neutron decay rate observed in a borehole environment. The technique discussed is applicable for any condition where the neutron or gamma ray flux is time dependent. The advantages of this signal processing method, however, are most apparent for cases of rapid flux change with time, as in an exponential decay. 7 refs

  2. Characteristics of the WNR: a pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Russell, G.J.; Lisowski, P.W.; Howe, S.D.; King, N.S.P.; Meier, M.M.

    1982-01-01

    The Weapons Neutron Research facility (WNR) is a pulsed spallation neutron source in operation at the Los Alamos National Laboratory. The WNR uses part of the 800-MeV proton beam from the Clinton P. Anderson Meson Physics Facility accelerator. By choosing different target and moderator configurations and varying the proton pulse structure, the WNR can provide a white neutron source spanning the energy range from a few MeV to 800 MeV. The neutron spectrum from a bare target has been measured and is compared with predictions using an Intranuclear Cascade model coupled to a Monte Carlo transport code. Calculations and measurements of the neutronics of WNR target-moderator assemblies are presented

  3. Research Reactor Application for Materials under High Neutron Fluence. Proceedings of an IAEA Technical Meeting (TM-34779)

    International Nuclear Information System (INIS)

    2011-05-01

    Research reactors (RRs) have played, and continue to play, a key role in the development of the peaceful uses of nuclear energy and technology. The role of the IAEA is to assist Member States in the effective utilization of these technologies in various domains of research such as fundamental and applied science, industry, human health care and environmental studies, as well as nuclear energy applications. In particular, material testing reactors (MTRs), serve as unique tools in scientific and technological development and they have quite a wide variety of applications. Today, a large range of different RR designs exist when compared with power reactors and they also have different operating modes, producing high neutron fluxes, which may be steady or pulsed. Recently, an urgent need has arisen for the development of new advanced materials, for example in the nuclear industry, where RRs offer capacities for irradiation programmes. Besides the scientific and research activities and commercial applications, RRs are also used extensively for educational training activities for scientists and engineers. This report is a compilation of outputs of an IAEA Technical Meeting (TM-34779) held on Research Reactor Application for Materials under High Neutron Fluence. The overall objective of the meeting was to review typical applications of small and medium size RRs, such as material characterization and testing, neutron physics and beam research, neutron radiography and imaging as well as isotope production and other types of non-nuclear applications. Several issues were discussed during the meeting, in particular: (1) recent development of irradiation facilities, specific irradiation programmes and their implementation; (2) effective and optimal RR operation regimes for irradiation purposes; (3) sharing of best practices and existing technical knowledge; and (4) fostering of advanced or innovative technologies, e.g. information exchange and effective collaboration. This

  4. Influence of the number of energy groups on the accuracy of neutron fluence calculations

    International Nuclear Information System (INIS)

    Barz, H.U.; Konheiser, J.

    1999-01-01

    The question how many groups are necessary to obtain all needed integral quantities for the neutron load of pressure vessels and detector positions outside the vessel with sufficient accuracy is of general interest. Until now, there are no systematic investigations on this question. In principle 3-dimensional consideration is required for such neutron load calculations. Therefore, an estimation of the needed number of groups can be of interest to minimize calculation time. One general problem is the P L -approximation of the angular distributions for the transfers between different groups. For elastic scattering this P L -approximation becomes poorer with increasing number of groups. As deterministic methods generally use the P L -approximation they cannot be used for investigations of the errors caused by the group approximation. We have investigated this problem applying group Monte-Carlo but nearly exact representation of this elastic slowing down without P L -approximation. The calculations were directed to assess the neutron fluence of a Russian WWER-1000 reactor. For that a simplified geometrical model of this reactor type has been used. (orig.)

  5. Correlating Fast Fluence to dpa in Atypical Locations

    Directory of Open Access Journals (Sweden)

    Drury Thomas H.

    2016-01-01

    Full Text Available Damage to a nuclear reactor's materials by high-energy neutrons causes changes in the ductility and fracture toughness of the materials. The reactor vessel and its associated piping's ability to withstand stress without brittle fracture are paramount to safety. Theoretically, the material damage is directly related to the displacements per atom (dpa via the residual defects from induced displacements. However in practice, the material damage is based on a correlation to the high-energy (E > 1.0 MeV neutron fluence. While the correlated approach is applicable when the material in question has experienced the same neutron spectrum as test specimens which were the basis of the correlation, this approach is not generically acceptable. Using Monte Carlo and discrete ordinates transport codes, the energy dependent neutron flux is determined throughout the reactor structures and the reactor vessel. Results from the models provide the dpa response in addition to the high-energy neutron flux. Ratios of dpa to fast fluence are calculated throughout the models. The comparisons show a constant ratio in the areas of historical concern and thus the validity of the correlated approach to these areas. In regions above and below the fuel however, the flux spectrum has changed significantly. The correlated relationship of material damage to fluence is not valid in these regions without adjustment. An adjustment mechanism is proposed.

  6. Correlating Fast Fluence to dpa in Atypical Locations

    Science.gov (United States)

    Drury, Thomas H.

    2016-02-01

    Damage to a nuclear reactor's materials by high-energy neutrons causes changes in the ductility and fracture toughness of the materials. The reactor vessel and its associated piping's ability to withstand stress without brittle fracture are paramount to safety. Theoretically, the material damage is directly related to the displacements per atom (dpa) via the residual defects from induced displacements. However in practice, the material damage is based on a correlation to the high-energy (E > 1.0 MeV) neutron fluence. While the correlated approach is applicable when the material in question has experienced the same neutron spectrum as test specimens which were the basis of the correlation, this approach is not generically acceptable. Using Monte Carlo and discrete ordinates transport codes, the energy dependent neutron flux is determined throughout the reactor structures and the reactor vessel. Results from the models provide the dpa response in addition to the high-energy neutron flux. Ratios of dpa to fast fluence are calculated throughout the models. The comparisons show a constant ratio in the areas of historical concern and thus the validity of the correlated approach to these areas. In regions above and below the fuel however, the flux spectrum has changed significantly. The correlated relationship of material damage to fluence is not valid in these regions without adjustment. An adjustment mechanism is proposed.

  7. Pulsed neutron source and instruments at neutron facility

    Energy Technology Data Exchange (ETDEWEB)

    Teshigawara, Makoto; Aizawa, Kazuya; Suzuki, Jun-ichi; Morii, Yukio; Watanabe, Noboru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    We report the results of design studies on the optimal target shape, target - moderator coupling, optimal layout of moderators, and neutron instruments for a next generation pulsed spallation source in JAERI. The source utilizes a projected high-intensity proton accelerator (linac: 1.5 GeV, {approx}8 MW in total beam power, compressor ring: {approx}5 MW). We discuss the target neutronics, moderators and their layout. The sources is designed to have at least 30 beam lines equipped with more than 40 instruments, which are selected tentatively to the present knowledge. (author)

  8. Three-dimensional Monte Carlo calculations of the neutron and γ-ray fluences in the TFTR diagnostic basement and comparisons with measurements

    International Nuclear Information System (INIS)

    Liew, S.L.; Ku, L.P.; Kolibal, J.G.

    1985-10-01

    Realistic calculations of the neutron and γ-ray fluences in the TFTR diagnostic basement have been carried out with three-dimensional Monte Carlo models. Comparisons with measurements show that the results are well within the experimental uncertainties

  9. Use of pulsed neutron logging to evaluate perforation washing

    International Nuclear Information System (INIS)

    Dimon, C.A.

    1986-01-01

    This invention relates to the use of pulsed neutron logging techniques before and after perforation washing operations are performed to evaluate the degree of success of the perforation washing operations. Well logging operations of a type designed to respond to the difference between a formation immediately behind the well sheath and voids in the formation are performed both before and after the perforation washing operation. differences between the two resulting logs are then indicative of voids created by perforation washing. In a preferred embodiment, pulsed neutron logging is used as the logging technique, while a weighted brine having a high absorption cross section to pulsed neutrons is used as the perforation washing fluid

  10. A pulsed neutron Ramsey's method

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan)]. E-mail: yasuhiro.masuda@kek.jp; Ino, T. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Jeong, S.C. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Muto, S. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Skoy, V. [Joint Institute for Nuclear Reasearch, 141980 Dubna (Russian Federation); Watanabe, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan)

    2005-02-15

    A Ramsey's method with pulsed neutrons is proposed. A Ramsey signal, which is a neutron spin rotation about a static magnetic field for a time interval between two separated oscillatory fields, is observed as a function of a neutron time of flight (TOF) in this method. The neutron spin rotation or the RF oscillation is used as a clock of the neutron velocity measurement which ranges from cold to epithermal neutron energies. This method together with the TOF measurement can be used for neutron inelastic scattering experiments. In addition, this method can be applied to the measurement of magnetic and pseudomagnetic fields in matter, and also to neutron spin manipulation for spin dependent scattering.

  11. Proposal for the design of a small-angle neutron scattering facility at a pulsed neutron source

    International Nuclear Information System (INIS)

    Kley, W.

    1980-01-01

    The intensity-resolution-background considerations of an optimized small angle neutron scattering facility are reviewed for the special case of a pulsed neutron source. In the present proposal we conclude that for 'true elastic scattering experiments' filters can be used instead of expensive neutron guide tubes since low background conditions can be achieved by a combined action of filters as well as a proper time gating of the twodimensional detector. The impinging neutron beam is monochromatized by phasing a disk chopper to the neutron source pulses and in the scattered beam a second disk chopper is used to eliminate the inelastically scattered neutrons. Therefore, no time of fligh analysis is necessary for the scattered neutron intensity and true-elastic conditions are obtained by simply gating the two-dimensional detector. Considering a 4 m thick shield for the pulsed neutron source and choosing for optimum conditions a detector area element of (2.5 cm) 2 and a sample area of (1.25 cm) 2 , than for a minimum sample-detector-distance of 1.5 m, a maximum neutron source diameter of 6.67 cm is required in order to maintain always the optimum intensity- and resolution requirements

  12. Pulsed neutron source well logging system

    International Nuclear Information System (INIS)

    Dillingham, M.E.

    1975-01-01

    A pulsed neutron source arrangement is provided in which a sealed cylindrical chamber encloses a rotatable rotor member carrying a plurality of elongated target strips of material which emits neutrons when bombarded with alpha particles emitted by the plurality of source material strips. The rotor may be locked in a so-called ON position by an electromagnetic clutch drive mechanism controllable from the earth's surface so as to permit the making of various types of logs utilizing a continuously emitting neutron source. (Patent Office Record)

  13. Design of auto-control high-voltage control system of pulsed neutron generator

    International Nuclear Information System (INIS)

    Lv Juntao

    2008-01-01

    It is difficult to produce multiple anode controlling time sequences under different logging mode for the high-voltage control system of the conventional pulsed neutron generator. It is also difficult realize sequential control among anode high-voltage, filament power supply and target voltage to make neutron yield stable. To these problems, an auto-control high-voltage system of neutron pulsed generator was designed. It not only can achieve anode high-voltage double blast time sequences, which can measure multiple neutron blast time sequences such as Σ, activated spectrum, etc. under inelastic scattering mode, but also can realize neutron generator real-time measurement of multi-state parameters and auto-control such as target voltage pulse width modulation (PWM), filament current, anode current, etc., there by it can produce stable neutron yield and realize stable and accurate measurement of the pulsed neutron full spectral loging tool. (authors)

  14. Neutron fluence in a 18 MeV Electron Accelerator for Therapy; Fluencia de neutrones en un Acelerador de Electrones de 18 MeV para terapia

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L C [Instituto Nacional de Investigaciones Nucleares, Direccion de Innovacion Tecnologica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    An investigation was made on the theoretical fundamentals for the determination of the neutron fluence in a linear electron accelerator for radiotherapy applications and the limit values of leakage neutron radiation established by guidelines and standards in radiation protection for these type of accelerators. This investigation includes the following parts: a) Exhaustive bibliographical review on the topics mentioned above, in order to combine and to update the necessary basic information to facilitate the understanding of this subject; b) Analysis of the accelerator operation and identification of its main components, specially in the accelerator head; c) Study of different types of targets and its materials for the Bremsstrahlung production which is based on the electron initial energy, the thickness of the target, and its angular distribution and energy, which influences in the neutron generation by means of the photonuclear and electro disintegration reactions; d) Analysis of the neutron yield based on the target type and its thickness, the energy of electrons and photons; e) Analysis of the neutron energy spectra generated in the accelerator head, inside and outside the treatment room; f) Study of the dosimetry fundamentals for neutron and photon mixed fields, the dosimeter selection criteria and standards applied for these applications, specially the Panasonic U D-809 thermoluminescent dosemeter and C R-39 nuclear track dosimeter; g) Theoretical calculation of the neutron yield using a simplified geometric model for the accelerator head with spherical cell, which considers the target, primary collimator, flattener filter, movable collimators and the head shielding as the main components for radiation production. The cases with W and Pb shielding for closed movable collimators and an irradiation field of 20 x 20 cm{sup 2} were analyzed and, h) Experimental evaluation of the leakage neutron radiation from the patient and head planes, observing that the

  15. An application of low leakage loading pattern to reduce fast neutrons. Fluence on WWER-440 reactor pressure vessel in Kozloduy NPP

    International Nuclear Information System (INIS)

    Haralampieva, Tz.; Antonov, A.; Monev, M.

    2001-01-01

    The neutron exposure of a reactor pressure vessel (RPV) is one of the key factors that have to be quantified and assess reliably to provide plant life assurance and for an extension to operational life. This paper summarizes the principal methods that are used in core design optimisation for WWER-440 reactors in NPP-Kozloduy in order to reduce flux of fast neutrons at the RPV. Results of fast neutron fluence changes during the all last cycles of units 1-4 with WWER-440 reactors are considered (Authors)

  16. Neutron production enhancements for the Intense Pulsed Neutron Source.

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, E. B.

    1999-01-04

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments.

  17. Neutron production enhancements for the Intense Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments

  18. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  19. International seminar on structural investigations on pulsed neutron sources. Proceedings

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Balagurov, A.M.; Taran, Yu.V.

    1993-01-01

    The proceedings of the International seminar on structural investigations using pulsed neutron sources are presented. The seminar is dedicated to the memory of Dr. Yu.M. Ostanevich, a world acknowledged physicist. The problems of structural analysis using pulsed neutron source at the IBR-2 reactor are discussed

  20. Pinpointing water entries using pulsed neutron and Production logging tools

    International Nuclear Information System (INIS)

    Mukerji, P.; Oluwa, J.

    2003-01-01

    A successful work over requires a comprehensive understanding of fluid entries into the wellbore and fluid contact movement in the reservoir. Such information can be obtained by a combination of production logs and saturation-monitoring measurements. The ability to combine pulsed neutron and production logging tools provides the operator with better diagnostics for identifying candidates for remedial actions and greatly increases the possibility of a successful well intervention. Advances in pulsed neutron spectroscopy tools have improved the accuracy and precision of measured carbon/oxygen ratios. Some of the improvements in accuracy and precision have resulted from better tool characterization in a wider variety of logging environments in the calibration facility and new spectral standards. Coincident with the advances in pulsed neutron spectroscopy has been the development of production logging measurements run on a platform common. We will show how the application of pulsed neutron and production logs can optimize subsequent well intervention to reduce water production and/or increase oil production

  1. Rapid method of calculating the fluence and spectrum of neutrons from a critical assembly and the resulting dose

    International Nuclear Information System (INIS)

    Bessis, J.

    1977-01-01

    The proposed calculation method is unsophisticated but rapid. The first part (computer code CRITIC), which is based on the Fermi age equation, evaluates the number of neutrons per fission emitted from a moderated critical assembly and their energy spectrum. The second part (computer code NARCISSE), which uses the current albedo for concrete, evaluates the product of neutron reflection on the walls and calculates the fluence resulting at any point in the room and its energy distribution by 21 groups. The results obtained are shown to compare satisfactorily with those obtained through the use of a Monte Carlo program

  2. Fast reactor fluence dosimetry. Technical progress report, January--November 1976

    International Nuclear Information System (INIS)

    1976-01-01

    The objectives of this task are to: (1) develop and demonstrate the use of 10 B and 6 Li helium accumulation fluence monitors (HAFM's) as a reliable and accurate method of measuring reactor neutron fluence; (2) develop and apply an expanded set of HAFM's which will provide fluence responses in different but overlapping neutron energy ranges; (3) identify, through the precise measurement of spectrum-integrated helium production cross sections, those elements which produce significant helium when used individually or as components of advanced alloys in FTR and LMFBR neutron environments, so that their use might be eliminated, minimized, or controlled; (4) use this information to predict, with confidence, the helium production rate for any alloy or material considered for fast reactor use, and (5) maintain a centralized helium measurements laboratory available to the research community, and upgrade the sample throughput capacity to handle FTR dosimetry requirements

  3. A large angle cold neutron bender using sequential garland reflections for pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Soyama, K.; Suzuki, J. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    We discuss a basic structure and performance of a new cold neutron bender using sequential garland reflections, in order to bend a neutron beam with large divergence by large angle. Using this bender for a pulsed neutron source we could not only avoid the frame overlap for cold neutrons but also install a plural spectrometers at a cold guide and obtain polarized neutron beams if necessary. (author)

  4. A large angle cold neutron bender using sequential garland reflections for pulsed neutron source

    International Nuclear Information System (INIS)

    Ebisawa, T.; Tasaki, S.; Soyama, K.; Suzuki, J.

    2001-01-01

    We discuss a basic structure and performance of a new cold neutron bender using sequential garland reflections, in order to bend a neutron beam with large divergence by large angle. Using this bender for a pulsed neutron source we could not only avoid the frame overlap for cold neutrons but also install a plural spectrometers at a cold guide and obtain polarized neutron beams if necessary. (author)

  5. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  6. Development of a High Fluence Neutron Source for Nondestructive Characterization of Nuclear Waste

    International Nuclear Information System (INIS)

    Pickrell, Mark M.

    1999-01-01

    We are addressing the need to measure nuclear wastes, residues, and spent fuel in order to process these for final disposition. For example, TRU wastes destined for the WIPP must satisfy extensive characterization criteria outlined in the Waste Acceptance Criteria, the Quality Assurance Program Plan, and the Performance Demonstration Plan. Similar requirements exist for spent fuel and residues. At present, no nondestructive assay (NDA) instrumentation is capable of satisfying all of the PDP test cycles (particularly for Remote-Handled TRU waste). One of the primary methods for waste assay is by active neutron interrogation. The objective of this project is to improve the capability of all active neutron systems by providing a higher intensity neutron source (by about a factor of 1,000) for essentially the same cost, power, and space requirements as existing systems. This high intensity neutron source is an electrostatically confined (IEC) plasma device. The IEC is a symmetric sphere that was originally developed in the 1960s as a possible fusion reactor. It operates as DT neutron generator. Although it is not likely that this device will scale to fusion reactor levels, previous experiments1 have demonstrated a neutron yield of 2 x 1010 neutrons/second on a table-top device that can be powered from ordinary laboratory circuits (9 kilowatts). Subsequently, the IEC physics has been extensively studied at the University of Illinois and other locations. We have established theoretically the basis for scaling the output up to 1 x 1011 neutrons/second. In addition, IEC devices have run for cumulative times approaching 10,000 hours, which is essential for practical application to NDA. They have been operated in pulsed and continuous mode. The essential features of the IEC plasma neutron source, compared to existing sources of the same cost, size and power consumption, are: Table 1: Present and Target Operating Parameters for Small Neutron Generators Parameter Present IEC

  7. Experiment for water-flow measurement by pulsed-neutron activation

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1994-08-01

    An experiment is presented which constitutes a feasibility study for applying the neutron activation method for measurement of the water mass transport in pipings, e.g. in nuclear power stations. The fast neutron generator has been used as a pulsed-neutron activation source for oxygen in water which circulated in a closed system. The γ radiation of the nitrogen product isotope has been measured by the scintillation detectors placed in two positions at the piping. The two time distributions of the pulses have been recorded by a multiscaler (a software design based on CAMAC). The water flow velocity has been estimated from the peak-to-peak time distance. The tests have been performed under different experimental conditions (the neutron pulse duration, the time channel width, the water flow velocity) to define the stability, reproducibility and reliability of the measurement. The detailed results are presented in tables and in time distribution plots. The method has been found useful for the application considered. 4 refs, 17 figs, 5 tabs

  8. Los Alamos pulsed spallation neutron source target systems - present and future

    International Nuclear Information System (INIS)

    Russell, G.J.; Daemen, L.L.; Pitcher, E.J.; Brun, T.O.; Hjelm, R.P. Jr.

    1993-01-01

    For the past 16 yr, spallation target-system designers have devoted much time and effort to the design and optimization of pulsed spallation neutron sources. Many concepts have been proposed, but, in practice, only one has been implemented horizontal beam insertion with moderators in wing geometry i.e., until we introduced the innovative split-target/flux-trap-moderator design with a composite reflector shield at the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE). The LANSCE target system design is now considered a classic by spallation target system designers worldwide. LANSCE, a state-of-the-art pulsed spallation neutron source for materials science and nuclear physics research, uses 800-MeV protons from the Clinton P. Anderson Meson Physics Facility. These protons are fed into the proton storage ring to be compressed to 250-ns pulses before being delivered to LANSCE at 20 Hz. LANSCE produces the highest peak neutron flux of any pulsed spallation neutron source in the world

  9. Calibration of a detector for pulsed neutron sources

    International Nuclear Information System (INIS)

    Veeser, L.R.; Hemmendinger, A.; Shunk, E.R.

    1978-02-01

    A plastic scintillator detector for measuring the strength of a pulsed neutron source is described and the problems of calibration and discrimination against x-ray background for both pulsed and steady-state detectors are discussed

  10. Large subcriticality measurement by pulsed neutron method

    International Nuclear Information System (INIS)

    Yamane, Y.; Yoshida, A.; Nishina, K.; Kobayashi, K.; Kanda, K.

    1985-01-01

    To establish the method determining large subcriticalities in the field of nuclear criticality safety, the authors performed pulsed neutron experiments using the Kyoto University Critical Assembly (KUCA) at Research Reactor Institute, Kyoto University and the Cockcroft-Walton type accelerator attached to the assembly. The area-ratio method proposed by Sjoestrand was employed to evaluate subcriticalities from neutron decay curves measured. This method has the shortcomings that the neutron component due to a decay of delayed neutrons remarkably decreases as the subcriticality of an objective increases. To overcome the shortcoming, the authors increased the frequency of pulsed neutron generation. The integral-version of the area-ratio method proposed by Kosaly and Fisher was employed in addition in order to remove a contamination of spatial higher modes from the decay curve. The latter becomes significant as subcriticality increases. The largest subcriticality determined in the present experiments was 125.4 dollars, which was equal to 0.5111 in a multiplication factor. The calculational values evaluated by the computer code KENO-IV with 137 energy groups based on the Monte Carlo method agreed well with those experimental values

  11. A Long-Pulse Spallation Source at Los Alamos: Facility description and preliminary neutronic performance for cold neutrons

    International Nuclear Information System (INIS)

    Russell, G.J.; Weinacht, D.J.; Pitcher, E.J.; Ferguson, P.D.

    1998-03-01

    The Los Alamos National Laboratory has discussed installing a new 1-MW spallation neutron target station in an existing building at the end of its 800-MeV proton linear accelerator. Because the accelerator provides pulses of protons each about 1 msec in duration, the new source would be a Long Pulse Spallation Source (LPSS). The facility would employ vertical extraction of moderators and reflectors, and horizontal extraction of the spallation target. An LPSS uses coupled moderators rather than decoupled ones. There are potential gains of about a factor of 6 to 7 in the time-averaged neutron brightness for cold-neutron production from a coupled liquid H 2 moderator compared to a decoupled one. However, these gains come at the expense of putting ''tails'' on the neutron pulses. The particulars of the neutron pulses from a moderator (e.g., energy-dependent rise times, peak intensities, pulse widths, and decay constant(s) of the tails) are crucial parameters for designing instruments and estimating their performance at an LPSS. Tungsten is the reference target material. Inconel 718 is the reference target canister and proton beam window material, with Al-6061 being the choice for the liquid H 2 moderator canister and vacuum container. A 1-MW LPSS would have world-class neutronic performance. The authors describe the proposed Los Alamos LPSS facility, and show that, for cold neutrons, the calculated time-averaged neutronic performance of a liquid H 2 moderator at the 1-MW LPSS is equivalent to about 1/4th the calculated neutronic performance of the best liquid D 2 moderator at the Institute Laue-Langevin reactor. They show that the time-averaged moderator neutronic brightness increases as the size of the moderator gets smaller

  12. Proposal of a wide-band mirror polarizer of slow neutrons at a pulsed neutron source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.; Ostanevich, Yu.M.

    1992-01-01

    The new type wide-band mirror-based neutron polarizer to be operated at a pulsed neutron source is suggested. The idea is to use a movable polarizing mirror system, which, be the incoming beam monochromatized by the time-of-flight, would allow one to tune glancing angles in time so, that the total reflection condition is always fulfilled only for one of the two neutron spin eigenstates. Estimates show, that with the pulsed reactor IBR-2 such polarizer allows one to build a small-angle neutron scattering instrument capable to effectively use the wave-length band from 2 to 15 A. 9 refs.; 1 fig

  13. Laser Fluence Recognition Using Computationally Intelligent Pulsed Photoacoustics Within the Trace Gases Analysis

    Science.gov (United States)

    Lukić, M.; Ćojbašić, Ž.; Rabasović, M. D.; Markushev, D. D.; Todorović, D. M.

    2017-11-01

    In this paper, the possibilities of computational intelligence applications for trace gas monitoring are discussed. For this, pulsed infrared photoacoustics is used to investigate SF6-Ar mixtures in a multiphoton regime, assisted by artificial neural networks. Feedforward multilayer perceptron networks are applied in order to recognize both the spatial characteristics of the laser beam and the values of laser fluence Φ from the given photoacoustic signal and prevent changes. Neural networks are trained in an offline batch training regime to simultaneously estimate four parameters from theoretical or experimental photoacoustic signals: the laser beam spatial profile R(r), vibrational-to-translational relaxation time τ _{V-T} , distance from the laser beam to the absorption molecules in the photoacoustic cell r* and laser fluence Φ . The results presented in this paper show that neural networks can estimate an unknown laser beam spatial profile and the parameters of photoacoustic signals in real time and with high precision. Real-time operation, high accuracy and the possibility of application for higher intensities of radiation for a wide range of laser fluencies are factors that classify the computational intelligence approach as efficient and powerful for the in situ measurement of atmospheric pollutants.

  14. Utilization of a pulsed D-T neutron generator

    International Nuclear Information System (INIS)

    Vilaithong, T.; Singkarat, S.; Tippawan, U.

    2000-01-01

    In the past two decades the IAEA has supported the establishment of neutron laboratories in many developing countries by providing small D-T neutron generators. The neutron generator is basically a low energy (100-400 keV) ion accelerator capable of producing a continuous beam of deuterons with a current in the range between 1-2.5 mA. These neutron generators are primarily intended to be used for fast neutron activation analysis. This paper describes the utilization of a 14 MeV neutron generator in continuous and pulsed beam modes in applied neutron physics program at Chiang Mai University. (author)

  15. International Seminar on Advanced Pulsed Neutron Sources PANS-II. Invited talks

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.

    1994-01-01

    A conceptual design of creating intense pulsed neutron sources based on high-current accelerators and pulsed reactors for neutron scattering experiments is considered. The progress in high-efficiency moderator developments is shown. Results of diffraction studied are presented

  16. Contribution to time resolved X-ray fluence and differential spectra measurement method improvement in 5-200 KeV range. Application to pulsed emission sources

    International Nuclear Information System (INIS)

    Vie, M.

    1983-09-01

    Two types of sensors have been developed to measure locally the time-resolved fluence and differential energetic spectrum of pulsed X-ray in the energy range 5 to 200 keV. Rise time of these sensors is very short (10 ns) in order to permit time-resolved measurements. Fluence sensors have been developed by putting filters in front of detector in order to make sensor response independent of X-ray energy and proportional to X-ray fluence. The energetic differential spectrum was calculated by way of a method similar to the ROSS method but using filters separated within a pair defining adjacent spectral width. A detailed analysis of uncertainties affecting calculated fluence and spectrum has been done [fr

  17. A prototype detector using the neutron image intensifier and multi-anode type photomultiplier tube for pulsed neutron imaging

    International Nuclear Information System (INIS)

    Ishikawa, Hirotaku; Sato, Hirotaka; Hara, Kaoru Y.; Kamiyama, Takashi

    2016-01-01

    We developed a neutron two-dimensional (2-D) detector for pulsed neutron imaging as a prototype detector, which was composed of a neutron image intensifier and a multi-anode type photomultiplier tube. A neutron transmission spectrum of α-Fe plate was measured by the prototype detector, and compared with the one measured by a typical neutron 2-D detector. The spectrum was in reasonable agreement with the one measured by the typical detector in the neutron wavelength region above 0.15 nm. In addition, a neutron transmission image of a cadmium indicator was obtained by the prototype detector. The usefulness of the prototype detector for pulsed neutron imaging was demonstrated. (author)

  18. Internal strain measurement using pulsed neutron diffraction at LANSCE

    International Nuclear Information System (INIS)

    Goldstone, J.A.; Bourke, M.A.M.; Shi, N.

    1994-01-01

    The presence of residual stress in engineering components can effect their mechanical properties and structural integrity. Neutron diffraction in the only technique that can make nondestructive measurements in the interior of components. By recording the change in crystalline lattice spacings, elastic strains can be measured for individual lattice reflections. Using a pulsed neutron source, all lattice reflections are recorded in each measurement, which allows for easy examination of heterogeneous materials such as metal matrix composites. Measurements made at the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) demonstrate the potential at pulsed sources for in-situ stress measurements at ambient and elevated temperatures

  19. Cadmium-Zinc-Telluride photon detector for epithermal neutron spectroscopy--pulse height response characterisation

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Bracco, A.; D'Angelo, A.; Gorini, G.; Imberti, S.; Senesi, R.; Rhodes, N.J.; Schooneveld, E.M.

    2004-01-01

    The Resonance Detector Spectrometer was recently revised for neutron spectroscopic studies in the eV energy region. In this technique one makes use of a photon detector to record the gamma emission from analyser foils used as neutron-gamma converters. The pulse-height response of a Cadmium-Zinc-Telluride photon detector to neutron capture emission from 238 U and 197 Au analyser foils was characterised in the neutron energy range 1-200 eV. The experiment was performed on the VESUVIO spectrometer at the ISIS neutron-pulsed source. A biparametric data acquisition, specifically developed for these measurements, allowed the simultaneous measurements of both the neutron time of flight and γ pulse-height spectra. Through the analysis of the γ pulse-height spectra the main components of the signal associated with resonant and non-resonant neutron absorption were identified. It was also shown that, in principle, energy discrimination can be used to improve the signal to background ratio of the neutron time-of-flight measurement

  20. Proton and Neutron Irradiation Tests of Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    Menke, Sven; The ATLAS collaboration

    2012-01-01

    The readout electronics of the ATLAS Hadronic Endcap Calorimeter will have to withstand the about ten times larger radiation environment of the future high-luminosity LHC (HL-LHC) compared to their design values. The GaAs ASIC which comprises the heart of the readout electronics has been exposed to neutron and proton radiation with fluences up to ten times the total expected fluences for ten years of running of the HL-LHC. Neutron tests where performed at the NPI in Rez, Czech Republic, where a 36 MeV proton beam is directed on a thick heavy water target to produce neutrons. The proton irradiation was done with 200 MeV protons at the PROSCAN area of the Proton Irradiation Facility at the PSI in Villigen, Switzerland. In-situ measurements of S-parameters in both tests allow the evaluation of frequency dependent performance parameters - like gain and input impedance - as a function of the fluence. The linearity of the ASIC response has been measured directly in the neutron tests with a triangular input pulse of...

  1. Proton and Neutron Irradiation Tests of Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    INSPIRE-00106910

    2012-01-01

    The readout electronics of the ATLAS Hadronic Endcap Calorimeter will have to withstand the about ten times larger radiation environment of the future high-luminosity LHC (HL-LHC) compared to their design values. The GaAs ASIC which comprises the heart of the readout electronics has been exposed to neutron and proton radiation with fluences up to ten times the total expected fluences for ten years of running of the HL-LHC. Neutron tests were performed at the NPI in Rez, Czech Republic, where a 36 MeV proton beam is directed on a thick heavy water target to produce neutrons. The proton irradiation was done with 200 MeV protons at the PROSCAN area of the Proton Irradiation Facility at the PSI in Villigen, Switzerland. In-situ measurements of S-parameters in both tests allow the evaluation of frequency dependent performance parameters - like gain and input impedance - as a function of the fluence. The linearity of the ASIC response has been measured directly in the neutron tests with a triangular input pulse of ...

  2. Symposium on CIAE 600 kV ns pulse neutron generator

    International Nuclear Information System (INIS)

    Shen Guanren

    2001-01-01

    CIAE 600 kV ns Pulse Neutron Generator was built by China National Nuclear Corporation, which is an important facility mainly used for experimental researches of nuclear reactions induced by 14 MeV neutrons, experimental measurements of energy spectra of secondary neutrons and charged particles and macro-checking experiments of evaluated neutron database and dosimetry researches of neutrons and γ rays. It is the first home made one, but the fourth similar facility in the world. Six articles are included in this symposium. The articles details the general structure, radio frequency ion source, high current beam ns pulsed system, etc. The main technical problems resolved during development are discussed. And attentions and experiences in the generator adjustments are introduced

  3. A wide dynamic range BF3 neutron monitor with front-end electronics based on a logarithmic amplifier

    International Nuclear Information System (INIS)

    Ferrarini, M.; Varoli, V.; Favalli, A.; Caresana, M.; Pedersen, B.

    2010-01-01

    This paper describes a wide dynamic range neutron monitor based on a BF 3 neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10 6 s -1 . It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  4. Background subtraction system for pulsed neutron logging of earth boreholes

    International Nuclear Information System (INIS)

    Hopkinson, E.C.

    1977-01-01

    A neutron generator in well logging instrument is pulsed 100 times having a time between pulses of 1400 microseconds. This is followed by an off period of four cycles wherein 2800 microseconds is allowed for capture radiation to decay to an insignificant level and the remaining 2800 microseconds is used to measure background radiation. This results in the neutron source being disabled four pulses after every hundred pulses of operation, or approximately a 4 percent loss of neutron output. A first detector gate is open from 400 to 680 microseconds and a second detector gate is open from 700 to 980 microseconds. During the 100 cycles, each of the gates is thus open for 280 microseconds times 100 for a total of 28,000 microseconds. By scaling the gate count rate by a factor of 10, the background is subtracted directly

  5. Pulsed neutron well logging apparatus having means for determining background radiation

    International Nuclear Information System (INIS)

    Randall, R.R.

    1979-01-01

    A neutron generator in a well logging instrument is periodically pulsed and has an off period between pulses of 1000 microseconds. A neutron detector is gated on at intervals of 400 to 500, 550 to 650, and 700 to 800 microseconds, respectively, following the termination of each burst of fast neutrons. Circuitry is provided for determining the background radiation and for determining the macroscopic absorption. 3 claims

  6. Estimation of fast neutron fluence in steel specimens type Laguna Verde in TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Galicia A, J.; Francois L, J. L.; Aguilar H, F.

    2015-09-01

    The main purpose of this work is to obtain the fluence of fast neutrons recorded within four specimens of carbon steel, similar to the material having the vessels of the BWR reactors of the nuclear power plant of Laguna Verde when subjected to neutron flux in a experimental facility of the TRIGA Mark III reactor, calculating an irradiation time to age the material so accelerated. For the calculation of the neutron flux in the specimens was used the Monte Carlo code MCNP5. In an initial stage, three sheets of natural molybdenum and molybdenum trioxide (MoO 3 ) were incorporated into a model developed of the TRIGA reactor operating at 1 M Wth, to calculate the resulting activity by setting a certain time of irradiation. The results obtained were compared with experimentally measured activities in these same materials to validate the calculated neutron flux in the model used. Subsequently, the fast neutron flux received by the steel specimens to incorporate them in the experimental facility E-16 of the reactor core model operating at nominal maximum power in steady-state was calculated, already from these calculations the irradiation time required was obtained for values of the neutron flux in the range of 10 18 n/cm 2 , which is estimated for the case of Laguna Verde after 32 years of effective operation at maximum power. (Author)

  7. Characterization of a high repetition-rate laser-driven short-pulsed neutron source

    Science.gov (United States)

    Hah, J.; Nees, J. A.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2018-05-01

    We demonstrate a repetitive, high flux, short-pulsed laser-driven neutron source using a heavy-water jet target. We measure neutron generation at 1/2 kHz repetition rate using several-mJ pulse energies, yielding a time-averaged neutron flux of 2 × 105 neutrons s‑1 (into 4π steradians). Deuteron spectra are also measured in order to understand source characteristics. Analyses of time-of-flight neutron spectra indicate that two separate populations of neutrons, ‘prompt’ and ‘delayed’, are generated at different locations. Gamma-ray emission from neutron capture 1H(n,γ) is also measured to confirm the neutron flux.

  8. Utilizations of intense pulsed neutron source in radiochemistry and radiation chemistry

    International Nuclear Information System (INIS)

    Shiokawa, Takanobu; Yoshihara, Kenji; Kaji, Harumi; Kusaka, Yuzuru; Tabata, Yoneho.

    1975-01-01

    Intense pulsed neutron sources is expected to supply more useful and fundamental informations in radiochemistry and radiation chemistry. Short-lived intermediate species may be detected and the mechanisms of radiation induced reactions will be elucidated more precisely. Analytical application of pulsed neutrons is also very useful. (auth.)

  9. Report on the international workshop on cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J. M.

    1999-01-01

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance

  10. Report on the international workshop on cold moderators for pulsed neutron sources.

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J. M.

    1999-01-06

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance.

  11. Processing and analyses of the pulsed-neutron experimental data of the YALINA facility

    International Nuclear Information System (INIS)

    Cao, Y.; Gohar, Y.; Smith, D.; Talamo, A.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Sadovich, S.

    2010-01-01

    Full text: The YALINA subcritical assembly of the Joint Institute for Power and Nuclear Research (JIPNR)-Sosny, Belarus has been utilized to study the physics parameters of accelerator driven systems (ADS) with high intensity Deuterium-Tritium and Deuterium-Deuterium pulsed neutron sources. In particular, with the fast and thermal neutron zones of the YALINA-Booster subcritical assembly, the pulsed neutron experiments have been utilized to evaluate the pulsed neutron methods for determining the reactivity of the subcritical system. In this paper, the pulsed-neutron experiments performed in the YALINA-Booster 1141 configuration with 90% U 235 fuel and 1185 configuration with 36% and 21% U fuel are examined and analized. The Sjo:strand area-ratio method is utilized to determine the reactivities of the subcritical assembly configurations. The linear regression method is applied to obtain the prompt neutron decay constants from the pulsed-neutron experimental data. The reactivity values obtained from experimental data are shown to be dependent on the detector locations and also on the detector types. The large discrepancies between the reactivity values given by the detectors in the fast neutron zone was reduced by spatial correction methods, and the estimated reactivity after the spatial corrections are almost spatially independent.

  12. Proposal of a wide-band mirror polarizer of slow neutrons at a pulsed neutron source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.; Ostanevich, Yu.M.

    1993-01-01

    The new type of wide-band mirror-based neutron polarizer, which is to be operated at a pulsed neutron source, is suggested. The idea is to use a movable polarizing mirror system, which, with the incoming beam monochromatized by the time-of-flight, would allow one to tune glancing angles in time so that the total reflection condition is always fulfilled only for one of the two neutron spin eigenstates. Estimates show that with the pulsed reactor IBR-2 such a polarizer allows one to build a small angle neutron scattering instrument capable of effectively using the wavelength band from 2 A with a rather high luminosity (time-averaged flux at sample position being up to 10 7 n/s/cm -2 ). (orig.)

  13. Cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of ''burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs

  14. Specific heat of Nb3Sn and V2Zr compounds irradiated with high fluences fast neutrons

    International Nuclear Information System (INIS)

    Kar'kin, A.E.; Mirmel'shtejn, A.V.; Arkhipov, V.E.; Goshchitskij, B.N.

    1987-01-01

    Specific heat of Nb 3 Sn (structure A15) and V 2 Zr (C15) specimens irradiated with high fluences of bast neutrons has been measured. It is shown that in these compounds the temperature reduction of superconducting transition T c under neutron irradiation is accompanied with high decrease of N(E F ). Phonon spectrum of the irradiated V 2 Zr (amorphous phase) on the whole is harder, than at an initial state, for irradiated Nb 3 Sn state (disordered crystalline structure) phonon spectrum is differ weakly from initial one. General regularities of parameter change of electron and phonon subsystems for A15 compounds investigated here and earlier (V 3 Si, Mo 3 Si, Mo 3 Ge) have been analysed

  15. Neutron powder diffraction at a pulsed neutron source: a study of resolution effects

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Hitterman, R.L.

    1985-11-01

    The General Purpose Powder Diffractometer (GPPD), a high resolution (Δd/d = 0.002) time-of-flight instrument, exhibits a resolution function that is almost independent of d-spacing. Some of the special properties of time-of-flight scattering data obtained at a pulsed neutron source will be discussed. A method is described that transforms wavelength dependent data, obtained at a pulsed neutron source, so that standard structural least-squares analyses can be applied. Several criteria are given to show when these techniques are useful in time-of-flight data analysis. 14 refs., 6 figs., 1 tab

  16. Neutron activation system for spectral measurements of pulsed ion diode neutron production

    International Nuclear Information System (INIS)

    Hanson, D.L.; Kruse, L.W.

    1980-02-01

    A neutron energy spectrometer has been developed to study intense ion beam-target interactions in the harsh radiation environment of a relativistic electron beam source. The main component is a neutron threshold activation system employing two multiplexed high efficiency Ge(Li) detectors, an annihilation gamma coincidence system, and a pneumatic sample transport. Additional constraints on the neutron spectrum are provided by total neutron yield and time-of-flight measurements. A practical lower limit on the total neutron yield into 4π required for a spectral measurement with this system is approx. 10 10 n where the neutron yield is predominantly below 4 MeV and approx. 10 8 n when a significant fraction of the yield is above 4 MeV. Applications of this system to pulsed ion diode neutron production experiments on Hermes II are described

  17. Determination of the Neutron Fluence, the Beam Characteristics and the Backgrounds at the CERN-PS TOF Facility

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Quaranta, A; Koehler, P E

    2002-01-01

    In the scope of our programme we propose to start in July 2000 with measurements on elements of well known cross sections, in order to check the reliability of the whole experimental installation at the CERN-TOF facility. These initial exploratory measurements will provide the key-parameters required for the further experimentation at the CERN-TOF neutron beam. The neutron fluence and energy resolution will be determined as a function of the neutron kinetic energy by reproducing standard capture and fission cross sections. The measurements of capture cross sections on elements with specific cross section features will allow to us to disentangle the different components of backgrounds and estimate their level in the experimental area. The time-energy calibration will be determined and monitored with a set of monoenergetic filters as well as by the measurements of elements with resonance-dominated cross sections. Finally, in this initial phase the behaviour of several detectors scheduled in successive measureme...

  18. Polarizing beam-splitter device at a pulsed neutron source

    International Nuclear Information System (INIS)

    Itoh, Shinichi; Takeda, Masayasu.

    1996-01-01

    A polarizing beam-splitter device was designed using Fe/Si supermirrors in order to obtain two polarized neutron beam lines, from one unpolarized neutron beam line, with a practical beam size for investigating the properties of condensed matter. This device was mounted after a guide tube at a pulsed neutron source, and its performance was investigated. (author)

  19. Pulsed neutron gama ray logging for minerals associated with uranium

    International Nuclear Information System (INIS)

    Jensen, D.H.; Humphreys, D.R.; Stephenson, W.A.; Weinlein, J.H.; Bivens, H.M.

    1980-01-01

    The tool uses a pulsed neutron generator to irradiate the nuclei in the formation surrounding the borehole, and N type, high purity, germanium detector to observe the returning gamma rays. The presence or absence of particular elements, in conjunction with information gained from other logs, is expected to predict the location of uranium deposits away from the borehole. The Proof of Principle probe has been assembled. Tests have been run using an external power supply with a resolution better than 2.6 keV. Experiments in a simulated borehole configuration with a pulsed neutron generator have established an output level of 1 x 10 5 neutrons/pulse for the detection of inelastic, capture, and activation gamma rays. Gating of the ADC was shown to improve the signal-to-noise ratio for specific gamma ray lines

  20. Application of the pulsed neutron technique on the reactors ALIZE - AQUILON (1963); Application de la methode des neutrons pulses sur les piles ALIZE et AQUILON (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemart, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    Different methods of measuring the ratio effective delayed fraction / prompt neutron lifetime, {alpha}{sub c}, are described. According to the classic pulsed neutron technique the negative reactivity due to a localized absorber is given by {rho} / {beta}{sub eff} = {alpha} / {alpha}{sub c} -1 Experiments are reported which show that in this case {alpha}{sub c} can not be considered constant for large reactivities. The absorber element distorts the flux in the system, increasing the importance of the reflector. An application of the pulsed neutron method to the measurement of critical distributed boron concentrations of various absorber elements is described. Less time is required than for the usual super-critical techniques, and the experimental analysis is simplified. It is interesting to note that the results are not influenced by the spectral sensitivity of the control element. A modified pulsed neutron method has been tried out. This procedure was used to determine by measurements at sub-critical the critical water level of uranium-heavy water lattices with a high precision. (author) [French] Differents modes operatoires pour definir la valeur du rapport pourcentage effectif de neutrons retardes / temps de vie, {alpha}{sub c}, sont exposes. La methode classique par neutrons pulses definit l'anti-reactivite d'un element absorbant a partir de la relation: {rho} / {beta}{sub eff} {alpha} / {alpha}{sub c} -1 Les manipulations effectuees montrent qu'on ne peut considerer dans ce cas {alpha}{sub c} constant pour de tres grandes anti-reactivites. L'absorbant introduit dans la pile deforme le flux et augmente l'importance du reflecteur. Une application de la methode des neutrons pulses pour mesurer le titre critique en mg de B/l de divers absorbants est signalee. Les operations sont effectuees en regime sous-critique avec un certain gain de temps et une grande facilite de depouillement. Il est interessant de noter que les resultats ne sont pas affectes par la

  1. Application of the pulsed neutron technique on the reactors ALIZE - AQUILON (1963); Application de la methode des neutrons pulses sur les piles ALIZE et AQUILON (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemart, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    Different methods of measuring the ratio effective delayed fraction / prompt neutron lifetime, {alpha}{sub c}, are described. According to the classic pulsed neutron technique the negative reactivity due to a localized absorber is given by {rho} / {beta}{sub eff} = {alpha} / {alpha}{sub c} -1 Experiments are reported which show that in this case {alpha}{sub c} can not be considered constant for large reactivities. The absorber element distorts the flux in the system, increasing the importance of the reflector. An application of the pulsed neutron method to the measurement of critical distributed boron concentrations of various absorber elements is described. Less time is required than for the usual super-critical techniques, and the experimental analysis is simplified. It is interesting to note that the results are not influenced by the spectral sensitivity of the control element. A modified pulsed neutron method has been tried out. This procedure was used to determine by measurements at sub-critical the critical water level of uranium-heavy water lattices with a high precision. (author) [French] Differents modes operatoires pour definir la valeur du rapport pourcentage effectif de neutrons retardes / temps de vie, {alpha}{sub c}, sont exposes. La methode classique par neutrons pulses definit l'anti-reactivite d'un element absorbant a partir de la relation: {rho} / {beta}{sub eff} {alpha} / {alpha}{sub c} -1 Les manipulations effectuees montrent qu'on ne peut considerer dans ce cas {alpha}{sub c} constant pour de tres grandes anti-reactivites. L'absorbant introduit dans la pile deforme le flux et augmente l'importance du reflecteur. Une application de la methode des neutrons pulses pour mesurer le titre critique en mg de B/l de divers absorbants est signalee. Les operations sont effectuees en regime sous-critique avec un certain gain de temps et une grande facilite de depouillement. Il est interessant de noter que les resultats ne sont pas

  2. Pulsed neutron logging - a modern approach to petroleum exploration

    International Nuclear Information System (INIS)

    Navalkar, M.P.

    1978-01-01

    As hydrocarbons have strikingly different properties for neutrons as compared with rocks, neutronic methods are useful to prepare logs of bore holes drilled for petroleum exploration. The earlier neutron logs were based on steady neutron sources, but the superior logs, namely, neutron life time log and neutron induced spectral log are based on pulsed neutron sources. The methods of obtaining these logs, their limitations and the field equipment required are described briefly. As the two logs are complementary, a plea has been made to develop field equipment which can obtain two logs in a single run. (M.G.B.)

  3. Recent performance of the Intense Pulsed Neutron Source accelerator system

    International Nuclear Information System (INIS)

    Potts, C.; Brumwell, F.; Rauchas, A.; Stipp, V.; Volk, G.; Donley, L.

    1987-03-01

    The Intense Pulsed Neutron Source (IPNS) accelerator system has now been in operation as part of a national user program for over five years. During that period steady progress has been made in both beam intensity and reliability. Almost 1.8 billion pulses totaling 4 x 10 21 protons have now been delivered to the spallation neutron target. Recent weekly average currents have reached 15 μA (3.2 x 10 12 protons per pulse, 30 pulses per second) and short-term peaks of almost 17 μA have been reached. In fact, the average current for the last two years is up 31% over the average for the first three years of operation

  4. Neutron-gamma discrimination by pulse analysis with superheated drop detector

    International Nuclear Information System (INIS)

    Das, Mala; Seth, S.; Saha, S.; Bhattacharya, S.; Bhattacharjee, P.

    2010-01-01

    Superheated drop detector (SDD) consisting of drops of superheated liquid of halocarbon is irradiated to neutrons and gamma-rays from 252 Cf fission neutron source and 137 Cs gamma source, respectively, separately. Analysis of pulse height of signals at the neutron and gamma-ray sensitive temperature provides significant information on the identification of neutron and gamma-ray induced events.

  5. A wide dynamic range BF{sub 3} neutron monitor with front-end electronics based on a logarithmic amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarini, M., E-mail: michele.ferrarini@polimi.i [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Fondazione CNAO, via Caminadella 16, 20123 Milano (Italy); Varoli, V. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Vatican City State, Holy See) (Italy); Caresana, M. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Pedersen, B. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Italy)

    2010-02-01

    This paper describes a wide dynamic range neutron monitor based on a BF{sub 3} neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10{sup 6} s{sup -1}. It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  6. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    Science.gov (United States)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  7. Time-of-flight diffraction at pulsed neutron sources: An introduction to the symposium

    International Nuclear Information System (INIS)

    Jorgensen, J.D.

    1994-01-01

    In the 25 years since the first low-power demonstration experiments, pulsed neutron sources have become as productive as reactor sources for many types of diffraction experiments. The pulsed neutron sources presently operating in the United States, England, and Japan offer state of the art instruments for powder and single crystal diffraction, small angle scattering, and such specialized techniques as grazing-incidence neutron reflection, as well as quasielastic and inelastic scattering. In this symposium, speakers review the latest advances in diffraction instrumentation for pulsed neutron sources and give examples of some of the important science presently being done. In this introduction to the symposium, I briefly define the basic principles of pulsed neutron sources, review their development, comment in general terms on the development of time-of-flight diffraction instrumentation for these sources, and project how this field will develop in the next ten years

  8. The effect of pulse pile-up on discrimination between neutrons and gamma rays

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-01-01

    Pulse pile-up lengthens the rise-time of pulses. With an organic scintillator such as NE 213, pile-up can cause a short rise-time pulse originating from gamma rays to be interpreted by a rise-time analyser as a neutron. The degradation of pulse shape analyser performance at high count rates is shown to be directly related to pulse pile-up. Using this relationship, the contribution of piled-up gamma rays and neutrons to count rate related errors is calculated for a time-dependent fast neutron energy spectrum measurement. Errors of a few per cent occur even when the probability of a count per burst is as low as 0.01. (orig.)

  9. Structural science using single crystal and pulse neutron scattering

    International Nuclear Information System (INIS)

    Noda, Yukio; Kimura, Hiroyuki; Watanabe, Masashi; Ishikawa, Yoshihisa; Tamura, Itaru; Arai, Masatoshi; Takahashi, Miwako; Ohshima, Ken-ichi; Abe, Hiroshi; Kamiyama, Takashi

    2008-01-01

    The application to single crystal neutron structural analysis is overviewed. Special attention is paid to the pulse neutron method, which will be available soon under J-PARC project in Japan. New proposal and preliminary experiment using Sirius at KENS are described. (author)

  10. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    Science.gov (United States)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  11. LUPIN, a new instrument for pulsed neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy); Ferrarini, M. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy); CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Manessi, G.P., E-mail: giacomo.paolo.manessi@cern.ch [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Varoli, V. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy)

    2013-06-01

    A number of studies focused in the last decades on the development of survey meters to be used in pulsed radiation fields. This is a topic attracting widespread interest for applications such as radiation protection and beam diagnostics in accelerators. This paper describes a new instrument specifically conceived for applications in pulsed neutron fields (PNF). The detector, called LUPIN, is a rem counter type instrument consisting of a {sup 3}He proportional counter placed inside a spherical moderator. It works in current mode with a front-end electronics consisting of a current–voltage logarithmic amplifier, whose output signal is acquired with an ADC and processed on a PC. This alternative signal processing allows the instrument to be used in PNF without being affected by saturation effects. Moreover, it has a measurement capability ranging over many orders of burst intensity. Despite the fact that it works in current mode, it can measure a single neutron interaction. The LUPIN was first calibrated in CERN's calibration laboratory with a PuBe source. Measurements were carried out under various experimental conditions at the Helmholtz-Zentrum in Berlin, in the stray field at various locations of the CERN Proton Synchrotron complex and around a radiotherapy linear accelerator at the S. Raffaele hospital in Milan. The detector can withstand single bursts with values of H⁎(10) up to 16 nSv/burst without showing any saturation effect. It efficiently works in pulsed stray fields, where a conventional rem-counter underestimates by a factor of 2. It is also able to reject the very intense and pulsed photon contribution that often accompanies the neutron field with good reliability. -- Highlights: ► LUPIN is a new detector specifically conceived to work in neutron pulsed fields. ► The detector is a rem counter type instrument working in current mode. ► The performances of the detectors were studied under various experimental conditions. ► The detector

  12. Polarisation modulated crosscorrelation spectroscopy on a pulsed neutron source

    International Nuclear Information System (INIS)

    Cywinski, R.; Williams, W.G.

    1984-07-01

    A crosscorrelation technique is introduced by which a total scattering polarisation analysis spectrometer on a pulsed neutron source can be modified to give full neutron polarisation and energy analysis without changing the physical configuration of the instrument. Its implementation on the proposed POLARIS spectrometer at the Rutherford Appleton Laboratory Spallation Neutron Source is described, and the expected dynamic (Q, ω) range and resolution evaluated. (author)

  13. Fast neutron fluence evaluation of the smart reactor pressure vessel by using the GEOSHIELD code

    International Nuclear Information System (INIS)

    Kim, K.Y.; Kim, K.S.; Kim, H.Y.; Lee, C.C.; Zee, S.Q.

    2007-01-01

    In Korea, the design of an advanced integral reactor system called SMART has been developed by KAERI to supply energy for seawater desalination as well as an electricity generation. A fast neutron fluence distribution at the SMART reactor pressure vessel was evaluated to confirm the integrity of the vessel by using the GEOSHIELD code. The GEOSHIELD code was developed by KAERI in order to prepare an input list including a geometry modeling of the DORT code and to process results from the DORT code output list. Results by a GEOSHIELD code processing and by a manual processing of the DORT show a good agreement. (author)

  14. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Rishi, E-mail: rishiv9@gmail.com, E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre Autonagar, Vishakapatnam 530012 (India)

    2016-09-15

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  15. The pdk-100 enhances interpretation capabilities for pulsed neutron capture logs

    International Nuclear Information System (INIS)

    Randall, R.R.; Oliver, D.W.; Ferti, W.H.

    1986-01-01

    The PDK-100 is a new pulsed neutron logging system designed to measure Sigma (Σ), the macroscopic thermal neutron capture cross section. In addition to determining Σ, the system provides logging curves which are a measure of formation porosity and which furnish information concerning borehole conditions. This paper reviews the principles of operation of the PDK-100, and presents examples which illustrate the utility of the logging system. In addition, the progress of investigations into new parameters which can be derived with pulsed neutron logging data will be reported

  16. Simulation study of a pulsed neutron focusing using a pulsed electromagnetic lens coupled with a permanent magnet

    International Nuclear Information System (INIS)

    Iwashita, H.; Iwasa, H.; Hiraga, F.; Kamiyama, T.; Kiyanagi, Y.; Suzuki, J.; Shinohara, T.; Oku, T.; Shimizu, H.M.

    2009-01-01

    A pulsed sextupole electromagnetic lens with suitably controlled time-dependent magnetic field can in principle focus pulsed neutrons at the same focal point over a wide range of wavelength as the lens removes aberrations. However, in fact, it is difficult to focus neutrons over a wide range of wavelength because attenuation of a practical pulsed sextupole electromagnet is faster than an ideal case. We have devised a method of canceling the difference between the practical pulsed sextupole magnetic field and the ideal magnetic field with the use of a permanent sextupole magnet. We performed simulation calculations to investigate the feasibility of this method, and it was shown that focusing wavelength range spread compared with the case using a pulsed magnetic lens only. This result indicates the usefulness of the method.

  17. Condensed matter and materials research using neutron diffraction and spectroscopy: reactor and pulsed neutron sources

    International Nuclear Information System (INIS)

    Bisanti, Paola; Lovesey, S.W.

    1987-05-01

    The paper provides a short, and partial view of the neutron scattering technique applied to condensed matter and materials research. Reactor and accelerator-based neutron spectrometers are discussed, together with examples of research projects that illustrate the puissance and modern applications of neutron scattering. Some examples are chosen to show the range of facilities available at the medium flux reactor operated by Casaccia ENEA, Roma and the advanced, pulsed spallation neutron source at the Rutherford Appleton Laboratory, Oxfordshire. (author)

  18. Formation of very short pulse by neutron spin flip chopper for J-PARC

    International Nuclear Information System (INIS)

    Ebisawa, T.; Soyama, K.; Yamazaki, D.; Tasaki, S.; Sakai, K.; Oku, T.; Maruyama, R.; Hino, M.

    2004-01-01

    We have developed neutron spin flip choppers with high S/N ratio and high intensity for pulsed sources using multi-stage spin flip choppers. It is not easy for us to obtain a very short neutron pulse less than 10 μs using a spin flip chopper, due to the time constant L/R in the normal LR circuit. We will discuss a method obtaining a very short neutron pulse applying the modified push-pull circuit proposed by Ito and Takahashi [4] to the double spin flip chopper with polarizing guides

  19. A low background pulsed neutron polyenergetic beam

    International Nuclear Information System (INIS)

    Adib, M.; Abdelkawy, A.; Habib, N.; abuelela, M.; Wahba, M.; kilany, M.; Kalebebin, S.M.

    1992-01-01

    A low background pulsed neutron polyenergetic thermal beam at ET-R R-1 is produced by a rotor and rotating collimator suspended in magnetic fields. Each of them is mounted on its mobile platform and whose centres are 66 cm apart, rotating synchronously at speeds up to 16000 rpm. It was found that the neutron burst produced by the rotor with almost 100% transmission passes through the collimator, when the rotation phase between them is 28.8 degree Moreover the background level achieved at the detector position is low, constant and free from peaks due to gamma rays and fast neutrons accompanying the reactor thermal beam.3 fig

  20. Fluence to Dose Equivalent Conversion Coefficients for Evaluation of Accelerator Radiation Environments

    International Nuclear Information System (INIS)

    Thomas, Ralph H.; Zeman, Gary H.

    2001-01-01

    The derivation of a set of conversion functions for the expression of neutron fluence measurements in terms of Effective Dose, E, is described. Four functions in analytical form are presented, covering the neutron energy range from 2.5 10-8 to 10+4 MeV, for the interpretation of fluence measurements in the typical irradiation conditions experienced around high-energy proton accelerators such as the Bevatron. For neutron energies below 200 MeV the analytical functions were modeled after the ISO and ROT conversion coefficients in ICRU 57. For neutron energies above 200 MeV, the analytical function was derived from an analysis of recent published data. Sample calculations using either the analytical expressions or the tabulated conversion coefficients from which the analytical expressions are derived show agreement to better than plus/minus 5%

  1. Perspectives for online analysis of raw material by pulsed neutron irradiation

    Science.gov (United States)

    Bach, Pierre; Le Tourneur, P.; Poumarede, B.

    1997-02-01

    On-line analysis by pulsed neutron irradiation is an example of an advanced technology application of nuclear techniques, concerning real problems in the cement, mineral and coal industries. The most significant of these nuclear techniques is their capability of continuous measurement without contact and without sampling, which can lead to improved control of processes and resultant large financial savings. Compared to Californium neutron sources, the use of electrical pulsed neutron generators allows to obtain a higher signal/noise ratio for a more sensitive measurement, and allows to overcome a number of safety problems concerning transportation, installation and maintenance. An experiment related to a possible new on-line raw material analyzer is described, using a pulsed neutron generator. The key factors contributing to an accurate measurement are related to a suitable generator, to a high count rate gamma ray spectroscopy electronics, and to computational tools. Calculation and results for the optimization of the neutron irradiation time diagram are reported. One of the operational characteristics of such an equipment is related to neutron flux available: it is possible to adjust it to the requested accuracy, i.e. for a high accuracy during a few hours/day and for a lower accuracy the rest of the time. This feature allows to operate the neutron tube during a longer time, and then to reduce the cost of analysis.

  2. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    International Nuclear Information System (INIS)

    Mahdieh, Mohammad Hossein; Fattahi, Behzad

    2015-01-01

    Highlights: • Colloidal aluminum- and titanium-based nanoparticles fabricated by laser ablation. • Various liquid environments and laser fluences were applied as variable parameters. • Physical characteristics of liquid medium influence ablation process and nanoparticle formation. • Size properties of prepared nanoparticles depend on liquid medium and laser fluence. • Ablation of both metals in ethanol results in nanoparticles with smaller size. - Abstract: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution

  3. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Mohammad Hossein, E-mail: mahdm@iust.ac.ir; Fattahi, Behzad

    2015-02-28

    Highlights: • Colloidal aluminum- and titanium-based nanoparticles fabricated by laser ablation. • Various liquid environments and laser fluences were applied as variable parameters. • Physical characteristics of liquid medium influence ablation process and nanoparticle formation. • Size properties of prepared nanoparticles depend on liquid medium and laser fluence. • Ablation of both metals in ethanol results in nanoparticles with smaller size. - Abstract: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution.

  4. Red light-induced shift of the fluence-response curve for first positive curvature of maize [Zea mays] coleoptiles

    International Nuclear Information System (INIS)

    Hofmann, E.; Schäfer, E.

    1987-01-01

    The fluence-response curve for first positive phototropic curvture of dark-grown maize coleoptiles is shifted to ten-fold higher fluences if the coieoptiles are irradiated with red light 2 h prior to the phototropic induction with blue light. Fluence-response curves for this red-induced shift were obtained with unilateral red irradiations 2 h prior to inductive blue pulses of different fluences. They differ significantly depending on whether the red light was given from the same side as or the opposite side to the respective inductive blue pulse, thus demonstrating that the red light effect is a local response of the coleoptile. The fluence-response curves for an inductive blue pulse in the ascending part were compared with those for an inductive blue pulse in the descending part of the fluence-response curve for blue light induced phototropism. They are quite different in threshold of red light sensitivity and shape for irradiations from both the same and the opposite sides. This offers evidence for the hypothesis that at least two different photosystems are involved in phototropism, and that they are modulated differently by a red light preirradiation. All these fluence-response curves indicate that it is possible to increase the response in the coleoptile, if the red light preirradiation is given opposite to the inductive blue pulse. This is supported by blue light fluence-response curves obtained after a weak unilateral red preirradiation. (author)

  5. Evaluation of the Fluence Conversion Factor for 32P in Sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-18

    When 32S is exposed to neutrons it undergoes a 32S(n,p)32P reaction with a neutron cross section as shown in Figure 1. This reaction may be used to characterize the neutron fluence for neutrons greater than 3 MeV.

  6. Residual stress measurement using the pulsed neutron source at LANSCE

    International Nuclear Information System (INIS)

    Bourke, M.A.M.; Goldstone, J.A.; Holden, T.M.

    1991-01-01

    The presence of residual stress in engineering components can effect their mechanical properties and structural integrity. Neutron diffraction is the only measuring technique which can make spatially resolved non-destructive strain measurements in the interior of components. By recording the change in the crystalline interplanar spacing, elastic strains can be measured for individual lattice reflections. Using a pulsed neutron source, all the lattice reflections are recorded in each measurement which allows anisotropic effects to be studied. Measurements made at the Manuel Lujan Jr Neutron Scattering Centre (LANSCE) demonstrate the potential for stress measurements on a pulsed source and indicate the advantages and disadvantages over measurements made on a reactor. 15 refs., 7 figs

  7. Sync transmission method and apparatus for high frequency pulsed neutron spectral analysis systems

    International Nuclear Information System (INIS)

    Culver, R.B.

    1981-01-01

    An improved synchronization system was developed for high-frequency pulsed-neutron gamma ray well-logging which extends the upper limit of the usable source pulsing frequency. A clock is used to pulse the neutron generator at a given frequency and a scaler generates scaled-down sync pulses at a lower frequency. Radiation from the formations surrounding the borehole is detected and electrical signals related functionally to the radiation are generated. The scaled-down sync pulses and electrical signals are transmitted to the earth's surface via a seven conductor well logging cable. (DN)

  8. Detection of fast burst of neutrons in the background of intense electromagnetic pulse

    International Nuclear Information System (INIS)

    Shyam, Anurag

    1999-01-01

    There are many experiments, in which fast neutron burst is emitted along with strong electromagnetic pulse. This pulse has frequency spectrum starting from few tens of khz to hard x-rays. Detecting these neutrons bursts require special measurement techniques, which are described. (author)

  9. Sci-Sat AM: Brachy - 04: Neutron production around a radiation therapy linac bunker - monte carlo simulations and physical measurements.

    Science.gov (United States)

    Khatchadourian, R; Davis, S; Evans, M; Licea, A; Seuntjens, J; Kildea, J

    2012-07-01

    Photoneutrons are a major component of the equivalent dose in the maze and near the door of linac bunkers. Physical measurements and Monte Carlo (MC) calculations of neutron dose are key for validating bunker design with respect to health regulations. We attempted to use bubble detectors and a 3 He neutron spectrometer to measure neutron equivalent dose and neutron spectra in the maze and near the door of one of our bunkers. We also ran MC simulations with MCNP5 to measure the neutron fluence in the same region. Using a point source of neutrons, a Clinac 1800 linac operating at 10 MV was simulated and the fluence measured at various locations of interest. We describe the challenges faced when measuring dose with bubble detectors in the maze and the complexity of photoneutron spectrometry with linacs operating in pulsed mode. Finally, we report on the development of a userfriendly GUI for shielding calculations based on the NCRP 151 formalism. © 2012 American Association of Physicists in Medicine.

  10. The performance of neutron scattering spectrometers at a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.

    1997-01-01

    In this document the author considers the performance of a long pulse spallation source for those neutron scattering experiments that are usually performed with a monochromatic beam at a continuous wave (CW) source such as a nuclear reactor. The first conclusion drawn is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons

  11. Efficacy of intense pulsed light therapy in the treatment of facial acne vulgaris: Comparison of two different fluences

    Directory of Open Access Journals (Sweden)

    Monika V Patidar

    2016-01-01

    Full Text Available Background: Acne vulgaris is the most common disease of the skin affecting adolescents and young adults causing psychological distress. The combination of antibiotic resistance, adverse effects of topical and systemic anti acne medications and desire for high tech approaches have all led to new enthusiasm for light based acne treatment. Intense pulse light (IPL therapy has three modes of action in acne vulgaris i.e., photochemical, photo thermal and photo immunological. Aims: (1 to study efficacy of IPL therapy in facial acne vulgaris. (2 To compare two fluences - one normal and other subnormal on right and left side of face respectively. Methods: (Including settings and design and statistical analysis used. Total 45 patients in age group 16 to 28 years with inflammatory facial acne vulgaris were included in prospective study. Baseline data for each patient was recorded. All patients were given 4 sittings of IPL at 2 weeks interval and were followed for 2 months every 2 weeks. Fluence used was 35J/cm2 on right and 20J/cm2 on left side. Percentage reduction in lesion count was calculated at each sitting and follow up and graded as mild (0-25%, moderate (26-50%, good (51-75% and excellent (76-100%. Side effects were noted. The results were analysed using Mann-Whitney Test. Results: On right side, excellent results were achieved in 10(22%, good in 22(49% and moderate in 13(29% patients. On left side excellent were results achieved in 7(15%, good in 19(42% and moderate in 16(43% patients. There was no statically significant difference noted in efficacy of two fluences used in treatment of facial acne vulgaris. Conclusions: IPL is a effective and safe option for inflammatory acne vulgaris with minimal reversible side effects. Subnormal fluence is as effective as normal fluence in Indian skin.

  12. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a {open_quotes}best estimate{close_quotes} of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards.

  13. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    International Nuclear Information System (INIS)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a open-quotes best estimateclose quotes of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards

  14. 40-Tesla pulsed-field cryomagnet for single crystal neutron diffraction

    Science.gov (United States)

    Duc, F.; Tonon, X.; Billette, J.; Rollet, B.; Knafo, W.; Bourdarot, F.; Béard, J.; Mantegazza, F.; Longuet, B.; Lorenzo, J. E.; Lelièvre-Berna, E.; Frings, P.; Regnault, L.-P.

    2018-05-01

    We present the first long-duration and high duty cycle 40-T pulsed-field cryomagnet addressed to single crystal neutron diffraction experiments at temperatures down to 2 K. The magnet produces a horizontal field in a bi-conical geometry, ±15° and ±30° upstream and downstream of the sample, respectively. Using a 1.15 MJ mobile generator, magnetic field pulses of 100 ms length are generated in the magnet, with a rise time of 23 ms and a repetition rate of 6-7 pulses per hour at 40 T. The setup was validated for neutron diffraction on the CEA-CRG three-axis spectrometer IN22 at the Institut Laue Langevin.

  15. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    International Nuclear Information System (INIS)

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed

  16. Calculation of fluence rate distributions in a pre design clinical facility for BNCT at the LFR

    International Nuclear Information System (INIS)

    Peeters, T.T.J.M.; Freudenreich, W.E.

    1995-12-01

    In a previous study [1], it was demonstrated that the creation of a thermal neutron facility for clinical BNCT in the LFR is feasible. Monte Carlo calculations had shown that the neutron fluence rates and gamma dose rates at the detector position of a model representing a first outline of a clinical facility met all requirements that are necessary for clinical BNCT. In order to gain more information about the neutron fluence rates at several positions, a second step is required. Calculations have been performed for the free beam and for a tumour bearing phantom at 5 cm and 10 cm distance from the irradiation window. Due to thermalization and back scattering, the thermal fluence rates in the tumour at 5 and 10 cm distance from the bismuth shield appeared to be approximately twice as high as the thermal fluence rates in the free beam at the corresponding positions of 5 to 6 cm and 10 to 11 cm from the irradiation window. (orig.)

  17. Random pulsing of neutron source for inelastic neutron scattering gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Hertzog, R.C.

    1981-01-01

    Method and apparatus are described for use in the detection of inelastic neutron scattering gamma ray spectroscopy. Data acquisition efficiency is enhanced by operating a neutron generator such that a resulting output burst of fast neutrons is maintained for as long as practicably possible until a gamma ray is detected. Upon the detection of a gamma ray the generator burst output is terminated. Pulsing of the generator may be accomplished either by controlling the burst period relative to the burst interval to achieve a constant duty cycle for the operation of the generator or by maintaining the burst period constant and controlling the burst interval such that the resulting mean burst interval corresponds to a burst time interval which reduces contributions to the detected radiation of radiation occasioned by other than the fast neutrons

  18. Detection of fast neutrons in a plastic scintillator using digital pulse processing to reject gammas

    International Nuclear Information System (INIS)

    Reeder, P.L.; Peurrung, A.J.; Hansen, R.R.; Stromswold, D.C.; Hensley, W.K.; Hubbard, C.W.

    1999-01-01

    We report on neutron-gamma discrimination in a plastic scintillator based on the time delay inherent in second and third chance neutron scattering. Because of the time delay (∼3 ns) between the first and second scattering of a neutron, calculations of gammas and neutrons in a plastic scintillator predict that a neutron signal should be significantly broader than a pulse from a gamma event. Experimentally, we have used a fast digital oscilloscope coupled to a computer to examine individual pulses from neutron or gamma induced signals in fast scintillators coupled to a fast PMT. Individual neutron-induced signals were consistent with the predictions of our model, but gamma pulses were broader than expected. We present various tests to understand this phenomenon and discuss a way to overcome this problem

  19. Irradiation induced creep in graphite with respect to the flux effect and the high fluence behaviour

    International Nuclear Information System (INIS)

    Cundy, M.R.

    1984-01-01

    In accelerated irradiation creep tests, performed in the HFR Petten, in a fast neutron flux of about 2x10 4 cm -2 s -1 and at temperatures of 300 and 500 0 C, a fast neutron fluence in excess of 20x10 21 cm -2 (EDN) has been attained so far. As a supplement to this, an analogous creep test was conducted in a fast neutron flux lower by a factor of four which is more typical for the service conditions in a HTR, with a maximum fast fluence of only 4x10 21 cm -2 (EDN). This experiment was aimed at answering the question if, for equal fast fluence, enhanced irradiation creep and Wigner dimensional change would take place in a reduced fast neutron flux. This problem has more generally been addressed to as the ''flux effect'' or the ''equivalent temperature concept''. (orig./IHOE)

  20. Optimisation studies for a moderator on a pulsed neutron source

    International Nuclear Information System (INIS)

    Picton, D.J.; Ross, D.K.; Taylor, A.D.

    1982-01-01

    Having reviewed general aspects of moderator design for pulsed neutron sources, calculations are presented on a number of aspects of moderator optimization. Results of time-independent calculations on metal hydride moderators and a detailed method of evaluating moderated pulse intensities and time distributions, are given. Using computer codes, neutron cross-sections have been calculated from vibrational frequency distributions and time-dependent moderator calculations performed by Monte Carlo methods. The choice of an ambient moderator material and the optimum configuration of heterogeneous poisoning are examined and evaluations of liquid-nitrogen-cooled moderators are presented. Conclusions are drawn concerning the relative merits of cooled and poisoned moderators and an evaluation presented of solid methane at 20 K as a moderator for the production of cold neutrons. (U.K.)

  1. Nondestructive analysis of the natural uranium mass through the measurement of delayed neutrons using the technique of pulsed neutron source

    International Nuclear Information System (INIS)

    Coelho, Paulo Rogerio Pinto

    1979-01-01

    This work presents results of non destructive mass analysis of natural uranium by the pulsed source technique. Fissioning is produced by irradiating the test sample with pulses of 14 MeV neutrons and the uranium mass is calculated on a relative scale from the measured emission of delayed neutrons. Individual measurements were normalised against the integral counts of a scintillation detector measuring the 14 MeV neutron intensity. Delayed neutrons were measured using a specially constructed slab detector operated in anti synchronism with the fast pulsed source. The 14 MeV neutrons were produced via the T(d,n) 4 He reaction using a 400 kV Van de Graaff accelerated operated at 200 kV in the pulsed source mode. Three types of sample were analysed, namely: discs of metallic uranium, pellets of sintered uranium oxide and plates of uranium aluminium alloy sandwiched between aluminium. These plates simulated those of Material Testing Reactor fuel elements. Results of measurements were reproducible to within an overall error in the range 1.6 to 3.9%; the specific error depending on the shape, size and mass of the sample. (author)

  2. Neutronic studies on decoupled hydrogen moderator for a short-pulse spallation source

    International Nuclear Information System (INIS)

    Harada, Masahide; Watanabe, Noboru; Teshigawara, Makoto; Kai, Tetsuya; Ikeda, Yujiro

    2005-01-01

    Neutronic studies of decoupled hydrogen moderators were performed by calculations taking into account para hydrogen content, decoupling energy, moderator dimensions/shapes and reflector material. Low-energy parts of calculated spectral intensities with different para hydrogen contents were analyzed by a modified Maxwell function to characterize neutron spectra. The result shows that a 100% para hydrogen moderator gives the highest pulse peak intensity together with the narrowest pulse width and the shortest decay times. Pulse broadening with a reflector was explained by time distributions of source neutrons entering into the moderator through a decoupler. Material dependence of time distribution was studied. A decoupling energy higher than 1 eV does not bring about a large improvement in pulse widths and decay times, even at a large penalty in the peak intensity. The optimal moderator thickness was also discussed for a rectangular parallelepipe-shaped and a canteen-shaped moderator

  3. Small-angle neutron scattering at pulsed spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P. Jr.

    1991-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments at pulsed sources are described and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is generally achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows optimization for maximum beam intensity at a given beam size over the full dynamic range with fixed collimation. Data-acquisition requirements at a pulsed source are more severe, requiring large fast histrograming memories. Data reduction is also more complex, as all wavelength-dependent and angle-dependent backgrounds and nonlinearities must be accounted for before data can be transformed to intensity vs momentum transfer (Q). A comparison is shown between the Los Alamos pulsed instrument and D11 (Institut Laue-Langevin) and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive of moderate Q and may be faster when a wide range of Q is required. (orig.)

  4. Dual detector pulsed neutron logging for providing indication of formation porosity

    International Nuclear Information System (INIS)

    Hopkinson, E.C.

    1979-01-01

    A logging instrument contains a pulsed neutron source and a pair of radiation detectors spaced along the length of the instrument. The radiation detectors are gated differently from each other to provide an indication of formation porosity which is substantially independent of the formation salinity. In the preferred embodiment, the electrical signals indicative of radiation detected by the long-spaced detector are gated for almost the entire interval between neutron pulses and the short-spaced signals are gated for a significantly smaller time interval which commences soon after the termination of a given neutron burst. The signals from the two detectors are combined in a ratio circuit for determination of porosity

  5. Neutron measurements at BRIT/BARC medical cyclotron facility of RMC, Parel

    International Nuclear Information System (INIS)

    Sathian, Deepa; Sathian, V.; Phandnis, U.V.; Soni, P.S.; Mohite, D.Y.

    2005-01-01

    Neutron leakage and its long distance propagation in the atmosphere from the intense neutron facilities such as high energy accelerators like Cyclotron are very important for the shielding design of the facilities and resulting dose reduction to nearby population, because of strong penetrability of high energy neutrons. The neutron interaction cross sections are highly energy dependent, so different methods are adopted for measuring different energy neutrons. The method also depends on the amount of neutron fluence rate expected at the location. When the fluence rate is very high, the foil activation is the best method for the measurement of neutron fluence rate. In foil activation technique an inactive material is activated by neutrons and the activity is measured and correlated to the neutron fluence rate. In this paper, neutron fluence rate measurement using different activation foils at medical cyclotron room of Radiation Medicine Centre (RMC) is discussed. (author)

  6. Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence

    International Nuclear Information System (INIS)

    Xiao, Chengjian; Gao, Xiaoling; Kobayashi, Makoto; Kawasaki, Kiyotaka; Uchimura, Hiromichi; Toda, Kensuke; Kang, Chunmei; Chen, Xiaojun; Wang, Heyi; Peng, Shuming; Wang, Xiaolin; Oya, Yasuhisa; Okuno, Kenji

    2013-01-01

    Tritium release kinetics in lithium orthosilicate (Li 4 SiO 4 ) ceramic pebbles irradiated with low thermal-neutron fluence was studied by out-of-pile annealing experiments. It was found that the tritium produced in Li 4 SiO 4 pebbles was mainly released as tritiated water vapor (HTO). The apparent desorption activation energy of tritium on the pebble surface was consistent with the diffusion activation energy of tritium in the crystal grains, indicating that tritium release was mainly controlled by diffusion process. The diffusion coefficients of tritium in the crystal grains at temperatures ranging from 450 K to 600 K were obtained by isothermal annealing tests, and the Arrhenius relation was determined to be D = 1 × 10 −7.0 exp (−40.3 × 10 3 /RT) cm 2 s −1

  7. The performance of neutron spectrometers AR a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.; Daemen, L.L.

    1995-01-01

    At a recent workshop at Lawrence Berkeley National Laboratory members of the international neutron scattering community discussed the performance to be anticipated from neutron scattering instruments installed at a 1 MW long-pulse spallation source (LPSS). Although the report of this workshop is long, its principal conclusions can be easily summarised and almost as easily understood. This article presents such a synthesis for a 60 Hz LPSS with 1 msec proton pulses. We discuss some of the limitations of the workshop conclusions and suggest a simple analysis of the performance differences that might be expected between short- and long-pulse sources both of which exploit coupled moderators

  8. A dense plasma focus-based neutron source for a single-shot detection of illicit materials and explosives by a nanosecond neutron pulse

    International Nuclear Information System (INIS)

    Gribkov, V A; Latyshev, S V; Miklaszewski, R A; Chernyshova, M; Drozdowicz, K; Wiacek, U; Tomaszewski, K; Lemeshko, B D

    2010-01-01

    Recent progress in a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects by means of measuring elastically scattered neutrons is presented in this paper. The method uses very bright neutron pulses having duration of the order of 10 ns only, which are generated by dense plasma focus (DPF) devices filled with pure deuterium or DT mixture as a working gas. The small size occupied by the neutron bunch in space, number of neutrons per pulse and mono-chromaticity (ΔE/E∼1%) of the neutron spectrum provides the opportunity to use a time-of-flight (TOF) technique with flying bases of about a few metres. In our researches we used DPF devices having bank energy in the range 2-7 kJ. The devices generate a neutron yield of the level of 10 8 -10 9 2.45 MeV and 10 10 -10 11 14 MeV neutrons per pulse with pulse duration ∼10-20 ns. TOF base in the tests was 2.2-18.5 m. We have demonstrated the possibility of registering of neutrons scattered by the substances under investigation-1 litre bottles with methanol (CH 3 OH), phosphoric (H 2 PO 4 ) and nitric (HNO 3 ) acids as well as a long object-a 1 m gas tank filled with deuterium at high pressure. It is shown that the above mentioned short TOF bases and relatively low neutron yields are enough to distinguish different elements' nuclei composing the substance under interrogation and to characterize the geometry of lengthy objects in some cases. The wavelet technique was employed to 'clean' the experimental data registered. The advantages and restrictions of the proposed and tested NINIS technique in comparison with other methods are discussed.

  9. Calibration of the JET neutron yield monitors using the delayed neutron counting technique

    International Nuclear Information System (INIS)

    van Belle, P.; Jarvis, O.N.; Sadler, G.; de Leeuw, S.; D'Hondt, P.; Pillon, M.

    1990-01-01

    The time-resolved neutron yield is routinely measured on the JET tokamak using a set of fission chambers. At present, the preferred technique is to employ activation reactions to determine the neutron fluence at a well-chosen position and to relate the measured fluence to the total neutron emission by means of neutron transport calculations. The delayed neutron counting method is a particularly convenient method of performing the activation measurement and the fission cross sections are accurately known. This paper outlines the measurement technique as used on JET

  10. Characterization of the γ background in epithermal neutron scattering measurements at pulsed neutron sources

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Tardocchi, M.; Schooneveld, E.M.; Senesi, R.

    2006-01-01

    This paper reports the characterization of the different components of the γ background in epithermal neutron scattering experiments at pulsed neutron sources. The measurements were performed on the VESUVIO spectrometer at ISIS spallation neutron source. These measurements, carried out with a high purity germanium detector, aim to provide detailed information for the investigation of the effect of the γ energy discrimination on the signal-to-background ratio. It is shown that the γ background is produced by different sources that can be identified with their relative time structure and relative weight

  11. Device for measuring the dose rate of pulsed neutrons

    International Nuclear Information System (INIS)

    Klett, A.

    2009-01-01

    The author presents a new apparatus, developed in collaboration by Berthold Technologies and the German company DESY, allowing neutron pulsed fields to be measured. It is based on the activation by high energy neutrons of carbon 12 present in the sensor materials, and on the decay of short life radionuclides produced by this activation. The detection principle and system are briefly presented

  12. Neutron-gamma discrimination based on pulse shape discrimination in a Ce:LiCaAlF{sub 6} scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Atsushi, E-mail: a-yamazaki@nucl.nagoya-u.ac.jp [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University (Japan); Watanabe, Kenichi; Uritani, Akira [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University (Japan); Iguchi, Tetsuo [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University (Japan); Kawaguchi, Noriaki [Tokuyama Corporation (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University (Japan); Fukuda, Kentaro; Suyama, Toshihisa [Tokuyama Corporation (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University (Japan)

    2011-10-01

    We demonstrate neutron-gamma discrimination based on a pulse shape discrimination method in a Ce:LiCAF scintillator. We have tried neutron-gamma discrimination using a difference in the pulse shape or the decay time of the scintillation light pulse. The decay time is converted into the rise time through an integrating circuit. A {sup 252}Cf enclosed in a polyethylene container is used as the source of thermal neutrons and prompt gamma-rays. Obvious separation of neutron and gamma-ray events is achieved using the information of the rise time of the scintillation light pulse. In the separated neutron spectrum, the gamma-ray events are effectively suppressed with little loss of neutron events. The pulse shape discrimination is confirmed to be useful to detect neutrons with the Ce:LiCAF scintillator under an intense high-energy gamma-ray condition.

  13. Plasma-focus neutron diagnostics by means of high-sensitivity bubble detectors

    International Nuclear Information System (INIS)

    Zoita, V.; Pantea, A.; Patran, A.; Lee, P.; Springham, S.V.; Koh, M.; Rawat, R.S.; Zhang, T.; Hassan, M.

    2005-01-01

    A new type of bubble detector (a superheated fluid detector), the DEFENDER TM , was tested as a neutron diagnostics device on the NX2 plasma focus (PF) device at the NIE/NTU, Singapore. The DEFENDER TM detector was recently developed and commercialised by BTI, Canada, and it is characterised by a very high sensitivity (a factor of about 30 higher than the standard detectors) to fast neutrons (energy above 100 keV). Together with its particular energy response this high sensitivity allows for the development of improved neutron diagnostics for the PF devices. The NX2 plasma focus device has the following typical operating parameters: condenser bank charging voltage: 15 kV; stored energy: 2.3 kJ; peak current: 420 kA; current rise-time: 1.35 μs; deuterium pressure: 20 mbar. During most of the experiments reported here the NX2 device was operated at 14 kV charging voltage and 20 mbar deuterium pressure. A few shots were done at voltages of 14.5 and 15 kV and the same gas pressure. The bubble detector neutron diagnostics experiments carried out on the NX2 machine involved the following measurements: 1. Relative calibration of the four detectors. The detectors were irradiated simultaneously, in identical conditions, by plasma focus neutron pulses and their neutron responses were compared.; 2. angular distribution of the neutron fluence (single shot). The distribution of the neutron fluence was measured at four angles with respect to the PF electrode axis: 0, 30, 60 and 90 deg; 3. Reproducibility of the neutron yield at high repetition rate operation. The NX2 device was operated at 1 Hz repetition rate.; 4. Bubble detector response time. The response time of the DEFENDER TM detector was tested by using the short PF neutron pulses and a high-speed video camera. The paper will present the results of these experiments and their implications for the development of neutron plasma diagnostics techniques based on the bubble detectors and their broader class of superheated

  14. A Kinematically Beamed, Low Energy Pulsed Neutron Source for Active Interrogation

    International Nuclear Information System (INIS)

    Dietrich, D.; Hagmann, C.; Kerr, P.; Nakae, L.; Rowland, M.; Snyderman, N.; Stoeffl, W.; Hamm, R.

    2004-01-01

    We are developing a new active interrogation system based on a kinematically focused low energy neutron beam. The key idea is that one of the defining characteristics of SNM (Special Nuclear Materials) is the ability for low energy or thermal neutrons to induce fission. Thus by using low energy neutrons for the interrogation source we can accomplish three goals, (1) Energy discrimination allows us to measure the prompt fast fission neutrons produced while the interrogation beam is on; (2) Neutrons with an energy of approximately 60 to 100 keV do not fission 238U and Thorium, but penetrate bulk material nearly as far as high energy neutrons do and (3) below about 100keV neutrons lose their energy by kinematical collisions rather than via the nuclear (n,2n) or (n,n') processes thus further simplifying the prompt neutron induced background. 60 keV neutrons create a low radiation dose and readily thermal capture in normal materials, thus providing a clean spectroscopic signature of the intervening materials. The kinematically beamed source also eliminates the need for heavy backward and sideway neutron shielding. We have designed and built a very compact pulsed neutron source, based on an RFQ proton accelerator and a lithium target. We are developing fast neutron detectors that are nearly insensitive to the ever-present thermal neutron and neutron capture induced gamma ray background. The detection of only a few high energy fission neutrons in time correlation with the linac pulse will be a clear indication of the presence of SNM

  15. Neutron fluence produced in medical accelerators

    International Nuclear Information System (INIS)

    Castro, R.C.; Silva, A.X. da; Crispim, V.R.

    2004-01-01

    Radiotherapy with photon and electron beams still represents the most diffused technique to control and treat tumour diseases. To increase the treatment efficiency, accelerators of higher energy are used, the increase of electron and photon energy is joined with generation of undesired fast neutron that contaminated the therapeutic beam and give a non-negligible contribution to the patient dose. In this work we have simulated with the MCNP4B code the produced neutron spectra in the interaction between the beam and the head to the accelerator and estimating the equivalent dose for neutrons by x-ray dose for aims far from the targets. (author)

  16. Monte Carlo modeling and analyses of YALINA- booster subcritical assembly Part II: pulsed neutron source

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, M.Y.A.; Rabiti, C.

    2008-01-01

    One of the most reliable experimental methods for measuring the kinetic parameters of a subcritical assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology for characterizing the kinetic parameters of a subcritical assembly using the Sjoestrand method, which allows comparing the analytical and experimental time dependent reaction rates and the reactivity measurements. In this methodology, the reaction rate, detector response, is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the fission delayed neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction is vanished. The obtained reaction rate is superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The new calculation methodology has shown an excellent agreement with the experimental results available from the YALINA-Booster facility of Belarus. The facility has been driven by a Deuterium-Deuterium or Deuterium-Tritium pulsed neutron source and the (n,p) reaction rate has been experimentally measured by a 3 He detector. The MCNP calculation has utilized the weight window and delayed neutron biasing variance reduction techniques since the detector volume is small compared to the assembly volume. Finally, this methodology was used to calculate the IAEA benchmark of the YALINA-Booster experiment

  17. Pulsed neutron well logging apparatus having means for determining background radiation

    International Nuclear Information System (INIS)

    Randall, R.R.

    1979-01-01

    A neutron generator in a well logging instrument is periodically pulsed and has an off period between pulses of 1000 microseconds. A neutron detector is gated on at intervals of 400 to 500, 550 to 650, and 700 to 800 microseconds, respectively, following the termination of each burst of fast neutrons. Circuitry is provided for determining the background radiation by the equation: B = N 1 X N 3 - N 2 2 /N 1 + N 3 - 2N 2 where B is the background, and N 1 , N 2 and N 3 are the counts observed during the three gates, respectively. Circuitry is also provided for determining the macroscopic absorption (Σ) from the equation: Σ = 1/VΔt Log [N 1 - B/N 2 - B] where V is the velocity of thermal neutrons, being a constant and Δt represents an increment of time

  18. Rietveld refinement with time-of-flight powder diffraction data from pulsed neutron sources

    International Nuclear Information System (INIS)

    David, W.I.F.; Jorgensen, J.D.

    1990-10-01

    The recent development of accelerator-based pulsed neutron sources has led to the widespread use of the time-of-flight technique for neutron powder diffraction. The properties of the pulsed source make possible unusually high resolution over a wide range of d spacings, high count rates, and the ability to collect complete data at fixed scattering angles. The peak shape and other instrument characteristics can be accurately modelled, which make Rietveld refinement possible for complex structures. In this paper we briefly review the development of the Rietveld method for time-of-flight diffraction data from pulsed neutron sources and discuss the latest developments in high resolution instrumentation and advanced Rietveld analysis methods. 50 refs., 12 figs., 14 tabs

  19. Experimental characterization of the neutron spectra generated by a high-energy clinical LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Amgarou, K., E-mail: khalil.amgarou@uab.e [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France); Lacoste, V.; Martin, A. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France)

    2011-02-11

    The production of unwanted neutrons by electron linear accelerators (LINACs) has attracted a special attention since the early 50s. The renewed interest in this topic during the last years is due mainly to the increased use of such machines in radiotherapy. Specially, in most of developing countries where many old teletherapy irradiators, based on {sup 60}Co and {sup 137}Cs radioactive sources, are being replaced with new LINAC units. The main objective of this work is to report the results of an experimental characterization of the neutron spectra generated by a high-energy clinical LINAC. Measurements were carried out, considering four irradiation configurations, by means of our recently developed passive Bonner sphere spectrometer (BSS) using pure gold activation foils as central detectors. This system offers the possibility to measure neutrons over a wide energy range (from thermal up to a few MeV) at pulsed, intense and complex mixed n-{gamma} fields. A two-step unfolding method that combines the NUBAY and MAXED codes was applied to derive the final neutron spectra as well as their associated integral quantities (in terms of total neutron fluence and ambient dose equivalent rates) and fluence-averaged energies.

  20. Digital discrimination of neutrons and γ-rays in liquid scintillators using pulse gradient analysis

    International Nuclear Information System (INIS)

    D'Mellow, B.; Aspinall, M.D.; Mackin, R.O.; Joyce, M.J.; Peyton, A.J.

    2007-01-01

    A method for the digital discrimination of neutrons and γ-rays in mixed radiation fields is described. Pulses in the time domain, arising from the interaction of photons and neutrons in a liquid scintillator, have been produced using an accepted empirical model and from experimental measurements with an americium-beryllium source. Neutrons and γ-rays have been successfully discriminated in both of these data sets in the digital domain. The digital discrimination method described in this paper is simple and exploits samples early in the life of the pulse. It is thus compatible with current embedded system technologies, offers a degree of immunity to pulse pile-up and heralds a real-time means for neutron/γ discrimination that is fundamental to many potential industrial applications

  1. Neutron irradiation effects on the mechanical properties of organic composite materials

    International Nuclear Information System (INIS)

    Egusa, S.; Kirk, M.A.; Birtcher, R.C.

    1984-01-01

    Neutron irradiations with low γ-ray flux in the Intense Pulsed Neutron Source were carried out on four kinds of cloth-filled organic composites (filler: E-glass or carbon fiber; matrix: epoxy or polyimide resin) and a unidirectional alumina fiber/epoxy composite. These composites were examined with regard to the mechanical properties at room temperature. Following irradiation at room temperature, the Young's (tensile) modulus of these composites remains practically unchanged up to a total neutron fluence of 5.0x10 18 n/cm 2 (1.4x10 18 n/cm 2 for E>0.1 MeV). The shear modulus and the ultimate strength, on the other hand, decrease significantly at this neutron fluence for the glass/epoxy and glass/polyimide composites, whereas for the other composites both properties do not degrade. This result is most likely ascribed to the radiation damage at fiber/matrix interface due to recoil particles produced by a 10 B(n,α) 7 Li reaction in the boron-containing E-glass fibers. Only for the E-glass fiber composites, in fact, the fracture propagation energy is appreciably increased by irradiation, while for the other composites the propagation energy is scarcely changed, thus confirming the significant contribution due to the 10 B reaction. As to the 5 K irradiation, degradation of the present composites was not observed up to a total neutron fluence of 1.0x10 18 n/cm 2 (7.0x10 17 n/cm 2 for E>0.1 MeV) when tested at room temperature. (orig.)

  2. The performance of neutron scattering spectrometers at a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.

    1995-01-01

    The first conclusion the author wants to draw is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons

  3. Status of the design concepts for a high fluence fast pulse reactor (HFFPR)

    International Nuclear Information System (INIS)

    Philbin, J.S.; Nelson, W.E.; Rosenstroch, B.

    1978-10-01

    The report describes progress that has been made on the design of a High Fluence Fast Pulse Reactor (HFFPR) through the end of calendar year 1977. The purpose of this study is to present design concepts for a test reactor capable of accommodating large scale reactor safety tests. These concepts for reactor safety tests are adaptations of reactor concepts developed earlier for DOE/OMA for the conduct of weapon effects tests. The preferred driver core uses fuel similar to that developed for Sandia's ACPR upgrade. It is a BeO/UO 2 fuel that is gas cooled and has a high volumetric heat capacity. The present version of the design can drive large (217) pin bundles of prototypically enriched mixed oxide fuel well beyond the fuel's boiling point. Applicability to specific reactor safety accident scenarios and subsequent design improvements will be presented in future reports on this subject

  4. Optimized Design of Spacing in Pulsed Neutron Gamma Density Logging While Drilling

    Directory of Open Access Journals (Sweden)

    ZHANG Feng;HAN Zhong-yue;WU He;HAN Fei

    2016-10-01

    Full Text Available Radioactive source, used in traditional density logging, has great impact on the environment, while the pulsed neutron source applied in the logging tool is more safety and greener. In our country, the pulsed neutron-gamma density logging technology is still in the stage of development. Optimizing the parameters of neutron-gamma density instrument is essential to improve the measuring accuracy. This paper mainly studied the effects of spacing to typical neutron-gamma density logging tool which included one D-T neutron generator and two gamma scintillation detectors. The optimization of spacing were based on measuring sensitivity and counting statistic. The short spacing from 25 to 35 cm and long spacing from 60 to 65 cm were selected as the optimal position for near and far detector respectively. The result can provide theoretical support for design and manufacture of the instrument.

  5. Extraction of neutron spectral information from Bonner-Sphere data

    CERN Document Server

    Haney, J H; Zaidins, C S

    1999-01-01

    We have extended a least-squares method of extracting neutron spectral information from Bonner-Sphere data which was previously developed by Zaidins et al. (Med. Phys. 5 (1978) 42). A pulse-height analysis with background stripping is employed which provided a more accurate count rate for each sphere. Newer response curves by Mares and Schraube (Nucl. Instr. and Meth. A 366 (1994) 461) were included for the moderating spheres and the bare detector which comprise the Bonner spectrometer system. Finally, the neutron energy spectrum of interest was divided using the philosophy of fuzzy logic into three trapezoidal regimes corresponding to slow, moderate, and fast neutrons. Spectral data was taken using a PuBe source in two different environments and the analyzed data is presented for these cases as slow, moderate, and fast neutron fluences. (author)

  6. Comparison of pressure vessel neutron fluences for the Balakovo-3 reactor with measurements and investigation of the influence of neutron cross sections and number of groups on the results

    Energy Technology Data Exchange (ETDEWEB)

    Barz, H U; Boehmer, B; Konheiser, J; Stephan, I

    1998-10-01

    The general methodical questions of experimental and theoretical determination of neutron fluences have been described in connection with the measurements and 3-D Monte Carlo calculation for the Rovno-3 reactor. The same calculation and measurement methods were applied for the Balakovo-3 reactor. In the first part, the results of the comparison for Balakovo will be given and discussed. However, for this reactor the main attention was focussed on investigations of the accuracy of the calculation. In this connection an important question is the influence of neutron data on the results. With this respect not only the source of the data but also the number of energy groups is important. (orig.)

  7. Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chengjian; Gao, Xiaoling [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Box 919-214, Mian Yang 621900 (China); Kobayashi, Makoto; Kawasaki, Kiyotaka; Uchimura, Hiromichi; Toda, Kensuke [China Academy of Engineering Physics, Box 919-1, Mian Yang 621900 (China); Kang, Chunmei; Chen, Xiaojun; Wang, Heyi; Peng, Shuming [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Box 919-214, Mian Yang 621900 (China); Wang, Xiaolin, E-mail: xlwang@caep.ac.cn [China Academy of Engineering Physics, Box 919-1, Mian Yang 621900 (China); Oya, Yasuhisa; Okuno, Kenji [Radiochemistry Research Laboratory, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka 422-8529 (Japan)

    2013-07-15

    Tritium release kinetics in lithium orthosilicate (Li{sub 4}SiO{sub 4}) ceramic pebbles irradiated with low thermal-neutron fluence was studied by out-of-pile annealing experiments. It was found that the tritium produced in Li{sub 4}SiO{sub 4} pebbles was mainly released as tritiated water vapor (HTO). The apparent desorption activation energy of tritium on the pebble surface was consistent with the diffusion activation energy of tritium in the crystal grains, indicating that tritium release was mainly controlled by diffusion process. The diffusion coefficients of tritium in the crystal grains at temperatures ranging from 450 K to 600 K were obtained by isothermal annealing tests, and the Arrhenius relation was determined to be D = 1 × 10{sup −7.0} exp (−40.3 × 10{sup 3}/RT) cm{sup 2} s{sup −1}.

  8. 4th meeting on advanced pulsed-neutron research on quantum functions in nano-scale materials

    International Nuclear Information System (INIS)

    2006-07-01

    Toward the worldwide realization of high-intensity pulsed neutron source, KEK (High Energy Accelerator Research Organization) proceeds the research by composing 6 research groups as neutron science initiation base to initiate new neutron science. The papers generalizing the researches for 2 years were presented at this meeting. KENS (Neutron Science Laboratory, KEK) shut down on March 22nd in 2006, and KEK will continue the research utilizing the pulsed neutron by using foreign facilities until the completion of J-PARC from now on. At international session in this meeting, the accomplishments and future prospects about the Japan-United Kingdom science and technology collaboration project, and about the research collaboration projects with IPNS (Intense Pulsed Neutron Source, ANL) and LANSCE (Los Alamos Neutron Science Center) were presented. Especially in the latter projects, the first accomplishment was reported under the present agreement. In addition, Meeting on structural study of proteins in aqueous solutions' and 'Meeting on hydrogen quantum atomics study' were held as satellite meetings. (J.P.N)

  9. Assay of fissionable isotopes in aqueous solution by pulsed neutron interrogation

    International Nuclear Information System (INIS)

    Campbell, P.; Gardy, E.M.; Boase, D.G.

    1978-04-01

    Non-destructive assay of uranium-235 and thorium-232 in aqueous nitric acid solutions has been accomplished by irradiation with pulses of neutrons from a 14-MeV Cockcroft-Walton neutron generator, and counting of the delayed neutrons emitted from the fissions induced. Design of the delayed neutron detector assemblies is described, together with the neutron pulse timing and counting systems. The effects of irradiation time, counting time, neutron moderation, detector design and sample geometry on the delayed neutron response from uranium-235 and 238 and thorium-232 are discussed. By using polyethylene to moderate the interrogating neutrons, solutions can be analyzed for both uranium-235 and thorium. Comparative analyses with chemical and γ-spectrometric methods show good agreement. The neutron method is rapid and is shown to be unaffected by the presence in solution of impurities such as iron, nickel, chromium, and aluminum. With the experimental equipment described, detection limits of 0.6 mg of 235 U and 9 mg of 232 Th in a sample volume of 25 mL have been achieved. Analyses of highly radioactive samples may be done easily since the measurements are not affected by the presence of large amounts of βγ radiation. Samples can be enclosed in small lead-shielded flasks during analysis to protect the analyst. The potential of the technique to on-line analysis applications is explored briefly. (author)

  10. Study of the environmental neutron spectrum at Zacatecas city

    International Nuclear Information System (INIS)

    Vega C, H.R.

    2003-01-01

    The environmental neutron spectrum has been measured at Zacatecas City in Mexico. Neutron spectrum was unfolded from count rates obtained with a multisphere neutron spectrometer with a Li I(Eu) scintillator. With the spectrum information the ambient dose equivalent and the isotropic effective dose were calculated. A model based upon the geomagnetic latitude and the altitude above sea level, that allows to estimate the neutron fluence rate is proposed, the model results are compared with total neutron fluences measured at several locations worldwide. Environmental neutron spectrum shows peaks at 1 and 100 MeV as well as a relevant amount of low energy neutrons. The neutron fluence rate was 65 ± 3 cm -2 -h -1 , producing 13.7 ± 0.6 n Sv-h -1 due to ambient dose equivalent rate and an isotropic effective dose rate of 14.1 ± 0.6 n Sv-h -1 . Neutron fluence rates predicted with the model are in agreement with those reported in the literature. (Author)

  11. Study of the environmental neutron spectrum at Zacatecas city

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R. [Universidad Autonoma de Zacatecas, Cuerpo Academico de Radiobiologia, A.P. 336, 98000 Zacatecas (Mexico)

    2003-07-01

    The environmental neutron spectrum has been measured at Zacatecas City in Mexico. Neutron spectrum was unfolded from count rates obtained with a multisphere neutron spectrometer with a Li I(Eu) scintillator. With the spectrum information the ambient dose equivalent and the isotropic effective dose were calculated. A model based upon the geomagnetic latitude and the altitude above sea level, that allows to estimate the neutron fluence rate is proposed, the model results are compared with total neutron fluences measured at several locations worldwide. Environmental neutron spectrum shows peaks at 1 and 100 MeV as well as a relevant amount of low energy neutrons. The neutron fluence rate was 65 {+-} 3 cm{sup -2}-h{sup -1}, producing 13.7 {+-} 0.6 n Sv-h{sup -1} due to ambient dose equivalent rate and an isotropic effective dose rate of 14.1 {+-} 0.6 n Sv-h{sup -1}. Neutron fluence rates predicted with the model are in agreement with those reported in the literature. (Author)

  12. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    International Nuclear Information System (INIS)

    Dighe, P.M.; Das, D.

    2015-01-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×10 4 neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors

  13. Instrument intercomparison in the pulsed neutron fieldsat the CERN HiRadMat facility

    CERN Document Server

    Aza, E; Cassell, C; Charitonidis, N; Harrouch, E; Manessi, G P; Pangallo, M; Perrin, D; Samara, E; Silari, M

    2014-01-01

    An intercomparison of the performances of active neutron detectors was carried out in pulsed neutron fi elds in the new HiRadMat facility at CERN. Five detectors were employed: four of them (two ionization chambers and two rem counters) are routinely employed in the CERN radiation monitoring system, while the fi fth is a novel instrument, called LUPIN, speci fi cally conceived for applications in pulsed neutron fi elds. The measurements were performed in the stray fi eld generated by a proton beam of very short duration with momentum of 440 GeV/c impinging on a dump. The beam intensity was steadily increased during the experiment by more than three orders of magnitude, with an H*(10) due to neutrons at the detector reference positions varying between a few nSv per burst and a few m Sv per burst, whereas the gamma contribution to the total H*(10) was negligible. The aim of the experiment was to evaluate the linearity of the detector response in extreme pulsed conditions as a function of the neutron burst in- t...

  14. Backscattering at a pulsed neutron source, the MUSICAL instrument

    International Nuclear Information System (INIS)

    Alefeld, B.

    1995-01-01

    In the first part the principles of the neutron backscattering method are described and some simple considerations about the energy resolution and the intensity are presented. A prototype of a backscattering instrument, the first Juelich instrument, is explained in some detail and a representative measurement is shown which was performed on the backscattering instrument IN10 at the ILL in Grenoble. In the second part a backscattering instrument designed for a pulsed neutron source is proposed. It is shown that a rather simple modification, which consists in the replacement of the Doppler drive of the conventional backscattering instrument by a multi silicon monochromator crystal (MUSICAL) leads to a very effective instrument, benefitting from the peak flux of the pulsed source. ((orig.))

  15. Performance of the intense pulsed neutron source accelerator system

    International Nuclear Information System (INIS)

    Potts, C.; Brumwell, F.; Rauchas, A.; Stipp, V.; Volk, G.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) facility has now been operating in a routine way for outside users since November 1, 1981. From that date through December of 1982, the accelerator system was scheduled for neutron science for 4500 hours. During this time the accelerator achieved its short-term goals by delivering about 380,000,000 pulses of beam totaling over 6 x 10 20 protons. The changes in equipment and operating practices that evolved during this period of intense running are described. The intensity related instability threshold was increased by a factor of two and the accelerator beam current has been ion source limited. Plans to increase the accelerator intensity are also described. Initial operating results with a new H - ion source are discussed

  16. Test and application of thermal neutron radiography facility at Xi'an pulsed reactor

    CERN Document Server

    Yang Jun; Zhao Xiang Feng; Wang Dao Hua

    2002-01-01

    A thermal neutron radiography facility at Xi'an Pulsed Reactor is described as well as its characteristics and application. The experiment results show the inherent unsharpness of BAS ND is 0.15 mm. The efficient thermal neutron n/gamma ratio is lower in not only steady state configuration but also pulsing state configuration and it is improved using Pb filter

  17. ASPUN: design for an Argonne super-intense pulsed neutron source

    International Nuclear Information System (INIS)

    Khoe, T.K.; Kustom, R.L.

    1983-01-01

    Argonne pioneered the pulsed spallation neutron source with the ZING-P and IPNS-I concepts. IPNS-I is now a reliable and actively used source for pulsed spallation neutrons. The accelerator is a 500-MeV, 8 to 9 μa, 30-Hz rapid-cycling proton synchrotron. Other proton spallation sources are now in operation or in construction. These include KENS-I at the National Laboratory for High Energy Physics in Japan, the WNR/PSR at Los Alamos National Laboratory in the USA, and the SNS at the Rutherford Appleton Laboratory in England. Newer and bolder concepts are being developed for more-intense pulsed spallation neutron sources. These include SNQ at the KFA Laboratory in Juelich, Germany, ASTOR at the Swiss Institute for Nuclear Physics in Switzerland, and ASPUN, the Argonne concept. ASPUN is based on the Fixed-Field Alternating Gradient concept. The design goal is to provide a time-averaged beam of 3.5 ma at 1100 MeV on a spallation target in intense bursts, 100 to 200 nanoseconds long, at a repetition rate of no more than 60 to 85 Hz

  18. Pulsed neutron determination of anisotropic diffusion constants in multi-layered slabs

    International Nuclear Information System (INIS)

    Sri Ram, K.

    1978-01-01

    Anisotropic neutron diffusion parameters for graphite and plexiglas slab assemblies were calculated using one-dimensional discrete ordinates code ANISN, and also Case's eigenfunction expansion technique as suggested by Leonard. These calculated values were checked with the pulsed neutron experimental results as well as simple diffusion theory calculations of Spinrad. Relatively little experimental work has been done with heterogeneous assemblies which do not contain voids. The present comparison shows that the experimental results agree well with transport theory calculations. It appears from the results and inter-comparison of this work in simple geometries, that the pulsed neutron method can yield accurate experimental anisotropic diffusion constants, and can therefore be applied to more complicated geometries which may be difficult to calculate. (author)

  19. The efficient neutron-gamma pulse shape discrimination with small active volume scintillation detector

    International Nuclear Information System (INIS)

    Phan Van Chuan; Nguyen Duc Hoa; Nguyen Xuan Hai; Nguyen Ngoc Anh; Tuong Thi Thu Huong; Nguyen Nhi Dien; Pham Dinh Khang

    2016-01-01

    A small detector with EJ-301 liquid scintillation was manufactured for the study on the neutron-gamma pulse shape discrimination. In this research, four algorithms, including Threshold crossing time (TCT), Pulse gradient analysis (PGA), Charge comparison method (CCM), and Correlation pattern recognition (CPR) were developed and compared in terms of their discrimination effectiveness between neutrons and gamma rays. The figures of merits (FOMs) obtained for 100 ÷ 2000 keVee (keV energy electron equivalent) neutron energy range show the charge comparison method was the most efficient of the four algorithms. (author)

  20. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, A.A., E-mail: a.a.ivanova@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Zubarev, P.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Ivanenko, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Khilchenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Kotelnikov, A.I. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Polosatkin, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Puryga, E.A.; Shvyrev, V.G. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Sulyaev, Yu.S. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2016-08-11

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL–3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL–3 and GDT devices. This analyzer was tested and calibrated with the help of {sup 137}Cs and {sup 252}Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented. - Highlights: • Electronic equipment for measurement of fast neutron flux with stilbene scintillator is presented. • FPGA-implemented digital pulse-shape discrimination algorithm by charge comparison method is shown. • Calibration of analyzer was carried out with {sup 137}Cs and {sup 252}Cf. • Figures of Merit (FOM) values for energy cuts from 1/8 Cs to 2 Cs are from 1.264 to 2.34 respectively.

  1. The vessel fluence; Fluence cuve

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This book presents the proceedings of the technical meeting on the reactors vessels fluence. They are grouped in eight sessions: the industrial context and the stakes of the vessels control; the organization and the methodology for the fluence computation; the concerned physical properties; the reference computation methods; the fluence monitoring in an industrial context; vessels monitoring under irradiation; others methods in the world; the research and development programs. (A.L.B.)

  2. Evaluation of the fluence to dose conversion coefficients for high energy neutrons using a voxel phantom coupled with the GEANT4 code

    CERN Document Server

    Paganini, S

    2005-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from Galactic cosmic radiation. Crews of future high-speed commercial flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the male adult voxels phantom MAX, developed in the Nuclear Energy Department of Pernambuco Federal University in Brazil, has been coupled with the Monte Carlo simulation code GEANT4. This toolkit, distributed and upgraded from the international scientific community of CERN/Switzerland, simulates thermal to ultrahigh energy neutrons transport and interactions in the matter. The high energy neutrons are pointed as the component that contribute about 70% of the neutron effective dose that represent the 35% to 60% total dose at aircraft altitude. In this research calculations of conversion coefficients from fluence to effective dose are performed for neutrons of energies from 100 MeV ...

  3. Radiation clusters formation and evolution in FCC metals at low-temperature neutron irradiation up to small damage fluences

    International Nuclear Information System (INIS)

    Kozlov, A.V.; Shcherbakov, E.N.; Asiptsov, O.I.; Skryabin, L.A.; Portnykh, I.A.

    2006-01-01

    Methods of transmission electron microscopy and precision size measurements are used to study the formation of radiation-induced clusters in FCC metals (Ni, Pt, austenitic steels EhI-844, ChS-68) irradiated with fast neutron (E>0.1 MeV) fluences from 7 x 10 21 up to 3.5 x 10 22 m -2 at a temperature of 310 K. Using statistical thermodynamic methods the process of radiation clusters formation and evolution is described quantitatively. The change in the concentration of point defects under irradiation as well as size variations of irradiated specimens on annealing are calculated [ru

  4. Performance of a reflectometer at continuous wave and pulsed neutron sources

    International Nuclear Information System (INIS)

    Fitzsimmons, M.R.

    1995-01-01

    The Monte-Carlo simulations presented here involve simulations of reflectivity measurements of one sample using a reflectometer of traditional geometry at different neutron sources. The same reflectometer was used in all simulations. Only the characteristics of the neutron source, and the technique used to measure neutron wavelength were changed. In the case of the CW simulation, a monochromating crystal was used to select a nearly monochromatic beam (MB) from the neutron spectrum. In the simulations of the pulse sources, the time needed to traverse a fixed distance was measured, from which neutron wavelength is deduced

  5. Status of the intense pulsed neutron source

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Brown, B.S.; Kustom, R.L.; Lander, G.H.; Potts, C.W.; Schulke, A.W.; Wuestefeld, G.

    1985-01-01

    Fortunately in spite of some premature reports of its impending demise, IPNS has passed the fourth anniversary of the first delivery of protons to the targets (May 5, 1981) and is approaching the fourth anniversary of its operation as a scattering facility (August 4, 1981). On June 10, 1984, the RCS delivered its one billionth pulse to the IPNS target - the total number of protons delivered to the targets amounted then to 75 stp cm 3 of H 2 gas. Since startup IPNS has improved steadily in terms of the performance of the Rapid Cycling Synchrotron, the source and its moderators and the scattering instruments, and a substantial and productive user program has evolved. This report summarizes the current status of the Intense Pulsed Neutron Source at Argonne National Laboratory. We include reference to recent accelerator operating experience, neutron facility operating experience, improvements to these systems, design work on the ASPUN high-current facility, booster target design, the new solid methane moderator, characterization of the room temperature moderators, and provide some examples of recent results from several of the spectrometers

  6. Rapid response and wide range neutronic power measuring systems for fast pulsed reactors

    International Nuclear Information System (INIS)

    Sumita, Kenji; Iida, Toshiyuki; Wakayama, Naoaki.

    1976-01-01

    This paper summarizes our investigation on design principles of the rapid, stable and wide range neutronic power measuring system for fast pulsed reactors. The picoammeter, the logarithmic amplifier, the reactivity meter and the neutron current chamber are the items of investigation. In order to get a rapid response, the method of compensation for the stray capacitance of the feedback circuits and the capacitance of signal cables is applied to the picoammeter, the logarithmic amplifier and the reactivity meter with consideration for the stability margin of a whole detecting system. The response of an ionization current chamber and the method for compensating the ion component of the chamber output to get optimum responses high pass filters are investigated. Statistical fluctuations of the current chamber output are also considered in those works. The optimum thickness of the surrounding moderator of the neutron detector is also discussed from the viewpoint of the pulse shape deformation and the neutron sensitivity increase. The experimental results are reported, which were observed in the pulse operations of the one shot fast pulsed reactor ''YAYOI'' and the one shot TRIGA ''NSRR'' with the measuring systems using those principles. (auth.)

  7. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    Directory of Open Access Journals (Sweden)

    R.P. Kelley

    2015-03-01

    Full Text Available An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the 4He detector. A further understanding of this mechanism in the 4He detector will advance the use of this system as a neutron spectrometer. For 252Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a 252Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  8. Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence

    Science.gov (United States)

    Farid, N.; Dasgupta, P.; O’Connor, G. M.

    2018-04-01

    The onset and evolution of laser induced periodic surface structures (LIPSS) is of key importance to obtain clean ablated features on indium tin oxide (ITO) thin films at low fluences. The evolution of subwavelength periodic nanostructures on a 175 nm thick ITO film, using 10 ps laser pulses at a wavelength of 1032 nm, operating at 400 kHz, is investigated. Initially nanoblisters are observed when a single pulse is applied below the damage threshold fluence (0.45 J cm‑2) the size and distribution of nanoblisters are found to depend on fluence. Finite difference time domain (FDTD) simulations support the hypothesis that conductive nanoblisters can enhance the local intensity of the applied electromagnetic field. The LIPSS are observed to evolve from regions where the electric field enhancement has occurred; LIPSS has a perpendicular orientation relative to the laser polarization for a small number (5) pulses, the orientation of the periodic structures appears to rotate and evolve to become aligned in parallel with the laser polarization at approximately the same periodicity. These orientation effects are not observed at higher fluence—due to the absence of the nanoblister-like structures; this apparent rotation is interpreted to be due to stress-induced fragmentation of the LIPSS structure. The application of subsequent pulses leads to clean ablation. LIPSS are further modified into features of a shorter period when laser scanning is used. Results provide evidence that the formation of conductive nanoblisters leads to the enhancement of the applied electromagnetic field and thereby can be used to precisely control laser ablation on ITO thin films.

  9. The potential for biological structure determination with pulsed neutrons

    International Nuclear Information System (INIS)

    Wilson, C.C.

    1994-01-01

    The potential of pulsed neutron diffraction in structural determination of biological materials is discussed. The problems and potential solutions in this area are outlined, with reference to both current and future sources and instrumentation. The importance of developing instrumentation on pulsed sources in emphasized, with reference to the likelihood of future expansion in this area. The possibilities and limitations of single crystal, fiber and powder diffraction in this area are assessed

  10. The potential for biological structure determination with pulsed neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.C. [CLRC Rutherford Appleton Laboratory, Chilton Didcot Oxon (United Kingdom)

    1994-12-31

    The potential of pulsed neutron diffraction in structural determination of biological materials is discussed. The problems and potential solutions in this area are outlined, with reference to both current and future sources and instrumentation. The importance of developing instrumentation on pulsed sources in emphasized, with reference to the likelihood of future expansion in this area. The possibilities and limitations of single crystal, fiber and powder diffraction in this area are assessed.

  11. Benchmarking of multigroup neutron cross sections libraries on neutron transmission through WWER-440 vessel

    International Nuclear Information System (INIS)

    Ilieva, K.; Belousov, S.; Apostolov, T.

    1998-01-01

    The verification of calculated neutron fluence onto the WWER-440/230 pressure vessel is very topical task in particular referring that some of this type of reactors have been operated the major part of its design lifetime. Since the induced activity from the neutron irradiation onto the elements is a simple response of neutron flux the neutron fluence verification usually is done using the measured activity of radionuclides produced during reactor operation. Calculational and experimental results of 54 Mn induced activity of scraps from inner wall of Unit 1 reactor pressure vessel after 18th cycle and detectors irradiated behind the vessel during the 18th cycle of Unit 1 at Kozloduy NPP as well as neutron flux attenuation through the WWER-440/230 pressure vessel are presented. Neutron cross sections libraries generated on the base of ENDF/B-IV and ENDF/B-VI have been used in the calculations. The comparative analysis of evaluated activities and attenuation coefficient demonstrates the better reliability of the neutron fluence calculations by the libraries based on ENDF/B-VI than by ones on ENDF/B-IV. The extreme rarity of data for the activity of scraps from the WWER-440 reactor vessel and its combination with the data for the detectors irradiated behind the vessel makes them especially attractive for verification of calculational methods of neutron fluence onto the WWER-440 vessel with dummy cassettes loading. (author)

  12. Device for Writing the Time Tail from Spallation Neutron Pulses

    International Nuclear Information System (INIS)

    Langan, P.; Schoenborn, Benno P.; Daemen, L.L.

    2001-01-01

    Recent work at Los Alamos Neutron Science Center (LANSCE), has shown that there are large gains in neutron beam intensity to be made by using coupled moderators at spallation neutron sources. Most of these gains result from broadening the pulse-width in time. However the accompanying longer exponential tail at large emission times can be a problem in that it introduces relatively large beam-related backgrounds at high resolutions. We have designed a device that can reshape the moderated neutron beam by cutting the time-tail so that a sharp time resolution can be re-established without a significant loss in intensity. In this work the basic principles behind the tail-cutter and some initial results of Monte Carlo simulations are described. Unwanted neutrons in the long time-tail are diffracted out of the transmitted neutron beam by a nested stack of aperiodic multi-layers, rocking at the same frequency as the source. Nested aperiodic multi-layers have recently been used at X-ray sources and as band-pass filters in quasi-Laue neutron experiments at reactor neutron sources. Optical devices that rock in synchronization with a pulsed neutron beam are relatively new but are already under construction at LANSCE. The tail-cutter described here is a novel concept that uses existing multi-layer technology in a new way for spallation neutrons. Coupled moderators in combination with beam shaping devices offer the means of increasing flux whilst maintaining a sharp time distribution. A prototype device is being constructed for the protein crystallography station at LANSCE. The protein crystallography station incorporates a water moderator that has been judiciously coupled in order to increase the flux over neutron energies that are important to structural biology (3-80meV). This development in moderator design is particularly important because protein crystallography is flux limited and because conventional ambient water and cold hydrogen moderators do not provide relatively

  13. Pulsed neutron intensity from rectangular shaped light water moderator with fast-neutron reflector

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatsu

    1982-01-01

    With a view to enhancing the thermal-neutron intensity obtained from a pulsed neutron source, an experimental study has been made to determine the optimum size of a rectangular shaped light water moderator provided with fast neutron reflector of beryllium oxide or graphite, and decoupled thermal-neutronically by means of Cd sheet. The optimum dimensions for the moderator are derived for the neutron emission surface and the thickn ess, for the cases in which the neutron-producing target is placed beneath the moderator (''wing geometry'') or immediately behind the moderator (''slab geometry''). The major conclusions drawn from the experimental results are as follows. The presence of the Cd decoupler inserted between the moderator and reflector prevent the enhancement of thermal-neutron emission time gained by the provision of reflector. With a graphite reflector about 14 cm thick, (a) the optimum area of emission surface would be 25 x 25 cm 2 for wing geometry and still larger for slab geometry, and (b) the optimum moderator thickness would be 5.5 cm for slab geometry and 8.5 cm for wing geometry. It is thus concluded that a higher neutron emission intensity can be obtained with slab than with wing geometry provided that a large emission surface can be adopted for the moderator. (author)

  14. Time pulse profiles on a new data acquisition system for neutron time of flight diffractometer

    International Nuclear Information System (INIS)

    Venegas, R.; Baeza, L.; Navarro, G.

    1999-01-01

    A new differential acquisition system was built for a neutron diffuse scattering instrument. We analyze the time, space and velocity behavior of neutron pulse profiles, which can be obtained in a neutron diffuse scattering system of this nature, consisting of a black disc slit chopper and a circular detector bank, in order to design accurate scattering data analyzing methods. Computed direct pulse time spectra and measured spectra show satisfactory agreement. (author)

  15. Catalogue of neutron spectra

    International Nuclear Information System (INIS)

    Buxerolle, M.; Massoutie, M.; Kurdjian, J.

    1987-09-01

    Neutron dosimetry problems have arisen as a result of developments in the applications of nuclear energy. The largest number of possible irradiation situations has been collected: they are presented in the form of a compilation of 44 neutron spectra. Diagrams show the variations of energy fluence and energy fluence weighted by the dose equivalent/fluence conversion factor, with the logarithm of the corresponding energy. The equivalent dose distributions are presented as percentages for the following energy bins: 0.01 eV/0.5 eV/50 keV/1 MeV/5 MeV/15 MeV. The dose equivalent, the mean energy and the effective energy for the dose equivalent for 1 neutron cm -2 are also given [fr

  16. The effect of the fluence on the properties of La-Ca-Mn-O thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Canulescu, S.; Lippert, Th.; Wokaun, A.; Doebeli, M.; Weidenkaff, A.; Robert, R.; Logvinovich, D.

    2007-01-01

    Thin films of La 0.6 Ca 0.4 MnO 3-δ were deposited on SrTiO 3 (100) by PRCLA (Pulsed Reactive Crossed-Beam Laser Ablation). The dependence of the structural and transport properties of the films on the laser fluence and different target to substrate distances during the growth are studied. Both parameters have a direct influence on the films thickness and velocity of the ions arriving at the substrate, which influence the film properties directly. The surface roughness of the La 0.6 Ca 0.4 MnO 3-δ thin films is depending mainly on the laser fluence and less on the target-substrate distance. Lower laser fluences and therefore lower growth rates yield film with lower roughness, i.e. in the range of 0.2 nm. The electronic transport measurements show a decrease of the transition temperature from metal to semiconductor with an increase of the target to substrate distance. This is related to an increase of the films thickness and therefore decrease of the strain in the films due to the lattice mismatch with the substrate. The magnetoresistance values are also strongly affected by the tensile strain, i.e. they increase for higher strained films

  17. Verification of neutron irradiation on S/G tube materials

    International Nuclear Information System (INIS)

    Kang, Byoung Hwi; Lee, S. K.; Jang, D. Y.; Jo, K. H.

    2010-12-01

    The fluence monitors were fabricated with metal wires of the purity ≥ 99.9%, whose dimensions were 0.1mm diameter, about 3mm length, and around 150-200 μg mass range. Three wire samples (Fe, Ni, Ti) were prepared for one irradiation aluminum capsule. Five capsules were irradiated in the OR5 hole of the HANARO reactor at 30 MW power for about 25 days. The reaction rates were calculated by using the measured radiation activity data, and then neutron fluence were obtained from the reaction rates and the weighted neutron cross section with calculated neutron spectrum at the fluence monitor position. The measured neutron fluences were compared to the calculated ones. (Errors ≤ 35%)

  18. Pulsed neutron generator system for astrobiological and geochemical exploration of planetary bodies

    International Nuclear Information System (INIS)

    Akkurt, Hatice; Groves, Joel L.; Trombka, Jacob; Starr, Richard; Evans, Larry; Floyd, Samuel; Hoover, Richard; Lim, Lucy; McClanahan, Timothy; James, Ralph; McCoy, Timothy; Schweitzer, Jeffrey

    2005-01-01

    A pulsed neutron/gamma-ray detection system for use on rovers to survey the elemental concentrations of Martian and Lunar surface and subsurface materials is evaluated. A robotic survey system combining a pulsed neutron generator (PNG) and detectors (gamma ray and neutron) can measure the major constituents to a depth of about 30 cm. Scanning mode measurements can give the major elemental concentrations while the rover is moving; analyzing mode measurements can give a detailed elemental analysis of the adjacent material when the rover is stationary. A detailed map of the subsurface elemental concentrations will provide invaluable information relevant to some of the most fundamental astrobiological questions including the presence of water, biogenic activity, life habitability and deposition processes

  19. Method of analysis to determine subcritical reactivity from the pulsed neutron experiment

    International Nuclear Information System (INIS)

    Parks, P.B.

    1975-06-01

    The published methods for the deduction of reactivity from pulsed neutron experiments on subcritical reactors are reviewed. Each method is categorized as inherently yielding a result that is either spatially independent or spatially dependent. The spatially independent results are formally identical with the static reactivity; the result does not depend, in principle, on the location of either the pulsed neutron source or the neutron detector during data collection. The spatially dependent results only approximate the static reactivity; the results are affected, in varying degrees, by the locations of the source and detector. Among the techniques yielding spatially independent results are the Space-Time method of Parks and Stewart and the Inhour method of Preskitt et al. Spatially dependent results are obtained with the Sjoestrand, Gozani, and Garelis-Russell methods which are examined with and without the kinetic distortion corrections given by Becker and Quisenberry. Intercomparisons of all methods are made with reference to pulsed neutron experiments on both unreflected and reflected reactors. Recommendations are made concerning the best choice of method under the various experimental conditions that are likely to be encountered. 14 references. (U.S.)

  20. Study of two-zone reactor system using a pulsed neutron technique

    Energy Technology Data Exchange (ETDEWEB)

    Shishin, B P; Platovskikh, Yu A; Didejkin, T S

    1977-05-01

    Theoretical and experimental investigations of a neutron flux time dependence after a sport fast neutron pulse in a reactor core - neutron reflector multiplying system have been conducted. A correlation between eigenvalues governing neutron flux decrease at t..-->..infinity for the two-zone system and eigenvalues for each zone has been established in terms of the one-group diffusion approximation. Experiments have been performed in an experimental subcritical assembly comprising a cylindrical uranium core surrounded by a radial water reflector with different boric acid concentrations.

  1. The Real-time Frequency Spectrum Analysis of Neutron Pulse Signal Series

    International Nuclear Information System (INIS)

    Tang Yuelin; Ren Yong; Wei Biao; Feng Peng; Mi Deling; Pan Yingjun; Li Jiansheng; Ye Cenming

    2009-01-01

    The frequency spectrum analysis of neutron pulse signal is a very important method in nuclear stochastic signal processing Focused on the special '0' and '1' of neutron pulse signal series, this paper proposes new rotation-table and realizes a real-time frequency spectrum algorithm under 1G Hz sample rate based on PC with add, address and SSE. The numerical experimental results show that under the count rate of 3X10 6 s -1 , this algorithm is superior to FFTW in time-consumption and can meet the real-time requirement of frequency spectrum analysis. (authors)

  2. Small-angle neutron scattering at pulsed spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P. Jr.

    1990-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical, and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments are described, and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows a more optimized collimation system. Data acquisition requirements at a pulsed source are more severe, requiring large, fast histogramming memories. Data reduction is also more complex, as all wave length-dependent and angle-dependent backgrounds and non-linearities must be accounted for before data can be transformed to intensity vs Q. A comparison is shown between the Los Alamos pulsed instrument and D-11 (Institute Laue-Langevin), and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive at moderate Q and may be faster when a wide range of Q is required. In principle, a user should choose which facility to use on the basis of optimizing the experiment; in practice the tradeoffs are not severe and the choice is usually made on the basis of availability

  3. Evaluation of dynamic elasticity module in samples of Portland (type 1) cement paste exposed to neutronic irradiation

    International Nuclear Information System (INIS)

    Rosa Junior, A.A.; Lucki, G.

    1986-01-01

    The fast neutron radiation effects and temperature on Portland cement are studied. The Dynamic Elasticity Module (Ed) in samples of Portland cement paste was evaluated. Ultrassonic technics were applied (resonance frequency and pulse velocity). The samples were irradiated with fast neutrons to fluence of 7,2 x 10 18 n/cm 2 (E approx. 1 MeV), at temperature of 120 + - 5 0 C, due to gamma heating. This temperature was simulated in laboratory in a microwave oven. (Author) [pt

  4. Pulsed neutron measurement of single and two-phase liquid flow

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    Use of radioactive tracers for flow velocity measurements is well developed and documented. Measurement techniques involving pulsed sources of fast (14 MeV) neutrons for in-situ production of tracers can be considered as extensions of the old methods. Improvements offered by these Pulsed Neutron Activation (PNA) techniques over conventional radioisotope techniques are (1) non-intrusion into the system, (2) easier introduction and better mixing of the tracer, and (3) no requirement to handle large amounts of relatively long lived radioactive materials. Just as in conventional tracer techniques, flow velocity measurements by PNA methods can be based on the transit-time or the total-count method. A very significant difference of the PNA technique from conventional methods is that the induced activity is proportional to the density of the fluid, and that PNA techniques can be used for density measurements (of two-phase flows) in addition to flow velocity measurement. Original equations were derived that relate experimental data to the mass flow velocity and the average density. The accuracy of these equations is not effected by the flow regime. Experimental results are presented for tests performed on liquid sodium loops, on air--water loops, on the EBR-II reactor and on the LOFT reactor. Current instrumentation development programs (detectors, pulsed neutron sources) are discussed

  5. Improved fission neutron energy discrimination with {sup 4}He detectors through pulse filtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting, E-mail: ting.zhu@ufl.edu [University of Florida, Gainesville, FL (United States); Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit [University of Florida, Gainesville, FL (United States); Chandra, Rico [Arktis Radiation Detectors Ltd., Räffelstrasse 11, Zürich (Switzerland); Kiff, Scott [Sandia National Laboratories, CA (United States); Chung, Heejun [Korean Institute for Nuclear Nonproliferation and Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Gainesville, FL (United States)

    2017-03-11

    This paper presents experimental and computational techniques implemented for {sup 4}He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since {sup 4}He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the {sup 4}He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with {sup 252}Cf spontaneous fission neutrons. Given the {sup 4}He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a {sup 4}He fast neutron detection system.

  6. Baseline distortion effect on gamma-ray pulse-height spectra in neutron capture experiments

    International Nuclear Information System (INIS)

    Laptev, A.; Harada, H.; Nakamura, S.; Hori, J.; Igashira, M.; Ohsaki, T.; Ohgama, K.

    2005-01-01

    A baseline distortion effect due to gamma-flash at neutron time-of-flight measurement using a pulse neutron source has been investigated. Pulses from C 6 D 6 detectors accumulated by flash-ADC were processed with both standard analog-to-digital converter (ADC) and flash-ADC operational modes. A correction factor of gamma-ray yields, due to baseline shift, was quantitatively obtained by comparing the pulse height spectra of the two data-taking modes. The magnitude of the correction factor depends on the time after gamma-flash and has complex time dependence with a changing sign

  7. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  8. Pulsed neutron source cold moderators --- concepts, design and engineering

    International Nuclear Information System (INIS)

    Bauer, Guenter S.

    1997-01-01

    Moderator design for pulsed neutron sources is becoming more and more an interface area between source designers and instrument designers. Although there exists a high degree of flexibility, there are also physical and technical limitations. This paper aims at pointing out these limitations and examining ways to extend the current state of moderator technology in order to make the next generation neutron sources even more versatile and flexible tools for science in accordance with the users' requirements. (auth)

  9. Structure analysis of liquids and disordered materials using pulsed neutron diffraction and total scattering

    International Nuclear Information System (INIS)

    Suzuya, Kentaro

    2011-01-01

    Neutron diffraction·total scattering at pulsed neutron source is a powerful method to analyze the complex structure of disordered materials: liquids, glasses, amorphous materials and disordered crystals. The basic idea of the structure of disordered materials, the fundamental diffraction theory for disordered materials, and structure analysis of disordered materials using pulsed neutron diffraction·total scattering technique (TOF method) are described in detail. In addition, the precise information of the world highest class J-PARC MLF spallation neutron source and typical J-PARC neutron total scattering instrument NOVA are also given. Recent structural modelling methods of disordered materials such like reverse Monte Carlo (RMC) simulation method is briefly described using an example of the analysis of a typical disordered material silica glass. (author)

  10. Single- and multi-pulse femtosecond laser ablation of optical filter materials

    International Nuclear Information System (INIS)

    Krueger, J.; Lenzner, M.; Martin, S.; Lenner, M.; Spielmann, C.; Fiedler, A.; Kautek, W.

    2003-01-01

    Ablation experiments employing Ti:sapphire laser pulses with durations from 30 to 340 fs (centre wavelength 800 nm, repetition rate 1 kHz) were performed in air. Absorbing filters (Schott BG18 and BG36) served as targets. The direct focusing technique was used under single- and multi-pulse irradiation conditions. Ablation threshold fluences were determined from a semi-logarithmic plot of the ablation crater diameter versus laser fluence. The threshold fluence decreases for a shorter pulse duration and an increasing number of pulses. The multi-pulse ablation threshold fluences are similar to those of undoped glass material (∼1 J cm -2 ). That means that the multi-pulse ablation threshold is independent on the doping level of the filters. For more than 100 pulses per spot and all pulse durations applied, the threshold fluence is practically constant. This leads to technically relevant ablation threshold values

  11. Use of a pulsed neutron generator for in vivo measurement of body carbon

    International Nuclear Information System (INIS)

    Kehayias, J.J.; Ellis, K.J.; Cohn, S.H.; Yasumura, S.

    1986-01-01

    The measurement of total body fat is of importance in studies of nutritional assessment, dietary regimens, and for the management of obesity. In the past, fat has been determined either by anthropometric methods, which introduce high uncertainties, or by model-dependent estimation of fat-free tissue. The validity, however, of the different models in disease is questionable. Total body carbon measurements provide a more direct evaluation of body fat both in normal subjects and in patients. The authors present here a facility for carbon measurements without the use of a major accelerator. The same facility can be used for the measurement of other major body elements and for the evaluation of the body's compartments. Carbon is measured in vivo through neutron inelastic scattering, by detecting the 4.44 MeV gamma rays. A miniature (10 cm long) 14 MeV D-T neutron generator is used. The short half-life of the 4.44 MeV state of carbon requires detection of the gamma rays simultaneously with the 10 μs neutron pulse. Generators with low pulsing rate were found inappropriate for carbon measurement because of their low duty-cycle (high neutron output during pulse). The detection system consists of NaI(T1) detectors and fast electronics for handling the high even rate during the neutron pulse. A description of the facility and an evaluation of the technique will be presented

  12. Biphasic Fluence-Response Curves for Phytochrome-Mediated Kalanchoë Seed Germination 1

    Science.gov (United States)

    Rethy, Roger; Dedonder, Andrée; De Petter, Edwin; Van Wiemeersch, Luc; Fredericq, Henri; De Greef, Jan; Steyaert, Herman; Stevens, Hilde

    1987-01-01

    The fluence-response curves for the effect of two red pulses separated by 24 hours on the germination of Kalanchoe blossfeldiana Poelln. cv Vesuv seeds, incubated on gibberellic acid (GA3) are biphasic for suboptimal concentrations. The response in the low fluence range corresponds with a classical red/far-red reversible phytochrome mediated reaction. GA3 induces an additional response in the very low fluence range, which is also phytochrome mediated. The sensitivity to phytochrome-far-red absorbing form (Pfr), however, is increased about 20,000-fold, so that even far-red fluences become saturating. Both in the very low and low fluence response range, the maximal responses induced by saturating fluences are modulated by the GA3 concentration. GA3 having no direct influence on the phytochrome phototransformations, alters the Pfr requirement and determines the responding seed population fraction in the very low and low fluence range. The effet of GA3 appears to be on the transduction chain of the phytochrome signal. PMID:16665187

  13. Absolute measurement of thermal neutron fluence and its application for fission track dating

    International Nuclear Information System (INIS)

    Ganzawa, Yoshihiro; Honda, Teruyuki; Nozaki, Tetsuya.

    1988-01-01

    The absolute measurements of thermal neutron fluence for fission track dating have been developed after the proceeding results of Honda et al. (1987). The 2,200 m/sec activation cross section of 197 Au (98.8 barn) is corrected to 87.4 barn (σa) by the three factors of the neutron temperature, Maxwellian distribution of thermal neutrons and non 1/v correction factor for the above absolute measurement. The calibrated factor (B th ) of standard glasses (SRM613, SRM962a, CN-1 and CN-2) and zeta-a (ζa) values for fission track dating are determined on the basis of these experimental results. The values of B th , (7.47 ± 0.29) x 10 9 for SRM613, (7.43 ± 0.34) x 10 9 for SRM962a, (2.50 ± 0.06) x 10 9 for CN-1 and (2.74 ± 0.06) x 10 9 for CN-2 closely agree with those reported previously by Honda et al. (1987). Further, the ζa values of 392.3 ± 16.5 for SRM962a and SRM613, 131.4 ± 3.1 for CN-1 and 144.1 ± 3.3 for CN-2 calculated from B th , effective thermal neutron fission cross-section σf (497.4 barn), isotopic abundance ratio 235 U/ 239 U, I (7.2527 x 10 -3 ) and spontaneous fission decay constant of 238 U, λ f (6.85 x 10 -17 a -7 ) show close agreement with ζ b values (392.5 ± 10.0, 131.6 ± 3.3, 140.1 ± 3.5) derived from the absolute age of Fish Canyon Tuff (27.9 ± 0.7 Ma) respectively. The fission track dating of zircons separated from Oligocene-Miocene tuff distributed in Eastern Hokkaido have been carried out by the external detector method using ζ a . The obtained ages are 28.6 ± 0.7 Ma (1 - 2) and 23.3 ± 0.7 Ma (3 - 2). These results agree well with the geologic age supported from Ashoro Fossil Fauna, K-Ar ages of volcanic rocks and stratigraphy in this area. (author)

  14. Pulsed neutron method for diffusion, slowing down, and reactivity measurements

    International Nuclear Information System (INIS)

    Sjoestrand, N.G.

    1985-01-01

    An outline is given on the principles of the pulsed neutron method for the determination of thermal neutron diffusion parameters, for slowing-down time measurements, and for reactivity determinations. The historical development is sketched from the breakthrough in the middle of the nineteen fifties and the usefulness and limitations of the method are discussed. The importance for the present understanding of neutron slowing-down, thermalization and diffusion are point out. Examples are given of its recent use for e.g. absorption cross section measurements and for the study of the properties of heterogeneous systems

  15. Assessment of the effects of neutron fluence on Swedish nuclear pressure vessels

    International Nuclear Information System (INIS)

    Rao, S.

    1980-11-01

    Nuclear pressure vessels are subject to neutron irradiation during service causing embrittlement. This is one important factor in the overall problem of reactor vessel integrity. At present the irradiation effects are mainly assessed by the Charpy V-notch test. Two measures of embrittlement are defined: the increase of the ductile/brittle transition temperature and the decrease in the upper-shelf energy. The object of the present work is to assess these changes for the Swedish nuclear pressure vessels. On the basis of data from irradiations carried out in other countries and Swedish surveillance programmes, the expected end of life embrittlement is estimated for Swedish vessels. The results show that the embrittlement of most reactor vessels is expected to be quite small. Oskarshamn 1 and PWR-vessels, however, will probably show moderate changes, the former due to the higher copper content, and the latter due to the high end of life fluences. Some of the vessel materials which exhibit marginal properties in the upper-shelf energy, as measured by the Charpy V-notch impact test, are identified. It is recommended that fracture mechanics analyses be applied in these cases. (author)

  16. Radiation annealing mechanisms of low-alloy reactor pressure vessel steels dependent on irradiation temperature and neutron fluence

    International Nuclear Information System (INIS)

    Pachur, D.

    1982-01-01

    Heat treatment after irradiation of reactor pressure vessel steels showed annealing of irradiation embrittlement. Depending on the irradiation temperature, the embrittlement started to anneal at about 220 0 C and was completely annealed at 500 0 C with 4 h of annealing time. The annealing behavior was normally measured in terms of the Vickers hardness increase produced by irradiation relative to the initial hardness as a function of the annealing temperature. Annealing results of other mechanical properties correspond to hardness results. During annealing, various recovery mechanisms occur in different temperature ranges. These are characterized by activation energies from 1.5 to 2.1 eV. The individual mechanisms were determined by the different time dependencies at various temperatures. The relative contributions of the mechanisms showed a neutron fluence dependence, with the lower activation energy mechanisms being predominant at low fluence and vice versa. In the temperature range where partial annealing of a mechanism took place during irradiation, an increase in activation energy was observed. Trend curves for the increase in transition temperature with irradiation, for the relative increase of Vickers hardness and yield strength, and for the relative decrease of Charpy-V upper shelf energy are interpreted by the behavior of different mechanisms

  17. Study and development of new dosemeters for thermal neutrons; Estudio y desarrollo de nuevos dosimetros para neutrones termicos

    Energy Technology Data Exchange (ETDEWEB)

    Urena N, F

    1998-12-31

    An alanine-boron compound, alanine hydroborate, was synthesized and chemically characterized to be used for thermal neutrons fluence measurements. The synthesis of the compound was made by reacting the amino acid alanine with boric acid in three different media: acidic, neutral and alkaline. Physicochemical analysis showed that the alkaline medium is favorable for the synthesis of the alanine hydroborate. The compound was evaluated as a thermal neutron fluence detector by the detection of the free radical yield upon neutron thermal irradiation by Electron Paramagnetic Resonance (EPR). The present work also studies the EPR-signal response of the three preparations to thermal neutron irradiation ({phi} = 5 x 10{sup 7} n/cm{sup 2} -s). The following EPR signal parameters of the samples were investigated: peak-to-peak signal intensity vs. thermal neutron fluence {Phi} = {phi} {Delta}t ; where {Delta}t = 1, 5, 10, 20, 40, 60, 80, 90, 100, 110 and 120 h. , peak-to-peak signal intensity vs. microwave power, signal fading; repeatability, batch homogeneity, stability and zero dose response. It is concluded that these new products could be used in thermal neutron fluence estimations. (Author)

  18. 5 MW pulsed spallation neutron source, Preconceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  19. 5 MW pulsed spallation neutron source, Preconceptual design study

    International Nuclear Information System (INIS)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in ∼ 1 μsec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs

  20. Pulsed neutron generators based on plasma focus devices of low energy

    International Nuclear Information System (INIS)

    Silva, Patricio; Moreno, Jose; Soto, Leopoldo

    2003-01-01

    The plasma focus is a pulsed neutron source especially suited for applications because it reduces the danger of contamination of conventional isotopic radioactive sources. As first stage of a program to design a repetitive pulsed neutron generator for industrial applications we constructed two very small plasma focus operating at an energy level of the order of a) tens of joules (PF-50J, 160nF capacitor bank, 20-35 kV, 32-100J, ∼150ns first quarter of period) and b) hundred of joules (PF-400J, 880nF, 20-35kV, 176-539J, ∼300ns first quarter of period). In this article we present results related to design and construction of these small plasma foci (PF-50J and PF-400J). Neutron yield vs. deuterium. pressure has been obtained, a maximum emission of the order of 7x10 4 and 10 6 neutrons per shot has been measured in the PF-50J and PF-400J respectively (author)

  1. CIAE 600 kV ns pulse neutron generator

    International Nuclear Information System (INIS)

    Shen Guanren; Guan Xialing; Chen Hongtao

    2001-01-01

    The overall composition of CIAE 600 kV ns Pulse Neutron Generator (CPNG) are introduced, and its characteristic, main technological performance and application were also given. CPNG consists of high voltage power supply with highest output voltage 600 kV, direct current 15 mA, stability and ripple ≤0.1%, 2214 mm x 1604 mm x 1504 mm stainless steel high voltage electrode, built in head equipment uniform field accelerating tube, ns pulsed installation, turbomolecular vacuum pump system and drift pipes at 0 degree and 45 degree. Its characteristics are: (1) high current beam; (2) high current beam ns pulsed installation made use of low energy for chopper and high energy for buncher; (3) compactly laid out and simple in structure

  2. Detection of pulsed fast neutrons by a proportional counter boron-convered and enveloped in paraffin moderators

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Yanagihara, L.S.; Veissid, V.L.C.P.; Herdade, S.B.

    1983-01-01

    The response to pulsed fast neutrons by a parafin moderated boron-lined proportional counter is investigated theoretically and experimentally. The neutrons pulses are generated by 60 MeV electrons from a linear accelerator. The calculation of the counting loss based on the detector dead time and on the exponential decresse of the thermal neutron population in the moderator is presented in detail. An analytical relation between the true counting rate and the reduced one, indicated by the detector, is found. In this formula three parameters appear: the decay constant of the thermal neutron population, the detector dead time and the pulse frequency of the neutron source. The decay constant is calculated by diffusion theory. The experimental results for six values of moderator thickness (between 2.5 to 12.5 cm) agree with our theoretical calculation within 20 per cent. (Author) [pt

  3. The Dynamic Method for Time-of-Flight Measurement of Thermal Neutron Spectra from Pulsed Sources

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Tulaev, A.B.; Bobrakov, V.F.

    1994-01-01

    The time-of-flight method for a measurement of thermal neutron spectra in the pulsed neutron sources with high efficiency of neutron registration, more than 10 5 times higher in comparison with traditional one, is described. The main problems connected with the electric current technique for time-of-flight spectra measurement are examined. The methodical errors, problems of a special neutron detector design and other questions are discussed. Some experimental results, spectra from surfaces of the water and solid methane moderators, obtained in the pulsed reactor IBR-2 (Dubna, Russia) are presented. 4 refs., 5 figs

  4. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core; Determinacion de la fluencia neutronica en las soldaduras del 'core shroud' del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M A; Xolocostli M, J V; Gomez T, A M; Palacios H, J C [ININ, 52750 Ocoyoacac, Estado de mexico (Mexico)

    2006-07-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, r{theta}, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  5. Gamma compensated pulsed ionization chamber wide range neutron/reactor power measurement system

    International Nuclear Information System (INIS)

    Ellis, W.H.

    1975-01-01

    An improved method and system of pulsed mode operation of ionization chambers is described in which a single sensor system with gamma compensation is provided by sampling, squaring, automatic gate selector, and differential amplifier circuit means, employed in relation to chambers sensitized to neutron plus gamma and gamma only to subtract out the gamma component, wherein squaring functions circuits, a supplemental high performance pulse rate system, and operational and display mode selection and sampling gate circuits are utilized to provide automatic wide range linear measurement capability for neutron flux and reactor power. Neon is employed as an additive in the ionization chambers to provide independence of ionized gas kinetics temperature effects, and the pulsed mode of operation provide independence of high temperature insulator leakage effects. (auth)

  6. Interministerial decree of 10 February 1988 fixing the derived limits of the air concentration and the annual intake limit and the values of the quality factor and the neutron fluence rate

    International Nuclear Information System (INIS)

    1988-01-01

    This decree establishes the derived concentration limits in the air and annual inhalation limits for the radioisotopes and the values of the quality factors and the conversion factors fluence/dose equivalent for neutrons and protons

  7. Effects of laser fluence on silicon modification by four-beam laser interference

    International Nuclear Information System (INIS)

    Zhao, Le; Li, Dayou; Wang, Zuobin; Yue, Yong; Zhang, Jinjin; Yu, Miao; Li, Siwei

    2015-01-01

    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm 2 , 495 mJ/cm 2 , and 637 mJ/cm 2 , the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, and the pulse duration of 7–9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications

  8. Creative scientific research international session of 2nd meeting on advanced pulsed-neutron research on quantum functions in nano-scale materials

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2005-06-01

    1 MW-class pulsed-neutron sources will be constructed in Japan, United State and United Kingdom in a few years. Now is the time for a challenge to innovate on neutron science and extend new science fields. Toward the new era, we develop new pulsed-neutron technologies as well as new neutron devices under the international collaborations with existing pulsed-neutron facilities, such as the UK-Japan collaboration program on neutron scattering. At the same time, the new era will bring international competitions to neutron researchers. We aim to create new neutron science toward the new pulsed-neutron era by introducing the new technologies developed here. For this purpose, we have started the research project, 'Advanced pulsed-neutron research on quantum functions in nano-scale materials,' in the duration between JFY2004 and JFY2008. The 2nd meeting of this project was held on 22-24 February 2005 to summarize activities in FY2004 and to propose research projects in the coming new fiscal year. In this international session as a part of this meeting, the scientific results and research plans on the UK-Japan collaboration program, the research plans on the collaboration between IPNS (Intense Pulsed Neutron Source, Argonne National Laboratory) and KENS (Neutron Science Laboratory, KEK), also the recent scientific results arisen form this project were presented. (author)

  9. Detection of low caloric power of coal by pulse fast-thermal neutron analysis

    International Nuclear Information System (INIS)

    Gu De-shan; Sang Hai-feng; Qiao Shuang; Liu Yu-ren, Liu Lin-mao; Jing Shi-wei; Chinese Academy of Sciences, Changchun

    2004-01-01

    Analysis method and principle of pulse fast-thermal neutron analysis (PFTNA) are introduced. A system for the measurement of low caloric power of coal by PFTNA is also presented. The 14 MeV pulse neutron generator and BGO detector and 4096 MCA were applied in this system. A multiple linear regression method applied to the data solved the interferential problem of multiple elements. The error of low caloric power between chemical analysis and experiment was less than 0.4 MJ/kg. (author)

  10. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    International Nuclear Information System (INIS)

    Schultz, F.J.; Caldwell, J.T.

    1993-01-01

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected

  11. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    Science.gov (United States)

    Schultz, Frederick J.; Caldwell, John T.

    1993-01-01

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

  12. The dynamic method for time-of-flight measurement of thermal neutron spectra from pulsed sources

    International Nuclear Information System (INIS)

    Pepyolyshev, Yu.N.; Chuklyaev, S.V.; Tulaev, A.B.; Bobrakov, V.F.

    1995-01-01

    A time-of-flight method for measurement of thermal neutron spectra in pulsed neutron sources with an efficiency more than 10 5 times higher than the standard method is described. The main problems associated with the electric current technique for time-of-flight spectra measurement are examined. The methodical errors, problems of special neutron detector design and other questions are discussed. Some experimental results for spectra from the surfaces of water and solid methane moderators obtained at the IBR-2 pulsed reactor (Dubna, Russia) are presented. (orig.)

  13. Pulsed-neutron production at the Brookhaven 200-MeV linac

    International Nuclear Information System (INIS)

    Ward, T.E.; Alessi, J.; Brennan, J.; Grand, P.; Lankshear, R.; Montemurro, P.; Snead, C.L. Jr.; Tsoupas, N.

    1988-01-01

    The new 750-kV RFQ preinjector and double chopper system capable of selecting single nanosecond micropulses with repetition rates of 0.1--20 MHz has been installed at the Brookhaven 200-MeV proton linac. The micropulse intensity is approximately 1 x 10 9 p/μpulse. Neutron time-of-flight path lengths of 30--100 meter at 0/degree/, 12/degree/, 30/degree/, 45/degree/, 90/degree/ and 135/degree/ are available, as well as a zero degree swinger capable of an angular range of 0--25/degree/. Pulsed neutron beams of monoenergetic (p 7 Li → n 7 Be) and spallation (p 238 U → nx) sources will be discussed in the present paper, as well as detailing the chopped-beam capabilities. 11 refs., 5 figs., 1 tab

  14. Neutron irradiation test of depleted CMOS pixel detector prototypes

    International Nuclear Information System (INIS)

    Mandić, I.; Cindro, V.; Gorišek, A.; Hiti, B.; Kramberger, G.; Mikuž, M.; Zavrtanik, M.; Hemperek, T.; Daas, M.; Hügging, F.; Krüger, H.; Pohl, D.-L.; Wermes, N.; Gonella, L.

    2017-01-01

    Charge collection properties of depleted CMOS pixel detector prototypes produced on p-type substrate of 2 kΩ cm initial resistivity (by LFoundry 150 nm process) were studied using Edge-TCT method before and after neutron irradiation. The test structures were produced for investigation of CMOS technology in tracking detectors for experiments at HL-LHC upgrade. Measurements were made with passive detector structures in which current pulses induced on charge collecting electrodes could be directly observed. Thickness of depleted layer was estimated and studied as function of neutron irradiation fluence. An increase of depletion thickness was observed after first two irradiation steps to 1 · 10 13 n/cm 2 and 5 · 10 13 n/cm 2 and attributed to initial acceptor removal. At higher fluences the depletion thickness at given voltage decreases with increasing fluence because of radiation induced defects contributing to the effective space charge concentration. The behaviour is consistent with that of high resistivity silicon used for standard particle detectors. The measured thickness of the depleted layer after irradiation with 1 · 10 15 n/cm 2 is more than 50 μm at 100 V bias. This is sufficient to guarantee satisfactory signal/noise performance on outer layers of pixel trackers in HL-LHC experiments.

  15. Neutron metrology in the HFR

    International Nuclear Information System (INIS)

    Voorbraak, W.P.; Freudenreich, W.E.; Stecher-Rasmussen, F.; Verhagen, H.W.

    1991-10-01

    Neutron fluence rate and gamma dose data are presented for the first series of experiments at the filtered HFR beam HB11 at full reactor power. Measurements were performed on two beagle dogs and one cylindrical phantom. The main results for thermal and epithermal fluence rates, physical neutron dose and gamma dose are presented in the tables 1 and 2. (author). 10 refs.; 9 figs.; 8 tabs

  16. Neutrons from medical electron accelerators

    International Nuclear Information System (INIS)

    Swanson, W.P.; McCall, R.C.

    1979-06-01

    The significant sources of photoneutrons within a linear-accelerator treatment head are identified and absolute estimates of neutron production per treatment dose are given for typical components. Measured data obtained at a variety of accelerator installations are presented and compared with these calculations. It is found that the high-Z materials within the treatment head do not significantly alter the neutron fluence, but do substantially reduce the average energy of the transmitted spectrum. Reflected neutrons from the concrete treatment room contribute to the neutron fluence, but not substantially to the patient integral dose, because of a further reduction in average energy. Absolute depth-dose distributions for realistic neutron spectra are calculated, and a rapid falloff with depth is found

  17. Simulated workplace neutron fields

    International Nuclear Information System (INIS)

    Lacoste, V.; Taylor, G.; Rottger, S.

    2011-01-01

    The use of simulated workplace neutron fields, which aim at replicating radiation fields at practical workplaces, is an alternative solution for the calibration of neutron dosemeters. They offer more appropriate calibration coefficients when the mean fluence-to-dose equivalent conversion coefficients of the simulated and practical fields are comparable. Intensive Monte Carlo modelling work has become quite indispensable for the design and/or the characterization of the produced mixed neutron/photon fields, and the use of Bonner sphere systems and proton recoil spectrometers is also mandatory for a reliable experimental determination of the neutron fluence energy distribution over the whole energy range. The establishment of a calibration capability with a simulated workplace neutron field is not an easy task; to date only few facilities are available as standard calibration fields. (authors)

  18. Utilization of the intense pulsed neutron source (IPNS) at Argonne National Laboratory for neutron activation analysis

    International Nuclear Information System (INIS)

    Heinrich, R.R.; Greenwood, L.R.; Popek, R.J.; Schulke, A.W. Jr.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) neutron scattering facility (NSF) has been investigated for its applicability to neutron activation analysis. A polyethylene insert has been added to the vertical hole VT3 which enhances the thermal neutron flux by a factor of two. The neutron spectral distribution at this position has been measured by the multiple-foil technique which utilized 28 activation reactions and the STAYSL computer code. The validity of this spectral measurement was tested by two irradiations of National Bureau of Standards SRM-1571 (orchard leaves), SRM-1575 (pine needles), and SRM-1645 (river sediment). The average thermal neutron flux for these irradiations normalized to 10 μamp proton beam is 4.0 x 10 11 n/cm 2 -s. Concentrations of nine trace elements in each of these SRMs have been determined by gamma-ray spectrometry. Agreement of measured values to certified values is demonstrated to be within experiment error

  19. Biological effectiveness of pulsed and continuous neutron radiation for cells of yeast Saccharomyces

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Komarova, E.V.; Potetnya, V.I.; Obaturov, G.M.

    2001-01-01

    Data are presented on biological effectiveness of fast neutrons generated by BR-10 reactor (dose rate up to 3.8 Gy/s) in comparison with neutrons of pulsed BARS-6 reactor (dose rate ∼6x10 6 Gy/s) for yeast Saccharomyces vini cells of a wild type Menri 139-B and radiosensitive Saccharomyces cerevisiae (rad52/rad52; rad54/rad54) mutants which are defective over different systems of DNA reparation. Value of relative biological efficiency (RBE) of continuous radiation for wild stam is from 3.5 up to 2.5 when survival level being 75-10 %, and RBE of pulsed neutron radiation is in the limits of 2.0-1.7 at the same levels. For mutant stam the value of RBE (1.4-1.6) of neutrons is constant at all survival levels and does not depend on dose rate [ru

  20. On-line analysis of bulk materials using pulsed neutron interrogation

    International Nuclear Information System (INIS)

    Lebrun, P.; Tourneur, P. Le; Poumarede, B.; Bach, P.; Moeller, H.

    1999-01-01

    On the basis of our joint experience in neutronics for SODERN and in cement plant engineering for KRUPP POLYSIUS, we have developed a new on-line bulk materials analyser for the cement industry. This equipment includes a pulsed neutron generator GENIE 16, some gamma ray and neutron detectors, specially designed electronics with high counting rate, software delivering the mean elemental composition of raw material, and adequate shielding. This material is transported through the equipment on a conveyor belt, the size of which is adapted to the requirements. This paper briefly describes the equipment and some results, as obtained in dynamic test from a demonstrator installed in Germany

  1. On-line analysis of bulk materials using pulsed neutron interrogation

    Science.gov (United States)

    Lebrun, P.; Tourneur, P. Le; Poumarede, B.; Möller, H.; Bach, P.

    1999-06-01

    On the basis of our joint experience in neutronics for SODERN and in cement plant engineering for KRUPP POLYSIUS, we have developed a new on-line bulk materials analyser for the cement industry. This equipment includes a pulsed neutron generator GENIE 16, some gamma ray and neutron detectors, specially designed electronics with high counting rate, software delivering the mean elemental composition of raw material, and adequate shielding. This material is transported through the equipment on a conveyor belt, the size of which is adapted to the requirements. This paper briefly describes the equipment and some results, as obtained in dynamic test from a demonstrator installed in Germany.

  2. Intensive neutron source based on powerful electron linear accelerator LIA-30 and pulsed nuclear reactor FR-1

    Energy Technology Data Exchange (ETDEWEB)

    Bossamykin, V S; Koshelev, A S; Gerasimov, A I; Gordeev, V S; Grishin, A V; Averchenkov, V Ya; Lazarev, S A; Maslov, G N; Odintsov, Yu M [All-Russian Scientific Research Institute of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    Some results are given of investigations on joint operation modes of the linear induction electron accelerator LIA-30 ({approx} 40 MeV, {approx} 100 kA, {approx} 20 ns) and the pulsed reactor FR-1 with a compact metal core, aimed at achieving high intensity neutron fluxes. The multiplication factor Q for prompt neutrons in the FR-1 booster mode operation increased from 100 to 4500. The total output of prompt neutrons from FR-1 at Q = 2570 was 1.4 x 10{sup 16} 1/pulse with a pulse half width of {approx} 25 {mu}s. (author). 4 figs., 4 refs.

  3. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L., E-mail: mabs500@gmail.com, E-mail: narain@ufpe.br, E-mail: jairbezerra@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociências. Departamento de Energia Nuclear

    2017-07-01

    Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

  4. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

    International Nuclear Information System (INIS)

    Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L.

    2017-01-01

    Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

  5. Pulsed-neutron production at the Brookhaven 200-MeV linac

    International Nuclear Information System (INIS)

    Ward, T.E.; Alessi, J.; Brennan, J.; Grand, P.; Lankshear, R.; Montemurro, P.; Snead, C.L. Jr.; Tsoupas, N.

    1989-01-01

    The new 750-kV RFQ preinjector and double chopper system capable of selecting single nanosecond micropulses with repetition rates of 0.1 to 20 MHz has been installed at the Brookhaven 200-MeV proton linac. The micropulse intensity is approximately 1 x 10 9 p/μpulse. Neutron time-of-flight path lengths of 30 to 100 meters at 0 degree, 12 degree, 30 degree, 45 degree, 90 degree and 135 degree are available as well as a zero-degree beam swinger capable of an angular range of 0 degree to 25 degree. Pulsed neutron beams of monoenergetic (p 7 Li → n 7 Be) and spallation (p 238 U → nx) sources will be discussed in the present paper as well as detailing the chopped-beam capabilities. 11 refs., 5 figs., 1 tab

  6. Intensity enhancement of cold neutrons from a coupled liquid-hydrogen moderator for pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Ogawa, Y.; Kiyanagi, Y.; Kosugi, N.; Iwasa, H.; Furusaka, M.; Watanabe, N.

    1999-01-01

    In order to obtain higher cold neutron intensity from a coupled liquid-hydrogen moderator with a premoderator for pulsed cold neutron sources, we examined a partial enhancement method, namely, narrow beam extraction for both a flat liquid-hydrogen moderator and a single-groove one. Combined with the narrow beam extraction, which is especially suitable for small-angle scattering and neutron reflectometry experiments, a single-groove moderator provides higher intensity, by about 30%, than a flat-surface moderator at the region of interest on a viewed surface. The effect of double-side beam extraction from such moderators on the intensity gain factor is also discussed. (author)

  7. Vessel fluence evaluation for SMART using DLC-23 and DLC-185 data libraries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo Youn; Cho, Byung Oh; Joo, Han Gyu [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    In this report, it was performed the vessel fluence evaluation for SMART using nuclear cross-section libraries of DLC-23/CASK and DLC-185/BUGLE-96 and it was compared with the results. It was shown that the maximum neutron fluences for the inner surface of SMART vessel, which has 60 years lifetime and 90% capacity factor, resulted from using DLC-23/CASK and DLC-185/BUGLE-96 are 2.88x10{sup 16} n/cm{sup 2} and 1.98 x10{sup 16} n/cm{sup 2}, respectively. It is concluded that the fast neutron fluence at the reactor pressure vessel of SMART is far less than 1.0x10{sup 20} n/cm{sup 2} which is specified by the requirement of 10 CFR 50.61 and the SMART has the preservation of reactor vessel integrity throughout the reactor lifetime. Also, it was shown that the result using DLC-23/CASK has conservatism of about 30% comparing with the result using DLC-185/BUGLE-96. 15 refs., 7 figs., 13 tabs. (Author)

  8. Pulsed Operation of a Compact Fusion Neutron Source Using a High-Voltage Pulse Generator Developed for Landmine Detection

    International Nuclear Information System (INIS)

    Yamauchi, Kunihito; Watanabe, Masato; Okino, Akitoshi; Kohno, Toshiyuki; Hotta, Eiki; Yuura, Morimasa

    2005-01-01

    Preliminary experimental results of pulsed neutron source based on a discharge-type beam fusion called Inertial Electrostatic Confinement Fusion (IECF) for landmine detection are presented. In Japan, a research and development project for constructing an advanced anti-personnel landmine detection system by using IECF, which is effective not only for metal landmines but also for plastic ones, is now in progress. This project consists of some R and D topics, and one of them is R and D of a high-voltage pulse generator system specialized for landmine detection, which can be used in the severe environment such as that in the field in Afghanistan. Thus a prototype of the system for landmine detection was designed and fabricated in consideration of compactness, lightness, cooling performance, dustproof and robustness. By using this prototype pulse generator system, a conventional IECF device was operated as a preliminary experiment. As a result, it was confirmed that the suggested pulse generator system is suitable for landmine detection system, and the results follow the empirical law obtained by the previous experiments. The maximum neutron production rate of 2.0x10 8 n/s was obtained at a pulsed discharge of -51 kV, 7.3 A

  9. Decay of the pulsed thermal neutron flux in two-zone hydrogenous systems - Monte Carlo simulations using MCNP standard data libraries

    International Nuclear Information System (INIS)

    Wiacek, Urszula; Krynicka, Ewa

    2006-01-01

    Pulsed neutron experiments in two-zone spherical and cylindrical geometry has been simulated using the MCNP code. The systems are built of hydrogenous materials. The inner zone is filled with aqueous solutions of absorbers (H 3 BO 3 or KCl). It is surrounded by the outer zone built of Plexiglas. The system is irradiated with the pulsed thermal neutron flux and the thermal neutron decay in time is observed. Standard data libraries of the thermal neutron scattering cross-sections of hydrogen in hydrogenous substances have been used to simulate the neutron transport. The time decay constant of the fundamental mode of the thermal neutron flux determined in each simulation has been compared with the corresponding result of the real pulsed neutron experiment

  10. Calibration of neutron yield activation measurements at JET using MCNP and furnace neutron transport codes

    International Nuclear Information System (INIS)

    Pillon, M.; Martone, M.; Verschuur, K.A.; Jarvis, O.N.; Kaellne, J.

    1989-01-01

    Neutron transport calculations have been performed using fluence ray tracing (FURNACE code) and Monte Carlo particle trajectory sampling methods (MCNP code) in order to determine the neutron fluence and energy distributions at different locations in the JET tokamak. These calculations were used to calibrate the activation measurements used in the determination of the absolute fusion neutron yields from the JET plasma. We present here the neutron activation response coefficients calculated for three different materials. Comparison of the MCNP and FURNACE results helps identify the sources of error in these neutron transport calculations. The accuracy of these calculations was tested by comparing the total 2.5 MeV neutron yields derived from the activation measurements with those obtained with calibrated fission chambers; agreement at the ±15% level was demonstrate. (orig.)

  11. Measurement of angular distribution of neutron flux for the 6 MeV race-track microtron based pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ernet.i [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T.; Pethe, S.N.; Krishnan, R. [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ernet.i [Department of Physics, University of Pune, Pune 411 007 (India)

    2010-09-15

    The 6 MeV race track microtron based pulsed neutron source has been designed specifically for the elemental analysis of short lived activation products, where the low neutron flux requirement is desirable. Electrons impinges on a e-{gamma} target to generate bremsstrahlung radiations, which further produces neutrons by photonuclear reaction in {gamma}-n target. The optimisation of these targets along with their spectra were estimated using FLUKA code. The measurement of neutron flux was carried out by activation of vanadium at different scattering angles. Angular distribution of neutron flux indicates that the flux decreases with increase in the angle and are in good agreement with the FLUKA simulation.

  12. Quality Management for Neutron Transmutation Doping of Silicon Ingot in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ki-Doo; Kim, Ji-Uk; Yun, Hwa-Kyung; Lim, Chul-Hong; Kim, Young-Chil; Kim, Myong-Seop; Park, Sang-Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    By using this doping method, silicon semiconductors with extremely uniform dopant distributions can be produced, and this is the dominant advantage of NTD compared with a conventional chemical doping. Good uniformity of a dopant concentration is usually required for high power applications such as thyristor (SCR), IGBT, IGCT and GTO and for special sensors. Achieving an accurate neutron fluence corresponding to a target resistivity as well as a uniform irradiation is the prime target of a neutron irradiation for NTD. Generally, in order to reach an accurate neutron fluence, a real time neutron flux is monitored by a neutron detector such as a Self-powered Neutron Detector(SPND). And, after an irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of a neutron activation sample that has been irradiated with a silicon ingot, and thus the SPND can be properly calibrated. Excellent irradiation uniformity and a high accuracy for a target neutron dose have been achieved from the early works of NTD. However, to maintain this excellent quality, the neutron irradiation fluence should be continuously modified and controlled. So, in this work, an activity to maintain the irradiation quality is introduced.

  13. Basics of Neutrons for First Responders

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Brian G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-05

    These are slides from a presentation on the basics of neutrons. A few topics covered are: common origins of terrestrial neutron radiation, neutron sources, neutron energy, interactions, detecting neutrons, gammas from neutron interactions, neutron signatures in gamma-ray spectra, neutrons and NaI, neutron fluence to dose (msV), instruments' response to neutrons.

  14. Research on determine the absolute neutron output of distributed pulse generators

    International Nuclear Information System (INIS)

    Li Bojun; Tang Zhangkui; Wang Dong; Yang Gaozhao; Peng Taiping

    2009-01-01

    In order to determine the absolute neutron output of distributed pulse generators, we deduced equivalent length to deal with experimental data, according to the different layout and weighting of multiple pulse generators. The deposited energy in scintillation crystal and the integral flux which drilling through crystal interface was simulated by MCNP code. The result shows the simulated proportion of different distributed pulse generators is approximately agreed with experimental data. The validity of the equivalent length model was proved by the consistent results between calculation and experimental data. (authors)

  15. Neutron dosimetry in EDF experimental surveillance programme for VVER-440 nuclear power plants

    International Nuclear Information System (INIS)

    Brumovsky, M.; Erben, O.; Novosad, P.; Zerola, L.; Hogel, J.; Trollat, C.

    2001-01-01

    Fourteen chains containing experimental surveillance material specimens of the VVER 440/213 nuclear power reactor pressure vessels were irradiated in the surveillance channels of the Nuclear Power Plant Dukovany in the Czech Republic. The irradiation periods were one, two or three cycles. The chains contained different number and types of containers, the omitted ones were replaced by chain elements. All of the containers were instrumented with wire neutron fluence detectors, some of the containers in the chain had spectrometric sets of neutron fluence monitors. For the absolute fluence values evaluation it was taken into account time history of the reactor power and local changes of the neutron flux along the reactor core height, correction factors due to the orientation of monitors with respect to the reactor core centre. Unfolding programs SAND-II or BASA-CF were used. The relative axial fluence distribution was obtained from the O-wire measurements. Neutron fluence values above 0.5 MeV energy and above 1.0 MeV energy in the container axis on the axial positions of the sample centres and fluence values in the geometric centre of the samples was calculated making use the exponential attenuation model of the incident neutron beam. Received fast neutron fluence values can be used as reference values to all VVER-440 type 213 nuclear power plant reactors. (author)

  16. Use of pulsed neutron-neutron logging, thermal neutron-neutron logging, and gamma logging methods in classification for sand-clay sediments of Lower Cretaceous in Prikumsk oil-and-gas region according to filtration-capacitance characteristics

    International Nuclear Information System (INIS)

    Maksimenko, A.N.; Basin, Ya.N.; Novgorodov, V.A.

    1974-01-01

    To isolate reservoirs, the formation and deformation penetration zone parameters are used. They are estimated according to the false oil saturation factor and the time of the penetration zone deformation which are determined from the complex exploration of cased wells using the pulse neutron logging, thermal neutron-neutron logging and gamma logging techniques

  17. Thermal conductivity of beryllium under low temperature high dose neutron irradiation

    International Nuclear Information System (INIS)

    Chakin, V.P.; Latypov, R.N.; Suslov, D.N.; Kupriyanov, I.B.

    2004-01-01

    Thermal conductivity of compact beryllium of several Russian grades such as TE-400, TE-56, TE-30, TIP and DIP differing in the production technology, grain size and impurity content has been investigated. The thermal diffusivity of beryllium was measured on the disks in the initial and irradiated conditions using the pulse method in the range from room temperature to 200degC. The thermal conductivity was calculated using the table values for the beryllium thermal capacity. The specimens and beryllium neutron source fragments were irradiation in the SM reactor at 70degC and 200degC to a neutron fluence of (0.5-11.4)·10 22 cm -2 (E>0.1 MeV) and in the BOR-60 reactor at 400degC to 16·10 22 cm -2 (E>0.1MeV), respectively. The low-temperature irradiation leads to the drop decrease of the beryllium thermal conductivity and the effect depends on the irradiation parameters. The paper analyses the effect of irradiation parameters (temperature, neutron fluence), measurement temperature and structural factors on beryllium conductivity. The experiments have revealed that the short time post-irradiation annealing at high temperature results in partial reduction of the thermal conductivity of irradiated beryllium. (author)

  18. Storage of cold and thermal neutrons with perfect crystals at the pulsed source

    International Nuclear Information System (INIS)

    Jericha, E.

    1996-12-01

    The possibility of storing cold neutrons by sequential Bragg reflections between two parallel perfect crystal plates in backscattering geometry has been implemented as the parasitic instrument VESTA at the pulsed neutron source ISIS. Filling the neutrons into and releasing them from the storage cavity is accomplished by applying a short-pulsed magnetic field at the crystal plates. The method takes advantage of the conservation of the axial component of the neutron wave vector after Bragg reflection and its Zeeman shift in a magnetic field. The setup at ISIS is presented where a monochromatic neutron beam with wavelength 6.27 A and 2.9 x 10 4 n/scm 2 flux is taken out of the neutron guide leading to the IRIS backscattering spectrometer by a pyrolytic graphite crystal monochromator. The longest storage period obtained with the setup was 2.655 s which corresponds to 1574 consecutive Bragg reflections and a distance traveled of 1675 n. The measurements are analyzed by heuristic methods developed for neutron storage experiments. The apparatus is seen as a passive resonator system and characteristics like stored neutron intensity, the efficiency of the storage process, the probability to remain in the system, the mirror reflectivity, the dispersion of the stored distribution, the penetration depth of a neutron into a crystal mirror and the figure of merit of the resonator system are discussed. Monte Carlo simulations of the extracted beam and of the stored neutron distribution were performed to deepen the understanding of the experimental results. (author)

  19. Study and development of new dosemeters for thermal neutrons

    International Nuclear Information System (INIS)

    Urena N, F.

    1998-01-01

    An alanine-boron compound, alanine hydroborate, was synthesized and chemically characterized to be used for thermal neutrons fluence measurements. The synthesis of the compound was made by reacting the amino acid alanine with boric acid in three different media: acidic, neutral and alkaline. Physicochemical analysis showed that the alkaline medium is favorable for the synthesis of the alanine hydroborate. The compound was evaluated as a thermal neutron fluence detector by the detection of the free radical yield upon neutron thermal irradiation by Electron Paramagnetic Resonance (EPR). The present work also studies the EPR-signal response of the three preparations to thermal neutron irradiation (φ = 5 x 10 7 n/cm 2 -s). The following EPR signal parameters of the samples were investigated: peak-to-peak signal intensity vs. thermal neutron fluence Φ = φ Δt ; where Δt = 1, 5, 10, 20, 40, 60, 80, 90, 100, 110 and 120 h. , peak-to-peak signal intensity vs. microwave power, signal fading; repeatability, batch homogeneity, stability and zero dose response. It is concluded that these new products could be used in thermal neutron fluence estimations. (Author)

  20. Use of a newly developed active thermal neutron detector for in-phantom measurements in a medical LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Bodogni, R.; Sanchez-Doblado, F.; Pola, A.; Gentile, A.; Esposito, A.; Gomez-ros, J. M.; Pressello, M. C.; Lagares, J. I.; Terron, J. A.; Gomez, F.

    2013-07-01

    In this work a newly developed active thermal neutron detector, based on a solid state analog device, was used to determine the thermal neutron fluence in selected positions of a simplified human phantom undergoing radiotherapy with a 15 MV LINAC. The results are compared with TLD, the predictions from a Monte Carlo simulation and with measurements indirectly performed with a digital device, located far from the phantom, inside the treatment room. In this work only TLD comparison is presented. Since active neutron instruments are usually affected by systematic deviations when used in a pulsed field with large photon background, the new detector offered in this work may represent an innovative and useful tool for neutron evaluations in accelerator-based radiotherapy. (Author)

  1. Irradiation embrittlement of some 15Kh2MFA pressure vessel steels under varying neutron fluence rates

    Energy Technology Data Exchange (ETDEWEB)

    Valo, M; Bars, B [Technical Research Centre of Finland, Espoo (Finland); Ahlstrand, A [Imatran Voima Oy (IVO), Helsinki (Finland)

    1994-12-31

    Irradiation sensitivity of two forging materials was measured with Charpy-V and fracture mechanic tests, and with different fluence, fluence rate and irradiation time values. Irradiation sensitivity of the materials was found to be less or equal to the current Russian standard, and appears to be well described by the fluence parameter only. A slight additional effect on embrittlement from a long term low fluence irradiation is noticed, but it stays within the total scatter band of data. 7 refs., 17 figs., 4 tabs.

  2. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    Energy Technology Data Exchange (ETDEWEB)

    Gallmeier, F. X., E-mail: gallmeierfz@ornl.gov; Lu, W.; Riemer, B. W.; Zhao, J. K.; Herwig, K. W.; Robertson, J. L. [Instrument and Source Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6466, Oak Ridge, Tennessee 37831 (United States)

    2016-06-15

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm{sup 2} to 20 × 20 mm{sup 2}. This increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  3. Neutron sources and their characteristics

    International Nuclear Information System (INIS)

    McCall, R.C.; Swanson, W.P.

    1979-03-01

    The significant sources of photoneutrons within a linear-accelerator treatment head are identified and absolute estimates of neutron production per treatment dose are given for typical components. It is found that the high-Z materials within the treatment head do not significantly alter the neutron fluence but do substantially reduce the average energy of the transmitted spectrum. Reflection of neutrons from the concrete treatment room contribute to the neutron fluence, but not substantially to the patient integral dose, because of a further reduction in average energy. The ratio of maximum fluence to the treatment dose at the same distance is given as a function of electron energy. This ratio rises with energy to an almost constant value of 2.1 x 10 5 neutrons cm -2 rad -1 at electron energies above about 25 MeV. Measured data obtained at a variety of accelerator installations are presented and compared with these calculations. Reasons for apparent deviations are suggested. Absolute depth-dose and depth-dose-equivalent distributions for realistic neutron spectra that occur at therapy installations are calculated, and a rapid falloff with depth is found. The ratio of neutron integral absorbed dose to leakage photon absorbed dose is estimated to be 0.04 and 0.2 for 14 to 25 MeV incident electron energy, respectively. Possible reasons are given for lesser neutron production from betatrons than from linear accelerators. Possible ways in which neutron production can be reduced are discussed

  4. Method of measuring neutron spectra in JMTR exclusively used for irradiation and their evaluation

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    1983-01-01

    In the core of the Japan Materials Testing Reactor, about 60 capsules are irradiated. These are the material capsules for irradiating reactor materials, the fuel capsules for irradiating reactor fuel, the RI capsules for producing radioisotopes and so on. In the irradiation experiment using a reactor, the information on the neutron fluence is indispensable, and the neutron fluence in the irradiated specimen part is evaluated with a dosimeter or the nuclear calculation for the core of the JMTR. At the time of irradiating reactor materials, the dosimeter Fe-54 (n,p) Mn-54 is generally used for evaluating the neutron fluence more than 1 MeV. In the case of fuel irradiation, the thermal neutron fluence is evaluated with the dosimeter Co-59 (n,γ) Co-60. It is important to examine in detail neutron spectra by both calculation and experiment in the reactors exclusively used for irradiation such as the JMTR. The neutron irradiation field in the JMTR, neutron spectrum measuring experiment, the neutron flux monitors for standardizing data, the measurement of X-ray and gamma ray, neutron guess spectrum, the compilation of neutron cross section for SAND 2, and the unfolding of neutron spectra are reported. The degree of agreement of the neutron fluence more than 1 MeV by measurement and calculation was +- 10 to 20 %. (Kako, I.)

  5. Neutron-irradiation facilities at the Intense Pulsed Neutron Source-I for fusion magnet materials studies

    International Nuclear Information System (INIS)

    Brown, B.S.; Blewitt, T.H.

    1982-01-01

    The decommissioning of reactor-based neutron sources in the USA has led to the development of a new generation of neutron sources that employ high-energy accelerators. Among the accelerator-based neutron sources presently in operation, the highest-flux source is the Intense Pulsed Neutron Source (IPNS), a user facility at Argonne National Laboratory. Neutrons in this source are produced by the interaction of 400 to 500 MeV protons with either of two 238 U target systems. In the Radiation Effects Facility (REF), the 238 U target is surrounded by Pb for neutron generatjion and reflection. The REF has three separate irradiation thimbles. Two thimbles provide irradiation temperatures between that of liquid He and several hundred degrees centigrade. The third thimble operates at ambient temperature. The large irradiation volume, the neutron spectrum and flux, the ability to transfer samples without warm up, and the dedication of the facilities during the irradiation make this ideally suited for radiation damage studies on components for superconducting fusion magnets. Possible experiments for fusion magnet materials are discussed on cyclic irradiation and annealing of stabilizers in a high magnetic field, mechanical tests on organic insulation irradiated at 4 K, and superconductors measured in high fields after irradiation

  6. Analysis of Crystallographic Structure of a Japanese Sword by the Pulsed Neutron Transmission Method

    Science.gov (United States)

    Kino, K.; Ayukawa, N.; Kiyanagi, Y.; Uchida, T.; Uno, S.; Grazzi, F.; Scherillo, A.

    We measured two-dimensional transmission spectra of pulsed neutron beams for a Japanese sword sample. Atom density, crystalline size, and preferred orientation of crystals were obtained using the RITS code. The position dependence of the atomic density is consistent with the shape of the sample. The crystalline size is very small and shows position dependence, which is understood by the unique structure of Japanese swords. The preferred orientation has strong position dependence. Our study shows the usefulness of the pulsed neutron transmission method for cultural metal artifacts.

  7. Delayed neutron spectra from short pulse fission of uranium-235

    International Nuclear Information System (INIS)

    Atwater, H.F.; Goulding, C.A.; Moss, C.E.; Pederson, R.A.; Robba, A.A.; Wimett, T.F.; Reeder, P.; Warner, R.

    1986-01-01

    Delayed neutron spectra from individual short pulse (∼50 μs) fission of small 235 U samples (50 mg) were measured using a small (5 cm OD x 5 cm length) NE 213 neutron spectrometer. The irradiating fast neutron flux (∼10 13 neutrons/cm 2 ) for these measurements was provided by the Godiva fast burst reactor at the Los Alamos Critical Experiment Facility (LACEF). A high speed pneumatic transfer system was used to transfer the 50 mg 235 U samples from the irradiation position near the Godiva assembly to a remote shielded counting room containing the NE 213 spectrometer and associated electronics. Data were acquired in sixty-four 0.5 s time bins and over an energy range 1 to 7 MeV. Comparisons between these measurements and a detailed model calculation performed at Los Alamos is presented

  8. Proceedings of the workshop on neutron instrumentation for a long-pulse spallation source

    International Nuclear Information System (INIS)

    Alonso, J.; Schroeder, L.; Pynn, R.

    1995-01-01

    This workshop was carried out under the auspices of the Lawrence Berkeley National Laboratory Pulsed Spallation Source activity and its Pulsed Spallation Source Committee (PSSC). One of our activities has been the sponsorship of workshops related to neutron production by pulsed sources. At the Crystal City PSSC meeting a decision was made to hold a workshop on the instrumentation opportunities at a long-pulse spallation source (LPSS). The enclosed material represents the results of deliberations of the three working groups into which the participants were divided, covering elastic scattering, inelastic scattering and fundamental physics, as well as contributions from individual participants. We hope that the material in this report will be useful to the neutron scattering community as it develops a road-map for future neutron sources. The workshop was held at LBNL in mid-April with about sixty very dedicated participants from the US and abroad. This report presents the charge for the workshop: Based on the bench mark source parameters provided by Gary Russell, determine how a suite of spectrometers in each of the three working group's area of expertise would perform at an LPSS and compare this performance with that of similar spectrometers at a continuous source or a short-pulse source. Identify and discuss modifications to these spectrometers that would enhance their performance at an LPSS. Identify any uncertainties in the analysis of spectrometer performance that require further research. Describe what R ampersand D is needed to resolve these issues. Discuss how the performance of instruments would be affected by changes in source parameters such as repetition rate, proton pulse length, and the characteristic time of pulse tails. Identify beneficial changes that could become goals for target/moderator designers. Identify novel methods that might be applied at an LPSS. Selected papers are indexed separately for inclusion in the Energy Science and Technology

  9. A new pulsed neutron source at Pohang accelerator laboratory

    International Nuclear Information System (INIS)

    Kim, G.N.; Choi, J.Y.; Cho, M.H.; Ko, I.S.; Namkung, W.; Chang, J.H.

    1997-01-01

    The main efforts in the field of promoting the nuclear data activities to support the national nuclear development program being realized in the Republic of Korea are discussed. Within this program frameworks the Korea Atomic Energy Research Institute (KAERI) will play a central role and the Pohang Accelerator Laboratory (PAL) will construct a pulsed neutron source facility. The 100 MeV electron linac based on the existing equipment including Toshiba E3712 klystron, 200 MW modulator and constant gradient accelerating sections is designed in PAL. The schematic diagram and the main parameters of the linac consisting of a triode type electron gun (EIMAC Y824), an S-band prebuncher and buncher, two accelerating sections and various other components are considered. The construction of the linac already started in early 1997 is planned to be completed in 1998. The target room, TOF beam lines and detector stations will be constructed by the end of 1999. The first experiments with the intense pulsed neutrons produced at the facility considered are expected by 2000

  10. Development and application of a detector for absolute measurement of neutron fluence rate in MeV region

    International Nuclear Information System (INIS)

    Silva Dias, M. da.

    1988-01-01

    The development and performance of the DTS (Dual Thin Scintillator) for the absolute measurement of the neutron fluence rate between 1 and 15 MeV is decribed. The DTS detector consists of a pair of organic scintillators in a dual configuration, where the incident produces a proton-recoil which is detected in a 2Π geometry therefore avoiding the effect of the escape of protons. Thin scintillators are used resulting in small multiple scattering corrections. The theoretical caluclations of detector efficiency and proton-recoil spectrum were performed by means of a Monte Carlos code - CARLO DTS. The calculated efficiency was compared to the experimental one at two neutron energies namely 2.446 MeV and 14.04 MeV applying the Time Correlated Associated Particle technique. The theoretical and experimental efficiencies agreed within the experimental uncertainties of 1.44% and 0.77%, respectively. The performance of the DTS has been verified in an absolute 235 U(n,f) cross section measurement between 1 and 6 MeV neutron energy. The cross section results were compared to those obtained replacing the DTS detector by the NBS (National Bureau of Standards, USA) Black Neutron Detector. The agreement was excellent in the overlapping energy interval of the two experiments (between 1 and 3 MeV), within the estimated uncertainly in the range of 1,0 to 1,7%. The agreement with the most recent evaluation from the ENDF/B-VI was excellent in almost all the energy range between 1 and 6 MeV. The 235 U(n,f) cross section, average over the 252 Cf fission neutron spectrum has been evaluated. The result including the cross section values of the present work was 1220 mb, in excellent agreement with the average value among the most recent measurements, 1227 +- 12 mb, and with the value 1213 mb, using the ENDF/B-VI data. (author) [pt

  11. Measurement and fitting of pulse shapes of moderators at IPNS [Intense Pulsed Neutron Source]: Progress report

    International Nuclear Information System (INIS)

    Bywater, R.L. Jr.; Williams, R.E.; Carpenter, J.M.

    1988-01-01

    We present a progress report on measurements and fitting of pulse shapes for neutrons emerging from one solid and two liquid methane moderators in IPNS. A time-focused crystal spectrometer arrangement was used with a cooled Ge monochromator. Data analysis of one of the liquid methane moderators has shown the need for some generalization of the Ikeda-Carpenter function that worked well for fitting pulse shapes of polyethylene moderators. We describe attempts to model physical insight into the wavelength dependence of function parameters. 5 refs., 7 figs

  12. Simulation of high fluence swelling behavior in technological materials

    International Nuclear Information System (INIS)

    Garner, F.A.; Powell, R.W.; Diamond, S.; Lauritzen, T.; Rowcliffe, A.F.; Sprague, J.A.; Keefer, D.

    1977-06-01

    The U.S. Breeder Reactor Program is employing charged particle irradiation experiments at accelerated displacement rates to simulate neutron-induced microstructural changes in materials of technological interest. Applications of the simulation technique range from the study of fundamental microstructural mechanisms to the development of predictions of the high fluence swelling behavior of candidate alloys for breeder reactor ducts and fuel cladding. An exact equivalence probably cannot be established between all facets of the microstructural evolution which occurs in the disparate charged-particle and neutron environments. To aid in the correlation of data developed in the two environments an assessment has been made of the factors influencing the simulation process. A series of intercorrelation programs and analysis activities have been conducted to identify and explore the relevant phenomena. The factors found to exert substantial influence on the correlation process fall into two categories, one which deals with those variables which are atypical of the neutron environment and one which deals with the additional factors which arise due to the large differences in displacement rate of the two irradiation environments. While the various simulation techniques have been invaluable in determining the basic mechanisms and parametric dependencies of swelling, the potential of these tools in the confident prediction of swelling at high neutron fluence has yet to be realized. The basic problem lies in the inability of the simulation technique to reproduce the early microstructural development in the period that precedes and encompasses the incubation of voids. The concepts of temperature shift and dose equivalency have also been found to be more complicated than previously imagined. Preconditioning of metals in a neutron environment prior to simulation testing is now being employed in order to provide more appropriate starting microstructures

  13. Developments in Pulsed Neutron Activation for Determination of Water Flow in Pipes

    CERN Document Server

    Mattsson, H

    2003-01-01

    In PNA (pulsed neutron activation) it is important that the measured data can be related to the total mass flow. In this thesis two fundamental problems of the measurement technique and data treatment have been investigated: transport/mixing and background radiation. The principle of PNA is to introduce a radioactive substance into a pipe by bombarding fluid in the pipe with neutron pulses. The fluid in the pipe is activated and subsequently transported and mixed with the flow. Gamma radiation emitted from the activity is measured with one or two detectors downstream from the activation point. The time-resolved signal from the detectors is used to calculate the average velocity of the water flow. Due to the short distance between the neutron generator and the pipe the activity in the pipe becomes highly inhomogeneous. The transport and mixing of the activity were simulated using colour which was injected into the flow. It was found that the inhomogeneous activity distribution must be taken into account if the...

  14. Fast and slow neutrons in an 18-MV photon beam from a Philips SL/75-20 linear accelerator

    International Nuclear Information System (INIS)

    Gur, D.; Rosen, J.C.; Bukovitz, A.G.; Gill, A.W.

    1978-01-01

    Fast- and slow-neutron contamination in an 18-MV photon beam from a Philips SL/75-20 linear accelerator has been measured. Aluminum and indium foils were activated to determine fast- and slow-neutron fluence, which were largely independent of field sizes. Measured fast-neutron fluences were typically 13.9 x 10 4 and 4.4 x 10 4 neutrons/cm 2 /rad of x ray inside and 5 cm outside the field, respectively. Slow-neutron fluences, 1.3 x 10 4 neutrons/cm 2 /rad of x ray, remained relatively constant inside and outside the field. The reported results are about three times higher than neutron fluences recently reported with a betatron operated at the same energy

  15. Characterizations of double pulsing in neutron multiplicity and coincidence counting systems

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Katrina E., E-mail: kkoehler@lanl.gov [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States); Croft, Stephen S. [Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831 (United States); Henzlova, Daniela; Santi, Peter A. [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States)

    2016-10-01

    Passive neutron coincidence/multiplicity counters are subject to non-ideal behavior, such as double pulsing and dead time. It has been shown in the past that double-pulsing exhibits a distinct signature in a Rossi-alpha distribution, which is not readily noticed using traditional Multiplicity Shift Register analysis. However, it has been assumed that the use of a pre-delay in shift register analysis removes any effects of double pulsing. In this work, we use high-fidelity simulations accompanied by experimental measurements to study the effects of double pulsing on multiplicity rates. By exploiting the information from the double pulsing signature peak observable in the Rossi-alpha distribution, the double pulsing fraction can be determined. Algebraic correction factors for the multiplicity rates in terms of the double pulsing fraction have been developed. We discuss the role of these corrections across a range of scenarios.

  16. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core; Determinacion de la fluencia neutronica en las soldaduras del 'core shroud' del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M.A.; Xolocostli M, J.V.; Gomez T, A.M.; Palacios H, J.C. [ININ, 52750 Ocoyoacac, Estado de mexico (Mexico)]. e-mail: mal@nuclear.inin.mx

    2006-07-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, r{theta}, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  17. The use of vanadium as a scattering standard for pulsed source neutron spectrometers

    International Nuclear Information System (INIS)

    Mayers, J.

    1983-06-01

    The Gaussian approximation for multiphonon cross-sections has been used in a calculation of the variation of vanadium cross-sections with incident neutron energy. The results show that vanadium behaves as an elastic scatterer to within a few percent on pulsed neutron spectrometers with incident neutron energies up to 1 eV. There is a calculated anisotropy in the scattering of 8%. It is found that the scattering properties of vanadium at 77K and 293K differ by a maximum of 1% except for neutron energies < 15 meV. (author)

  18. Thermal neutron calibration channel at LNMRI/IRD

    International Nuclear Information System (INIS)

    Astuto, A.; Salgado, A.P.; Lopes, R.T.; Leite, S.P.; Patrao, K.C.S.; Fonseca, E.S.; Pereira, W.W.

    2014-01-01

    The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four 241 Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units. The pile construction form using blocks allows distinct arrangements for new studies and possibilities of other LNMRI reference fields. The results can be predicted by the simulation used in this work. Different number of each type of blocks and sources can be used. The main difference observed between the final measurement and simulation results might be due to the difference in composition of paraffin blocks used in assembling the pile. In order to confirm the thermal neutron field and fluence rate in the central chamber (inside the channel) that will be used to irradiate small neutron detectors, it is necessary to use another quantification method such as the gold foils activation with measurement traceability. It will be performed in a future stage. (authors)

  19. The high-density Z-pinch as a pulsed fusion neutron source for fusion nuclear technology and materials testing

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Sethian, J.D.; Hagenson, R.L.

    1989-01-01

    The dense Z-pinch (DZP) is one of the earliest and simplest plasma heating and confinement schemes. Recent experimental advances based on plasma initiation from hair-like (10s μm in radius) solid hydrogen filaments have so far not encountered the usually devastating MHD instabilities that plagued early DZP experiments. These encouraging results along with debt of a number of proof-of principle, high-current (1--2 MA in 10--100 ns) experiments have prompted consideration of the DZP as a pulsed source of DT fusion neutrons of sufficient strength (/dot S//sub N/ ≥ 10 19 n/s) to provide uncollided neutron fluxes in excess of I/sub ω/ = 5--10 MW/m 2 over test volumes of 10--30 litre or greater. While this neutron source would be pulsed (100s ns pulse widths, 10--100 Hz pulse rate), giving flux time compressions in the range 10 5 --10 6 , its simplicity, near-time feasibility, low cost, high-Q operation, and relevance to fusion systems that may provide a pulsed commercial end-product (e.g., inertial confinement or the DZP itself) together create the impetus for preliminary considerations as a neutron source for fusion nuclear technology and materials testings. The results of a preliminary parametric systems study (focusing primarily on physics issues), conceptual design, and cost versus performance analyses are presented. The DZP promises an expensive and efficient means to provide pulsed DT neutrons at an average rate in excess of 10 19 n/s, with neutron currents I/sub ω/ /approx lt/ 10 MW/m 2 over volumes V/sub exp/ ≥ 30 litre using single-pulse technologies that differ little from those being used in present-day experiments. 34 refs., 17 figs., 6 tabs

  20. Intense resonance neutron source (IREN) - new pulsed source for nuclear physical and applied investigations

    International Nuclear Information System (INIS)

    Anan'ev, V.D.; Furman, W.I.; Kobets, V.V.; Meshkov, I.N.; Pyataev, V.G.; Shirkov, G.D.; Shvets, V.A.; Sumbaev, A.P.; Kuatbekov, R.P.; Tret'yakov, I.T.; Frolov, A.R.; Gurov, S.M.; Logachev, P.V.; Pavlov, V.M.; Skarbo, B.A.

    2005-01-01

    An accelerator-driven subcritical system (200 MeV electron linac + metallic plutonium subcritical core) IREN is constructed at the Joint Institute for Nuclear Research (JINR). The new pulsed neutron source IREN is optimized for maximal yield of resonance neutrons (1-10 5 eV). The S-band electron linac with a pulse duration near 200 ns, repetition rate up to 150 Hz and the mean beam power 10 kW delivers 200-MeV electrons onto a specially designed tungsten target (an electron-neutron converter) situated in the center of a very compact and fast subcritical assembly with K eff 15 per second. A mean fission power of the multiplying target is planned to be near 15 kW. The current status of the project is presented

  1. Neutron irradiation results for the LHCb silicon tracker data readout system components

    CERN Document Server

    Vollhardt, A

    2003-01-01

    This note reports irradiation data for different components of the LHCb Silicon Tracker data readout system, which will be exposed to neutron fluences due to their location in the readout link service box on the tracking station frame. The components were part of a neutron irradiation campaign in April 2003 at the Prospero reactor at CEA Valduc (France) and were exposed to fluences 5 to 100 times higher than the expected fluences at the experiment. For all tested components, minor or no influence on device performance was measured. We therefore consider the tested components to be compatible with the expected neutron fluences at the foreseen locations in the LHCb experiment.

  2. Neutron-gamma discrimination based on bipolar trapezoidal pulse shaping using FPGAs in NE213

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Akbar-ashrafi, Nafiseh; Boghrati, Behzad; Afarideh, Hossein [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2012-12-01

    A technique employing neutron-gamma pulse shape discrimination (PSD) system that overcomes pile up limitations of previous methods to distinguish neutrons from gammas in scintillation detectors is described. The output signals of detectors were digitized and processed with a data acquisition system based on bipolar trapezoidal pulse shaping using Field programmable gate arrays (FPGA). FPGAs are capable of doing complex discrete signal processing algorithms with clock rates above 100 MHz. Their low cost, ease of use and selected dedicated hardware make them an ideal option for spectrometer systems.

  3. Pulse-shape discrimination of high-energy neutrons and gamma rays in NaI(Tl)

    International Nuclear Information System (INIS)

    Share, G.H.; Kurfess, J.D.; Theus, R.B.

    1978-01-01

    Pulse-shape discrimination can be used to separate neutron and gamma-ray interactions depositing energies up to in excess of 50 MeV in NaI(Tl) crystals. The secondary alpha particles, deuterons and protons produced in the neutron interactions are also resolvable. (Auth.)

  4. Design criteria for pulse transformers used in neutron detector pulse counting channels

    International Nuclear Information System (INIS)

    Powler, E.P.

    1963-10-01

    The need for long cables between the detector and head amplifier in neutron pulse counting channels has led to the development of systems in which a transformer is used to 'match' the high impedance of a fission or proportional counter to the characteristic impedance of the cable. A further transformer can be used to match the cable to the input of a low noise pulse amplifier if this has a high impedance. This report is intended to give the designer sufficient information to optimise a system and predict the performance in terms of signal to noise ratio, resolving time and gain. Related problems are covered and include the use of balanced twin cables, the requirements of temperatures up to 500 deg. C and the need for high interference rejection. Two systems are described in some detail to emphasise the principles of design. (author)

  5. Fast neutron spectrometer with pulse shape discrimination

    International Nuclear Information System (INIS)

    Verbitsky, S.S.

    1978-01-01

    A fast neutron spectrometer with a stilbene single crystal designed to operate at high pulsed count rate has been described. Making use of identification and rejection of events, accompanied by pile-up, allowed to increase permissible count rates by an order of magnitude. The results of energy dependence of signal amplitude and shape relative anisotropy in stilbene in the range 4-10 and 2-8 MeV respectively have been presented. Taking into account anisotropy of the detector-scintillation properties allowed to improve particle discrimination. (Auth.)

  6. Neutron spectra measurements and neutron flux monitoring for radiation damage purposes

    International Nuclear Information System (INIS)

    Osmera, B.; Petr, J.; Racek, J.; Rumler, C.; Turzik, Z.; Franc, L.; Holman, M.; Hogel, J.; Kovarik, K.; Marik, P.; Vespalec, R.; Albert, D.; Hansen, V.; Vogel, W.

    1979-09-01

    Neutron spectra were measured for the TR-0, WWR-S and SR-0 experimental reactors using the recoil proton method, 6 Li spectrometry, scintillation spectrometry and activation detectors in a variety of conditions. Neutron fluence was also measured and calculated. (M.S.)

  7. Biphasic fluence-response curves for phytochrome-mediated kalanchoë seed germination : sensitization by gibberellic Acid.

    Science.gov (United States)

    Rethy, R; Dedonder, A; De Petter, E; Van Wiemeersch, L; Fredericq, H; De Greef, J; Steyaert, H; Stevens, H

    1987-01-01

    The fluence-response curves for the effect of two red pulses separated by 24 hours on the germination of Kalanchoe blossfeldiana Poelln. cv Vesuv seeds, incubated on gibberellic acid (GA(3)) are biphasic for suboptimal concentrations. The response in the low fluence range corresponds with a classical red/far-red reversible phytochrome mediated reaction. GA(3) induces an additional response in the very low fluence range, which is also phytochrome mediated. The sensitivity to phytochrome-far-red absorbing form (Pfr), however, is increased about 20,000-fold, so that even far-red fluences become saturating. Both in the very low and low fluence response range, the maximal responses induced by saturating fluences are modulated by the GA(3) concentration. GA(3) having no direct influence on the phytochrome phototransformations, alters the Pfr requirement and determines the responding seed population fraction in the very low and low fluence range. The effet of GA(3) appears to be on the transduction chain of the phytochrome signal.

  8. Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer

    Science.gov (United States)

    Bedogni, Roberto; Esposito, Adolfo; Andreani, Carla; Senesi, Roberto; De Pascale, Maria Pia; Picozza, Piergiorgio; Pietropaolo, Antonino; Gorini, Giuseppe; Frost, Christopher D.; Ansell, Stewart

    2009-12-01

    One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) [1] ( http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm), a spectrometric characterization was performed on the VESUVIO beamline [2] (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.

  9. Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Esposito, Adolfo; Andreani, Carla; Senesi, Roberto; De Pascale, Maria Pia; Picozza, Piergiorgio; Pietropaolo, Antonino; Gorini, Giuseppe; Frost, Christopher D.; Ansell, Stewart

    2009-01-01

    One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) ((http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm)), a spectrometric characterization was performed on the VESUVIO beamline (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.

  10. Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, Roberto; Esposito, Adolfo [INFN-LNF Via E. Fermi n. 40-00044 Frascati (RM) (Italy); Andreani, Carla [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); Senesi, Roberto, E-mail: roberto.senesi@roma2.infn.i [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); De Pascale, Maria Pia; Picozza, Piergiorgio [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); Pietropaolo, Antonino; Gorini, Giuseppe [CNISM and Universita degli Studi di Milano Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Frost, Christopher D. [INFN-LNF Via E. Fermi n. 40-00044 Frascati (RM) (Italy); Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); CNISM and Universita degli Studi di Milano Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); STFC Rutherford Appleton Laboratory, ISIS Facility, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX (United Kingdom); Ansell, Stewart [STFC Rutherford Appleton Laboratory, ISIS Facility, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX (United Kingdom)

    2009-12-21

    One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) ((http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm)), a spectrometric characterization was performed on the VESUVIO beamline (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.

  11. Study of natural diamond detector spectrometric properties under neutron irradiation

    CERN Document Server

    Alekseyev, A B; Kaschuck, Y; Krasilnikov, A; Portnov, D; Tugarinov, S

    2002-01-01

    Natural diamond detector (NDD) performance was studied up to a neutron fluence of 10 sup 1 sup 5 neutron/cm sup 2. The variations of the NDD spectrometric response to incident alpha-particles from sup 2 sup 4 sup 1 Am source after exposure to fast neutron fluences up to 3x10 sup 1 sup 6 n/cm sup 2 were examined. No significant variations up to the level of 10 sup 1 sup 4 n/cm sup 2 were observed. Degradation of charge collection efficiency at higher fluences is reported. No remarkable increase of the NDD leakage current and count rate change had been observed up to a neutron fluence of 3x10 sup 1 sup 6 n/cm sup 2. The charge collection efficiency variations of neutron irradiated diamond spectrometer were studied ex situ under gamma-rays, beta-radiation and visible light excitation. Charge collection efficiency restoration up to 75% level and the NDD performance stabilization by extrinsic low-intensity visible light (550 nm

  12. Results and plans on the development of a pulsed neutron generator

    International Nuclear Information System (INIS)

    Sztaricskai, T.; Vasvary, L.; Petoe, G.

    1976-01-01

    Using the vacuum system of an old van de Graaff machine a new pulsed neutron generator has been developed. The block diagram, the scheme of generators arrangement and the electrode system of the ion bunching parts are shown

  13. Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence

    Energy Technology Data Exchange (ETDEWEB)

    Remy, L.; Cheymol, G. [CEA, French Nuclear Energy Commission, Nuclear Energy Division, DPC/SEARS/LISL Bat 467 CEA Saclay 91191 Gif/Yvette Cedex (France); Gusarov, A. [SCK.CEN - Belgian Nuclear Research center, Boeretang 200 2400 Mol (Belgium); Morana, A.; Marin, E.; Girard, S. [Universite de Saint-Etienne, Laboratoire Hubert Curien, UMR CNRS5516, 18, rue du Pr. Lauras, F-42000 Saint-Etienne (France)

    2015-07-01

    In the framework of the development by CEA and SCK.CEN of a Fabry Perot Sensor (FPS) able to measure dimensional changes in Material Testing Reactor (MTR), the first goal of the SAKE 1 (Smirnof extention - Additional Key-tests on Elongation of glass fibres) irradiation was to measure the linear compaction of single mode fibres under high fast neutron fluence. Indeed, the compaction of the fibre which forms one side of the Fabry Perot cavity, may in particular cause a noticeable measurement error. An accurate quantification of this effect is then required to predict the radiation-induced drift and optimize the sensor design. To achieve this, an innovative approach was used. Approximately seventy uncoated fibre tips (length: 30 to 50 mm) have been prepared from several different fibre samples and were installed in the SCK.CEN BR2 reactor (Mol Belgium). After 22 days of irradiation a total fast (E > 1 MeV) fluence of 3 to 5x10{sup 19} n{sub fast}/cm{sup 2}, depending on the sample location, was accumulated. The temperature during irradiation was 291 deg. C, which is not far from the condition of the intended FPS use. A precise measurement of each fibre tip length was made before the irradiation and compared to the post irradiation measurement highlighting a decrease of the fibres' length corresponding to about 0.25% of linear compaction. The amplitude of the changes is independent of the capsule, which could mean that the compaction effect saturates even at the lowest considered fluence. In the prospect of performing distributed temperature measurement in MTR, several fibre Bragg gratings written using a femtosecond laser have been also irradiated. All the gratings were written in radiation hardened fibres, and underwent an additional treatment with a procedure enhancing their resistance to ionizing radiations. A special mounting made it possible to test the reflection and the transmission of the gratings on fibre samples cut down to 30 to 50 mm. The comparison

  14. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    Science.gov (United States)

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  15. Accuracy and borehole influences in pulsed neutron gamma density logging while drilling

    Energy Technology Data Exchange (ETDEWEB)

    Yu Huawei [College of Geo-Resources and Information, China University of Petroleum, Qingdao, Shandong 266555 (China); Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Sun Jianmeng [College of Geo-Resources and Information, China University of Petroleum, Qingdao, Shandong 266555 (China); Wang Jiaxin [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Gardner, Robin P., E-mail: gardner@ncsu.edu [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2011-09-15

    A new pulsed neutron gamma density (NGD) logging has been developed to replace radioactive chemical sources in oil logging tools. The present paper describes studies of near and far density measurement accuracy of NGD logging at two spacings and the borehole influences using Monte-Carlo simulation. The results show that the accuracy of near density is not as good as far density. It is difficult to correct this for borehole effects by using conventional methods because both near and far density measurement is significantly sensitive to standoffs and mud properties. - Highlights: > Monte Carlo evaluation of pulsed neutron gamma-ray density tools. > Results indicate sensitivity of the tool to standoff and mudcake properties. > Accuracy of far spaced detector is better than near spaced.

  16. Accuracy and borehole influences in pulsed neutron gamma density logging while drilling

    International Nuclear Information System (INIS)

    Yu Huawei; Sun Jianmeng; Wang Jiaxin; Gardner, Robin P.

    2011-01-01

    A new pulsed neutron gamma density (NGD) logging has been developed to replace radioactive chemical sources in oil logging tools. The present paper describes studies of near and far density measurement accuracy of NGD logging at two spacings and the borehole influences using Monte-Carlo simulation. The results show that the accuracy of near density is not as good as far density. It is difficult to correct this for borehole effects by using conventional methods because both near and far density measurement is significantly sensitive to standoffs and mud properties. - Highlights: → Monte Carlo evaluation of pulsed neutron gamma-ray density tools. → Results indicate sensitivity of the tool to standoff and mudcake properties. → Accuracy of far spaced detector is better than near spaced.

  17. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Poehlsen, Thomas

    2010-04-01

    In this work epitaxial n-type silicon diodes with a thickness of 100 μm and 150 μm are investigated. After neutron irradiation with fluences between 10 14 cm -2 and 4 x 10 15 cm -2 annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10 14 cm -2 showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time τ eff . Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time τ eff (E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 μm thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  18. Neutron irradiation effects on silicon detectors structure, electrical and mechanical characteristics

    International Nuclear Information System (INIS)

    Rabinovich, E.; Golan, G.; Axelevich, A.; Inberg, A.; Oksman, M.; Rosenwaks, I.; Lubarsky, G.; Seidman, A.; Croitoru, N.; Rancoita, P.G.; Rattaggi, M.

    1999-01-01

    Neutron irradiation effects on (p-n) and Schottky-junction silicon detectors were studied. It was shown that neutron interactions with monocrystalline silicon create specific types of microstructure defects with morphology differing according to the level of neutron fluences (Φ). The isolated dislocation loops, formed by interstitial atoms were observed in microstructure images for 10 10 ≤ Φ ≤ 10 12 n/cm 2 . A strong change in the dislocation loops density and a cluster formation was observed for Φ ≥ 10 13 n/cm 2 . A drastic silicon damage was found for fluences over 10 14 n/cm 2 . These fluences created zones enriched with all types of dislocations, covering more than 50 % of the total surface area. A mechanical fragility appeared in that fluence range in a form of microcracks. 10 14 n/cm 2 appears to be a critical value of neutron irradiation because of the radiation damage described above and because the characteristics I f -V f of silicon detectors can be differentiated from those obtained at low fluences. (A.C.)

  19. Performance of novel moderator for pulsed neutron diffraction

    International Nuclear Information System (INIS)

    Mayer, R.E.; Granada, J.R.; Dawidowski, J.; Gillette, V.H.

    1991-01-01

    Measurements of neutron pulse time-width and intensity have been carried out on grids of small moderators placed side by side and decoupled by cadmium strips. This moderator concept had been introduced at ICANS-10. The present measurements explore greater moderator thicknesses than those previously attained, yielding information on thickness optimization, while confirming the previous results on resolution which make this moderator a favourable choice in front of the conventional sandwich set-up. (author)

  20. Study of two-zone reactor system using a pulsed neutron technique

    International Nuclear Information System (INIS)

    Shishin, B.P.; Platovskikh, Yu.A.; Didejkin, T.S.

    1977-01-01

    Theoretical and experimental investigations of a neutron flux time dependence after a sport fast neutron pulse in a reactor core - neutron reflector multiplying system have been conducted. A correlation between eigenvalues governing neutron flux decrease at t→infinity for the two-zone system and eigenvalues for each zone has been established in terms of the one-group diffusion approximation. Experiments have been performed in an experimental subcritical assembly comprising a cylindrical uranium core surrounded by a radial water reflector with different boric acid concentrations. The experiments show that the observed neutron flux decrease in the core is governed by an exponent exp(-Λ 1 t), whereas in the reflector by a sum of two exponents exp(-Λ 1 t) and exp(-Λ 2 t). The eigenvalue Λ 1 reflects multiplying properties of the reactor, and Λ 2 is determined by the reflector absorption cross section

  1. Intense pulsed neutron source accelerator status

    International Nuclear Information System (INIS)

    Potts, C.W.; Brumwell, F.R.; Stipp, V.F.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) facility has been in operation since November 1, 1981. From that date through August 1, 1983, the accelerator system was scheduled for 7191 hours of operation. During this period, 627 million pulses totaling about 1.1 x 10 21 protons were delivered to the spallation target. The accelerator has exceeded goals set in 1981 by averaging 8.65 μA over this two year period. This average beam current, while modest by the standards of proposed machines, makes the IPNS synchrotron (Rapid Cycling Synchrotron [RCS]) the highest intensity proton synchrotron in the world today. Detailed data on accelerator operation are presented. Weekly average currents of 12 μA have been achieved along with peaks of 13.9 μA. A great deal has been learned about the required operating constraints during high beam current operation. It should be possible to increase the average beam current during this next year to 12 μA while observing these restraints. Improvement plans have been formulated to increase the beam current to 16 μA over the next three years

  2. Effects of laser focusing and fluence on the analysis of pellets of plant materials by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Gustinelli Arantes de Carvalho, Gabriel; Santos, Dario; Nunes, Lidiane Cristina; Gomes, Marcos da Silva; Leme, Flavio de Oliveira; Krug, Francisco José

    2012-01-01

    The effects of laser focusing and fluence on LIBS analysis of pellets of plant leaves was evaluated. A Q-switched Nd:YAG laser (5 ns, 10 Hz, 1064 nm) was used and the emission signals were collected by lenses into an optical fiber coupled to a spectrometer with Echelle optics and ICCD. Data were acquired from the accumulation of 20 laser pulses at 2.0 μs delay and 5.0 μs integration time gate. The emission signal intensities increased with both laser fluence and spot size. Higher sensitivities for Ca, K, Mg, P, Al, B, Cu, Fe, Mn, and Zn determinations were observed for fluences in the range from 25 to 60 J cm −2 . Coefficients of variation of site-to-site measurements were generally lower than 10% (n = 30 sites, 20 laser pulses/site) for a fluence of 50 J cm −2 and 750 μm spot size. For most elements, there is an indication that accuracy is improved with higher fluences. - Highlights: ► Laser focusing and fluence affect the quality of LIBS results. ► Improvements on sensitivity and precision were observed for most analytes. ► Matrix effects can be minimized by choosing the most appropriate fluence.

  3. The use of pulsed neutron diffraction to measure strain in composites

    International Nuclear Information System (INIS)

    Bourke, M.A.M.; Goldstone, J.A.; Shi, N.; Gray, G.T. III; James, M.R.

    1994-01-01

    Neutron diffraction is a technique for measuring strain in crystalline materials. It is non destructive, phase discriminatory and more penetrating than X rays. Pulsed neutron sources (in contrast with steady state reactor sources) are particularly appropriate for examining heterogeneous materials or for recording the polycrystalline response of all lattice reflections. Several different aspects of composite behavior can be characterized and examples are given of residual strain measurements, strain relaxation during heating, applied loading, and determination of the strain distribution function

  4. Shape difference between scintillation pulses due to γ rays and to neutrons

    International Nuclear Information System (INIS)

    Cambou, Francis; Ambrosino, Georges

    1960-01-01

    A simple method is described which allows to clearly show the shape differences between γ ray- and neutron-induced pulses. In the neutrons case the intensity of the slow component is 2.4 times higher than in the γ ray case. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1034-1036, sitting of 8 February 1960 [fr

  5. Neutron irradiation effect of thermally-sensitized stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hide, Kouitiro [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) susceptibility of irradiated thermally-sensitized Type 304 Stainless Steels (SSs) was studied as a function of neutron fluence and correlated with mechanical responses of the materials. Neutron irradiation was carried out to neutron fluences up to 1.1 x 10{sup 24} n/m{sup 2} (E > 1MeV) at the light water reactor temperature in the Japan Material Test Reactor. The irradiated specimens were examined by slow strain rate stress corrosion cracking tests in 290degC pure water of 0.2 ppm dissolved oxygen concentration and microhardness measurements. The IGSCC susceptibility of the irradiated specimens increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}. From an attempt to correlate the IGSCC susceptibility with the mechanical properties, an excellent correlation was identified between the susceptibility and microhardness increments at the grain boundary relative to the grain center. While intergranular corrosion rate of thermally sensitized SS increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}, that of solution annealed SS did not change. The incremental grain boundary hardening and degradation of intergranular corrosion resistance may presumably be the major factors affecting IGSCC performance. (author)

  6. Effects of laser energy fluence on the onset and growth of the Rayleigh–Taylor instabilities and its influence on the topography of the Fe thin film grown in pulsed laser deposition facility

    International Nuclear Information System (INIS)

    Mahmood, S.; Rawat, R. S.; Wang, Y.; Lee, S.; Tan, T. L.; Springham, S. V.; Lee, P.; Zakaullah, M.

    2012-01-01

    The effect of laser energy fluence on the onset and growth of Rayleigh–Taylor (RT) instabilities in laser induced Fe plasma is investigated using time-resolved fast gated imaging. The snow plow and shock wave models are fitted to the experimental results and used to estimate the ablation parameters and the density of gas atoms that interact with the ablated species. It is observed that RT instability develops during the interface deceleration stage and grows for a considerable time for higher laser energy fluence. The effects of RT instabilities formation on the surface topography of the Fe thin films grown in pulsed laser deposition system are investigated (i) using different laser energy fluences for the same wavelength of laser radiation and (ii) using different laser wavelengths keeping the energy fluence fixed. It is concluded that the deposition achieved under turbulent condition leads to less smooth deposition surfaces with bigger sized particle agglomerates or network.

  7. Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code

    Science.gov (United States)

    Faghihi, F.; Mehdizadeh, S.; Hadad, K.

    Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.

  8. The application of pulse shape discrimination in NE 213 to neutron spectrometry

    International Nuclear Information System (INIS)

    Perkins, L.J.; Scott, M.C.

    1979-01-01

    The use of a zero-crossing pulse shape discrimination technique to distinguish protons from alpha particles in NE 213 is described, and a theoretical analysis is performed to predict the zero crossing characteristics. It is shown that, irrespective of the particular method of pulse shape discrimination employed, the pulse shape at low energies no longer uniquely determines the particle type for electrons, protons, alpha particles or 12 C nuclei, and the general limitations of pulse shape discrimination in NE 213 are deduced. The use of an alpha discrimination technique is then discribed, enabling neutron spectra to be unfolded from the measured detector response using a differential code. (orig.)

  9. Simultaneous multi-element analysis of some edible pulses using neutron activation analysis

    International Nuclear Information System (INIS)

    El-Sweify, F.H.; Metwally, E.; Abdel-Khalik, H.

    2007-01-01

    This paper comprises the application of instrumental neutron activation analysis (INAA) for multi-element determination in some edible pulse samples. These edible pulses are usually daily used in the Egyptian kitchen. These were: anise, cumin, coriander, caraway, black cumin, white kidney bean, lupine, lentil, chickpea, broad bean, peanut, almond, and fenugreek. The pulses have been analyzed as dehulled pulses, in the case of legume and oil pulses with simultaneous analysis of their respective skins. The determined elements were: Ce, Co, Cr, Cs, Eu, Fe, Hf, Rb, Sb, Sc, Sr, Th and Zn. The element content in the dehulled pulses and their respective skins has been compared. Some elements were major or minor elements where others were trace elements. Standard reference materials were used to assure quality control, accuracy and precision of the technique. (author)

  10. A pulsed fast reactor; Un reacteur pulse a neutrons rapides; Impul'snyj reaktor na bystrykh nejtronakh; Reactor rapido pulsado

    Energy Technology Data Exchange (ETDEWEB)

    Blokhin, G. E.; Blokhintsev, D. I.; Blyumkina, Yu. A.; Bondarenko, I. I.; Deryagin, B. N.; Zajmovskij, A. S.; Zinov' ev, V. P.; Kazachkovskij, O. D.; Krasnoyarov, N. V.; Lejpunskij, A. I.; Malykh, V. A.; Nazarov, P. M.; Nikolaev, S. K.; Stavisskij, Yu. Ya.; Ukraintsev, F. I.; Frank, I. M.; Shapiro, F. Ji.; Yazvitskij, Yu. S. [Akademiya Nauk, Moscow, SSSR (Russian Federation)

    1962-03-15

    A pulsed fast reactor (IBR) has been operating at rated capacity since December 1960 in the Joint Institute for Nuclear Research. This reactor is used as a pulsed neutron source for physical experiments carried out by the time-of-flight method. It is used for total cross-section and intermediate neutron capture cross- section measurements, for studying the interaction between slow neutrons and solids and liquids, and for measuring neutron spectra produced in various media. The paper describes the basic structural features of the reactor and the results of the experiments for which it has been used. The reactor's operating system is based on recurrent pulses. Power pulses are produced when the mobile part of the reactor core moves swiftly through the stationary part of the core. The mobile part of the core is fastened to a rotating disc and travels at a speed of 230 m/s. The frequency of power pulses can be altered by means of an auxiliary mobile zone which has a range of 2.3-88 pulses per second. The mean power of the reactor is 1 kW, and the half-width of the power pulse in 36 {mu}s. The reactor is provided with a control and safety system which ensures automatic maintenance of mean power and swift shutdown in the event of any operational irregularity. It is fitted with a system of evacuated-neutron-flight tubes used in time-of-flight experiments. The main tube is 1000 m in length. In the start-up process and during physical experiments carried out on the reactor, the influence on reactivity of displacing the controls and the mobile parts of the core was studied ; the length of the pulse was measured under various operating conditions, and power pulse amplitude fluctuations were studied. Further measurements were made to establish the lifetime of prompt neutrons, the effective fraction of delayed neutrons, and coefficients of reactivity. (author) [French] L'Institut unifie de recherches nucleaires dispose d'un reacteur puise a neutrons rapides (IBR), qui

  11. Instrumentation system for pulsed neutron generator. Pt. 1. Electronic control and data acquisition

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Janik, W.; Kosik, M.; Kurowski, A.; Zaleski, T.

    1997-01-01

    The paper presents an electronic instrumentation system which is successfully applied for pulsed neutron generator and measurements. In the paper there are described in details all modernized parts of the system as well as new designed and applied ones. The set of diagrams is enclosed. An important part of the system has been designed and built in the Neutron Transport Physics Laboratory. (author)

  12. A wide-range direction neutron spectrometer

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; D'Errico, F.; Hecker, O.; Matzke, M.

    2002-01-01

    A new device is presented which has been developed for measuring the energy and direction of distribution of neutron fluence in fields of broad energy spectra (thermal to 100 MeV) and with a high background of photon, electron and muon radiation. The device was tested in reference fields with different energy and direction distributions of neutron fluence. The direction-integrated fluence spectra agree fairly well with reference spectra. In all cases, the ambient and personal dose equivalent values calculated from measured direction-differential spectra are within 35% of the reference values. Independent measurements of the directional dose equivalent were performed with a directional dose equivalent monitor based on superheated drop detectors

  13. Nondestructive analysis of the natural uranium mass through the measurement of delayed neutrons using the technique of pulsed neutron source; Analise nao destrutiva da massa de uranio natural atraves da medida de neutrons atrasados com o uso da tecnica de fonte pulsada de neutrons rapidos

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Paulo Rogerio Pinto

    1979-07-01

    This work presents results of non destructive mass analysis of natural uranium by the pulsed source technique. Fissioning is produced by irradiating the test sample with pulses of 14 MeV neutrons and the uranium mass is calculated on a relative scale from the measured emission of delayed neutrons. Individual measurements were normalised against the integral counts of a scintillation detector measuring the 14 MeV neutron intensity. Delayed neutrons were measured using a specially constructed slab detector operated in anti synchronism with the fast pulsed source. The 14 MeV neutrons were produced via the T(d,n) {sup 4}He reaction using a 400 kV Van de Graaff accelerated operated at 200 kV in the pulsed source mode. Three types of sample were analysed, namely: discs of metallic uranium, pellets of sintered uranium oxide and plates of uranium aluminium alloy sandwiched between aluminium. These plates simulated those of Material Testing Reactor fuel elements. Results of measurements were reproducible to within an overall error in the range 1.6 to 3.9%; the specific error depending on the shape, size and mass of the sample. (author)

  14. Pulse-shape discrimination in radioanalytical methods. Part I. Delayed fission neutron counting

    International Nuclear Information System (INIS)

    Posta, S.; Vacik, J.; Hnatowicz, V.; Cervena, J.

    1999-01-01

    In this study the principle of pulse shape discrimination (PSD) has been employed in delayed fission neutron counting (DNC) method. Effective elimination of unwanted gamma background signals in measured radiation spectra has been proved. (author)

  15. Characteristics of GaAs MESFET inverters exposed to high energy neutrons

    International Nuclear Information System (INIS)

    Bloss, W.L.; Yamada, W.E.; Young, A.M.; Janousek, B.K.

    1988-01-01

    GaAs MESFET circuits have been exposed to high energy neutrons with fluences ranging from 1x10/sup 14/ n/cm/sup 2/ to 2x10/sup 15/ m/cm/sup 2/. Discrete transistors, inverters, and ring oscillators were characterized at each fluence. While the MESFETs exhibit significant threshold voltage shifts and transconductance and saturation current degradation over this range of neutron fluences, the authors have observed improvement in the DC characteristics of Schottky Diode FET Logic (SDFL) inverters. This unusual result has been successfully simulated using device parameters extracted from FETs damaged by exposure to high energy neutrons. Although the decrease in device transconductance results in an increase in inverter gate delay, as reflected in ring oscillator frequency measurements, the authors conclude that GaAs ICs fabricated from this logic family will remain functional after exposure to extreme neutron fluences. This is a consequence of the observed improvement in inverter noise margin evident in both measured and simulated circuit performance

  16. Calibration of a detector by activation with a continuous neutron source used as a transfer standard for measuring pulsed neutron beams

    International Nuclear Information System (INIS)

    Moreno, Jose; Silva, Patricio; Birstein, Lipo; Soto, Leopoldo

    2002-01-01

    This paper presents a method for calibrating activation detectors. These detectors will be used as transfer standard in measuring neutron fluxes produced by pulsed plasma sources. A standard neutron source is used as a secondary standard. The activation detector is being shielded in order to substantially reduce detection of gamma emission coming from the source. The detector's calibration factor is obtained by considering also the standard neutron source as a free source of gamma radiation so that the measurements can be done without quickly withdrawing the neutron source as it is usually done. This will substantially simplify the traditionally established method (JM)

  17. Design of 6 Mev linear accelerator based pulsed thermal neutron source: FLUKA simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T.; Pethe, S.N.; Krishnan, R. [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2012-01-15

    The 6 MeV LINAC based pulsed thermal neutron source has been designed for bulk materials analysis. The design was optimized by varying different parameters of the target and materials for each region using FLUKA code. The optimized design of thermal neutron source gives flux of 3 Multiplication-Sign 10{sup 6}ncm{sup -2}s{sup -1} with more than 80% of thermal neutrons and neutron to gamma ratio was 1 Multiplication-Sign 10{sup 4}ncm{sup -2}mR{sup -1}. The results of prototype experiment and simulation are found to be in good agreement with each other. - Highlights: Black-Right-Pointing-Pointer The optimized 6 eV linear accelerator based thermal neutron source using FLUKA simulation. Black-Right-Pointing-Pointer Beryllium as a photonuclear target and reflector, polyethylene as a filter and shield, graphite as a moderator. Black-Right-Pointing-Pointer Optimized pulsed thermal neutron source gives neutron flux of 3 Multiplication-Sign 10{sup 6} n cm{sup -2} s{sup -1}. Black-Right-Pointing-Pointer Results of the prototype experiment were compared with simulations and are found to be in good agreement. Black-Right-Pointing-Pointer This source can effectively be used for the study of bulk material analysis and activation products.

  18. Electron-volt spectroscopy at a pulsed neutron source using a resonance detector technique

    CERN Document Server

    Andreani, C; Senesi, R; Gorini, G; Tardocchi, M; Bracco, A; Rhodes, N; Schooneveld, E M

    2002-01-01

    The effectiveness of the neutron resonance detector spectrometer for deep inelastic neutron scattering measurements has been assessed by measuring the Pb scattering on the eVS spectrometer at ISIS pulsed neutron source and natural U foils as (n,gamma) resonance converters. A conventional NaI scintillator with massive shielding has been used as gamma detector. A neutron energy window up to 90 eV, including four distinct resonance peaks, has been assessed. A net decrease of the intrinsic width of the 6.6 eV resonance peak has also been demonstrated employing the double difference spectrum technique, with two uranium foils of different thickness.

  19. New thermal neutron calibration channel at LNMRI/IRD

    International Nuclear Information System (INIS)

    Astuto, A.; Lopes, R.T.; Patrao, K.C.S.; Fonseca, E.S.; Pereira, W.W.

    2015-01-01

    A new standard thermal neutron flux unit was designed in the National Ionizing Radiation Metrology Laboratory (LNMRI) for calibration of neutron detectors. Fluence is achieved by moderation of four 241 Am-Be sources with 596 GBq each, in a facility built with graphite and paraffin blocks. The study was divided into two stages. First, simulations were performed using MCNPX code in different geometric arrangements, seeking the best performance in terms of fluence and their uncertainties. Last, the system was assembled based on the results obtained on the simulations. The simulation results indicate quasi-homogeneous fluence (less than 1%) in the central chamber. (author)

  20. Microstructural interpretation of the fluence and temperature dependence of the mechanical properties of irradiated AISI 316

    International Nuclear Information System (INIS)

    Johnson, G.D.; Garner, F.A.; Brager, H.R.; Fish, R.L.

    1980-01-01

    The effects of neutron irradiation on the mechanical properties of annealed and 20% cold-worked AISI 316 irradiated in EBR-II were determined for the temperature regime of 370 to 760 0 C for fluences up to 8.4 x 10 22 n/cm 2 (E > 0.1 MeV). At irradiation temperatures below about 500 0 C, both annealed and cold-worked material exhibit a substantial increase in the flow stress with increasing fluence. Furthermore, both materials eventually exhibit the same flow stress, which is independent of fluence. At temperatures in the range of 538 to 650 0 C, the cold-worked material exhibits a softening with increasing fluence. Annealed AISI 316 in this temperature regime exhibits hardening and at a fluence of 2 to 3 x 10 22 n/cm 2 (E > 0.1 MeV) reaches the same value of flow stress as the cold-worked material

  1. The use of diffusion theory to compute invasion effects for the pulsed neutron thermal decay time log

    International Nuclear Information System (INIS)

    Tittle, C.W.

    1992-01-01

    Diffusion theory has been successfully used to model the effect of fluid invasion into the formation for neutron porosity logs and for the gamma-gamma density log. The purpose of this paper is to present results of computations using a five-group time-dependent diffusion code on invasion effects for the pulsed neutron thermal decay time log. Previous invasion studies by the author involved the use of a three-dimensional three-group steady-state diffusion theory to model the dual-detector thermal neutron porosity log and the gamma-gamma density log. The five-group time-dependent code MGNDE (Multi-Group Neutron Diffusion Equation) used in this work was written by Ferguson. It has been successfully used to compute the intrinsic formation life-time correction for pulsed neutron thermal decay time logs. This application involves the effect of fluid invasion into the formation

  2. REM meter for pulsed sources of neutrons

    International Nuclear Information System (INIS)

    Thorngate, J.E.; Hunt, G.F.; Rueppel, D.W.

    1980-01-01

    A rem meter was constructed specifically for measuring neutrons produced by fusion experiments for which the source pulses last 10 ms or longer. The detector is a 6 Li glass scintillator, 25.4 mm in diameter and 3.2 mm thick, surrounded by 11.5 cm of polyethylene. This detector has a sensitivity of 8.5 x 10 4 counts/mrem. The signals from this fast scintillator are shaped using a shorted delay line to produce pulses that are only 10 ns long so that dose equivalent rates up to 12 mrem/s can be measured with less than a 1% counting loss. The associated electronic circuits store detector counts only when the count rate exceeds a preset level. When the count rate returns to background, a conversion from counts to dose equivalent is made and the results are displayed. As a means of recording the number of source pulses that have occurred, a second display shows how many times the preset count rate has been exceeded. Accumulation of detector counts and readouts can also be controlled manually. The unit will display the integrated dose equilavent up to 200 mrem in 0.01 mrem steps. A pulse-height discriminator rejects gamma-ray interactions below 1 MeV, and the detector size limits the response above that energy. The instrument can be operated from an ac line or will run on rechargeable batteries for up to 12 hours

  3. Tests on a digital neutron-gamma pulse shape discriminator with NE213

    International Nuclear Information System (INIS)

    Bell, Z.W.

    1981-01-01

    A technique using charge sensitive analog-to-digital converters to do neutron-gamma pulse shape discrimination is reported. The converters are gated by short (135 ns) pulses so as to reduce pile-up and the timing is such that the slow and total light output from the scintillator are measured. Preliminary tests indicate that the system performs reasonably well but poorer than some reported analog systems employing gated integrators or cross-over techniques. (orig.)

  4. Neutron polarization measurements using the pulsed-polarized proton and deuteron beams at TUNL

    International Nuclear Information System (INIS)

    Walter, R.L.

    1981-01-01

    Nanosecond wide pulses of polarized protons or deuterons at a repetition rate of 4 MHz are now routinely available for studying interactions involving outgoing neutrons. Up to 90 nA of protons and 200 nA of deuterons have been observed on target. The authors' first experiments involved the determination of the analyzing power A /SUB y/ (UJ) for a few (→p,n) and (→d,n) reactions using conventional neutron time-of-flight detection. A major program for observing polarization effects in neutron elastic scattering has been initiated. The source of polarized neutrons for this program is the 2 H(→d,n→) 3 He reaction which yields a neutron beam having 90% of the polarization of the incident deuterons

  5. Application of damage functions to CTR component fluence limit predictions

    International Nuclear Information System (INIS)

    Simons, R.L.; Doran, D.G.

    1975-01-01

    Material behavior observed under irradiation conditions in test reactors is not always directly applicable to the design of reactor components such as CTR first wall because of differences in the damage effectiveness of test reactor and service spectra. The interpolation and, under some conditions, extrapolation of material property change data from test conditions to different neutron spectra in service conditions can be accomplished using semi-empirical damage functions. The derivation and application of damage functions to CTR conditions is reviewed. Since limited amounts of data are available for applications to CTR design spectra, considerable attention is placed on the effectiveness of various available and proposed neutron sources in determining a damage function and subsequent fluence limit prediction. Neutron sources included in this study were EBR-II, HIFR, LAMPF (Be and Cu targets), high energy deuterons incident on Be (D-Be), and 14 MeV neutrons (D-T)

  6. High fluence deposition of polyethylene glycol films at 1064 nm by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.

    2007-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) has been applied for deposition of thin polyethylene glycol (PEG) films with infrared laser light at 1064 nm. We have irradiated frozen targets (of 1 wt.% PEG dissolved in water) and measured the deposition rate in situ with a quartz crystal 2...... microbalance. The laser fluence needed to produce PEG films turned out to be unexpectedly high with a threshold of 9 J/cm(2) and the deposition rate was much lower than that with laser light at 355 nm. Results from matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI......-TOF-MS) analysis demonstrate that the chemistry, molecular weight and polydispersity of the PEG films were identical to the starting material. Studies of the film surface with scanning electron microscopy (SEM) indicate that the Si-substrate is covered by a relatively homogenous PEG film with few bare spots. (c...

  7. Optimal and safe treatment of spider leg veins measuring less than 1.5 mm on skin type IV patients, using repeated low-fluence Nd:YAG laser pulses after polidocanol injection.

    Science.gov (United States)

    Moreno-Moraga, Javier; Hernández, Esteban; Royo, Josefina; Alcolea, Justo; Isarría, M Jose; Pascu, Mihail Lucian; Smarandache, Adriana; Trelles, Mario

    2013-05-01

    Treatment of micro-veins of less than 1.5 mm with laser and with chemical sclerosis is technically challenging because of their difficulty to remedy. Laser treatment is even more difficult when dark phototypes are involved.Three groups of 30 patients each, skin type IV, and vessels measuring less than 1.5 mm in diameter, were enrolled for two treatment sessions 8 weeks apart: group A, polidocanol (POL) micro-foam injection; group B, Nd:YAG laser alone; and group C, laser after POL injection. Repeated 8-Hz low-fluence pulses, moving the hand piece over a 3-cm vein segment with an average of five laser passes maximum and with a total time irradiation of 1 s were used. Sixteen weeks after the second treatment, statistically, degree of clearance after examining photographs and patients satisfaction index, plotted on a visual analogue scale and comparing results of all three groups, results were significantly better for group C (psafe and satisfactory in 96 % of patients using low-fluence laser pulses with a total cumulative energy in the 3 cm venous segment, lower than that of conventional treatment. Very few and transient complications were observed. POL foam injection followed by laser pulses is safe and efficient for vein treatment in dark-skinned patients.

  8. Thermal neutron pulsed parameters in non-hydrogenous systems. Experiment for lead grains

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Gabanska, B.; Kosik, M.; Krynicka, E.; Woznicka, U.; Zaleski, T.

    1997-01-01

    In Czubek's method of measurement of the thermal neutron macroscopic absorption cross section a two-region geometry is applied where the investigated sample is surrounded by an external moderator. Both regions in the measurements made up till now were hydrogenous, which means the same type of the thermal neutron transport properties. In the paper a theoretical consideration to use non-hydrogenous materials as the samples is presented. Pulsed neutron measurements have been performed on homogeneous material in a geometry of the classic experiment with the variable geometric buckling. Two decay constants have been measured for different cylindrical samples of small lead grains (a lead shot). (author)

  9. Determination of the thermal and epithermal neutron sensitivities of an LBO chamber

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Satoru; Kotani, Kei; Kajimoto, Tsuyoshi; Tanaka, Kenichi [Hiroshima University, Quantum Energy Applications, Graduate School of Engineering, Higashi-Hiroshima (Japan); Sato, Hitoshi; Nakajima, Erika [Ibaraki Prefectural University of Health Science, Radiological Sciences, Ibaraki (Japan); Shimazaki, Takuto [Hiroshima University, Quantum Energy Applications, Graduate School of Engineering, Higashi-Hiroshima (Japan); Delta Kogyo Co., Ltd., Hiroshima (Japan); Suda, Mitsuru; Hamano, Tsuyoshi [National Institute of Radiological Sciences, Chiba-Shi, Chiba (Japan); Hoshi, Masaharu [Hiroshima University, Institute for Peace Science, Hiroshima (Japan)

    2017-08-15

    An LBO (Li{sub 2}B{sub 4}O{sub 7}) walled ionization chamber was designed to monitor the epithermal neutron fluence in boron neutron capture therapy clinical irradiation. The thermal and epithermal neutron sensitivities of the device were evaluated using accelerator neutrons from the {sup 9}Be(d, n) reaction at a deuteron energy of 4 MeV (4 MeV d-Be neutrons). The response of the chamber in terms of the electric charge induced in the LBO chamber was compared with the thermal and epithermal neutron fluences measured using the gold-foil activation method. The thermal and epithermal neutron sensitivities obtained were expressed in units of pC cm{sup 2}, i.e., from the chamber response divided by neutron fluence (cm{sup -2}). The measured LBO chamber sensitivities were 2.23 x 10{sup -7} ± 0.34 x 10{sup -7} (pC cm{sup 2}) for thermal neutrons and 2.00 x 10{sup -5} ± 0.12 x 10{sup -5} (pC cm{sup 2}) for epithermal neutrons. This shows that the LBO chamber is sufficiently sensitive to epithermal neutrons to be useful for epithermal neutron monitoring in BNCT irradiation. (orig.)

  10. Apparatus for reducing pulse pileup in an elemental analyzer measuring gamma rays arising from neutron capture in bulk substances

    International Nuclear Information System (INIS)

    Marshall, J.H. III.

    1979-01-01

    The active reduction of the number of analyzed events with pulse amplitudes which pileup has distorted improves measurement accuracy and response time in an apparatus for neutron-capture-based on-line elemental analysis of bulk substances. Within the apparatus, the analyzed bulk substance is exposed to neutrons, and neutron capture generates prompt gamma rays therefrom. A detector interacts with some of these gamma rays to produce electrical signals used to measure their energy spectrum by pulse-height analysis. Circuits associated with this pulse-height analysis also detect the pileup of the signals of two or more independent gamma rays using one or more of several techniques. These techniques include multiple outputs from a special amplifier-discriminator system, which has been optimized for low pulse-pair resolving time and may have adaptive thresholds, and the requirement that the relative amplitudes of the outputs of slow and fast amplifiers be consistent with a single event producing both outputs. Pulse-width measurements are also included in the pileup detection

  11. A method of precise profile analysis of diffuse scattering for the KENS pulsed neutrons

    International Nuclear Information System (INIS)

    Todate, Y.; Fukumura, T.; Fukazawa, H.

    2001-01-01

    An outline of our profile analysis method, which is now of practical use for the asymmetric KENS pulsed thermal neutrons, are presented. The analysis of the diffuse scattering from a single crystal of D 2 O is shown as an example. The pulse shape function is based on the Ikeda-Carpenter function adjusted for the KENS neutron pulses. The convoluted intensity is calculated by a Monte-Carlo method and the precision of the calculation is controlled. Fitting parameters in the model cross section can be determined by the built-in nonlinear least square fitting procedure. Because this method is the natural extension of the procedure conventionally used for the triple-axis data, it is easy to apply with generality and versatility. Most importantly, furthermore, this method has capability of precise correction of the time shift of the observed peak position which is inevitably caused in the case of highly asymmetric pulses and broad scattering function. It will be pointed out that the accurate determination of true time-of-flight is important especially in the single crystal inelastic experiments. (author)

  12. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    CERN Document Server

    Caresana, M; Esposito, A; Ferrarini, M; Golnik, N; Hohmann, E; Leuschner, A; Luszik-Bhadra, M; Manessi, G; Mayer, S; Ott, K; Röhrich, J; Silari, M; Trompier, F; Volnhals, M; Wielunski, M

    2014-01-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instru...

  13. High temperature ductility of austenitic alloys exposed to thermal neutrons

    International Nuclear Information System (INIS)

    Watanabe, K.; Kondo, T.; Ogawa, Y.

    1982-01-01

    Loss of high temperature ductility due to thermal neutron irradiation was examined by slow strain rate test in vacuum up to 1000 0 C. The results on two heats of Hastelloy alloy X with different boron contents were analyzed with respect to the influence of the temperatures of irradiation and tensile tests, neutron fluence and the associated helium production due to nuclear transmutation reaction. The loss of ductility was enhanced by increasing either temperature or neutron fluence. Simple extrapolations yielded the estimated threshold fluence and the end-of-life ductility values at 900 and 1000 0 C in case where the materials were used in near-core regions of VHTR. The observed relationship between Ni content and the ductility loss has suggested a potential utilization of Fe-based alloys for seathing of the neutron absorber materials

  14. Palm top plasma focus device as a portable pulsed neutron source

    International Nuclear Information System (INIS)

    Rout, R. K.; Niranjan, Ram; Srivastava, R.; Rawool, A. M.; Kaushik, T. C.; Gupta, Satish C.; Mishra, P.

    2013-01-01

    Development of a palm top plasma focus device generating (5.2 ± 0.8) × 10 4 neutrons/pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of −15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of 3 He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.

  15. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-06-22

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

  16. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes procedures for measuring reaction rates by the activation reaction 93Nb(n,n′)93mNb. 1.2 This activation reaction is useful for monitoring neutrons with energies above approximately 0.5 MeV and for irradiation times up to about 30 years. 1.3 With suitable techniques, fast-neutron reaction rates for neutrons with energy distribution similar to fission neutrons can be determined in fast-neutron fluences above about 1016cm−2. In the presence of high thermal-neutron fluence rates (>1012cm−2·s−1), the transmutation of 93mNb due to neutron capture should be investigated. In the presence of high-energy neutron spectra such as are associated with fusion and spallation sources, the transmutation of 93mNb by reactions such as (n,2n) may occur and should be investigated. 1.4 Procedures for other fast-neutron monitors are referenced in Practice E 261. 1.5 Fast-neutron fluence rates can be determined from the reaction rates provided that the appropriate cross section information ...

  17. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Poehlsen, Thomas

    2010-04-15

    In this work epitaxial n-type silicon diodes with a thickness of 100 {mu}m and 150 {mu}m are investigated. After neutron irradiation with fluences between 10{sup 14} cm{sup -2} and 4 x 10{sup 15} cm{sup -2} annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10{sup 14} cm{sup -2} showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time {tau}{sub eff}. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time {tau}{sub eff}(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 {mu}m thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  18. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated for up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.

  19. New thermal neutron calibration channel at LNMRI/IRD

    Energy Technology Data Exchange (ETDEWEB)

    Astuto, A.; Lopes, R.T., E-mail: achillesbr@gmail.com [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Patrao, K.C.S.; Fonseca, E.S.; Pereira, W.W. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ/LNMRI), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes

    2015-07-01

    A new standard thermal neutron flux unit was designed in the National Ionizing Radiation Metrology Laboratory (LNMRI) for calibration of neutron detectors. Fluence is achieved by moderation of four {sup 241}Am-Be sources with 596 GBq each, in a facility built with graphite and paraffin blocks. The study was divided into two stages. First, simulations were performed using MCNPX code in different geometric arrangements, seeking the best performance in terms of fluence and their uncertainties. Last, the system was assembled based on the results obtained on the simulations. The simulation results indicate quasi-homogeneous fluence (less than 1%) in the central chamber. (author)

  20. Chemical crystallography with pulsed neutrons and synchrotron x-rays

    International Nuclear Information System (INIS)

    Carrondo, M.A.; Jeffrey, G.A.

    1988-01-01

    Solid-state chemists and physicists, crystallographers and molecular biologists who are using or who plan to use the special properties of pulsed neutron spallation and synchrotron X-ray sources will find this book invaluable. Those scientists who have not yet gained experience in working with such sources will find the basic physics of the radiations, their production and their scattering properties explained, together with descriptions of the different types of diffraction experiments which use them