WorldWideScience

Sample records for pulsed magnet coils

  1. Miniature coils for producing pulsed inplane magnetic fields for nanospintronics

    Energy Technology Data Exchange (ETDEWEB)

    Pawliszak, Łukasz; Zgirski, Maciej [Institute of Physics, Polish Academy of Sciences, al.Lotnikow 32/46, PL 02-668 Warszawa (Poland); Tekielak, Maria [Faculty of Physics, University of Białystok, ul.Lipowa 41, PL 15-424 Białystok (Poland)

    2015-03-15

    Nanospintronic and related research often requires the application of quickly rising magnetic field pulses in the plane of the studied planar structure. We have designed and fabricated sub-millimeter-sized coils capable of delivering pulses of the magnetic field up to ∼500 Oe in the plane of the sample with the rise time of the order of 10 ns. The placement of the sample above the coil allows for easy access to its surface with manipulators or light beams for, e.g., Kerr microscopy. We use the fabricated coil to drive magnetic domain walls in 1 μm wide permalloy wires and measure magnetic domain wall velocity as a function of the applied magnetic field.

  2. Decoupling of excitation and receive coils in pulsed magnetic resonance using sinusoidal magnetic field modulation

    Science.gov (United States)

    Tseytlin, Mark; Epel, Boris; Sundramoorthy, Subramanian; Tipikin, Dmitriy; Halpern, Howard J.

    2016-11-01

    In pulsed magnetic resonance, the excitation power is many orders of magnitude larger than that induced by the spin system in the receiving coil or resonator. The receiver must be protected during and immediately after the excitation pulse to allow for the energy stored in the resonator to dissipate to a safe level. The time during which the signal is not detected, the instrumental dead-time, can be shortened by using magnetically decoupled excitation and receive coils. Such coils are oriented, with respect to each other, in a way that minimizes the total magnetic flux produced by one coil in the other. We suggest that magnetically decoupled coils can be isolated to a larger degree by tuning them to separate frequencies. Spins are excited at one frequency, and the echo signal is detected at another. Sinusoidal magnetic field modulation that rapidly changes the Larmor frequency of the spins between the excitation and detection events is used to ensure the resonance conditions for both coils. In this study, the relaxation times of trityl-CD3 were measured in a field-modulated pulsed EPR experiment and compared to results obtained using a standard spin echo method. The excitation and receive coils were tuned to 245 and 256.7 MHz, respectively. Using an available rapid-scan, cross-loop EPR resonator, we demonstrated an isolation improvement of approximately 20-30 dB due to frequency decoupling. Theoretical analysis, numerical simulations, and proof-of-concept experiments demonstrated that substantial excitation-detection decoupling can be achieved. A pulsed L-band system, including a small volume bi-modal resonator equipped with modulation coils, was constructed to demonstrate fivefold dead-time reduction in comparison with the standard EPR experiment. This was achieved by detuning of the excitation and receive coils by 26 MHz and using sinusoidal modulation at 480 kHz.

  3. Fabrication of pulsed magnets with a linear-type coil-winding machine

    Science.gov (United States)

    Suzuki, O.; Sakamoto, K.; Imanaka, Y.; Kido, G.

    2001-01-01

    We developed a linear-type coil-winding machine for the fabrication of pulsed magnets. This machine is compact and makes the process of winding a wire easier. The wire is led to a coil shaft through a pair of timing-belts. Kapton tape and Zylon fiber are wrapped on the wire by interlocking with the drive part of the timing-belts. A test magnet fabricated with the linear-type coil-winding machine generates magnetic fields above 63 T.

  4. Zylon-reinforced high magnetic field coils for the K.U. Leuven pulsed field laboratory

    Science.gov (United States)

    Rosseel, K.; Herlach, F.; Boon, W.; Bruynseraede, Y.

    2001-01-01

    PBO Zylon ® fibers have been used for the internal reinforcement of pulsed magnets. Due to the very high packing density (80%) of these fibers, vacuum impregnation of Zylon reinforced coils is difficult. Impregnation test were performed using pressure-vacuum impregnation and wet winding. A prototype series of coils for 60-70 T with 1-2 ms pulse duration was designed and wound, using wet winding for both the internal Zylon and external carbon fiber reinforcement. Special precautions were taken to avoid insulation breakdown at the transitions between conductor layers. Furthermore, axial movement of the conductor wires was restrained by strong axial compression of the coil with a steel shell casing. These modifications were incorporated into an 80 T coil made of Zylon and soft Cu. The design, construction and performance of this coil are discussed.

  5. Enhanced trapped field performance of bulk high-temperature superconductors using split coil, pulsed field magnetization with an iron yoke

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Mochizuki, H.; Takahashi, K.; Shi, Y.-H.; Namburi, D. K.; Zou, J.; Zhou, D.; Dennis, A. R.; Cardwell, D. A.

    2016-07-01

    Investigating and predicting the magnetization of bulk superconducting materials and developing practical magnetizing techniques is crucial to using them as trapped field magnets in engineering applications. The pulsed field magnetization (PFM) technique is considered to be a compact, mobile and relative inexpensive way to magnetize bulk samples, requiring shorter magnetization times (on the order of milliseconds) and a smaller and less complicated magnetization fixture; however, the trapped field produced by PFM is generally much smaller than that of slower zero field cooling or field cooling techniques, particularly at lower operating temperatures. In this paper, the PFM of two, standard Ag-containing Gd-Ba-Cu-O samples is carried out using two types of magnetizing coils: (1) a solenoid coil, and (2) a split coil, both of which make use of an iron yoke to enhance the trapped magnetic field. It is shown that a significantly higher trapped field can be achieved using a split coil with an iron yoke, and in order to explain these how this arrangement works in detail, numerical simulations using a 2D axisymmetric finite element method based on the H -formulation are carried to qualitatively reproduce and analyze the magnetization process from both electromagnetic and thermal points of view. It is observed that after the pulse peak significantly less flux exits the bulk when the iron core is present, resulting in a higher peak trapped field, as well as more overall trapped flux, after the magnetization process is complete. The results have important implications for practical applications of bulk superconductors as such a split coil arrangement with an iron yoke could be incorporated into the design of a portable, high magnetic field source/magnet to enhance the available magnetic field or in an axial gap-type bulk superconducting electric machine, where iron can be incorporated into the stator windings to (1) improve the trapped field from the magnetization process

  6. Progress of the insert coil for the US-NHMFL 100 T multi-shot pulse magnet

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, C.A.; Marshall, W.S.; Gavrilin, A.V.; Han, K.; Schillig, J.; Sims, J.R.; Schneider-Muntau, H.J

    2004-04-30

    We review insert development for the US-NHMFL 100 T non-destructive short-pulse magnet program. Coil electro-mechanics are presented in the context of the selected materials: CuNb conductor, PBO zylon-fibre, and MP35N, a cobalt-based super-alloy, reinforcement. We present the results of conductor cyclic fatigue testing and explore the data's ramifications. We present the coil geometry, and a new 'poly-layer' assembly technique. We review the structure of our small coil test program to evaluate the engineering and materials design.

  7. Progress of the insert coil for the US-NHMFL 100 T multi-shot pulse magnet

    Science.gov (United States)

    Swenson, C. A.; Marshall, W. S.; Gavrilin, A. V.; Han, K.; Schillig, J.; Sims, J. R.; Schneider-Muntau, H. J.

    2004-04-01

    We review insert development for the US-NHMFL 100 T non-destructive short-pulse magnet program. Coil electro-mechanics are presented in the context of the selected materials: CuNb conductor, PBO zylon-fibre, and MP35N, a cobalt-based super-alloy, reinforcement. We present the results of conductor cyclic fatigue testing and explore the data's ramifications. We present the coil geometry, and a new “poly-layer” assembly technique. We review the structure of our small coil test program to evaluate the engineering and materials design.

  8. Coiled transmission line pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  9. LHCb magnet coils arrive

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Each of the two coils for the LHCb magnet comprises 15 individual monolayer 'pancakes' of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of eight turns of conductor, wound from a single length (approx. 290 m) of extruded aluminium. The coils have arrived at CERN; one of them is seen here being unloaded above the LHCb experimental cavern.

  10. Self-resonant Coil for Contactless Electrical Conductivity Measurement under Pulsed Ultra-high Magnetic Fields

    CERN Document Server

    Nakamura, Daisuke; Takeyama, Shojiro

    2014-01-01

    In this study, we develop experimental apparatus for contactless electrical conductivity measurements under pulsed high magnetic fields over 100 T using a self-resonant-type high-frequency circuit. The resonant power spectra were numerically analyzed, and the conducted simulations showed that the apparatus is optimal for electrical conductivity measurements of materials with high electrical conductivity. The newly developed instruments were applied to a high-temperature cuprate superconductor La$_{2-x}$Sr$_x$CuO$_4$ to show conductivity changes in magnetic fields up to 102 T with a good signal-to-noise ratio. The upper critical field was determined with high accuracy.

  11. Can Magnetic Coil Ease Tinnitus?

    Science.gov (United States)

    ... Research Updates Technology Horizons Can magnetic coil ease tinnitus? VA trial aims to find out February 3, ... pain. See, for example, this 2009 review study . Tinnitus and Veterans Tinnitus has been one of the ...

  12. Effect of Metal Proximity on a Pulsed Copper Coil

    Science.gov (United States)

    Johnson, H. K.; Schaffner, D. A.; Brown, M. R.; Kaur, M.; Fiedler-Kawaguchi, C.

    2016-10-01

    Generating and accelerating plasma in a stainless steel chamber affects the magnetic fields inside. These effects will decrease the field due to a pulsed coil (which will later be used to accelerate plasma) inside the chamber. This work is being done in conjunction with the Swarthmore Spheromak Experiment. Both facilities are collaborating in an attempt to accelerate and compress plasma as part of ARPA-E's Accelerating Low-Cost Plasma Heating and Assembly (ALPHA) program. Measurements of the impact of the chamber on the coil's magnetic fields were made using a B-dot probe inside the coil, which was placed at incremental distances from a metal plate. As the coil is moved from the plate, the plate's interference with the field was seen to exponentially decay. This process was repeated for stainless steel, aluminum, and copper, and a range of voltages (500-800V). At least seventy percent of the original signal was recovered within two inches. Pulsing the coil inside the stainless steel chamber resulted in signals about one third the strength of those measured outside of the chamber. The results of this experiment will be used to guide development of the stainless steel pulse-coil system for the Swarthmore ALPHA project. Work supported by ARPA-E ALPHA program.

  13. HELMHOLTZ COILS FOR MEASURING MAGNETIC MOMENTS

    Directory of Open Access Journals (Sweden)

    P. N. Dobrodeyev

    2013-01-01

    Full Text Available The optimal configuration of the double Helmholtz coils for measuring of the magnetic dipole moments was defined. It was determined that measuring coils should have round shape and compensative coils – the square one. Analytically confirmed the feasibility of the proposed configuration of these coils as primary transmitters of magnetic dipole moments.

  14. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility

    Science.gov (United States)

    Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.; Owen, A. C.; McKenney, J.; Johnson, D. W.; Radovich, S.; Kaye, R. J.; McBride, R. D.; Alexander, C. S.; Awe, T. J.; Slutz, S. A.; Sefkow, A. B.; Haill, T. A.; Jones, P. A.; Argo, J. W.; Dalton, D. G.; Robertson, G. K.; Waisman, E. M.; Sinars, D. B.; Meissner, J.; Milhous, M.; Nguyen, D. N.; Mielke, C. H.

    2014-12-01

    Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

  15. Coupled Coils, Magnets and Lenz's Law

    Science.gov (United States)

    Thompson, Frank

    2010-01-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)

  16. Magnetically Damped Furnace Bitter Magnet Coil 1

    Science.gov (United States)

    Bird, M. D.

    1997-01-01

    A magnet has been built by the National High Magnetic Field Laboratory for NASA on a cost reimbursement contract. The magnet is intended to demonstrate the technology and feasibility of building a magnet for space based crystal growth. A Bitter magnet (named after Francis Bitter, its inventor) was built consisting of four split coils electrically in series and hydraulically in parallel. The coils are housed in a steel vessel to reduce the fringe field and provide some on-axis field enhancement. The steel was nickel plated and Teflon coated to minimize interaction with the water cooling system. The magnet provides 0.14 T in a 184 mm bore with 3 kW of power.

  17. Shaped magnetic field pulses by multi-coil repetitive transcranial magnetic stimulation (rTMS) differentially modulate anterior cingulate cortex responses and pain in volunteers and fibromyalgia patients

    Science.gov (United States)

    2013-01-01

    Background Repetitive transcranial magnetic stimulation (rTMS) has shown promise in the alleviation of acute and chronic pain by altering the activity of cortical areas involved in pain sensation. However, current single-coil rTMS technology only allows for effects in surface cortical structures. The ability to affect activity in certain deep brain structures may however, allow for a better efficacy, safety, and tolerability. This study used PET imaging to determine whether a novel multi-coil rTMS would allow for preferential targeting of the dorsal anterior cingulate cortex (dACC), an area always activated with pain, and to provide preliminary evidence as to whether this targeted approach would allow for efficacious, safe, and tolerable analgesia both in a volunteer/acute pain model as well as in fibromyalgia chronic pain patients. Methods Part 1: Different coil configurations were tested in a placebo-controlled crossover design in volunteers (N = 16). Tonic pain was induced using a capsaicin/thermal pain model and functional brain imaging was performed by means of H215O positron emission tomography – computed tomography (PET/CT) scans. Differences in NRS pain ratings between TMS and sham treatment (NRSTMS-NRSplacebo) which were recorded each minute during the 10 minute PET scans. Part 2: 16 fibromyalgia patients were subjected to 20 multi-coil rTMS treatments over 4 weeks and effects on standard pain scales (Brief Pain Inventory, item 5, i.e. average pain NRS over the last 24 hours) were recorded. Results A single 30 minute session using one of 3 tested rTMS coil configurations operated at 1 Hz consistently produced robust reduction (mean 70% on NRS scale) in evoked pain in volunteers. In fibromyalgia patients, the 20 rTMS sessions also produced a significant pain inhibition (43% reduction in NRS pain over last 24 hours), but only when operated at 10 Hz. This degree of pain control was maintained for at least 4 weeks after the final session

  18. Ferrite core non-linearity in coils for magnetic neurostimulation.

    Science.gov (United States)

    RamRakhyani, Anil Kumar; Lazzi, Gianluca

    2014-10-01

    The need to correctly predict the voltage across terminals of mm-sized coils, with ferrite core, to be employed for magnetic stimulation of the peripheral neural system is the motivation for this work. In such applications, which rely on a capacitive discharge on the coil to realise a transient voltage curve of duration and strength suitable for neural stimulation, the correct modelling of the non-linearity of the ferrite core is critical. A demonstration of how a finite-difference model of the considered coils, which include a model of the current-controlled inductance in the coil, can be used to correctly predict the time-domain voltage waveforms across the terminals of a test coil is presented. Five coils of different dimensions, loaded with ferrite cores, have been fabricated and tested: the measured magnitude and width of the induced pulse are within 10% of simulated values.

  19. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  20. Multiple-Coil, Pulse-Induction Metal Detector

    Science.gov (United States)

    Lesky, Edward S.; Reid, Alan M.; Bushong, Wilton E.; Dickey, Duane P.

    1988-01-01

    Multiple-head, pulse-induction metal detector scans area of 72 feet squared with combination of eight detector heads, each 3 ft. square. Head includes large primary coil inducing current in smaller secondary coils. Array of eight heads enables searcher to cover large area quickly. Pulses applied to primary coil, induced in secondary coils measured to determine whether metal present within range of detector head. Detector designed for recovery of Space Shuttle debris.

  1. Magnetic Fields at the Center of Coils

    Science.gov (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  2. MANUFACTURING OF MAGNETIC PROBE COILS FOR DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    BOZEK,A.S; STRAIT,E.J

    2003-10-01

    OAK-B135 The magnetic diagnostics program at DIII-D adds to its in-vessel installations of induction-type loops and coils almost every year. The current design of toroidal and poloidal magnetic field coils (45-50 kHz, N {center_dot} A = 0.06 m{sup 2}) has been in existence since 1987. Many coils were installed in DIII-D during that year and are still operating and reliable today. The high reliability of the coils is owing to the use of a continuous length of mineral-insulated cable, eliminating any electrical connections inside the vacuum vessel. The geometry of the probes was designed to achieve a bandwidth of 50 kHz, despite the conducting shell formed by the stainless steel sheath of the mineral-insulated cable. The bandwidth is sensitive to the details of the cable dimensions and winding technique, and care must be taken in the fabrication in order to maintain this specification. With possible future magnetic diagnostics installations IN ITER and other long-pulse machines requiring large numbers of coils and/or multiple layers per coil, the manufacturing scale-up, quality control, and the development of layered coils should all be investigated in addition to the obvious issues such as irradiation effects.

  3. Design and Performance of a Novel Pancake Rogowski Coil for Measuring Pulse Currents%Design and Performance of a Novel Pancake Rogowski Coil for Measuring Pulse Currents

    Institute of Scientific and Technical Information of China (English)

    王春杰; 汲胜昌; 聂济宇; 欧小波; 韩钟健; 张乔根

    2011-01-01

    A novel pancake Rogowski coil without magnetic core is introduced in this paper. Owing to its special pancake winding structure, the coil is of low self-resistance and high self-inductance, and thus has excellent low frequency characteristic in the self-integral mode. Moreover, because of its unique installation method, the coil has a flexible sensitivity and can be applied under situations where toroidal air-core Rogowski coils or printed aircuit board (PCB) coils are not available. The parameters and performance of the pancake Rogowski coil are presented, and the principle of shielding is given. Measurements of step pulse current and oscillating pulse current by the coil are studied experimentally to illustrate its good linearity, reliable and flexible sensitivity and excellent frequency characteristic, especially its advantage in low frequency characteristic. The pancake Rogowski coil can be designed to assume round, square or rectangle shape, and has thus broad prospects in its application to the current measurement in such areas as plasma physics and pulsed power technology.

  4. Design and Testing of Coils for Pulsed Electromagnetic Forming

    OpenAIRE

    Golovashchenko, S.; Bessonov, N.; Davies, R

    2006-01-01

    Coil design influences the distribution of electromagnetic forces applied to both the blank and the coil. The required energy of the process is usually defined by deformation of the blank. However, the discharge also results in a significant amount of heat being generated and accumulating in the coil. Therefore, EMF process design involves working with three different problems: 1) propagation of an electromagnetic field through the coil-blank system and generation of pulsed electromagnetic pr...

  5. Quadrature Slotted Surface Coil Pair for Magnetic Resonance Imaging at 4 Tesla: Phantom Study

    Directory of Open Access Journals (Sweden)

    Solis S.E.

    2012-01-01

    Full Text Available A coil array was composed of two slotted surface coils forming a structure with two plates at 900, each one having 6 circular slots and is introduced in this paper. Numerical simulations of the magnetic field of this coil array were performed at 170 MHz using the finite element method to study its behaviour. This coil array was developed for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode and quadrature driven. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. In vitro images showed the feasibility of this coil array for standard pulses and high field magnetic resonance imaging.

  6. A Compact High Gradient Pulsed Magnetic Quadrupole

    CERN Document Server

    Shuman, Derek; Kireeff Covo, Michel; Ritchie, Gary; Seidl, Peter

    2005-01-01

    A design for a high gradient, low inductance pulsed quadrupole magnet is presented. The magnet is a circular current dominated design with a circular iron return yoke. Features include a five turn eddy current compensated solid conductor coil design which theoretically eliminates the first four higher order multipole field components, a single layer "non-spiral bedstead" coil design which both minimizes utilization of radial space and maximizes utilization of axial space, and allows incorporation of steering and correction coils within existing radial space. The coils are wound and stretched straight in a special winder, then bent in simple fixtures to form the upturned ends, simplifying fabrication and assembly.

  7. Trapped field of 1.1 T without flux jumps in an MgB2 bulk during pulsed field magnetization using a split coil with a soft iron yoke

    Science.gov (United States)

    Fujishiro, H.; Mochizuki, H.; Ainslie, M. D.; Naito, T.

    2016-08-01

    MgB2 superconducting bulks have promising potential as trapped field magnets. We have achieved a trapped field of B z = 1.1 T on a high-J c MgB2 bulk at 13 K without flux jumps by pulsed field magnetization (PFM) using a split-type coil with a soft iron yoke, which is a record-high trapped field by PFM for bulk MgB2 to date. The flux jumps, which frequently took place using a solenoid-type coil during PFM, were avoided by using the split-type coil, and the B z value was enhanced by the insertion of soft iron yoke. The flux dynamics and heat generation/propagation were analyzed during PFM using a numerical simulation, in which the magnetic flux intruded and attenuated slowly in the bulk and tended to align along the axial direction due to the presence of soft iron yoke. The advantages of the split-type coil and the simultaneous use of a soft iron yoke are discussed.

  8. The Magnetic Field of Helmholtz Coils

    Science.gov (United States)

    Berridge, H. J. J.

    1975-01-01

    Describes the magnetic field of Helmholtz coils qualitatively and then provides the basis for a quantitative expression. Since the mathematical calculations are very involved, a computer program for solving the mathematical expression is presented and explained. (GS)

  9. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil.

    Science.gov (United States)

    Ha, Yong H; Han, Byung H; Lee, Soo Y

    2010-02-01

    We introduce a square coil system for remote magnetic navigation of a magnetic device without any physical movements of the coils. We used three square-Helmholtz coils and a square-Maxwell coil for magnetic propulsion of a small magnet along the desired path. All the square coils are mountable on a cubic frame that has an opening to accommodate a living subject. The square-Helmholtz coils control the magnetic propulsion direction by generating uniform magnetic field along the desired direction while the square-Maxwell coil controls the propulsion force by generating magnetic gradient field. We performed magnetic propulsion experiments with a down-scaled coil set and a three-channel coil driver. Experimental results demonstrate that we can use the square coil set for magnetic navigation of a magnetic device without any physical movements of the coils.

  10. Optimization of a conduction-cooled LTS pulse coil

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, A. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan)]. E-mail: kawagoe@eee.kagoshima-u.ac.jp; Yamamuro, H. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan); Sumiyoshi, F. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan); Mito, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Chikaraishi, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Hemmi, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Baba, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yokota, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Morita, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ogawa, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Abe, R. [Shibuya Kogyo Co., Ltd., Kanazawa, Ishikawa 920-0054 (Japan); Okumura, K. [Technova Inc., Chiyoda-ku, Tokyo 100-0011 (Japan); Iwakuma, M. [Kyushu University, Higashi-ku, Fukuoka 812-8581 (Japan)

    2006-11-15

    The output limit of the available power of a prototype conduction-cooled low temperature superconducting (LTS) pulse coil is clarified for the optimization of the coil. The winding conductor of this coil is a NbTi/Cu Rutherford cable, which is extruded with aluminum. Dyneema[reg] fiber reinforced plastics (DFRP) and Litz wires are used as the spacers of this coil. A prototype coil with a stored energy of 100 kJ was successfully fabricated and tested, and the coil performed excellently. In this paper, the stability margin of this coil is clarified by thermal analysis, using a two-dimensional finite element method, taking into account the effects of both types of spacers, DFRP and Litz wires. Additionally, the maximum output power of the coil is estimated at about three times the rated output.

  11. Embroidered Coils for Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2013-04-01

    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  12. Coil in bottom part of splitter magnet

    CERN Multimedia

    1976-01-01

    Radiation-resistant coil being bedded into the bottom part of a splitter magnet. This very particular magnet split the beam into 3 branches, for 3 target stations in the West-Area. See Annual Report 1975, p.176, Figs.14 and 15.

  13. Trapped field properties of a Y–Ba–Cu–O bulk by pulsed field magnetization using a split coil inserted by iron yokes with various geometries and electromagnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K., E-mail: t2216017@iwate-u.ac.jp [Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Ainslie, M.D. [Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Fujishiro, H.; Naito, T. [Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Shi, Y-H.; Cardwell, D.A. [Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2017-05-15

    Highlights: • The trapped field characteristics of a standard Y–Ba–Cu–O bulk magnetized by PFM was investigated using a split coil with three kinds of iron yokes inserted in the bores of coil,both experimentally and numerically. • Numerical results encourage better understanding of the role of yoke, including the typical behavior of the magnetic flux, such as a flux jump during PFM. • A higher saturation magnetic flux density of the yoke material was effective to reduce flux flow in the descending stage of the pulsed field. • A conductivity of the yoke material also acts to reduce the velocity of the flux intruding the bulk because of eddy currents that flow in the yoke that oppose the magnetization, which reduces the temperature rise in the bulk. - Abstract: We have investigated, both experimentally and numerically, the trapped field characteristics of a standard Y–Ba–Cu–O bulk of 30 mm in diameter and 14 mm in thickness magnetized by pulsed field magnetization (PFM) using a split coil, in which three kinds of iron yoke are inserted in the bore of the coil: soft iron with a flat surface, soft iron with a taper, and permendur (50Fe + 50Co alloy) with a flat surface. The highest trapped field, B{sub Tmax}, of 2.93 T was achieved at 40 K in the case of the permendur yoke, which was slightly higher than that obtained for the flat soft iron or the tapered soft iron yokes, and was much higher than 2.20 T in the case without the yoke. The insertion effect of the yoke on the trapped field characteristics was also investigated using numerical simulations. The results suggest that the saturation magnetic flux density, B{sub sat}, of the yoke acts to reduce the flux flow due to its hysteretic magnetization curve and the higher electrical conductivity, σ, of the yoke material also acts to suppress the flux increase rate. A flux jump (or flux leap) can be reproduced in the ascending stage of PFM using numerical simulation, using an assumption of relatively

  14. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    Science.gov (United States)

    Solis, S. E.; Tomasi, D.; Rodríguez, A. O.

    2008-08-01

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  15. Design, analyses, fabrication and characterization of Nb3Sn coil in 1 W pulse tube cryocooler

    Science.gov (United States)

    Kundu, Ananya; Das, Subrat Kumar; Bano, Anees; Kumar, Nitish; Pradhan, Subrata

    2017-02-01

    A laboratory scale Nb3Sn coil is designed, analysed, fabricated and characterized in 1 W pulse tube cryocooler in solid nitrogen cooling mode and in conduction cooling mode. The magnetic field profile in axial and radial direction, Lorentz force component across the winding volume in operational condition are estimated in COMSOL. The coil is designed for 1.5 T at 100 A. It is fabricated in wind and react method. Before winding, the insulated Nb3Sn strand is wound on a copper mandrel which is thermally anchored with the 2nd stage of the cold head unit via a 10 mm thick copper ‘Z’ shaped plate The temperature distribution in 2nd cold stage, copper z plate and coil is monitored in both solid nitrogen cooling and conduction cooling mode. In solid nitrogen cooling mode, the quench of the coil occurs at 150 A for 0.01 A/s current ramp rate. The magnetic field at the centre of the coil bore is measured using transverse Hall sensor. The measured magnetic field value is compared with the analytical field value and they are found to be deviating ∼5% in magnitude. Again the coil is tested in conduction cooling mode maintaining the same current ramp rate and it is observed that the coil gets quenched at 70 A at temperature ∼ 10K.

  16. Surface Coil for Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Beatriz Taimy Ricardo Ferro

    2015-01-01

    Full Text Available Currently Magnetic Resonance Imaging (MRI, has become a vital tool for the clinical diagnosis of various diseases, especially in the Nervisos Central System and the Musculos keletal System. Coils(RF are an essential component in the generation of these images, are responsible for exciting thespins of nuclei in a sample and/or detect the resultant signal coming from them. The use of surface RF coils has increased considerably, because they have a high signal to noise ratio, a parameter that defines the quality of the image. In the present work, there was realized the theoretical design and practical implementation of a circular surface RF coil. The experimental prototype was optimized to be used in the tomograph Giroimag03  built in Medical Biophysics Center

  17. Treatment Pulse Application for Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Sun-Seob Choi

    2011-01-01

    Full Text Available Treatment and diagnosis can be made in difficult areas simply by changing the output pulse form of the magnetic stimulation device. However, there is a limitation in the range of treatments and diagnoses of a conventional sinusoidal stimulation treatment pulse because the intensity, width, and form of the pulse must be changed according to the lesion type. This paper reports a multidischarge method, where the stimulation coils were driven in sequence via multiple switching control. The limitation of the existing simple sinusoidal pulse form could be overcome by changing the intensity, width, and form of the pulse. In this study, a new sequential discharge method was proposed to freely alter the pulse width. The output characteristics of the stimulation treatment pulse were examined according to the trigger signal delay applied to the switch at each stage by applying a range of superposition pulses to the magnetic simulation device, which is widely used in industry and medicine.

  18. Numerical dosimetry of transcranial magnetic stimulation coils

    Science.gov (United States)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  19. Nested Helmholtz coil design for producing homogeneous transient rotating magnetic fields.

    Science.gov (United States)

    Podaru, George; Moore, John; Dani, Raj Kumar; Prakash, Punit; Chikan, Viktor

    2015-03-01

    Electromagnets that can produce strong rotating magnetic fields at kHz frequencies are potentially very useful to exert rotating force on magnetic nanoparticles as small as few nanometers in size. In this article, the construction of a pulsed high-voltage rotating electromagnet is demonstrated based on a nested Helmholtz coil design. The energy for the coils is provided by two high-voltage discharge capacitors. The triggered spark gaps used in the experiments show sufficient accuracy to achieve the high frequency rotating magnetic field. The measured strength of the rotating magnetic field is 200 mT. This magnetic field is scalable by increasing the number of turns on the coils, by reducing the dimensions of the coils and by increasing the discharge current/voltage of the capacitors.

  20. A study on geometry effect of transmission coil for micro size magnetic induction coil

    Science.gov (United States)

    Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun

    2016-05-01

    The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.

  1. Transformer current sensor for superconducting magnetic coils

    Science.gov (United States)

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  2. High-performance pulsed magnets: Theory, design and construction

    Science.gov (United States)

    Li, Liang

    This thesis is an in-depth study of the design and construction of coils for pulsed magnets energised by a capacitor bank, including mathematical modelling and testing of the coils. The magnetic field generated by solenoid magnets with homogeneous and non-homogenous current distribution is calculated with the elliptical integral method. Coupled partial differential equations for magnetic and thermal diffusion and the electric circuits are solved numerically to calculate the pulse shape and the heating in a pulsed magnet. The calculations are in good agreement with test results for a large range of different coils; this provides useful insights for optimised coil design. Stresses and strains in the mid-plane of the coil are analytically calculated by solving the system of equations describing the displacement in each layer of the coil. Non-linear stress-strain characteristics and the propagation of the plastic deformation are taken into account by sub- dividing each layer of the coil in the radial direction and changing the elastic-plastic matrix at each transition point. Conductors, insulating materials and techniques used for pulsed magnets are discussed in detail. More than 80 pulsed magnets with optimised combinations of conductors and reinforcements have been built and tested, with peak fields in the range 45-73 T and a bore size from 8 mm-35 mm. The pulse duration is of the order of 10 milliseconds. A dual stage pulsed magnet for use at a free electron laser has been developed. This has a rise time of 10 microseconds and enables magneto-optical experiments in a parameter range previously inaccessible to condensed matter physicists. The joint of superconducting cables can be modelled by means of distributed circuit elements that characterise current diffusion.

  3. Magnetization reversal in ultrashort magnetic field pulses

    CERN Document Server

    Bauer, M; Fassbender, J; Hillebrands, B

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization ...

  4. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    Science.gov (United States)

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  5. Magnetic Pulse Welding Technology

    Directory of Open Access Journals (Sweden)

    Ahmad K. Jassim

    2011-12-01

    Full Text Available In this paper, the benefits of using Magnetic Pulse machine which is belong to Non-conventional machine instead of conventional machine. Magnetic Pulse Technology is used for joining dissimilar metals, and for forming and cutting metals. It is a non contact technique. Magnetic field is used to generate impact magnetic pressure for welding and forming the work piece by converted the electrical energy to mechanical energy. It is enable us to design previously not possible by welding dissimilar materials and allowing to welds light and stronger materials together. It can be used to weld metallic with non metallic materials to created mechanical lock on ceramics, polymers, rubbers and composites. It is green process; there is no heat, no radiation, no gas, no smoke and sparks, therefore the emissions are negligible.

  6. Unconventional gradient coil designs in magnetic resonance imaging.

    Science.gov (United States)

    Zhu, Minhua; Xia, Ling; Liu, Feng

    2014-01-01

    In magnetic resonance imaging (MRI), the gradient coils are used to encode the spatial positions of protons by varying the magnetic field linearly across the imaging subject. With the latest development of MRI technique and new clinical and research applications, the gradient coil system requires increasingly innovative designs. In this paper, four unconventional gradient coil designs are reviewed: (1) local gradient coils; (2) new coil configurations with reduced peripheral nerve stimulation (PNS); (3) dedicated structures designed for hybrid systems (combining MRI with other medical devices); and (4) the full 3D coil designs. For the first type, the development of local gradient coils (mainly head coils) is discussed chronologically and divided into three stages: the "golden" stage in the 1990s, the "wane" stage in the 2000s, and the "revival" stage in the 2010s. For the second type, various designs for the reduction of PNS problems have been described, including local and whole-body gradient coil systems. For the third design, a dedicated gradient coil design for multi-modality combination is illustrated with an MRI-LINAC system. Finally, gradient systems with non-layered coil structure are described in the fourth design type. We hope that this review on unconventional gradient coil designs will be useful for the new development of MRI technology and emerging medical applications.

  7. Magnetic field measurements of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-01-15

    Highlights: • Magnetic fields of the JT-60SA CS model coil were measured. • While the coil current was held constant at 20 kA, magnetic fields varied slightly with several different long time constants. • We investigated coils consisting of CIC conductors and having long time constants. - Abstract: In a cold test of the JT-60SA CS model coil, which has a quad-pancake configuration consisting of a Nb{sub 3}Sn cable-in-conduit (CIC) conductor, magnetic fields were measured using Hall sensors. For a holding coil current of 20 kA, measured magnetic fields varied slightly with long time constants in the range 17–571 s, which was much longer than the time constant derived from a measurement using a short straight sample. To validate the measurements, the magnetic fields of the model coil were calculated using a computational model representing the positions of Nb{sub 3}Sn strands inside the CIC conductor. The calculated results were in good agreement with the measurements. Consequently, the validity of the magnetic field measurements was confirmed. Next, we investigated other coils consisting of CIC conductors and having long time constants. The only commonality among the coils was the use of CIC conductors. At present, there is no obvious way to prevent generation of such magnetic-field variations with long time constants.

  8. Rotor assembly including superconducting magnetic coil

    Energy Technology Data Exchange (ETDEWEB)

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  9. 600-T Magnetic Fields due to Cold Electron Flow in a simple Cu-Coil irradiated by High Power Laser pulses

    CERN Document Server

    Zhu, Baojun; Yuan, Dawei; Li, Yanfei; Li, Fang; Liao, Guoqian; Zhao, Jiarui; Zhong, Jiayong; Xue, Feibiao; Wei, Huigang; Zhang, Kai; Han, Bo; Pei, Xiaoxing; Liu, Chang; Zhang, Zhe; Wang, Weimin; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie

    2015-01-01

    A new simple mechanism due to cold electron flow to produce strong magnetic field is proposed. A 600-T strong magnetic field is generated in the free space at the laser intensity of 5.7x10^15 Wcm^-2. Theoretical analysis indicates that the magnetic field strength is proportional to laser intensity. Such a strong magnetic field offers a new experimental test bed to study laser-plasma physics, in particular, fast-ignition laser fusion research and laboratory astrophysics.

  10. Coil geometry effects on scanning single-coil magnetic induction tomography

    Science.gov (United States)

    Feldkamp, Joe R.; Quirk, Stephen

    2017-09-01

    Alternative coil designs for single coil magnetic induction tomography are considered in this work, with the intention of improving upon the standard design used previously. In particular, we note that the blind spot associated with this coil type, a portion of space along its axis where eddy current generation can be very weak, has an important effect on performance. The seven designs tested here vary considerably in the size of their blind spot. To provide the most discerning test possible, we use laboratory phantoms containing feature dimensions similar to blind spot size. Furthermore, conductivity contrasts are set higher than what would occur naturally in biological systems, which has the effect of weakening eddy current generation at coil locations that straddle the border between high and low conductivity features. Image reconstruction results for the various coils show that coils with smaller blind spots give markedly better performance, though improvements in signal-to-noise ratio could alter that conclusion.

  11. Development of reliable 70 T pulsed magnets

    Science.gov (United States)

    Lagutin, A.; Rosseel, K.; Herlach, F.; Vanacken, J.; Bruynseraede, Y.

    2003-12-01

    A capacitor-driven pulsed magnet coil has been designed to generate fields in the 70-75 T range, with a life expectancy of at least 100 pulses, thus qualifying as a '75 T class user magnet'. The bore is 10 mm and the rise time used in our experiments is 4 ms. The coil consists of two coaxial sections: the inner section, where stresses are highest, is made with CuNb microcomposite wire and optimized Zylon reinforcement; the outer section is made with soft copper and glass fibre composite. In the inner section, the stress in each layer is self-contained, while the stresses induced in the outer section are transmitted to a thick shell made from steel and carbon fibre composite. The cross section of the copper wires is adjusted to redistribute the heating evenly between the inner and the outer section. Another innovative design feature is a system for axial compression that can be easily retightened during coil training. Two nearly identical coils were manufactured and tested to 72 T this is a limit imposed due to overheating when using our 10 kV, 0.5 MJ capacitor bank (at an energy of 380 kJ). At 75 T, the calculated von Mises stress in the Zylon composite is 2.6 GPa, well below the UTS of more than 3 GPa, and the CuNb wire is still in an elastic state.

  12. Microscopic Faraday rotation measurement system using pulsed magnetic fields.

    Science.gov (United States)

    Egami, Shigeki; Watarai, Hitoshi

    2009-09-01

    Microscopic Faraday rotation measurement system using a pulsed magnetic field has been constructed, which can be applied to micron sized diamagnetic and paramagnetic materials. A pulsed magnetic coil could generate a maximum magnetic flux density of about 12 T. The performance of the microscopic Faraday rotation apparatus was demonstrated by the measurement of the Verdet constant V of a polystyrene particle, after the calibration of the pulsed magnetic flux density using a glass plate as a standard material. Also, the magneto-optical rotation dispersion of some diamagnetic substances have been measured and analyzed with V=alambda(-2)+b. The values of a and b were compared to their magnetic susceptibilities.

  13. Detection of laser-induced nanosecond ultrasonic pulses in metals using a pancake coil and a piezoelectric sensor.

    Science.gov (United States)

    Kozhushko, Victor V; Krenn, Heinz

    2012-06-01

    A piezoelectric sensor and a pancake coil sensor were used for broadband detection of laser-induced ultrasound in single-crystal aluminum and polycrystalline nickel. Pressure pulses with pronounced compression phases were induced by laser pulses of 5 ns duration from one side of the specimens and detected from the opposite side. A coupling layer of water was required for the piezoelectric method, whereas the pancake coil placed in the biasing permanent field of a cylindrical magnet ~0.25 T allowed noncontact detection. The signals detected by a piezoelectric transducer showed bipolar form and their spectra covered the range from 5 to 90 MHz. The signal measured in aluminum by a pancake coil was assigned to the eddy current sources and had single polarity. The peak-to-peak value of the signal in nickel was higher and had bipolar form because of the inverse magnetostrictive effect. The high-frequency limit detected by the pancake coil approached 200 MHz.

  14. Transcranial Magnetic Stimulation-coil design with improved focality

    Science.gov (United States)

    Rastogi, P.; Lee, E. G.; Hadimani, R. L.; Jiles, D. C.

    2017-05-01

    Transcranial Magnetic Stimulation (TMS) is a technique for neuromodulation that can be used as a non-invasive therapy for various neurological disorders. In TMS, a time varying magnetic field generated from an electromagnetic coil placed on the scalp is used to induce an electric field inside the brain. TMS coil geometry plays an important role in determining the focality and depth of penetration of the induced electric field responsible for stimulation. Clinicians and basic scientists are interested in stimulating a localized area of the brain, while minimizing the stimulation of surrounding neural networks. In this paper, a novel coil has been proposed, namely Quadruple Butterfly Coil (QBC) with an improved focality over the commercial Figure-8 coil. Finite element simulations were conducted with both the QBC and the conventional Figure-8 coil. The two coil's stimulation profiles were assessed with 50 anatomically realistic MRI derived head models. The coils were positioned on the vertex and the scalp over the dorsolateral prefrontal cortex to stimulate the brain. Computer modeling of the coils has been done to determine the parameters of interest-volume of stimulation, maximum electric field, location of maximum electric field and area of stimulation across all 50 head models for both coils.

  15. Critical Current Measurements in Commercial Tapes, Coils, and Magnets.

    Science.gov (United States)

    Gubser, D. U.; Soulen, R. J., Jr.; Fuller-Mora, W. W.; Francavilla, T. L.

    1996-03-01

    We have measured a number of tapes, coils, and magnets produced by commercial vendors and determined their properties as functions of magnetic field and temperature. The tapes were measured at the National High Magnetic Field Laboratory in magnetic fields to 20 tesla and at temperatures of 4.2 K, 27 K, 65 K, and 77 K. For the tapes we report critical currents and current-voltage characteristics. Six inch diameter coils were measured at NRL in zero magnetic field. Critical currents, current-voltage characteristics, and reliability studies are reported for the coils. Larger 10 inch diameter coils, which are to be used in a 200 hp superconducting motor, were also measured and results will be presented. The talk will also review the status of the most recent tests of the superconducting motor.

  16. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  17. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration

  18. A Novel Transcranial Magnetic Stimulator Inducing Near Rectangular Pulses with Controllable Pulse Width (cTMS)

    Science.gov (United States)

    Jalinous, Reza; Lisanby, Sarah H.

    2013-01-01

    A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369

  19. Design and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results

    Directory of Open Access Journals (Sweden)

    Haghnegahdar A

    2014-09-01

    Full Text Available Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicate that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coils are devices that generate pulsed electromagnetic fields (PEMF. Objective: In this work, a pair of Helmholtz coils for enhancing the healing process in periodontitis was designed and fabricated. Method: An identical pair of square Helmholtz coils generated the 50 Hz magnetic field. This device was made up of two parallel coaxial circular coils (100 turns in each loop, wound in series which were separated from each other by a distance equal to the radius of one coil (12.5 cm. The windings of our Helmholtz coil was made of standard 0.95mm wire to provide the maximum possible current. The coil was powered by a function generator. Results: The Helmholtz Coils generated a uniform magnetic field between its coils. The magnetic field strength at the center of the space between two coils was 97.6 μT. Preliminary biological studies performed on rats show that exposure of laboratory animals to pulsed electromagnetic fields enhanced the healing of periodontitis. Conclusion: Exposure to PEMFs can lead to stimulatory physiological effects on cells and tissues such as enhanced healing of periodontitis.

  20. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    Science.gov (United States)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian

    2015-02-01

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  1. Pulsed-field magnetometry for rock magnetism

    Science.gov (United States)

    Kodama, Kazuto

    2015-07-01

    An improved method is proposed for measuring dynamic magnetizations of bulk volcanic rock samples induced by a pulsed-field of 0.7 T and a duration of 10 ms. The transient magnetization is measured by a sensing system that consists of a pair of inductive differential coils, an analog preamplifier and integrator, and a high-speed digital storage scope. The system was calibrated using a paramagnetic salt (Gd2O3) and was tested to different kinds of volcanic rocks with their magnetic properties well-documented previously. The results were comparable with those measured by a quasi-static method using a vibrating sample magnetometer, although there were small discrepancies in hysteresis parameters suggesting the time-dependence of the magnetic properties. The proposed system provides not only the magnetization over the short interval of a pulse but also the rapid (~3 ms) exponential decay after a pulse. The decay time constant was different among the samples under study, indicating the variations of their magnetic relaxation time. Although the present system is not sensitive enough to characterize varieties of natural samples including sediments, it has the potential as a versatile and convenient tool for rock magnetism.

  2. An Air Bearing Rotating Coil Magnetic Measurement System

    CERN Document Server

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  3. Transcranial magnetic stimulation: Improved coil design for deep brain investigation

    Science.gov (United States)

    Crowther, L. J.; Marketos, P.; Williams, P. I.; Melikhov, Y.; Jiles, D. C.; Starzewski, J. H.

    2011-04-01

    This paper reports on a design for a coil for transcranial magnetic stimulation. The design shows potential for improving the penetration depth of the magnetic field, allowing stimulation of subcortical structures within the brain. The magnetic and induced electric fields in the human head have been calculated with finite element electromagnetic modeling software and compared with empirical measurements. Results show that the coil design used gives improved penetration depth, but also indicates the likelihood of stimulation of additional tissue resulting from the spatial distribution of the magnetic field.

  4. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS.

    Energy Technology Data Exchange (ETDEWEB)

    PARKER, B.; ESCALLIER, J.

    2005-05-16

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper.

  5. Magnetic shielding structure optimization design for wireless power transmission coil

    Science.gov (United States)

    Dai, Zhongyu; Wang, Junhua; Long, Mengjiao; Huang, Hong; Sun, Mingui

    2017-09-01

    In order to improve the performance of the wireless power transmission (WPT) system, a novel design scheme with magnetic shielding structure on the WPT coil is presented in this paper. This new type of shielding structure has great advantages on magnetic flux leakage reduction and magnetic field concentration. On the basis of theoretical calculation of coil magnetic flux linkage and characteristic analysis as well as practical application feasibility consideration, a complete magnetic shielding structure was designed and the whole design procedure was represented in detail. The simulation results show that the coil with the designed shielding structure has the maximum energy transmission efficiency. Compared with the traditional shielding structure, the weight of the new design is significantly decreased by about 41%. Finally, according to the designed shielding structure, the corresponding experiment platform is built to verify the correctness and superiority of the proposed scheme.

  6. High voltage magnetic pulse generation using capacitor discharge technique

    Directory of Open Access Journals (Sweden)

    M. Rezal

    2014-12-01

    Full Text Available A high voltage magnetic pulse is designed by applying an electrical pulse to the coil. Capacitor banks are developed to generate the pulse current. Switching circuit consisting of Double Pole Double Throw (DPDT switches, thyristor, and triggering circuit is developed and tested. The coil current is measured using a Hall-effect current sensor. The magnetic pulse generated is measured and tabulated in a graph. Simulation using Finite Element Method Magnetics (FEMM is done to compare the results obtained between experiment and simulation. Results show that increasing the capacitance of the capacitor bank will increase the output voltage. This technology can be applied to areas such as medical equipment, measurement instrument, and military equipment.

  7. Magnetization Studies of Field-Induced Transitions by Using a Single-Turn Coil Technique

    Science.gov (United States)

    Abe, N.; Matsuda, Y. H.; Takeyama, S.; Sato, K.; Kageyama, H.; Nishiwaki, Y.

    2013-03-01

    Some technical improvements for magnetization measurements using a vertical-type single-turn coil (V-STC) method have been attempted. We have chosen LaCoO3, RbCoBr3 and SrCu2(BO3)2 that show interesting field induced magnetic transitions, as test materials. Intriguing features were clearly observed in magnetic fields of up to 100 T. The quality of the data is of comparable to those obtained by a conventional non-destructive pulse magnet.

  8. Design of Pulsed Strong Magnetic Fields Generator and Preliminary Application

    Institute of Scientific and Technical Information of China (English)

    WEN Jun; QU Xue-min; WANG Xi-gang; LONG Kai-ping

    2015-01-01

    Objective: This paper aims to designing a pulsed strong magnetic fields generator. Methods: A large value capacitor was used to store electric energy, coil was used for producing magnetic fields, main control, circuit control charge, sampling, discharge, etc. Results: The generator provided a pulsed magnetic field with the ampli-tude of intensity from 0.1-2 T and variable time interval of pulse from 4 s-1 min. It was not only to be operated easily but also performed reliably. Conclusion:The generator will be applied in special clinical diagnosis, therapy and other fields.

  9. Design study of a 60T pulsed magnet with 10 mu s risetime

    NARCIS (Netherlands)

    Li, L.; Van Bockstal, L.; Herlach, F.; van Amersfoort, W.

    1996-01-01

    A 60 T nondestructive pulsed magnet for the ''Free Electron Laser for;Infrared Experiments'' (FELIX) is developed. As a rise time of 10 mu s is required, the magnet is designed consisting of two coils in order to cope with the skin effect and power requirements. Each of the coils

  10. A modified Rogowski coil for measurements of hybrid permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, K.

    1996-08-01

    For large permanent magnets, as proposed for the Fermilab Recycler Ring, it may be important to quickly verify that the magnet`s strength is correct. This may be important, for example, if a magnet is suspected of having changed due to some sort of accident. The field strength of a pure dipole can be readily measured with a Hall probe, but for indexed dipoles and for quadrupoles a Hall probe will not give very accurate results without precise positioning. We have investigated a different approach, the use of a modified Rogowski coil to measure the magnetic potential of each pole. As long as magnet geometry is fixed and known, measurement of the magnetic potential at each pole gives a good measurement of field strength even for magnets with large quadrupole components. The construction and use of such a coil and the precision of measurements made with it will be discussed. 4 refs., 5 figs.

  11. Coil end design for the SSC collider dipole magnet

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, J.; Bartlett, N.; Bossert, R.; Carson, J.; Konc, J.; Lee, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Cook, J. [Argonne National Lab., IL (United States); Caspi, S. [Lawrence Berkeley Lab., CA (United States); Gordon, M.; Nobrega, F. [Superconducting Super Collider Lab., Dallas, TX (United States)

    1991-07-01

    This paper describes the design of the coil end for the 50mm aperture SSC collider dipole magnets built at Fermilab. The cable paths are determined from both magnetic and mechanical considerations. The end spacers are designed using the developable surface, grouped end approach, which allows the analysis of strain energy within the conductor groups. Techniques for strain energy minimization are presented and the behavior of individual conductors within a group is analyzed. The relationship between optimization of magnetic and mechanical variables is discussed. Requirements of manufacturing and inspection of coil end parts are outlined. 7 refs.

  12. Magnetic mirror structure for testing shell-type quadrupole coils

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  13. Magnetic mirror structure for testing shell-type quadrupole coils

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  14. Magnetic field modeling with a set of individual localized coils.

    Science.gov (United States)

    Juchem, Christoph; Nixon, Terence W; McIntyre, Scott; Rothman, Douglas L; de Graaf, Robin A

    2010-06-01

    A set of generic, circular individual coils is shown to be capable of generating highly complex magnetic field distributions in a flexible fashion. Arbitrarily oriented linear field gradients can be generated in three-dimensional as well as sliced volumes at amplitudes that allow imaging applications. The multi-coil approach permits the simultaneous generation of linear MRI encoding fields and complex shim fields by the same setup, thereby reducing system complexity. The choice of the sensitive volume over which the magnetic fields are optimized remains temporally and spatially variable at all times. The restriction of the field synthesis to experimentally relevant, smaller volumes such as single slices directly translates into improved efficiency, i.e. higher magnetic field amplitudes and/or reduced coil currents. For applications like arterial spin labeling, signal spoiling and diffusion weighting, perfect linearity of the gradient fields is not required and reduced demands on accuracy can also be readily translated into improved efficiency. The first experimental realization was achieved for mouse head MRI with 24 coils that were mounted on the surface of a cylindrical former. Oblique linear field gradients of 20 kHz/cm (47 mT/m) were generated with a maximum current of 1.4A which allowed radial imaging of a mouse head. The potential of the new approach for generating arbitrary magnetic field shapes is demonstrated by synthesizing the more complex, higher order spherical harmonic magnetic field distributions X2-Y2, Z2 and Z2X. The new multi-coil approach provides the framework for the integration of conventional imaging and shim coils into a single multi-coil system in which shape, strength, accuracy and spatial coverage of the magnetic field can be specifically optimized for the application at hand.

  15. Anharmonic Oscillations of a Spring-Magnet System inside a Magnetic Coil

    Science.gov (United States)

    Ladera, Celso L.; Donoso, Guillermo

    2012-01-01

    We consider the nonlinear oscillations of a simple spring-magnet system that oscillates in the magnetic field of an inductive coil excited with a dc current. Using the relations for the interaction of a coil and a magnet we obtain the motion equation of the system. The relative strengths of the terms of this equation can be adjusted easily by…

  16. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  17. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    Science.gov (United States)

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects.

  18. Magnetic Field Generation by a Laser-Driven Capacitor-Coil Target

    Science.gov (United States)

    Cheng, Jessica; Gao, Lan

    2016-10-01

    Magnetic fields generated by currents flowing through a capacitor-coil target were characterized using ultrafast proton radiography at the OMEGA EP Laser System. Two 1.25 kJ, 1-ns laser pulses propagated through the laser entrance holes in one foil of the capacitor, and were focused to the other with an intensity of 3 ×1016 W/cm2. The intense laser-solid interaction induced a high voltage between the foils and generated a large current in the connecting coil. The proton data show tens of kA current producing tens of Tesla magnetic fields at the center of the coil. Theoretical lumped circuit models based on the experimental parameters were developed to simulate the target behavior and calculate the time evolution of the current in the coil. The models take into account important elements such as plasmas conditions for building up the voltage, the capacitance between the gap, the resistive heating and skin effect to gain insights on the field generation mechanism. Applications to other coil geometries and magnetic field configurations will also be described.

  19. A current limiter with superconducting coil for magnetic field shielding

    Science.gov (United States)

    Kaiho, K.; Yamaguchi, H.; Arai, K.; Umeda, M.; Yamaguchi, M.; Kataoka, T.

    2001-05-01

    The magnetic shield type superconducting fault current limiter have been built and successfully tested in ABB corporate research and so on. The device is essentially a transformer in which the secondary winding is the superconducting tube. However, due to the large AC losses and brittleness of the superconducting bulk tube, they have not yet entered market. A current limiter with superconducting coil for the magnetic field shielding is considered. By using the superconducting coil made by the multi-filamentary high Tc superconductor instead of the superconducting bulk tube, the AC losses can be reduced due to the reduced superconductor thickness and the brittleness of the bulk tube can be avoidable. This paper presents a preliminary consideration of the magnetic shield type superconducting fault current limiter with superconducting coil as secondary winding and their AC losses in comparison to that of superconducting bulk in 50 Hz operation.

  20. Analytical modelling and calculation of impedance and pulsed magnetic field for rectangular meander coil based on second order potential%基于二阶矢量位的矩形截面回折线圈阻抗和脉冲磁场的解析建模与计算

    Institute of Scientific and Technical Information of China (English)

    郝宽胜; 黄松岭; 赵伟; 王坤

    2011-01-01

    Meander coil is an important kind of coil configuration used in eddy current testing and electromagnetic acoustic testing. Owing to lack of analytical calculation formulas of impedance and magnetic field for meander coil, the analytical modeling is performed and a method of calculating pulsed response is presented. In terms of the general model for eddy current testing and electromagnetic acoustic testing, the calculation of impedance and pulsed magnetic field is transformed into the superposition of impedance and pulsed magnetic field of single rectangular coils. Based on the second order vector potential and the time harmonic magnetic field equations, the scalar potential analytical expressions of the meander coil are derived. Then the analytical expressions of magnetic flux in all solution area and eddy current in the specimen are obtained. By calculating the induction electric potential and the impedance change, the impedance analytical expression of the rectangular meander coil is derived. An FFT-IFFT method is used to calculate the time domain response to pulsed magnetic field. A model with an 8-meander double-layer double-bundle coil above an aluminium plate is used in calculation, and the results are in good agreement with the experimental result and the TSFEM calculation result, which verifies the analytical model and the accuracy of the calculation method. The analytical calculation largely shortens the calculation time compared with that by TSFEM method.%本文基于二阶矢量位建立了回折线圈的阻抗和磁场计算的解析模型,并提出了计算磁场脉冲响应的方法.根据回折线圈用于涡流检测和电磁超声检测时的通用模型,将回折线圈的阻抗和磁场计算问题转化为多个单匝矩形线圈阻抗和磁场的叠加问题.基于二阶矢量位和时谐电磁场方程,推导了回折线圈的频域标势表达式;利用标势与矢量磁位和磁通密度间的关系,推导了计算区域的磁

  1. Investigation, design, and integration of insert gradient coils in magnetic resonance imaging

    Science.gov (United States)

    Feldman, Rebecca E.

    Diffusion-weighted magnetic resonance imaging utilizes the magnetic gradients of the system to de-phase protons undergoing diffusion with respect to the overall magnetization. Areas of the image with reduced signal when compared to an un-weighted image represent where protons have undergone diffusion. The stronger the gradient applied during diffusion-weighting, the larger the signal loss due to diffusion, and the larger the b-value differentiating the diffusion coefficients. However, the maximum gradient strength during image acquisition is limited by both the original strength of the signal and peripheral nerve stimulation. Nerve stimulation is induced because the changing magnetic fields of the gradient pulse sequence induce electric fields that cause stimulation. The stimulation threshold can be measured either in terms of the pulse sequence parameters of maximum gradient strength and slew rate, or in terms of the induced electric field and the duration of the electric field pulse. A finite-difference simulation was used to approximate the electric field induced inside a visible man model. The effect of varying the size, resolution, and position of the model inside the simulation was investigated with the wire pattern from a customized head/neck gradient coil. For accurate simulations, it was most important to ensure that the resolution of the model was sufficient to capture the air cavities of the sinus and trachea. The peripheral nerve stimulation thresholds of a planar gradient coil were determined from human experiments. While the electrical stimulation threshold parameters did not vary significantly from previous studies, the minimum gradient change and slew rate required to cause stimulation were significantly higher for the planar gradient than for reported thresholds of cylindrically designed gradient systems. Several non-cylindrical localized gradient designs were investigated for diffusion-weighted contrast as a fourth gradient, in addition to the

  2. Repetitive transcranial magnetic stimulation decreases the kindling induced synaptic potentiation: effects of frequency and coil shape.

    Science.gov (United States)

    Yadollahpour, Ali; Firouzabadi, Seyed Mohammad; Shahpari, Marzieh; Mirnajafi-Zadeh, Javad

    2014-02-01

    The present study was aimed to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) on kindling-induced synaptic potentiation and to study the effect of frequency and coil shape on rTMS effectiveness. Seizures were induced in rats by perforant path stimulation in a rapid kindling manner (12 stimulations/day). rTMS was applied at different frequencies (0.5, 1 and 2 Hz), using either figure-8 shaped or circular coils at different times (during or before kindling stimulations). rTMS had antiepileptogenic effect at all frequencies and imposed inhibitory effects on enhancement of population excitatory postsynaptic potential slope and population spike amplitude when applied during kindling acquisition. Furthermore, it prevented the kindling-induced changes in paired pulse indices. The inhibitory effect of rTMS was higher at the frequency of 1 Hz compared to 0.5 and 2 Hz. Application of rTMS 1Hz by circular coil imposed a weaker inhibitory action compared with the figure-8 coil. In addition, the results showed that pretreatment of animals by both coils had similar preventing effect on kindling acquisition as well as kindling-induced synaptic potentiation. Obtained results demonstrated that the antiepileptogenic effect of low frequency rTMS is accompanied with the preventing of the kindling induced potentiation. This effect is dependent on rTMS frequency and slightly on coil-type.

  3. Magnetic Barkhausen noise measurement by resonant coil method

    Energy Technology Data Exchange (ETDEWEB)

    Capo-Sanchez, J. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n, 90500 Santiago de Cuba (Cuba)], E-mail: jcapo@usp.br; Padovese, L. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231, 05508-900 Sao Paulo (Brazil)

    2009-09-15

    This paper describes a powerful new technique for nondestructive evaluation of ferromagnetic material. A method has been developed for measuring magnetic Barkhausen signals under different coil resonance frequencies. The measurements allow one to establish the behavior relating the power spectral density maximum and the resonant coil frequency. Time-frequency analysis of Barkhausen signals puts in evidence the tuning regions for each coil, and allows clear identification of each contribution to the Barkhausen signal spectrum. This concept was used in order to evaluate the relation between the degree of plastic deformation in carbon steel samples, and the power spectral density maximum at different resonance frequencies. This result also makes it possible to the selectively modify measurement sensibility to the magnetic Barkhausen signal by using different resonance frequencies.

  4. Proton radiography of magnetic field produced by ultra-intense laser irradiating capacity-coil target

    CERN Document Server

    Wang, W W; Chen, J; Cai, H B; He, S K; Zhou, W M; Shan, L Q; Lu, F; Wu, Y C; Hong, W; Liu, D X; Bi, B; Zhang, F; Xue, F B; Li, B Y; Zhang, B; He, Y L; He, W; Jiao, J L; Dong, K G; Zhang, F Q; Deng, Z G; Zhang, Z M; Cui, B; Han, D; Zhou, K N; Wang, X D; Zhao, Z Q; Cao, L F; Zhang, B H; He, X T; Gu, Y Q

    2014-01-01

    Ultra-intense ultra-short laser is firstly used to irradiate the capacity-coil target to generate magnetic field. The spatial structure and temporal evolution of huge magnetic fields were studied with time-gated proton radiography method. A magnetic flux density of 40T was measured by comparing the proton deflection and particle track simulations. Although the laser pulse duration is only 30fs, the generated magnetic field can last for over 100 picoseconds. The energy conversion efficiency from laser to magnetic field can reach as high as ~20%. The results indicate that tens of tesla (T) magnetic field could be produced in many ultra intense laser facilities around the world, and higher magnetic field could be produced by picosecond lasers.

  5. Pre-earthquake Magnetic Pulses

    CERN Document Server

    Scoville, John; Freund, Friedemann

    2014-01-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are observable because their extremely long wavelength allows them to pass through the Earth's crust. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stress is building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  6. submitter Electromagnetic Study of a Round Coil Superferric Magnet

    CERN Document Server

    Volpini, Giovanni; Statera, Marco

    2016-01-01

    A novel type of superferric magnets suitable to arbitrary multipole orders was proposed by I. F. Malyshev and later by V. Kashikhin. This new topology, which we refer to as round coil superferric magnets (RCSM), allows a great simplification of the superconducting part, which in the simplest case may be composed by a single round coil, which has intrinsically a rather large bending radius allowing the use of strain-sensitive superconductors. INFN is designing and building a prototype of a multipolar corrector magnet based on this geometry and using MgB2 tapes. In this paper, we investigate a number of issues pertaining to the electromagnetic characteristics of RCSM. The RCSM magnetic has inherently even harmonics, in addition to usual odd ones and a solenoidal component. Either (but not both) disappears when integrated using a one-coil or a two-coil specular design. We investigate the effect of saturation on the multipolar components and on the load line, since in RCSM, saturation plays a role that differs bo...

  7. Comparison of Coil Designs for Transcranial Magnetic Stimulation on Mice

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    2015-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive treatment for neurological disorders using time varying magnetic field. The electric field generated by the time varying magnetic field is used to depolarize the brain neurons which can lead to measurable effects. TMS provides a surgical free method for the treatment of neurological brain disorders like depression, post-traumatic stress disorder, traumatic brain injury and Parkinson's disease. Before using TMS on human subjects, it is appropriate that its effects are verified on animals such as mice. The magnetic field intensity and stimulated region of the brain can be controlled by the shape, position and current in the coils. There are few reports on the designs of the coils for mice. In this paper, different types of coils are developed and compared using an anatomically realistic mouse model derived from MRI images. Parameters such as focality, depth of the stimulation, electric field strength on the scalp and in the deep brain regions, are taken into account. These parameters will help researchers to determine the most suitable coil design according to their need. This should result in improvements in treatment of specific disorders. Carver Charitable Trust.

  8. Design of the dummy coil for magnet power supply

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan, E-mail: kch2004@nfri.re.kr; Choi, Jae-Hoon; Jin, Jong-Kook; Lee, Dong-Keun; Kong, Jong-Dea; Joung, Nam-Young; Kim, Sang-Tae; Kim, Young-Jin; Kim, Yang-Soo; Kwon, Myeun

    2013-11-15

    Highlights: • It is necessary to confirm safety of the MPS on a dummy coil before the operating it. • We selected and designed the water cooling type dummy coil to test on the MPS's rating (12.5 kA) test. • For the design of the dummy coil, we considered requirements about electrical, structural and water cooling. • We will test as the rating power after MPS upgrade and that test will do before every KSTAR campaign. -- Abstract: It is necessary to test it on a dummy coil, before using a magnet power supply (MPS) to energize a Poloidal Field (PF) coil in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The dummy coil should accept the same large current from the MPS as the PF coil and be within the capability of the utilities located at the KSTAR site. Therefore a coil design based on the characteristics of the MPS and other restrictive conditions needed to be made. There are three requirements to be met in the design: an electrical requirement, a structural requirement, and a water cooling requirement. The electrical requirement was that the coil should have an inductance of 40 mH. For the structural requirement, the material should be non magnetic. The coil support structure and water cooling manifold were made of SUS 304. The water cooling requirement was that there should be sufficient flow rate so that the temperature rise ΔT should not exceed 12 °C for operation at 12.5 kA for 5 min. Square cross-section hollow conductor with dimensions of 38.1 mm × 38.1 mm was used with a 25.4 mm center hole for cooling water. However, as a result of tests, it was found that the electrical and structural requirements were satisfied but that the water cooling was over designed. It is imperative that the verification will be redone for a test with 12.5 kA for 5 min.

  9. Properties of cryocooler-cooled superconductive pulse coil (1); Chokureishiki chodendo parusu koiru no tokusei hyoka (1)

    Energy Technology Data Exchange (ETDEWEB)

    Hae, T.; Kajikawa, K.; Iwakuma, M.; Funaki, K. [Kyushu Univ., Fukuoka (Japan); Hayashi, H.; Tsutsumi, K. [Kyushu Electric Power Co., Inc., Fukuoka (Japan); Tomioka, A.; Konno, M.; Nose, S. [Fuji Electric Corp., Tokyo (Japan)

    1999-11-10

    We manufactured the pulse coil of refrigerating machine direct cooling system using oxide superconducting wire rod, and they succeeded in triangular wave continuous running of 1T and 1Hz. It aimed at future further scale-up using this pulse coil this time, and the relationship between heat quantity and coil temperature rise in the operation was evaluated. (NEDO)

  10. Using Ferromagnetic Material to Extend and Shield the Magnetic Field of a Coil

    Science.gov (United States)

    2017-06-14

    sources , gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden...field sources , magnetic field shaping, magnetic coil enhancement, magnetic coil interactions 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...2 Fig. 3 Two-dimensional calculation of the field of a single-turn coil ( right ) with external metal cladding (left

  11. MEMS switch integrated radio frequency coils and arrays for magnetic resonance imaging

    Science.gov (United States)

    Bulumulla, S. B.; Park, K. J.; Fiveland, E.; Iannotti, J.; Robb, F.

    2017-02-01

    Surface coils are widely used in magnetic resonance imaging and spectroscopy. While smaller diameter coils produce higher signal to noise ratio (SNR) closer to the coil, imaging larger fields of view or greater distance into the sample requires a larger overall size array or, in the case of a channel count limited system, larger diameter coils. In this work, we consider reconfiguring the geometry of coils and coil arrays such that the same coil or coil array may be used in multiple field of view imaging. A custom designed microelectromechanical systems switch, compatible with magnetic resonance imaging, is used to switch in/out conductive sections and components to reconfigure coils. The switch does not degrade the SNR and can be opened/closed in 10 μ s, leading to rapid reconfiguration. Results from a single coil, configurable between small/large configurations, and a two-coil phased array, configurable between spine/torso modes, are presented.

  12. Magnetic pressure in electromagnetic tube forming with echelon coil

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-heng; YU Hai-ping; LI Chun-feng; LI Zhong

    2008-01-01

    The effects of geometrical characteristics of echelon coil on the magnetic pressure distribution and their contribution to the final shape of parts were focused and investigated through experiments and numerical simulation using FEM software ANSYS.The results show that the geometrical characteristics of echelon coil play a key role in controlling the magnetic pressure acting on the tube.They show a hump·like distribution near the interface between bigger diameter region and transition region of echelon coil,and affect the final shape of tubular parts then.With the reduction of relative diameter,the magnetic pressure in smaller diameter region decreases and its distribution gradient in transition region increases.With the augment of relative length,the magnetic pressure increases in bigger diameter region,while it almost remains constant in smaller diameter region,and the gradient in transition region enhances sharply.The distribution of magnetic pressure in the axial direction of tube agrees well with the profile of specimen.

  13. Superconducting pulsed magnets

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  14. Implementation of a planar coil of wires as a sinus-galvanometer. Analysis of the coil magnetic field

    CERN Document Server

    Stoyanov, Dimitar G

    2010-01-01

    The paper presents a theoretical analysis on the interaction between the Earth's magnetic field of a compass needle and the magnetic field of a straight infinite current-carrying wire. Implementation of a planar horizontal coil of wires has been shown as a sinus galvanometer. The magnetic field over the planar coil of wires has been examined by experiment. The coil could be used as a model for straight infinite current wire in demonstration set-ups or could be given as an assignment in Physics laboratory workshops.

  15. Implementation of a planar coil of wires as a sinus-galvanometer. Analysis of the coil magnetic field

    OpenAIRE

    Stoyanov, Dimitar G.

    2010-01-01

    The paper presents a theoretical analysis on the interaction between the Earth's magnetic field of a compass needle and the magnetic field of a straight infinite current-carrying wire. Implementation of a planar horizontal coil of wires has been shown as a sinus galvanometer. The magnetic field over the planar coil of wires has been examined by experiment. The coil could be used as a model for straight infinite current wire in demonstration set-ups or could be given as an assignment in Physic...

  16. Magnetic Test Facility - Sensor and Coil Calibrations

    Science.gov (United States)

    2013-08-01

    Magnetometers were taken to a low-noise magnetic facility located at the Defence Es- tablishment, Orchard Hills in Sydney. Sensors were then individually...Calibration of triaxial fluxgate gradiometer, Journal of Applied Physics, 99(8), pp. 08D913 –08D913–3. WANG-X. (2008). Automatic and adaptive correction of

  17. Oval gradient coils for an open magnetic resonance imaging system with a vertical magnetic field

    Science.gov (United States)

    Matsuzawa, Koki; Abe, Mitsushi; Kose, Katsumi; Terada, Yasuhiko

    2017-05-01

    Existing open magnetic resonance imaging (MRI) systems use biplanar gradient coils for the spatial encoding of signals. We propose using novel oval gradient coils for an open vertical-field MRI. We designed oval gradients for a 0.3 T open MRI system and showed that such a system could outperform a traditional biplanar gradient system while maintaining adequate gradient homogeneity and subject accessibility. Such oval gradient coils would exhibit high efficiency, low inductance and resistance, and high switching capability. Although the designed oval Y and Z coils showed more heat dissipation and less cooling capability than biplanar coils with the same gap, they showed an efficient heat-dissipation path to the surrounding air, which would alleviate the heat problem. The performance of the designed oval-coil system was demonstrated experimentally by imaging a human hand.

  18. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    Science.gov (United States)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  19. Modelling of subsonic COIL with an arbitrary magnetic modulation

    Science.gov (United States)

    Beránek, Jaroslav; Rohlena, Karel

    2007-05-01

    The concept of 1D subsonic COIL model with a mixing length was generalized to include the influence of a variable magnetic field on the stimulated emission cross-section. Equations describing the chemical kinetics were solved taking into account together with the gas temperature also a simplified mixing model of oxygen and iodine molecules. With the external time variable magnetic field the model is no longer stationary. A transformation in the system moving with the mixture reduces partial differential equations to ordinary equations in time with initial conditions given either by the stationary flow at the moment when the magnetic field is switched on combined with the boundary conditions at the injector. Advantage of this procedure is a possibility to consider an arbitrary temporal dependence of the imposed magnetic field and to calculate directly the response of the laser output. The method was applied to model the experimental data measured with the subsonic version of the COIL device in the Institute of Physics, Prague, where the applied magnetic field had a saw-tooth dependence. We found that various values characterizing the laser performance, such as the power density distribution over the active zone cross-section, may have a fairly complicated structure given by combined effects of the delayed reaction to the magnetic switching and the flow velocity. This is necessarily translated in a time dependent spatial inhomogeneity of output beam intensity profile.

  20. Magnetic Field Design of Coil-Dominated Magnets Wound With Coated Conductors

    OpenAIRE

    Takahashi, Keita; Amemiya, Naoyuki; Nakamura, Taketsune; MORI, YOSHIHARU; Ogitsu, Toru; Yoshimoto, Masahiro; WATANABE, Ikuo; Yoshiyuki, Takeshi

    2012-01-01

    Coil-dominated magnets wound with coated conductors were designed for an FFAG accelerator for carbon therapy, which was designed by applying linear approximation. When designing the coil-end of the magnets, we applied differential geometry. To apply the differential geometry to three-dimensional windings with coated conductors, we introduced the concept of generalized flat-wise bending. Thereby, the combination of flat-wise bending and torsion was considered as bending of developable surface....

  1. Design of self-correction coils in a superferric dipole magnet

    Indian Academy of Sciences (India)

    K Ruwali; K Hosoyama

    2012-05-01

    Design of self-correction coils in a superferric dipole magnet is carried out. By adopting the self-correction coil (SCC) scheme, we can do online correction of unwanted fields inside the magnet aperture during the whole operating cycle irrespective of their origin. The self-correction coils are short-circuited superconducting coils of required symmetry placed in the useful aperture of the AC dipole magnet. Design and operation mechanism of self-correction coils in a superferric dipole magnet are discussed in this paper.

  2. Colorize magnetic nanoparticles using a search coil based testing method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai; Wang, Yi; Feng, Yinglong; Yu, Lina; Wang, Jian-Ping, E-mail: jpwang@umn.edu

    2015-04-15

    Different magnetic nanoparticles (MNPs) possess unique spectral responses to AC magnetic field and we can use this specific magnetic property of MNPs as “colors” in the detection. In this paper, a detection scheme for magnetic nanoparticle size distribution is demonstrated by using an MNPs and search-coils integrated detection system. A low frequency (50 Hz) sinusoidal magnetic field is applied to drive MNPs into saturated region. Then a high frequency sinusoidal field sweeping from 5 kHz to 35 kHz is applied in order to generate mixing frequency signals, which are collected by a pair of balanced search coils. These harmonics are highly specific to the nonlinearity of magnetization curve of the MNPs. Previous work focused on using the amplitude and phase of the 3rd harmonic or the amplitude ratio of the 5th harmonic over 3rd harmonic. Here we demonstrate to use the amplitude and phase information of both 3rd and 5th harmonics as magnetic “colors” of MNPs. It is found that this method effectively reduces the magnetic colorization error. - Highlights: • We demonstrated to use the amplitude and phase information of both 3rd and 5th harmonics as magnetic “colors” of magnetic nanoparticles (MNPs). • An easier and simpler way to calibrate amounts of MNPs was developed. • With the same concentration, MNP solution with a larger average particle size could induce higher amplitude, and its amplitude changes greatly with sweeping high frequency. • At lower sweeping frequency, the 5 samples have almost the same phase lag. As the sweeping frequency goes higher, phase lag of large particles drop faster.

  3. Finite element stress analysis of the CMS magnet coil

    CERN Document Server

    Desirelli, Alberto; Farinon, S; Levesy, B; Ps, C; Rey, J M; Sgobba, Stefano

    2000-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN. The design field of the CMS magnet is 4 T, the magnetic length is 12.38 m and the aperture is 6.36 m. This is achieved with a 4 layer-5 module superconducting Al-stabilized coil energised at a nominal current of 20 kA. The finite element analysis (FEA) carried out is axisymmetric elasto-plastic. FEA has also been carried out on the suspension system and on the conductor. (8 refs).

  4. Pre-earthquake magnetic pulses

    Directory of Open Access Journals (Sweden)

    J. Scoville

    2014-12-01

    Full Text Available A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are generated deep in the Earth's crust, in and around the Hypocentral volume, days or even weeks before Earthquakes. They are observable at the surface because their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stresses are building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  5. Fuel magnetization without external field coils (AutoMag)

    Science.gov (United States)

    Slutz, Stephen; Jennings, Christopher; Awe, Thomas; Shipley, Gabe; Lamppa, Derek; McBride, Ryan

    2016-10-01

    Magnetized Liner Inertial Fusion (MagLIF) has produced fusion-relevant plasma conditions on the Z accelerator where the fuel was magnetized using external field coils. We present a novel concept that does not need external field coils. This concept (AutoMag) magnetizes the fuel during the early part of the drive current by using a composite liner with helical conduction paths separated by insulating material. The drive is designed so the current rises slowly enough to avoid electrical breakdown of the insulators until a sufficiently strong magnetic field is established. Then the current rises more quickly, which causes the insulators to break down allowing the drive current to follow an axial path and implode the liner. Low inductance magnetically insulated power feeds can be used with AutoMag to increase the drive current without interfering with diagnostic access. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. High uniformity magnetic coil for search of neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Perez Galvan, A., E-mail: apg@caltech.edu [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Plaster, B. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY, 40506 (United States); Boissevain, J.; Carr, R.; Filippone, B.W.; Mendenhall, M.P.; Schmid, R. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Alarcon, R.; Balascuta, S. [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2011-12-21

    We present in this article a prototype magnetic coil that has been developed for a new search for the electric dipole moment of the neutron at the Spallation Neutron Source at Oak Ridge National Laboratory. The gradients of the magnetic field generated by the coil have been optimized to reduce known systematic effects and to yield long polarization lifetimes of the trapped particles sampling the highly uniform magnetic field. Measurements of the field uniformity of this prototype magnetic coil are also presented.

  7. Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets

    CERN Document Server

    Parker, Brett

    2005-01-01

    BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics t...

  8. Improved Mirnov Magnetic Coils System for the TCABR Tokamak

    Science.gov (United States)

    Vannucci, Alvaro; Olschewski, Erich; Kuznetsov, Yuri; Kucinski, Mutsuko; Tadeu Degasperi, Francisco; Araujo, Mauro Sergio; Galvao, Ricardo; Okano, Valdir; Nascimento, Ivan

    2000-10-01

    The Mirnov magnetic coils system for the TCABR was recently reconstructed. The most interesting aspect of this system is that the measured experimental signals already incorporate the influence of the toroidal geometry. This means that the usual fast Fourier transform analysis done on the magnetic experimental data is able to indicate, more precisely and in a straightforward way, the MHD mode contribution to the detected signals during a plasma discharge. The influence of the toroidal geometry on the Fourier analysis of the magnetic signals was investigated by carring a series of simulations, considering the Merezhkin correction expressed only as a function of the inverse of the tokamak aspect ratio (calculated at the position of interest). The results obtained clearly showed the existence of a phase modulation on the Mirnov signals which is not usually considered when the magnetic signals are Fourier analyzed in the frame of cylindrical approximation, that is, by neglecting the existing toroidal effect.

  9. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    Science.gov (United States)

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia.

  10. Academic Training - Pulsed SC Magnets

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 2, 3, June 29, 30, 31 May, 1, 2 June 11:00-12:00 - Auditorium, bldg 500 Pulsed SC Magnets by M. Wilson Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mech...

  11. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  12. A distributed equivalent magnetic current based FDTD method for the calculation of E-fields induced by gradient coils.

    Science.gov (United States)

    Liu, Feng; Crozier, Stuart

    2004-08-01

    This paper evaluates a new, low-frequency finite-difference time-domain method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretization of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modelling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multi-layered spherical phantom model and a complete body model.

  13. A general method of design of axial and radial shim coils for NMR and MRI magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bobrov, E.S.; Punchard, W.F.B.

    1988-01-01

    The paper describes a general and efficient method of design of axial and radial shim coils to correct field impurities of various harmonic orders in regions of homogeneity of high resolution Nuclear Magnetic Resonance and Magnetic Resonance Imaging magnets.

  14. Improved transcranial magnetic stimulation coil design with realistic head modeling

    Science.gov (United States)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2013-03-01

    We are investigating Transcranial magnetic stimulation (TMS) as a noninvasive technique based on electromagnetic induction which causes stimulation of the neurons in the brain. TMS can be used as a pain-free alternative to conventional electroconvulsive therapy (ECT) which is still widely implemented for treatment of major depression. Development of improved TMS coils capable of stimulating subcortical regions could also allow TMS to replace invasive deep brain stimulation (DBS) which requires surgical implantation of electrodes in the brain. Our new designs allow new applications of the technique to be established for a variety of diagnostic and therapeutic applications of psychiatric disorders and neurological diseases. Calculation of the fields generated inside the head is vital for the use of this method for treatment. In prior work we have implemented a realistic head model, incorporating inhomogeneous tissue structures and electrical conductivities, allowing the site of neuronal activation to be accurately calculated. We will show how we utilize this model in the development of novel TMS coil designs to improve the depth of penetration and localization of stimulation produced by stimulator coils.

  15. Shapes of coil ends in racetrack layout for superconducting magnets

    CERN Document Server

    Milanese, A

    2010-01-01

    Racetrack coils have received considerable attention for Nb3Sn magnets, both built using the React-and-Wind and Wind-and-React techniques. The geometry usually consists of a series of straight parts connected with circular arcs. Therefore, at the interface between these sections, a finite change in curvature is imposed on the cable. Alternative transition curves are analyzed here, with a particular focus on the total strain energy and the minimum / maximum radii of curvature. The study is presented in dimensionless form and the various alternatives are detailed in mathematical terms, so to be used for drafting or simulations. Extensions for the design of flared ends are also briefly discussed.

  16. Design of a Large Bore 60-T Pulse Magnet for Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    LESCH,B.; LI,L.; PERNAMBUCO-WISE,P.; ROVANG,DEAN C.; SCHNEIDER-MUNTAU,H.J.

    1999-09-23

    The design of a new pulsed magnet system for the generation of intense electron beams is presented. Determined by the required magnetic field profile along the axis, the magnet system consists of two coils (Coil No.1 and No.2) separated by a 32-mm axial gap. Each coil is energized independently. Both coils are internally reinforced with HIM Zylon fiber/epoxy composite. Coil No.1 made with AI-15 Glidcop wire has a bore of 110-mm diameter and is 200-mm long; it is energized by a 1.3-MJ, 13-kV capacitor bank. The magnetic field at the center of this coil is 30 T. Coil No.2 made with CuNb wire has a bore of 45 mm diameter, generates 60 T with a pulse duration of 60 ms, and is powered by a 4.0-MJ, 17.7-kV capacitor bank. We present design criteria, the coupling of the magnets, and the normal and the fault conditions during operation.

  17. A novel radio frequency coil for veterinary magnetic resonance imaging system

    Science.gov (United States)

    Meng, Bin; Huang, Kai-Wen; Wang, Wei-Min

    2010-07-01

    In this article, a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system. Two sets of Helmholtz coil pairs with a V-shape structure are used to improve the holding of an animal in the coil. The homogeneity and the sensitivity of the RF field in the coil are analysed by theoretical calculation. The size and the shape of the new coil are optimized and validated by simulation through using the finite element method (FEM). Good magnetic resonance (MR) images are achieved on a shepherd dog.

  18. Stacked magnetic resonators for MRI RF coils decoupling

    Science.gov (United States)

    Georget, Elodie; Luong, Michel; Vignaud, Alexandre; Giacomini, Eric; Chazel, Edouard; Ferrand, Guillaume; Amadon, Alexis; Mauconduit, Franck; Enoch, Stefan; Tayeb, Gérard; Bonod, Nicolas; Poupon, Cyril; Abdeddaim, Redha

    2017-02-01

    Parallel transmission is a very promising method to tackle B1+ field inhomogeneities at ultrahigh field in magnetic resonant imaging (MRI). This technique is however limited by the mutual coupling between the radiating elements. Here we propose to solve this problem by designing a passive magneto-electric resonator that we here refer to as stacked magnetic resonator (SMR). By combining numerical and experimental methodologies, we prove that this novelty passive solution allows an efficient decoupling of elements of a phased-array coil. We demonstrate the ability of this technique to significantly reduce by more than 10 dB the coupling preserving the quality of images compared to ideally isolated linear resonators on a spherical salty agar gel phantom in a 7 T MRI scanner.

  19. Shapes of coil ends in racetrack layout for superconducting magnets

    CERN Document Server

    Milanese, A

    2010-01-01

    Racetrack coils have received considerable attention for Nb3Sn magnets, both built using the React-and-Wind and Wind-and-React techniques. The geometry usually consists of a series of straight parts connected with circular arcs. Therefore, at the interface between these sections, a finite change in curvature is imposed on the cable. Alternative transition curves are analyzed here, with a particular focus on the total strain energy and the minimum / maximum radii of curvature. The study is presented in dimensionless form and the various alternatives are detailed in mathematical terms, so to be used for drafting or simulations. Extensions for the design of flared ends are also briefly discussed. This study is within the framework of the EuCARD WP7-HFM project. In particular, the proposed curve can be used for the end design of the high field model magnet (Task 7.3).

  20. Measurement of dynamic magnetization induced by a pulsed field: Proposal for a new rock magnetism method

    Science.gov (United States)

    Kodama, Kazuto

    2015-02-01

    This study proposes a new method for measuring transient magnetization of natural samples induced by a pulsed field with duration of 11 ms using a pulse magnetizer. An experimental system was constructed, consisting of a pair of differential sensing coils connected with a high-speed digital oscilloscope for data acquisition. The data were transferred to a computer to obtain an initial magnetization curve and a descending branch of a hysteresis loop in a rapidly changing positive field. This system was tested with synthetic samples (permalloy ribbon, aluminum plate, and nickel powder) as well as two volcanic rock samples. Results from the synthetic samples showed considerable differences from those measured by a quasi-static method using a vibrating sample magnetometer (VSM). These differences were principally due to the time-dependent magnetic properties or to electromagnetic effects, such as magnetic viscosity, eddy current loss, or magnetic relaxation. Results from the natural samples showed that the transient magnetization-field curves were largely comparable to the corresponding portions of the hysteresis loops. However, the relative magnetization (scaled to the saturation magnetization) at the end of a pulse was greater than that measured by a VSM. This discrepancy, together with the occurrence of rapid exponential decay after a pulse, indicates magnetic relaxations that could be interpreted in terms of domain wall displacement. These results suggest that with further developments, the proposed technique can become a useful tool for characterizing magnetic particles contained in a variety of natural materials.

  1. Design and Construction of a Prototype Solenoid Coil for MICE Coupling Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Pan, Heng; Guo, XingLong; Xu, FengYu; Liu, XiaoKun; Wu, Hong; Zheng, ShiXian; Green, Michael A; Li, Derun; Virostek, Steve; Zisman, Michael

    2010-06-28

    A superconducting coupling solenoid mounted around four conventional RF cavities, which produces up to 2.6 T central magnetic field to keep the muons within the cavities, is to be used for the Muon Ionization Cooling Experiment (MICE). The coupling coil made from copper matrix NbTi conductors is the largest of three types of magnets in MICE both in terms of 1.5 m inner diameter and about 13MJ stored magnetic energy at full operation current of 210A. The stress induced inside the coil assembly during cool down and magnet charging is relatively high. In order to validate the design method and develop the coil winding technique with inside-wound SC splices required for the coupling coil, a prototype coil made from the same conductor and with the same diameter and thickness but only one-fourth long as the coupling coil was designed and fabricated by ICST. The prototype coil was designed to be charged to strain conditions that are equivalent or greater than would be encountered in the coupling coil. This paper presents detailed design of the prototype coil as well as developed coil winding skills. The analyses on stress in the coil assembly and quench process were carried out.

  2. Uncertainty analysis of the magnetic field measurement by the translating coil method in axisymmetric magnets

    Science.gov (United States)

    Arpaia, Pasquale; De Vito, Luca; Kazazi, Mario

    2016-12-01

    In the uncertainty assessment of magnetic flux measurements in axially symmetric magnets by the translating coil method, the Guide to the Uncertainty in Measurement and its supplement cannot be applied: the voltage variation at the coil terminals, which is the actual measured quantity, affects the flux estimate and its uncertainty. In this paper, a particle filter, implementing a sequential Monte-Carlo method based on Bayesian inference, is applied. At this aim, the main uncertainty sources are analyzed and a model of the measurement process is defined. The results of the experimental validation point out the transport system and the acquisition system as the main contributions to the uncertainty budget.

  3. Enhancing the design of a superconducting coil for magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Indira, Gomathinayagam, E-mail: gindu80@gmail.com [EEE Department, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai (India); UmaMaheswaraRao, Theru, E-mail: umesh.theru@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India); Chandramohan, Sankaralingam, E-mail: cdramo@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India)

    2015-01-15

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  4. Magnetic field uniformity of the practical tri-axial Helmholtz coils systems.

    Science.gov (United States)

    Beiranvand, R

    2014-05-01

    In this paper, effects of the assembly misalignments and the manufacturing mismatches on the magnetic field uniformity of a practical tri-axial Helmholtz coils system have been modeled mathematically. These undesired effects regularly occur in any practical tri-axial Helmholtz coils system. To confirm the mathematical calculations, a tri-axial Helmholtz coils system has been constructed and the uniformity of its magnetic field has been measured under different conditions. The experimental results are in good agreement with the mathematical analyses.

  5. T1 ρ-weighted MRI using a surface coil to transmit spin-lock pulses

    Science.gov (United States)

    Borthakur, Arijitt; Charagundla, Sridhar R.; Wheaton, Andrew; Reddy, Ravinder

    2004-04-01

    T1 ρ-weighted MRI is a novel basis for generating tissue contrast. However, it suffers from sensitivity to B1 inhomogeneity. First, excitation with a spatially varying B1 causes flip-angle artifacts and second, spin locking with an inhomogeneous B1 results in non-uniform T1 ρ contrast. In this study, we overcome the former complication with a specially designed spin-locking pulse sequence and we successfully obtain T1 ρ-weighted images with a surface coil. In this pulse sequence, the spin-lock pulse was divided into segments of equal duration and alternating phase. This "self-compensating" T1 ρ-preparatory pulse sequence was analyzed and the effect of an inhomogeneous B1 field was simulated using the Bloch equations. T1 ρ-weighted MR images of a phantom and a human knee joint in vivo were obtained on a clinical scanner with a surface coil to demonstrate the utility of the pulse sequence. The self-compensating T1 ρ-prepared pulses sequence resulted in substantially reduced image artifacts compared to the conventional, single-phase spin-lock pulse.

  6. Measurement of dynamic magnetization induced by a pulsed field: Proposal for a new rock magnetism method

    Directory of Open Access Journals (Sweden)

    Kazuto eKodama

    2015-02-01

    Full Text Available This study proposes a new method for measuring transient magnetization of natural samples induced by a pulsed field with duration of 11 ms using a pulse magnetizer. An experimental system was constructed, consisting of a pair of differential sensing coils connected with a high-speed digital oscilloscope for data acquisition. The data were transferred to a computer to obtain an initial magnetization curve and a descending branch of a hysteresis loop in a rapidly changing positive field. This system was tested with synthetic samples (permalloy ribbon, aluminum plate, and nickel powder as well as two volcanic rock samples. Results from the synthetic samples showed considerable differences from those measured by a quasi-static method using a vibrating sample magnetometer (VSM. These differences were principally due to the time-dependent magnetic properties or to electromagnetic effects, such as magnetic viscosity, eddy current loss, or magnetic relaxation. Results from the natural samples showed that the transient magnetization–field curves were largely comparable to the corresponding portions of the hysteresis loops. However, the relative magnetization (scaled to the saturation magnetization at the end of a pulse was greater than that measured by a VSM. This discrepancy, together with the occurrence of rapid exponential decay after a pulse, indicates magnetic relaxations that could be interpreted in terms of domain wall displacement. These results suggest that with further developments, the proposed technique can become a useful tool for characterizing magnetic particles contained in a variety of natural materials.

  7. Power generation from human body motion through magnet and coil arrays with magnetic spring

    Science.gov (United States)

    Zhang, Qian; Wang, Yufeng; Kim, Eun Sok

    2014-02-01

    This article presents a hand-held electromagnetic energy harvester which can be used to harvest tens of mW power level from human body motion. A magnet array, aligned to a coil array for maximum magnetic flux change, is suspended by a magnetic spring for a resonant frequency of several Hz and is stabilized horizontally by graphite sheets for reducing the friction. An analytical model of vibration-driven energy harvester with magnetic spring through magnet and coil arrays is developed to explore the power generation from vibrations at low frequency and large amplitude. When the energy harvester (occupying 120 cc and weighing 180 g) is placed in a backpack of a human walking at various speeds, the power output increases as the walking speed increases from 0.45 m/s (slow walking) to 3.58 m/s (slow running), and reaches 32 mW at 3.58 m/s.

  8. A 2-in-1 single-element coil design for transcranial magnetic stimulation and magnetic resonance imaging.

    Science.gov (United States)

    Lu, Hai; Wang, Shumin

    2017-02-10

    To demonstrate the feasibility of turning transcranial magnetic stimulation (TMS) coil for MRI signal reception. A critically coupled network was formed by using a resonated turn of TMS coil as the secondary and a regular radiofrequency (RF) coil as the primary. A third coil was positioned between the two coils for detuning during RF transmission. Bench measurement, numerical simulation, and MRI experiment were performed for validation. The signal-to-noise ratio of the proposed 2-in-1 coil is 35% higher in its field of view, compared with a MRI-only reference coil of the same size, made by the same material, and backed up by an untuned TMS coil, but lower than a RF surface coil of the same size without any TMS coil nearby. Spin-echo images of the human brain further validated its performance. The proposed method can transform TMS coil for MRI signal acquisition with virtually no modifications on the TMS side. It not only enables flexible and close positioning of TMS coil inside MRI scanner, but also improves the signal-to-noise ratio compared with conventional implementations. It can be applied as a building block for developing advanced concurrent TMS/MRI hardware. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. High-Tc Superconductor Detection Coils for a Magnetic Resonance System

    Institute of Scientific and Technical Information of China (English)

    康琳; 吴培亨; 潘俊; 蔡卫星; 杨森祖; 曹春海

    2002-01-01

    Considering that in a magnetic resonance system, if the detection coil contributes dominantly to the system noise, the performance of the whole system can certainly be improved by switching to a detection coil made of a high-temperature superconductor, and using YBa2Cu3O7 thinfilms on 25 × 25 mm2 LaAIO3 substrates, we have prepared two kinds of detection coils: single-coil and two-coil. Encouragingly, their quality factors are measured to be Q > 2500 for two-coil (at 22.566MHz and 77K) and Q > 5500 for single-coil (at 92.3MHz and 77K),respectively. Here, we describe the details of the design, fabrication and testing of the coils.

  10. Coil measurement data acquisition and curing press control system for SSC dipole magnet coils

    Energy Technology Data Exchange (ETDEWEB)

    Dickey, C.E.

    1989-03-01

    A coil matching program, similar in theory to the methods used to match Tevatron coils, is being developed at Fermilab. Modulus of elasticity and absolute coil size will be determined at 18-inch intervals along the coils while in the coil curing press immediately following the curing process. A data acquisition system is under construction to automatically acquire and manage the large quantities of data that result. Data files will be transferred to Fermilab's VAX Cluster for long-term storage and actual coil matching. The data acquisition system will also provide the control algorithm for the curing press hydraulic system. A description of the SSC Curing Press Data Acquisition and Controls System will be reported. 20 figs.

  11. Design and Performance of the First Dual-Coil Magnet at the Wuhan National High Magnetic Field Center

    Science.gov (United States)

    Peng, T.; Sun, Q. Q.; Zhang, X.; Xu, Q.; Xiao, H. X.; Herlach, F.; Pan, Y.; Li, L.

    2013-03-01

    The first 80 T dual-coil magnet was manufactured and tested at the Wuhan National High Magnetic Field Center (WHMFC). The inner coil consists of 8 layers of 2.8 mm × 4.3 mm CuNb microcomposite wire developed in China; the bore diameter is 14 mm and the outer diameter 135 mm. The outer coil was wound directly on the inner coil with 12 layers of 3 mm × 6 mm soft copper. Each conductor layer of both coils was reinforced by Zylon/epoxy composite. The inner and outer coil were driven by a 1.6 MJ/5.12 mF capacitor bank and by eight 1 MJ/3.2 mF modules, respectively. At the voltage of 14.3 kV for the inner coil and 22 kV for the outer coil, the inner and outer coils produced peak fields of 48.5 T and 34.5 T respectively, which gave a total field of 83 T. This was the first combined operation of the new capacitor banks installed at the WHMFC. We present details of the design, manufacture and test of the dual-coil magnet and discuss crucial material properties. Based on this experience, a second dual-coil magnet will be designed; the enhanced design will be discussed. With the total energy of 12.6 MJ, peak field up to 90 T is expected.

  12. Ceramic electrical insulation for electrical coils, transformers, and magnets

    Science.gov (United States)

    Rice, John A.; Hazelton, Craig S.; Fabian, Paul E.

    2002-01-01

    A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.

  13. Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field

    Science.gov (United States)

    Takahashi, Hironori

    2004-02-10

    A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.

  14. Attenuation correction for flexible magnetic resonance coils in combined magnetic resonance/positron emission tomography imaging.

    Science.gov (United States)

    Eldib, Mootaz; Bini, Jason; Calcagno, Claudia; Robson, Philip M; Mani, Venkatesh; Fayad, Zahi A

    2014-02-01

    Attenuation correction for magnetic resonance (MR) coils is a new challenge that came about with the development of combined MR and positron emission tomography (PET) imaging. This task is difficult because such coils are not directly visible on either PET or MR acquisitions with current combined scanners and are therefore not easily localized in the field of view. This issue becomes more evident when trying to localize flexible MR coils (eg, cardiac or body matrix coil) that change position and shape from patient to patient and from one imaging session to another. In this study, we proposed a novel method to localize and correct for the attenuation and scatter of a flexible MR cardiac coil, using MR fiducial markers placed on the surface of the coil to allow for accurate registration of a template computed tomography (CT)-based attenuation map. To quantify the attenuation properties of the cardiac coil, a uniform cylindrical water phantom injected with 18F-fluorodeoxyglucose (18F-FDG) was imaged on a sequential MR/PET system with and without the flexible cardiac coil. After establishing the need to correct for the attenuation of the coil, we tested the feasibility of several methods to register a precomputed attenuation map to correct for the attenuation. To accomplish this, MR and CT visible markers were placed on the surface of the cardiac flexible coil. Using only the markers as a driver for registration, the CT image was registered to the reference image through a combination of rigid and deformable registration. The accuracy of several methods was compared for the deformable registration, including B-spline, thin-plate spline, elastic body spline, and volume spline. Finally, we validated our novel approach both in phantom and patient studies. The findings from the phantom experiments indicated that the presence of the coil resulted in a 10% reduction in measured 18F-FDG activity when compared with the phantom-only scan. Local underestimation reached 22% in

  15. Faraday rotation imaging microscope with microsecond pulse magnet

    Energy Technology Data Exchange (ETDEWEB)

    Suwa, Masayori, E-mail: msuwa@chem.sci.osaka-u.ac.jp [Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Tsukahara, Satoshi [Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Watarai, Hitoshi, E-mail: watarai@chem.sci.osaka-u.ac.jp [Institute for NanoScience Design, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2015-11-01

    We have fabricated a high-performance Faraday rotation (FR) imaging microscope that uses a microsecond pulse magnet comprising an insulated gated bipolar transistor and a 2 μF capacitor. Our microscope produced images with greater stability and sensitivity than those of previous microscopes that used millisecond pulse magnet; these improvements are likely due to high repetition rate and negligible Joule heating effects. The mechanical vibrations in the magnet coil caused by the pulsed current were significantly reduced. The present FR microscope constructed an averaged image from 1000 FR images within 10 min under 1.7 T. Applications of the FR microscope to discriminating three benzene derivatives in micro-capillaries and oscillation-free imaging of spherical polystyrene and polymethyl methacrylate microparticles demonstrated its high performance. - Highlights: • A microsecond pulse magnet with high repetition rate of 10 Hz was fabricated. • Faraday rotation (FR) imaging microscope with the μs magnet was constructed. • Benzene derivatives in microcapillaries were distinguished with the FR microscope. • FR images of single polymer microspheres of 20 μm were correctly acquired. • Observed FR angles agreed quantitatively with those expected from Verdet constants.

  16. Fabrication of superconducting tunnel junctions with embedded coil for applying magnetic field

    Science.gov (United States)

    Yamaguchi, Kenji; Nakagawa, Hiroshi; Aoyagi, Masahiro; Naruse, Masato; Myoren, Hiroaki; Taino, Tohru

    2016-11-01

    We have proposed and demonstrated a superconducting tunnel junction (STJ) with an embedded coil for applying a magnetic field. The STJ was fabricated on the coil, which was embedded in a Si substrate. The coil in the Si substrate consists of superconducting microstrip lines and applies a magnetic field to the STJ to suppress the dc Josephson current. The embedded coil was designed with a line and space of 3 μm and a thickness of 120 nm. To planarize the coil, we employed chemical mechanical polishing (CMP) in our fabrication process. In this STJ, the maximum current of the embedded coil was 28 mA, which corresponded to the maximum magnetic field of 11.76 mT.

  17. Functional magnetic stimulation using a parabolic coil for dysphagia after stroke.

    Science.gov (United States)

    Momosaki, Ryo; Abo, Masahiro; Watanabe, Shu; Kakuda, Wataru; Yamada, Naoki; Mochio, Kenjiro

    2014-10-01

    Recently, the usefulness of neuromuscular electrical stimulation and repetitive transcranial magnetic stimulation for poststroke dysphagia has been reported. However, there is no report that describes the effectiveness of functional magnetic stimulation (FMS) for dysphagia. The purpose of this study is to clarify the effectiveness of FMS for poststroke dysphagia. Twenty poststroke dysphagic patients (age at treatment: 51-80 years; interval between onset of stroke and treatment: 6 to 36 months) were randomly assigned to a real group or a sham group. In the real group, FMS of 30 Hz was applied for suprahyoid muscles in a 20-sec train using a parabolic coil for 10 min (total 1200 pulses). In the sham group, sham stimulation was applied for 10 min at the same site. Swallowing function was evaluated by the timed water swallow test, interswallow interval (ISI), swallowing volume velocity (speed), and volume per swallow (capacity) were measured before and after stimulation. All patients completed the stimulation and none showed any adverse reactions throughout the stimulation. The improvement of speed and capacity of swallowing after stimulation was significantly larger in the real group compared with the sham group (all p parabolic coil can potentially improve swallowing function in poststroke dysphagic patients. © 2013 International Neuromodulation Society.

  18. Repeating Pulsed Magnet System for Axion-like Particle Searches and Vacuum Birefringence Experiments

    CERN Document Server

    Yamazaki, T; Namba, T; Asai, S; Kobayashi, T; Matsuo, A; Kindo, K; Nojiri, H

    2016-01-01

    We have developed a repeating pulsed magnet system which generates magnetic fields of about 10 T in a direction transverse to an incident beam over a length of 0.8 m with a repetition rate of 0.2 Hz. Its repetition rate is by two orders of magnitude higher than usual pulsed magnets. It is composed of four low resistance racetrack coils and a 30 kJ transportable capacitor bank as a power supply. The system aims at axion-like particle searches with a pulsed light source and vacuum birefringence measurements. We report on the details of the system and its performances.

  19. Repeating pulsed magnet system for axion-like particle searches and vacuum birefringence experiments

    Science.gov (United States)

    Yamazaki, T.; Inada, T.; Namba, T.; Asai, S.; Kobayashi, T.; Matsuo, A.; Kindo, K.; Nojiri, H.

    2016-10-01

    We have developed a repeating pulsed magnet system which generates magnetic fields of about 10 T in a direction transverse to an incident beam over a length of 0.8 m with a repetition rate of 0.2 Hz. Its repetition rate is by two orders of magnitude higher than usual pulsed magnets. It is composed of four low resistance racetrack coils and a 30 kJ transportable capacitor bank as a power supply. The system aims at axion-like particle searches with a pulsed light source and vacuum birefringence measurements. We report on the details of the system and its performances.

  20. Linear Rogowski coil

    Science.gov (United States)

    Nassisi, V.; Delle Side, D.

    2017-02-01

    Nowadays, the employment and development of fast current pulses require sophisticated systems to perform measurements. Rogowski coils are used to diagnose cylindrical shaped beams; therefore, they are designed and built with a toroidal structure. Recently, to perform experiments of radiofrequency biophysical stresses, flat transmission lines have been developed. Therefore, in this work we developed a linear Rogowski coil to detect current pulses inside flat conductors. The system is first approached by means of transmission line theory. We found that, if the pulse width to be diagnosed is comparable with the propagation time of the signal in the detector, it is necessary to impose a uniform current as input pulse, or to use short coils. We further analysed the effect of the resistance of the coil and the influence of its magnetic properties. As a result, the device we developed is able to record pulses lasting for some hundreds of nanoseconds, depending on the inductance, load impedance, and resistance of the coil. Furthermore, its response is characterized by a sub-nanosecond rise time (˜100 ps). The attenuation coefficient depends mainly on the turn number of the coil, while the fidelity of the response depends both on the magnetic core characteristics and on the current distribution along the plane conductors.

  1. Temperature dependency of magnetic field drifts of HTS pancake coils for NMR/MRI applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyeong Dal; Lee, Se Yeon; Kim, Woo Seok [Dept. of Energy and Electrical Engineering, Korea Polytechnic University, Siheung (Korea, Republic of); Lee, Sang Min [Dept. of Radiology, CHA Bundang Medical Center, CHA University, Seongnam (Korea, Republic of)

    2013-12-15

    We had proposed a winding method so called “Wind-and-Flip”, which enables a persistent current operation of an HTS pancake coil without any electrical joint. In order to improve the magnetic field drift characteristics, a prototype HTS coil with the technique was fabricated, and tested under various temperatures. Because the coil does not have any electric terminals for current leads, an HTS background magnet was used to induce the persistent current in the coil by field cooling process. A conduction cooling system with a GM cryocooler was prepared to keep the operating temperatures of the prototype coil much below the 77 K. We investigated the magnetic field drift characteristics under the various operating temperatures by measuring the center magnetic field with a cryogenic Hall sensor. The persistent current mode operation at 20 ∽ 50K showed a strong possibility of the winding technique for the application such as MRI or NMR.

  2. A Method for Evaluating the Magnetic Field Homogeneity of a Radiofrequency Coil by Its Field Histogram

    Science.gov (United States)

    Yang, Q. X.; Li, S. H.; Smith, M. B.

    The magnetic field homogeneity of a radiofrequency coil is very important in both magnetic resonance imaging and spectroscopy. In this report, a method is proposed for quantitatively evaluating the RF magnetic field homogeneity from its histogram, which is obtained by either experimental measurement or theoretical calculation. The experimental histogram and theoretical histogram can be compared directly to verify the theoretical findings. The RF field homogeneities of the bird-cage coil, slotted-tube resonator, cosine wire coil, and a new radial plate coil design were evaluated using this method. The results showed that the experimental histograms and the corresponding theoretical histograms are consistent. This method provides an easy and sensitive way of evaluating the magnetic field homogeneity and facilitates the design and evaluation of new RF coil configurations.

  3. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs

    Science.gov (United States)

    Deng, Zhi-De; Lisanby, Sarah H.; Peterchev, Angel V.

    2012-01-01

    Background Various transcranial magnetic stimulation (TMS) coil designs are available or have been proposed. However, key coil characteristics such as electric field focality and attenuation in depth have not been adequately compared. Knowledge of the coil focality and depth characteristics can help TMS researchers and clinicians with coil selection and interpretation of TMS studies. Objective To quantify the electric field focality and depth of penetration of various TMS coils. Methods The electric field distributions induced by 50 TMS coils were simulated in a spherical human head model using the finite element method. For each coil design, we quantified the electric field penetration by the half-value depth, d1/2, and focality by the tangential spread, S1/2, defined as the half-value volume (V1/2) divided by the half-value depth, S1/2 = V1/2/d1/2. Results The 50 TMS coils exhibit a wide range of electric field focality and depth, but all followed a depth–focality tradeoff: coils with larger half-value depth cannot be as focal as more superficial coils. The ranges of achievable d1/2 are similar between coils producing circular and figure-8 electric field patterns, ranging 1.0–3.5 cm and 0.9–3.4 cm, respectively. However, figure-8 field coils are more focal, having S1/2 as low as 5 cm2 compared to 34 cm2 for circular field coils. Conclusions For any coil design, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electrical field spread. Novel coil designs should be benchmarked against comparison coils with consistent metrics such as d1/2 and S1/2. PMID:22483681

  4. A titanium dioxide filled toroidal coil for magnetic resonance imaging at high field

    Science.gov (United States)

    Butterworth, Edward J.

    1999-09-01

    This study demonstrates the advantages of filling the resonating cavity of a radio frequency NMR coil with a substance that more closely matches the dielectric properties of human tissue. The chosen design is a toroidal RF coil of reduced aspect ratio, and the dielectric material of choice is powdered titanium dioxide. RF coil performance is limited significantly by the dielectric discontinuity and consequent wavelength discontinuity between the air-filled cavity and human tissue. Filling the coil with titanium dioxide (with a published relative dielectric constant of 114 for randomly oriented rutile crystals and a measured dielectric constant under operating conditions of 70) alters its electromagnetic properties in a way which approximates human tissue (most of which has a dielectric constant between 50 and 70), without introducing spurious magnetic effects. In particular, brain NMR can benefit from these advantages. Analytic expressions for the electric and magnetic fields within the coil are derived here. The physical and electromagnetic parameters of the coil are developed with reference to these computations. The redesigned and filled resonator focuses the magnetic field lines, producing a more uniform B1 field as compared with the unfilled coil, with reduced power requirements. The filled coil has a well-defined imaging zone, in which the magnetic field is relatively uniform and homogeneous. The Q of the coil is significantly higher than that of conventional designs and is not significantly reduced by loading. Test results and images are presented showing these effects.

  5. Effect of the different winding methods of coil on electromagnetic field during transcranial magnetic stimulation.

    Science.gov (United States)

    Yang, Shuo; Xu, Guizhi; Wang, Lei; Zhang, Xiu

    2008-01-01

    Transcranial magnetic stimulation (TMS) is a powerful, non-invasive tool for investigating functions in the brain. The target inside the head is stimulated with eddy currents induced in the tissues by the time-varying magnetic field. TMS has been used in several applications in medical and clinical research which include brain mapping, treatment of mood disorder and schizophrenia, treatment of epilepsy, treatment of chronic pain and so on. The stimulation effect can be affected by the stimulation intensity. For coils with the same shape, different winding methods make the coil have different stimulation intensity. In this paper, three different methods for winding circular coils are discussed. The electromagnetic fields induced by the three different circular coils were analyzed. The results show that the circular coil with the pancake coil winding has the strongest stimulation intensity.

  6. Double helix dipole design applied to magnetic resonance: a novel NMR coil.

    Science.gov (United States)

    Alonso, J; Soleilhavoup, A; Wong, A; Guiga, A; Sakellariou, D

    2013-10-01

    A new radio frequency coil design for NMR experiments is presented. The coil generates a magnetic field purely perpendicular to the longitudinal axis of the main magnet, and its sensitivity is higher than the traditional transversal resonators. This is achieved by adding the contribution of two tilted solenoid coils fed with opposite currents. The work presents the mathematical model for the new coil, numerical simulations performed to validate that model and a comparison with an equivalent saddle coil. The new design is tested experimentally in low- and high-field NMR experiments and compared with results obtained with equivalent saddle coils. The results lead to conclude that the new design provides better sensitivity than the transverse resonators commonly used in NMR. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Inductively-overcoupled coil design for high resolution magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Bilgen Mehmet

    2006-01-01

    Full Text Available Abstract Background Maintaining the quality of magnetic resonance images acquired with the current implantable coil technology is challenging in longitudinal studies. To overcome this challenge, the principle of 'inductive overcoupling' is introduced as a method to tune and match a dual coil system. This system consists of an imaging coil built with fixed electrical elements and a matching coil equipped with tuning and matching capabilities. Overcoupling here refers to the condition beyond which the peak of the current in the imaging coil splits. Methods The combined coils are coupled inductively to operate like a transformer. Each coil circuit is electrically represented by equivalent lumped-elements. A theoretical analysis is given to identify the frequency response characteristics of the currents in each coil. The predictions from this analysis are translated into experiments and applied to locally image rat spinal cord at 9.4 T using an implantable coil as the imaging coil and an external volume coil as the matching coil. Results The theoretical analysis indicated that strong coupling between the coils divides the resonance peaks on the response curves of the currents. Once these newly generated peaks were tuned and matched to the desired frequency and impedance of operation, in vivo images were acquired from the rat spinal cord at high quality and high resolution. Conclusion After proper implementation, inductive overcoupling provides a unique opportunity for tuning and matching the coil system, and allows reliable and repeatable acquisitions of magnetic resonance data. This feature is likely to be useful in experimental studies, such as those aimed at longitudinally imaging the rat following spinal cord injury.

  8. Mutual Inductance and Magnetic Force Calculations for Bitter Disk Coil (Pancake) with Nonlinear Radial Current and Filamentary Circular Coil with Azimuthal Current

    OpenAIRE

    Slobodan Babic; Cevdet Akyel

    2016-01-01

    Bitter coils are electromagnets used for the generation of extremely strong magnetic fields superior to 30 T. In this paper we calculate the mutual inductance and the magnetic force between Bitter disk (pancake) coil with the nonlinear radial current and the circular filamentary coil with the azimuthal current. The close form expressed over complete elliptic integrals of the first and second kind as well as Heuman’s Lambda function is obtained for this configuration either for the mutual indu...

  9. Performance improvement of magnetized coaxial plasma gun by magnetic circuit on a bias coil

    Science.gov (United States)

    Edo, Takahiro; Matsumoto, Tadafumi; Asai, Tomohiko; Kamino, Yasuhiro; Inomoto, Michiaki; Gota, Hiroshi

    2016-10-01

    A magnetized coaxial plasmoid accelerator has been utilized for compact torus (CT) injection to refuel into fusion reactor core plasma. Recently, CT injection experiments have been conducted on the C-2/C-2U facility at Tri Alpha Energy. In the series of experiments successful refueling, i.e. increased particle inventory of field-reversed configuration (FRC) plasma, has been observed. In order to improve the performance of CT injector and to refuel in the upgraded FRC device, called C-2W, with higher confinement magnetic field, magnetic circuit consisting of magnetic material onto a bias magnetic coil is currently being tested at Nihon University. Numerical work suggests that the optimized bias magnetic field distribution realizes the increased injection velocity because of higher conversion efficiency of Lorenz self force to kinetic energy. Details of the magnetic circuit design as well as results of the test experiment and field calculations will be presented and discussed.

  10. Magnetic damping forces in figure-eight-shaped null-flux coil suspension systems

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianliang; Coffey, H.

    1997-08-01

    This paper discusses magnetic damping forces in figure-eight-shaped null-flux coil suspension systems, focusing on the Holloman maglev rocket system. The paper also discusses simulating the damping plate, which is attached to the superconducting magnet by two short-circuited loop coils in the guideway. Closed-form formulas for the magnetic damping coefficient as functions of heave-and-sway displacements are derived by using a dynamic circuit model. These formulas are useful for dynamic stability studies.

  11. Superconducting FCL using a combined inducted magnetic field trigger and shunt coil

    Science.gov (United States)

    Tekletsadik, Kasegn D.

    2007-10-16

    A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.

  12. The effects of samarium-cobalt magnets and pulsed electromagnetic fields on tooth movement.

    Science.gov (United States)

    Darendeliler, M A; Sinclair, P M; Kusy, R P

    1995-06-01

    The purpose of this study was to determine whether the application of either samarium cobalt magnets or pulsed electromagnetic fields could increase the rate and amount of orthodontic tooth movement observed in guinea pigs. In addition, the objective was to evaluate the effect of a magnetic field on bony physiology and metabolism and to monitor for possible systemic side effects. Fifteen grams of laterally directed orthodontic force were applied to move the maxillary central incisors of a sample of 18 young male Hartley guinea pigs divided into three groups: group 1, an orthodontic coil spring was used to move the incisors; group 2, a pair of samarium-cobalt magnets provided the tooth moving force; and group 3, a coil spring was used in combination with a pulsed electromagnetic field. The results showed that both the static magnetic field produced by the samarium-cobalt magnets and the pulsed electromagnetic field used in combination with the coil spring were successful in increasing the rate of tooth movement over that produced by the coil springs alone. The mechanism producing this effect appears to have involved a reduction in the "lag" phase often seen in orthodontic tooth movement. Both magnetically stimulated groups also showed increases in both the organization and amount of new bone deposited in the area of tension between the orthodontically moved maxillary incisors.

  13. MR-based measurements and simulations of the magnetic field created by a realistic transcranial magnetic stimulation (TMS) coil and stimulator.

    Science.gov (United States)

    Mandija, Stefano; Petrov, Petar I; Neggers, Sebastian F W; Luijten, Peter R; van den Berg, Cornelis A T

    2016-11-01

    Transcranial magnetic stimulation (TMS) is an emerging technique that allows non-invasive neurostimulation. However, the correct validation of electromagnetic models of typical TMS coils and the correct assessment of the incident TMS field (BTMS ) produced by standard TMS stimulators are still lacking. Such a validation can be performed by mapping BTMS produced by a realistic TMS setup. In this study, we show that MRI can provide precise quantification of the magnetic field produced by a realistic TMS coil and a clinically used TMS stimulator in the region in which neurostimulation occurs. Measurements of the phase accumulation created by TMS pulses applied during a tailored MR sequence were performed in a phantom. Dedicated hardware was developed to synchronize a typical, clinically used, TMS setup with a 3-T MR scanner. For comparison purposes, electromagnetic simulations of BTMS were performed. MR-based measurements allow the mapping and quantification of BTMS starting 2.5 cm from the TMS coil. For closer regions, the intra-voxel dephasing induced by BTMS prohibits TMS field measurements. For 1% TMS output, the maximum measured value was ~0.1 mT. Simulations reflect quantitatively the experimental data. These measurements can be used to validate electromagnetic models of TMS coils, to guide TMS coil positioning, and for dosimetry and quality assessment of concurrent TMS-MRI studies without the need for crude methods, such as motor threshold, for stimulation dose determination. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Magnetic pulse welding on the cutting edge of industrial applications

    Directory of Open Access Journals (Sweden)

    R. M. Miranda

    2014-03-01

    Full Text Available Magnetic Pulse Welding (MPW applies the electromagnetic principles postulated in the XIXth century and later demonstrated. In recent years the process has been developed to meet highly demanding market needs involving dissimilar material joining, specially involving difficult-to-weld materials. It is a very high speed joining process that uses an electromagnetic force to accelerate one material against the other, resulting in a solid state weld with no external heat source and no thermal distortions. A high power source, the capacitor, a discharge switch and a coil constitute the minimum equipment necessary for this process. A high intensity current flowing through a coil near an electrically conductive material, locally produce an intense magnetic field that generates eddy currents in the flyer according to Lenz law. The induced electromotive force gives rise to a current whose magnetic field opposes the original change in magnetic flux. The effect of this secondary current moving in the primary magnetic field is the generation of a Lorentz force, which accelerates the flyer at a very high speed. If a piece of material is placed in the trajectory of the flyer, the impact will produce an atomic bond in a solid state weld. This paper discusses the fundamentals of the process in terms of phenomenology and analytical modeling and numerical simulation. Recent industrial applications are presented in terms of materials, joint configurations and real examples as well as advantages and disadvantages of the process.

  15. Array of 12 coils to measure the position, alignment, and sensitivity of magnetic sensors over temperature

    Science.gov (United States)

    Husstedt, Hendrik; Ausserlechner, Udo; Kaltenbacher, Manfred

    2012-04-01

    A measurement setup is presented that allows one to determine the position, alignment, and sensitivity of magnetic sensors over temperature. To this end, an array of 12 coils is used where the number of coils is larger than the number of unknowns to increase accuracy, and to ensure an adequate measurement signal for an arbitrary orientation of the magnetic sensors. With this coil array, a 3D sensing system is analyzed which is used during the testing of automotive magnetic sensors. In particular, the influence of assembly tolerances, and the variation of temperature are examined.

  16. High-pass bird-cage coil for nuclear-magnetic resonance

    Science.gov (United States)

    Watkins, Joel C.; Fukushima, Eiichi

    1988-06-01

    Cylindrical bird-cage coils generate uniform magnetic fields transverse to the cylinder axis for use in the large sample nuclear-magnetic resonance (NMR) experiments. We describe the design and construction of an eight-rung high-pass bird-cage coil to operate at 80 MHz in a cylindrical bore of a superconducting magnet. The coil is 12.7 cm in diameter by 30.5 cm long and has a 7-cm-diam region in the center where the field intensity is within 10% of the average.

  17. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion.

  18. Magnetic resonance imaging receiver coil decoupling using circumferential shielding structures.

    Science.gov (United States)

    Yeh, Jhy-Neng Tasso; Fa-Hsuan Lin

    2016-08-01

    We propose a flexible phased-array design using circular coils with circumferential shielding structure to achieve robust decoupling between coil elements when the array is either bended or on a flat plane. Two types of circumferential shielding were tested through numerical simulation and imaging experiment. The results demonstrated that our arrays have good decoupling between coils when they are on a curved surface with S21 coil array. Future work will empirically construct a multi-channel array with the number of channel matched to commercial phased array in order to validate the performance in vivo.

  19. The B00 model coil in the ATLAS Magnet Test Facility

    CERN Document Server

    Dudarev, A; ten Kate, H H J; Anashkin, O P; Keilin, V E; Lysenko, V V

    2001-01-01

    A 1-m size model coil has been developed to investigate the transport properties of the three aluminum-stabilized superconductors used in the ATLAS magnets. The coil, named B00, is also used for debugging the cryogenic, power and control systems of the ATLAS Magnet Test Facility. The coil comprises two double pancakes made of the barrel toroid and end-cap toroid conductors and a single pancake made of the central solenoid conductor. The pancakes are placed inside an aluminum coil casing. The coil construction and cooling conditions are quite similar to the final design of the ATLAS magnets. The B00 coil is well equipped with various sensors to measure thermal and electrodynamic properties of the conductor inside the coils. Special attention has been paid to the study of the current diffusion process and the normal zone propagation in the ATLAS conductors and windings. Special pick-up coils have been made to measure the diffusion at different currents and magnetic field values. (6 refs).

  20. A pulsed magnetic stress applied to Drosophila melanogaster flies

    Science.gov (United States)

    Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.

    2014-04-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  1. Generation and measurement of pulsed high magnetic field

    CERN Document Server

    Jana, S

    2000-01-01

    Pulsed magnetic field has been generated by discharging a capacitor bank through a 5-layer air-core solenoid. The strength of the magnetic field at its peak has been measured using the voltage induced in various pick-up coils, and also from the Zeeman splitting of an ion having a known g value. Synchronizing a xenon flash at the peak of the magnetic field, this lab-made instrument has been made well suited to study the Zeeman effect, etc. at a temperature of 25 K. As an application of this setup, we have investigated the Zeeman splitting of the sup 4 I sub 9 sub / sub 2-> sup 4 G sub 5 sub / sub 2 transition of the Nd sup 3 sup + -doped CsCdCl sub 3 crystal at 7.8 T, and determined the splitting factors.

  2. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    Energy Technology Data Exchange (ETDEWEB)

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-04-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 {micro}m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  3. Experimental study of thrusts of a cylindrical linear synchronous motor with an HTS coil magnet as the excitation system

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wanqing, E-mail: duanwanqing@126.com; Yan, Zhongming, E-mail: 6885391@qq.com; Luo, Wenbo; Zhang, Peixing; Gui, Zhixing; Wang, Zhiquan; Wang, Yu

    2015-01-15

    Highlights: • Thrusts of a cylindrical linear synchronous motor with an HTS coil were measured. • Effects of armature current, coil current and running time were studied. • Thrusts of HTS coil with magnetizers were studied. • Effect of seams between magnetizers was studied. - Abstract: The thrusts of a cylindrical linear synchronous motor with an HTS coil magnet as the excitation system were measured the first time and will be presented in this paper. The HTS coil magnet is made of second generation YBCO wire. The coil is a double pancake coil consisting of 34 turns wire. The inner diameter, outer diameter and height of the coil are 20, 30 and 13 mm, respectively. The armature of the motor is three phases, and the inner diameter is 40 mm. It is made of copper windings. With a direct current of 40 A for the HTS coil magnet and a RMS current of 10 A for the armature, a peak thrust of 3.8 N was measured at the temperature of 77 K and a radial gap of 5 mm between the armature and the excitation system. Effects of armature current, coil current, running time, magnetizers and seams between magnetizers were also studied. In the experiments, the peak thrusts of different types of HTS coil magnets were about from 1.3 times to 8 times as strong as the peak thrust of the coreless coil magnet under the same conditions.

  4. Efficiency evaluation of a 13C Magnetic Resonance birdcage coil: Theory and comparison of four methods

    DEFF Research Database (Denmark)

    Giovannetti, Giulio; Frijia, Francesca; Hartwig, Valentina;

    2013-01-01

    .Coil efficiency, defined as the B1 magnetic field induced at a given point on the square root of supplied power P, is an important parameter that characterizes coil performance, since by maximizing efficiency will also maximize the signal-to-noise ratio.This work describes and compares four methods for coil...... efficiency estimation, based on different theoretical approaches. Three methods allow efficiency measurement by using “probe techniques” (perturbing loop, perturbing sphere and pick-up coil), which can be used both on the bench and inside the scanner, while an “NMR technique” has been employed for comparison...

  5. A magnetic induction heating system with multi-cascaded coils and adjustable magnetic circuit for hyperthermia.

    Science.gov (United States)

    Huang, Chi-Fang; Chao, Hsuan-Yi; Chang, Hsun-Hao; Lin, Xi-Zhang

    2016-01-01

    Based on the characteristics of cancer cells that cannot survive in an environment with temperature over 42 °C, a magnetic induction heating system for cancer treatment is developed in this work. First, the methods and analyses for designing the multi-cascaded coils magnetic induction hyperthermia system are proposed, such as internal impedance measurement of power generator, impedance matching of coils, and analysis of the system. Besides, characteristics of the system are simulated by a full-wave package for engineering optimization. Furthermore, by considering the safety factor of patients, a two-sectional needle is designed for hyperthermia. Finally, this system is employed to test the liver of swine in ex-vivo experiments, and through Hematoxylin and Eosin (H&E) stain and NADPH oxidase activity assay, the feasibility of this system is verified.

  6. Measurement system for SSRF pulsed magnets

    Institute of Scientific and Technical Information of China (English)

    PENG Chengcheng; GU Ming; LIU Bo; OUYANG Lianhua

    2007-01-01

    This paper describes the magnetic field measurement system for pulsed magnets in SSRF.The system consists of magnetic probes,analog active integrator,oscilloscope,stepper motor and a controller.An application program based on LabVIEW has been developed as main control unit.After the magnetic field mapping of a septum magnet prototype,it is verified that the test results accord with the results of theoretical calculation and computer simuladon.

  7. Micro fluxgate magnetic sensors using planar coils wrapped around a film core

    Energy Technology Data Exchange (ETDEWEB)

    Kawahito, S.; Suto, M.; Yamasawa, A.; Tadokoro, Y. [Toyohashi University of Technology, Aichi (Japan)

    1996-11-20

    This paper presents highly-sensitive fluxgate magnetic sensors based on silicon microtechnology and electrodeposited magnetic thin films. To achieve high sensitivity, we propose a coil structure that both the excitation and the pickup coils are wrapped around a thin-film core. The optimal coupling structure between excitation and pickup coils is investigated. The closely-coupled coil structure that a one turn of excitation coil and a few turns of pick-up coil are wound alternatively around the magnetic core is effective to achieve high sensitivity. In general, the magnetic performance of the core prepared by electrodeposition is degraded due to the thermal treatment process during the fabrication. The addition of indium in the plating bath of Permalloy greatly reduces the degradation of magnetic core due to the thermal treatment process. An improved basic micro fluxgate sensing element chip employing new-type coil structures and the indium-added permalloy prepared by electrodeposition is fabricated. The maximum sensitivity of the fabricated sensor is measured to be 2700V/T at the excitation frequency of 3MHz. The noise spectral density is measured to be 0.6nT/Hz at 10Hz. 24 refs., 11 figs., 1 tab.

  8. Quench absorption coils: a quench protection concept for high-field superconducting accelerator magnets

    Science.gov (United States)

    Mentink, M.; Salmi, T.

    2017-06-01

    A quench protection concept based on coupled secondary coils is studied for inductively transferring energy out of a quenching superconducting dipole and thus limiting the peak hotspot temperature. So-called ‘quench absorption coils’ are placed in close proximity to the superconducting coils and are connected in series with a diode for the purpose of preventing current transformation during regular operation. During a quench, current is then transformed into the quench absorption coils so that a significant fraction of the stored magnetic energy is dissipated in the these coils. Numerical calculations are performed to determine the impact of such a concept and to evaluate the dimensions of the quench absorption coils needed to obtain significant benefits. A previously constructed 15 T Nb3Sn block coil is taken as a reference layout. Finite-element calculations are used to determine the combined inductive and thermal response of this system and these calculations are validated with a numerical model using an adiabatic approximation. The calculation results indicate that during a quench the presence of the quench absorption coils reduces the energy dissipated in the superconducting coils by 45% and reduces the hotspot temperature by over 100 K. In addition, the peak resistive voltage over the superconducting coils is significantly reduced. This suggests that this concept may prove useful for magnet designs in which the hotspot temperature is a design driver.

  9. Use of a High-Temperature Superconducting Coil for Magnetic Energy Storage

    Science.gov (United States)

    Fagnard, J.-F.; Crate, D.; Jamoye, J.-F.; Laurent, Ph; Mattivi, B.; Cloots, R.; Ausloos, M.; Genon, A.; Vanderbemden, Ph

    2006-06-01

    A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a ''pancake'' coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T = 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 µV/cm criterion). Critical currents were found to exceed 100 A for T power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s.

  10. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix.

    Science.gov (United States)

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.

  11. Dual cervical thoracic coil for spine magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Totterman, S.; Foster, T.H.; Plewes, D.B.; Simon, J.H.; Ekholm, S.; Wicks, A. (Rochester Univ., NY (USA). Dept. of Radiology Rochester Univ., NY (USA). Dept. of Physics and Astronomy)

    The need for repositioning of surface coils and patients in MR examinations of the cervical and thoracic spin prolongs examination time. A new receiver design is proposed which overcomes this problem. The device is composed of two actively decoupled receiver coils mounted on the frame of a Philadelphia collar. These coils may be used separately to image either the thoracic or cervical spine or together to produce larger field-of-view images of the combined region. Signal-to-noise ratios of the separate cervical and thoracic spine images are not degraded as a result of mounting the receivers together. The full cervical and thoracic region is shown to be imaged at a signal-to-noise ratio significantly higher than that afforded by the body coil. A retrospective review of our case load suggests that a time saving could be achieved in approximately 1/3 of spine examinations by using this coil. (orig.).

  12. Eddy-current inspection of ferromagnetic tubing using pulsed magnetic saturation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, C V; Deeds, W E

    1986-07-01

    A pulsed eddy-current system has been designed and developed for nondestructive evaluation of 2.25Cr-1Mo steam generator tubing from the bore side. Since the tubing is ferromagnetic, a large current pulse is sent through a driver coil to produce magnetic saturation all the way through the tube wall. A pickup coil produces an output pulse that is dependent upon the tube properties as well as the driving pulse. The output pulse heights at selected times are used as data that are computer-correlated with calibration data taken from machined standards. Performance data, circuit diagrams, and computer programs are given for the system, which has been demonstrated to detect small flaws located near the outside of a thick ferromagnetic tube.

  13. Trapped field measurements of Gd-Ba-Cu-O bulk superconductor in controlled pulse field magnetizing

    Energy Technology Data Exchange (ETDEWEB)

    Ida, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Kimura, Y; Sano, T; Yamaguchi, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Miki, M [Kitano Seiki Co. Ltd., 7-13-7, Chuo, Ohta-ku, Tokyo 143-0024 (Japan)], E-mail: ida@hiroshima-cmt.ac.jp

    2008-02-01

    For large-scale electric power application of the melt-processed high temperature superconductor (HTS) bulks, especially at rotating machine, development of trapping much higher magnetic fields by using pulsed magnetization technique is essential. It is difficult to use static field cooling (FCM) technique that is most effective magnetizing method for the general industrial HTS applications, because the FCM requires large-scale superconducting magnets. Because the rise in temperature due to the magnetic flux motion decreases the pinning force, we controlled the magnetic flux penetrating to the bulk for the effective magnetization. A couple of vortex-type copper coils applied a magnetic field to a Gd-Ba-Cu-O bulk, which dimension was 45mm in diameter and 19 mm in thickness. HTS bulk was magnetized by the controlled pulse field without passive LCR pulse. We controlled waveform by using the discharge current that IGBT chopper in pulse magnetizer intermitted. We applied the pulse magnetic field with the various risetime to the HTS bulk in liquid nitrogen. The various conditions of the controlled waveform pulse to trap well-dressed profile magnetized the Gd-Ba-Cu-O bulk, strongly at 77K. In the present study, we show several properties which was measured in the PFM of the HTS bulk.

  14. Analysis of quench in the NHMFL REBCO prototype coils for the 32 T Magnet Project

    Science.gov (United States)

    Breschi, M.; Cavallucci, L.; Ribani, P. L.; Gavrilin, A. V.; Weijers, H. W.

    2016-05-01

    A 32 T all-superconductive magnet with high field REBCO inner coils is under development at the National High Magnetic Field Laboratory, Tallahassee, Florida, USA. As part of the development activity, two prototype coils with full scale radial dimensions and final design features, but with reduced axial length were constructed. The prototype coils consist of six dry-wound double pancakes modules with uninsulated conductor and insulated stainless steel cowind. Quench studies on one of the prototype coils at 4.2 K in self-field and in a background magnetic field of 15 T were performed by activating a set of quench protection heaters. In this paper, we present a numerical analysis of the experimental results of the quench tests of one of the prototype coils. The numerical analysis was carried out through a coupled electro-thermal FEM model developed at the University of Bologna. The model is based on the coupling with distributed contact resistances of the coil pancakes described as 2D elements. A homogenization procedure of the REBCO tape and other coil materials is presented, which allows reducing the number of degrees of freedom and the computational effort. The model is applied to the analysis of the current and voltage evolutions during the experimental quench tests on the prototype coil.

  15. Cryogenic magnetic coil and superconducting magnetic shield for neutron electric dipole moment searches

    Science.gov (United States)

    Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.

    2017-08-01

    A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.

  16. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; Duan, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  17. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; DUAN, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  18. Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia.

    Science.gov (United States)

    Nieskoski, Michael D; Trembly, B Stuart

    2014-06-01

    Magnetic nanoparticles in a tumor can induce therapeutic heating when energized by an alternating magnetic field from a current-carrying coil outside the body. We analyzed a single-turn, air-core coil carrying a filamentary current to quantify the power absorbed by: a) magnetic nanoparticles at depth in tissue and b) superficial tissue in response to induced eddy currents; we defined this quotient as power ratio (PR). Given some limit on the eddy current heating tolerated by an alert patient, maximizing the PR maximizes the power absorbed in the tumor; all else being equal, this increases the thermal dose delivered to the tumor. The mean eddy current heating rate tolerated in four clinical studies we reviewed equaled 12.5 kW/m (3). We differentiated our analytical expression for PR with respect to the radius of the coil to find the value of radius that maximizes PR. Under reasonable simplifying assumptions, the optimal value of coil radius equaled 1.187 times the depth of the nanoparticle target below the body surface. We also derived the PR of two coils surrounding the body configured as a Helmholtz pair. We computed PR for combinations of nanoparticle depths below the surface and axial locations with respect to the coils. At depths less than 4.6 cm, the optimized single coil had a higher PR than that of the Helmholtz pair and furthermore produced less total ohmic heating within the coil. These results were independent of driving frequency, nanoparticle concentration, tissue electrical conductivity, and magnetic nanoparticle heating rate, provided the latter is assumed to be proportional to the product of frequency and the square of the local magnetic field. This paper supports the clinical application of current-carrying coils to deliver efficacious hyperthermia therapy to tumors injected with magnetic nanoparticles.

  19. Magnetic field sensitivity at 7-T using dual-helmholtz transmit-only coil and 12-channel receive-only bended coil.

    Science.gov (United States)

    Kim, Kyoung-Nam; Ryu, Yeunchul; Seo, Jeung-Hoon; Kim, Young-Bo

    2016-11-01

    The purpose of this study was to combine a dual-Helmholtz (DH) transmit (Tx)-only coil and 12-channel receive (Rx)-only bended phased array (PA) coil to improve the magnetic flux (|B1 |) sensitivity in the superior-to-inferior (S-I) direction during human brain magnetic resonance imaging (MRI) at 7-T. The proposed coil combination was primarily implemented by electromagnetic (EM) simulation and compared with the 16-leg birdcage coil and 8-channel PA coil, which are generally used for the Tx- and Rx-only modes, respectively. The optimal coil combinations for the proposed structure were determined by |B1 | field calculations using the |BT(+) | and |BR(-) | fields, which are respectively the transmit and receive components of the |B1 | field. The coil performance was then evaluated by a bench test and 7-T MRI experiment. The results of the computational calculations indicated that the |BT(+) | field of the DH coil was distributed similarly to that of the 16-leg birdcage coil despite the fewer conducting legs of the former. However, the 12-channel Rx-only bended PA coil had clearly higher |BR(-) | profiles compared to the 8-channel PA coil. The results of the 7-T in vivo experiment showed that the proposed combination of the DH Tx-only coil and 12-channel Rx-only bended PA coil had better |B1 | field homogeneity in the sagittal slice as well as higher |B1 | field sensitivity during human brain MRI compared to an 8-channel Rx-only PA coil. SCANNING 38:515-524, © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  20. Magnet Design and Analysis of a 40 Tesla Long Pulse System Energized by a Battery Bank

    Science.gov (United States)

    Lv, Y. L.; Peng, T.; Wang, G. B.; Ding, T. H.; Han, X. T.; Pan, Y.; Li, L.

    2013-03-01

    A 40 tesla long pulse magnet and a battery bank as the power supply have been designed. This is now under construction at the Wuhan National High Magnetic Field Center. The 22 mm bore magnet will generate smooth pulses with duration 1 s and rise time 0.5 s. The battery bank consists of 945 12V/200 Ah lead-acid battery cells. The magnet and battery bank were optimized by codes developed in-house and by ANSYS. The coil was made from soft copper with internal reinforcement by fiber-epoxy composite; it is divided into two sections connected in series. The inner section consists of helix coils with each layer reinforced by Zylon composite. The outer section will be wound from copper sheet and externally reinforced by carbon fiber composite.

  1. Study on technology of high-frequency pulsed magnetic field strength measurement.

    Science.gov (United States)

    Chen, Yi-Mei; Liu, Zhi-Peng; Yin, Tao

    2012-01-01

    High-frequency transient weak magnetic field is always involved in researches about biomedical engineering field while common magnetic-field sensors cannot work properly at frequencies as high as MHz. To measure the value of MHz-level weak pulsed magnetic-field strength accurately, this paper designs a measurement and calibration method for pulsed magnetic-field. In this paper, a device made of Nonferromagnetic material was independently designed and applied to pulsed magnetic field measurement. It held an accurately relative position between the magnetic field generating coil and the detecting coil. By applying a sinusoidal pulse to the generator, collecting the induced electromotive force of the detector, the final magnetic field strength was worked out through algorithms written in Matlab according to Faraday's Law. Experiments were carried out for measurement and calibration. Experiments showed that, under good stability and consistency, accurate measurement of magnetic-field strength of a sinepulse magnetic-field can be achieved, with frequency at 0.5, 1, 1.5 MHz and strength level at micro-Tesla. Calibration results carried out a measuring relative error about 2.5%.

  2. Review of selected coil and collared-coil assembly data from 10-M-long, 50-MM-Twin-aperture LHC dipole magnet prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A

    1999-02-01

    In 1991, the Laboratoire Europeen pour la Physique des Particules (CERN) has launched the fabrication in industry of seven 10 m long, 50 mm twin aperture dipole magnet prototypes for the Large Hadron Collider (LHC). The design and specific features of these magnets have been described elsewhere. In this paper, we review some of the coil and collared-coil assembly data and we analyze the influence of tooling imperfections on magnet assembly. (author)

  3. Test Results of HTS Coil and Magnet R&D for RIA

    CERN Document Server

    Gupta, Ramesh C; Harrison, Michael; Sampson, William; Schmalzle, Jesse D; Zeller, Al

    2005-01-01

    Brookhaven National Laboratory is developing quadrupole magnets for the proposed Rare Isotope Accelerator (RIA) based on commercially available High Temperature Superconductors (HTS). These quadrupoles will be used in the Fragment Separator region and are one of the more challenging elements in the RIA proposal. They will be subjected to several orders of magnitude more energy and radiation deposition than typical beam line and accelerator magnets receive during their entire lifetime. The proposed quadrupoles will operate in the 20-40 K temperature range for efficient heat removal. HTS coils that have been tested so far indicate that the coils meet the magnetic field requirements of the design. We will report the test results of about 10 HTS coils and of a magnetic mirror configuration that simulates the magnetic field and Lorentz force in the proposed quadrupole. In addition, the preliminary design of an HTS dipole magnet for the Fragment Separator region will also be presented.

  4. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  5. Sensitive magnetic biodetection using magnetic multi-core nanoparticles and RCA coils

    Science.gov (United States)

    Ahrentorp, Fredrik; Blomgren, Jakob; Jonasson, Christian; Sarwe, Anna; Sepehri, Sobhan; Eriksson, Emil; Kalaboukhov, Alexei; Jesorka, Aldo; Winkler, Dag; Schneiderman, Justin F.; Nilsson, Mats; Albert, Jan; de la Torre, Teresa Zardán Gómez; Strømme, Maria; Johansson, Christer

    2017-04-01

    We use functionalized iron oxide magnetic multi-core particles of 100 nm in size (hydrodynamic particle diameter) and AC susceptometry (ACS) methods to measure the binding reactions between the magnetic nanoparticles (MNPs) and bio-analyte products produced from DNA segments using the rolling circle amplification (RCA) method. We use sensitive induction detection techniques in order to measure the ACS response. The DNA is amplified via RCA to generate RCA coils with a specific size that is dependent on the amplification time. After about 75 min of amplification we obtain an average RCA coil diameter of about 1 μm. We determine a theoretical limit of detection (LOD) in the range of 11 attomole (corresponding to an analyte concentration of 55 fM for a sample volume of 200 μL) from the ACS dynamic response after the MNPs have bound to the RCA coils and the measured ACS readout noise. We also discuss further possible improvements of the LOD.

  6. A high-field pulsed magnet system for x-ray scattering studies in Voigt geometry

    CERN Document Server

    Islam, Zahirul; Ruff, Jacob P C; Das, Ritesh K; Trakhtenberg, Emil; Nojiri, Hiroyuki; Narumi, Yasuo; Canfield, Paul C

    2011-01-01

    We present a new pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies in Voigt geometry. The apparatus consists of a large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields up to ~30 T with a minimum of ~6 ms in total duration are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (~23.6 deg.) through the magnet bore by virtue of a novel double-funnel insert. This instrument would facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using conventional split-pair magnets and offers a practical solution for preserving optical access in future higher-field pulsed magnets.

  7. How to Use the H1 Deep Transcranial Magnetic Stimulation Coil for Conditions Other than Depression

    Science.gov (United States)

    Tendler, Aron; Roth, Yiftach; Barnea-Ygael, Noam; Zangen, Abraham

    2017-01-01

    Deep transcranial magnetic stimulation (dTMS) is a relatively new technique that uses different coils for the treatment of different neuropathologies. The coils are made of soft copper windings in multiple planes that lie adjacent to the skull. They are located within a special helmet so that their magnetic fields combine and improve depth penetration. The H1 dTMS coil is designed to stimulate bilateral prefrontal cortices with greater effective stimulation over the left than the right. By positioning the left side of the coil close to the left dorsolateral prefrontal cortex (DLPFC), the H1 coil was used in a multisite study, leading to FDA approval for treatment-resistant depression. In this same position, the H1 coil was also explored as a possible treatment for negative symptoms of schizophrenia, bipolar depression, and migraine. When moved to different positions over the subject's skull, the H1 coil was also explored as a possible treatment for other conditions. Such manipulation of the H1 coil was demonstrated for PTSD and alcohol dependence by positioning it over the medial prefrontal cortex (mPFC), for anxiety by positioning it over the right prefrontal cortex (rPFC), for auditory hallucinations and tinnitus by positioning it over the temporoparietal junction (TPJ), and for Parkinson's and fatigue from multiple sclerosis (MS) by positioning it over the motor cortex (MC) and PFC. Corresponding electrical field diagrams measured with an oscilloscope through a saline-filled head are included. PMID:28190035

  8. Magnetic Linear Birefringence Measurements Using Pulsed Fields

    CERN Document Server

    Berceau, Paul; Battesti, Remy; Rizzo, Carlo

    2011-01-01

    In this paper we present the accomplishment of the further step towards the vacuum magnetic birefringence measurement based on pulsed fields. After describing our BMV experiment, we report the calibration of our apparatus with nitrogen gas and we discuss the precision of our measurement giving a detailed error budget. Our best present vacuum sensitivity is 2.1x 10^-19 T^-2 per 5 ms magnetic pulse. We finally discuss the perspectives to reach our final goal.

  9. Micro-fabricated integrated coil and magnetic circuit and method of manufacturing thereof

    Energy Technology Data Exchange (ETDEWEB)

    Mihailovich, Robert E.; Papavasiliou, Alex P.; Mehrotra, Vivek; Stupar, Philip A.; Borwick, III, Robert L.; Ganguli, Rahul; DeNatale, Jeffrey F.

    2017-03-28

    A micro-fabricated electromagnetic device is provided for on-circuit integration. The electromagnetic device includes a core. The core has a plurality of electrically insulating layers positioned alternatingly between a plurality of magnetic layers to collectively form a continuous laminate having alternating magnetic and electrically insulating layers. The electromagnetic device includes a coil embedded in openings of the semiconductor substrate. An insulating material is positioned in the cavity and between the coil and an inner surface of the core. A method of manufacturing the electromagnetic device includes providing a semiconductor substrate having openings formed therein. Windings of a coil are electroplated and embedded in the openings. The insulating material is coated on or around an exposed surface of the coil. Alternating magnetic layers and electrically insulating layers may be micro-fabricated and electroplated as a single and substantially continuous segment on or around the insulating material.

  10. Micro-fabricated integrated coil and magnetic circuit and method of manufacturing thereof

    Science.gov (United States)

    Mihailovich, Robert E.; Papavasiliou, Alex P.; Mehrotra, Vivek; Stupar, Philip A.; Borwick, III, Robert L.; Ganguli, Rahul; DeNatale, Jeffrey F.

    2017-03-28

    A micro-fabricated electromagnetic device is provided for on-circuit integration. The electromagnetic device includes a core. The core has a plurality of electrically insulating layers positioned alternatingly between a plurality of magnetic layers to collectively form a continuous laminate having alternating magnetic and electrically insulating layers. The electromagnetic device includes a coil embedded in openings of the semiconductor substrate. An insulating material is positioned in the cavity and between the coil and an inner surface of the core. A method of manufacturing the electromagnetic device includes providing a semiconductor substrate having openings formed therein. Windings of a coil are electroplated and embedded in the openings. The insulating material is coated on or around an exposed surface of the coil. Alternating magnetic layers and electrically insulating layers may be micro-fabricated and electroplated as a single and substantially continuous segment on or around the insulating material.

  11. Combining rotating-coil measurements of large-aperture accelerator magnets

    CERN Document Server

    AUTHOR|(CDS)2089510

    2016-10-05

    The rotating coil is a widely used tool to measure the magnetic field and the field errors in accelerator magnets. The coil has a length that exceeds the entire magnetic field along the longitudinal dimension of the magnet and gives therefore a two-dimensional representation of the integrated field. Having a very good precision, the rotating coil lacks in versatility. The fixed dimensions make it impractical and inapplicable in situations, when the radial coil dimension is much smaller than the aperture or when the aperture is only little covered by the coil. That being the case for rectangular apertures with large aspect ratio, where a basic measurement by the rotating coil describes the field only in a small area of the magnet. A combination of several measurements at different positions is the topic of this work. Very important for a combination is the error distribution on the measured field harmonics. To preserve the good precision of the higher-order harmonics, the combination must not rely on the main ...

  12. Resonant Mode Reduction in Radiofrequency Volume Coils for Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Xiaoliang Zhang

    2011-07-01

    Full Text Available In a multimodal volume coil, only one mode can generate homogeneous Radiofrequency (RF field for Magnetic Resonance Imaging. The existence of other modes may increase the volume coil design difficulties and potentially decreases coil performance. In this study, we introduce common-mode resonator technique to high and ultrahigh field volume coil designs to reduce the resonant mode while maintain the homogeneity of the RF field. To investigate the design method, the common-mode resonator was realized by using a microstrip line which was split along the central to become a pair of parallel transmission lines within which common-mode currents exist. Eight common-mode resonators were placed equidistantly along the circumference of a low loss dielectric cylinder to form a volume coil. Theoretical analysis and comparison between the 16-strut common-mode volume coil and a conventional 16-strut volume coil in terms of RF field homogeneity and efficiency was performed using Finite-Difference Time-Domain (FDTD method at 298.2 MHz. MR imaging experiments were performed by using a prototype of the common-mode volume coil on a whole body 7 Tesla scanner. FDTD simulation results showed the reduced number of resonant modes of the common-mode volume coil over the conventional volume coil, while the RF field homogeneity of the two type volume coils was kept at the same level. MR imaging of a water phantom and a kiwi fruit showing the feasibility of the proposed method for simplifying the volume coil design is also presented.

  13. Comparison of magnetic field uniformities for discretized and finite-sized standard $\\cos\\theta$, solenoidal, and spherical coils

    CERN Document Server

    Nouri, N

    2013-01-01

    A significant challenge for experiments requiring a highly uniform magnetic field concerns the identification and design of a discretized and finite-sized magnetic field coil of minimal size. In this work we compare calculations of the magnetic field uniformities and field gradients for three different standard (i.e., non-optimized) types of coils: $\\cos\\theta$, solenoidal, and spherical coils. For an experiment with a particular requirement on either the field uniformity or the field gradient, we show that the volume required by a spherical coil form which satisfies these requirements can be significantly less than the volumes required by $\\cos\\theta$ and solenoidal coil forms.

  14. Design of an interventional magnetic resonance imaging coil for cerebral surgery

    Institute of Scientific and Technical Information of China (English)

    Xu Yue; Wang Wen-Tao; Wang Wei-Min

    2012-01-01

    In clinical magnetic resonance imaging (MRI),the design of the radiofrequency (RF) coil is very important.For certain applications,the appropriate coil can produce an improved image quality.However,it is difficult to achieve a uniform B1 field and a high signal-to-noise ratio (SNR) simultaneously.In this article,we design an interventional transmitter-and-receiver RF coil for cerebral surgery.This coil adopts a disassembly structure that can be assembled and disassembled repeatedly on the cerebral surgery gantry to reduce the amount of interference from the MRI during surgery.The simulation results and the imaging experiments demonstrate that this coil can produce a uniform RF field,a high SNR,and a large imaging range to meet the requirements of the cerebral surgery.

  15. Study of Kapton insulated superconducting coils manufactured for the LHC inner triplet model magnets at Fermilab

    CERN Document Server

    Andreev, N; Bossert, R; Brandt, J; Chichili, D R; Kerby, J S; Nobrega, A; Novitski, I; Ozelis, J P; Yadav, S; Zlobin, A V

    2000-01-01

    Fermilab has constructed a number of 2 m model quadrupoles as part of an ongoing program to develop and optimize the design of quadrupoles for the LHC Interaction Region inner triplets. The quadrupole design is based upon a two layer shell type coil of multi-filament NbTi strands in Rutherford cable, insulated with Kapton film. As such, the coil size and mechanical properties are critical in achieving the desired prestress and field quality targets for the agent. Throughout the model magnet program, different design and manufacturing techniques have been studied to obtain coils with the required mechanical properties. This paper summarizes the structural material and coil mechanical properties, coil design optimization results and production experience accumulated in the model R&D program. (5 refs).

  16. Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils

    Energy Technology Data Exchange (ETDEWEB)

    Salinas, F S; Lancaster, J L; Fox, P T [Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 (United States)

    2007-05-21

    Previous models neglected contributions from current elements spanning the full geometric extent of wires in transcranial magnetic stimulation (TMS) coils. A detailed account of TMS coil wiring geometry is shown to provide significant improvements in the accuracy of electric field (E-field) models. Modeling E-field dependence based on the TMS coil's wire width, height, shape and number of turns clearly improved the fit of calculated-to-measured E-fields near the coil body. Detailed E-field models were accurate up to the surface of the coil body (within 0.5% of measured) where simple models were often inadequate (up to 32% different from measured)

  17. Effect of Inductive Coil Geometry on the Operating Characteristics of an Inductive Pulsed Plasma Thruster

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.; Perdue, Kevin A.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with conical theta pinch coils of different cone angles are explored through thrust stand measurements and time- integrated, unfiltered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass flow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass flow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  18. Effect of Inductive Coil Geometry on the Operating Characteristics of a Pulsed Inductive Plasma Accelerator

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with coils of different cone angles are explored through thrust stand measurements and time-integrated, un- filtered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass ow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass ow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  19. An equivalent distributed magnetic current based FDTD method for the calculation of E-fields induced by gradient coils in MRI.

    Science.gov (United States)

    Crozier, S; Liu, F; Wei, Q

    2004-01-01

    This paper evaluates a low-frequency FDTD method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current (DEMC) is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretizing of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modeling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multilayered spherical phantom model and a complete body model.

  20. Surface Coil Intensity Correction in Magnetic Resonance Imaging in Spinal Metastases.

    Science.gov (United States)

    Ren, Hong; Lin, Wei; Ding, Xianjun

    2017-01-01

    To evaluate the clinical application of phased-array surface coil intensity correction in magnetic resonance imaging (MRI) in spinal metastases. 3 phantoms and 50 patients with a corresponding total number of 80 spinal metastases were included in this study. Fast spin echo T1- and T2- weighted MRI with and without surface coil intensity correction was routinely performed for all phantoms and patients. Phantoms were evaluated by means of variance to mean ratio of signal intensity on both T1- and T2- weighted MRI obtained with and without surface coil intensity correction. Spinal metastases were evaluated by image quality scores; reading time per case on both T1- and T2- weighted MRI obtained with and without surface coil intensity correction. Spinal metastases were diagnosed more successfully on MRI with surface coil intensity correction than on MRI with conventional surface coil technique. The variance to mean ratio of signal intensity was 53.36% for original T1-weighted MRI and 53.58% for original T2-weighted MRI. The variance to mean ratio of signal intensity was reduced to 18.99% for T1-weighted MRI with surface coil intensity correction and 22.77% for T2-weighted MRI with surface coil intensity correction. The overall image quality scores (interface conspicuity of lesion and details of lesion) were significantly higher than those of the original MRI. The reading time per case was shorter for MRI with surface coil intensity correction than for MRI without surface coil intensity correction. Phased-array surface coil intensity correction in MRIs of spinal metastases provides improvements in image quality that leads to more successfully detection and assessment of spinal metastases than original MRI.

  1. [Design and field calculation of coil array for transcranial magnetic stimulation (TMS) based on genetic algorithm].

    Science.gov (United States)

    Liu, Jicheng; Huang, Kama; Guo, Lanting; Zhang, Hong; Hu, Yayi

    2005-04-01

    It is the intent of this paper to locate the activation point in Transcranial Magnetic Stimulation (TMS) efficiently. The schemes of coil array in torus shape is presented to get the electromagnetic field distribution with ideal focusing capability. Then an improved adaptive genetic algorithm (AGA) is applied to the optimization of both value and phase of the current infused in each coil. Based on the calculated results of the optimized current configurations, ideal focusing capability is drawn as contour lines and 3-D mesh charts of magnitude of both magnetic and electric field within the calculation area. It is shown that the coil array has good capability to establish focused shape of electromagnetic distribution. In addition, it is also demonstrated that the coil array has the capability to focus on two or more targets simultaneously.

  2. A measure of acoustic noise generated from transcranial magnetic stimulation coils.

    Science.gov (United States)

    Dhamne, Sameer C; Kothare, Raveena S; Yu, Camilla; Hsieh, Tsung-Hsun; Anastasio, Elana M; Oberman, Lindsay; Pascual-Leone, Alvaro; Rotenberg, Alexander

    2014-01-01

    The intensity of sound emanating from the discharge of magnetic coils used in repetitive transcranial magnetic stimulation (rTMS) can potentially cause acoustic trauma. Per Occupational Safety and Health Administration (OSHA) standards for safety of noise exposure, hearing protection is recommended beyond restricted levels of noise and time limits. We measured the sound pressure levels (SPLs) from four rTMS coils with the goal of assessing if the acoustic artifact levels are of sufficient amplitude to warrant protection from acoustic trauma per OSHA standards. We studied the SPLs at two frequencies (5 and 10 Hz), three machine outputs (MO) (60, 80 and 100%), and two distances from the coil (5 and 10 cm). We found that the SPLs were louder at closer proximity from the coil and directly dependent on the MO. We also found that in all studied conditions, SPLs were lower than the OSHA permissible thresholds for short (8 h) exposure.

  3. A technique for epoxy free winding and assembly of cos. theta. coils for accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J.A.; Bossert, R.

    1986-09-30

    Traditional methods of magnet construction (wet winding) use molded coil subassemblies bonded together with epoxy impregnated fiberglass tape. This is a highly labor intensive process involving redundant operations for each of the four coils. The epoxy free winding technique (dry winding) eliminates the epoxy curing steps and also allows all four coils to be wound on 3 common winding mandrel, thereby reducing winding stations and handling. The tooling required for dry winding is a radical departure from existing technology imposing new mechanical problems. A number of 64 cm long 5 cm aperture SSC Design B'' magnets have been produced at Fermilab utilizing dry winding techniques. Discussed is the specialized tooling created to accomplish dry winding as well as new winding and assembly procedures required. Also discussed are mechanical problems encountered and their solutions. Based on experience gained, dry winding can be a viable lower cost alternative to traditional coil fabrication techniques.

  4. Designing shielded radio-frequency phased-array coils for magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Xu Wen-Long; Zhang Ju-Cheng; Li Xia; Xu Bing-Qiao; Tao Gui-Sheng

    2013-01-01

    In this paper,an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed.The target field method is used to find current densities distributed on primary and shield coils.The stream function technique is used to discretize current densities and to obtain the winding patterns of the coils.The corresponding highly ill-conditioned integral equation is solved by the Tikhonov regularization with a penalty function related to the minimum curvature.To balance the simplicity and smoothness with the homogeneity of the magnetic field of the coil's winding pattern,the selection of a penalty factor is discussed in detail.

  5. High Field Pulse Magnets with New Materials

    Science.gov (United States)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  6. Switching of antiferromagnetic chains with magnetic pulses

    Science.gov (United States)

    Tao, Kun; Polyakov, Oleg P.; Stepanyuk, Valeri S.

    2016-04-01

    Recent experimental studies have demonstrated the possibility of information storage in short antiferromagnetic chains on an insulator substrate [S. Loth et al., Science 335, 196 (2012), 10.1126/science.1214131]. Here, using the density functional theory and atomistic spin dynamics simulations, we show that a local magnetic control of such chains with a magnetic tip and magnetic pulses can be used for fast switching of their magnetization. Furthermore, by changing the position of the tip one can engineer the magnetization dynamics of the chains.

  7. Heat load characteristics and new design using one-coil model superconducting magnets

    Science.gov (United States)

    Jizo, Yoshihiro; Akagi, Hidenari; Yamaguchi, Takashi; Terai, Motoaki; Shinobu, Masatoshi

    Superconducting magnets (SCM) for Maglev trains are vibrated by the electromagnetic force arising from the magnetic field of higher harmonics, which is due to the arrangement of the ground coils. The heat load within the liquid helium temperature region increases by the vibration of the magnets. This paper reports a heat load generation estimation mechanism due to the above-mentioned vibration, as well as effective measures of reducing heat load generation. In addition, we show how a one-coil type SCM can reduce the heat load generation in electromagnetic disturbance tests.

  8. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok [Korea Polytechnic University, Siheung (Korea, Republic of); Lee, Ji Kwang [Woosuk University, Wanju (Korea, Republic of)

    2015-06-15

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

  9. A procedure for combining rotating-coil measurements of large-aperture accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Köster, Oliver, E-mail: oliver.koester@cern.ch; Fiscarelli, Lucio, E-mail: lucio.fiscarelli@cern.ch; Russenschuck, Stephan, E-mail: stephan.russenschuck@cern.ch

    2016-05-11

    The rotating search coil is a precise and widely used tool for measuring the magnetic field harmonics of accelerator magnets. This paper deals with combining several such multipole measurements, in order to cover magnet apertures largely exceeding the diameter of the available search coil. The method relies on the scaling laws for multipole coefficients and on the method of analytic continuation along zero-homotopic paths. By acquiring several measurements of the integrated magnetic flux density at different transverse positions within the bore of the accelerator magnet, the uncertainty on the field harmonics can be reduced at the expense of tight tolerances on the positioning. These positioning tolerances can be kept under control by mounting the rotating coil and its motor-drive unit on precision alignment stages. Therefore, the proposed technique is able to yield even more precise results for the higher-order field components than a dedicated rotating search coil of larger diameter. Moreover, the versatility of the measurement bench is enhanced by avoiding the construction of rotating search coils of different measurement radii.

  10. Piezoelectric response of a PZT thin film to magnetic fields from permanent magnet and coil combination

    Science.gov (United States)

    Guiffard, B.; Seveno, R.

    2015-01-01

    In this study, we report the magnetically induced electric field E 3 in Pb(Zr0.57Ti0.43)O3 (PZT) thin films, when they are subjected to both dynamic magnetic induction (magnitude B ac at 45 kHz) and static magnetic induction ( B dc) generated by a coil and a single permanent magnet, respectively. It is found that highest sensitivity to B dc——is achieved for the thin film with largest effective electrode. This magnetoelectric (ME) effect is interpreted in terms of coupling between eddy current-induced Lorentz forces (stress) in the electrodes of PZT and piezoelectricity. Such coupling was evidenced by convenient modelling of experimental variations of electric field magnitude with both B ac and B dc induction magnitudes, providing imperfect open circuit condition was considered. Phase angle of E 3 versus B dc could also be modelled. At last, the results show that similar to multilayered piezoelectric-magnetostrictive composite film, a PZT thin film made with a simple manufacturing process can behave as a static or dynamic magnetic field sensor. In this latter case, a large ME voltage coefficient of under B dc = 0.3 T was found. All these results may provide promising low-cost magnetic energy harvesting applications with microsized systems.

  11. A magnetic resonance (MR) microscopy system using a microfluidically cryo-cooled planar coil.

    Science.gov (United States)

    Koo, Chiwan; Godley, Richard F; Park, Jaewon; McDougall, Mary P; Wright, Steven M; Han, Arum

    2011-07-07

    We present the development of a microfluidically cryo-cooled planar coil for magnetic resonance (MR) microscopy. Cryogenically cooling radiofrequency (RF) coils for magnetic resonance imaging (MRI) can improve the signal to noise ratio (SNR) of the experiment. Conventional cryostats typically use a vacuum gap to keep samples to be imaged, especially biological samples, at or near room temperature during cryo-cooling. This limits how close a cryo-cooled coil can be placed to the sample. At the same time, a small coil-to-sample distance significantly improves the MR imaging capability due to the limited imaging depth of planar MR microcoils. These two conflicting requirements pose challenges to the use of cryo-cooling in MR microcoils. The use of a microfluidic based cryostat for localized cryo-cooling of MR microcoils is a step towards eliminating these constraints. The system presented here consists of planar receive-only coils with integrated cryo-cooling microfluidic channels underneath, and an imaging surface on top of the planar coils separated by a thin nitrogen gas gap. Polymer microfluidic channel structures fabricated through soft lithography processes were used to flow liquid nitrogen under the coils in order to cryo-cool the planar coils to liquid nitrogen temperature (-196 °C). Two unique features of the cryo-cooling system minimize the distance between the coil and the sample: (1) the small dimension of the polymer microfluidic channel enables localized cooling of the planar coils, while minimizing thermal effects on the nearby imaging surface. (2) The imaging surface is separated from the cryo-cooled planar coil by a thin gap through which nitrogen gas flows to thermally insulate the imaging surface, keeping it above 0 °C and preventing potential damage to biological samples. The localized cooling effect was validated by simulations, bench testing, and MR imaging experiments. Using this cryo-cooled planar coil system inside a 4.7 Tesla MR system

  12. Predictive study of the poloidal field coil insert behaviour under pulsed current tests

    Science.gov (United States)

    Lacroix, B.; Ciazynski, D.; Duchateau, J. L.; Nicollet, S.; Pauty, N.

    2008-02-01

    Within the ITER Poloidal Field conductor design validation, the Poloidal Field Conductor Insert (PFCI) has been manufactured and will be tested in the Central Solenoid Model Coil (CSMC) facility at JAEA Naka (Japan). In this test facility, the PFCI can be tested under ITER-relevant operating conditions, the field produced by the CSMC being varied to simulate the real situation of the PF coils in ITER. Predictive analyses have been performed in order to study the electromagnetic and thermal-hydraulic behaviour of the PFCI, under two scenarios proposed for pulsed current tests. During these scenarios, simulations have been performed with the THEA code, in which classical formulas for the AC losses in a cable have been introduced. The study focuses on the lower part of the winding, which is a 44 m long conductor including a joint. It covers the sample thermal-hydraulic behaviour with particular emphasis on the losses. Due to the overcompaction in the joint area, the total energy dissipated during a scenario can be equivalent in the joint and in the conductor, in spite of the reduced length of the joint (0.45 m). This particular point is discussed and has led to the analysis of the temperature margin in the joint.

  13. Analysis and Optimisation of Pulse Dynamics for Magnetic Stimulation

    CERN Document Server

    Goetz, Stefan M; Gerhofer, Manuel G; Weyh, Thomas; Herzog, Hans-Georg

    2011-01-01

    Magnetic stimulation is a standard tool in brain research and many fields of neurology, as well as psychiatry. From a physical perspective, one key aspect of this method is the inefficiency of available setups. Whereas the spatial field properties have been studied rather intensively with coil designs, the dynamics have been neglected almost completely for a long time. Instead, the devices and their technology defined the waveform. Here, an analysis of the waveform space is performed. Based on these data, an appropriate optimisation approach is outlined which makes use of a modern nonlinear axon description of a mammalian motor nerve. The approach is based on a hybrid global-local method; different coordinate systems for describing the continuous waveforms in a limited parameter space are defined for sufficient stability. The results of the numeric setup suggest that there is plenty of room for waveforms with higher efficiency than the traditional shapes. One class of such pulses is analysed further. Although...

  14. Early localization of recurrent prostate cancer after prostatectomy by endorectal coil magnetic resonance imaging.

    Science.gov (United States)

    Linder, Brian J; Kawashima, Akira; Woodrum, David A; Tollefson, Matthew K; Karnes, Jeffrey; Davis, Brian J; Rangel, Laureano J; King, Bernard F; Mynderse, Lance A

    2014-06-01

    To evaluate the ability of endorectal coil (e-coil) magnetic resonance imaging (MRI) to identify early prostatic fossa recurrence after radical prostatectomy. We identified 187 patients from 2005-2011 who underwent e-coil MRI with dynamic gadolinium-contrast enhancement followed by transrectal ultrasound (TRUS) guided prostatic fossa biopsy for possible local prostate cancer recurrence. For analysis, local recurrence was defined as a negative evaluation for distant metastatic disease with a positive prostatic fossa biopsy, decreased prostate-specific antigen (PSA) following salvage radiation therapy, or increased lesion size on serial imaging. Local recurrence was identified in 132 patients, with 124 (94%) detected on e-coil MRI. The median PSA was 0.59 ng/mL (range coil MRI was 86%. When a lesion was identified on MRI, the positive biopsy rate was 65% and lesion size was a significant predictor of positive biopsies. The positive biopsy rates were 51%, 74%, and 88% when the lesion was 2 cm, respectively (p = 0.0006). E-coil MRI has a high level of sensitivity in identifying local recurrence of prostate cancer following radical prostatectomy, even at low PSA levels. E-coil MRI should be considered as the first imaging evaluation for biochemical recurrence for identifying patients suitable for localized salvage therapy.

  15. 25 Tesla pulsed-high-magnetic-field system for soft X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, M., E-mail: mhaya@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Narumi, Y.; Nojiri, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nakamura, T.; Hirono, T.; Kinoshita, T. [JASRI/SPring-8, Sayo, Hyogo 679-5198 (Japan); Kodama, K. [Department of Mechanical Engineering, Nara National College of Technology, Nara 639-1080 (Japan); Kindo, K. [Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581 (Japan)

    2011-04-15

    Research highlights: {yields} We have developed a 25 T pulsed magnetic field system for soft X-ray MCD. {yields} The new capacitor bank can generate a field in the bipolar mode. {yields} We measured the Soft X-ray MCD of paramagnetic Gd{sub 2}O{sub 3} up to 25 T. - Abstract: We have developed a 25 T pulsed high magnetic field system for soft X-ray Magnetic Circular Dichroism: XMCD. The ultra-high vacuum chamber with a pulse magnet coil is installed. By using a newly developed bipolar capacitor bank, the XMCD of paramagnetic Gd{sub 2}O{sub 3} at the M{sub 5} and the M{sub 4} edges was clearly observed at low temperatures. The present system is capable of measuring XMCD of field induced moments in various compounds including paramagnets and antiferromagnets.

  16. Tailored RF pulse optimization for magnetization inversion at ultra high field

    CERN Document Server

    Hurley, Aaron C; Li, Bai; Aickelin, Uwe; Coxon, Ron; Glover, Paul; Gowland, Penny A

    2010-01-01

    The radiofrequency (RF) transmit field is severely inhomogeneous at ultrahigh field due to both RF penetration and RF coil design issues. This particularly impairs image quality for sequences that use inversion pulses such as magnetization prepared rapid acquisition gradient echo and limits the use of quantitative arterial spin labeling sequences such as flow-attenuated inversion recovery. Here we have used a search algorithm to produce inversion pulses tailored to take into account the heterogeneity of the RF transmit field at 7 T. This created a slice selective inversion pulse that worked well (good slice profile and uniform inversion) over the range of RF amplitudes typically obtained in the head at 7 T while still maintaining an experimentally achievable pulse length and pulse amplitude in the brain at 7 T. The pulses used were based on the frequency offset correction inversion technique, as well as time dilation of functions, but the RF amplitude, frequency sweep, and gradient functions were all generate...

  17. Optimization of magnetic flux density measurement using multiple RF receiver coils and multi-echo in MREIT.

    Science.gov (United States)

    Jeong, Woo Chul; Chauhan, Munish; Sajib, Saurav Z K; Kim, Hyung Joong; Serša, Igor; Kwon, Oh In; Woo, Eung Je

    2014-09-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) is an MRI method that enables mapping of internal conductivity and/or current density via measurements of magnetic flux density signals. The MREIT measures only the z-component of the induced magnetic flux density B = (Bx, By, Bz) by external current injection. The measured noise of Bz complicates recovery of magnetic flux density maps, resulting in lower quality conductivity and current-density maps. We present a new method for more accurate measurement of the spatial gradient of the magnetic flux density gradient (∇ Bz). The method relies on the use of multiple radio-frequency receiver coils and an interleaved multi-echo pulse sequence that acquires multiple sampling points within each repetition time. The noise level of the measured magnetic flux density Bz depends on the decay rate of the signal magnitude, the injection current duration, and the coil sensitivity map. The proposed method uses three key steps. The first step is to determine a representative magnetic flux density gradient from multiple receiver coils by using a weighted combination and by denoising the measured noisy data. The second step is to optimize the magnetic flux density gradient by using multi-echo magnetic flux densities at each pixel in order to reduce the noise level of ∇ Bz and the third step is to remove a random noise component from the recovered ∇ Bz by solving an elliptic partial differential equation in a region of interest. Numerical simulation experiments using a cylindrical phantom model with included regions of low MRI signal to noise ('defects') verified the proposed method. Experimental results using a real phantom experiment, that included three different kinds of anomalies, demonstrated that the proposed method reduced the noise level of the measured magnetic flux density. The quality of the recovered conductivity maps using denoised ∇ Bz data showed that the proposed method reduced the conductivity

  18. Testing of Nb3Sn quadrupole coils using magnetic mirror structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A.V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2009-07-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  19. Testing of Nb3Sn quadrupole coils using magnetic mirror structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A.V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2009-07-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  20. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range.

    Science.gov (United States)

    Lin, Tingting; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim; Lin, Jun; Zhao, Jing

    2014-11-01

    In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-Tc superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz(1/2) are employed as detectors. Considering the flux trapping and operational difficulties associated with low-Tc SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2 fT/Hz(1/2) at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-Tc SQUIDs.

  1. Transcranial Magnetic Stimulation: An Automated Procedure to Obtain Coil-specific Models for Field Calculations

    DEFF Research Database (Denmark)

    Madsen, Kristoffer Hougaard; Ewald, Lars; Siebner, Hartwig R.

    2015-01-01

    Background: Field calculations for transcranial magnetic stimulation (TMS) are increasingly implemented online in neuronavigation systems and in more realistic offline approaches based on finite-element methods. They are often based on simplified and/or non-validated models of the magnetic vector...... potential of the TMS coils. Objective: To develop an approach to reconstruct the magnetic vector potential based on automated measurements. Methods: We implemented a setup that simultaneously measures the three components of the magnetic field with high spatial resolution. This is complemented by a novel...... approach to determine the magnetic vector potential via volume integration of the measured field. Results: The integration approach reproduces the vector potential with very good accuracy. The vector potential distribution of a standard figure-of-eight shaped coil determined with our setup corresponds well...

  2. Calculation of an optimized design of magnetic shields with integrated demagnetization coils

    Science.gov (United States)

    Sun, Z.; Schnabel, A.; Burghoff, M.; Li, L.

    2016-07-01

    Magnetic shielding made from permalloy is frequently used to provide a time-stable magnetic field environment. A low magnetic field and low field gradients inside the shield can be obtained by using demagnetization coils through the walls, encircling edges of the shield. We first introduce and test the computational models to calculate magnetic properties of large size shields with thin shielding walls. We then vary the size, location and shape of the openings for the demagnetization coils at the corners of a cubic shield. It turns out that the effect on the shielding factor and the expected influence on the residual magnetic field homogeneity in the vicinity of the center of the shield is negligible. Thus, a low-cost version for the openings can be chosen and their size could be enlarged to allow for additional cables and easier handling. A construction of a shield with beveled edges and open corners turned out to substantially improve the shielding factor.

  3. Magnetization of the joint-free high temperature superconductor (REBa2Cu3Ox coil by field cooling

    Directory of Open Access Journals (Sweden)

    Yali Zheng

    2017-09-01

    Full Text Available Joint-free (REBa2Cu3Ox (REBCO coil based on ‘wind-and-flip’ technique has been developed to generate a persistent magnetic field without power supply. This paper is to study the magnetization characteristics of the joint-free REBCO coil by field cooling, in order to trap higher field. A joint-free pancake coil is wound by REBCO tapes and the field cooling magnetization test is performed on it. An approximate numerical model based on H-formulation is built for this coil to analyze its magnetization behavior, which is validated by the experimental results Analysis show that a persistent direct current is induced in the coil during the field cooling operation, which generates the trapped field. The induced current of the joint-free coil shows an intrinsic non-uniform distribution among turns. Increasing the magnetization field and critical current of REBCO conductors can considerably increase the trapped field. But the trapping factor (the rate of trapped field to background magnetization field reaches a maximum value (60 % for the test coil. This maximum value is an intrinsic characteristics for a fabricated coil, which only depends on the coil’s geometry structure. With a same usage of REBCO tapes, the trapping factor can be improved significantly by optimizing the coil structure to multiple pancakes, and it can approach 100 %.

  4. Sub-nanoliter nuclear magnetic resonance coils fabricated with multilayer soft lithography

    Science.gov (United States)

    Lam, Matthew H. C.; Homenuke, Mark A.; Michal, Carl A.; Hansen, Carl L.

    2009-09-01

    We describe the fabrication and characterization of sub-nanoliter volume nuclear magnetic resonance (NMR) transceiver coils that are easily amenable to integration within PDMS-based microfluidics. NMR coils were constructed by the injection of liquid metal into solenoidal cavities created around a microchannel using consecutive replica molding and bonding of PDMS layers. This construction technique permits the integration of NMR coils with solenoidal, toroidal or other three-dimensional geometries within highly integrated microfluidic systems and are one step toward NMR-based chemical screening and analysis on chip. The current proof-of-principle implementation displays limited sensitivity and resolution due to the conductivity and magnetic susceptibilities of the construction materials. However, NMR measurements and finite-element simulations made with the current device geometry indicate that optimization of these materials will allow for the collection of spectra from sub-millimolar concentration samples in less than 1 nL of solution.

  5. Multi-Slice Magnetic Resonance Imaging with the Dynamic Multi-Coil Technique

    Science.gov (United States)

    Juchem, Christoph; Nahhass, Omar M.; Nixon, Terence W.; de Graaf, Robin A.

    2015-01-01

    To date, spatial encoding for MRI is based on linear X, Y and Z field gradients generated by dedicated X, Y and Z wire patterns. We recently introduced the Dynamic Multi-Coil Technique (DYNAMITE) for the generation of magnetic field shapes for biomedical MR applications from a set of individually driven localized coils. The benefits for B0 magnetic field homogenization have been shown as well as proof-of-principle of radial and algebraic MRI. In this study the potential of DYNAMITE MRI is explored further and the first multi-slice MRI implementation is presented in which all gradient fields are purely DYNAMITE-based. The obtained image fidelity is shown to be virtually identical to a conventional MRI system with dedicated X, Y and Z gradient coils. Comparable image quality is a milestone towards the establishment of fully functional DYNAMITE MRI (and shim) systems. PMID:26419649

  6. Thermomechanical properties of the coil of the superconducting magnets for the Large Hadron Collider

    CERN Document Server

    Couturier, K; Scandale, Walter; Todesco, Ezio; Tommasini, D

    2002-01-01

    The correct definition and measurement of the thermomechanical properties of the superconducting cable used in high-field magnets is crucial to study and model the behavior of the magnet coil from assembly to the operational conditions. In this paper, the authors analyze the superconducting coil of the main dipoles for the Large Hadron Collider. They describe an experimental setup for measuring the elastic modulus at room and at liquid nitrogen temperature and for evaluating the thermal contraction coefficient. The coils exhibit strong nonlinear stress-strain behavior characterized by hysteresis phenomena, which decreases from warm to cold temperature, and a thermal contraction coefficient, which depends on the stress applied to the cable during cooldown. (35 refs).

  7. Manipulation of magnetic carriers for drug delivery using pulsed-current high T {sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yung [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: yscha@anl.gov; Chen, Lihua [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 (United States); Askew, Thomas [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Physics Department, Kalamazoo College, Kalamazoo, MI 49006 (United States); Veal, Boyd [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hull, John [Energy Technology Division and Material Science Division, Building 335, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2007-04-15

    An innovative method of manipulating magnetic carriers is proposed, and its feasibility for drug delivery and therapy is demonstrated experimentally. The proposed method employs pulsed-field solenoid coils with high-critical- temperature (T {sub c}) superconductor inserts. Pulsed current is used to magnetize and de-magnetize the superconductor insert. The proposed method was demonstrated to be able to (1) move magnetic particles, ranging in size from a few millimeters to 10 {mu}m, with strong enough forces over a substantial distance, (2) hold the particles at a designated position as long as needed, and (3) reverse the processes and retrieve the particles. We further demonstrated that magnetic particles can be manipulated in a stationary environment, in water flow, and in simulated blood (water/glycerol mixture) flow.

  8. Manipulation of magnetic carriers for drug delivery using pulsed-current high Tc superconductors

    Science.gov (United States)

    Cha, Yung; Chen, Lihua; Askew, Thomas; Veal, Boyd; Hull, John

    2007-04-01

    An innovative method of manipulating magnetic carriers is proposed, and its feasibility for drug delivery and therapy is demonstrated experimentally. The proposed method employs pulsed-field solenoid coils with high-critical- temperature ( Tc) superconductor inserts. Pulsed current is used to magnetize and de-magnetize the superconductor insert. The proposed method was demonstrated to be able to (1) move magnetic particles, ranging in size from a few millimeters to 10 μm, with strong enough forces over a substantial distance, (2) hold the particles at a designated position as long as needed, and (3) reverse the processes and retrieve the particles. We further demonstrated that magnetic particles can be manipulated in a stationary environment, in water flow, and in simulated blood (water/glycerol mixture) flow.

  9. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators

    Directory of Open Access Journals (Sweden)

    Sadeque Reza Khan

    2016-08-01

    Full Text Available High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8% than circular resonators (78.43% when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW to the load than the square coils (396 mW under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.

  10. High Field Pulsed Magnets for Neutron Scattering at the Spallation Neutron Source

    Science.gov (United States)

    Granroth, G. E.; Lee, J.; Fogh, E.; Christensen, N. B.; Toft-Petersen, R.; Nojiri, H.

    2015-03-01

    A High Field Pulsed Magnet (HFPM) setup, is in use at the Spallation Nuetron Source(SNS), Oak Ridge National Laboratory. With this device, we recently measured the high field magnetic spin structure of LiNiPO4. The results of this study will be highlighted as an example of possible measurements that can be performed with this device. To further extend the HFPM capabilities at SNS, we have learned to design and wind these coils in house. This contribution will summarize the magnet coil design optimization procedure. Specifically by varying the geometry of the multi-layer coil, we arrive at a design that balances the maximum field strength, neutron scattering angle, and the field homogeneity for a specific set of parameters. We will show that a 6.3kJ capacitor bank, can provide a magnetic field as high as 30T for a maximum scattering angle around 40° with homogeneity of +/- 4 % in a 2mm diameter spherical volume. We will also compare the calculations to measurements from a recently wound test coil. This work was supported in part by the Lab Directors' Research and Development Fund of ORNL.

  11. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    Science.gov (United States)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  12. Development and Coil Fabrication Test of the $Nb_3Sn$ Dipole Magnet FRESCA2

    CERN Document Server

    Manil, P; Clement, S; Devaux, M; Durante, M; Fazilleau, P; Ferracin, P; Fessia, P; Munoz Garcia, J E; Garcia, L; Gauthier, R; Oberli, L; Perez, J C; Pietrowicz, S; Rifflet, J M; de Rijk, G; Rondeaux, F; Todesco, E

    2014-01-01

    The key objective of the High Field Magnet work package of the European Project EuCARD is to design and fabricate the Nb3Sn dipole magnet FRESCA2. It has an aperture of 100 mm and a target bore field of 13 T. The design features four 1.5 m long double-layer coils wound with a 21 mm wide cable. The project has now entered its experimental phase in view of the magnet fabrication. We present the experimental test campaign conducted on cable samples in order to understand and to control better the cable behavior and geometry. One full scale double-layer coil using copper cable with the final dimensions and insulation scheme has been wound and heat treated in order to check the fabrication process. This has given useful feedback on the fabrication procedure and on the expected magnet dimensions, as well as on the tooling itself.

  13. Electromagnetic characteristics of eccentric figure-eight coils for transcranial magnetic stimulation: A numerical study

    Science.gov (United States)

    Kato, Takuya; Sekino, Masaki; Matsuzaki, Taiga; Nishikawa, Atsushi; Saitoh, Youichi; Ohsaki, Hiroyuki

    2012-04-01

    Repetitive transcranial magnetic stimulation (rTMS) is effective for treatment of several neurological and psychiatric diseases. We proposed an eccentric figure-eight coil, which induces strong eddy currents in the target brain tissue. In this study, numerical analyses were carried out to obtain magnetic field distribution of the eccentric figure-eight coil and eddy current in the brain. The analyses were performed with various coil design parameters, such as the outer and inner diameters and number of turns, to investigate the influence of these parameters on the coil characteristics. Increases in the inner diameter, outer diameter, and number of turns caused increases in the maximum eddy current densities. Coil inductance, working voltage, and heat generation also became higher with the increases in these design parameters. In order to develop a compact stimulator system for use at home, we need to obtain strong eddy current density, keeping the working voltage as low as possible. Our results show that it is effective to enlarge the outer diameter.

  14. Digital Integrator for Fast Accurate Measurement of Magnetic Flux by Rotating Coils

    CERN Document Server

    Arpaia, P; Spiezia, G

    2007-01-01

    A fast digital integrator (FDI) with dynamic accuracy and a trigger frequency higher than those of a portable digital integrator (PDI), which is a state-of-the-art instrument for magnetic measurements based on rotating coils, was developed for analyzing superconducting magnets in particle accelerators. Results of static and dynamic metrological characterization show how the FDI prototype is already capable of overcoming the dynamic performance of PDI as well as covering operating regions that used to be inaccessible

  15. Poly-coil design for a 60 tesla quasi-stationary magnet

    Science.gov (United States)

    Boenig, H. J.; Campbell, L. J.; Hodgdon, M. L.; Lopez, E. A.; Rickel, D. G.; Rogers, J. D.; Schillig, J. B.; Sims, J. R.; Pernambuco-Wise, P.; Schneider-Muntau, H. J.

    1993-02-01

    Among the new facilities to be offered by the National Science Foundation through the National High Magnetic Field Laboratory (NHMFL) are pulsed fields that can only be achieved at a national user facility by virtue of their strength, duration, and volume. In particular, a 44 mm bore pulsed magnet giving a 60 tesla field for 100 ms is in the final design stage. This magnet will be powered by a 1.4 GW motor-generator at Los Alamos and is an important step toward proving design principles that will be needed for the higher field quasi-stationary pulsed magnets that this power source is capable of driving.

  16. Mutual Inductance and Magnetic Force Calculations for Bitter Disk Coil (Pancake with Nonlinear Radial Current and Filamentary Circular Coil with Azimuthal Current

    Directory of Open Access Journals (Sweden)

    Slobodan Babic

    2016-01-01

    Full Text Available Bitter coils are electromagnets used for the generation of extremely strong magnetic fields superior to 30 T. In this paper we calculate the mutual inductance and the magnetic force between Bitter disk (pancake coil with the nonlinear radial current and the circular filamentary coil with the azimuthal current. The close form expressed over complete elliptic integrals of the first and second kind as well as Heuman’s Lambda function is obtained for this configuration either for the mutual inductance or for the magnetic force. The results of this method are compared with those obtained by the improved modified filament method for the presented configuration. All results are in an excellent agreement.

  17. BaBar technical design report: Chapter 9, Magnet coil and flux return

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, T.; The BaBar Collaboration

    1995-03-01

    The BaBar magnet is a thin, 1.5 T superconducting solenoid with a hexagonal flux return. This chapter discusses the physics requirements and performance goals for the magnet, describes key interfaces, and summarizes the projected magnet performance. It also presents the design of the superconducting solenoid, including magnetic design, cold mass design, quench protection and stability, cold mass cooling, cryostat design, and coil assembly and transportation. The cryogenic supply system and instrumentation are described briefly, and the flux return is described.

  18. International magnetic pulse compression workshop: (Proceedings)

    Energy Technology Data Exchange (ETDEWEB)

    Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

    1991-04-01

    A few individuals have tried to broaden the understanding of specific and salient pulsed-power topics. One such attempt is this documentation of a workshop on magnetic switching as it applies primarily to pulse compression (power transformation), affording a truly international perspective by its participants under the initiative and leadership of Hugh Kirbie and Mark Newton of the Lawrence Livermore National Laboratory (LLNL) and supported by other interested organizations. During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card--its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  19. Tikhonov regularization and constrained quadratic programming for magnetic coil design problems

    Directory of Open Access Journals (Sweden)

    Garda Bartłomiej

    2014-06-01

    Full Text Available In this work, the problem of coil design is studied. It is assumed that the structure of the coil is known (i.e., the positions of simple circular coils are fixed and the problem is to find current distribution to obtain the required magnetic field in a given region. The unconstrained version of the problem (arbitrary currents are allowed can be formulated as a Least-SQuares (LSQ problem. However, the results obtained by solving the LSQ problem are usually useless from the application point of view. Moreover, for higher dimensions the problem is ill-conditioned. To overcome these difficulties, a regularization term is sometimes added to the cost function, in order to make the solution smoother. The regularization technique, however, produces suboptimal solutions. In this work, we propose to solve the problem under study using the constrained Quadratic Programming (QP method. The methods are compared in terms of the quality of the magnetic field obtained, and the power of the designed coil. Several 1D and 2D examples are considered. It is shown that for the same value of the maximum current the QP method provides solutions with a higher quality magnetic field than the regularization method.

  20. Nonlinear coil sensitivity estimation for parallel magnetic resonance imaging using data-adaptive steering kernel regression method.

    Science.gov (United States)

    Fang, Sheng; Guo, Hua

    2013-01-01

    The parallel magnetic resonance imaging (parallel imaging) technique reduces the MR data acquisition time by using multiple receiver coils. Coil sensitivity estimation is critical for the performance of parallel imaging reconstruction. Currently, most coil sensitivity estimation methods are based on linear interpolation techniques. Such methods may result in Gibbs-ringing artifact or resolution loss, when the resolution of coil sensitivity data is limited. To solve the problem, we proposed a nonlinear coil sensitivity estimation method based on steering kernel regression, which performs a local gradient guided interpolation to the coil sensitivity. The in vivo experimental results demonstrate that this method can effectively suppress Gibbs ringing artifact in coil sensitivity and reduces both noise and residual aliasing artifact level in SENSE reconstruction.

  1. Losses in a built-up conductor for large pulsed coils

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.D.; Wollan, J.J.; Turck, B.; Schermer, R.I.

    1979-01-01

    Hysteretic and pulsed-field loss measurements have been performed on cables built up from a basic Nb-Ti composite conductor. Measurements were performed on the basic composite; on first-level cables, consisting of six soft copper wires twisted tightly around the basic composite; and on second-level cables, fabricated by twisting six first-level cables around either a bare or formvar-insulated center copper wire. Results of the measurements were analyzed in terms of a recent theory by Turck for losses in multifilamentary wires. We found from this analysis that contact resistances between constituent conductors in both first- and second-level cables play an important role in determining the pulsed-field loss values. We have been able to vary the degree of interstrand resistive coupling by compacting the cables and by solder-filling them. When the contact is good, as for solder-filled cables, the losses increase by about a factor of 7.5 for long pulse times relative to non-solder-filled, non-compacted cables. For relatively high contact resistances, as for unsoldered cables, the constituent conductors are more nearly decoupled from each other and the losses are low. From the study we have found that it is possible to produce, in a simple manner, fully-stabilized, high-current cables that exhibit low pulsed-field losses. Such conductors are attractive for application in Tokomak induction heating and energy storage magnets.

  2. The Study of Single Nb3Sn Quadrupole Coils Using a Magnetic Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Chlachidze, G.; Andreev, N.; Barzi, E.; Bossert, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, N.; Novitski, I.; Orris, D.; Tartaglia, M.

    2010-07-30

    Several 90-mm quadrupole coils made of 0.7-mm Nb{sub 3}Sn strand based on the 'Restack Rod Process' (RRP) of 108/127 design, with cored and non-cored cables and different cable insulation, were fabricated and individually tested at Fermilab using a test structure designed to provide a quadrupole magnetic field environment. The coils were instrumented with voltage taps and strain gauges to study quench performance and mechanical properties. The Nb{sub 3}Sn strand and cable parameters, the coil fabrication details, the mirror model assembly procedure and test results at temperatures of 4.5 K and 1.9 K are reported and discussed.

  3. The Study of Single Nb3Sn Quadrupole Coils Using a Magnetic Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Chlachidze, G.; Andreev, N.; Barzi, E.; Bossert, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, N.; Novitski, I.; Orris, D.; Tartaglia, M.

    2010-07-30

    Several 90-mm quadrupole coils made of 0.7-mm Nb{sub 3}Sn strand based on the 'Restack Rod Process' (RRP) of 108/127 design, with cored and non-cored cables and different cable insulation, were fabricated and individually tested at Fermilab using a test structure designed to provide a quadrupole magnetic field environment. The coils were instrumented with voltage taps and strain gauges to study quench performance and mechanical properties. The Nb{sub 3}Sn strand and cable parameters, the coil fabrication details, the mirror model assembly procedure and test results at temperatures of 4.5 K and 1.9 K are reported and discussed.

  4. Room Temperature Magnetic Determination of the Current Center Line for the ITER TF Coils

    CERN Document Server

    Lerch, Philippe; Buzio, Marco; Negrazus, Marco; Baynham, Elwyn; Sanfilippo, Stephane; Foussat, Arnaud

    2014-01-01

    The ITER tokamak includes 18 superconducting D-shaped toroidal field (IT) coils. Unavoidable shape deformations as well as assembly errors will lead to field errors, which can be modeled with the knowledge of the current center line (CCL). Accurate survey during the entire manufacturing and assembly process, including transfer of survey points, is complex. In order to increase the level of confidence, a room temperature magnetic measurement of the CCL on assembled and closed winding packs is foreseen, prior to insertion into their cold case. In this contribution, we discuss the principle of the CCL determination and present a low frequency ac measurement system under development at PSI, within an ITER framework contract. The largest current allowed to flow in the TF coil at room temperature and the precision requirements for the determination of the CCL loci of the coil are hard boundaries. Eddy currents in the radial plates, the winding pack enclosures, and possibly from iron in the reinforced concrete floor...

  5. Induced current magnetic resonance electrical impedance tomography with z-gradient coil.

    Science.gov (United States)

    Eroğlu, Hasan H; Eyüboğlu, B Murat

    2014-01-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) is a medical imaging method that provides images of electrical conductivity at low frequencies (0-1 kHz). In MREIT, electrical current is applied to the body via surface electrodes and corresponding magnetic flux density is measured by means of Magnetic Resonance (MR) phase imaging techniques. By utilizing the magnetic flux density measurements and surface potential measurements images of true conductivity distribution can be reconstructed. In order to overcome difficulties regarding current application via surface electrodes, Induced Current MREIT (ICMREIT) have been proposed in the past. In ICMREIT, electrical currents and corresponding magnetic flux density are generated in the object through electromagnetic induction by means of externally placed coils driven with time varying currents. In this study, use of z-gradient, z-Helmholtz, and circular coil configurations in ICMREIT are proposed and investigated. Finite Element Method (FEM) is used to solve the forward problem of ICMREIT. Consequently, excitation performances and clinical applicability of different coil configurations are analyzed.

  6. Design of modular coils for a quasi-axisymmetric stellarator with a flexible control of the magnetic field configuration

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, A.; Okamura, S.; Isobe, M.; Suzuki, C.; Nishimura, S.; Watari, T.; Matsuoka, K.

    2002-08-01

    A design of the modular coil system for CHS-qa has been made for the plasma configuration '2b32' with the aspect ratio 3.2. The magnetic field strength and the major radius are 1.5 T and 1.5 m, respectively. The normal component of magnetic field produced by the modular coils is minimized on the plasma boundary to obtain the optimum coil design. We put engineering constraint on the distance between adjacent modular coils and the radius of coil curvature. The dependence of the residual normal component of the field on these conditions is examined, and the realistic values for them are selected. Additional coils to control various properties of the magnetic field configuration (the rotational transform, the magnetic well depth, etc.) have been designed and a flexibility of the magnetic field configuration is realized. For the case that the rotational transform crosses the low-order rational value resulting in magnetic islands, the residues of islands are evaluated with which a further improvement of coil design can be made to eliminate magnetic islands. (author)

  7. Design of a superconducting volume coil for magnetic resonance microscopy of the mouse brain.

    Science.gov (United States)

    Nouls, John C; Izenson, Michael G; Greeley, Harold P; Johnson, G Allan

    2008-04-01

    We present the design process of a superconducting volume coil for magnetic resonance microscopy of the mouse brain at 9.4T. The yttrium barium copper oxide coil has been designed through an iterative process of three-dimensional finite-element simulations and validation against room temperature copper coils. Compared to previous designs, the Helmholtz pair provides substantially higher B(1) homogeneity over an extended volume of interest sufficiently large to image biologically relevant specimens. A custom-built cryogenic cooling system maintains the superconducting probe at 60+/-0.1K. Specimen loading and probe retuning can be carried out interactively with the coil at operating temperature, enabling much higher through-put. The operation of the probe is a routine, consistent procedure. Signal-to-noise ratio in a mouse brain increased by a factor ranging from 1.1 to 2.9 as compared to a room-temperature solenoid coil optimized for mouse brain microscopy. We demonstrate images encoded at 10x10x20mum for an entire mouse brain specimen with signal-to-noise ratio of 18 and a total acquisition time of 16.5h, revealing neuroanatomy unseen at lower resolution. Phantom measurements show an effective spatial resolution better than 20mum.

  8. Non-uniformity of Clinical Head, Head and Neck, and Body Coils in Magnetic Resonance Imaging (MRI

    Directory of Open Access Journals (Sweden)

    Mahmood Nazarpoor

    2014-11-01

    Full Text Available Introduction Signal intensity uniformity in a magnetic resonance (MR image indicates how well the MR imaging (MRI system represents an object. One of the major sources of image non-uniformity in high-field MRI scanners is inhomogeneity of radio-frequency coil. The aim of this study was to investigate non-uniformity in head, head and neck, and body coils and compare the obtained results to determine the best clinical coil for future clinical application. Materials and Methods A phantom was designed to investigate the non-uniformity of coils. All evaluations were carried out using a 1.5 T clinical MRI scanner. T1-weighted inversion recovery sequence (linear phase encoding and turbo fast low angle shot (TurboFLASH images were used to find non-uniformity in the clinical coils. For testing the uniformity of coils, signal intensity profiles in parts of the coronal image of phantom were measured over X and Y axes. Results The results showed that body coil was the most uniform coil of all; in addition, the head and neck coil was more uniform than the head coil. The results also indicated that signal-to-noise ratio (SNR of the head and neck coil was higher than the head and body coils. Moreover, SNR of the head coil was higher than that of the body coil. Conclusion In order to accurately find or apply an image signal intensity for measuring organ blood flow or perfusion, coil non-uniformity corrections are required.

  9. A Novel X-ray Diffractometer for the Florida Split Coil 25 Tesla Magnet

    Science.gov (United States)

    Wang, Shengyu; Kovalev, Alexey; Suslov, Alexey; Siegrist, Theo

    2014-03-01

    At National High Magnetic Field Laboratory (NHMFL), we are developing a unique X-ray diffractometer for the 25 Tesla Florida Split Coil Magnet for scattering experiments under extremely high static magnetic fields. The X-ray source is a sealed tube (copper or molybdenum anode), connected to the magnet by an evacuated beam tunnel. The detectors are either an image plate or a silicon drift detector, with the data acquisition system based on LabVIEW. Our preliminary experimental results showed that the performance of the detector electronics and the X-ray generator is reliable in the fringe magnetic fields produced at the highest field of 25 T. Using this diffractometer, we will make measurements on standard samples, such as LaB6, Al2O3 and Si, to calibrate the diffraction system. Magnetic samples, such as single crystal HoMnO3 and stainless steel 301 alloys will be measured subsequently. The addition of X-ray diffraction to the unique split coil magnet will significantly expand the NHMFL experimental capabilities. Therefore, external users will be able to probe spin - lattice interactions at static magnetic fields up to 25T. This project is supported by NSF-DMR Award No.1257649. NHMFL is supported by NSF Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. DoE.

  10. Magnetic Measurement of the Current Center Line of the Toroidal Field Coil of ITER at Room Temperature

    CERN Document Server

    Deniau, L; Buzio, M; Knaster, J; Savary, F

    2012-01-01

    Geometrical deformations and assembly errors in the ITER Toroidal Field (TF) coils will lead to magnetic field perturbations, which could degrade plasma confinement and eventually lead to disruption. Extensive computational studies of the influence of coil deformations and assembly errors on plasma behavior have given the basis for definition of the geometric tolerance of the Current Centre Line (CCL) of the winding pack of the TF coil. This paper describes an analysis method to establish the feasibility to measure the magnetic CCL locus of the final winding pack (WP) with accuracy better than 1 mm. The proposed method is based on arrays of gradient coils accurately mounted with respect to the WP fiducial marks and datum surfaces. The magnetic measurements will be performed at defined locations around the WP perimeter to characterize accurately the CCL locus. The analysis emphases the robustness and sensitivity of the method versus the measurement location and the TF coil 3D geometrical deformation. The analy...

  11. Design of Magnetic Shielding and Field Coils for a TES X-Ray Microcalorimeter Test Platform

    Science.gov (United States)

    Miniussi, Antoine R.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron M.; Doriese, William B.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2017-01-01

    The performance of Transition-Edge Sensors (TES) and their SQUID multiplexed read-outs are very sensitive to the ambient magnetic field from Earth and fluctuations that can arise due to fluctuating magnetic fields outside of the focal plane assembly from the Adiabatic Demagnetization Refrigerator (ADR).Thus, the experimental platform we are building to test the FPA of the X-ray Integral Field Unit (X-IFU) of the Athena mission needs to include a series of shields and a coil in order to meet the following requirement of magnetic field density and uniformity.

  12. Sterilization of Escherichia coli cells by the application of pulsed magnetic field

    Institute of Scientific and Technical Information of China (English)

    LI Mei; QU Jiu-hui; PENG Yong-zhen

    2004-01-01

    The inactivation of microorganisms by pulsed magnetic field was studied. It was improved that theapplication of electromagnetic pulses evidently causes a lethal effect on E. coli cells suspended in phosphate buffersolution Na2 HPO4 / NaH2 PO4 (0.334/0.867 mmol/L). Experimental results indicated that the survivability( N/N0; whereN0 and N are the number of cells survived per milliliter before and after electromagnetic pulses application,respectively) of E. coli decreased with magnetic field intensity B and treatment time t. It was also found that themedium temperatures, the frequencies of pulse f, and the initial bacterial cell concentrations have determinateinfluences in destruction of E. coli cells by the application of magnetic pulses. The application of an magneticintensity B = 160 mT at pulses frequency f = 62 kHz and treatment time t = 16 h result in a considerable destructionlevels of E. coli cells ( N/N0 = 10-4 ). Possible mechanisms involved in sterilization of the magnetic field treatmentwere discussed. In order to shorten the treatment time, many groups of parallel inductive coil were used. Thepracticability test showed that the treatment time was shortened to 4 h with the application of three groups of parallelcoil when the survivability of E. coli cells was less than 0.01%; and the power consumption was about 0.2 kWh/m3 .

  13. Twin Rotating Coils for Cold Magnetic Measurements of 15 m Long LHC Dipoles

    CERN Document Server

    Billan, J; Buzio, M; D'Angelo, G; Deferne, G; Dunkel, O; Legrand, P; Rijllart, A; Siemko, A; Sievers, P; Schloss, S; Walckiers, L

    2000-01-01

    We describe here a new harmonic coil system for the field measurement of the superconducting, twin aperture LHC dipoles and the associated corrector magnets. Besides field measurements the system can be used as an antenna to localize the quench origin. The main component is a 16 m long rotating shaft, made up of 13 ceramic segments, each carrying two tangential coils plus a central radial coil, all working in parallel. The segments are connected with flexible Ti-alloy bellows, allowing the piecewise straight shaft to follow the curvature of the dipole while maintaining high torsional rigidity. At each interconnection the structure is supported by rollers and ball bearings, necessary for the axial movement for installation and for the rotation of the coil during measurement. Two such shafts are simultaneously driven by a twin-rotating unit, thus measuring both apertures of a dipole at the same time. This arrangement allows very short measurement times (typically 10 s) and is essential to perform cold magnetic ...

  14. Three-dimensional magnetic nanoparticle imaging using small field gradient and multiple pickup coils

    Science.gov (United States)

    Sasayama, Teruyoshi; Tsujita, Yuya; Morishita, Manabu; Muta, Masahiro; Yoshida, Takashi; Enpuku, Keiji

    2017-04-01

    We propose a magnetic particle imaging (MPI) method based on third harmonic signal detection using a small field gradient and multiple pickup coils. First, we developed a system using two pickup coils and performed three-dimensional detection of two magnetic nanoparticle (MNP) samples, which were spaced 15 mm apart. In the experiments, an excitation field strength of 1.6 mT was used at an operating frequency of 3 kHz. A DC gradient field with a typical value of 0.2 T/m was also used to produce the so-called field-free line. A third harmonic signal generated by the MNP samples was detected using the two pickup coils, and the samples were then mechanically scanned to obtain field maps. The field maps were subsequently analyzed using the nonnegative least squares method to obtain three-dimensional position information for the MNP samples. The results show that the positions of the two MNP samples were estimated with good accuracy, despite the small field gradient used. Further improvement in MPI performance will be achieved by increasing the number of pickup coils used.

  15. Three-dimensional proton magnetic resonance spectroscopic imaging with and without an endorectal coil: a prostate phantom study

    NARCIS (Netherlands)

    Ma, C.; Chen, L.; Scheenen, T.W.J.; Lu, J.; Wang, J

    2015-01-01

    Proton magnetic resonance spectroscopic imaging (MRSI) of the prostate has been used with only a combination of external surface coils. The quality of spectral fitting of the (cholinen+ncreatine)/citrate ([Chon+nCr]/Cit) ratio at different field strengths and different coils is important for quantit

  16. Magnetic field shimming of a permanent magnet using a combination of pieces of permanent magnets and a single-channel shim coil for skeletal age assessment of children.

    Science.gov (United States)

    Terada, Y; Kono, S; Ishizawa, K; Inamura, S; Uchiumi, T; Tamada, D; Kose, K

    2013-05-01

    We adopted a combination of pieces of permanent magnets and a single-channel (SC) shim coil to shim the magnetic field in a magnetic resonance imaging system dedicated for skeletal age assessment of children. The target magnet was a 0.3-T open and compact permanent magnet tailored to the hand imaging of young children. The homogeneity of the magnetic field was first improved by shimming using pieces of permanent magnets. The residual local inhomogeneity was then compensated for by shimming using the SC shim coil. The effectiveness of the shimming was measured by imaging the left hands of human subjects and evaluating the image quality. The magnetic resonance images for the child subject clearly visualized anatomical structures of all bones necessary for skeletal age assessment, demonstrating the usefulness of combined shimming.

  17. Countering the stray magnetic field of the CUSP trap by using additional coils

    CERN Document Server

    Thole, Jelle

    2016-01-01

    The ASACUSA experiment at the Antiproton Decelerator (AD) at CERN tries to measure the Hyperfine Structure (HFS) of Antihydrogen (H ̄) using a Rabi spectroscopy set-up. In measuring this HFS it will yield a very precise test of CPT-symmetry. For this set-up to work a homogeneous magnetic field is needed in the cavity where the Hyperfine transition of H ̄ occurs. Due to the stray fields from the CUSP trap, where H ̄ is produced, additional coils are needed to counter these fields. It is found, using COMSOL simulations, that two coils are suitable for this. Leading to a relative standard deviation of the magnetic field of σB/B = 1.06%.

  18. Attitude stabilization of a pico-satellite by momentum wheel and magnetic coils

    Institute of Scientific and Technical Information of China (English)

    Tao MENG; Hao WANG; Zhong-he JIN; Ke HAN

    2009-01-01

    The three-axis active attitude control method with a momentum wheel and magnetic coils for a pico-satellite is considered. The designed satellite is a 2.5 kg class satellite stabilized to nadir pointing. The momentum wheel performs a pitch-axis momentum bias, nominally spinning at a particular rate. Three magnetic coils are mounted perpendicularly along the body axis for precise attitude control through the switch control mechanism. Momentum wheel start up control, damping control and attitude acquisition control are considered. Simulation results show that the proposed combined control laws for the pico-satellite is reliable and has an appropriate accuracy under different separation conditions. The proposed strategy to start up the wheel after separation from the launch vehicle shows that its pitch momentum wheel can start up successfully to its nominal speed from rest,and the attitude convergence can be completed within several orbits, depending on separation conditions.

  19. Flux motion in Y-Ba-Cu-O bulk superconductors during pulse field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, K [Department of Physics, College of Humanities and Sciences, Nihon University, 3-25-40 Sakura-Josui, Setagaya-ku, Tokyo 156-8550 (Japan); Nariki, S [Division of Material Science and Physics, Bulk Superconductor Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo 105-0023 (Japan); Sakai, N [Division of Material Science and Physics, Bulk Superconductor Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo 105-0023 (Japan); Murakami, M [Division of Material Science and Physics, Bulk Superconductor Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo 105-0023 (Japan); Hirabayasi, I [Division of Material Science and Physics, Bulk Superconductor Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo 105-0023 (Japan); Takizawa, T [Department of Physics, College of Humanities and Sciences, Nihon University, 3-25-40 Sakura-Josui, Setagaya-ku, Tokyo 156-8550 (Japan)

    2004-02-01

    We have studied the relationship between the magnetization and temperature change in Y-Ba-Cu-O bulk superconductor during pulse field magnetization (PFM). The flux motion was monitored using both Hall sensors and pick-up coils that are placed on a surface of a Y-Ba-Cu-O disc having dimensions of 15 mm in diameter and 0.95 mm in thickness. The peak value of the field was varied from 0.2 to 0.8 T. The effect of the static bias field was also studied in the range of 0-3 T. The temperature of the sample surface was measured using a resistance temperature sensor. The temperature increased with the magnitude of the applied pulsed magnetic field, and the amount of temperature rise decreased with increasing static bias field.

  20. Pelvic varices diagnosed with endorectal surface coil magnetic resonance imaging: case report

    Energy Technology Data Exchange (ETDEWEB)

    Gullo, G.; Russ, P.D. [Univ. of Colorado Health Sciences Center, Dept. of Radiology, Denver, Colorado (United States)

    2000-07-01

    Pelvic varices are a well-recognized cause of pain, especially in multiparous women, and are often associated with pelvic congestion syndrome. These dilated veins have been imaged using positive-contrast venography and ultrasonography (US). We present a case of painless pelvic varices that presented as an amorphous, non-specific-appearing parametrial and pericervical mass on computed tomography (CT), but which were diagnosed with magnetic resonance imaging (MRI) using an endorectal surface coil. (author)

  1. R&D steps of a 12-T common coil dipole magnet for SPPC pre-study

    Science.gov (United States)

    Wang, Chengtao; Zhang, Kai; Xu, Qingjin

    2016-11-01

    IHEP (the Institute of High Energy Physics, Beijing, China) has started the R&D of high field accelerator magnet technology from 2014 for recently proposed CEPC-SppC (Circular Electron Positron Collider, Super proton-proton Collider) project. The conceptual design study of a 20-T dipole magnet is ongoing with the common coil configuration, and a 12-T model magnet will be fabricated in the next two years. A 3-step R&D process has been proposed to realize this 12-T common-coil model magnet: first, a 12-T subscale magnet will be fabricated with Nb3Sn and NbTi superconductors to investigate the fabrication process and characteristics of Nb3Sn coils, then a 12-T subscale magnet will be fabricated with only Nb3Sn superconductors to test the stress management method and quench protection method of Nb3Sn coils; the final step is fabricating the 12-T common-coil dipole magnet with HTS (YBCO) and Nb3Sn superconductors to test the field optimization method of the HTS and Nb3Sn coils. The characteristics of these R&D steps will be introduced in the paper.

  2. Determining the exchange parameters of spin-1 metal-organic molecular magnets in pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Mcdonald, Ross D [Los Alamos National Laboratory; Singleton, John [Los Alamos National Laboratory; Lancaster, Tom [OXFORD UNIV.; Goddard, Paul [OXFORD UNIV.; Manson, Jamie [EASTERN WASHINGTON UNIV.

    2011-01-14

    We nave measured the high-field magnetization of a number of Ni-based metal-organic molecular magnets. These materials are self-assembly coordination polymers formed from transition metal ions and organic ligands. The chemistry of the compounds is versatile allowing many structures with different magnetic properties to be formed. These studies follow on from previous measurements of the Cu-based analogues in which we showed it was possible to extract the exchange parameters of low-dimensional magnets using pulsed magnetic fields. In our recent experiments we have investigated the compound (Ni(HF{sub 2})(pyz){sub 2})PF{sub 6}, where pyz = pyrazine, and the Ni-ions are linked in a quasi-two-dimensional (Q2D) square lattice via the pyrazine molecules, with the layers held together by HF{sub 2} ligands. We also investigated Ni(NCS){sub 2}(pyzdo){sub 2}, where pyzdo = pyrazine dioxide. The samples are grown at Eastern Washington University using techniques described elsewhere. Measurements are performed at the pulsed magnetic field laboratory in Los Alamos. The magnetization of powdered samples is determined using a compensated coil magnetometer in a 65 T short pulse magnet. Temperatures as low as 500 mK are achievable using a {sup 3}He cryostat. The main figure shows the magnetization of the spin-1 [Ni(HF{sub 2})(pyz){sub 2}]PF{sub 6} compound at 1.43 K. The magnetization rises slowly at first, achieving a rounded saturation whose midpoint is around 19 T. A small anomaly is also seen in the susceptibility at low fields ({approx}3 T), which might be attributed to a spin-flop transition. In contrast, the spin-1/2 [Cu(HF{sub 2})(pyz){sub 2}]PF{sub 6} measured previously has a saturation magnetization of 35.5 T and a strongly concave form of M(B) below this field. This latter compound was shown to be a good example of a Q2D Heisenberg antiferromagnet with the strong exchange coupling (J{sub 2D} = 12.4 K, J{sub {perpendicular}}/J{sub 2D} {approx} 10{sup -2}) directed along

  3. Synchronizing the transcranial magnetic pulse with electroencephalographic recordings effectively reduces inter-trial variability of the pulse artefact

    DEFF Research Database (Denmark)

    Tomasevic, Leo; Takemi, Mitsuaki; Siebner, Hartwig Roman

    2017-01-01

    BACKGROUND: Electroencephalography (EEG) can capture the cortical response evoked by transcranial magnetic stimulation (TMS). The TMS pulse provokes a large artefact, which obscures the cortical response in the first milliseconds after TMS. Removing this artefact remains a challenge. METHODS: We...... were tested at 10 and 20 kHz using the head phantom. We also tested the effect of a soft sheet placed between the stimulation coil and recording electrodes in both human and melon. RESULTS & CONCLUSION: Synchronizing TMS and data acquisition markedly reduced trial-to-trial variability of the pulse......-to-trial variability renders it possible to create an artefact template for off-line filtering. Template-based subtraction of the artefact from the EEG signals is a prerequisite to effectively recover the immediate physiological response in the stimulated cortex and inter-connected areas....

  4. Development of radiation-resistant magnet coils for high-intensity beam lines

    Science.gov (United States)

    Tanaka, K. H.; Yamanoi, Y.; Noumi, H.; Takasaki, M.; Saitoh, Y.; Kato, K.; Yokoi, T.; Tsukada, S.; Tanno, H.

    1994-07-01

    In connection with the Japanese Hadron Facility (JHF) project, the development of new types of radiation-resistant magnet coils has been continued at KEK. One major program is the design and production of a mineral insulation cable (MIC) with a larger maximum current. We have already developed a 2000A-class MIC having a square-cross-section hollow conductor. A sample magnet coil was fabricated with this MIC. Tests of its stability and reliability are under progress. We are now planning to develop a 3000A-class MIC. The other program is R/D work on a completely inorganic wrapping insulation material which can be used like the usual type glass-fiber tape pre-impregnated with epoxy-resin. After tests of the mechanical strength and electric insulation of many combinations of tapes and bonds, we found a pure (99%) alumina-fiber tape pre-impregnated with inorganic cement that is suitable for a magnet coil insulator after thermal curing.

  5. A Wide Linear Range Eddy Current Displacement Sensor Equipped with Dual-Coil Probe Applied in the Magnetic Suspension Flywheel

    Directory of Open Access Journals (Sweden)

    Tong Wen

    2012-08-01

    Full Text Available The Eddy Current Displacement Sensor (ECDS is widely used in the Magnetic Suspension Flywheel (MSFW to measure the tiny clearance between the rotor and the magnetic bearings. The linear range of the ECDS is determined by the diameter of its probe coil. Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions. In this paper, a multi-channel ECDS equipped with dual-coil probes is proposed to extend the linear range to satisfy the demands of such MSFWs. In order to determine the best configuration of the dual-coil probe, the quality factors of the potential types of the dual-coil probes, the induced eddy current and the magnetic intensity on the surface of the measuring object are compared with those of the conventional single-coil probe. The linear range of the ECDS equipped with the selected dual-coil probe is extended from 1.1 mm to 2.4 mm under the restrictions without adding any cost for additional compensation circuits or expensive coil materials. The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW.

  6. The Snake - a Reconnecting Coil in a Twisted Magnetic Flux Tube

    CERN Document Server

    Bicknell, G V; Bicknell, Geoffrey V.; Li, Jianke

    2001-01-01

    We propose that the curious Galactic Center filament known as ``The Snake'' is a twisted giant magnetic flux tube, anchored in rotating molecular clouds. The MHD kink instability generates coils in the tube and subsequent magnetic reconnection injects relativistic electrons. Electrons diffuse away from a coil at an energy-dependent rate producing a flat spectral index at large distances from it. Our fit to the data of \\citet{gray95a} shows that the magnetic field $\\sim 0.4 \\> \\rm mG$ is large compared to the ambient $\\sim 7 \\mu \\> \\rm G$ field, indicating that the flux tube is force-free. If the {\\em relative} level of turbulence in the Snake and the general interstellar medium are similar, then electrons have been diffusing in the Snake for about $3 \\times 10^5 \\> \\rm yr$, comparable to the timescale at which magnetic energy is annihilated in the major kink. Estimates of the magnetic field in the G359.19-0.05 molecular complex are similar to our estimate of the magnetic field in the Snake suggesting a strong...

  7. New printed circuit boards magnetic coils in the vacuum vessel of J-TEXT tokamak for position measurement

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S. S.; Zhuang, G.; Zhang, M.; Xia, D. H.; Rao, B.; Zhang, X. Q.; Pan, Y. [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Gentle, K. [Institute of Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

    2010-10-15

    Four sets of magnetic diagnostic coils, which are printed on machinable ceramic printed circuit boards (PCB), are designed, fabricated, installed, and tested in the Joint Texas Experimental Tokamak (J-TEXT) vacuum vessel for detecting the plasma radial and vertical displacements relative to the geometric center of the vacuum vessel in Ohmic discharges. Each coordinate is determined by a pair of variable cross-section Rogowski and saddle coils, which measure the tangential and normal magnetic fields (relative to the coil surface). These coils are suitable for mass production and offer advantages in vacuum compatibility and temperature tolerance that are important for J-TEXT. Position measurements using PCB coils are compared with those from soft x-ray image system and match the position well.

  8. New printed circuit boards magnetic coils in the vacuum vessel of J-TEXT tokamak for position measurementa)

    Science.gov (United States)

    Qiu, S. S.; Zhuang, G.; Zhang, M.; Xia, D. H.; Rao, B.; Zhang, X. Q.; Pan, Y.; Gentle, K.

    2010-10-01

    Four sets of magnetic diagnostic coils, which are printed on machinable ceramic printed circuit boards (PCB), are designed, fabricated, installed, and tested in the Joint Texas Experimental Tokamak (J-TEXT) vacuum vessel for detecting the plasma radial and vertical displacements relative to the geometric center of the vacuum vessel in Ohmic discharges. Each coordinate is determined by a pair of variable cross-section Rogowski and saddle coils, which measure the tangential and normal magnetic fields (relative to the coil surface). These coils are suitable for mass production and offer advantages in vacuum compatibility and temperature tolerance that are important for J-TEXT. Position measurements using PCB coils are compared with those from soft x-ray image system and match the position well.

  9. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils

    Science.gov (United States)

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-01

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  10. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils.

    Science.gov (United States)

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-21

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  11. Functional and morphological cardiac magnetic resonance imaging of mice using a cryogenic quadrature radiofrequency coil.

    Directory of Open Access Journals (Sweden)

    Babette Wagenhaus

    Full Text Available Cardiac morphology and function assessment by magnetic resonance imaging is of increasing interest for a variety of mouse models in pre-clinical cardiac research, such as myocardial infarction models or myocardial injury/remodeling in genetically or pharmacologically induced hypertension. Signal-to-noise ratio (SNR constraints, however, limit image quality and blood myocardium delineation, which crucially depend on high spatial resolution. Significant gains in SNR with a cryogenically cooled RF probe have been shown for mouse brain MRI, yet the potential of applying cryogenic RF coils for cardiac MR (CMR in mice is, as of yet, untapped. This study examines the feasibility and potential benefits of CMR in mice employing a 400 MHz cryogenic RF surface coil, compared with a conventional mouse heart coil array operating at room temperature. The cryogenic RF coil affords SNR gains of 3.0 to 5.0 versus the conventional approach and hence enables an enhanced spatial resolution. This markedly improved image quality--by better deliniation of myocardial borders and enhanced depiction of papillary muscles and trabeculae--and facilitated a more accurate cardiac chamber quantification, due to reduced intraobserver variability. In summary the use of a cryogenically cooled RF probe represents a valuable means of enhancing the capabilities of CMR of mice.

  12. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Tetsuya; Watasaki, Masahiro [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Kimura, Yosuke [Kawasaki Heavy Industries, Ltd. Technical Institute System Technology Development Centre 1-1, Kawasaki-cho, Akashi-shi, Hyogo 673-8666 (Japan); Miki, Motohiro; Izumi, Mitsuru, E-mail: ida@hiroshima-cmt.ac.j [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan)

    2010-06-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  13. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    Science.gov (United States)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  14. Discrete Differential Geometry Applied to the Coil-End Design of Superconducting Magnets

    CERN Document Server

    Auchmann, B; Schwerg, N

    2007-01-01

    Coil-end design for superconducting accelerator magnets, based on the continuous strip theory of differential geometry, has been introduced by Cook in 1991. A similar method has later been coupled to numerical field calculation and used in an integrated design process for LHC magnets within the CERN field computation program ROXIE. In this paper we present a discrete analog on to the continuous theory of strips. Its inherent simplicity enhances the computational performance, while reproducing the accuracy of the continuous model. The method has been applied to the design

  15. Bucking Coil Implementation on PMT for Active Cancelling of Magnetic Field

    CERN Document Server

    Gogami, T; Bono, J; Baturin, P; Chen, C; Chiba, A; Chiga, N; Fujii, Y; Hashimoto, O; Kawama, D; Maruta, T; Maxwell, V; Mkrtchyan, A; Nagao, S; Nakamura, S N; Reinhold, J; Shichijo, A; Tang, L; Taniya, N; Wood, S A; Ye, Z

    2013-01-01

    Aerogel and water Cerenkov detectors were employed to tag kaons for a lambda hypernuclear spectroscopic experiment which used the (e,e'K+) reaction in experimental Hall C at Jefferson Lab (JLab E05-115). Fringe fields from the kaon spectrometer magnet yielded ~5 Gauss at the photomultiplier tubes (PMT) for these detectors which could not be easily shielded. As this field results in a lowered kaon detection efficiency, we implemented a bucking coil on each photomultiplier tubes to actively cancel this magnetic field, thus maximizing kaon detection efficiency.

  16. A single-solenoid pulsed-magnet system for single-crystal scattering studies.

    Science.gov (United States)

    Islam, Zahirul; Capatina, Dana; Ruff, Jacob P C; Das, Ritesh K; Trakhtenberg, Emil; Nojiri, Hiroyuki; Narumi, Yasuo; Welp, Ulrich; Canfield, Paul C

    2012-03-01

    We present a pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies with the magnetic field applied on or close to the scattering plane. The apparatus consists of a single large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields close to ~30 T with a zero-to-peak-field rise time of ~2.9 ms are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (~23.6°) on the entrance and exit sides of the magnet bore by virtue of a novel double-funnel insert. This instrument will facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using split-pair and narrow-opening solenoid magnets. Furthermore, it offers a practical solution for preserving optical access in future higher-field pulsed magnets.

  17. Prostate magnetic resonance spectroscopic imaging at 1.5tesla with endorectal coil versus 3.0tesla without endorectal coil: comparison of spectral quality.

    Science.gov (United States)

    De Visschere, Pieter; Nezzo, Marco; Pattyn, Eva; Fonteyne, Valérie; Van Praet, Charles; Villeirs, Geert

    2015-01-01

    To compare the spectral quality of prostate magnetic resonance spectroscopic imaging (MRSI) at 1.5Tesla with endorectal coil (ER-1.5T) to MRSI at 3.0Tesla without coil (3.0T). In 30 patients, the spectral quality of 6107 voxels at ER-1.5T and that of 5667 at 3.0T were visually evaluated by three radiologists. There were 57.6% good quality voxels at ER-1.5T versus 64.3% at 3.0T (P=.121). The posterior two rows showed better quality at ER-1.5T (P=.047). There is no significant difference in overall spectral quality between ER-1.5T and 3.0T, although ER-1.5T shows better quality close to the endorectal coil. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Proceedings of Pulsed Magnet Design and Measurement Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Shaftan, T.; Heese, R.; Ozaki,S.

    2010-01-19

    The goals of the Workshop are to assess the design of pulsed system at the NSLS-II and establish mitigation strategies for critical issues during development. The focus of the Workshop is on resolving questions related to the set-up of the pulsed magnet laboratory, on measuring the pulsed magnet's current waveforms and fields, and on achieving tight tolerances on the magnet's alignment and field quality.

  19. EXTERNAL MAGNETIC-PULSE STRAIGHTENING OF CARS BODY PANELS

    Directory of Open Access Journals (Sweden)

    A. Hnatov

    2014-10-01

    Full Text Available The basics of magnetic-pulse attraction of both ferromagnetic and non-ferromagnetic thin-wall sheet metals are investigated. The design models of inductor systems-magnetic-pulse straightening tools are presented. The final analytical expressins for excited efforts design in the tools under consideration are introduced. The practical testing of magnetic-pulse straightening with the tools under study is given.

  20. Testing the intrinsic noise of a coil-magnet actuator for cryogenic gravitational wave interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Falferi, Paolo, E-mail: falferi@science.unitn.it [Istituto di Fotonica e Nanotecnologie, CNR-Fondazione Bruno Kessler, 38123 Povo, Trento (Italy); INFN, Gruppo Collegato di Trento, Sezione di Padova, 38123 Povo, Trento (Italy)

    2011-07-21

    The third generation gravitational wave interferometers that will operate underground and at cryogenic temperatures will need a complex and sophisticated control system to satisfy the requirements on the alignment and position of its optics and keep the detector at its working point. The force actuators of the control systems of the present interferometers are for the most part coil-magnet actuators. To check the possibility of using these actuators also at low temperature we have tested the magnetization and the magnetization noise of an SmCo magnet at 4.2 K. The magnetization loss, measured with a fluxgate magnetometer, is 7%. The magnetization noise has been measured with a superconducting quantum interference device magnetometer. The application of dc and ac (0.1 Hz) magnetic fields of an amplitude comparable to that needed to produce on the magnet a force large enough for the control system does not change the measured noise. The equivalent maximum force noise produced by the actuator as a result of the magnetization noise of the magnet has been evaluated. Its effect on the sensitivity of a third generation interferometer (Einstein Telescope) is negligible with respect to the most relevant fundamental noise contributions.

  1. Superconducting flux pump for high-temperature superconductor insert coils of NMR magnets

    Science.gov (United States)

    Jeong, S.; Lee, H.; Iwasa, Y.

    2002-05-01

    This paper describes a prototype flux pump recently operated at the MIT Francis Bitter Magnet Laboratory. The results of the prototype flux pump will be used in the development of a full-scale flux pump that will be coupled to a high-temperature superconductor (HTS) insert coil of a high-field NMR magnet. Such an HTS insert is unlikely to operate in persistent mode because of the conductor's low index (n). The flux pump can compensate for field decay in the HTS insert coil and make the insert operate effectively in persistent mode. The flux pump, comprised essentially of a transformer and two switches, all made of superconductor, transfers into the insert coil a fraction of a magnetic energy that is first introduced in the secondary circuit of the transformer by a current supplied to the primary circuit. A prototype flux pump has been designed, fabricated, and operated to demonstrate that a flux pump can indeed supply a small metered current into a load superconducting magnet. A current increment in the range of microamperes has been measured in the magnet after each pumping action. The superconducting prototype flux pump is made of Nb3Sn tape. The pump is placed in a gaseous environment above the liquid helium level to keep its heat dissipation from directly discharged in the liquid; the effluent helium vapor maintains the thermal stability of the flux pump. [This paper is also published in Advances in Cryogenic Engineering Volume 47A, AIP Conference Proceedings Volume 613, pp. 441-448.

  2. Saturable inductor and transformer structures for magnetic pulse compression

    Science.gov (United States)

    Birx, Daniel L.; Reginato, Louis L.

    1990-01-01

    Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

  3. Investigation of high-resolution functional magnetic resonance imaging by means of surface and array radiofrequency coils at 7 T.

    Science.gov (United States)

    van der Zwaag, Wietske; Marques, José P; Hergt, Martin; Gruetter, Rolf

    2009-10-01

    In this investigation, high-resolution, 1x1x1-mm(3) functional magnetic resonance imaging (fMRI) at 7 T is performed using a multichannel array head coil and a surface coil approach. Scan geometry was optimized for each coil separately to exploit the strengths of both coils. Acquisitions with the surface coil focused on partial brain coverage, while whole-brain coverage fMRI experiments were performed with the array head coil. BOLD sensitivity in the occipital lobe was found to be higher with the surface coil than with the head array, suggesting that restriction of signal detection to the area of interest may be beneficial for localized activation studies. Performing independent component analysis (ICA) decomposition of the fMRI data, we consistently detected BOLD signal changes and resting state networks. In the surface coil data, a small negative BOLD response could be detected in these resting state network areas. Also in the data acquired with the surface coil, two distinct components of the positive BOLD signal were consistently observed. These two components were tentatively assigned to tissue and venous signal changes.

  4. Nonlinear dynamics of a magnetically driven Duffing-type spring-magnet oscillator in the static magnetic field of a coil

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-11-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet-coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels.

  5. New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT

    Institute of Scientific and Technical Information of China (English)

    ZENG Wubing; DING Yonghua; YI Bin; XU Hangyu; RAO Bo; ZHANG Ming; LIU Minghai

    2014-01-01

    In order to advance the research on suppressing tearing modes and driving plasma rotation,a DC power supply (PS) system has been developed for dynamic resonant magnetic perturbation (DRMP) coils and applied in the J-TEXT experiment.To enrich experimental phenomena in the J-TEXT tokamak,applying the circulating current four-quadrant operation mode in the DRMP DC PS system is proposed.By using the circulating current four-quadrant operation,DRMP coils can be smoothly controlled without the dead-time when the current polarity reverses.Essential circuit analysis,control optimization and simulation of desired scenarios have been performed for normal current.Relevant simulation and test results are also presented.

  6. Magnetic resonance imaging for radiotherapy planning of brain cancer patients using immobilization and surface coils

    Energy Technology Data Exchange (ETDEWEB)

    Hanvey, S; Glegg, M; Foster, J [Department of Clinical Physics and Bioengineering, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN (United Kingdom)], E-mail: scott.hanvey@ggc.scot.nhs.uk

    2009-09-21

    This study investigated the compatibility of a head and neck immobilization device with magnetic resonance imaging (MRI). The immobilization device is used to position a patient in the same way as when receiving a computed tomography (CT) scan for radiotherapy planning and radiation treatment. The advantage of using immobilization in MR is improved accuracy in CT/MR image registration enabling greater confidence in the delineation of structures. The main practical difficulty in using an immobilization device in MRI is that physical constraints make their use incompatible with head imaging coils. Within this paper we describe a method for MR imaging of the brain which allows the use of head and neck immobilization devices. By a series of image quality tests we obtained the same or better image quality as a multi-channel head coil.

  7. Magnetic resonance imaging for radiotherapy planning of brain cancer patients using immobilization and surface coils

    Science.gov (United States)

    Hanvey, S.; Glegg, M.; Foster, J.

    2009-09-01

    This study investigated the compatibility of a head and neck immobilization device with magnetic resonance imaging (MRI). The immobilization device is used to position a patient in the same way as when receiving a computed tomography (CT) scan for radiotherapy planning and radiation treatment. The advantage of using immobilization in MR is improved accuracy in CT/MR image registration enabling greater confidence in the delineation of structures. The main practical difficulty in using an immobilization device in MRI is that physical constraints make their use incompatible with head imaging coils. Within this paper we describe a method for MR imaging of the brain which allows the use of head and neck immobilization devices. By a series of image quality tests we obtained the same or better image quality as a multi-channel head coil.

  8. Magnetic Resonance Imaging of Atherosclerotic Lesion with New Devised Animal Surface Coil

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bing-hui; LI Ming-hua; ZHAO Qing; CHENG Ying-sheng; XIAO Yun-feng; ZHAO Jia-min

    2008-01-01

    The ability of dynamic contrast enhanced magnetic resonance imaging (DCE MRI) with a new devised animal surface coil was analyzed in identifying atherosclerotic plaques in the rabbit medium-sized iliac artery (IA).Then a comparative analysis of multi-detector computed tomography (MDCT) and DCE MRI was clone in discerning morphology and components of 80 atherosclerotic plaques identified by histopathology.It shows that the DCE MRI may be an emerging noninvasive and economic way to characterize atherosclerotic plaques at present.What's more,a new devised animal surface coil would further improve the signal-to-noise ratio (SNR) and the quality of imaging.However,CT angiography (CTA) may be better than MR angiography(MRA) in detecting vessel stenosis.

  9. High Inductance Coil Embedded on Magnetic Sensor Chip for Biomagnetic Signal Measurements

    Science.gov (United States)

    Lyu, Hyunjune; Choi, Jun Rim

    2013-09-01

    For the purpose of biomagnetic measurements, a magnetic sensor chip is manufactured using a 0.18 μm complementary metal-oxide-semiconductor (CMOS) process. A high-inductance coil and an instrumentation amplifier (IA) are embedded on this chip. The embedded high-inductance coil sensor contains suitable sensitivity and bandwidth for biomagnetic measurements, and is designed via electromagnetic field simulation. A low-gm operational transconductance amplifier (OTA) is also implemented on the chip to reduce the transconductance value. The output signal sensitivity of the magnetic sensor chip is 3.25 fT/μV, and the output reference noise is $21.1 fT/\\sqrtHz. The instrumentation amplifier is designed to minimize the magnetic signal noise using current feedback and a band-pass filter (BPF) with a bandwidth between 0.5 kHz and 5 kHz. The common-mode rejection ratio (CMRR) is measured at 117.5 dB by the Multi-Project Chip test. The proposed magnetic sensor chip is designed such that the input reference noise is maintained below 0.87 μV.

  10. Design and analysis of permanent magnet moving coil type generator used in a micro-CHP generation system

    Science.gov (United States)

    Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan

    2015-12-01

    This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.

  11. Effect of structural steel ion plasma nitriding on material durability in pulsed high magnetic fields

    Science.gov (United States)

    Spirin, A. V.; Krutikov, V. I.; Koleukh, D. S.; Mamaev, A. S.; Paranin, S. N.; Gavrilov, N. V.; Kaigorodov, A. S.

    2017-05-01

    The work was aimed to study the influence of plasma nitriding on electrical and mechanical properties of structural steels and their durability in pulsed high magnetic field. The plates and cylindrical magnetic flux concentrators were made of several steel grades (30KhGS, 40Kh, 50KhGA, 38Kh2MYuA, and U8A), heat-treated, and subjected to the low-temperature (400, 500°C) plasma nitriding. Electrical and mechanical properties of materials, phase composition of steel surface layer, microstructure and microhardness profiles were investigated on the plates before and after plasma treatment. Microstructure and microhardness profiles across the subsurface layer of plasma treated and untreated concentrators applied for high magnetic field generation were also studied. Magnetic field of 50 T under tens of microseconds in duration inside the flux concentrators was generated by long-life outer coil.

  12. Analysing radio-frequency coil arrays in high-field magnetic resonance imaging by the combined field integral equation method.

    Science.gov (United States)

    Wang, Shumin; Duyn, Jeff H

    2006-06-21

    We present the combined field integral equation (CFIE) method for analysing radio-frequency coil arrays in high-field magnetic resonance imaging (MRI). Three-dimensional models of coils and the human body were used to take into account the electromagnetic coupling. In the method of moments formulation, we applied triangular patches and the Rao-Wilton-Glisson basis functions to model arbitrarily shaped geometries. We first examined a rectangular loop coil to verify the CFIE method and also demonstrate its efficiency and accuracy. We then studied several eight-channel receive-only head coil arrays for 7.0 T SENSE functional MRI. Numerical results show that the signal dropout and the average SNR are two major concerns in SENSE coil array design. A good design should be a balance of these two factors.

  13. Air core notch-coil magnet with variable geometry for fast-field-cycling NMR.

    Science.gov (United States)

    Kruber, S; Farrher, G D; Anoardo, E

    2015-10-01

    In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α-helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm(3) the effective magnet homogeneity is lower than 130 ppm.

  14. Study of eddy current power loss from outer-winding coils of a magnetic position sensor

    CERN Document Server

    Liu, C P; Chang, Y H; Yu, C S; Wu, K T; Wang, S J; Ying, T F; Huang, D R

    2000-01-01

    The present analysis is concerned with eddy current power loss of a magnetic position sensor, which arises from a non-uniform flux linkage distribution between magnetic material and position sensor. In the paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar, and developed a numerical model to compute the electrical characteristics by an excited current source. According to the simulated and measured data in this proposed model from 2.52 to 11.37 Oes, eddy current power losses of conducting material have a variation of 6.1% and 9.77%, respectively. Finally, the phases of waveform of the induced output voltage will also be obtained in the conducting material, and have a variation of 3.68% obtained by using the current source in the proposed model.

  15. Using a modified 3D-printer for mapping the magnetic field of RF coils designed for fetal and neonatal imaging

    Science.gov (United States)

    Vavoulas, Alexander; Vaiopoulos, Nicholas; Hedström, Erik; Xanthis, Christos G.; Sandalidis, Harilaos G.; Aletras, Anthony H.

    2016-08-01

    An experimental setup for characterizing the magnetic field of MRI RF coils was proposed and tested. The setup consisted of a specially configured 3D-printer, a network analyzer and a mid-performance desktop PC. The setup was tested on a single loop RF coil, part of a phased array for fetal imaging. Then, the setup was used for determining the magnetic field characteristics of a high-pass birdcage coil used for neonatal MR imaging with a vertical static field. The scattering parameter S21, converted into power ratio, was used for mapping the B1 magnetic field. The experimental measurements from the loop coil were close to the theoretical results (R = 0.924). A high degree of homogeneity was measured for the neonatal birdcage RF coil. The development of MR RF coils is time consuming and resource intensive. The proposed experimental setup provides an alternative method for magnetic field characterization of RF coils used in MRI.

  16. Reduction of the suction losses through reed valves in hermetic reciprocating compressors using a magnet coil

    Science.gov (United States)

    Hopfgartner, J.; Posch, S.; Zuber, B.; Almbauer, R.; Krischan, K.; Stangl, S.

    2017-08-01

    Reed valves are widely used in hermetic reciprocating compressors and are responsible for a large part of the thermodynamic losses. Especially, the suction valve, which is opened nearly during the whole suction stroke, has a big potential for improvement. Usually, suction valves are opened only by vacuum created by the moving piston and should be closed before the compression stroke starts to avoid a reversed mass-flow through the valve. Therefore, the valves are prestressed, which results on the other hand in a higher flow resistance. In this work, a suction valve is investigated, which is not closed by the preload of the valve but by an electromagnetic coil located in the suction muffler neck. Shortly before the piston reaches its bottom dead centre, voltage is applied to the coil and a magnetic force is generated which pulls the valve shut. Thereby, the flow resistance through the valve can be reduced by changing the preload on the reed valve because it is no longer needed to close the valve. The investigation of this adapted valve and the electromagnetic coil is firstly done by numerical simulations including fluid structure interactions of the reed valves of a reciprocating compressor and secondly by experiments made on a calorimeter test bench.

  17. Test of Optimized 120-mm LARP $Nb_{3}S_n$ Quadrupole Coil Using Magnetic Mirror Structure

    CERN Document Server

    Chlachidze, G; Andreev, N; Anerella, M; Barzi, E; Bossert, R; Caspi, S; Cheng, D; Dietderich, D; Felice, H; Ferracin, P; Ghosh, A; Godeke, A; Hafalia, A R; Kashikhin, V V; Lamm, M; Marchevsky, M; Nobrega, A; Novitski, I; Orris, D; Sabbi, G L; Schmalzle, J; Wanderer, P; Zlobin, A V

    2013-01-01

    The US LHC accelerator research program (LARP) is developing a new generation of large - aperture high - field quadrupoles based on Nb 3 Sn conductor for the High luminosity upgrade of Large Hadron Collider (HiLumi - LHC). Tests of the first series of 120 - mm aperture HQ coils revealed the necessity for further optimization of the coil design and fabrication process. Modifications in coil design were gradually implemented in two HQ coils previously tested at Fermi National Accelerato r Laboratory (Fermilab) using a magnetic mirror structure (HQM01 and HQM02). This paper describes the construction and test of an HQ mirror model with a coil of optimized design and with an interlayer resistive core in the conductor. The cable for this co il was made of a smaller diameter strand, providing more room for coil expansion during reaction. The 0.8 - mm strand, used in all previous HQ coils was replaced with a 0.778 - mm Nb 3 Sn strand of RRP 108/127 sub - element design. The coil was instrumented with voltage taps, h...

  18. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems.

    Science.gov (United States)

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2014-08-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil's microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1(+) near-field with the trapezoidal shape.

  19. A flux pumping method applied to the magnetization of YBCO superconducting coils: frequency, amplitude and waveform characteristics

    Science.gov (United States)

    Fu, Lin; Matsuda, Koichi; Lecrevisse, Thibault; Iwasa, Yukikazu; Coombs, Tim

    2016-04-01

    This letter presents a flux pumping method and the results gained when it was used to magnetize a range of different YBCO coils. The pumping device consists of an iron magnetic circuit with eight copper coils which apply a traveling magnetic field to the superconductor. The copper poles are arranged vertically with an air gap length of 1 mm and the iron cores are made of laminated electric steel plates to minimize eddy-current losses. We have used this arrangement to investigate the best possible pumping result when parameters such as frequency, amplitude and waveform are varied. We have successfully pumped current into the superconducting coil up to a value of 90% of I c and achieved a resultant magnetic field of 1.5 T.

  20. Three-dimensional proton magnetic resonance spectroscopic imaging with and without an endorectal coil: a prostate phantom study.

    Science.gov (United States)

    Ma, Chao; Chen, Luguang; Scheenen, Tom W J; Lu, Jianping; Wang, Jian

    2015-11-01

    Proton magnetic resonance spectroscopic imaging (MRSI) of the prostate has been used with only a combination of external surface coils. The quality of spectral fitting of the (choline + creatine)/citrate ([Cho + Cr]/Cit) ratio at different field strengths and different coils is important for quantitative/semi-quantitative diagnosis of prostate cancer. To evaluate the quality of spectral fitting of the (Cho + Cr)/Cit ratio of a prostate phantom using MRSI at different field strengths and various coils. Experiments were using 1.5-T and 3.0-T MR systems. Measurements were taken on a homemade prostate phantom with different coils: spinal array; abdominal array; and endorectal. The signal-to-noise ratio (SNR) of choline, creatine, and citrate peaks as well as the (Cho + Cr)/Cit ratio in each voxel were compared among groups using multi-way analysis of variance. Magnetic field strength, coils, and plane position had a significant effect on the SNR or (Cho + Cr)/Cit ratio, and there were interactions among groups (all P = 0.000). The 1.5-T (0.228 ± 0.044) exhibited a higher (Cho + Cr)/Cit ratio than the 3.0-T (0.125 ± 0.041) magnetic field strength (F = 3238, P = 0.000). The (Cho + Cr)/Cit ratio of both surface coils (0.183 ± 0.065) and all coils (0.181 ± 0.057) was significantly lower than that of the endorectal coil (0.195 ± 0.077) (both P coils and all coils were used (P > 0.05). No significant differences were found among the (Cho + Cr)/Cit ratios of all voxels in the middle planes by the post-hoc analyses (all P > 0.05). Three-dimensional proton MRSI of prostate metabolites in a phantom using surface coils is feasible and reliable, but (Cho + Cr)/Cit ratios acquired at different magnetic fields and coils were different. This difference should be taken into account when calculating this ratio in a field strength-independent way. © The Foundation Acta Radiologica 2014.

  1. Pulsed Field Waveforms for Magnetization of HTS Gd-Ba-Cu-O Bulk Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ida, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Matsuzaki, H [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Morita, E [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Sakashita, H [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Harada, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Ogata, H [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Kimura, Y [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Miki, M [Kitano Seiki Co. Ltd., 7-13-7, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Kitano, M [Kitano Seiki Co. Ltd., 7-13-7, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan)

    2006-06-01

    Progress in pulse magnetization technique for high-temperature superconductor bulks of melt-textured RE-Ba-Cu-O with large diameter is important for the realization of power applications. We studied the pulsed power source and pulsed field waveforms to enhance to improve the magnetization properties for Gd-Ba-Cu-O bulk. The risetime and duration of pulse waveform effectively varied distribution of magnetic flux.

  2. Design, simulation and evaluation of uniform magnetic field systems for head-free eye movement recordings with scleral search coils.

    Science.gov (United States)

    Eibenberger, Karin; Eibenberger, Bernhard; Rucci, Michele

    2016-08-01

    The precise measurement of eye movements is important for investigating vision, oculomotor control and vestibular function. The magnetic scleral search coil technique is one of the most precise measurement techniques for recording eye movements with very high spatial (≈ 1 arcmin) and temporal (>kHz) resolution. The technique is based on measuring voltage induced in a search coil through a large magnetic field. This search coil is embedded in a contact lens worn by a human subject. The measured voltage is in direct relationship to the orientation of the eye in space. This requires a magnetic field with a high homogeneity in the center, since otherwise the field inhomogeneity would give the false impression of a rotation of the eye due to a translational movement of the head. To circumvent this problem, a bite bar typically restricts head movement to a minimum. However, the need often emerges to precisely record eye movements under natural viewing conditions. To this end, one needs a uniform magnetic field that is uniform over a large area. In this paper, we present the numerical and finite element simulations of the magnetic flux density of different coil geometries that could be used for search coil recordings. Based on the results, we built a 2.2 × 2.2 × 2.2 meter coil frame with a set of 3 × 4 coils to generate a 3D magnetic field and compared the measured flux density with our simulation results. In agreement with simulation results, the system yields a highly uniform field enabling high-resolution recordings of eye movements.

  3. Running characteristics of the superconducting magnetically levitated train in the case of the superconducting coil quenching; Chodendo jiki fujo ressha no chodendo coil quenching ji no soko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, H. [Kansai University, Osaka (Japan); Osaki, H.; Masada, E. [The University of Tokyo, Tokyo (Japan)

    1998-07-01

    A superconducting (SC) magnetically levitated (Maglev) transportation system has been developed in Japan and various experiments have been done in the new test line at Yamanashi prefecture. Although the superconducting electrodynamic suspension (EDS) system has the advantage of stable levitation without active control, various electromagnetic or mechanical disturbances can cause the change of gap length and the displacement or oscillation of the bogie. In this system, the severest disturbance is SC coil quenching. Therefore it is important to show the running characteristics of the Maglev train and to increase the stability in this case. We developed three dimensional numerical simulation program for the Maglev train. Using this program, running simulation of the train for Yamanashi new test track was undertaken in the case of SC coil quenching. Because of the damping characteristics of the EDS system, influence of the coil quenching is smaller at a higher speed. In the train model, electromagnetic spring strength of the EDS system is larger than mechanical spring of the secondary suspension system connecting a bogie and cabins. Therefore influence of the quenching is only seen in the cabins connected to the quenched bogie. Demagnetization of the SC coil quenching is considered to increase the stability of the train. Although this method is useful to decrease large guidance force, lateral displacement, yaw and roll angle of the bogie, vertical displacement and pitch angle become large. 10 refs., 17 figs., 2 tabs.

  4. High-Quality 3-Dimensional 1H Magnetic Resonance Spectroscopic Imaging of the Prostate Without Endorectal Receive Coil Using A Semi-LASER Sequence.

    Science.gov (United States)

    Tayari, Nassim; Steinseifer, Isabell K; Selnæs, Kirsten M; Bathen, Tone F; Maas, Marnix C; Heerschap, Arend

    2017-10-01

    Inclusion of 3-dimensional H magnetic resonance spectroscopic imaging (3D-H-MRSI) in routine multiparametric MRI of the prostate requires good quality spectra and easy interpretable metabolite maps of the whole organ obtained without endorectal coil in clinically feasible acquisition times. We evaluated if a semi-LASER pulse sequence with gradient offset independent adiabaticity refocusing pulses (GOIA-sLASER) for volume selection can meet these requirements. Thirteen patients with suspicion of prostate cancer and 1 patient known to have prostate cancer were examined at 3 T with a multichannel body-receive coil. A 3D-H-MRSI sequence with GOIA-sLASER volume selection (echo time, 88 milliseconds) was added to a routine clinical multiparametric MRI examination of these patients. Repetition times from 630 to 1000 milliseconds and effective voxel sizes of approximately 0.9 and 0.6 cm were tested. Spectral components were quantified by LCModel software for quality assessment and to construct choline and citrate maps. Three-dimensional MRSI of the prostate was successfully performed in all patients in measurement times of 5 to 10 minutes. Analysis of the multiparametric MRI examination or of biopsies did not reveal malignant tissue in the prostate of the 13 patients. In 1404 evaluated voxels acquired from 13 patients, the citrate resonance could be fitted with a high reliability (Cramér-Rao lower bound coil enabled the generation of whole organ metabolite maps, revealing choline and citrate variations between areas with normal prostate tissue, seminal vesicles, proliferative benign prostatic hyperplasia, and tumor. The good signal-to-noise ratio and low chemical shift artifacts of GOIA-sLASER at an echo time of 88 milliseconds enable acquisition of high-quality 3D-H-MRSI of the prostate without endorectal coil in less than 10 minutes. This facilitates reconstruction of easy interpretable, quantitative metabolite maps for routine clinical applications of prostate MRSI.

  5. Successful suppression of magnetization precession after short field pulses

    OpenAIRE

    Bauer, Martin; Lopusnik, Radek; Fassbender, Jürgen; Hillebrands, Burkard; Dötsch, H.

    2000-01-01

    For the next generation of high data rate magnetic recording above 1 Gbit/s, a better understanding of the switching processes for both recording heads and media will be required. In order to maximize the switch-ing speed for such devices, the magnetization precession after the magnetic field pulse termination needs to be suppressed to a maximum degree. It is demonstrated experimentally for ferrite films that the appropriate adjustment of the field pulse parameters and/or the static applied f...

  6. Control Loop for a Pulse Generator of a Fast Septum Magnet using DSP and Fuzzy Logic

    CERN Document Server

    Aldaz-Carroll, E; Dieperink, J H; Schröder, G; Vossenberg, Eugène B

    1997-01-01

    A prototype of a fast pulsed eddy current septum magnet for one of thebeam extraction's from the SPS towards LHC is under development. The precision of the magnetic field must be better than ±1.0 10-4 during a flat top of 30 µs. The current pulse is generated by discharging the capacitors of a LC circuit that resonates on the 1st and on the 3rd harmonic of a sine wave with a repetition rate of 15 s. The parameters of the circuit and the voltage on the capacitors must be carefully adjusted to meet the specifications. Drifts during operation must be corrected between two pulses by mechanically adjusting the inductance of the coil in the generator as well as the primary capacitor voltage. This adjustment process is automated by acquiring the current pulse waveform with sufficient time and amplitude resolution, calculating the corrections needed and applying these corrections to the hardware for the next pulse. A very cost-effective and practical solution for this adjustment process is the integration of off-th...

  7. NMR in pulsed high-field magnets and application to high-T(C) superconductors.

    Science.gov (United States)

    Stork, H; Bontemps, P; Rikken, G L J A

    2013-09-01

    This article deals with the implementation of Nuclear Magnetic Resonance (NMR) experiments in pulsed magnetic fields at the pulsed-field facility of the Laboratoire National des Champs Magnétiques Intenses and its application to the high-T(C) superconductor YBa2Cu3O6.51. The experimental setup is described in detail, including a low-temperature probe head adapted for pulsed fields. An entire paragraph is dedicated to the discussion of NMR in pulsed field and the introduction of an advanced deconvolution technique making use of the induction voltage in an additional pick-up coil. The (63)Cu/(65)Cu NMR experiments on an YBa2Cu3O6.51 single crystal were performed at 2.5K during a field pulse of 46.8-T-amplitude. In the recorded spectrum the (63)Cu center line and high-frequency satellites as well as the (65)Cu center line are identified and are compared with results in literature.

  8. 25--30 T water cooled pulse magnet concept for neutron scattering experiment

    Energy Technology Data Exchange (ETDEWEB)

    Eyssa, Y.M.; Walsh, R.P.; Miller, J.R.; Pernambuco-Wise, P.; Bird, M.D.; Schneider-Muntau, H.J. [National High Magnetic Field Lab., Tallahassee, FL (United States); Boeing, H.; Robinson, R. [Los Alamos National Lab., NM (United States)

    1997-12-31

    The Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory is in need of a high field, split-pair, pulse magnet that would provide a 25--30 T field in a 25 mm bore and 10 mm split gap for 2--4 ms at a repetition rate of 2 Hz. Single stack Bitter magnets of this type providing less than 20 T vertical field in the split gap have been constructed before. To produce higher fields, there is a need to use a multiple layer coil with internal reinforcement. The magnet should withstand up to 10{sup 7} cycles of loading and unloading. The authors have conducted a feasibility study that address these unique requirements.

  9. A Novel Idea for Coil Collar Structures in Accelerator Superconducting Magnets

    CERN Document Server

    Fessia, P

    2002-01-01

    The dipoles for several different machines (LHC, SSC, HERA) were designed using non-magnetic metallic collars to contain the superconducting coils. The coils are of two types, main and floating. This paper describes a structure with combined steel and plastic collars. Since the floating collars do not give an important contribution to the global rigidity of the dipole we propose to suppress them. The plastic collars are just fillers to limit the helium contained in the cold mass. Some data about thermoplastic materials to be possibly used for the collars are given and some estimations of mass and cost of this configuration are made. Finally the results of the tests of a 1-m-long twin aperture dipole with mixed steel-plastic collars are shortly described. The replacement of expensive alloys by high performance plastic in non-structural components can be a cost-effective solution in view of future projects where superconducting magnets are involved and contained costs are a key issue.

  10. Angular dependence of direct current decay in a closed YBCO double-pancake coil under external AC magnetic field and reduction by magnetic shielding

    Science.gov (United States)

    Geng, J.; Zhang, H.; Li, C.; Zhang, X.; Shen, B.; Coombs, T. A.

    2017-03-01

    High T c superconducting (HTS) coils are ideal candidates in the use of high field magnets. HTS coils carrying a direct current, however, suffer a non-negligible loss when they are exposed to an external AC magnetic field. Although this phenomenon is well known, no study concerning AC magnetic field angular dependence of direct current decay has ever been shown. In this work, we experimentally investigate the direct current decay characteristics in a closed double pancake coil made of a YBCO coated conductor under external AC field. AC field of different angles with respect to the coil plane is applied. Results show that the current decay rate presents a strong angular dependence. The fastest decay occurs when the field is parallel to the coil plane, in which case the surface of the tape in the outermost layer experiences most flux variation. To reduce the decay rate, we propose wrapping superconducting tapes around the outermost layer of the coil to shield external AC field. This method significantly reduces direct current decay rate under parallel field, without affecting the perpendicular self-field of the coil.

  11. Composite superconducting bulks for efficient heat dissipation during pulse magnetization

    Science.gov (United States)

    Baskys, A.; Patel, A.; Hopkins, S.; Kenfaui, D.; Chaud, X.; Zhang, M.; Glowacki, B. A.

    2014-05-01

    Pulsed field magnetization is the most practical method of magnetizing a (RE)BCO bulk, however large heat generation limits the trapped field to significantly less than possible using field cooling. Modelling has been used to show that effective heat removal from the bulk interior, using embedded metallic structures, can enhance trapped field by increasing thermal stability. The reported results are for experimental pulsed magnetization of a thin walled YBCO sample with 55 vertical holes embedded with high thermal conductivity wires. A specially designed copper coldhead was used to increase the trapped field and flux of the perforated YBCO by about 12% at 35 K using a multi-pulse magnetization. Moreover, by filling the perforations with copper, the central trapped field was enhanced by 15% after a single-pulse at 35 K. 3D FEM computer model of a perforated YBCO bulk was also developed showing localised heating effects around the perforations during pulse magnetisation.

  12. Double pancake superconducting coil design for maximum magnetic energy storage in small scale SMES systems

    Science.gov (United States)

    Hekmati, Arsalan; Hekmati, Rasoul

    2016-12-01

    Electrical power quality and stability is an important issue nowadays and technology of Superconducting Magnetic Energy Storage systems, SMES, has brought real power storage capability to power systems. Therefore, optimum SMES design to achieve maximum energy with the least length of tape has been quite a matter of concern. This paper provides an approach to design optimization of solenoid and toroid types of SMES, ensuring maximum possible energy storage. The optimization process, based on Genetic Algorithm, calculates the operating current of superconducting tapes through intersection of a load line with the surface indicating the critical current variation versus the parallel and perpendicular components of magnetic flux density. FLUX3D simulations of SMES have been utilized for energy calculations. Through numerical analysis of obtained data, formulations have been obtained for the optimum dimensions of superconductor coil and maximum stored energy for a given length and cross sectional area of superconductor tape.

  13. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhen, E-mail: zhen.huang@sjtu.edu.cn [Academy of Information Technology and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ruiz, H.S., E-mail: dr.harold.ruiz@le.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Coombs, T.A., E-mail: tac1000@cam.ac.uk [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2017-03-15

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  14. Progress in the manufacture of the cable-in-conduit Nb{sub 3}Sn outsert coils for the 45 Tesla Hybrid Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Painter, T.A.; Miller, J.R.; Summers, L.T. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab.] [and others

    1994-07-01

    The 45 Tesla Hybrid Magnet is being built in a collaborative effort between the National High Magnetic Field Laboratory at Florida State University and the Francis Bitter National Magnet Laboratory at the Massachusetts Institute of Technology. The Hybrid Magnet combines a resistive insert magnet with two Nb3Sn and one NbTi superconducting cable-in-conduit outsert coil to produce the required field on axis. The Nb3Sn outsert coils are being built at Intermagnetics General Corporation under contract with FSU. A design summary for the entire 100 MJ outsert magnet is presented. The design criteria and manufacturing status for the two Nb3Sn outsert coils are described.

  15. In vivo proton observed carbon edited (POCE) (13) C magnetic resonance spectroscopy of the rat brain using a volumetric transmitter and receive-only surface coil on the proton channel.

    Science.gov (United States)

    Kumaragamage, Chathura; Madularu, Dan; Mathieu, Axel P; De Feyter, Henk; Rajah, M Natasha; Near, Jamie

    2017-05-12

    In vivo carbon-13 ((13) C) MR spectroscopy (MRS) is capable of measuring energy metabolism and neuroenergetics, noninvasively in the brain. Indirect ((1) H-[(13) C]) MRS provides sensitivity benefits compared with direct (13) C methods, and normally includes a (1) H surface coil for both localization and signal reception. The aim was to develop a coil platform with homogenous B1+ and use short conventional pulses for short echo time proton observed carbon edited (POCE) MRS. A (1) H-[(13) C] MRS coil platform was designed with a volumetric resonator for (1) H transmit, and surface coils for (1) H reception and (13) C transmission. The Rx-only (1) H surface coil nullifies the requirement for a T/R switch before the (1) H preamplifier; the highpass filter and preamplifier can be placed proximal to the coil, thus minimizing sensitivity losses inherent with POCE-MRS systems described in the literature. The coil platform was evaluated with a PRESS-POCE sequence (TE = 12.6 ms) on a rat model. The coil provided excellent localization, uniform spin nutation, and sensitivity. (13) C labeling of Glu-H4 and Glx-H3 peaks, and the Glx-H2 peaks were observed approximately 13 and 21 min following the infusion of 1-(13) C glucose, respectively. A convenient and sensitive platform to study energy metabolism and neurotransmitter cycling is presented. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. An 11-channel radio frequency phased array coil for magnetic resonance guided high-intensity focused ultrasound of the breast.

    Science.gov (United States)

    Minalga, E; Payne, A; Merrill, R; Todd, N; Vijayakumar, S; Kholmovski, E; Parker, D L; Hadley, J R

    2013-01-01

    In this study, a radio frequency phased array coil was built to image the breast in conjunction with a magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) device designed specifically to treat the breast in a treatment cylinder with reduced water volume. The MRgHIFU breast coil was comprised of a 10-channel phased array coil placed around an MRgHIFU treatment cylinder where nearest-neighbor decoupling was achieved with capacitive decoupling in a shared leg. In addition a single loop coil was placed at the chest wall making a total of 11 channels. The radio frequency coil array design presented in this work was chosen based on ease of implementation, increased visualization into the treatment cylinder, image reconstruction speed, temporal resolution, and resulting signal-to-noise ratio profiles. This work presents a dedicated 11-channel coil for imaging of the breast tissue in the MRgHIFU setup without obstruction of the ultrasound beam and, specifically, compares its performance in signal-to-noise, overall imaging time, and temperature measurement accuracy to that of the standard single chest-loop coil typically used in breast MRgHIFU. Copyright © 2012 Wiley Periodicals, Inc.

  17. Analyzing the uniformity of the generated magnetic field by a practical one-dimensional Helmholtz coils system.

    Science.gov (United States)

    Beiranvand, R

    2013-07-01

    Using the Helmholtz coils system is one of the most suitable approaches which have been introduced for generating uniform magnetic fields. In this paper, uniformity of the generated magnetic field by a practical one-dimensional (1D) Helmholtz coils system has been analyzed, mathematically. For this purpose, relationships between the magnetic field uniformity and different practical unavoidable mismatches have been extracted. The theoretical analysis clearly demonstrates the effect of assembly misalignments and manufacturing mismatches on the magnetic field achieved by a practical 1D Helmholtz coils system. The given analyses have been confirmed by the experimental results which are in good agreement with the calculated values. This analysis and the experimental results illustrate that to achieve a very high uniform magnetic field, practical assembly misalignments, and manufacturing mismatches must be as small as possible, and the background magnetic field distortion must be avoided, too. The results of this work are important in the design of instruments and systems where Helmholtz coils are used.

  18. Exploration of highly accelerated magnetic resonance elastography using high-density array coils

    Science.gov (United States)

    Bosshard, John C.; Yallapragada, Naresh; McDougall, Mary P.

    2017-01-01

    Background Magnetic resonance elastography (MRE) measures tissue mechanical properties by applying a shear wave and capturing its propagation using magnetic resonance imaging (MRI). By using high density array coils, MRE images are acquired using single echo acquisition (SEA) and at high resolutions with significantly reduced scan times. Methods Sixty-four channel uniplanar and 32×32 channel biplanar receive arrays are used to acquire MRE wave image sets from agar samples containing regions of varying stiffness. A mechanical actuator triggered by a stepped delay time introduces vibrations into the sample while a motion sensitizing gradient encodes micrometer displacements into the phase. SEA imaging is used to acquire each temporal offset in a single echo, while multiple echoes from the same array are employed for highly accelerated imaging at high resolutions. Additionally, stiffness variations as a function of temperature are studied by using a localized heat source above the sample. A custom insertable gradient coil is employed for phase compensation of SEA imaging with the biplanar array to allow imaging of multiple slices. Results SEA MRE images show a mechanical shear wave propagating into and across agar samples. A set of 720 images was obtained in 720 echoes, plus a single reference scan for both harmonic and transient MRE. A set of 2,950 wave image frames was acquired from pairs of SEA images captured during heating, showing the change in mechanical wavelength with the change in agar properties. A set of 240 frames was acquired from two slices simultaneously using the biplanar array, with phase images processed into displacement maps. Combining the narrow sensitivity patterns and SNR advantage of the SEA array coil geometry allowed acquisition of a data set with a resolution of 156 µm × 125 µm × 1,000 µm in only 64 echoes, demonstrating high resolution and high acceleration factors. Conclusions MRE using high-density arrays offers the unique ability

  19. Influence of standard RF coil materials on surface and buildup dose from a 6 MV photon beam in magnetic field.

    Science.gov (United States)

    Ghila, A; Fallone, B G; Rathee, S

    2016-11-01

    Magnetic resonance guided teletherapy systems aspire to image the patient concurrently with the radiation delivery. Thus, the radiofrequency (RF) coils used for magnetic resonance imaging, placed on or close to patient skin and in close proximity to the treatment volume, would be irradiated leading to modifications of radiation dose to the skin and in the buildup region. The purpose of this work is to measure and assess these dose modifications due to standard off-the-shelf RF coil materials. A typical surface coil was approximated as layered sheets of polycarbonate, copper tape, and Teflon to emulate the base, conductor, and cover, respectively. A separate investigation used additional coil materials, such as copper pipe, plastic coil housing, a typical coil padding material, and a thin copper conductor. The materials were placed in the path of a 6 MV photon beam at various distances from polystyrene phantoms in which the surface and buildup doses were measured. The experiments were performed on a clinical Varian linac with no magnetic field and with a 0.21 T electromagnet producing a magnetic field parallel to the beam central axis. The authors repeated similar experiments in the presence of a 0.22 T magnetic field oriented perpendicular to the beam central axis using an earlier linac-MR prototype, with a biplanar permanent magnet. The radiation detectors used for the measurements were two different parallel plate ion chambers and GAFChromic films. A typical open beam surface dose of 20% (relative to open beam Dmax) was increased to 63% by the coil padding material and to >74% by all other materials when placed in direct contact with the phantom, irrespective of magnetic field presence or orientation. Without a magnetic field, the surface dose decreased as the test materials were moved away from the phantom surface toward the radiation source, reaching between 30% and 40% at 10 cm gap between the phantom and the test materials. In the presence of the transverse

  20. Ultrafast imprinting of topologically protected magnetic textures via pulsed electrons

    Science.gov (United States)

    Schäffer, A. F.; Dürr, H. A.; Berakdar, J.

    2017-07-01

    Short electron pulses are demonstrated to trigger and control magnetic excitations, even at low electron current densities. We show that the tangential magnetic field surrounding a picosecond electron pulse can imprint topologically protected magnetic textures such as skyrmions in a sample with a residual Dzyaloshinskii-Moriya spin-orbital coupling. Characteristics of the created excitations such as the topological charge can be steered via the duration and the strength of the electron pulses. The study points to a possible way for a spatiotemporally controlled generation of skyrmionic excitations.

  1. Magnetic Resonance Imaging of Phosphocreatine and Determination of BOLD Kinetics in Lower Extremity Muscles using a Dual-Frequency Coil Array.

    Science.gov (United States)

    Brown, Ryan; Khegai, Oleksandr; Parasoglou, Prodromos

    2016-07-28

    Magnetic resonance imaging (MRI) provides the unique ability to study metabolic and microvasculature functions in skeletal muscle using phosphorus and proton measurements. However, the low sensitivity of these techniques can make it difficult to capture dynamic muscle activity due to the temporal resolution required for kinetic measurements during and after exercise tasks. Here, we report the design of a dual-nuclei coil array that enables proton and phosphorus MRI of the human lower extremities with high spatial and temporal resolution. We developed an array with whole-volume coverage of the calf and a phosphorus signal-to-noise ratio of more than double that of a birdcage coil in the gastrocnemius muscles. This enabled the local assessment of phosphocreatine recovery kinetics following a plantar flexion exercise using an efficient sampling scheme with a 6 s temporal resolution. The integrated proton array demonstrated image quality approximately equal to that of a clinical state-of-the-art knee coil, which enabled fat quantification and dynamic blood oxygen level-dependent measurements that reflect microvasculature function. The developed array and time-efficient pulse sequences were combined to create a localized assessment of calf metabolism using phosphorus measurements and vasculature function using proton measurements, which could provide new insights into muscle function.

  2. Magnetic Resonance Imaging of Phosphocreatine and Determination of BOLD Kinetics in Lower Extremity Muscles using a Dual-Frequency Coil Array

    Science.gov (United States)

    Brown, Ryan; Khegai, Oleksandr; Parasoglou, Prodromos

    2016-07-01

    Magnetic resonance imaging (MRI) provides the unique ability to study metabolic and microvasculature functions in skeletal muscle using phosphorus and proton measurements. However, the low sensitivity of these techniques can make it difficult to capture dynamic muscle activity due to the temporal resolution required for kinetic measurements during and after exercise tasks. Here, we report the design of a dual-nuclei coil array that enables proton and phosphorus MRI of the human lower extremities with high spatial and temporal resolution. We developed an array with whole-volume coverage of the calf and a phosphorus signal-to-noise ratio of more than double that of a birdcage coil in the gastrocnemius muscles. This enabled the local assessment of phosphocreatine recovery kinetics following a plantar flexion exercise using an efficient sampling scheme with a 6 s temporal resolution. The integrated proton array demonstrated image quality approximately equal to that of a clinical state-of-the-art knee coil, which enabled fat quantification and dynamic blood oxygen level-dependent measurements that reflect microvasculature function. The developed array and time-efficient pulse sequences were combined to create a localized assessment of calf metabolism using phosphorus measurements and vasculature function using proton measurements, which could provide new insights into muscle function.

  3. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies.

    Science.gov (United States)

    Islam, Zahirul; Ruff, Jacob P C; Nojiri, Hiroyuki; Matsuda, Yasuhiro H; Ross, Kathryn A; Gaulin, Bruce D; Qu, Zhe; Lang, Jonathan C

    2009-11-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (approximately 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  4. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs.

  5. Magnetic resonance butterfly coils: Design and application for hyperpolarized 13C studies

    DEFF Research Database (Denmark)

    Giovannetti, Giulio; Frijia, Francesca; Attanasio, Simona

    2013-01-01

    of dedicated coils capable of providing large field of view with high Signal-to-Noise Ratio (SNR) data is of fundamental importance. This work presents magnetostatic simulations and tests of two butterfly coils with different geometries, both designed for 13C hyperpolarized studies of pig heart with a clinical...... 3T scanner. In particular, the paper provides details of the design, modeling, construction and application of the butterfly style coils. While both coils could be successfully employed in single configuration (linear mode), the second prototype was used to design a quadrature surface coil...... constituted by the butterfly and a circular loop both in receive (RX) mode while using a birdcage coil as transmitter (TX). The performance of this coils configuration was compared with the single TX/RX birdcage coil, in order to verify the advantage of the proposed configuration over the volume coil...

  6. Theoretical signal-to-noise ratio of a slotted surface coil for magnetic resonance imaging

    CERN Document Server

    Ocegueda, K; Solis, S E; Rodriguez, A O

    2011-01-01

    The analytical expression for the signal-to-noise ratio of a slotted surface coil with an arbitrary number of slots was derived using the quasi-static approach. This surface coil based on the vane-type magnetron tube. To study the coil perfomance, the theoretical signal-to-noise ratio predictions of this coil design were computed using a different number of slots. Results were also compared with theoretical results obtained for a circular coil with similar dimensions. It can be appreciated that slotted surface coil performance improves as the number of coils increases and, outperformed the circular-shaped coil. This makes it a good candidate for other MRI applications involving coil array techniques.

  7. Comparison of 2-D Magnetic Designs of Selected Coil Configurations for the Next European Dipole (NED)

    CERN Document Server

    Toral, F; Felice, H; Fessia, Paolo; Loveridge, P W; Regis, Federico; Rochford, J; Sanz, S; Schwerg, Nikolai; Védrine, P; Völlinger, Christine

    2007-01-01

    The Next European Dipole (NED) activity is developing a high-performance Nb3Sn wire (aiming at a non-copper critical current density of 1500 A/mm2 at 4.2 K and 15 T), within the framework of the Coordinated Accelerator Research in Europe (CARE) project. This activity is expected to lead to the fabrication of a large aperture, high field dipole magnet. In preparation for this phase, a Working Group on Magnet Design and Optimization (MDO) has been established to propose an optimal design. Other parallel Work Packages are concentrating on relevant topics, such as quench propagation simulation, innovative insulation techniques, and heat transfer measurements. In a first stage, the MDO Working Group has selected a number of coil configurations to be studied, together with salient parameters and features to be considered during the evaluation: the field quality, the superconductor efficiency, the conductor peak field, the stored magnetic energy, the Lorentz Forces and the fabrication difficulties. 2-D magnetic calc...

  8. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology.

    Science.gov (United States)

    Niendorf, Thoralf; Pohlmann, Andreas; Reimann, Henning M; Waiczies, Helmar; Peper, Eva; Huelnhagen, Till; Seeliger, Erdmann; Schreiber, Adrian; Kettritz, Ralph; Strobel, Klaus; Ku, Min-Chi; Waiczies, Sonia

    2015-01-01

    Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed.

  9. Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance

    Science.gov (United States)

    Spengler, N.; Moazenzadeh, A.; Meier, R. Ch; Badilita, V.; Korvink, J. G.; Wallrabe, U.

    2014-03-01

    In this study, we report on a novel, multi-use, high-resolution NMR/MRI micro-detection probe for the screening of flat samples. It is based on a Helmholtz coil pair in the centre of the probe, built out of two 1.5 mm diameter wirebonded copper coils, resulting in a homogeneous distribution of the magnetic field. For liquids and suspensions, custom fabricated, disposable sample inserts are placed inside the pair and aligned automatically, preventing the sensor and the samples from contamination. The sensor was successfully tested in a 500 MHz (11.7 T) spectrometer where we achieved a linewidth of 1.79 Hz (3.58 ppb) of a water phantom. Nutation experiments revealed an overall B1-field uniformity of 92% (ratio in signal intensity at flip angles of 810°/90°), leading to a homogeneous excitation of concentration limited samples. To demonstrate the imaging capabilities of the detector, we acquired images of a solid and a liquid sample—of a piece of leaf, directly inserted into the probe and of a sample insert, filled with a suspension of 50 μm diameter polymer beads and deionized water, with in-plane resolutions of 20 × 20 μ m2 and 10 × 10 μ m2, respectively.

  10. Suppressing local hot spots due to eddy currents in magnetic coil systems

    Science.gov (United States)

    Yao, Zhen; Shojinaga, Aaron; Wu, Yong; Shvartsman, Shmaryu; Eagan, Timothy; Chmielewski, Thomas; Brown, Robert

    2011-03-01

    A particular goal in magnetic field applications is to avoid eddy current heating in coils and shields. It is important, in MRI, for example, to avoid hot spots near the patient to be imaged as well as in the vicinity of soldering joints. We develop effective analytical formulas for the eddy current behavior of sources close to surrounding conductors, we verify these via numerical simulations, and we make successful comparisons to corresponding experimental temperature distributions. Optimized patterns of incisions made in the conductors are discovered for addressing particularly troublesome heating locations. The criteria include the need to minimize the number and length of the cuts. Theory and experiment are in agreement on the efficacy of this method for reducing steady-state temperatures. An example of results in the practical design of commercial coils and shields is that a single cut parallel to the long edge of rectangular conductors reduces the temperatures much more than making multiple cuts parallel to the short edge. Supported by Ohio Third Frontier Program

  11. Magnetic resonance imaging of cervical carcinoma using an endorectal surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Brocker, Kerstin A., E-mail: kerstin.brocker@med.uni-heidelberg.de [Department of Obstetrics and Gynecology, University of Heidelberg Medical School, Voßstr. 9, 69115 Heidelberg (Germany); Alt, Céline D., E-mail: celine.alt@med.uni-heidelberg.de [Department of Diagnostic and Interventional Radiology, University of Heidelberg Medical School, INF 110, 69120 Heidelberg (Germany); Gebauer, Gerhard, E-mail: gebauer.frauen@marienkrankenhaus.org [Department of Obstetrics and Gynecology, Kath. Marienkrankenhaus Hamburg, Alfredstr. 9, 22087 Hamburg (Germany); Sohn, Christof, E-mail: christof.sohn@med.uni-heidelberg.de [Department of Obstetrics and Gynecology, University of Heidelberg Medical School, Voßstr. 9, 69115 Heidelberg (Germany); Hallscheidt, Peter, E-mail: hallscheidt@yahoo.de [Radiologie Darmstadt am Alice-Hospital, Dieburger Str. 29-31, 64287 Darmstadt (Germany)

    2014-07-15

    Introduction: The objective of this trial is to investigate the diagnostic value of magnetic resonance imaging (MRI) with an endorectal surface coil for precise local staging of patients with histologically proven cervical cancer by comparing the radiological, clinical, and histological results. Materials and methods: Women with cervical cancer were recruited for this trial between February 2007, and September 2010. All the patients were clinically staged according to the FIGO classification and underwent radiological staging by MRI that employed an endorectal surface coil. The staging results after surgery were compared to histopathology in all the operable patients. Results: A total of 74 consecutive patients were included in the trial. Forty-four (59.5%) patients underwent primary surgery, whereas 30 (40.5%) patients were inoperable according to FIGO and underwent primary radiochemotherapy. The mean age of the patients was 50.6 years. In 11 out of the 44 patients concordant staging results were obtained by all three staging modalities. Thirty-two of the 44 patients were concordantly staged by FIGO and histopathological examination, while only 16 were concordantly staged by eMRI and histopathological examination. eMRI overstaged tumors in 14 cases and understaged them in 7 cases. Conclusions: eMRI is applicable in patients with cervical cancer, yet of no benefit than staging with FIGO or standard pelvic MRI. The most precise preoperative staging procedure still appears to be the clinical examination.

  12. Magnetic resonance imaging of cervical carcinoma using an endorectal surface coil.

    Science.gov (United States)

    Brocker, Kerstin A; Alt, Céline D; Gebauer, Gerhard; Sohn, Christof; Hallscheidt, Peter

    2014-07-01

    The objective of this trial is to investigate the diagnostic value of magnetic resonance imaging (MRI) with an endorectal surface coil for precise local staging of patients with histologically proven cervical cancer by comparing the radiological, clinical, and histological results. Women with cervical cancer were recruited for this trial between February 2007, and September 2010. All the patients were clinically staged according to the FIGO classification and underwent radiological staging by MRI that employed an endorectal surface coil. The staging results after surgery were compared to histopathology in all the operable patients. A total of 74 consecutive patients were included in the trial. Forty-four (59.5%) patients underwent primary surgery, whereas 30 (40.5%) patients were inoperable according to FIGO and underwent primary radiochemotherapy. The mean age of the patients was 50.6 years. In 11 out of the 44 patients concordant staging results were obtained by all three staging modalities. Thirty-two of the 44 patients were concordantly staged by FIGO and histopathological examination, while only 16 were concordantly staged by eMRI and histopathological examination. eMRI overstaged tumors in 14 cases and understaged them in 7 cases. eMRI is applicable in patients with cervical cancer, yet of no benefit than staging with FIGO or standard pelvic MRI. The most precise preoperative staging procedure still appears to be the clinical examination. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Advancing Cardiovascular, Neurovascular and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology

    Directory of Open Access Journals (Sweden)

    Thoralf eNiendorf

    2015-11-01

    Full Text Available Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF coils in small animal MR as a means of boosting image quality (e.g. by supporting MR microscopy and making data acquisition more efficient (e.g. by reducing measuring time; both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (biomedical imaging, molecular medicine and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (pathophysiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular and renal disease will be discussed.

  14. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology

    Science.gov (United States)

    Niendorf, Thoralf; Pohlmann, Andreas; Reimann, Henning M.; Waiczies, Helmar; Peper, Eva; Huelnhagen, Till; Seeliger, Erdmann; Schreiber, Adrian; Kettritz, Ralph; Strobel, Klaus; Ku, Min-Chi; Waiczies, Sonia

    2015-01-01

    Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed. PMID:26617515

  15. ROXIE the Routine for the Optimization of Magnet X-sections, Inverse Field Computation and Coil End Design

    CERN Document Server

    Russenschuck, Stephan

    1999-01-01

    The ROXIE software program package has been developed for the design of the superconducting magnets for the LHC at CERN. The software is used as an approach towards the integrated design of superconducting magnets including feature-based coil geometry creation, conceptual design using genetic algorithms, optimization of the coil and iron cross-sections using a reduced vector-potential formulation, 3-D coil end geometry and field optimization using deterministic vector- optimization techniques, tolerance analysis, production of drawings by means of a DXF interface, end-spacer design with interfaces to CAD-CAM for the CNC machining of these pieces, and the tracing of manufacturing errors using field quality measurements. This paper gives an overview of the methods applied in the ROXIE program. (9 refs).

  16. Effect of power parameter and induction coil on magnetic field in cold crucible during continuous melting and directional solidification

    Directory of Open Access Journals (Sweden)

    Chen Ruirun

    2012-02-01

    Full Text Available Bottomless electromagnetic cold crucible is a new apparatus for continuous melting and directional solidification; however, improving its power efficiency and optimizing the configuration are important for experiment and production. In this study, a 3-D finite element (FE method based on experimental verification was applied to calculate the magnetic flux density (Bz. The effects of the power parameters and the induction coil on the magnetic field distribution in the cold crucible were investigated. The results show that higher current intensity and lower frequency are beneficial to the increase of Bz at both the segment midpoint and the slit location. The induction coil with racetrack section can induce greater Bz, and a larger gap between the induction coil and the shield ring increases Bz. The mechanism for this effect is also discussed.

  17. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla

    NARCIS (Netherlands)

    van Kalleveen, Irene M. L.; Boer, VO; Luijten, Peter R.|info:eu-repo/dai/nl/304821098; Klomp, DWJ|info:eu-repo/dai/nl/298206382

    2015-01-01

    Purpose: Going to ultrahigh field MRI (e. g., 7 Tesla [ T]), the nonuniformity of the B_1 field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B_1, its field remains nonuniform. In this work, an RF pulse was designed tha

  18. Time-resolved Magnetic Resonance Angiography for assessment of recanalization after coil embolization of visceral artery aneurysms.

    Science.gov (United States)

    Kurosaka, Kenichiro; Kawai, Tatsuya; Shimohira, Masashi; Hashizume, Takuya; Ohta, Kengo; Suzuki, Yosuke; Shibamoto, Yuta

    2013-01-01

    Follow-up imaging after coil embolization of visceral artery aneurysms is important for detecting recanalization. However, CT examination is susceptible to coil artifacts, which sometimes makes it difficult to assess recanalization. We report 2 cases where recanalization was successfully visualized using time-resolved magnetic resonance angiography after coil embolization of visceral artery aneurysms (one case of right internal iliac artery aneurysm and one case of splenic artery aneurysm). Repeat coil embolization was successfully performed. Case 1. An 80-year-old male patient with right internal iliac artery (IIA) aneurysm underwent coil embolization. Aneurysm was located at the bifurcation of the right IIA and therefore, after making a femorofemoral bypass, the distal part of the right IIA, aneurysm and the common iliac artery were embolized with a coil. One year later, the size of the aneurysm seemed to have increased on CT. However, the details were not determined because of metal artifacts. Thus, time-resolved MRA was performed and showed minute vascular flow inside the aneurysm. Angiography was subsequently performed and blood flow inside the aneurysm was visualized similar to the findings in time-resolved MRA. Coil embolization was performed once more and vascular flow inside the aneurysm disappeared. Case 2. A 36-year-old male patient with a splenic artery aneurysm underwent coil packing with preservation of splenic artery patency. Four years later, coil compaction was suspected in a CT scan, but CT could not evaluate recanalization because of severe metal artifacts. Angiography was subsequently performed, showing recanalization of the aneurysm as did the time-resolved MRA. Therefore, coil embolization of the aneurysm and splenic artery was performed again. Follow-up imaging after coil embolization of visceral artery aneurysms is important for detecting recanalization. However, it is sometimes difficult to assess recanalization with CT because of artifacts

  19. Theory of pulsed reaction yield detected magnetic resonance

    NARCIS (Netherlands)

    Nasibulov, E.A.; Kulik, L.V.; Kaptein, R.; Ivanov, K.L.

    2012-01-01

    We propose pulse sequences for Reaction Yield Detected Magnetic Resonance (RYDMR), which are based on refocusing the zero-quantum coherences in radical pairs by non-selective microwave pulses and using the population of a radical pair singlet spin state as an observable. The new experiments are

  20. High resolution surface coil magnetic resonance imaging of the joints: anatomic correlation.

    Science.gov (United States)

    Middleton, W D; Macrander, S; Lawson, T L; Kneeland, J B; Cates, J D; Kellman, G M; Carrera, G F; Foley, W D; Jesmanowicz, A; Hyde, J S

    1987-07-01

    Magnetic resonance imaging appears to be a particularly promising approach to the evaluation of articular and periarticular abnormalities. Its ability to produce images in multiple planes directly (without reconstruction) provides a unique advantage over CT for the radiologist when he attempts to interpret the complex three dimensional anatomy of most joints. The inherent contrast resolution of MR is excellent, and with the use of surface coils, spatial resolution is sufficient to permit the identification of the small soft tissue structures in and around joints. Artifacts generated by respiratory and cardiac motion are not a problem in MRI of the joints as they are in MR scanning of the body. Based on all these qualities, we believe that MRI will play an important role in the diagnosis of joint abnormalities.

  1. Initial feasibility testing of limited field of view magnetic resonance thermometry using a local cardiac radiofrequency coil.

    Science.gov (United States)

    Volland, Nelly A; Kholmovski, Eugene G; Parker, Dennis L; Hadley, J Rock

    2013-10-01

    The visualization of lesion formation in real time is one potential benefit of carrying out radiofrequency ablation under magnetic resonance (MR) guidance in the treatment of atrial fibrillation. MR thermometry has the potential to detect such lesions. However, performing MR thermometry during cardiac radiofrequency ablation requires high temporal and spatial resolution and a high signal-to-noise ratio. In this study, a local MR coil (2-cm diameter) was developed to investigate the feasibility of performing limited field of view MR thermometry with high accuracy and speed. The local MR coil allowed high-resolution (1 × 1 × 3 mm(3)) image acquisitions in 76.3 ms with a field of view 64 × 32 mm(2) during an open-chest animal experiment. This represents a 4-fold image acquisition acceleration and an 18-fold field of view reduction compared to that achieved using external MR coils. The signal sensitivity achieved using the local coil was over 20 times greater than that achievable using external coils with the same scan parameters. The local coil configuration provided fewer artifacts and sharper and more stable images. These results demonstrate that MR thermometry can be performed in the heart wall and that lesion formation can be observed during radiofrequency ablation procedures in a canine model. Copyright © 2012 Wiley Periodicals, Inc.

  2. Electromechanical design and construction of a rotating radio-frequency coil system for applications in magnetic resonance.

    Science.gov (United States)

    Trakic, Adnan; Weber, Ewald; Li, Bing Keong; Wang, Hua; Liu, Feng; Engstrom, Craig; Crozier, Stuart

    2012-04-01

    While recent studies have shown that rotating a single radio-frequency (RF) coil during the acquisition of magnetic resonance (MR) images provides a number of hardware advantages (i.e., requires only one RF channel, avoids coil-coil coupling and facilitates large-scale multinuclear imaging), they did not describe in detail how to build a rotating RF coil system. This paper presents detailed engineering information on the electromechanical design and construction of a MR-compatible RRFC system for human head imaging at 2 T. A custom-made (bladeless) pneumatic Tesla turbine was used to rotate the RF coil at a constant velocity, while an infrared optical encoder measured the selected frequency of rotation. Once the rotating structure was mechanically balanced and the compressed air supply suitably regulated, the maximum frequency of rotation measured ~14.5 Hz with a 2.4% frequency variation over time. MR images of a water phantom and human head were obtained using the rotating RF head coil system.

  3. Heat pulse propagation in chaotic 3-dimensional magnetic fields

    CERN Document Server

    del-Castillo-Negrete, D

    2014-01-01

    Heat pulse propagation in $3$-D chaotic magnetic fields is studied by solving the parallel heat transport equation using a Lagrangian-Green's function (LG) method. The LG method provides an efficient and accurate technique that circumvents limitations of finite elements and finite difference methods. The main two problems addressed are: (i) The dependence of the radial transport on the magnetic field stochasticity (controlled by the amplitude of the perturbation, $\\epsilon$); and (ii) The role of reversed shear configurations on pulse propagation. In all the cases considered there are no magnetic flux surfaces. However, radial transport is observed to depend strongly on $\\epsilon$ due to the presence of high-order magnetic islands and Cantori that act as quasi-transport barriers that preclude the radial penetration of heat pulses within physically relevant time scale. The dependence of the magnetic field connection length, $\\ell_B$, on $\\epsilon$ is studied in detail. The decay rate of the temperature maximum...

  4. Comparing Saddle, Slotted-tube and Parallel-plate Coils for Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Nespor D.

    2014-06-01

    Full Text Available The paper is concerned with a comparison of the properties of RF coils of three configurations for MRI measurements on small animals. In comparison with the classical saddle coil the proposed modification of slotted-tube coil exhibits identical homogeneity of B1 field in a larger space. The parallel-plate coil has a satisfactory homogeneity of B1 field over the whole internal space. The signal-to-noise ratio measured for all three coils is roughly the same and is given by the magnitude of RF pre-amplifier noise. As the slotted-tube and parallel-plate coils have a lower inductance compared with the saddle coil, they can be tuned to resonance on the 200 MHz frequency even at larger dimensions. The results show that the parallel-plate coil has very good properties for the measurement of small animals.

  5. Optimization of capacitor coil targets for generation of mega Gauss level magnetic fields using kJ-ns class lasers

    Science.gov (United States)

    Kumar, Deepak; Collaborative Team

    2016-10-01

    A controlled magnetic field is extremely useful in various laser plasma experiments, especially in the fields of fast ignition, laboratory astrophysics and charged particle beam lensing. MG level fields for such applications can be created by the interaction of a kJ-ns class laser with a capacitor-coil target. Previous experiments with such targets rely on the ablated plasma short circuiting the capacitor target, which causes a current to flow through the coil. In recently concluded experiments at the Prague Asterix Laser Facility we used the Iodine laser (600 J, 350 ps, Iλ2 =1016 -1017 W/cm2) with targets of varying capacitance designed so that the plasma did not short circuit the opposite plates. Such a design is also beneficial for future applications, where the magnetized targets are not affected by the ablated plasma. Spatial and temporal behavior of the magnetic field was inferred by measuring the Faraday rotation through a TGG crystal placed near the coil. A B-dot probe provided qualitative information on the timescale of evolution of current in the coil, and an electron spectrometer measured the distribution of the hot electrons. This talk will describe the experimental setup and the results of magnetic field measurement for various targets.

  6. Circularly Polarized Attosecond Pulses and Molecular Atto-Magnetism

    CERN Document Server

    Bandrauk, Andre D

    2014-01-01

    Various schemes are presented for the generation of circularly polarized molecular high-order harmonic generation (MHOHG) from molecules. In particular it is shown that combinations of counter-rotating circularly polarized pulses produce the lowest frequency Coriolis forces with the highest frequency recollisions, thus generating new harmonics which are the source of circular polarized attosecond pulses (CPAPs). These can be used to generate circularly polarized electronic currents in molecular media on attosecond time scale. Molecular attosecond currents allow then for the generation of ultrashort magnetic field pulses on the attosecond time scale, new tools for molecular atto-magnetism (MOLAM).

  7. An Optimized Air-Core Coil Sensor with a Magnetic Flux Compensation Structure Suitable to the Helicopter TEM System

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2016-04-01

    Full Text Available The air-core coil sensor (ACS is widely used as a transducer to measure the variation in magnetic fields of a helicopter transient electromagnetic (TEM system. A high periodic emitting current induces the magnetic field signal of the underground medium. However, such current also generates a high primary field signal that can affect the received signal of the ACS and even damage the receiver. To increase the dynamic range of the received signal and to protect the receiver when emitting current rises/falls, the combination of ACS with magnetic flux compensation structure (bucking coil is necessary. Moreover, the optimized ACS, which is composed of an air-core coil and a differential pre-amplifier circuit, must be investigated to meet the requirements of the helicopter TEM system suited to rapid surveying for shallow buried metal mine in rough topography. Accordingly, two ACSs are fabricated in this study, and their performance is verified and compared inside a magnetic shielding room. Using the designed ACSs, field experiments are conducted in Baoqing County. The field experimental data show that the primary field response can be compensated when the bucking coil is placed at an appropriate point in the range of allowed shift distance beyond the center of the transmitting coil and that the damage to the receiver induced by the over-statured signal can be solved. In conclusion, a more suitable ACS is adopted and is shown to have better performance, with a mass of 2.5 kg, resultant effective area of 11.6 m2 (i.e., diameter of 0.496 m, 3 dB bandwidth of 66 kHz, signal-to-noise ratio of 4 (i.e., varying magnetic field strength of 0.2 nT/s, and normalized equivalent input noise of 3.62 nV/m2.

  8. Comparison of pelvic phased-array versus endorectal coil magnetic resonance imaging at 3 Tesla for local staging of prostate cancer.

    Science.gov (United States)

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang

    2012-05-01

    Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.

  9. Optimization of the output power of a pulsed gas laser by using magnetic pulse compression

    Science.gov (United States)

    Louhibi, D.; Ghobrini, Mourad; Bourai, K.

    1999-12-01

    In pulsed gas lasers, the excitation of the active medium is produced through the discharge of a storage capacitor. Performances of these lasers were essentially linked to the type of switch used and also to its mode of operation. Thyratrons are the most common switches. Nevertheless, their technological limitations do not allow a high repetition rate, necessary for optimization of the output power of this type of laser. These limitations can be surpassed by combining the thyratron to a one stage of a magnetic pulse compression circuit. The mpc driver can improve the laser excitation pulse rise time and increase the repetition rate, increasing the laser output power of pulsed gas laser such as; nitrogen, excimer and copper vapor lasers. We have proposed in this paper a new configuration of magnetic pulse compression, the magnetic switch is place in our case in the charge circuit, and while in the typical utilization of magnetic pulse compression, it is placed in the discharge circuit. In this paper, we are more particularly interested in the design and the modeling of a saturate inductance that represents the magnetic switch in the proposed configuration of a thyratron - mpc circuit combination.

  10. A subspace-based coil combination method for phased-array magnetic resonance imaging.

    Science.gov (United States)

    Gol Gungor, Derya; Potter, Lee C

    2016-02-01

    Coil-by-coil reconstruction methods are followed by coil combination to obtain a single image representing a spin density map. Typical coil combination methods, such as square-root sum-of-squares and adaptive coil combining, yield images that exhibit spatially varying modulation of image intensity. Existing practice is to first combine coils according to a signal-to-noise criterion, then postprocess to correct intensity inhomogeneity. If inhomogeneity is severe, however, intensity correction methods can yield poor results. The purpose of this article is to present an alternative optimality criterion for coil combination; the resulting procedure yields reduced intensity inhomogeneity while preserving contrast. A minimum mean squared error criterion is adopted for combining coils via a subspace decomposition. Techniques are compared using both simulated and in vivo data. Experimental results for simulated and in vivo data demonstrate lower bias, higher signal-to-noise ratio (about 7×) and contrast-to-noise ratio (about 2×), compared to existing coil combination techniques. The proposed coil combination method is noniterative and does not require estimation of coil sensitivity maps or image mask; the method is particularly suited to cases where intensity inhomogeneity is too severe for existing approaches. © 2015 Wiley Periodicals, Inc.

  11. Simulations of fast ion wall loads in ASDEX Upgrade in the presence of magnetic perturbations due to ELM mitigation coils

    CERN Document Server

    Asunta, Otto; Kurki-Suonio, Taina; Koskela, Tuomas; Sipilä, Seppo; Snicker, Antti; Garcia-Muñoz, Manuel

    2015-01-01

    The effect of ASDEX Upgrade (AUG) ELM mitigation coils on fast ion wall loads was studied with the fast particle following Monte Carlo code ASCOT. Neutral beam injected (NBI) particles were simulated in two AUG discharges both in the presence and in the absence of the magnetic field perturbation induced by the eight newly installed in-vessel coils. In one of the discharges (#26476) beams were applied individually, making it a useful basis for investigating the effect of the coils on different beams. However, no ELM mitigation was observed in #26476, probably due to the low plasma density. Therefore, another discharge (#26895) demonstrating clear ELM mitigation was also studied. The magnetic perturbation due to the in-vessel coils has a significant effect on the fast particle confinement, but only when total magnetic field, $B_{tot}$, is low. When $B_{tot}$ was high, the perturbation did not increase the losses, but merely resulted in redistribution of the wall power loads. Hence, it seems to be possible to ac...

  12. Magnet Coil Test Facility for Researching Magnetic Activity of Pico/Nano/Micro Satellites (PNMSats)

    Science.gov (United States)

    2017-05-16

    of mapping magnetic fields of nearby planets , moons, asteroids, and such. Impact on Other Disciplines As stated in the previous sections, cross...disciplinary research has been initiated. It is well understood that life form is always under the influence of electro-magnetic force, which is one of...the fundamental forces in nature. An ability to artificially alter the intensity or direction of this force in an environment and subjecting life form

  13. Increasing the magnetic helicity content of a plasma by pulsing a magnetized source.

    Science.gov (United States)

    Woodruff, S; Stallard, B W; McLean, H S; Hooper, E B; Bulmer, R; Cohen, B I; Hill, D N; Holcomb, C T; Moller, J; Wood, R D

    2004-11-12

    By operating a magnetized coaxial gun in a pulsed mode it is possible to produce large voltage pulses of duration approximately 500 mus while reaching a few kV, giving a discrete input of helicity into a spheromak. In the sustained spheromak physics experiment (SSPX), it is observed that pulsing serves to nearly double the stored magnetic energy and double the temperature. We discuss these results by comparison with 3D MHD simulations of the same phenomenon.

  14. 改进型Helmholtz线圈及其磁场均匀性的分析%An improved Helmholtz coil and analysis of its magnetic field homogeneity

    Institute of Scientific and Technical Information of China (English)

    王健; 佘守宪; 张思炯

    2001-01-01

    提出将Helmholtz线圈改为3个同半径的串联线圈,以得到改进型的Helmholtz线圈.经计算得到了改进型Helmholtz线圈磁场的简单公式,对公式的分析表明:改进型Helmholtz线圈的均匀磁场区比一般Helmholtz线圈大得多.%An improved Helmholtz coil is designed by replacing Helmholtz coil with three coils with the same radius connected in series.Simple formulas are derived for the magnetic field of the improved Helmholtz coil.Numerical results demonstrate that the uniform region of magnetic field for the improved Helmholtz coil is larger than that of Helmholtz coil.

  15. Magnetically insulated electron flows in pulsed power systems

    Science.gov (United States)

    Lawconnell, Robert I.

    1989-08-01

    Magnetic insulation is crucial in the operation of large pulsed power systems. Particular attention will be paid to describing magnetic insulation in realistic pulsed power systems. A theoretical model is developed that allows the production of self consistent magnetically insulated laminar flows in perturbed cylindrical systems given only the electron density profile. The theory is checked and justified by detailed comparisons with results from a 2-dimensional electromagnetic code, MASK. The procedure followed in the theoretical development is to use the relativistic Vlasov equation, Ampere's law and Gauss' law, to obtain a relation between the density profile and the velocity profile for insulated flows. Given the density profile and the corresponding derived velocity profile, a self consistent flow solution is obtained by means of Maxwell's equations. It is checked by taking a special case (corresponding to no perturbations) which results in the well known Brillouin flow theory. Emphasis is placed on determining the magnetic insulation threshold of a pulsed power system employing a plasma erosion opening switch. The procedure employed in the computational study is to vary critical aspects of the pulsed power system and then note whether magnetic insulation breaks down. The point at which magnetic insulation breaks down (as a function of geometry, load impedance, and applied voltage) is the magnetic insulation threshold for the system.

  16. Analysis of armature reaction and winding inductances of permanent magnet brushless DC motor with deep slot concentrated coils

    Institute of Scientific and Technical Information of China (English)

    HUANG Ping-lin; HU Qian-sheng; YU Li; HUANG Yun-kai

    2006-01-01

    Based on the configuration of deep slot concentrated coils,an analytical model is developed for predicting the armature reaction field produced by the 3-phase stator windings of permanent magnet brushless DC motors with concentrated coils by using the image method and the analytical functions of the armature reaction and winding inductances are proposed accounting for the influence of statot slotting.This approach is different from the method of equivalent distributed current sheet and more suitable for electric machines,which have concentrated coils and deeper slots.Under different control mode,the different analytical functions are presented.This will be helpful when further analyzing the performance of the motor.The results agree with the experiment very well.

  17. Ramping turn-to-turn loss and magnetization loss of a No-Insulation (RE)Ba2Cu3Ox high temperature superconductor pancake coil

    Science.gov (United States)

    Wang, Y.; Song, H.; Yuan, W.; Jin, Z.; Hong, Z.

    2017-03-01

    This paper is to study ramping turn-to-turn loss and magnetization loss of a no-insulation (NI) high temperature superconductor (HTS) pancake coil wound with (RE)Ba2Cu3Ox (REBCO) conductors. For insulated (INS) HTS coils, a magnetization loss occurs on superconducting layers during a ramping operation. For the NI HTS coil, additional loss is generated by the "bypassing" current on the turn-to-turn metallic contacts, which is called "turn-to-turn loss" in this study. Therefore, the NI coil's ramping loss is much different from that of the INS coil, but few studies have been reported on this aspect. To analyze the ramping losses of NI coils, a numerical method is developed by coupling an equivalent circuit network model and a H-formulation finite element method model. The former model is to calculate NI coil's current distribution and turn-to-turn loss, and the latter model is to calculate the magnetization loss. A test NI pancake coil is wound with REBCO tapes and the reliability of this model is validated by experiments. Then the characteristics of the NI coil's ramping losses are studied using this coupling model. Results show that the turn-to-turn loss is much higher than the magnetization loss. The NI coil's total ramping loss is much higher than that of its insulated counterpart, which has to be considered carefully in the design and operation of NI applications. This paper also discusses the possibility to reduce NI coil's ramping loss by decreasing the ramping rate of power supply or increasing the coil's turn-to-turn resistivity.

  18. A study of the electromagnetic characteristics of no-insulation GdBCO racetrack coils under an external magnetic ripple field

    Science.gov (United States)

    Choi, Y. H.; Yang, D. G.; Kim, Y. G.; Kim, S. G.; Song, J. B.; Lee, H. G.

    2016-04-01

    Here we report the effect of an external magnetic ripple field on the electromagnetic characteristics of GdBCO racetrack coils being operated with a constant DC current. Two types of GdBCO racetrack coils, one wound without turn-to-turn insulation (NI) and the other wound with Kapton tape (INS), were examined under external ripple fields generated by a permanent magnet mounted on a rotor, which was driven by a separate AC motor. The voltage fluctuations and magnetic field variations were measured with respect to the external ripple field intensity (B ERF), rotating speed, and the operating condition. When the INS and NI coils were exposed to an external ripple field (herein, I op = 80 A, B ERF = 2 mT, and 5 rpm), a voltage fluctuation occurred because a time-varying magnetic field interacted with an electric circuit creating an electromotive force. The peak-to-peak voltage (V pp = 0.29 mV) of the NI coil was ∼1.86 times lower than that (0.54 mV) of the INS coil, because the voltage response of the NI coil lagged behind dB/dt due to the existence of turn-to-turn contact. Furthermore, the V pp of the INS coil increased with increasing B ERF and rotating speed, while those of the NI coil were barely affected due to the delay of electromagnetic induction. In excessive current and ripple field conditions (I op = 1.125 I c, B ERF = 8 mT, and 50 rpm) the INS coil eventually quenched while the NI coil did not, implying that the electromagnetic stability of the NI coil in excessive time-varying field conditions was superior to that of the INS coil.

  19. Ultra-fast ballistic magnetization reversal triggered by a single magnetic field pulse

    Energy Technology Data Exchange (ETDEWEB)

    Horley, Paul P; Gonzalez Hernandez, Jesus [Centro de Investigacion en Materiales Avanzados S.C., Chihuahua/Monterrey, Av. Miguel de Cervantes 120, 31109 Chihuahua, Chihuahua (Mexico); Vieira, Vitor R; Dugaev, Vitalii K [Centro de Fisica das Interaccoes Fundamentais, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Gorley, Peter [Department of Physics, Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky Street, 58012 Chernivtsi (Ukraine); Barnas, Jozef, E-mail: paul.horley@cimav.edu.m [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznan (Poland)

    2009-12-21

    Performance of devices such as magnetic random access memories crucially depends on magnetic switching time. By numerical simulations we show that ultra-fast (in the sub-nanosecond range) magnetic reversal in nanoparticles can be achieved with a single pulse of magnetic field oriented at some specific angles with respect to the magnetic moment. These angles form the areas of ballistic reversal (with no magnetization ringing). We show that the size of these areas increases with decreasing pulse duration, which allows reaching of the sub-nanosecond reversal for a pulse duration of the order of dozen(s) of ps. When changing the magnetic field, the areas of ballistic reversal move along the equator of the unitary sphere, and eventually merge with each other. For appropriate choice of the azimuthal angle, one can reach magnetic reversal along a trajectory located in or out of the easy plane.

  20. The SMC (Short Model Coil) dipole: An R&D program for Nb3Sn accelerator magnets

    CERN Document Server

    Perez, J C; Bordini, B; Canfer, S; Ellwood, G; Feuvrier, J; Guinchard, M; Karppinen, M; Kokkinos, C; Manil, P; Milanese, A; Oberli, L; Regis, F; de Rijk, G

    2012-01-01

    The Short Model Coil (SMC) assembly has been designed, as test bench for short racetrack coils wound with Nb3Sn cable. The mechanical structure comprises an iron yoke surrounded by a 20 mm thick aluminium alloy shell, and includes four loading pads that transmit the required pre-compression from the outer shell into the two coils. The outer shell is pre-tensioned with mechanical keys that are inserted with the help of pressurized bladders and two 30 mm diameter aluminium alloy rods provide the axial loading to the coil ends. The outer shell, the axial rods, and the coils are instrumented with strain gauges, which allow precise monitoring of the loading conditions during the assembly and at cryogenic temperature during the magnet test. Two SMC assemblies have been completed and cold tested in the frame of a European collaboration between CEA (FR), CERN and STFC (UK) and with the technical support from LBNL (US). This paper describes the main features of the SMC assembly, the experience from the dummy assembli...

  1. The Short Model Coil (SMC) dipole: an R&D program towards Nb3Sn accelerator magnets

    CERN Document Server

    Bajko, M; Canfer, S; Ellwood, G; Feuvrier, J; Guinchard, M; Karppinen, M; Kokkinos, C; Manil, P; Milanese, A; Oberli, L; Perez, J-C; Regis, F; de Rijk, G

    2011-01-01

    The Short Model Coil (SMC) assembly has been designed, as test bench for short racetrack coils wound with Nb3Sn cable. The mechanical structure comprises an iron yoke surrounded by a 20 mm thick aluminium alloy shell, and includes four loading pads that transmit the required pre-compression from the outer shell into the two coils. The outer shell is pre-tensioned with mechanical keys that are inserted with the help of pressurized bladders and two 30 mm diameter aluminium alloy rods provide the axial loading to the coil ends. The outer shell, the axial rods, and the coils are instrumented with strain gauges, which allow precise monitoring of the loading conditions during the assembly and at cryogenic temperature during the magnet test. Two SMC assemblies have been completed and cold tested in the frame of a European collaboration between CEA (FR), CERN and STFC (UK) and with the technical support from LBNL (US). This paper describes the main features of the SMC assembly, the experience from the dummy assemblie...

  2. Hyperplasticity effect under magnetic pulse straightening of dual phase steel

    Science.gov (United States)

    Falaleev, AP; Meshkov, VV; Shymchenko, A.

    2016-10-01

    An investigation of the behaviour of dual phase steel parts during straightening operations, by means of magnetic pulse treatment, is presented. The mechanical analysis of magnetic-pulse treatment for the straightening of thin-walled sheet metal parts produced from dual phase steel was performed, taking into account the effect of hyperplasticity under the influence of the magnetic field. Taking account of the causes of the hyperplasticity and thus the increase of material plasticity, it has been shown that the magnetic impulse gravity can be adjusted by controlling the operation modes. The dependence of the generated magnetic impulse gravity force on the electrical current strength inducted in this part was explored and used for analysis of the magnetic pulse straightening of dual phase steel part. Experimental results were obtained for thin-walled sheet metal part produced from dual phase steel DP 780. The results are used to demonstrate the material deformation under the influence of magnetic impulse gravity force considering the increase of material plasticity. The dependence of relative material deformation on the generated magnetic impulse gravity as well as on the current strength induced in this material was obtained and analyzed

  3. Protection sequence of AC/DC converters for ITER PF MAGNET coils

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hoon; Hwang, Churl Kew; Lee, Kwang Won; Jin, Jeong Tae; Chang, Sae Sik; Oh, Jong Seok; Choi, Jung Wan; Suh, Jae Hak [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Tao, Jun; Song, In Ho [ITER Organization, Paul Lez Durance (France)

    2010-06-15

    The protection sequence of an AC/DC converter for an ITER PF coil system is developed in this study. Possible faults in the coil system are simulated and the results reflected in the design of a sequence to protect the coil and converter. The inductances of the current sharing reactors and thyristor numbers in parallel with the bridge arms are optimized with the designed protection sequence

  4. Asymmetric gradient coil design for use in a short, open bore magnetic resonance imaging scanner.

    Science.gov (United States)

    Wang, Yaohui; Liu, Feng; Li, Yu; Tang, Fangfang; Crozier, Stuart

    2016-08-01

    A conventional cylindrical whole-body MRI scanner has a long bore that may cause claustrophobia for some patients in addition to being inconvenient for healthcare workers accessing the patient. A short-bore scanner usually offers a small sized imaging area, which is impractical for imaging some body parts, such as the torso. This work proposes a novel asymmetric gradient coil design that offers a full-sized imaging area close to one end of the coil. In the new design, the primary and shielding coils are connected at one end whilst separated at the other, allowing the installation of the cooling system and shim trays. The proposed coils have a larger wire gap, higher efficiency, lower inductance, less resistance and a higher figure of merit than the non-connected coils. This half-connected coil structure not only improves the coils' electromagnetic performance, but also slightly attenuates acoustic radiation at most frequencies when compared to a non-connected gradient coil. It is also quieter in some frequency bands than a conventional symmetric gradient coil.

  5. MR-based measurements and simulations of the magnetic field created by a realistic transcranial magnetic stimulation (TMS) coil and stimulator

    NARCIS (Netherlands)

    Mandija, Stefano; Petrov, Petar I.; Neggers, Bas; Luijten, Peter R.; van den Berg, CAT

    2016-01-01

    Transcranial magnetic stimulation (TMS) is an emerging technique that allows non-invasive neurostimulation. However, the correct validation of electromagnetic models of typical TMS coils and the correct assessment of the incident TMS field (BTMS) produced by standard TMS stimulators are still

  6. Thirty-two-channel coil 3T magnetic resonance-guided biopsies of prostate tumor suspicious regions identified on multimodality 3T magnetic resonance imaging: technique and feasibility.

    NARCIS (Netherlands)

    Hambrock, T.; Futterer, J.J.; Huisman, H.J.; Hulsbergen- van de Kaa, C.A.; Basten, JP van; Oort, I van; Witjes, J.A.; Barentsz, J.O.

    2008-01-01

    OBJECTIVES: To test the technique and feasibility of translating tumor suspicious region maps in the prostate, obtained by multimodality, anatomic, and functional 3T magnetic resonance imaging (MRI) data to 32-channel coil, T2-weighted (T2-w), 3T MR images, for directing MR-guided biopsies. Furtherm

  7. Localized stimulation of the human brain and spinal cord by a pair of opposing pulsed magnetic fields

    Science.gov (United States)

    Ueno, S.; Matsuda, T.; Hiwaki, O.

    1990-05-01

    A method of localized stimulation of the human brain and spinal cord is proposed. The basic idea is to concentrate induced eddy currents locally in the vicinity of a target by a pair of opposing pulsed magnetic fields. A pair of coils are positioned outside the head in the opposite directions around a target. The eddy currents induced at the target are expected to flow together, which results in an increased current flow at the target. A figure-eight coil is designed, and the magnetic brain stimulation is carried out using ourselves as volunteers. The results show that the selective stimulation of the brain is realized with a 5-mm resolution. The functional mapping of the human motor cortex related to the hand, arm, and foot areas is obtained. It is also obtained that an optimum direction of stimulating currents for neural excitation exists in each functional area in the cortex. Magnetic stimulation of the spinal cord is carried out by the same method as used in the brain stimulation. Rabbits are used in the experiments. A figure-eight coil is positioned on the surface of the spine. Shifting the stimulating points on the spine, electromyographic (EMG) signals are recorded from limb muscles. The EMG signals are clearly responding to the stimulation at a segment which innervates limb muscles, whereas no EMG signals are obtained by stimulation of segments higher than the critical segment. It is also obtained that the amplitude of the EMG signals varies with the direction of stimulating currents.

  8. A multi-slot surface coil for MRI of dual-rat imaging at 4 T

    Energy Technology Data Exchange (ETDEWEB)

    Solis, S E; Rodriguez, A O [Departamento de Ingenieria Electrica, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF 09340 (Mexico); Wang, R; Tomasi, D, E-mail: arog@xanum.uam.mx [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-06-21

    A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.

  9. A multi-slot surface coil for MRI of dual-rat imaging at 4T

    Energy Technology Data Exchange (ETDEWEB)

    Solis, S.E.; Tomasi, D.; Solis, S.E.; Wang, R.; Tomasi, D.; Rodriguez, A.O.

    2011-07-01

    A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.

  10. Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

    Directory of Open Access Journals (Sweden)

    Yoshihito Miyatake

    2012-01-01

    Full Text Available Magnetically levitated conveyor system using superconductors is discussed. The system is composed of a levitated conveyor, magnetic rails, a linear induction motor, and some power supplies. In the paper, pulse-field magnetization is applied to the system. Then, the levitation height and the dynamics of the conveyor are controlled. The static and dynamic characteristics of the levitated conveyor are discussed.

  11. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Science.gov (United States)

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  12. Long-pulse magnetic field facility at Zaragoza

    Science.gov (United States)

    Algarabel, P. A.; del Moral, A.; Martín, C.; Serrate, D.; Tokarz, W.

    2006-11-01

    The long-pulse magnetic field facility of the Laboratorio de Magnetismo - Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-CSIC) produces magnetic fields up to 31, with a pulse duration of 2.2s. Experimental set-ups for measurements of magnetization, magnetostriction and magnetoresistance are available. The temperature can be controlled between 1.4 and 335 K, being the inner bore of the He cryostat of 22.5 mm. Magnetization is measured using the mutual induction technique, the magnetostriction is determined with the strain-gage and the capacitive cantilever methods, and the magnetoresistance is measured by means of the aclock-in technique in the 4-probes geometry. An overview of the facility will be presented and the presently available experimental techniques will be discussed.

  13. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christoph M.

    2017-05-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  14. Improved signal-to-noise ratio performance in magnetic resonance imaging by using a multilayered surface coil array--a simulation study.

    Science.gov (United States)

    Liang, Dandan; Hui, Hon Tat; Yeo, Tat Soon

    2013-05-01

    A multilayered surface coil array for magnetic resonance imaging with an improved signal-to-noise ratio (SNR) performance is introduced and investigated by a simulation study. By using an effective decoupling method, the strong mutual coupling effect between the coil layers can be accurately removed, leading to a coherent combination of the signals of the individual coils. This results in a much stronger received signal power which increases with the number of coil layers in the array. This, together with a smaller rate of increase of noise power with the number of coil layers, leads to a net increase in the SNR of array output with the number of coil layers in the array. Rigorous numerical simulation examples have been carried out to confirm and verify the performance of the new array.

  15. A liquid-helium-free superconducting coil system forming a flat minimum-magnetic-field distribution of an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ken-ichi, E-mail: yoshida.kennichi71@jaea.go.jp; Nara, Takayuki; Saitoh, Yuichi; Yokota, Watalu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A flat distribution of the minimum magnetic field (flat-B{sub min}) of an electron cyclotron resonance ion source (ECRIS) is expected to perform better in highly charged ion production than classical B{sub min}. To form a flat-B{sub min} structure with a liquid helium-free superconducting device, a coil system of seven coils with four current leads has been designed. The lead number was reduced by connecting the plural coils in series to maintain the flat-B{sub min} structure even when the coil currents are changed for adjustment. This coil system can be operated with a helium-free cryostat, since the estimation of heat from the leads to the coils is nearly equivalent to the existing superconducting ECRIS of a similar type.

  16. Optically detunable, inductively coupled coil for self-gating in small animal magnetic resonance imaging.

    Science.gov (United States)

    Korn, Matthias; Umathum, Reiner; Schulz, Jessica; Semmler, Wolfhard; Bock, Michael

    2011-03-01

    An inductively coupled coil concept is presented, which improves the compensation of physiological motion by the self-gating (SG) technique. The animal is positioned in a conventional volume coil encompassing the whole animal. A small, resonant surface coil (SG-coil) is placed on the thorax so that its sensitive region includes the heart. Via inductive coupling the SG-coil amplifies selectively the MR signal of the beating heart. With an optical detuning mechanism, this coupling can be switched off during acquisition of the MR image information, whereas it is active during SG data sampling to provide the physiological information. In vivo experiments on a mouse show an amplification of the SG signal by at least 40%. Copyright © 2010 Wiley-Liss, Inc.

  17. Reliability data to improve high magnetic field coil design for high velocity coilguns.

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, Ronald John; Mann, Gregory Allen

    2003-09-01

    Coilguns have demonstrated their capability to launch projectiles to 1 km/s, and there is interest in their application for long-range precision strike weapons. However, the incorporation of cooling systems for repetitive operation will impact the mechanical design and response of the future coils. To assess the impact of such changes, an evaluation of the ruggedness and reliability of the existing 50 mm bore coil designed in 1993 was made by repeatedly testing at stress levels associated with operation in a coilgun. A two-coil testbed has been built with a static projectile where each coil is energized by its own capacitor bank. Simulation models of the applied forces generated in this testbed have been created with the SLINGSHOT circuit code to obtain loads equivalent to the worst-case anticipated in a 50 mm coilgun that could launch a 236 g projectile to 2 km/s. Bench measurements of the seven remaining coils built in 1993 have been used to evaluate which coils were viable for testing, and only one was found defective. Measurements of the gradient of the effective coil inductance in the presence of the projectile were compared to values from SLINGSHOT, and the agreement is excellent. Repeated testing of the HFC5 coil built in 1993 has demonstrated no failures after 205 shots, which is an order of magnitude greater than any number achieved in previous testing. Although this testing has only been done on two coils, the results are encouraging as it demonstrates there are no fundamental weak links in the design that will cause a very early failure. Several recommendations for future coil designs are suggested based on observations of this study.

  18. Efficacy in Microbial Sterilization of Pulsed Magnetic Field Treatment

    Science.gov (United States)

    Sterilization effects of the pulsed magnetic field with a maximum intensity of 11.37 Tesla were investigated on Escherichia coli AS 1.129, Staphylococcus aureus AS 1.89, Saccharomyces cerevisiae ATTC 7552 and Bacillus subtilis AS 1.921. The well-regulated fluctuations of sterilization effects with m...

  19. Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging

    Science.gov (United States)

    Zevenhoven, Koos C. J.; Dong, Hui; Ilmoniemi, Risto J.; Clarke, John

    2015-01-01

    Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents.

  20. Characterization of a custom-built RF coil for a high-resolution phase-contrast magnetic resonance velocimeter

    Science.gov (United States)

    Yang, Byungkuen; Cho, Jee-Hyun; Song, Simon

    2016-11-01

    For the use of clinical purpose magnetic resonance velocimeter (MRV) is a versatile flow visualization technique in that it allows opaque flow, complex geometry, no use of tracer particles and facile fast non-invasive measurements of 3 dimensional and 3 component velocity vectors. However, the spatial resolution of a commercial MR machine is lower than optics-based techniques like PIV. On the other hand, the use of MRV for clinical purposes like cardiovascular flow visualization requires accurate measurements or estimations on wall shear stress (WSS) with a high spatial resolution. We developed a custom-built solenoid RF coil for phase-contrast (PC) MRV to improve its resolution. We compared signal-to-noise ratio, WSS estimations, partial volume effects near wall between the custom RF coil and a commercial coil. Also, a Hagen-Poiseuille flow was analyzed with the custom RF coil. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2016R1A2B3009541).

  1. Penetration dynamics of a magnetic field pulse into high-? superconductors

    Science.gov (United States)

    Meerovich, V.; Sinder, M.; Sokolovsky, V.; Goren, S.; Jung, G.; Shter, G. E.; Grader, G. S.

    1996-12-01

    The penetration of a magnetic field pulse into a high-0953-2048/9/12/004/img9 superconducting plate is investigated experimentally and theoretically. It follows from our experiments that the threshold of penetration increases with increasing amplitude and/or decreasing duration of the applied pulse. The penetrating field continues to grow as the applied magnetic field decreases. The peculiarities observed are explained in the framework of the extended critical state model. It appears that the deviations from Bean's classical critical state model are characterized by a parameter equal to the square of the ratio of plate thickness to skin depth. The applicability of the classical critical state model is restricted by the condition that this parameter is much less than 1. This condition is also the criterion for the applicability of pulse methods of critical current measurements.

  2. Pulsed laser deposition and characterization of Alnico5 magnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Butt, M.Z., E-mail: mzbutt49@yahoo.com [Department of Physics, GC University, Lahore 54000 (Pakistan); Ali, Dilawar [Department of Physics, GC University, Lahore 54000 (Pakistan); Ahmad, Fayyaz [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan); Magnetophotonics Research Laboratory, Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-09-01

    Alnico5 films were deposited by pulsed laser deposition on glass substrate at room temperature under a vacuum ∼10{sup −3} Torr in the absence and in the presence of 500 Oe external transverse magnetic field applied on the plasma plume during film deposition. For this purpose, Nd:YAG laser was employed to ablate the Alnico5 target. The ablated material was deposited on glass substrate placed at a distance of 2 cm from the target. The structural and magnetic properties of the film were analyzed by X-ray diffraction, atomic force microscope, and vibrating sample magnetometer. X-ray diffraction patterns showed that the Alnico5 films were amorphous in nature. Atomic force microscopy revealed that the Alnico5 film deposited in absence of external magnetic field has larger root-mean-square roughness value (60.2 nm) than the magnetically deposited film (42.9 nm). Vibrating sample magnetometer measurements showed that the in-plane saturation magnetization of Alnico5 film deposited in the presence of external magnetic field increases by 32% as compared to that for the film deposited in the absence of external magnetic field. However, the out-of-plane saturation magnetization was almost independent of the external magnetic field. In magnetically deposited film, there is in-plane anisotropy parallel to the applied external magnetic field.

  3. Design of a Cosine-theta Dipole Magnet Wound with Coated Conductors Considering their Deformation at Coil ends During Winding Process

    Science.gov (United States)

    Amemiya, Naoyuki; Miyahara, Hidetoshi; Ogitsu, Toru; Kurusu, Tsutomu

    By using differential geometry, we modeled the three-dimensional shapes of the coil ends of cosine-theta magnets while considering local edge-wise bend, local flat-wise bend, and torsion of coated conductors. We focus on the feasibility of winding coil ends against the stress caused by bending. We discussed the feasibility of winding based on two assumptions to form coil ends: all turns of coated conductors are free from edge-wise bend; faces of all turns of coated conductors are completely parallel. Using the first assumption, we designed a cosine-theta dipole magnet wound with coated conductors.

  4. Using a modified 3D-printer for mapping the magnetic field of RF coils designed for fetal and neonatal imaging.

    Science.gov (United States)

    Vavoulas, Alexander; Vaiopoulos, Nicholas; Hedström, Erik; Xanthis, Christos G; Sandalidis, Harilaos G; Aletras, Anthony H

    2016-08-01

    An experimental setup for characterizing the magnetic field of MRI RF coils was proposed and tested. The setup consisted of a specially configured 3D-printer, a network analyzer and a mid-performance desktop PC. The setup was tested on a single loop RF coil, part of a phased array for fetal imaging. Then, the setup was used for determining the magnetic field characteristics of a high-pass birdcage coil used for neonatal MR imaging with a vertical static field. The scattering parameter S21, converted into power ratio, was used for mapping the B1 magnetic field. The experimental measurements from the loop coil were close to the theoretical results (R=0.924). A high degree of homogeneity was measured for the neonatal birdcage RF coil. The development of MR RF coils is time consuming and resource intensive. The proposed experimental setup provides an alternative method for magnetic field characterization of RF coils used in MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Null space imaging: nonlinear magnetic encoding fields designed complementary to receiver coil sensitivities for improved acceleration in parallel imaging.

    Science.gov (United States)

    Tam, Leo K; Stockmann, Jason P; Galiana, Gigi; Constable, R Todd

    2012-10-01

    To increase image acquisition efficiency, we develop alternative gradient encoding strategies designed to provide spatial encoding complementary to the spatial encoding provided by the multiple receiver coil elements in parallel image acquisitions. Intuitively, complementary encoding is achieved when the magnetic field encoding gradients are designed to encode spatial information where receiver spatial encoding is ambiguous, for example, along sensitivity isocontours. Specifically, the method generates a basis set for the null space of the coil sensitivities with the singular value decomposition and calculates encoding fields from the null space vectors. A set of nonlinear gradients is used as projection imaging readout magnetic fields, replacing the conventional linear readout field and phase encoding. Multiple encoding fields are used as projections to capture the null space information, hence the term null space imaging. The method is compared to conventional Cartesian SENSitivity Encoding as evaluated by mean squared error and robustness to noise. Strategies for developments in the area of nonlinear encoding schemes are discussed. The null space imaging approach yields a parallel imaging method that provides high acceleration factors with a limited number of receiver coil array elements through increased time efficiency in spatial encoding.

  6. New Pulsed Orbit Bump Magnets for the Fermilab Booster Synchrotron

    CERN Document Server

    Lackey, James; John, Carson; Kashikhin, Vladimir; Makarov, Alexander; Prebys, Eric

    2005-01-01

    The beam from the Fermilab Linac is injected onto a bump in the closed orbit of the Booster Synchrotron where a carbon foil strips the electrons from the Linac’s negative ion hydrogen beam. Although the Booster itself runs at 15Hz, heat dissipation in the orbit bump magnets has been one limitation to the fraction of the cycles that can be used for beam. New, 0.28T pulsed window frame dipole magnets have been constructed that will fit into the same space as the old ones, run at the full repetition rate of the Booster, and provide a larger bump to allow a cleaner injection orbit. The new magnets use a high saturation flux density Ni-Zn ferrite in the yoke rather than laminated steel. The presented magnetic design includes two and three dimensional magnetic field calculations with eddy currents and ferrite nonlinear effects.

  7. Pulsed field probe of real time magnetization dynamics in magnetic nanoparticle systems

    Science.gov (United States)

    Foulkes, T.; Syed, M.; Taplin, T.

    2015-05-01

    Magnetic nanoparticles (MNPs) are extensively used in biotechnology. These applications rely on magnetic properties that are a keen function of MNP size, distribution, and shape. Various magneto-optical techniques, including Faraday Rotation (FR), Cotton-Mouton Effect, etc., have been employed to characterize magnetic properties of MNPs. Generally, these measurements employ AC or DC fields. In this work, we describe the results from a FR setup that uses pulsed magnetic fields and an analysis technique that makes use of the entire pulse shape to investigate size distribution and shape anisotropy. The setup employs a light source, polarizing components, and a detector that are used to measure the rotation of light from a sample that is subjected to a pulsed magnetic field. This magnetic field "snapshot" is recorded alongside the intensity pulse of the sample's response. This side by side comparison yields useful information about the real time magnetization dynamics of the system being probed. The setup is highly flexible with variable control of pulse length and peak magnitude. Examining the raw data for the response of bare Fe3O4 and hybrid Au and Fe3O4 nanorods reveals interesting information about Brownian relaxation and the hydrodynamic size of these nanorods. This analysis exploits the self-referencing nature of this measurement to highlight the impact of an applied field on creating a field induced transparency for a longitudinal measurement. Possible sources for this behavior include shape anisotropy and field assisted aggregate formation.

  8. A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.

    Science.gov (United States)

    Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo

    2010-03-01

    A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.

  9. Proposal of High-Frequency Magnetic Field Immunity Test for Medical Devices, and Design and Development of Coil for the Test

    Science.gov (United States)

    Yamamoto, Takahiko; Koshiji, Kohji

    Medical devices have been obliged to satisfy electromagnetic compatibility by revision of the pharmaceutical affairs law. However, even if the medical devices satisfy the electromagnetic compatibility based on the law, it is not necessarily safe. Sometimes, malfunctions of cardiac pacemaker are caused by the magnetic field leaked from an induction heating cooker. In this paper, a new method of electromagnetic susceptability (EMS) evaluation is proposed, and a loop coil for the magnetic field immunity test in the frequency range from 10kHz to 3MHz is designed and developed. As a result, the loop coil made on an experimental basis generated uniform magnetic field with a fluctuation within 3.3dB in the loop coil pane and 5.6dB along the coil axis.

  10. Feasibility of magnetic resonance angiography (MRA) follow-up as the primary imaging modality after coiling of intracranial aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, Nicolaas A.; Metzemaekers, Jan D. M.; Dijk, J. Marc C. van; Mooij, Jan Jakob A.; Groen, Rob J. M. (Dept. of Neurosurgery, Univ. Medical Center Groningen, Univ. of Groningen, Groningen (Netherlands)), e-mail: r.j.m.groen@nchir.umcg.nl; Westerlaan, Henriette E.; Eshghi, Omid S. (Dept. of Radiology, Univ. Medical Center Groningen, Univ. of Groningen, Groningen (Netherlands))

    2010-03-15

    Background: Digital subtraction angiography (DSA) is still regarded as the gold standard for detecting residual flow in treated aneurysms. Recent reports have also shown excellent results from magnetic resonance angiography (MRA) imaging. This is an important observation, since DSA is associated with a risk of medical complications, is time consuming, and is more expensive. Purpose: To determine whether MRA could replace conventional DSA and serve as the primary postinterventional imaging modality in patients with coiled intracranial aneurysms. Material and Methods: We studied a prospectively enrolled cohort of 190 patients treated endovascularly for a first-ruptured and/or unruptured intracranial aneurysm between January 2004 and December 2008. The imaging protocol included a 1.5T time-of-flight (TOF) MRA and a DSA at 3 months (on the same day) and, depending on comparability, a 1.5T TOF-MRA or DSA 1 year after treatment. All images were evaluated by a multidisciplinary panel. Results: In 141/190 patients, both an MRA and DSA were performed after 3-month follow-up. In 2/141 patients (1.4%), (small) neck remnants gave false-negative MRA results. In one patient (0.7%), this led to additional neurosurgical clipping of the aneurysm. In 25/141 patients, future follow-up (>3 months) consisted of DSA because of various reasons. In 24/25 of these patients, primary MRA images alone would invariably have led to additional DSA imaging. Conclusion: The present study shows that 1.5T TOF-MRA is a feasible primary follow-up modality after coiling of intracranial aneurysms. Given our data, we now suggest that, in every patient with a coiled intracranial aneurysm, the first follow-up, 3 months after coiling, should be an MRA study. Only when this MRA is inconclusive (e.g., because of coil artifacts), or in the case of suspicion of recanalization, should DSA be performed additionally

  11. Sinogram-based coil selection for streak artifact reduction in undersampled radial real-time magnetic resonance imaging.

    Science.gov (United States)

    Holme, H Christian M; Frahm, Jens

    2016-10-01

    Streak artifacts are a common problem in radial magnetic resonance imaging (MRI). We therefore developed a method for automatically excluding receiver coil elements which lead to these artifacts. The proposed coil selection relates to real-time MRI data based on highly undersampled radial acquisitions. It exploits differences between high- and low-resolution sinograms reconstructed from datasets acquired during preparatory scans. Apart from phantom validations, the performance was assessed for real-time MRI studies of different human organ systems in vivo. The algorithm greatly reduces streak artifact strength without compromising image quality in other parts of the image. It is robust with respect to different experimental settings and fast to be included in the online reconstruction pipeline for real-time MRI. The proposed method enables a fast reduction of streak artifacts in radial real-time MRI.

  12. Basic Analysis of Two-Coils Structure Based on Magnetically-Coupled Resonant Technology for SWIPT Application

    Institute of Scientific and Technical Information of China (English)

    MA Biyun; CHEN Boheng; LI Sumei; WANG Yide; WEI Gang

    2015-01-01

    The Magnetically-coupled resonant (MCR) technology is exploited in this paper to realize Synchronous wireless information and power transfer (SWIPT) func-tion, which means that the power carriers also transmit information. The circuit structure of SWIPT system is ana-lyzed and the existence of two optimal frequencies in power efficiency under small resistance circumstance is proved. The physical parameters having influences on the two op-timal frequencies are discussed, such as the distance be-tween coils, impedance characteristics of coils and loads. These results provide a way to increase the bandwidth of MCR technology, while maintaining high power efficiency to realize SWIPT function. Simulations and experimental results are presented to verify the feasibility of the pro-posed system and obtained theoretical expressions.

  13. Nuclear Magnetic Resonance Structures of GCN4p Are Largely Conserved When Ion Pairs Are Disrupted at Acidic pH but Show a Relaxation of the Coiled Coil Superhelix.

    Science.gov (United States)

    Kaplan, Anne R; Brady, Megan R; Maciejewski, Mark W; Kammerer, Richard A; Alexandrescu, Andrei T

    2017-03-21

    To understand the roles ion pairs play in stabilizing coiled coils, we determined nuclear magnetic resonance structures of GCN4p at three pH values. At pH 6.6, all acidic residues are fully charged; at pH 4.4, they are half-charged, and at pH 1.5, they are protonated and uncharged. The α-helix monomer and coiled coil structures of GCN4p are largely conserved, except for a loosening of the coiled coil quaternary structure with a decrease in pH. Differences going from neutral to acidic pH include (i) an unwinding of the coiled coil superhelix caused by the loss of interchain ion pair contacts, (ii) a small increase in the separation of the monomers in the dimer, (iii) a loosening of the knobs-into-holes packing motifs, and (iv) an increased separation between oppositely charged residues that participate in ion pairs at neutral pH. Chemical shifts (HN, N, C', Cα, and Cβ) of GCN4p display a seven-residue periodicity that is consistent with α-helical structure and is invariant with pH. By contrast, periodicity in hydrogen exchange rates at neutral pH is lost at acidic pH as the exchange mechanism moves into the EX1 regime. On the basis of (1)H-(15)N nuclear Overhauser effect relaxation measurements, the α-helix monomers experience only small increases in picosecond to nanosecond backbone dynamics at acidic pH. By contrast, (13)C rotating frame T1 relaxation (T1ρ) data evince an increase in picosecond to nanosecond side-chain dynamics at lower pH, particularly for residues that stabilize the coiled coil dimerization interface through ion pairs. The results on the structure and dynamics of GCNp4 over a range of pH values help rationalize why a single structure at neutral pH poorly predicts the pH dependence of the unfolding stability of the coiled coil.

  14. Optimal Bitter Coil Solenoid

    CERN Document Server

    Kobelev, V

    2016-01-01

    Bitter coil is an electromagnet used for the generation of exceptionally strong magnetic fields. The upper bound of magnet flux density is restricted by several factors. One principal restriction is the high stresses due to Lorentz forces in the coil. The Lorentz forces generate the distributed body force, which acts as the pressure of magnetic field. The common radial thickness profile of the Bitter coil is constant. In this paper the possibility of optimization by means of non-constant radial thickness profile of the Bitter coil is studied. The close form expression for optimal thickness profile is obtained. Both designs are compared and the considerable improvement of magnetic flux density is demonstrated. Moreover, the optimal design improves the shape of cooling channels. Namely, the highest cross-section of cooling channel is at the most thermally loaded inner surface of the coil.

  15. Impact of multiparametric endorectal coil prostate magnetic resonance imaging on disease reclassification among active surveillance candidates: a prospective cohort study.

    Science.gov (United States)

    Margel, David; Yap, Stanley A; Lawrentschuk, Nathan; Klotz, Laurence; Haider, Masoom; Hersey, Karen; Finelli, Antonio; Zlotta, Alexandre; Trachtenberg, John; Fleshner, Neil

    2012-04-01

    We report magnetic resonance imaging findings among unselected men with low risk prostate cancer before active surveillance. We prospectively enrolled men with low grade, low risk, localized prostate cancer. All patients underwent multiparametric endorectal coil magnetic resonance imaging and were offered confirmatory biopsy within 1 year of imaging. The primary outcome was the impact of magnetic resonance imaging on identifying patients who were reclassified by confirmatory biopsy as no longer fulfilling active surveillance criteria. We further identified clinical parameters associated with reclassification. The cohort was stratified as patients with 1) normal magnetic resonance imaging, 2) cancer on magnetic resonance imaging concordant with initial biopsy (less than 1 cm) and 3) cancer on magnetic resonance imaging larger than 1 cm. We performed univariate analysis to assess differences in clinical parameters among the groups. Magnetic resonance imaging did not detect cancer in 23 cases (38%) while magnetic resonance imaging and initial biopsy were concordant in 24 (40%). Magnetic resonance imaging detected a 1 cm or larger lesion in 13 patients (22%). Of the cases 18 (32.14%) were reclassified. When no cancer was identified on magnetic resonance imaging, only 2 cases (3.5%) were reclassified. The positive and negative predictive values for magnetic resonance imaging predicting reclassification were 83% (95% CI 73-93) and 81% (95% CI 71-91), respectively. Prostate specific antigen density was increased in patients with lesions larger than 1 cm on magnetic resonance imaging compared to those with no cancer on imaging (median 0.15 vs 0.07 ng/ml/cc, p=0.016). Magnetic resonance imaging appears to have a high yield for predicting reclassification among men who elect active surveillance. Upon confirmation of our results magnetic resonance imaging may be used to better select and guide patients before active surveillance. Copyright © 2012 American Urological

  16. Pulsed field magnetization in rare-earth kagome systems

    Science.gov (United States)

    Hoch, M. J. R.; Zhou, H. D.; Mun, E.; Harrison, N.

    2016-02-01

    The rare-earth kagome systems R 3Ga5SiO14 (R  =  Nd or Pr) exhibit cooperative paramagnetism at low temperatures. Evidence for correlated spin clusters in these weakly frustrated systems has previously been obtained from neutron scattering and from ESR and NMR results. The present pulsed field (0-60 T, 25 ms) magnetization measurements made on single crystals of Nd3Ga5SiO14 (NGS) and Pr3Ga5SiO14 (PGS) at temperatures down to 450 mK have revealed striking differences in the magnetic responses of the two materials. For NGS the magnetization shows a low field plateau, saturation in high transient fields, and significant hysteresis while the PGS magnetization does not saturate in transient fields up to 60 T and shows no hysteresis or plateaus. Nd3+ is a Kramers ion while Pr3+ is a non-Kramers ion and the crystal field effects are quite different in the two systems. For the conditions used in the experiments the magnetization behavior is not in agreement with Heisenberg model predictions for kagome systems in which easy-axis anisotropy is much larger than the exchange coupling. The extremely slow spin dynamics found below 4 K in NGS is, however, consistent with the model for Kramers ions and provides a basis for explaining the pulsed field magnetization features.

  17. Pulsed field magnetization in rare-earth kagome systems.

    Science.gov (United States)

    Hoch, M J R; Zhou, H D; Mun, E; Harrison, N

    2016-02-03

    The rare-earth kagome systems R 3Ga5SiO14 (R  =  Nd or Pr) exhibit cooperative paramagnetism at low temperatures. Evidence for correlated spin clusters in these weakly frustrated systems has previously been obtained from neutron scattering and from ESR and NMR results. The present pulsed field (0-60 T, 25 ms) magnetization measurements made on single crystals of Nd3Ga5SiO14 (NGS) and Pr3Ga5SiO14 (PGS) at temperatures down to 450 mK have revealed striking differences in the magnetic responses of the two materials. For NGS the magnetization shows a low field plateau, saturation in high transient fields, and significant hysteresis while the PGS magnetization does not saturate in transient fields up to 60 T and shows no hysteresis or plateaus. Nd(3+) is a Kramers ion while Pr(3+) is a non-Kramers ion and the crystal field effects are quite different in the two systems. For the conditions used in the experiments the magnetization behavior is not in agreement with Heisenberg model predictions for kagome systems in which easy-axis anisotropy is much larger than the exchange coupling. The extremely slow spin dynamics found below 4 K in NGS is, however, consistent with the model for Kramers ions and provides a basis for explaining the pulsed field magnetization features.

  18. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Directory of Open Access Journals (Sweden)

    Shinsuke Nakayama

    Full Text Available This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG. The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  19. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Science.gov (United States)

    Nakayama, Shinsuke; Sawamura, Kenta; Mohri, Kaneo; Uchiyama, Tsuyoshi

    2011-01-01

    This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI) sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT) level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG). The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  20. The Pulse Azimuth effect as seen in induction coil magnetometers located in California and Peru 2007–2010, and its possible association with earthquakes

    Directory of Open Access Journals (Sweden)

    J. C. Dunson

    2011-07-01

    Full Text Available The QuakeFinder network of magnetometers has recorded geomagnetic field activity in California since 2000. Established as an effort to follow up observations of ULF activity reported from before and after the M = 7.1 Loma Prieta earthquake in 1989 by Stanford University, the QuakeFinder network has over 50 sites, fifteen of which are high-resolution QF1005 and QF1007 systems. Pairs of high-resolution sites have also been installed in Peru and Taiwan.

    Increases in pulse activity preceding nearby seismic events are followed by decreases in activity afterwards in the three cases that are discussed here. In addition, longer term data is shown, revealing a rich signal structure not previously known in QuakeFinder data, or by many other authors who have reported on pre-seismic ULF phenomena. These pulses occur as separate ensembles, with demonstrable repeatability and uniqueness across a number of properties such as waveform, angle of arrival, amplitude, and duration. Yet they appear to arrive with exponentially distributed inter-arrival times, which indicates a Poisson process rather than a periodic, i.e., stationary process.

    These pulses were observed using three-axis induction coil magnetometers that are buried 1–2 m under the surface of the Earth. Our sites use a Nyquist frequency of 16 Hertz (25 Hertz for the new QF1007 units, and they record these pulses at amplitudes from 0.1 to 20 nano-Tesla with durations of 0.1 to 12 s. They are predominantly unipolar pulses, which may imply charge migration, and they are stronger in the two horizontal (north-south and east-west channels than they are in the vertical channels. Pulses have been seen to occur in bursts lasting many hours. The pulses have large amplitudes and study of the three-axis data shows that the amplitude ratios of the pulses taken from pairs of orthogonal coils is stable across the bursts, suggesting a similar source.

    This paper presents three

  1. The Pulse Azimuth effect as seen in induction coil magnetometers located in California and Peru 2007-2010, and its possible association with earthquakes

    Science.gov (United States)

    Dunson, J. C.; Bleier, T. E.; Roth, S.; Heraud, J.; Alvarez, C. H.; Lira, A.

    2011-07-01

    The QuakeFinder network of magnetometers has recorded geomagnetic field activity in California since 2000. Established as an effort to follow up observations of ULF activity reported from before and after the M = 7.1 Loma Prieta earthquake in 1989 by Stanford University, the QuakeFinder network has over 50 sites, fifteen of which are high-resolution QF1005 and QF1007 systems. Pairs of high-resolution sites have also been installed in Peru and Taiwan. Increases in pulse activity preceding nearby seismic events are followed by decreases in activity afterwards in the three cases that are discussed here. In addition, longer term data is shown, revealing a rich signal structure not previously known in QuakeFinder data, or by many other authors who have reported on pre-seismic ULF phenomena. These pulses occur as separate ensembles, with demonstrable repeatability and uniqueness across a number of properties such as waveform, angle of arrival, amplitude, and duration. Yet they appear to arrive with exponentially distributed inter-arrival times, which indicates a Poisson process rather than a periodic, i.e., stationary process. These pulses were observed using three-axis induction coil magnetometers that are buried 1-2 m under the surface of the Earth. Our sites use a Nyquist frequency of 16 Hertz (25 Hertz for the new QF1007 units), and they record these pulses at amplitudes from 0.1 to 20 nano-Tesla with durations of 0.1 to 12 s. They are predominantly unipolar pulses, which may imply charge migration, and they are stronger in the two horizontal (north-south and east-west) channels than they are in the vertical channels. Pulses have been seen to occur in bursts lasting many hours. The pulses have large amplitudes and study of the three-axis data shows that the amplitude ratios of the pulses taken from pairs of orthogonal coils is stable across the bursts, suggesting a similar source. This paper presents three instances of increases in pulse activity in the 30 days prior

  2. Simple coil-powering techniques for generating 10KA/m alternating magnetic field at multiple frequencies using 0.5KW RF power for magnetic nanoparticle hyperthermia

    Science.gov (United States)

    Piao, Daqing; Sun, Tengfei; Ranjan, Ashish

    2017-02-01

    Alternating magnetic field (AMF) configurable at a range of frequencies is a critical need for optimization of magnetic nanoparticle based hyperthermia, and for their application in targeted drug delivery. Currently, most commercial AMF devices including induction heaters operate at one factory-fixed frequency, thereby limiting customized frequency configuration required for triggered drug release at mild hyperthermia (40-42°C) and ablations (>55°C). Most AMF devices run as an inductor-capacitor resonance network that could allow AMF frequencies to be changed by changing the capacitor bank or the coil looped with it. When developing AMF inhouse, the most expensive component is usually the RF power amplifier, and arguably the most critical step of building a strong AMF field is impedance-matched coupling of RF power to the coolant-cooled AMF coil. AMF devices running at 10KA/m strength are quite common, but generating AMF at that level of field strength using RF power less than 1KW has remained challenging. We practiced a few techniques for building 10KA/m AMFs at different frequencies, by utilizing a 0.5KW 80-800KHz RF power amplifier. Among the techniques indispensable to the functioning of these AMFs, a simple cost-effective technique was the tapping methods for discretely or continuously adjusting the position of an RF-input-tap on a single-layer or the outer-layer of a multi-layer AMF coil for maximum power coupling into the AMF coil. These in-house techniques when combined facilitated 10KA/m AMF at frequencies of 88.8 KHz and higher as allowed by the inventory of capacitors using 0.5KW RF power, for testing heating of 10-15nm size magnetic particles and on-going evaluation of drug-release by low-level temperature-sensitive liposomes loaded with 15nm magnetic nanoparticles.

  3. Effects of an external magnetic field in pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T. [Universidad Autonoma de la Ciudad de Mexico (UACM), Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, C.P. 09790, Mexico DF (Mexico)], E-mail: tupacgarcia@yahoo.com; Posada, E. de [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico); Villagran, M. [CCADET, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 70-186, C.P. 04510, Mexico DF (Mexico); Ll, J.L. Sanchez [Laboratorio de Magnetismo, Facultad de Fisica-IMRE, Universidad de La Habana, La Habana 10400 (Cuba); Bartolo-Perez, P.; Pena, J.L. [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico)

    2008-12-30

    Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe{sub 12}O{sub 19} target with and without the presence of a nonhomogeneous magnetic field of {mu}{sub 0}H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.

  4. Vacuum magnetic linear birefringence using pulsed fields: the BMV experiment

    CERN Document Server

    Cadène, A; Fouché, M; Battesti, R; Rizzo, C

    2013-01-01

    In this letter we present the measurement of the vacuum magnetic birefringence obtained using the first generation setup of the BMV experiment. In particular, we detail our procedure of data acquisition and our analysis which takes into account the symmetry properties of raw data with respect to the orientation of the magnetic field and the sign of the cavity birefringence. Our current value of vacuum magnetic linear birefringence k_CM was obtained with about 100 magnetic pulses and a maximum field of 6.5 T. We get k_CM = (-7.4 \\pm 8.7).10^{-21} T^{-2} at 3 sigma confidence level. Our result is a clear validation of our innovative experimental method.

  5. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guoping [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States)

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.

  6. Detection of secular acceleration pulses from magnetic observatory data

    Science.gov (United States)

    Soloviev, Anatoly; Chulliat, Arnaud; Bogoutdinov, Shamil

    2017-09-01

    Geomagnetic secular variation (SV) models for the epochs before the space era are based on magnetic observatory data, which represent relatively rough and noisy time series due to magnetic storms, anthropogenic spikes and gaps. These models are often strongly regularized in time, so that fast variations in the SV are smoothed out. However, recent studies show that at least some of the geomagnetic jerks observed at the Earth's surface emanate from increasing and decreasing phases of secular acceleration (SA) pulses at the core surface. The latter ones are direct manifestation of the dynamic processes taking place in the liquid core. They were first detected from satellite data, which are both of higher quality and more homogeneous in terms of geographical coverage than ground data. Herein we attempt to carry out similar studies based on observatory data available for a longer period. The proposed method of SV modeling and recognition of SA pulses relies on a new technique of processing time series based on fuzzy mathematics. Comparison with the SV modeling results derived from satellite data shows their high conformity with the proposed method. Stability and reliability of the SA pulse recognition are demonstrated by the examples of well-studied SA pulses in 2006, 2009 and 2012. Moreover, several new SA pulses around 1996, 1999, 2002 and 2014 are discovered as a result of the new approach application to multi-observatory data analysis. The latter provides a basis for applying the method to older historical data and investigate SA pulses and geomagnetic jerks further back in time.

  7. Behavior of metals Induced by magnetic pulse loading

    Directory of Open Access Journals (Sweden)

    Svetlana Atroshenko

    2015-01-01

    Full Text Available The investigation of copper and aluminum ring samples was carried out using magnetic pulse loading. Two modifications of the magnetic pulse technique were used. They were based on a GKVI-300 high-voltage narrow-pulse generator Morozov et al. (2011 [1]. It is possible using these two approaches to decrease the period of the harmonic load up to 100 ns. The study of fracture surfaces of aluminum and copper samples after the test was carried out on an optical microscope Axio-Observer-Z1-M in a dark field, and study of the cross sections structure – in the bright field or C-DIC. The structure has been studied in cross sections after appropriate etching. Grain size and the number of pores on the surface of cross sections were determined after etching. Microhardness was measured on a PMT-3 device with a load of 20 g. The optical micrographs of aluminum demonstrate that the long pulse causes almost fully ductile fracture. In the case of the short pulse, the number of fibers decreases: the fracture surface exhibits the signs of both ductile cup fracture and brittle crystalline fracture with cracks, which are sometimes rather deep. In addition, the short pulse results in twinning, which seems surprising for aluminum featuring a high stacking fault energy. It is seen that under short loading dynamic recrystallization occurs. As for copper samples before loading they were in the form of single crystal and after loading their structure due to dynamic recrystallization consists of small grain. The specimen with notch has more developed dynamic recrystallization shear bands.

  8. Comparative study of fast T 2-weighted images using respiratory triggered, breath-hold, fat suppression and phased array multi coil for liver evaluation by magnetic resonance imaging; Estudo comparativo das sequencias rapidas ponderadas em T2, utilizando-se sincronizacao respiratoria, apneia, supressao de gordura, bobina de corpo e bobina de sinergia para a avaliacao do figado pela ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Abbehusen, Cristiane L.; D' Ippolito, Giuseppe; Palacio, Glaucia A.S.; Szejnfeld, Jacob [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Escola Paulista de Medicina (EPM). Dept. de Diagnostico por Imagem]. E-mail: cabbehusen@hotmail.com

    2003-10-01

    The objective of this study was to compare both qualitatively and quantitatively six T 2-weighted turbo spin-echo sequences varying the respiratory compensation technique, associating or not fat tissue suppression and using different types of coils. We performed a prospective study of 71 consecutive patients that were submitted to MRI of the liver using a 1.5 T magnet. The six following pulse sequences were used: fat-suppressed respiratory triggered with conventional body coil; breath-hold fat-suppressed with conventional body coil; non-suppressed respiratory triggered with conventional body coil; breath-hold non fat-suppressed with conventional body coil; fat-suppressed respiratory triggered with phased-array multi coil; breath-hold fat-suppressed with phased-array multi coil. Images were analyzed quantitatively by measuring the signal-to-noise ratios and qualitatively by evaluating the sharpness of hepatic contours, visibility of intrahepatic vessels and other segmental landmarks, and the presence of artifacts. Results: the qualitative analysis showed that the mean values obtained with the six sequences were 7.8, 4.6, 7.9, 5.2, 6.7 and 4.6 respectively. The respiratory-triggered sequences were better than the breath-hold sequences in both qualitative and quantitative analysis (p < 0.001). No significant differences in the values of signal-to-noise ratios and in overall image quality were found between the sequences with and without fat suppression (p . 0.05). The sequences using the body coil were similar in terms of image quality (p . 0.05) and better regarding signal-to-noise ratios than those obtained with the phased=array multi coil (p ,0.001). Our qualitative and quantitative results suggest that the best MRI sequences for the valuation of the liver are the sequences with respiratory triggering using a conventional body coil, with or without fat suppression. (author)

  9. Preliminary results of endorectal surface coil magnetic resonance imaging for local staging of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jager, G.H. [Radiologische Universitaetsklinik, Nijmegen (Netherlands). Abt. fuer Abdominale Roentgendiagnostik; Barentsz, J.O. [Radiologische Universitaetsklinik, Nijmegen (Netherlands). Abt. fuer Abdominale Roentgendiagnostik; Rosette, J.J.M.C.H. de la [Medizinische Universitaetsklinik, Nijmegen (Netherlands). Abt. fuer Urologie; Rosenbusch, G. [Radiologische Universitaetsklinik, Nijmegen (Netherlands). Abt. fuer Abdominale Roentgendiagnostik

    1994-03-01

    Objective: To evaluate the effectiveness of endorectal surface coil (ERC) magnetic resonance imaging (MRI) in the local staging of adenocarcinoma of the prostate (ACP). Materials and methods: A total of 23 patients who were considered candidates for radical prostatectomy because of clinically localized ACP were examined by ERC-MRI. All patients underwent laparoscopic or open lymph-node dissection prior to surgery. Four patients had positive lymph nodes at operation. A total of 19 underwant radical prostatectomy, allowing comparison of the MRI data with the surgical pathologic findings. Results: Twelve patients had extraglandular spread of ACP (T3) and 7 had locally confined ACP (T2). ERC-MRI predicted correctly a T3 tumor in 10 of 12 cases and a T2 tumor in 4 of 7 cases. ERC-MRI was 74% accurate in differentiating T2 from T3 tumor. Three cases of overestimation were in studies with poor image quality because of bowel movement motion artifacts. Conclusion: ERC-MRI was found to be a sensitive modality in staging clinically localized ACP. (orig.) [Deutsch] Ziel: Bestimmung der Wertigkeit der Kernspintomographie (MRI) mit einer endorektalen Oberflaechenspule (ERC) fuer das lokale staging des Adenokarzinoms der Prostata (ACP). Material und Methode: Insgesamt 23 Patienten die als Kandidaten fuer eine radikale Prostatektomie wegen eines klinisch lokalisierten ACP galten, wurden mit ERC-MRI untersucht. Alle Patienten unterzogen sich einer laparoskopischen oder offenen Lymphdruesendissektion bei der Operation. Bei 19 Patienten, bei denen eine radikale Prostatektomie ausgefuehrt wurde, konnte eine Korrelation der MRI-Befunde mit denen der Operation erfolgen. Ergebnisse: Zwoelf Patienten wiesen extraglandulaere Ausbreitung des ACP (T3) auf und 7 hatten ein lokal begrenztes ACP (T2). ERC-MRI ergab korrekt einen T3-Tumor in 10 der 12 Faelle und einen T2-Tumor in 4 der 7 Faelle. Die Genauigkeit der ERC-MRI um einen T2- von einem T3-Tumor zu differenzieren betrug 74%. Bei drei

  10. Apparatus for and method of operating a cylindrical pulsed induction mass launcher

    Science.gov (United States)

    Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.

    1992-06-30

    An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.

  11. Apparatus for and method of operating a cylindrical pulsed induction mass launcher

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.

    1992-06-30

    An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.

  12. Direct current force sensing device based on compressive spring, permanent magnet, and coil-wound magnetostrictive/piezoelectric laminate.

    Science.gov (United States)

    Leung, Chung Ming; Or, Siu Wing; Ho, S L

    2013-12-01

    A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.

  13. Compensation of the Persistent Current Multipoles in the LHC Dipoles by making the Coil Protection Sheet from Soft Magnetic Material

    CERN Document Server

    Völlinger, C

    2000-01-01

    This note presents a scheme for compensating the persistent current multipole errors of the LHC dipoles by making the coil protection sheets from soft magnetic material of 0.5 mm thickness. The material properties assumed in this study are those of iron sheets with a very low content of impurities (99.99% pure Fe). The non-linearities in the upramp cycle on the b3 multipole component can be reduced by the factor of four (while decreasing the b5 variation by the factor of two. Using sheets of slightly different thicknesses offers a tuning possibility for the series magnet coils and can compensate deviations arising from cables of different suppliers. The calculation method is based on a semi-analytical hysteresis model for hard superconductors and an M(B) - iteration using the method of coupled boundary elements - finite elements (BEM - FEM). It is now possible to compute persistent current multipole errors of geometries with arbitrarily shaped iron yokes and thin layers of soft magnetic material such as tunin...

  14. A study of generator performance with linear permanent magnet in various coil configuration and rotor-stator geometry

    Science.gov (United States)

    Asy'ari, Hasyim; Sarjito, Prasetio, Septian Heri

    2017-04-01

    The aim of the research work describe in this paper was to design and optimize a permanent magnet linear generator for renewable energy power plants. It is cover of first stage of designing stator and rotor permanent magnet linear generator. Stator design involves determining dimensions, number of slots, diameter of wire, and the number of winding in each slot. The design of the rotor includes rotor manufacture of PVC pipe material, 10 pieces of permanent magnet type ferrite 271 mikroweber, and resin. The second stage was to assemble the stator and rotor that has been done in the first stage to be a permanent magnet linear generator. The third stage was to install a permanent magnet linear generator with induction motors. Further stage was to test performance of a permanent magnet linear generator by utilizing of induction motor as a prime mover experimentally. In this study, permanent magnet linear generator with a rotor consists of five pairs of permanent magnets. The stator consists of 6 slots of the stator frame, each slot mounted stator coil of 200, 300, 400, 500, and 800 windings, and dimensions of wire used was 0.4 mm. The stator frame was made from acrylic. Results of the experiment that, permanent magnet linear generator when no load was able to generate a DC voltage of 14.5 volts at 300 rpm, and at the output of the linear generator when it is connected to the DC fan as a load only generated of 6.7 volts. It concludes that permanent magnet linear generator output can be used as an input device hybrid system. Data obtained from this experiment in laboratory scale can be developed in a larger scale by varying the type of magnet being used, the number of windings, and the speed used to generate more power.

  15. Neutron investigations of magnetic properties of crystal substances with use of a pulsed magnetic field

    CERN Document Server

    Nitts, V V

    2001-01-01

    Bases for neutron researches of magnetic properties of crystal substances with use of a pulsed magnetic field and analysis of possible application of various neutron sources in this area are submitted. The review of the most interesting physical results is presented. Main investigations on pulsed reactors of JINR are researches on kinetics of the first order reorientational phase transitions induced in single crystals, and also measurements of antiferromagnetic ordering induced by an external magnetic field. Magnetic phase transitions, induced by a field up to 160 kOe in several magnetic ordering substances, were studied in KEK (Japan). Experiment on observation of spin-flop transition in MnF sub 2 was carried out on TRIGA-reactor in a mode of single flashes of power

  16. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples--a useful setup for magnetic hyperthermia applications.

    Science.gov (United States)

    Connord, V; Mehdaoui, B; Tan, R P; Carrey, J; Respaud, M

    2014-09-01

    A setup for measuring the high-frequency hysteresis loops of magnetic samples is described. An alternating magnetic field in the range 6-100 kHz with amplitude up to 80 mT is produced by a Litz wire coil. The latter is air-cooled using a forced-air approach so no water flow is required to run the setup. High-frequency hysteresis loops are measured using a system of pick-up coils and numerical integration of signals. Reproducible measurements are obtained in the frequency range of 6-56 kHz. Measurement examples on ferrite cylinders and on iron oxide nanoparticle ferrofluids are shown. Comparison with other measurement methods of the hysteresis loop area (complex susceptibility, quasi-static hysteresis loops, and calorific measurements) is provided and shows the coherency of the results obtained with this setup. This setup is well adapted to the magnetic characterization of colloidal solutions of magnetic nanoparticles for magnetic hyperthermia applications.

  17. The 8 cm Period Electromagnetic Wiggler Magnet with Coils Made from Sheet Copper

    CERN Document Server

    Biallas, George H; Hiatt, Tommy; Neil, George R; Snyder, Michael D

    2005-01-01

    An electromagnetic wiggler, now lasing at the Jefferson Lab FEL, has 29 eight cm periods with K variable from 0.6 to1.1 and gap of 2.6 cm. The wiggler was made inexpensively in 11 weeks by an industrial machine shop. The conduction cooled coil design uses copper sheet material cut to forms using water jet cutting. The conductor is cut to serpentine shapes and the cooling plates are cut to ladder shape. The sheets are assembled in stacks insulated with polymer film, also cut with water jet. The coil design extends the serpentine conductor design of the Duke OK4 to more and smaller conductors. The wiggler features graded fields in the two poles at each end and trim coils on these poles to eliminate field errors caused by saturation. An added critical feature is mirror plates at the ends with integral trim coils to eliminate three dimensional end field effects and align the entrance and exit orbit with the axis of the wiggler. Details of construction, measurement methods and excellent wiggler performance are pre...

  18. Endosphenoidal coil for intraoperative magnetic resonance imaging of the pituitary gland during transsphenoidal surgery.

    Science.gov (United States)

    Chittiboina, Prashant; Lalith Talagala, S; Merkle, Hellmut; Sarlls, Joelle E; Montgomery, Blake K; Piazza, Martin G; Scott, Gretchen; Ray-Chaudhury, Abhik; Lonser, Russell R; Oldfield, Edward H; Koretsky, Alan P; Butman, John A

    2016-12-01

    OBJECTIVE Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing's disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed. METHODS Five cadaver heads were used for preclinical testing of the ESC. The ESC (a double-turn, 12-mm-diameter surface coil made from 1-mm-diameter copper wire) was developed to obtain images in a 1.5-T MR scanner. The ESC was placed (via a standard sublabial TSS approach) on the anterior sella face. Clinical MR scans were obtained using the 8-channel head coil and ESC as the receiver coils. Using the ESC, ultra-high-resolution, 3D, balanced fast field echo (BFFE) and T1-weighted imaging were performed at resolutions of 0.25 × 0.25 × 0.50 mm(3) and 0.15 × 0.15 × 0.30 mm(3), respectively. RESULTS Region-of-interest analysis indicated a 10-fold increase in the signal-to-noise ratio (SNR) of the pituitary when using the ESC compared with the 8-channel head coil. ESC-related improvements (p < 0.01) in the SNR were inversely proportional to the distance from the ESC tip to the anterior pituitary gland surface. High-resolution BFFE MR imaging obtained using ESC revealed a number of anatomical features critical to pituitary surgery that were not visible on 8-channel MR imaging, including the pituitary capsule, the intercavernous sinus, and microcalcifications in the pars intermedia. These ESC imaging findings were confirmed by the pathological correlation with whole-mount pituitary sections. CONCLUSIONS ESC can significantly improve SNR in the sellar region intraoperatively using current 1.5-T MR imaging platforms. Improvement in SNR can provide images of the sella and surrounding structures with unprecedented

  19. Simulation and experiments of Stacks of High Temperature Superconducting Coated Conductors Magnetized by Pulsed Field Magnetization with Multi-Pulse Technique

    CERN Document Server

    Zou, Shengnan; Baskys, A; Patel, A; Grilli, Francesco; Glowacki, B A

    2016-01-01

    High temperature superconducting (HTS) bulks or stacks of coated conductors (CCs) can be magnetized to become trapped field magnets (TFMs). The magnetic fields of such TFMs can break the limitation of conventional magnets (<2 T), so they show potential for improving the performance of many electrical applications that use permanent magnets like rotating machines. Towards practical or commercial use of TFMs, effective in situ magnetization is one of the key issues. The pulsed field magnetization (PFM) is among the most promising magnetization methods in virtue of its compactness, mobility and low cost. However, due to the heat generation during the magnetization, the trapped field and flux acquired by PFM usually cannot achieve the full potential of a sample (acquired by the field cooling or zero field cooling method). The multi-pulse technique was found to effectively improve the trapped field by PFM in practice. In this work, a systematic study on the PFM with successive pulses is presented. A 2D electrom...

  20. Minimax Current Density Coil Design

    CERN Document Server

    Poole, Michael; Lopez, Hector Sanchez; Ng, Michael; Crozier, Stuart; 10.1088/0022-3727/43/9/095001

    2010-01-01

    'Coil design' is an inverse problem in which arrangements of wire are designed to generate a prescribed magnetic field when energized with electric current. The design of gradient and shim coils for magnetic resonance imaging (MRI) are important examples of coil design. The magnetic fields that these coils generate are usually required to be both strong and accurate. Other electromagnetic properties of the coils, such as inductance, may be considered in the design process, which becomes an optimization problem. The maximum current density is additionally optimized in this work and the resultant coils are investigated for performance and practicality. Coils with minimax current density were found to exhibit maximally spread wires and may help disperse localized regions of Joule heating. They also produce the highest possible magnetic field strength per unit current for any given surface and wire size. Three different flavours of boundary element method that employ different basis functions (triangular elements...

  1. Quantitative study of liver magnetic resonance spectroscopy quality at 3T using body and phased array coils with physical analysis and clinical evaluation.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available This study aims to investigate the quality difference of short echo time (TE breathhold 1H magnetic resonance spectroscopy (MRS of the liver at 3.0T using the body and phased array coils, respectively. In total, 20 pairs of single-voxel proton spectra of the liver were acquired at 3.0T using the phased array and body coils as receivers. Consecutive stacks of breathhold spectra were acquired using the point resolved spectroscopy (PRESS technique at a short TE of 30 ms and a repetition time (TR of 1500 ms. The first spectroscopy sequence was "copied" for the second acquisition to ensure identical voxel positioning. The MRS prescan adjustments of shimming and water suppression, signal-to noise ratio (SNR, and major liver quantitative information were compared between paired spectra. Theoretical calculation of the SNR and homogeneity of the region of interest (ROI, 2 cm×2 cm×2 cm using different coils loaded with 3D liver electromagnetic model of real human body was implemented in the theoretical analysis. The theoretical analysis showed that, inside the ROI, the SNR of the phase array coil was 2.8387 times larger than that of body coil and the homogeneity of the phase array coil and body coil was 80.10% and 93.86%, respectively. The experimental results showed excellent correlations between the paired data (all r > 0.86. Compared with the body coil group, the phased array group had slightly worse shimming effect and better SNR (all P values 0.05. The theoretical analysis and clinical experiment showed that the phased array coil was superior to the body coil with respect to 3.0T breathhold hepatic proton MRS.

  2. Study of the Effect of Distance and Misalignment between Magnetically Coupled Coils for Wireless Power Transfer in Intraocular Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Adrian E. Rendon-Nava

    2014-01-01

    Full Text Available An analysis of the effect of distance and alignment between two magnetically coupled coils for wireless power transfer in intraocular pressure measurement is presented. For measurement purposes, a system was fabricated consisting of an external device, which is a Maxwell-Wien bridge circuit variation, in charge of transferring energy to a biomedical implant and reading data from it. The biomedical implant is an RLC tank circuit, encapsulated by a polyimide coating. Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity. The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal. The analysis presented in this paper proves that wireless transmission of power for intraocular pressure measurement is feasible with the measurement system proposed. In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.

  3. Study of the effect of distance and misalignment between magnetically coupled coils for wireless power transfer in intraocular pressure measurement.

    Science.gov (United States)

    Rendon-Nava, Adrian E; Díaz-Méndez, J Alejandro; Nino-de-Rivera, Luis; Calleja-Arriaga, Wilfrido; Gil-Carrasco, Felix; Díaz-Alonso, Daniela

    2014-01-01

    An analysis of the effect of distance and alignment between two magnetically coupled coils for wireless power transfer in intraocular pressure measurement is presented. For measurement purposes, a system was fabricated consisting of an external device, which is a Maxwell-Wien bridge circuit variation, in charge of transferring energy to a biomedical implant and reading data from it. The biomedical implant is an RLC tank circuit, encapsulated by a polyimide coating. Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity. The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal. The analysis presented in this paper proves that wireless transmission of power for intraocular pressure measurement is feasible with the measurement system proposed. In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.

  4. Magnetic Resonance Imaging of the Prostate with the Use of Endorectal Coil for Local Staging of Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Mahyar Ghafoori

    2010-05-01

    Full Text Available Biopsy of the prostate under the guide of transrectal ultrasonography (TRUS is used for the diagnosis of prostate cancer in patients either with elevated serum prostate specific antigen (PSA or an abnormal digital rectal exam."nOnce the prostate cancer is diagnosed, physicians should choose the most proper treatment for the patient. The stage of the disease plays an important role in making decision for the treatment. Treatment strategy in tumors that are confined to the prostate gland is different from tumors that are spread beyond the prostate or involved adjacent or remote organs. Magnetic resonance imaging of the prostate with the use of endorectal coil is recognized as the most accurate imaging method for local staging of prostate cancer. "nDisruption of the capsule of prostate, involvement of seminal vesicles, neurovascular bundles, rectum and pelvic side walls, lymphadenopathies and metastasis to the pelvic bones could be diagnosed precisely by means of MRI. It should be emphasized that routine MRI of the pelvis has low resolution and is not accurate enough for diagnosis of prostate cancer details."nMagnetic resonance imaging of the prostate with the use of endorectal coil should be the next step after diagnosis of prostate cancer by TRUS-guided biopsy.

  5. Airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and multi-pole magnets towards enhanced power density

    Science.gov (United States)

    Leung, Chung Ming; Wang, Ya; Chen, Wusi

    2016-11-01

    In this letter, the airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and trajectory matching multi-pole magnets was investigated. The magnets were aligned in an alternatively magnetized formation of 6 magnets to explore enhanced power density. In particular, the magnet array was positioned in parallel to the trajectory of the tip coil within its tip deflection span. The finite element simulations of the magnetic flux density and induced voltages at an open circuit condition were studied to find the maximum number of alternatively magnetized magnets that was required for the proposed energy harvester. Experimental results showed that the energy harvester with a pair of 6 alternatively magnetized linear magnet arrays was able to generate an induced voltage (Vo) of 20 V, with an open circuit condition, and 475 mW, under a 30 Ω optimal resistance load operating with the wind speed (U) at 7 m/s and a natural bending frequency of 3.54 Hz. Compared to the traditional electromagnetic energy harvester with a single magnet moving through a coil, the proposed energy harvester, containing multi-pole magnets and parallel array motion, enables the moving coil to accumulate a stronger magnetic flux in each period of the swinging motion. In addition to the comparison made with the airfoil-based piezoelectric energy harvester of the same size, our proposed electromagnetic energy harvester generates 11 times more power output, which is more suitable for high-power-density energy harvesting applications at regions with low environmental frequency.

  6. Airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and multi-pole magnets towards enhanced power density.

    Science.gov (United States)

    Leung, Chung Ming; Wang, Ya; Chen, Wusi

    2016-11-01

    In this letter, the airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and trajectory matching multi-pole magnets was investigated. The magnets were aligned in an alternatively magnetized formation of 6 magnets to explore enhanced power density. In particular, the magnet array was positioned in parallel to the trajectory of the tip coil within its tip deflection span. The finite element simulations of the magnetic flux density and induced voltages at an open circuit condition were studied to find the maximum number of alternatively magnetized magnets that was required for the proposed energy harvester. Experimental results showed that the energy harvester with a pair of 6 alternatively magnetized linear magnet arrays was able to generate an induced voltage (Vo) of 20 V, with an open circuit condition, and 475 mW, under a 30 Ω optimal resistance load operating with the wind speed (U) at 7 m/s and a natural bending frequency of 3.54 Hz. Compared to the traditional electromagnetic energy harvester with a single magnet moving through a coil, the proposed energy harvester, containing multi-pole magnets and parallel array motion, enables the moving coil to accumulate a stronger magnetic flux in each period of the swinging motion. In addition to the comparison made with the airfoil-based piezoelectric energy harvester of the same size, our proposed electromagnetic energy harvester generates 11 times more power output, which is more suitable for high-power-density energy harvesting applications at regions with low environmental frequency.

  7. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    Science.gov (United States)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  8. Numerical Analysis of a Flexible Dual Loop Coil and its Experimental Validation for pre-Clinical Magnetic Resonance Imaging of Rodents at 7 T

    Science.gov (United States)

    Solis-Najera, S.; Vazquez, F.; Hernandez, R.; Marrufo, O.; Rodriguez, A. O.

    2016-12-01

    A surface radio frequency coil was developed for small animal image acquisition in a pre-clinical magnetic resonance imaging system at 7 T. A flexible coil composed of two circular loops was developed to closely cover the object to be imaged. Electromagnetic numerical simulations were performed to evaluate its performance before the coil construction. An analytical expression of the mutual inductance for the two circular loops as a function of the separation between them was derived and used to validate the simulations. The RF coil is composed of two circular loops with a 5 cm external diameter and was tuned to 300 MHz and 50 Ohms matched. The angle between the loops was varied and the Q factor was obtained from the S11 simulations for each angle. B1 homogeneity was also evaluated using the electromagnetic simulations. The coil prototype was designed and built considering the numerical simulation results. To show the feasibility of the coil and its performance, saline-solution phantom images were acquired. A correlation of the simulations and imaging experimental results was conducted showing a concordance of 0.88 for the B1 field. The best coil performance was obtained at the 90° aperture angle. A more realistic phantom was also built using a formaldehyde-fixed rat phantom for ex vivo imaging experiments. All images showed a good image quality revealing clearly defined anatomical details of an ex vivo rat.

  9. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    Science.gov (United States)

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  10. Vortex dynamics in a thin superconducting film with a non-uniform magnetic field applied at its center with a small coil

    Science.gov (United States)

    Lemberger, Thomas R.; Loh, Yen Lee

    2016-10-01

    This paper models the dynamics of vortices that are generated in the middle of a thin, large-area, superconducting film by a low-frequency magnetic field from a small coil, motivated by a desire to better understand measurements of the superconducting coherence length made with a two-coil apparatus. When the applied field exceeds a critical value, vortices and antivortices originate near the middle of the film at the radius where the Lorentz force of the screening supercurrent is largest. The Lorentz force from the screening supercurrent pushes vortices toward the center of the film and antivortices outward. In an experiment, vortices are detected as an increase in mutual inductance between the drive coil and a coaxial "pickup" coil on the opposite side of the film. The model shows that the essential features of measurements are well described when vortex pinning and the attendant hysteresis are included.

  11. Low-noise pulsed current source for magnetic-field measurements of magnets for accelerators

    Science.gov (United States)

    Omelyanenko, M. M.; Borisov, V. V.; Donyagin, A. M.; Khodzhibagiyan, H. G.; Kostromin, S. A.; Makarov, A. A.; Shemchuk, A. V.

    2017-01-01

    The schematic diagram, design, and technical characteristics of the pulsed current source developed and produced for the magnetic-field measurement system of superconducting magnets for accelerators are described. The current source is based on the current regulator with pass transistor bank in the linear mode. Output current pulses (0-100 A) are produced by utilizing the energy of the preliminarily charged capacitor bank (5-40 V), which is additionally charged between pulses. The output current does not have the mains frequency and harmonics ripple. The relative noise level is less than-100 dB (or 10-5) of RMS value (it is defined as the ratio of output RMS noise current to a maximal output current of 100 A within the operating bandwidth, expressed in dB). The work was performed at the Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research (JINR).

  12. Development of a Rigid One-Meter-Side and Cooled Coil Sensor at 77 K for Magnetic Resonance Sounding to Detect Subsurface Water Sources.

    Science.gov (United States)

    Lin, Jun; Du, Guanfeng; Zhang, Jian; Yi, Xiaofeng; Jiang, Chuandong; Lin, Tingting

    2017-06-12

    Magnetic resonance sounding (MRS) using the Earth's magnetic field is a noninvasive and on-site geophysical technique providing quantitative characteristics of aquifers in the subsurface. When the MRS technology is applied in a mine or tunnel for advance detecting the source of water that may cause disastrous accident, spatial constraints limit the size of coil sensor and thus lower the detection capability. In this paper, a coil sensor for detecting the weak MRS signal is designed and the signal to noise (SNR) for the coil sensor is analyzed and optimized. The coil sensor has a rigid structure and square size of 1 m for deploying in a narrow underground space and is cooled at a low temperature of 77 K for improving the SNR. A theoretical calculation and an experimental test in an electromagnetically shielded room (EMSR) show that the optimal design of coil sensor consists of an 80-turn coil and a low-current-noise preamplifier AD745. It has a field sensitivity of 0.17 fT / Hz in the EMSR at 77 K, which is superior to the low temperature Superconducting Quantum Interference Device (LT SQUID) that is the latest application in MRS and the cooled coil with a diameter of 9 cm when detecting the laboratory NMR signal in kHz range. In the field experiment above the Taipingchi Reservoir near Changchun in China, the cooled coil sensor (CCS) developed in this paper has successfully obtained a valid weak MRS signal in high noise environment. The field results showed that the quality of measured MRS signal at 77 K is significantly superior to that at 298 K and the SNR is improved up to three times. This property of CCS makes the MRS instrument more convenient and reliable in a constricted space underground engineering environment (e.g., a mine or a tunnel).

  13. Development of a Rigid One-Meter-Side and Cooled Coil Sensor at 77 K for Magnetic Resonance Sounding to Detect Subsurface Water Sources

    Directory of Open Access Journals (Sweden)

    Jun Lin

    2017-06-01

    Full Text Available Magnetic resonance sounding (MRS using the Earth’s magnetic field is a noninvasive and on-site geophysical technique providing quantitative characteristics of aquifers in the subsurface. When the MRS technology is applied in a mine or tunnel for advance detecting the source of water that may cause disastrous accident, spatial constraints limit the size of coil sensor and thus lower the detection capability. In this paper, a coil sensor for detecting the weak MRS signal is designed and the signal to noise (SNR for the coil sensor is analyzed and optimized. The coil sensor has a rigid structure and square size of 1 m for deploying in a narrow underground space and is cooled at a low temperature of 77 K for improving the SNR. A theoretical calculation and an experimental test in an electromagnetically shielded room (EMSR show that the optimal design of coil sensor consists of an 80-turn coil and a low-current-noise preamplifier AD745. It has a field sensitivity of 0.17 fT / Hz in the EMSR at 77 K, which is superior to the low temperature Superconducting Quantum Interference Device (LT SQUID that is the latest application in MRS and the cooled coil with a diameter of 9 cm when detecting the laboratory NMR signal in kHz range. In the field experiment above the Taipingchi Reservoir near Changchun in China, the cooled coil sensor (CCS developed in this paper has successfully obtained a valid weak MRS signal in high noise environment. The field results showed that the quality of measured MRS signal at 77 K is significantly superior to that at 298 K and the SNR is improved up to three times. This property of CCS makes the MRS instrument more convenient and reliable in a constricted space underground engineering environment (e.g., a mine or a tunnel.

  14. Simulation and experiments of stacks of high temperature superconducting coated conductors magnetized by pulsed field magnetization with multi-pulse technique

    Science.gov (United States)

    Zou, Shengnan; Zermeño, Víctor M. R.; Baskys, A.; Patel, A.; Grilli, Francesco; Glowacki, B. A.

    2017-01-01

    High temperature superconducting bulks or stacks of coated conductors (CCs) can be magnetized to become trapped field magnets (TFMs). The magnetic fields of such TFMs can break the limitation of conventional magnets (low cost. However, due to the heat generation during the magnetization, the trapped field and flux acquired by PFM usually cannot achieve the full potential of a sample (acquired by the field cooling or zero field cooling method). The multi-pulse technique was found to effectively improve the trapped field by PFM in practice. In this work, a systematic study on the PFM with successive pulses is presented. A 2D electromagnetic-thermal coupled model with comprehensive temperature dependent parameters is used to simulate a stack of CCs magnetized by successive magnetic pulses. An overall picture is built to show how the trapped field and flux evolve with different pulse sequences and the evolution patterns are analyzed. Based on the discussion, an operable magnetization strategy of PFM with successive pulses is suggested to provide more trapped field and flux. Finally, experimental results of a stack of CCs magnetized by typical pulse sequences are presented for demonstration.

  15. A Comparison of Magnetic Resonance Angiography Techniques for the Evaluation of Intracranial Aneurysms Treated With Stent-assisted Coil Embolization.

    Science.gov (United States)

    Thamburaj, Krishnamoorthy; Cockroft, Kevin; Agarwal, Amit K; Sabat, Shyam; Kalapos, Paul

    2016-12-02

    To identify the effective magnetic resonance angiography (MRA) technique to monitor intracranial aneurysms treated with stent-assisted coiling. Retrospective analysis of various MRA techniques was performed in 42 patients. Three neuroradiologists independently compared non-contrast time of flight (ncTOF) MRA of the head, contrast-enhanced time of flight (cTOF) MRA of the head and dynamic contrast-enhanced MRA (CEMRA) of the head and neck or of the head. Digital subtraction angiography (DSA) was available for comparison in 32 cases. Inter-rater agreement (kappa statistic) was assessed. Artifactual in-stent severe stenosis or flow gap was identified by ncTOF MRA in 23 of 42 cases (55%) and by cTOF MRA in 23 of 38 cases (60%). DSA excluded in-stent stenosis or occlusion in all 32 cases. No difference was noted between ncTOF and cTOF in the demonstration of neck remnants or residual aneurysms in three cases each. CEMRA of the head and neck or of the head was rated superior to ncTOF and cTOF MRA by all three investigators in seven out of eight cases. In one case, all three techniques demonstrated signifcant artifacts due to double stent placement during coiling. The kappa statistic revealed 0.8 agreement between investigators. In the assessment of stent-assisted coiling of intracranial aneurysm, both ncTOF and cTOF MRA show similar results. CEMRA tends to show better flow signals in stent and residual aneurysm.

  16. Endometrial cancer: results of clinical and histopathological staging compared to magnetic resonance imaging using an endorectal surface coil.

    Science.gov (United States)

    Brocker, Kerstin A; Alt, Céline D; Breyer, Ulrike; Hallscheidt, Peter; Sohn, Christof

    2014-04-01

    The aim of this study was to evaluate the staging accuracy of magnetic resonance imaging (MRI) with an endorectal surface coil on patients with endometrial cancer compared to results obtained using the International Federation of Gynecology and Obstetrics (FIGO) classification and histopathology. In this prospective study, patients with biopsy-proven endometrial cancer were staged clinically using the FIGO classification before undergoing 1.5 T MRI with an endorectal surface coil (eMRI). The staging results from the FIGO classification and from eMRI were compared with the histopathological results after surgery. Furthermore, each patient was given a questionnaire designed by the authors to evaluate the patients' opinions on eMRI. The responses were examined using the methods of descriptive analysis. A total of 33 consecutive patients were recruited and clinically staged before undergoing eMRI. Subsequently, 21 patients underwent primary surgery and 12 patients primary radiochemotherapy. The FIGO stages were identical to the histopathological results in 17 (81 %) cases, and those of eMRI were identical in 15 (71 %). In 13 (62 %) cases, FIGO and eMRI staged identically. In 12 (57 %) of the 21 cases, all three staging modalities diagnosed the same tumor stage. eMRI overstaged the tumor in four patients and understaged it in two. All T1a tumors were staged correctly by eMRI. Eighteen patients answered the questionnaire, of whom 11 (61 %) patients stated that their experience with eMRI was overall positive. It seems feasible in principle to employ eMRI for diagnosing patients with endometrial cancer stage T1a. Yet, the results of eMRI for our study population were not better than the results obtained using the FIGO classification or than those from using MRI without an endorectal surface coil. eMRI thus does not meet the expectations based on its use in other pelvic tumor entities.

  17. SAR and thermal response effects of a two-arm Archimedean spiral coil in a magnetic induction sensor on a human head.

    Science.gov (United States)

    Zhang, Ziyi; Liu, Peiguo; Zhou, Dongming; Zhang, Liang; Ding, Liang

    2015-01-01

    This study investigates the radiation safety of a newly designed magnetic induction sensor. This novel magnetic induction sensor uses a two-arm Archimedean spiral coil (TAASC) as the exciter. A human head model with a real anatomical structure was used to calculate the specific absorption rate (SAR) and temperature change. Computer Simulation Technology (CST) was used to determine the values of the peak 10-g SAR under different operating parameters (current, frequency, horizontal distance between the excitation coil and the receiver coil, vertical distance between the top of the head model and the XOY plane, position of excitation coil, and volume of hemorrhage). Then, the highest response for the SAR and temperature rise was determined. The results showed that this new magnetic induction sensor is safe in the initial state; for safety reasons, the TAASC current should not exceed 4 A. The scalp tissue absorbed most of the electromagnetic energy. The TAASC's SAR/thermal performance was close to that of the circular coil.

  18. Analytical Expressions of Induced Coil Voltages Generated by Pulsed Eddy Currents for Metal Pipe Testing%金属管道外侧脉冲磁场激励的线圈电压解析式

    Institute of Scientific and Technical Information of China (English)

    陈兴乐; 雷银照

    2012-01-01

    This paper solved the eddy current field induced by pulse current in saddle-shaped coil outside the metal pipe with linear conductivity and permeability.By using the second order vector potential,the magnetic field in the air could be described by a single scalar function,and the calculation process could thus be simplified.We presented the boundary value problems of this electromagnetic model and obtained the linear equations for unknown coefficients.Then,we reduced the condition number of the coefficient matrix through substitution of variables and solved the linear equations by using block matrix.Based on the Fourier Transform,we obtained the analytical solution of the coil voltage induced by arbitrary waveform current in the multi-turn saddle-shaped drive coil.The analytical expressions were verified through a comparison of the theoretical curves with the experimental curves of the austenite stainless steel pipes.Results in this paper provide theoretical basis for simulation calculation and experimental study of the pulsed eddy current testing for pipes.%求解了线性导电、导磁中空管道外鞍形线圈通有脉冲电流时的涡流场。引入二阶矢量位,用一个标量函数来描述空气场域中的磁场,简化了求解过程。给出了模型的电磁场边值问题,得出了待定系数线性方程组,通过变量代换,降低了系数矩阵的条件数,并用分块矩阵的方法求解了此方程组。利用傅里叶变换,得到了多匝鞍形激励线圈中通有任意波形电流时检测线圈两端感应电压的解析式。通过与奥氏体不锈钢管的实验曲线对比,验证了所得解析式的正确性。所得结果可为管道脉冲涡流检测的仿真计算与实验研究提供参考。

  19. Coil-type Fano Resonances: a Plasmonic Approach to Magnetic Sub-diffraction Confinement

    KAUST Repository

    Panaro, Simone

    2015-05-10

    Matrices of nanodisk trimers are introduced as plasmonic platforms for the generation of localized magnetic hot-spots. In Fano resonance condition, the optical magnetic fields can be squeezed in sub-wavelength regions, opening promising scenarios for spintronics.

  20. Simultaneous measurement of magnetization and magnetostriction in 50 T pulsed high magnetic fields.

    Science.gov (United States)

    Doerr, M; Lorenz, W; Neupert, T; Loewenhaupt, M; Kozlova, N V; Freudenberger, J; Bartkowiak, M; Kampert, E; Rotter, M

    2008-06-01

    To simultaneously perform magnetization and magnetostriction measurements in high magnetic fields, a miniaturized device was developed that combines an inductive magnetometer with a capacitive dilatometer and, therefore, it is called "dilamagmeter." This combination of magnetic and magnetoelastic investigations is a new step to a complex understanding of solid state properties. The whole system can be mounted in a 12 mm clear bore of any cryostat usually used in nondestructive pulsed high field magnets. The sensitivity of both methods is about 10(-5) A m(2) for magnetization and 10(-5) relative changes in length for striction measurements. Measurements on a GdSi single crystal, which are corrected by the background signal of the experimental setup, agree well with the results of steady field experiments. All test measurements, which are up until now performed in the temperature range of 4-100 K, confirm the perfect usability and high stability in pulsed fields up to 50 T with a pulse duration of 10 ms.

  1. Enhancement of the amplitude of somatosensory evoked potentials following magnetic pulse stimulation of the human brain.

    Science.gov (United States)

    Seyal, M; Browne, J K; Masuoka, L K; Gabor, A J

    1993-01-01

    In this study we have demonstrated an enhancement of cortically generated wave forms of the somatosensory evoked potential (SEP) following magnetic pulse stimulation of the human brain. Subcortically generated activity was unaltered. The enhancement of SEP amplitude was greatest when the median nerve was stimulated 30-70 msec following magnetic pulse stimulation over the contralateral parietal scalp. We posit that the enhancement of the SEP is the result of synchronization of pyramidal cells in the sensorimotor cortex resulting from the magnetic pulse.

  2. Internal Magnetic Field, Temperature and Density Measurements on Magnetized HED plasmas using Pulsed Polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Roger J. [Univ. of Washington, Seattle, WA (United States)

    2016-10-20

    The goals were to collaborate with the MSX project and make the MSX platform reliable with a performance where pulsed polarimetry would be capable of adding a useful measurement and then to achieve a first measurement using pulsed polarimetry. The MSX platform (outside of laser blow off plasmas adjacent to magnetic fields which are low beta) is the only device that can generate high beta magnetized collisionless supercritical shocks, and with a large spatial size of ~10 cm. Creating shocks at high Mach numbers and investigating the dynamics of the shocks was the main goal of the project. The MSX shocks scale to astrophysical magnetized shocks and potentially throw light on the generation of highly energetic particles via a mechanism like the Fermi process.

  3. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  4. Fast magnetic field annihilation driven by two laser pulses in underdense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y. J.; Kumar, D.; Weber, S.; Korn, G. [Institute of Physics of the ASCR, ELI-Beamlines, 18221 Prague (Czech Republic); Klimo, O. [Institute of Physics of the ASCR, ELI-Beamlines, 18221 Prague (Czech Republic); FNSPE, Czech Technical University in Prague, 11519 Prague (Czech Republic); Bulanov, S. V.; Esirkepov, T. Zh. [Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215 (Japan)

    2015-10-15

    Fast magnetic annihilation is investigated by using 2.5-dimensional particle-in-cell simulations of two parallel ultra-short petawatt laser pulses co-propagating in underdense plasma. The magnetic field generated by the laser pulses annihilates in a current sheet formed between the pulses. Magnetic field energy is converted to an inductive longitudinal electric field, which efficiently accelerates the electrons of the current sheet. This new regime of collisionless relativistic magnetic field annihilation with a timescale of tens of femtoseconds can be extended to near-critical and overdense plasma with the ultra-high intensity femtosecond laser pulses.

  5. Study of back quench in the superconducting coils of the barrel toroid of ATLAS due to losses during a "slow" discharge of the magnet

    CERN Document Server

    Sorbi, M

    2001-01-01

    An analysis of the losses in the Al matrix of the conductor and in the casings where the superconducting coils are located, due to a "slow discharge" (heaters of the coils off) of the Barrel Toroid of ATLAS has been carried out. The values of the losses have been calculated and cross checked by means of different analytical and FE approaches, and simple relations have been carried out in order to correlate them with the main electrical parameters of the magnet. With a thermal analysis, the increase of temperature in the superconducting coils due to these extra losses has been calculated. The temperature margin (i.e. difference between current sharing temperature and operating temperature) has been calculated and compared with the temperature margin during the normal run of the magnet. (6 refs).

  6. A combined vector and scalar potential method for 3D magnetic fields and transient Eddy current effects in recording head coils

    Energy Technology Data Exchange (ETDEWEB)

    Hrkac, G. [Department of Engineering Materials, University of Sheffield, Western Bank, Sheffield (United Kingdom)]. E-mail: g.hrkac@sheffield.ac.uk; Schrefl, T. [Department of Engineering Materials, University of Sheffield, Western Bank, Sheffield (United Kingdom); Schabes, M. [Hitachi San Jose Research Center, Hitachi Global Storage Technologies, San Jose, CA 95193 (United States)

    2006-10-01

    A mixed 3D finite element vector and scalar potential method was developed to treat inhomogeneities in coils of recording heads. It is assumed that in the yoke of the recording head the change of magnetization, generates a magnetic field that leads to Eddy current effects in the coil. The problem is separated into two regions, a conducting (the coil) and in a non-conducting one. For the conducting region we solve a vector potential diffusion equation with all contributing currents as a source term, including the Eddy currents produced by the yoke and for the non-conducting region a scalar potential partial differential equation is solved. To combine the vector and the scalar potential method special boundary conditions are implemented. The combined system of partial differential equations are solved simultaneously with a finite element/boundary element method.

  7. Response of magnetic tunnel junction-based spin-torque oscillator to series of sub-nanosecond magnetic pulses

    Science.gov (United States)

    Nagasawa, Tazumi; Suto, Hirofumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2016-11-01

    Spin-torque oscillator (STO) read heads with a high data transfer rate for hard disk drives have been proposed. To investigate the oscillation stability and frequency agility of the STO under magnetic pulses, we measured the response waveforms of the STO to a series of sub-nanosecond magnetic pulses and calculated the delay-detection output signal from the STO waveforms. We found that stable oscillation was maintained under the magnetic pulses and that the delay-detection output signal reproduced the applied pulse pattern. The results indicate that the STO read heads can operate at data transfer rates higher than 2 Gbits/s.

  8. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences

    Energy Technology Data Exchange (ETDEWEB)

    Fluegge, Tabea; Eisenbeiss, Anne-Kathrin; Schmelzeisen, Rainer; Nelson, Katja [University Medical Center Freiburg, Department of Oral and Maxillofacial Surgery, Freiburg (Germany); Hoevener, Jan-Bernd; Ludwig, Ute; Hennig, Juergen [University Medical Center Freiburg, Medical Physics, Department of Radiology, Freiburg (Germany); Spittau, Bjoern [Albert Ludwig University of Freiburg, Institute of Anatomy and Cell Biology, Freiburg (Germany)

    2016-12-15

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 x 250 x 500 μm{sup 3}, FOV of 64 x 64 x 28 mm{sup 3} and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm{sup 3} and FOV of 34 cm{sup 3} in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm{sup 3} and FOV of 36.5 cm{sup 3}. Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (c{sub v}). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. (orig.)

  9. Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states

    Science.gov (United States)

    Heo, Changhoon; Kiselev, Nikolai S.; Nandy, Ashis Kumar; Blügel, Stefan; Rasing, Theo

    2016-06-01

    Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial anisotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion.

  10. A double-quadrature radiofrequency coil design for proton-decoupled carbon-13 magnetic resonance spectroscopy in humans at 7T.

    Science.gov (United States)

    Serés Roig, Eulalia; Magill, Arthur W; Donati, Guillaume; Meyerspeer, Martin; Xin, Lijing; Ipek, Ozlem; Gruetter, Rolf

    2015-02-01

    Carbon-13 magnetic resonance spectroscopy ((13) C-MRS) is challenging because of the inherent low sensitivity of (13) C detection and the need for radiofrequency transmission at the (1) H frequency while receiving the (13) C signal, the latter requiring electrical decoupling of the (13) C and (1) H radiofrequency channels. In this study, we added traps to the (13) C coil to construct a quadrature-(13) C/quadrature-(1) H surface coil, with sufficient isolation between channels to allow simultaneous operation at both frequencies without compromise in coil performance. Isolation between channels was evaluated on the bench by measuring all coupling parameters. The quadrature mode of the quadrature-(13) C coil was assessed using in vitro (23) Na gradient echo images. The signal-to-noise ratio (SNR) was measured on the glycogen and glucose resonances by (13) C-MRS in vitro, compared with that obtained with a linear-(13) C/quadrature-(1) H coil, and validated by (13) C-MRS in vivo in the human calf at 7T. Isolation between channels was better than -30 dB. The (23) Na gradient echo images indicate a region where the field is strongly circularly polarized. The quadrature coil provided an SNR enhancement over a linear coil of 1.4, in vitro and in vivo. It is feasible to construct a double-quadrature (13) C-(1) H surface coil for proton decoupled sensitivity enhanced (13) C-NMR spectroscopy in humans at 7T. © 2014 Wiley Periodicals, Inc.

  11. Differential effects of magnetic pulses on the orientation of naturally migrating birds.

    Science.gov (United States)

    Holland, Richard A

    2010-11-01

    In migratory passerine birds, strong magnetic pulses are thought to be diagnostic of the remagnetization of iron minerals in a putative sensory system contained in the beak. Previous evidence suggests that while such a magnetic pulse affects the orientation of migratory birds in orientation cages, no effect was present when pulse-treated birds were tested in natural migration. Here we show that two migrating passerine birds treated with a strong magnetic pulse, designed to alter the magnetic sense, migrated in a direction that differed significantly from that of controls when tested in natural conditions. The orientation of treated birds was different depending on the alignment of the pulse with respect to the magnetic field. These results can aid in advancing understanding of how the putative iron-mineral-based receptors found in birds' beaks may be used to detect and signal the intensity and/or direction of the Earth's magnetic field.

  12. Ressonância magnética das vias lacrimais: estudo comparativo entre bobinas de superfície convencionais e microscópicas Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    Directory of Open Access Journals (Sweden)

    Luiz de Abreu Junior

    2008-08-01

    Full Text Available OBJETIVO: A ressonância magnética tem sido utilizada para avaliar as vias lacrimais, com vantagens em relação à dacriocistografia por raios-X. O objetivo deste trabalho é obter imagens de alta resolução utilizando bobinas de superfície microscópicas para avaliação de estruturas normais das vias lacrimais, comparando com o aspecto observado utilizando-se bobinas de superfície convencionais. MATERIAIS E MÉTODOS: Cinco voluntários assintomáticos, sem histórico de lacrimejamento, submeteram-se a ressonância magnética de alto campo, com bobinas de superfície (convencional e microscópica, com seqüência STIR após instilação de soro fisiológico. A identificação das estruturas anatômicas normais das vias lacrimais foi comparada utilizando-se as duas bobinas. Mediante uso de um sistema de escore, um valor médio de cada estrutura foi calculado por dois examinadores, consensualmente. RESULTADOS: Em 90% das vezes houve aumento do escore, atribuído à estrutura anatômica no estudo com a bobina microscópica. Em média, houve aumento de 1,17 ponto no escore, por estrutura anatômica visualizada, quando se utilizou a bobina microscópica. Observou-se, ainda, melhora subjetiva da relação sinal-ruído ao se utilizar a bobina microscópica. CONCLUSÃO: A dacriocistografia por ressonância magnética com bobinas microscópicas é um método adequado para o estudo das vias lacrimais, resultando em imagens de melhor qualidade quando comparada ao uso de bobinas de superfície convencionais.OBJECTIVE: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high-resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. MATERIALS AND METHODS: Five asymptomatic volunteers with no history of

  13. Applications of pulsed nuclear magnetic resonance to chemistry: multiple-pulse NMR, cross polarization, magic-angle spinning annd instrumental design

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, P.D.

    1979-07-01

    Pulsed Nuclear Magnetic Resonance (NMR) has been applied to: (1) Measurements of the prinicpal components of the proton shielding tensors of the hydrides of zirconium chloride and zirconium bromide. Multiple-Pulse techniques have been used to remove static homonuclear dipolar coupling. The anisotropies and isotropic shifts of these tensors have been used to infer the possible locations of the hydrogen within the sandwich-like layers of these unusual compounds. (2) Studies of the oscillatory transfer of magnetic polarization between /sup 1/H and /sup 29/Si in substituted silanes. The technique of J Cross Polarization has been used to enhance sensitivity. The /sup 29/Si NMR shifts of -Si-O- model compounds have been investigated as a possible probe for future studies of the environment of bound oxygen in coal-derived liquids. (3) Measurements of the aromatic fraction of /sup 13/C in whole coals. The techniques of /sup 1/H-/sup 13/C Cross Polarization and Magic-Angle Spinning have been used to enhance sensitivity and remove shift anisotropy. Additional topics described are: (4) Calculation and properties of the broadened lineshape of the shileding Powder Pattern. (5) Calculation of the oscillatory transfer of magnetic polarization for an I-S system. (6) Numerical convolution and its uses. (7) The technique of digital filtering applied in the frequency domain. (8) The designs and properties of four NMR probe-circuits. (9) The design of a single-coil double-resonance probe for combined Magic-Angle Spinning and Cross Polarization. (10) The designs of low Q and high Q rf power amplifiers with emphasis on the rf matching circuitry.

  14. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences.

    Science.gov (United States)

    Flügge, Tabea; Hövener, Jan-Bernd; Ludwig, Ute; Eisenbeiss, Anne-Kathrin; Spittau, Björn; Hennig, Jürgen; Schmelzeisen, Rainer; Nelson, Katja

    2016-12-01

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 × 250 × 500 μm(3), FOV of 64 × 64 × 28 mm(3) and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm(3) and FOV of 34 cm(3) in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm(3) and FOV of 36.5 cm(3). Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (cv). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. • MRI is a clinically available diagnostic tool in dentistry • Intraoral hard and soft tissues can be imaged with a high resolution with MRI • The dimensional accuracy of MRI is comparable to cone beam CT.

  15. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 32, Coil assembly documentation. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.M. [Babcock and Wilcox Co., Lynchburg, VA (United States)

    1995-08-18

    This document is intended to address the contract requirement for providing coil assembly documentation, as required in the applicable Statement of Work: `Provide preliminary procedures and preliminary design and supporting analysis of the equipment, fixtures, and hardware required to integrate and align the impregnated coil assemblies with the coil cases and intercoil structure. Each of the three major processes associated with the coil case and intercoil structure (ICS), TF Case Fabrication, Coil Preparation for Case Assembly are examined in detail. The specific requirements, processes, equipment, and technical concerns for each of these assembly processes is presented.

  16. DYNAMIC COMPACTION OF PURE COPPER POWDER USING PULSED MAGNETIC FORCE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The compaction of pure Cu powder was carried out through a series of experiments using dynamic magnetic pulse compaction, and the effects of process parameters, such as discharge energy and compacting direction, on the homogeneity and the compaction density of compacted specimens were presented and discussed. The results indicated that the compaction density of specimens increased with the augment of discharge voltage and time. During unidirectional compaction, there was a density gradient along the loading direction in the compacted specimen, and the minimum compaction density was localized to the center of the bottom of the specimen. The larger the aspect ratio of a powder body, the higher the compaction density of the compacted specimen. And high conductivity drivers were beneficial to the increase of the compaction density. The iterative and the double direction compaction were efficient means to manufacture the homogeneous and high-density powder parts.

  17. Experimental Study of SO2 Removal by Pulsed DBD Along with the Application of Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    RONG Ming-zhe; LIU Ding-xin; WANG Xiao-hua; WANG Jun-hua

    2007-01-01

    Dielectric barrier discharge (DBD) for SO2 removal from indoor air is investigated.In order to improve the removal efficiency,two novel methods are combined in this paper,namely by applying a pulsed driving voltage with nanosecond rising time and applying a magnetic field.For SO2 removal efficiency,different matches of electric field and magnetic field are discussed.And nanosecond rising edge pulsed power supply and microsecond rising edge pulsed power supply are compared.It can be concluded that a pulsed DBD with nanosecond rising edge should be adopted,and electrical field and magnetic field should be applied in an appropriate match.

  18. Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaobin, E-mail: yangxb@lzu.edu.cn; Li, Xiuhong; He, Yafeng; Wang, Xiaojun; Xu, Bo

    2017-04-15

    Highlights: • The differential equation including temperature and magnetic field was derived for a long cylindrical superconductor. • Thermal stress and electromagnetic stress were studied at the same time under pulse field magnetizing. • The distributions of the magnetic field, the temperature and stresses are studied and compared for two pulse fields of the different duration. • The Role thermal stress and electromagnetic stress play in the process of pulse field magnetizing is discussed. - Abstract: A multiphysics model for the numerical computation of stresses, trapped field and temperature distribution of a infinite long superconducting cylinder is proposed, based on which the stresses, including the thermal stresses and mechanical stresses due to Lorentz force, and trapped fields in the superconductor subjected to pulsed magnetic fields are analyzed. By comparing the results under pulsed magnetic fields with different pulse durations, it is found that the both the mechanical stress due to the electromagnetic force and the thermal stress due to temperature gradient contribute to the total stress level in the superconductor. For pulsed magnetic field with short durations, the thermal stress is the dominant contribution to the total stress, because the heat generated by AC-loss builds up significant temperature gradient in such short durations. However, for a pulsed field with a long duration the gradient of temperature and flux, as well as the maximal tensile stress, are much smaller. And the results of this paper is meaningful for the design and manufacture of superconducting permanent magnets.

  19. α/β coiled coils.

    Science.gov (United States)

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte

    2016-01-15

    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold.

  20. Effect of pulse magnetic field on solidification structure and properties of pure copper

    Institute of Scientific and Technical Information of China (English)

    LIAO Xi-liang; GONG Yong-yong; LI Ren-xing; CHEN Wen-jie; ZHAI Qi-jie

    2007-01-01

    The application of pulse magnetic field to metal solidification is an advanced technique which can remarkably refine solidification structure. In this paper, the effect of pulse magnetic field on solidification structure,mechanical properties and conductivity of pure copper was experimentally investigated. The results showed that the solidification structure transformed from coarse columnar crystal to fine globular crystal with increasing pulse voltage.Increasing pulse voltage also improved the tensile strength. However, with the increase of pulse voltage, the elongation and electrical resistivity firstly decreased, then increased when the pulse voltage beyond a critical value. Moreover,in some conditions, pulse magnetic field can simultaneously improve the conductivity and mechanical property of pure copper.

  1. Reliable spin-transfer torque driven precessional magnetization reversal with an adiabatically decaying pulse

    Science.gov (United States)

    Pinna, D.; Ryan, C. A.; Ohki, T.; Kent, A. D.

    2016-05-01

    We show that a slowly decaying current pulse can lead to nearly deterministic precessional switching in the presence of noise. We consider a biaxial macrospin, with an easy axis in-plane and a hard axis out-of-plane, typical of thin film nanomagnets patterned into asymmetric shapes. Out-of-plane precessional magnetization orbits are excited with a current pulse with a component of spin polarization normal to the film plane. By numerically integrating the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation we show that thermal noise leads to strong dephasing of the magnetization orbits. However, an adiabatically decreasing pulse amplitude overwhelmingly leads to magnetization reversal, with a final state dependent on the pulse polarity. We develop an analytic model to explain this phenomena and to determine the pulse decay time necessary for adiabatic magnetization relaxation and thus deterministic magnetization switching.

  2. Capsule of parotid gland tumor: evaluation by 3.0 T magnetic resonance imaging using surface coils

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Mana; Fujii, Shinya; Nishihara, Keisuke; Matsusue, Eiji; Kodani, Kazuhiko; Kaminou, Toshio; Ogawa, Toshihide (Div. of Radiology, Dept. of Pathophysiological and Therapeutic Science, Tottori Univ. Faculty of Medicine, Tottori (Japan)), e-mail: ishibashi-ttr@umin.ac.jp; Kawamoto, Katsuyuki (Div. of Otolaryngology, Head and Neck Surgery, Dept. of Medicine of Sensory and Motor Organs, Tottori Univ. Faculty of Medicine, Tottori (Japan))

    2010-12-15

    Background: Magnetic resonance (MR) imaging of parotid gland tumors has been widely reported, although few reports have evaluated the capsule of parotid gland tumors in detail. Purpose: To evaluate the diagnostic usefulness of 3.0 T MR imaging with surface coils for detection of the parotid gland tumor capsule, and to clarify the characteristics of the capsules. Material and Methods: Seventy-eight patients with parotid gland tumors (63 benign and 15 malignant) were evaluated. Axial and coronal T2-weighted and contrast-enhanced T1-weighted images were obtained using a 3.0 T MR scanner with 70 mm surface coils. It was retrospectively assessed whether each parotid gland tumor was completely surrounded by a capsule. The capsule was classified as regular or irregular in terms of capsular thickness, and as none, mildly, or strongly enhancing in terms of contrast enhancement. Visual interpretations were compared with histopathological findings to evaluate the diagnostic ability of MR imaging to detect parotid gland tumor capsules. Statistical evaluation was conducted concerning the presence of capsules, capsular irregularity, and the difference in contrast enhancement between benign and malignant tumors, and that between pleomorphic adenomas and Warthin's tumors. Results: Capsules completely surrounding the tumor on MR imaging yielded a sensitivity of 87.7% (50/57), specificity of 90.5% (19/21), and accuracy of 88.5% (69/78). Benign tumors had a capsule completely surrounding the tumor significantly more often than malignant tumors (P = 0.009). Concerning capsular irregularity, malignant tumors tended to have more irregular capsules than benign tumors, although there were no significant differences. The capsules of malignant tumors enhanced significantly more strongly than those of benign tumors (P = 0.018). Conclusion: 3.0 T MR imaging using surface coils could correctly depict parotid gland tumor capsules in most cases. Most benign and some malignant tumors had

  3. Simulation Research of Magnetically-coupled Resonant Wireless Power Transfer System with Single Intermediate Coil Resonator Based on S Parameters Using ANSYS

    Directory of Open Access Journals (Sweden)

    Liu Cheng

    2016-01-01

    Full Text Available ANSYS can be a powerful tool to simulate the process of energy exchange in magnetically-coupled resonant wireless power transfer system. In this work, the MCR-WPT system with single intermediate coil resonator is simulated and researched based on scattering parameters using ANSYS Electromagnetics. The change rule of power transfer efficiency is reflected intuitively through the scattering parameters. A new method of calculating the coupling coefficient is proposed. A cascaded 2-port network model using scattering parameters is adopted to research the efficiency of transmission. By changing the relative position and the number of turns of the intermediate coil, we find some factors affecting the efficiency of transmission. Methods and principles of designing the MCR-WPT system with single intermediate coil resonator are obtained. And these methods have practical value with design and optimization of system efficiency.

  4. Analysis of Graphite Morphology of Gray Cast Iron in Pulse Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    LI Qiu-shu; LIU Li-qiang; ZHAI Qi-jie

    2005-01-01

    By self-made pulse electrical source and strong magnetic field solidification tester,the effect of strong pulse magnetic field on graphite morphology and solidification structure of gray cast iron was studied.The results show that the structure is remarkably refined after treated by pulse magnetic field,and the width of graphite flakes is decreased while the length is increased after a slight decrease.The solidification temperature and eutectic temperature are increased and the undercooling degree of eutectic transformation is decreased by magnetic field.

  5. Research on Nanosecond Pulse Corona Discharge with Cross Magnetic Field Applied

    Institute of Scientific and Technical Information of China (English)

    HE Zheng-hao; YU Fu-sheng; HU Feng; YUAN Yun; GUO Li-na; LI Jin

    2007-01-01

    An application of magnetic field to the nanosecond pulse corona discharge is investigated.A cylinder reactor with different corona electodes is set up for experimental study.A manetic field with its direction perpendicular to the corona discharge is applied.Different discharge images are taken under single nanosecond pulse with a high sensitive UV-visible light imagine recorder.Experimental results show that with a cross magnetic field the nanosecond out the magnetic field. The results may lead to a possibility to apply a cross magnetic field on nanosecond pulse corona discharge for getting higher desulfurization effciency.

  6. Fano coil-type resonances: a plasmonic tool for magnetic field enhancement (Conference Presentation)

    Science.gov (United States)

    Panaro, Simone; Proietti Zaccaria, Remo; Toma, Andrea

    2016-09-01

    Spintronics and spin-based technology rely on the ultra-fast unbalance of the electronic spin population in quite localized spatial regions. However, as a matter of fact, the low susceptibility of conventional materials at high frequencies strongly limits these phenomena, rendering the efficiency of magnetically active devices insufficient for application purposes. Among the possible strategies which can be envisaged, plasmonics offers a direct approach to increase the effect of local electronic unbalancing processes. By confining and enhancing free radiation in nm-size spatial regions, plasmonic nano-assemblies have demonstrated to support very intense electric and magnetic hot-spots. In particular, very recent studies have proven the fine control of magnetic fields in Fano resonance condition. The near-field-induced out-of-phase oscillation of localized surface plasmons has manifested itself with the arising of magnetic sub-diffractive hot-spots. Here, we show how this effect can be further boosted in the mid-infrared regime via the introduction of higher order plasmonic modes. The investigated system, namely Moon Trimer Resonator, combines the high efficiency of a strongly coupled nano-assembly in Fano interferential condition with the elevated tunability of the quadrupolar resonance supported by a moon-like geometry. The fine control of the apical gap in this unique nanostructure, characterizes a plasmonic device able to tune its resonance without any consequence on the magnetic hot-spot size, thus enabling an efficient squeezing in the infrared.

  7. Fano coil-type resonances: a plasmonic tool for the magnetic field manipulation (Conference Presentation)

    Science.gov (United States)

    Panaro, Simone; Proietti Zaccaria, Remo; Toma, Andrea

    2017-02-01

    Spintronics and spin-based technology rely on the ultra-fast unbalance of the electronic spin population in quite localized spatial regions. However, as a matter of fact, the low susceptibility of conventional materials at high frequencies strongly limits these phenomena, rendering the efficiency of magnetically active devices insufficient for application purposes. Among the possible strategies which can be envisaged, plasmonics offers a direct approach to increase the effect of local electronic unbalancing processes. By confining and enhancing free radiation in nm-size spatial regions, plasmonic nano-assemblies have demonstrated to support very intense electric and magnetic hot-spots. In particular, very recent studies have proven the fine control of magnetic fields in Fano resonance condition. The near-field-induced out-of-phase oscillation of localized surface plasmons has manifested itself with the arising of magnetic sub-diffractive hot-spots. Here, we show how this effect can be further boosted in the mid-infrared regime via the introduction of higher order plasmonic modes. The investigated system, namely Moon Trimer Resonator (MTR), combines the high efficiency of a strongly coupled nano-assembly in Fano interferential condition with the elevated tunability of the quadrupolar resonance supported by a moon-like geometry. The fine control of the apical gap in this unique nanostructure, characterizes a plasmonic device able to tune its resonance without any consequence on the magnetic hot-spot size, thus enabling an efficient squeezing in the infrared.

  8. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.

    Science.gov (United States)

    Miki, Kohei; Masamune, Ken

    2015-10-01

    Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.

  9. MAGNETS

    Science.gov (United States)

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  10. Measuring Earth's Local Magnetic Field Using a Helmholtz Coil

    Science.gov (United States)

    Williams, Jonathan E.

    2014-01-01

    In this paper, I present a low-cost interactive experiment for measuring the strength of Earth's local magnetic field. This activity can be done in most high schools or two-year physics laboratories with limited resources, yet will have a tremendous learning impact. This experiment solidifies the three-dimensional nature of Earth's…

  11. Thrust Stand Measurements of a Conical Pulsed Inductive Plasma Thruster

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters can su er from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA)[4], shown in Fig. 1 is a pulsed inductive plasma thruster that is able to operate at lower pulse energies by partially ionizing propellant with an electron cyclotron resonance (ECR) discharge inside a conical inductive coil whose geometry serves to potentially increase propellant and plasma plume containment relative to at coil geometries. The ECR plasma is created with the use of permanent mag- nets arranged to produce a thin resonance region along the inner surface of the coil, restricting plasma formation and, in turn, current sheet formation to areas of high magnetic coupling to the driving coil.

  12. Analysis on background magnetic field to generate eddy current by pulsed gradient of permanent-magnet MRI

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper the analytical expressions for the magnetic field H and induction B in iron-pole plates generated by MRI gradient coil are given using line-current and the multilayer dielectric plate model with the mirror-image method.Eddy current emanates from the magnetic flux in the iron-pole plates.In order to fully suppress the eddy current,this magnetic flux should be fully eliminated.The research results indicate the magnetic permeability of the resist-eddy plate must be bigger than that of magnetic pole material,i.e.pure iron,and that the resist-eddy plate should be thick enough to be far away from its magnetic saturation.

  13. Experimental studies on the thermal properties of fast pulsed superconducting accelerator magnets; Experimentelle Untersuchungen thermischer Eigenschaften schnell gepulster supraleitender Beschleunigermagnete

    Energy Technology Data Exchange (ETDEWEB)

    Bleile, Alexander

    2016-01-06

    The new Facility for Antiproton and Ion Research FAIR is being constructed at the GSI research center in Darmstadt (Germany). This wordwide unique accelerator facility will provide beams of ions and antiprotons at high intensities and high energies for the fundamental research in nuclear, atomic and plasma physics as well as for applied science. The superconducting synchrotron SIS100 with a magnetic rigidity of 100 T/m, the core component of the FAIR facility will provide primary ion beams of all types from hydrogen up to uranium. One of the key technical systems of a new synchrotron are fast ramped electromagnets for the generation of fast ramped magnetic fields for deflecting and focusing of the ion beams. To reduce the energy consumption and to keep the operating costs of the synchrotron as low as possible superconducting magnet technology is applied in the SIS100. Superconducting magnets have been developed at GSI within the scope of the FAIR project. Although the superconducting magnet technology promises high cost saving, the power consumption of the fast ramped superconducting magnets can't be completely neglected. The pulsed operation generates dynamic losses in the iron yokes as well as in the superconducting coils of the magnets. A forced two-phase helium flow provides effective cooling for supercounducting magnets exposed to a continous relative high heat flow. The subject of this PhD thesis is experimental investigations and analysis of the dynamic power losses in fast ramped superconducting magnets and their dependencies on the operation cycles of the synchrotron. This research was conducted on the the first series SIS100 dipole magnet. Based on the experimentally defined dynamic heat loads and helium mass flow rates in the dipole magnet the heat loads and helium consumption for all other types of superconducting magnet modules of the SIS100 have been estimated. These results are essential for the development of the cooling system for the the

  14. Effects of beam velocity and density on an ion-beam pulse moving in magnetized plasmas

    CERN Document Server

    Zhao, Xiao-ying; Zhao, Yong-tao; Qi, Xin; Yang, Lei

    2016-01-01

    The wakefield and stopping power of an ion-beam pulse moving in magnetized plasmas are investigated by particle-in-cell (PIC) simulations. The effects of beam velocity and density on the wake and stopping power are discussed. In the presence of magnetic field, it is found that beside the longitudinal conversed V-shaped wakes, the strong whistler wave are observed when low-density and low-velocity pulses moving in plasmas. The corresponding stopping powers are enhanced due to the drag of these whistler waves. As beam velocities increase, the whistler waves disappear, and only are conversed V-shape wakes observed. The corresponding stopping powers are reduced compared with these in isotropic plasmas. When high-density pulses transport in the magnetized plasmas, the whistler waves are greatly inhibited for low-velocity pulses and disappear for high-velocity pulses. Additionally, the magnetic field reduces the stopping powers for all high-density cases.

  15. Nuclear forward scattering of synchrotron radiation in pulsed high magnetic fields.

    Science.gov (United States)

    Strohm, C; Van der Linden, P; Rüffer, R

    2010-02-26

    We report the demonstration of nuclear forward scattering of synchrotron radiation from 57Fe in ferromagnetic alpha iron in pulsed high magnetic fields up to 30 T. The observed magnetic hyperfine field follows the calculated high field bulk magnetization within 1%, establishing the technique as a precise tool for the study of magnetic solids in very high magnetic fields. To perform these experiments in pulsed fields, we have developed a detection scheme for fully time resolved nuclear forward scattering applicable to other pump probe experiments.

  16. Development of a 50-T pulsed magnetic field facility by using an 1.5-MJ capacitor bank

    Science.gov (United States)

    Shin, Y. H.; Kim, Yongmin

    2015-09-01

    Because DC magnets consume a huge amount of electricity (resistive DC magnet) or liquid helium (superconducting magnet), a capacitor-bank-driven pulsed magnet is known to be a cost-effective way of generating high magnetic fields. This type of pulsed magnet is normally operated at liquid nitrogen temperature and consumes little electric power to generate over 50 tesla (T) during a short transient time of less than 50 millisecond (ms). With modern fast data acquisition systems, almost all kinds of physical quantities, such as photoluminescence, magnetization or resistance can be measured during a short magnetic field pulse. We report a recently home-built capacitor-bankdriven pulsed magnetic field facility, in which a capacitor bank of 1.5-MJ maximum stored energy is utilized to generate pulsed magnetic fields up to 50 T with transient pulse time of 22 ms.

  17. Generation of flat-top pulsed magnetic fields with feedback control approach

    CERN Document Server

    Kohama, Yoshimitsu

    2015-01-01

    We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet, and was tested using a 60-T pulsed magnet. With the developed feedback controller, we have demonstrated flat-top magnetic fields as high as 60.64 T with an excellent field stability of +-0.005 T. The result indicates that the flat-top pulsed magnetic field produced features high field stability and an accessible field strength. These features make this system useful for improving the resolution of data with signal averaging.

  18. Dissipation of Alfven wave pulses propagating along dipole magnetic tubes with reflections at the ionosphere

    NARCIS (Netherlands)

    Erkaev, NV; Shaidurov, VA; Semenov, VS; Biernat, HK; Heidorn, D; Lakhina, GS

    2006-01-01

    A ratio of the maximal and minimal cross sections of the magnetic tube (contraction ratio) is a crucial parameter which affects very strongly on reflections of MHD wave pulses propagating along a narrowing magnetic flux tube. In cases of large contraction ratios of magnetospheric magnetic tubes, the

  19. Experimental studies of axial magnetic fields generated in ultrashort-pulse laser-plasma interaction

    Institute of Scientific and Technical Information of China (English)

    李玉同; 张杰; 陈黎明; 赵理曾; 夏江帆; 魏志义; 江文勉

    2000-01-01

    The quasistatic axial magnetic fields in plasmas produced by ultrashort laser pulses were measured by measuring the Faraday rotation angle of the backscattered emission. The spatial distribution of the axial magnetic field was obtained with a peak value as high as 170 Tesla. Theory suggests that the axial magnetic field is generated by dynamo effect in laser-plasma interaction.

  20. Metamagnetic transitions of DyAg in pulsed high magnetic field

    Science.gov (United States)

    Yamagishi, A.; Yonenobu, K.; Kondo, O.; Morin, P.; Date, M.

    1990-12-01

    Metamagnetic transitions of a single crystal DyAg are investigated by using pulsed magnetic fields up to 410 kOe. Four step-magnetizations are found with the field along the [111] direction. These transitions are well understood by introducing a new model that the quadrupole order is quenched under high magnetic field.

  1. Metamagnetic transitions of DyAg in pulsed high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, A.; Yonenobu, K.; Kondo, O.; Date, M. (Research Center for Extreme Materials, Osaka Univ. (Japan)); Morin, P. (Lab. Louis Neel, CNRS, 38 - Grenoble (France))

    1990-12-01

    Metamagnetic transitions of a single crystal DyAg are investigated by using pulsed magnetic fields up to 410 kOe. Four step-magnetizations are found with the field along the (111) direction. These transitions are well understood by introducing a new model that the quadrupole order is quenched under high magnetic field. (orig.).

  2. A new resin system for the impregnation and bonding of large magnet coils

    CERN Document Server

    Evans, D

    1998-01-01

    ATLAS is an instrument which forms part of the Large Hadron Collider, a high energy physics experiment which is under construction at CERN, Geneva, Switzerland. The properties of the candidate resin systems developed for the impregnation of the Atlas End Cap Toroid magnets are presented. The resin systems contain a blend of two resins; a low viscosity Bisphenol F resin, with a long chain aliphatic epoxide resin. An aromatic amine curing agent was used. It was found that increased additions of the long chain aliphatic epoxide resin resulted in longer useable life, lower glass transition temperature, lower modulus, higher toughness and higher bond strength at 4 K. (4 refs).

  3. Stability Theory for Interfacial Patterns in Magnetic Pulse Welding

    Science.gov (United States)

    Nassiri, Ali; Chini, Gregory; Kinsey, Brad; UNH Team

    2013-11-01

    Magnetic Pulse Welding (MPW) is a solid state, high strain-rate joining process in which a weld of dissimilar or similar materials can be created via high-speed oblique impact of two workpieces. Experiments routinely show the emergence of a distinctive wavy pattern, with a well defined amplitude and wavelength of approximately 20 and 70 micrometers, respectively, at the interface between the two welded materials. Although the origin of the wavy pattern has been the subject of much investigation, a unique fundamental physical theory for this phenomenon is as yet not widely accepted. Some researchers have proposed that the interfacial waves are formed in a process akin to Kelvin-Helmholtz instability, with relative shear movement of the flyer and base plates providing the energy source. Here, we employ a linear stability analysis to investigate whether the wavy pattern could be the signature of a shear-driven high strain-rate instability of an elastic-plastic solid material. Preliminary results confirm that an instability giving rise to a wavy interfacial pattern is possible.

  4. Comparative study between body and surface coils in magnetic resonance mammography of silicone prosthesis; Estudo comparativo entre bobinas de corpo e superficie na mamografia por ressonancia magnetica de proteses de silicone

    Energy Technology Data Exchange (ETDEWEB)

    Scaranelo, Anabel Medeiros [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Diagnostico por Imagem]. E-mail: anabelms@uol.com.br

    2001-04-01

    Magnetic resonance imaging scans using predefined parameters were performed in patients with silicone breast implants. The same group of patients was submitted to magnetic resonance imaging scans using surface breast coils and body coils, and the results were compared. A total of 43 single-lumen silicone-gel breast implants in 24 patients were examined. The signal-to-noise ratio was greater for the breast coil than for the body coil. Radial folds were identified with equal resolution by both in almost 82% of the cases on the right side and 95% on the left side. In about 5% of the cases the folds were seen exclusively when the breast coil used. The linguine sign was almost equally with both methods. In just one case the linguine sign was observed only by using the breast coil. Identification of building or irregularity of contours were concordant using both techniques. We concluded that although magnetic resonance imaging quality is better using a dedicated coil, silicone breast implants can be assessed with the same diagnostic accuracy using a body coil. (author)

  5. Pulsed thrust measurements using electromagnetic calibration techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tang Haibin; Shi Chenbo; Zhang Xin' ai; Zhang Zun; Cheng Jiao [School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)

    2011-03-15

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 {mu}N s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measured to give a 310 {mu}N s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 {mu}N s with 95% credibility.

  6. Changes in brain magnetic resonance imaging patterns for preterm infants after introduction of a magnetic resonance-compatible incubator coil system: 5-year experience at a single institution.

    Science.gov (United States)

    Cho, Hyun-Hae; Kim, In-One; Cheon, Jung-Eun; Choi, Young Hun; Lee, So Mi; Kim, Woo Sun

    2016-09-01

    To evaluate the changes in using patterns of brain magnetic resonance imaging (MRI) in preterm infants after introduction of a MR-compatible incubator coil system. Brain MRIs for preterm infants with the MR-compatible incubator coil from March 2010 to July 2014 (n=154, group A) were compared with MRIs prior to the introduction of the incubator coil, from March 2005 to February 2010 (n=65, group B). Clinical data, MRI findings, acquisition time, and incidence of adverse events during the study were retrospectively reviewed. For the qualitative analysis of the examinations, the presence of motion artefact, spatial resolution, and overall image quality were assessed. Signal uniformity of each sequence was evaluated for a quantitative comparison. Comparing with group B, Group A was significantly younger (36+3 vs. 38+3 weeks, p<0.001), had a significantly lower body weight (2006.6 and 2390.3g respectively; p<0.001) at the time of MRI, and had shorter time interval (54.3±2.6 vs. 70.5±4.4days, p=0.002) between birth and examination. Abnormal findings were noted more frequently in group A (n=100, 65%) than in B (n=24, 37%. p=0.001) with a significantly higher incidence of diffusion restriction (n=21, 13.6% vs. n=4, 6.2%, p=0.034). Mean image acquisition time was significantly shorter in group A (21.4±4.5 vs. 25.4±5.5min, p<0.001) with significant lower adverse events during MRI (n=26, 40 vs. n=6, 3.9%, p<0.001). Group A exhibited significantly less motion artefact, better spatial resolution, and better overall image quality with decreased signal variation than group B (all p<0.001). Application of the MR-compatible incubator for preterm brain MRI evaluation is safer and provides more timely evaluation of preterm infants with better image quality. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. A method for calibrating coil constants by using the free induction decay of noble gases

    Science.gov (United States)

    Chen, Linlin; Zhou, Binquan; Lei, Guanqun; Wu, Wenfeng; Wang, Jing; Zhai, Yueyang; Wang, Zhuo; Fang, Jiancheng

    2017-07-01

    We propose a precise method to calibrate the coil constants of spin-precession gyroscopes and optical atomic magnetometers. This method is based on measuring the initial amplitude of Free Induction Decay (FID) of noble gases, from which the π /2 pulse duration can be calculated, since it is inversely proportional to the amplitude of the π /2 pulse. Therefore, the coil constants can be calibrated by measuring the π /2 pulse duration. Compared with the method based on the Larmor precession frequency of atoms, our method can avoid the effect of the pump and probe powers. We experimentally validated the method in a Nuclear Magnetic Resonance Gyroscope (NMRG), and the experimental results show that the coil constants are 436.63 ±0.04 nT/mA and 428.94 ±0.02 nT/mA in the x and y directions, respectively.

  8. Implementing and diagnosing magnetic flux compression on the Z pulsed power accelerator

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Ryan D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bliss, David E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gomez, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Stephanie B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jennings, Christopher Ashley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Slutz, Stephen A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rovang, Dean C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knapp, Patrick F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schmit, Paul F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Awe, Thomas James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hess, M. H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lemke, Raymond W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dolan, D. H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lamppa, Derek C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jobe, Marc Ronald Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fang, Lu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hahn, Kelly D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chandler, Gordon A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Gary Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ruiz, Carlos L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maurer, A. J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robertson, Grafton Kincannon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cuneo, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sinars, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tomlinson, Kurt [General Atomics, San Diego, CA (United States); Smith, Gary [General Atomics, San Diego, CA (United States); Paguio, Reny [General Atomics, San Diego, CA (United States); Intrator, Tom [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weber, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Greenly, John [Cornell Univ., Ithaca, NY (United States)

    2015-11-01

    We report on the progress made to date for a Laboratory Directed Research and Development (LDRD) project aimed at diagnosing magnetic flux compression on the Z pulsed-power accelerator (0-20 MA in 100 ns). Each experiment consisted of an initially solid Be or Al liner (cylindrical tube), which was imploded using the Z accelerator's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-T axial seed field, B z ( 0 ) , supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by B z ( t ) = B z ( 0 ) x [ R ( 0 ) / R ( t )] 2 , where R is the liner's inner surface radius. With perfect flux conservation, B z ( t ) and dB z / dt values exceeding 10 4 T and 10 12 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields. We report on our latest efforts to do so using three primary techniques: (1) micro B-dot probes to measure the fringe fields associated with flux compression, (2) streaked visible Zeeman absorption spectroscopy, and (3) fiber-based Faraday rotation. We also mention two new techniques that make use of the neutron diagnostics suite on Z. These techniques were not developed under this LDRD, but they could influence how we prioritize our efforts to diagnose magnetic flux compression on Z in the future. The first technique is based on the yield ratio of secondary DT to primary DD reactions. The second technique makes use of the secondary DT neutron time-of-flight energy spectra. Both of these techniques have been used successfully to infer the degree of magnetization at stagnation in fully integrated Magnetized Liner Inertial Fusion (MagLIF) experiments on Z [P. F. Schmit et al. , Phys. Rev. Lett. 113 , 155004 (2014); P. F. Knapp et al. , Phys. Plasmas, 22 , 056312 (2015)]. Finally, we present some recent developments for designing

  9. CONTROL SYSTEM FEATURES OF MAGNETIC-PULSE INSTALLATION AT UNIPOLAR MODE

    Directory of Open Access Journals (Sweden)

    Dzyubenko, A.

    2012-06-01

    Full Text Available Construction features of monitoring and control system of magnetic pulse installation at work in unipolar mode were detected. Installation control system algorithm at work in multiple repeating mode of discharge pulses is proposed. Description of monitoring and control system structure schemes and their purposes have been conducted.

  10. Irreversible modification of magnetic properties of Pt/Co/Pt ultrathin films by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kisielewski, J., E-mail: jankis@uwb.edu.pl [Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen (Netherlands); Laboratory of Magnetism, University of Białystok, Lipowa 41, 15-424 Białystok (Poland); Dobrogowski, W.; Kurant, Z.; Stupakiewicz, A.; Tekielak, M.; Maziewski, A. [Laboratory of Magnetism, University of Białystok, Lipowa 41, 15-424 Białystok (Poland); Kirilyuk, A.; Kimel, A.; Rasing, Th. [Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen (Netherlands); Baczewski, L. T.; Wawro, A. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw (Poland); Balin, K.; Szade, J. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2014-02-07

    Annealing ultrathin Pt/Co/Pt films with single femtosecond laser pulses leads to irreversible spin-reorientation transitions and an amplification of the magneto-optical Kerr rotation. The effect was studied as a function of the Co thickness and the pulse fluence, revealing two-dimensional diagrams of magnetic properties. While increasing the fluence, the creation of two branches of the out-of-plane magnetization state was found.

  11. An orientable search coil

    Science.gov (United States)

    Holt, P. J.; Poblocki, M.

    2017-01-01

    We provide a design for a low cost orientable search coil that can be used to investigate the variation of magnetic flux with angle. This experiment is one of the required practical activities in the current A level physics specification for the AQA examination board in the UK. We demonstrate its performance and suggest other suitable investigations that can be undertaken.

  12. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  13. Direct current superconducting quantum interference device spectrometer for pulsed nuclear magnetic resonance and nuclear quadrupole resonance at frequencies up to 5 MHz

    Science.gov (United States)

    TonThat, Dinh M.; Clarke, John

    1996-08-01

    A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux locked operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect 27Al NQR signals in ruby (Al2O3[Cr3+]) at 359 and 714 kHz.

  14. Maximum trapped field of a ring bulk superconductor by low pulsed field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchimoto, M. [Hokkaido Institute of Technology, 7-15 Maeda, Teine-ku, Sapporo 006-8585 (Japan)], E-mail: tsuchi@hit.ac.jp; Kamijo, H. [Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji, Tokyo 185-8540 (Japan)

    2007-10-01

    Pulsed field magnetization is an important technique for a bulk superconducting magnet, which is one practical application of a bulk high T{sub c} superconductor (HTS). Full magnetization of a ring HTS is effective to obtain large trapped field for low pulsed field magnetization. In this study, trapped field in a ring bulk superconductor by the low pulsed field magnetization is numerically analyzed under assumption of variable shielding current by the temperature control. Differences between one-dimensional Bean model and axisymmetric three-dimensional numerical solution are discussed through the analysis. There is maximum trapped field in the axisymmetric three-dimensional model because of finite thickness of the ring HTS. The shielding current density and inner radius of the ring HTS are discussed to obtain the maximum trapped field.

  15. 接收线圈位置对脉冲涡流检测灵敏度的影响%Effect of Receiving Coil Position on Detection Sensitivity in Pulsed Eddy Current Testing

    Institute of Scientific and Technical Information of China (English)

    蔚道祥; 陈定岳; 薛盛龙; 付跃文; 邹国辉

    2015-01-01

    研究了对带包覆层管道的内部腐蚀进行脉冲涡流检测时,接收线圈的位置变化对检测灵敏度的影响,进行了探头置于激励线圈下不同位置的有限元仿真和试验研究。有限元仿真结果表明:在轴向和周向2个方向都是当检测线圈位于激励线圈边缘正下方时检测效果最好,其灵敏度分别为0.61、0.60。验证试验表明:在轴向和周向2个方向上,最佳检测位置都是位于激励线圈边缘正下方,其灵敏度分别为0.26、0.27。试验结果与仿真结果基本一致,表明接收线圈在激励线圈外边缘正下方附近时,检测灵敏度达到最大。研究结果有助于带包覆层管道腐蚀的脉冲涡流检测的传感器设计。%Effect of the detection sensitivity caused by the location change of the receiving coil is studied on the internal corrosion of ferromagnetic pipe under insulation with pulsed eddy current ( PEC ) non-destructive testing. Finite element model was established of ferromagnetic pipe under insulation to analyze the effect of position of receiving coil on the pulsed eddy current testing results. The simulation results show that the sensitivity will reach maximum both axial and circumferencial directions when receiving coil is right under the outer edge of the exciting coil, the sensitivities 0. 61 and 0. 60 respectively. The verification experiment results show that:putting receiving coil right under the outer edge of the exciting coil will get the best test results, the sensitivities 0. 26 and 0. 27 respectively. The experimental results agree well with the simulations and show that the detection sensitivity will reach maximum when receiving coil is right under the outer edge of the exciting coil, which will be of help to probe design in the corrosion detection of the pipe under insulation with PEC.

  16. The impacts of magnetic field on repetitive nanosecond pulsed dielectric barrier discharge in air

    Science.gov (United States)

    Liu, Yidi; Qi, Haicheng; Fan, Zhihui; Yan, Huijie; Ren, ChunSheng

    2016-11-01

    In this paper, the impacts of the parallel magnetic field on the repetitive nanosecond pulsed dielectric barrier discharge (DBD) are experimentally investigated by optical and electrical measurements. The DBD is generated between two parallel-plate electrodes in the ambient air with the stationary magnetic field on the order of 1 T. The experimental results show that additional microdischarge channels are generated and the photocurrent intensity of the plasma is increased by the magnetic field. The microdischarge channels develop along the magnetic field lines and the diffuse background emission of the discharge is stronger in the DBD with the magnetic field. As the pulse repetition frequency decreases from 1200 Hz to 100 Hz, only the photocurrent intensity of the third discharge that occurred at about 500 ns is noticeably increased by the additional magnetic field. It is believed that the enhancement of the memory effect and the confinement of the magnetic field on electrons are the main reasons.

  17. First coil for the SC

    CERN Multimedia

    CERN PhotoLab

    1955-01-01

    The coils for the SC magnet were stored in the large hangar of the Cointrin Airport (to make sure that they would be available before snow and ice would block the roads and canals from Belgium, where they were built).

  18. Proposal for the renegotiation of a contract for the supply of eight coil casings for the barrel toroid magnet of the ATLAS detector

    CERN Document Server

    2001-01-01

    This document concerns the renegotiation of a contract for the supply of eight coil casings for the Barrel Toroid Magnet of the ATLAS detector. The proposal for the award of a contract with ABB ENERTECH (CH) was presented to Finance Committee for information in September 1998 (CERN/FC/4089). In view of the developments outlined in this document, the Finance Committee is invited to agree to the renegotiation of a contract with ALSTOM SWITZERLAND (CH), for the supply of eight coil casings for the ATLAS Barrel Toroid Magnet for a total Ex-works price of 12 580 000 Swiss francs, subject to revision after 31 July 2001, with an option for an extra coil casing for an additional Ex-works price of 1 525 000 Swiss francs, subject to revision after 31 July 2001, bringing the total amount for the supply to 14 105 000 Swiss francs, subject to revision after 31 July 2001. The total amount of the contract, including transport to the integration site, will not exceed 14 490 000 Swiss francs, subject to revision after 31 July...

  19. A Simple Electromagnetic Analysis of Magnetic NDE Using a Double Rectangular Coil an a Hall Effect Sensor

    Directory of Open Access Journals (Sweden)

    L. Bettaieb

    2012-12-01

    Full Text Available In this paper a simple analysis and measurement in eddy current NDE are presented. A Hall probe is associated to a double Printed Circuit Board PCB. The configurations examined involve the coil in air and the coil above aluminum plates, either with or without cracks of various depths. The agreement between experimental and theoretical results is very good, showing that a very simple model accurately describes the electromagnetic fields.

  20. Development of a compact HTS lead unit for the SC correction coils of the SuperKEKB final focusing magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Zhanguo, E-mail: zhanguo.zong@kek.jp; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi

    2016-09-11

    Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption. - Highlights: • The requirements of the SC correction coils on current leads are introduced. • The optimum design of the brass vapor cooled current lead is described. • The compact structure of eight leads with HTS tape is presented. • The theoretical, numerical, and experimental results are compared. • The current lead heat load is evaluated for cryogenic system.