WorldWideScience

Sample records for pulsed laser output

  1. Quantum energy duplication using super high output pulse laser

    International Nuclear Information System (INIS)

    Sugisaki, Kiwamu; Koyama, Kazuyoshi; Tanimoto, Mitsumori; Saito, Naoaki

    2000-01-01

    This study aims at elucidation on phenomena induced by strong electric field of super high output ultra short laser pulse to carry out development of basic technology required for promotion of a study on generation of high energy particle and photon using them, in order to contribute to application of super high output ultra short laser pulse and high energy plasma formed by it. In 1998 fiscal year of the last fiscal year in this study, by intending to increase the output by narrowing pulse width of the super high output laser, some basic experiments such as verification due to experiment on relativity theoretical self-convergence, generation of high energy particles, and so forth were carried out to establish a forecasting on future application. And, by conducting plasma generation experiment, self-guide and high energy particle formation experiment in plasma of super high intensity laser pulse important for its applications, and so forth, various technologies constituting foundation of future developments were developed, and more results could be obtained than those at proposal of this study. (G.K.)

  2. Copper bromide vapour laser with an output pulse duration of up to 320 ns

    International Nuclear Information System (INIS)

    Gubarev, F A; Fedorov, K V; Evtushenko, G S; Fedorov, V F; Shiyanov, D V

    2016-01-01

    We report the development of a copper bromide vapour laser with an output pulse duration of up to 320 ns. To lengthen the pulse, the discharge current was limited using a compound switch comprising a pulsed hydrogen thyratron and a tacitron. This technique permits limiting the excitation of the working levels at the initial stage of the discharge development to lengthen the inversion lifetime. The longest duration of a laser pulse was reached in tubes 25 and 50 mm in diameter for a pulse repetition rate of 2 – 4 kHz. (lasers and laser beams)

  3. Transmission of laser pulses with high output beam quality using step-index fibers having large cladding

    Science.gov (United States)

    Yalin, Azer P; Joshi, Sachin

    2014-06-03

    An apparatus and method for transmission of laser pulses with high output beam quality using large core step-index silica optical fibers having thick cladding, are described. The thick cladding suppresses diffusion of modal power to higher order modes at the core-cladding interface, thereby enabling higher beam quality, M.sup.2, than are observed for large core, thin cladding optical fibers. For a given NA and core size, the thicker the cladding, the better the output beam quality. Mode coupling coefficients, D, has been found to scale approximately as the inverse square of the cladding dimension and the inverse square root of the wavelength. Output from a 2 m long silica optical fiber having a 100 .mu.m core and a 660 .mu.m cladding was found to be close to single mode, with an M.sup.2=1.6. Another thick cladding fiber (400 .mu.m core and 720 .mu.m clad) was used to transmit 1064 nm pulses of nanosecond duration with high beam quality to form gas sparks at the focused output (focused intensity of >100 GW/cm.sup.2), wherein the energy in the core was laser pulses was about 6 ns. Extending the pulse duration provided the ability to increase the delivered pulse energy (>20 mJ delivered for 50 ns pulses) without damaging the silica fiber.

  4. New solid laser: Ceramic laser. From ultra stable laser to ultra high output laser

    International Nuclear Information System (INIS)

    Ueda, Kenichi

    2006-01-01

    An epoch-making solid laser is developed. It is ceramic laser, polycrystal, which is produced as same as glass and shows ultra high output. Ti 3+ :Al 2 O 3 laser crystal and the CPA (chirped pulse amplification) technique realized new ultra high output lasers. Japan has developed various kinds of ceramic lasers, from 10 -2 to 67 x 10 3 w average output, since 1995. These ceramic lasers were studied by gravitational radiation astronomy. The scattering coefficient of ceramic laser is smaller than single crystals. The new fast ignition method is proposed by Institute of Laser Engineering of Osaka University, Japan. Ultra-intense short pulse laser can inject the required energy to the high-density imploded core plasma within the core disassembling time. Ti 3+ :Al 2 O 3 crystal for laser, ceramic YAG of large caliber for 100 kW, transparent laser ceramic from nano-crystals, crystal grain and boundary layer between grains, the scattering coefficient of single crystal and ceramic, and the derived release cross section of Yb:YAG ceramic are described. (S.Y.)

  5. Saturated output tabletop x-ray lasers

    International Nuclear Information System (INIS)

    Dunn, J.; Osterheld, A.L.; Nilsen, J.; Hunter, J.R.; Li, Y.; Faenov, A.Ya.; Pikuz, T.A.; Shlyaptsev, N.

    2000-01-01

    The high efficiency method of transient collisional excitation has been successfully demonstrated for Ne-like and Ni-like ion x-ray laser schemes with small 5-10 J laser facilities. Our recent studies using the tabletop COMET (Compact Multipulse Terawatt) laser system at the Lawrence Livermore National Laboratory (LLNL) have produced several x-ray lasers operating in the saturation regime. Output energy of 10-15 (micro)J corresponding to a gL product of 18 has been achieved on the Ni-like Pd 4d → 4p transition at 147 (angstrom) with a total energy of 5-7 J in a 600 ps pulse followed by a 1.2 ps pulse. Analysis of the laser beam angular profile indicates that refraction plays an important role in the amplification and propagation process in the plasma column. We report further improvement in the extraction efficiency by varying a number of laser driver parameters. In particular, the duration of the second short pulse producing the inversion has an observed effect on the x-ray laser output

  6. Saturated output tabletop X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.; Osterheld, A.L.; Nilsen, J.; Hunter, J.R. [Lawrence Livermore National Lab., CA (United States); Yuelin Li [Lawrence Livermore National Lab., CA (United States); ILSA, Lawrence Livermore National Lab., Livermore, CA (United States); Faenov, A.Ya.; Pikuz, T.A. [Lawrence Livermore National Lab., CA (United States); MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Shlyaptsev, V.N. [Lawrence Livermore National Lab., CA (United States); DAS, Univ. of California Davis-Livermore, Livermore, CA (United States)

    2001-07-01

    The high efficiency method of transient collisional excitation has been successfully demonstrated for Ne-like and Ni-like ion X-ray laser schemes with small 5-10 J laser facilities. Our recent studies using the tabletop COMET (compact multipulse terawatt) laser system at the Lawrence livermore national laboratory (LLNL) have produced several X-ray lasers operating in the saturation regime. Output energy of 10-15 {mu}J corresponding to a gL product of 18 has been achieved on the Ni-like Pd 4d{yields}4p transition at 147 A with a total energy of 5-7 J in a 600 ps pulse followed by a 1.2 ps pulse. Analysis of the laser beam angular profile indicates that refraction plays an important role in the amplification and propagation process in the plasma column. We report further improvement in the extraction efficiency by varying a number of laser driver parameters. In particular, the duration of the second short pulse producing the inversion has an observed effect on the X-ray laser output. (orig.)

  7. Investigation of the output pulse characteristics of a 46.9 nm Ar capillary discharge soft x-ray laser

    International Nuclear Information System (INIS)

    Ritucci, A.; Tomassetti, G.; Palladino, L.; Reale, A.; Gaeta, G.; Limongi, T.; Flora, F.; Mezi, L.; Kukhlevsky, S.V.; Kaiser, J.; Faenov, A.; Pikuz, T.; Reale, L.

    2002-01-01

    In this paper, we report on the realization of a capillary discharge soft x-ray laser operating at 46.9 nm pumped by a 30 kA peak value, 150 ns half cycle duration current pulse (corresponding to a mean current slope of about 5 1011 A/s). The slope of the pumping current is sufficiently high to produce the plasma compression and laser amplification on the 3p-3s, J=0-1 transition of Ne-like Ar, in 2.4-4 mm in diameter alumina capillary channels. We have analyzed the output pulse characteristics of the produced laser beam, such as the lasing time and the pulse duration, the saturation and the output pulse energy, the near field image as a function of different experimental parameters. Using the same current pulse, the lasing effect has not been observed in polyacetal capillaries, demonstrating the damning role of the wall capillary ablation in the heating and in the stability of the plasma column during the z-pinch compression

  8. Photo-switch of pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Ketta, W.W.J.

    1989-01-01

    In this work passive Q-switching and its effect on the output laser beam from a pulsed Nd:YAG laser was studied. This was achieved using the photochemically stable (BDNI) dye after dissolving it in dichloroethane. The absorption spectra of the dye solution and how suitable to use with Nd:YAG laser was also dealt with. Cooling unit for the laser system, a detector to detect the output pulse, and an electronic counter to measure the pulse duration were constructed. In the free-running regime, the divergence angle was measured. The form of the output, its energy, and how it is affected by the pumping energy were also studied. In the Q-switching regime, the relation between output and pumping energies was studied and compared to the same relation under the free-running regime. 5 tabs.; 33 figs.; 57 refs

  9. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Kim, Jin Tae; Moon, Hee Jong; Rho, Si Pyo; Han, Jae Min; Rhee, Yong Joo; Lee, Jong Min

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drastically reduced pulse width

  10. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    CERN Document Server

    Yi, J H; Moon, H J; Rho, S P; Han, J M; Rhee, Y J; Lee, J M

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drast...

  11. Pulsed laser illumination of photovoltaic cells

    Science.gov (United States)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  12. Quasi-CW diode-pumped self-starting adaptive laser with self-Q-switched output.

    Science.gov (United States)

    Smith, G; Damzen, M J

    2007-05-14

    An investigation is made into a quasi-CW (QCW) diode-pumped holographic adaptive laser utilising an ultra high gain (approximately 10(4)) Nd:YVO(4) bounce amplifier. The laser produces pulses at 1064 nm with energy approximately 0.6 mJ, duration laser configuration, the output was amplified to obtain pulses of approximately 5.6 mJ energy, approximately 7 ns duration and approximately 1 MW peak power. The output spatial quality is also M(2)diode-pumped self-adaptive holographic lasers can provide a useful source of high peak power, short duration pulses with excellent spatial quality and narrow linewidth spectrum.

  13. Research on laser detonation pulse circuit with low-power based on super capacitor

    Science.gov (United States)

    Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong

    2018-03-01

    According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.

  14. Bio-effects of repetitively pulsed ultra-fast distributed feedback dye lasers

    International Nuclear Information System (INIS)

    Khan, N.; Ahmad, M.I.; Sheikh, A.

    1999-01-01

    Results of experimental study showing an unexpected rise in pulses of distributed feedback dye laser (DFDL) output due to temperature accumulation in dye cell during passively Q-Switched, a Mode-locked operation is reported. This unintended increase in number of pulse duration, per pulse energy may cause side-effects when used for selective photo thermolysis. To probe this phenomenon most commonly dye was excited with 10 to 20 pulses of second harmonic of a passively Q-Switched and Mode-locked Nd-YaG laser. The outputs of DFDL and Nd:YaG laser were recorded by Imacon 675-streak camera. The peak of DFDL output pulses was found delayed proportionally from the peak of the NYAG pulses by more than one inter-pulse period of excitation laser. A computer program was used to simulate the experimentally measured delay to estimate thermal decay constants and energy retained by the medium to determine the amount of incremental fluctuations in output. The delay between peaks of Nd:YAG (input) and DFDL(output) pulses was found to vary from 10 to 14 nanoseconds for various cavity lengths. It was found that for smaller inter-pulse periods the effect of gradual build-up satisfies the threshold conditions for some of the pulses that otherwise can not. This may lead to unintended increase in energy fluence causing overexposure-induced side-effects. (author)

  15. Picoseconds pulse generation and pulse width determination processes of a distributed feedback dye laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2004-08-01

    A mathematical model has been developed to describe the dynamic emission of Nd-glass, distributed feedback dye laser (DFDL), and periodical grating temperature. The suggested model allows the investigation of the time behavior of Nd-glass laser and DFDL pulsed. Moreover, it allows studying the effect of the laser input parameters of Nd-glass laser on the spectral characteristics of the output DFDL pulses such as pulse width, delay time, and time separation

  16. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  17. LD-pumped erbium and neodymium lasers with high energy and output beam quality

    Science.gov (United States)

    Kabanov, Vladimir V.; Bezyazychnaya, Tatiana V.; Bogdanovich, Maxim V.; Grigor'ev, Alexandr V.; Lebiadok, Yahor V.; Lepchenkov, Kirill V.; Ryabtsev, Andrew G.; Ryabtsev, Gennadii I.; Shchemelev, Maxim A.

    2013-05-01

    Physical and fabrication peculiarities which provide the high output energy and beam quality for the diode pumped erbium glass and Nd:YAG lasers are considered. Developed design approach allow to make passively Q-switched erbium glass eye-safe portable laser sources with output energy 8 - 12 mJ (output pulse duration is less than 25 ns, pulse repetition rate up to 5 Hz) and beam quality M2 less than 1.3. To reach these values the erbium laser pump unit parameters were optimized also. Namely, for the powerful laser diode arrays the optimal near-field fill-factor, output mirror reflectivity and heterostructure properties were determined. Construction of advanced diode and solid-state lasers as well as the optical properties of the active element and the pump unit make possible the lasing within a rather wide temperature interval (e.g. from minus forty till plus sixty Celsius degree) without application of water-based chillers. The transversally pumped Nd:YAG laser output beam uniformity was investigated depending on the active element (AE) pump conditions. In particular, to enhance the pump uniformity within AE volume, a special layer which practically doesn't absorb the pump radiation but effectively scatters the pump and lasing beams, was used. Application of such layer results in amplified spontaneous emission suppression and improvement of the laser output beam uniformity. The carried out investigations allow us to fabricate the solid-state Nd:YAG lasers (1064 nm) with the output energy up to 420 mJ at the pulse repetition rate up to 30 Hz and the output energy up to 100 mJ at the pulse repetition rate of of 100 Hz. Also the laser sources with following characteristics: 35 mJ, 30 Hz (266 nm); 60 mJ, 30 Hz (355 nm); 100 mJ, 30 Hz (532 nm) were manufactured on the base of the developed Nd:YAG quantrons.

  18. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    International Nuclear Information System (INIS)

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10 12 watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10 9 watts) and can be focussed to intensities of /approximately/10 16 W/cm 2 . Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs

  19. A PASSIVELY MODE-LOCKED CR4+:FORSTERITE LASER WITH ELEСTRONICALLY CONTROLLED OUTPUT CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    S. A. Zolotovskaya

    2011-01-01

    Full Text Available Applicability of electronic control of laser output parameters to bulk solid-state laser sources is demonstrated. A single laser source with variable pulse duration for novel imaging and manipulation systems is presented. Stable passive mode-locking of a Cr4+:forsterite laser using a voltage controlled p-n junction quantum dot saturable absorber was achieved. Output shortening from 17,4 to 6,4 ps near-transform limited pulses was obtained by applying reverse bias.

  20. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    Science.gov (United States)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  1. CO2 laser pulse shortening by laser ablation of a metal target

    International Nuclear Information System (INIS)

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-01-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO 2 laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ∼2 ns and to remove the low power, long duration tails that are present in TEA CO 2 pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ∼10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  2. A 1J LD pumped Nd:YAG pulsed laser system

    Science.gov (United States)

    Yi, Xue-bin; Wang, Bin; Yang, Feng; Li, Jing; Liu, Ya-Ping; Li, Hui-Jun; Wang, Yu; Chen, Ren

    2017-11-01

    A 1J LD pumped Nd;YAG pulsed laser was designed. The laser uses an oscillation and two-staged amplification structure, and applies diode bar integrated array as side-pump. The TEC temperature control device combing liquid cooling system is organized to control the temperature of the laser system. This study also analyzed the theoretical threshold of working material, the effect of thermal lens and the basic principle of laser amplification. The results showed that the laser system can achieve 1J, 25Hz pulse laser output, and the laser pulse can be output at two width: 6-7ns and 10ns, respectively, and the original beam angle is 1.2mrad. The laser system is characterized by small size, light weight, as well as good stability, which make it being applied in varied fields such as photovoltaic radar platform and etc

  3. Q-switched all-fiber laser with short pulse duration based on tungsten diselenide

    Science.gov (United States)

    Li, Wenyi; OuYang, Yuyi; Ma, Guoli; Liu, Mengli; Liu, Wenjun

    2018-05-01

    Fiber lasers are widely used in industrial processing, sensing, medical and communications applications due to their simple structure, good stability and low cost. With the rapid development of fiber lasers and the sustained improvement of industrial laser quality requirements, researchers in ultrafast optics focus on how to get laser pulses with high output power and narrow pulse duration. Q-switched technology is one of the most effective techniques to generate ultrashort pulses. In this paper, a tungsten diselenide saturable absorber with 16.82% modulation depth is prepared by chemical vapor deposition. Experimental results show that when the pump power changes from 115.7 mW to 630 mW, the all-fiber laser can achieve a stable Q-switched pulse output. The repetition rate of the output pulse varies from 80.32 kHz to 204.2 kHz, the pulse duration is 581 ns, the maximum output power is 17.1 mW and the maximum pulse energy is 83.7 nJ. Results in this paper show that tungsten diselenide can be applied to ultrafast optics, which is a kind of saturable absorption material with excellent properties.

  4. Realization of double-pulse laser irradiating scheme for laser ion sources

    International Nuclear Information System (INIS)

    Li Zhangmin; Jin Qianyu; Liu Wei; Zhang Junjie; Sha Shan; Zhao Huanyu; Sun Liangting; Zhang Xuezhen; Zhao Hongwei

    2015-01-01

    A double-pulse laser irradiating scheme has been designed and established for the production of highly charged ion beams at Institute of Modern Physics (IMP), Chinese Academy of Sciences. The laser beam output by a Nd : YAG laser is split and combined by a double of beam splitters, between which the split laser beams are transmitted along different optical paths to get certain time delay between each other. With the help of a quarter-wave plate before the first splitter, the energy ratio between the two laser pulses can be adjusted between 3 : 8 to 8 : 3. To testify its feasibility, a preliminary experiment was carried out with the new-developed double-pulse irradiating scheme to produce highly charged carbon ions. Comparing the results with those got from the previous single-pulse irradiating scheme, the differences in the time structure and Charge State Distribution (CSD) of the ion pulse were observed, but its mechanisms and optimization require further studies. (authors)

  5. A copper bromide vapour laser with a high pulse repetition rate

    International Nuclear Information System (INIS)

    Shiyanov, D V; Evtushenko, Gennadii S; Sukhanov, V B; Fedorov, V F

    2002-01-01

    The results of an experimental study of a copper bromide vapour laser with a discharge-channel diameter above 2.5 cm and a high pump-pulse repetition rate are presented. A TGU1-1000/25 high-power tacitron used as a switch made it possible to obtain for the first time a fairly high output radiation power for pump-pulse repetition rates exceeding 200 kHz. At a maximum pump-pulse repetition rate of 250 kHz achieved in a laser tube 2.6 cm in diameter and 76 cm long, the output power was 1.5 W. The output powers of 3 and 10.5 W were reached for pump-pulse repetition rates of 200 and 100 kHz, respectively. These characteristics were obtained without circulating a buffer gas and (or) low-concentration active impurities through the active volume. (active media. lasers)

  6. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery

    Science.gov (United States)

    Lanin, Aleksandr A.; Fedotov, Il'ya V.; Sidorov-Biryukov, Dmitrii A.; Doronina-Amitonova, Lyubov V.; Ivashkina, Olga I.; Zots, Marina A.; Sun, Chi-Kuang; Ömer Ilday, F.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-03-01

    Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-μm-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.

  7. Theory of Self-pulsing in Photonic Crystal Fano Lasers

    DEFF Research Database (Denmark)

    Rasmussen, Thorsten Svend; Yu, Yi; Mørk, Jesper

    2017-01-01

    -dispersive Fano mirror, the laser frequency and the threshold gain. The model is based upon a combination of conventional laser rate equations and coupled-mode theory. The dynamical model is used to demonstrate how the laser has two regimes of operation, continuous-wave output and self-pulsing, and these regimes......Laser self-pulsing was a phenomenon exclusive to macroscopic lasers until recently, where self-starting laser pulsation in a microscopic photonic crystal Fano laser was reported. In this paper a theoretical model is developed to describe the Fano laser, including descriptions of the highly...

  8. Pulsed Laser Cladding of Ni Based Powder

    Science.gov (United States)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.

    2017-06-01

    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  9. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  10. Development of high power pulsed CO2 laser

    International Nuclear Information System (INIS)

    Nakai, Sadao; Matoba, Masafumi; Fujita, Hisanori; Daido, Hiroyuki; Inoue, Mitsuo

    1982-01-01

    The inertial nuclear fusion research using pellet implosion has rapidly progressed accompanying laser technique improvement and output increase. As the high output lasers for this purpose, Nd glass lasers or CO 2 lasers are used. The CO 2 lasers possess the characteristics required as reactor lasers, i.e., high efficiency, high frequency repetition, possibility of scale-up and economy. So, the technical development of high power CO 2 lasers assuming also as reactor drivers has been performed at a quick pace together with the research on the improvement of efficiency of pellet implosion by 10 μm laser beam. The Institute of Laser Engineering, Osaka University, stated to build a laser system LEKKO No. 8 of 8 beams and 10 kJ based on the experiences in laser systems LEKKO No. 1 and LEKKO No. 2, and the system LEKKO No. 8 was completed in March, 1981. The operation tests for one year since then has indicated as the laser characteristics that the system performance was as designed initially. This paper reviews the structure, problems and present status of the large scale CO 2 lasers. In other words, the construction of laser system, CO 2 laser proper, oscillator, booster amplifier, prevention of parasitic oscillation, non-linear pulse propagation and fairing of output pulse form, system control and beam alignment, and high power problems are described. The results obtained are to be reported in subsequent issues. (Wakatsuki, Y.)

  11. Efficient delivery of 60 J pulse energy of long pulse Nd:YAG laser ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Most of today's industrial Nd:YAG lasers use fibre-optic beam delivery. ... optical fibre and successfully delivered up to 60 J of pulse energy with .... and electrical pump input to laser output conversion efficiency is about 5%. ... [3] W Koechner, Solid state laser engineering, 5th edn (Springer, Berlin, 1999).

  12. The effect of a transient thermal lens on the Nd:YVO4 laser output

    International Nuclear Information System (INIS)

    Yi, Jonghoon; Lee, Kangin; Kim, Youngjung; Kwon, Jinhyuk

    2010-01-01

    A Nd:YVO 4 laser was pumped by using a diode laser, which has maximum cw pump power of 1 W. The driving current of the diode laser was modulated to have a square waveform. The Nd:YVO 4 laser output power increased linearly and then saturated when the quasi-cw diode laser pulse was focused on the crystal. When the same diode laser pulse was applied on the crystal, transient thermal lensing in the Nd:YVO 4 crystal was monitored by using a probe beam in a non-lasing condition. The TEM 00 mode diameter of the laser was calculated as a function of the focal length of the thermal lens. The results indicated that transient thermal lensing in the crystal was the main cause of the temporally varying output.

  13. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  14. Pulse propagation in tapered wiggler free electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Colson, W.B.

    1981-01-01

    The one-dimensional theory of short pulse propagation in free electron lasers is extended to tapered wiggler devices and is used to study the behavior of an oscillator with parameter values close to those expected in forthcoming experiments. It is found that stable laser output is possible only over a small range of optical cavity lengths. Optical pulse characteristcs are presented and are found to change considerably over this range

  15. Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm

    Science.gov (United States)

    Jiang, Min; Su, Rongtao; Zhang, Pengfei; Zhou, Pu

    2018-06-01

    A novel adaptive pulse shaping method for a pulsed master oscillator power amplifier fiber laser to deliver an arbitrary pulse shape is demonstrated. Numerical simulation has been performed to validate the feasibility of the scheme and provide meaningful guidance for the design of the algorithm control parameters. In the proof-of-concept experiment, information on the temporal property of the laser is exchanged and evaluated through a local area network, and the laser adjusted the parameters of the seed laser according to the monitored output of the system automatically. Various pulse shapes, including a rectangular shape, ‘M’ shape, and elliptical shape are achieved through experimental iterations.

  16. Copper vapour laser with an efficient semiconductor pump generator having comparable pump pulse and output pulse durations

    Energy Technology Data Exchange (ETDEWEB)

    Yurkin, A A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-03-31

    We report the results of experimental studies of a copper vapour laser with a semiconductor pump generator capable of forming virtually optimal pump pulses with a current rise steepness of about 40 A ns{sup -1} in a KULON LT-1.5CU active element. To maintain the operating temperature of the active element's channel, an additional heating pulsed oscillator is used. High efficiency of the pump generator is demonstrated. (lasers)

  17. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  18. Optical pulse generation using fiber lasers and integrated optics

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-01-01

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics

  19. Computational model of dual q-switching and lasing processes of the pulsed Cr4+:YAG laser pumped by Nd-glass laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2007-01-01

    A mathematical model describing the absorption and oscillation processes of intracavity Cr 4+ : YAG crystal pumped by Nd-glass laser has been developed, in order to describe the temporal behavior of laser-absorber system. The model has been assumed that the Cr 4+ ions excited to a higher level by excited state absorption, followed by relaxation directly to the upper laser level through fast channel, and indirectly through slow proposed intermediate channel at different lifetimes. The model offers simple kinetic mechanisms for pulsed solid state lasers and also the influence of the variations of the laser input parameters (pumping rate, maximum amplification coefficient and loss coefficient) on the output pulse characteristics of the passive Q-switched Nd-glass and pulsed Cr 4+ : YAG lasers. The model estimates the temporal behavior of the population densities of different levels and laser beam densities as well as predicts the nanosecond output laser pulses of passive Q-switched Nd-glass laser and pulsed Cr 4+ : YAG laser. The calculated results are in good agreement with the available experimental and theoretical data in the literature. (author)

  20. Widely-duration-tunable nanosecond pulse Nd:YVO4 laser based on double Pockels cells

    Science.gov (United States)

    He, Li-Jiao; Liu, Ke; Bo, Yong; Wang, Xiao-Jun; Yang, Jing; Liu, Zhao; Zong, Qing-Shuang; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2018-05-01

    The development of duration-tunable pulse lasers with constant output power is important for scientific research and materials processing. We present a widely-duration-tunable nanosecond (ns) pulse Nd:YVO4 laser based on double Pockels cells (PCs), i.e. inserting an extra PC into a conventional electro-optic Q-switched cavity dumped laser resonator. Under the absorbed pump power of 24.9 W, the pulse duration is adjustable from 31.9 ns to 5.9 ns by changing the amplitude of the high voltage on the inserted PC from 1100 V to 4400 V at the pulse repetition rate of 10 kHz. The corresponding average output power is almost entirely maintained in the range of 3.5–4.1 W. This represents more than three times increase in pulse duration tunable regime and average power compared to previously reported results for duration-tunable ns lasers. The laser beam quality factor was measured to be M 2  <  1.18.

  1. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    Science.gov (United States)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  2. An injection seeded single frequency Nd:YAG Q-switched laser with precisely controllable laser pulse firing time

    Science.gov (United States)

    Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir

    2010-02-01

    We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.

  3. Pulse propagation in free-electron lasers with a tapered undulator

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Colson, W.B.

    1981-01-01

    The one-dimensional theory of short pulse propagation in free electron lasers is extended to tapered undulator devices and is used to study the behavior of an oscillator with parameter values close to those expected in forthcoming experiments. It is found that stable laser output is possible only over a small range of optical cavity lengths. Optical pulse characteristics are presented and are found to change considerably over this range

  4. Design and Construction of a pulsed Nd:YAG laser for LIBS applications

    Science.gov (United States)

    Garcia-Villarreal, A.; Sobral, H.

    2015-01-01

    A multi-pulse Nd:YAG laser was designed and built, that can be used as an excitation source for Laser Induced Breakdown Spectroscopy (LIBS) experiments. A trigger and a power supply for the flash lamp has been successfully developed. A cooling system that uses a distilled water flow for the active medium was implemented. The laser has an output energy of 306 ± 7 mJ for 1 Hz repetition rate and its temporal profile is multi-pulse with 1 ps of average separation between them. To validate the system, the output was used as an ablation source of an aluminum target and the emission was investigated by spectroscopy analysis.

  5. Research of narrow pulse width, high repetition rate, high output power fiber lasers for deep space exploration

    Science.gov (United States)

    Tang, Yan-feng; Li, Hong-zuo; Wang, Yan; Hao, Zi-qiang; Xiao, Dong-Ya

    2013-08-01

    As human beings expand the research in unknown areas constantly, the deep space exploration has become a hot research topic all over the world. According to the long distance and large amount of information transmission characteristics of deep space exploration, the space laser communication is the preferred mode because it has the advantages of concentrated energy, good security, and large information capacity and interference immunity. In a variety of laser source, fibre-optical pulse laser has become an important communication source in deep space laser communication system because of its small size, light weight and large power. For fiber lasers, to solve the contradiction between the high repetition rate and the peak value power is an important scientific problem. General Q technology is difficult to obtain a shorter pulse widths, This paper presents a DFB semiconductor laser integrated with Electro-absorption modulator to realize the narrow pulse width, high repetition rate of the seed source, and then using a two-cascaded high gain fiber amplifier as amplification mean, to realize the fibre-optical pulse laser with pulse width 3ns, pulse frequency 200kHz and peak power 1kW. According to the space laser atmospheric transmission window, the wavelength selects for 1.06um. It is adopted that full fibre technology to make seed source and amplification, pumping source and amplification of free-space coupled into fiber-coupled way. It can overcome that fibre lasers are vulnerable to changes in external conditions such as vibration, temperature drift and other factors affect, improving long-term stability. The fiber lasers can be modulated by PPM mode, to realize high rate modulation, because of its peak power, high transmission rate, narrow pulse width, high frequency stability, all technical indexes meet the requirements of the exploration of deep space communication technology.

  6. Highly efficient repetitively pulsed electric-discharge industrial CO2 laser

    International Nuclear Information System (INIS)

    Osipov, V V; Ivanov, M G; Lisenkov, V V; Platonov, V V

    2002-01-01

    The results of investigations aimed at the development of a repetitively pulsed CO 2 laser with an active medium volume of 1000 cm 3 pumped by a combined discharge are generalised. It is shown that, at pump pulse durations of 200-500 μs the optimal characteristics are achieved at active-medium pressures of 60-100 Torr. In this case, the laser efficiency at the initial stage of its operation can reach 22% and; if the energy dissipated in the region of the cathode potential drop is neglected, the efficiency is 28%. After emission of 3x10 5 pulses, the laser efficiency falls to 12%. It has been found that adding CO with a relative concentration [CO]/[CO 2 ] ∼0.75 increases the input and output power by almost 50%. The lasing efficiency is then 10%-12%, and the service life of the laser is by more than 10 6 pulses with a power decrease of no more than 10%. Adding hydrogen up to a concentration [H 2 ]/[CO 2 ] ∼10 leads to an increase in the energy supplied to the gas due to a decrease in the rate of ionisation processes. However, the optimal ratio is [H 2 ]/[CO 2 ] ∼ 1, at which the output power increases by 15%. In a long-term operating mode, the laser power is 1 kW at a peak power of 10 kW and an efficiency of 12%. (lasers)

  7. 2 and 3 µm passively Q-switched bulk pulse laser based on a MoS2/graphene heterojunction

    Science.gov (United States)

    Wang, Xihu; Xu, Jinlong; Sun, Yijian; Feng, Wendou; You, Zhenyu; Sun, Dunlu; Tu, Chaoyang

    2018-01-01

    We report for the first time that a MoS2/graphene heterojunction can behave as a saturable absorber to realize 2 and 3 µm passively Q-switched bulk lasers. This heterojunction is prepared through a facile hydrothermal method. For the 2 µm laser, a stable pulse is obtained with a pulse duration of 473 ns, output power of 553 mW, pulse energy of 5.267 µJ and repetition rate of 105 kHz. For the 3 µm laser, a pulse duration of 355 ns is observed with an average output power of 112 mW and pulse energy of 0.889 µJ. These results indicate the great potential of MoS2/graphene heterojunctions for realizing mid-infrared pulse lasers.

  8. Laser system using ultra-short laser pulses

    Science.gov (United States)

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  9. Theoretical and experimental investigations of the limits to the maximum output power of laser diodes

    International Nuclear Information System (INIS)

    Wenzel, H; Crump, P; Pietrzak, A; Wang, X; Erbert, G; Traenkle, G

    2010-01-01

    The factors that limit both the continuous wave (CW) and the pulsed output power of broad-area laser diodes driven at very high currents are investigated theoretically and experimentally. The decrease in the gain due to self-heating under CW operation and spectral holeburning under pulsed operation, as well as heterobarrier carrier leakage and longitudinal spatial holeburning, are the dominant mechanisms limiting the maximum achievable output power.

  10. Pulsed power for angular multiplexed laser fusion drivers

    International Nuclear Information System (INIS)

    Eninger, J.E.

    1983-01-01

    The feasibility of using rare gas-halide lasers, in particular the KrF laser, as inertial confinement fusion (ICF) drivers has been assessed. These lasers are scalable to the required high energy (approx. =1-5 MJ) in a short pulse (approx. =10 ns) by optical angular multiplexing, and integration of the output from approx. =100 kJ laser amplifier subsystems. The e-beam current density (approx. =50A/cm 2 ) and voltage (approx. =800 kV) required for these power amplifiers lead to an e-beam impedance of approx. =0.2Ω for approx. =300 ns pump time. This impedance level requires modularization of the large area e-gun, a) to achieve a diode inductance consistent with fast current risetime, b) to circumvent dielectric breakdown constraints in the pulse forming lines, and c) to reduce the requirement for guide magnetic fields. Pulsed power systems requirements, design concepts, scalability, tradeoffs, and performance projections are discussed in this paper

  11. Flashlamp pumped Ti-sapphire laser for ytterbium glass chirped pulse amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akihiko; Ohzu, Akira; Sugiyama, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    1998-03-01

    A flashlamp pumped Ti:sapphire laser is designed for ytterbium glass chirped pulse amplification. A high quality Ti:sapphire rod and a high energy long pulse discharging power supply are key components. The primary step is to produce the output power of 10 J per pulse at 920 nm. (author)

  12. Mode-Locking in Broad-Area Semiconductor Lasers Enhanced by Picosecond-Pulse Injection

    OpenAIRE

    Kaiser, J; Fischer, I; Elsasser, W; Gehrig, E; Hess, O

    2004-01-01

    We present combined experimental and theoretical investigations of the picosecond emission dynamics of broad-area semiconductor lasers (BALs). We enhance the weak longitudinal self-mode-locking that is inherent to BALs by injecting a single optical 50-ps pulse, which triggers the output of a distinct regular train of 13-ps pulses. Modeling based on multimode Maxwell-Bloch equations illustrates how the dynamic interaction of the injected pulse with the internal laser field efficiently couples ...

  13. Multiple-output all-optical header processing technique based on two-pulse correlation principle

    NARCIS (Netherlands)

    Calabretta, N.; Liu, Y.; Waardt, de H.; Hill, M.T.; Khoe, G.D.; Dorren, H.J.S.

    2001-01-01

    A serial all-optical header processing technique based on a two-pulse correlation principle in a semiconductor laser amplifier in a loop mirror (SLALOM) configuration that can have a large number of output ports is presented. The operation is demonstrated experimentally at a 10Gbit/s Manchester

  14. A pulsed single-frequency Nd:GGG/BaWO4 Raman laser

    Science.gov (United States)

    Liu, Zhaojun; Men, Shaojie; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Zhang, Huaijin

    2018-04-01

    A single-frequency pulsed laser at 1178.3 nm was demonstrated in a crystalline Raman laser. A crystal combination of Nd:GGG and BaWO4 was selected to realize Raman conversion from a 1062.5 nm fundamental wave to a 1178.3 nm Stokes wave. An entangled cavity was specially designed to form an intracavity Raman configuration. Single-longitudinal-mode operation was realized by introducing two Fabry-Perot etalons into the Raman laser cavity. This laser operated at a pulse repetition rate of 50 Hz with 2 ms long envelopes containing micro pulses at a 30 kHz repetition rate. The highest output power was 41 mW with the micro pulse duration of 15 ns. The linewidth was measured to be less than 130 MHz.

  15. High pulse energy sub-nanosecond Tm-doped fiber laser

    Science.gov (United States)

    Cserteg, Andras; Guillemet, Sebastien; Hernandez, Yves; Giannone, Domenico

    2012-02-01

    We report a core pumped thulium-doped fiber amplifier that generates 1.4 μJ pulses at 1980 nm with a repetition rate of 3.6 MHz preserving the original spectral bandwidth of the oscillator. The amplifier chain is seeded by a passively modelocked fiber laser with 5 mW output power and the pulses are stretched to 800 picoseconds. The amplifier is core pumped by a single mode erbium fiber laser. The slope efficiency is 35%. To the best of our knowledge, this is the first demonstration of sub nanosecond pulses with energies higher than 1 μJ coming out of a thulium-doped fiber amplifier.

  16. Fabrication and optimization of the copper halide Laser's comparison of the double-discharge (Cu Cl) with the single-pulse operation (Cu Br)

    International Nuclear Information System (INIS)

    Sajad, B.; Behrozinia, S.; Nikzad, P.; Bassam, M. A.

    2009-01-01

    In this paper, the fabrication of a double-pulse copper chloride laser was investigated to study the effect of various parameters such as buffer gas pressure, temperature, and the delay time between two electrical discharge pulses, on laser output power. Moreover, a single-pulse copper bromide laser was fabricated to optimize the laser output power versus temperature, buffer gas pressure, and electrical input power and discharge frequency. The comparison of the results in single-pulse and double-pulse excitation indicates that the former is easier in operation and more power stability can be achieved using single pulse excitation.

  17. Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser

    Science.gov (United States)

    Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.

    2013-10-01

    We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.

  18. Pulsed chemical oxygen - iodine laser initiated by a transverse electric discharge

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Yuryshev, Nikolai N

    2001-01-01

    A pulsed chemical oxygen - iodine laser with a volume production of atomic iodine in a pulsed transverse electric discharge is studied. An increase in the partial oxygen pressure was shown to increase the pulse energy with retention of the pulse duration. At the same time, an increase in the iodide pressure and the discharge energy shortens the pulse duration. Pulses with a duration of 6.5 μs were obtained, which corresponds to a concentration of iodine atoms of 1.8 x 10 15 cm -3 . This concentration is close to the maximum concentration attained in studies of both cw and pulsed oxygen-iodine lasers. A specific energy output of 0.9 J litre -1 and a specific power of 75 kW litre -1 were obtained. The ways of increasing these parameters were indicated. It was found that SF 6 is an efficient buffer gas favouring improvements in the energy pulse parameters. (lasers)

  19. Modeling of Output Characteristics of a UV Cu+ Ne-CuBr Laser

    Directory of Open Access Journals (Sweden)

    Snezhana Georgieva Gocheva-Ilieva

    2012-01-01

    Full Text Available This paper examines experiment data for a Ne-CuBr UV copper ion laser excited by longitudinal pulsed discharge emitting in multiline regime. The flexible multivariate adaptive regression splines (MARSs method has been used to develop nonparametric regression models describing the laser output power and service life of the devices. The models have been constructed as explicit functions of 9 basic input laser characteristics. The obtained models account for local nonlinearities of the relationships within the various multivariate subregions. The built best MARS models account for over 98% of data. The models are used to estimate the investigated output laser characteristics of existing UV lasers. The capabilities for using the models in predicting existing and future experiments have been demonstrated. Specific analyses have been presented comparing the models with actual experiments. The obtained results are applicable for guiding and planning the engineering experiment. The modeling methodology can be applied for a wide range of similar lasers and laser devices.

  20. Development of long life pulse power supply for copper vapor laser. Do joki laser yo chojumyo reiki dengen no kaihatsu. ; Saidai shutsuryoku unten oyobi laser hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T.; Goto, N.; Nemoto, K. (Central Research Inst. of Electric Power Industry, Tokyo (Japan))

    1990-04-01

    Long life pulse power supply for Cu vapor laser was developed. This is composed of the pulse generation circuit and the pulse compression circuit. Current pulse of 10 mu second pulse width is generated in the pulse generating circuit by switching electric charge on the condensor charged through GTO (gate turn off) thyristors. The pulse compression circuit makes the current pulse fast to 300ms utilizing the difference of inductance at the saturation and the unsaturation on the circuit which uses a reactor having saturable property using a ferromagnetic substance for the core as the magnetic switch. The operation was carried out at the GTO generasting full power. Co base amorphous alloy of low loss was used for the core of saturable inductor and the circuit efficiency of 77% could be obtained by suppressing the heat generation in core even at 4,000Hz operation. The full output power of 8.2kW was possible which corresponds to 100W class laser oscillation. Repeated Cu vapor laser oscillation of 30W succeeded at the condition of 4,000Hz and power supply output of 5.9kW. 7 refs., 21 figs., 8 tabs.

  1. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    Science.gov (United States)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  2. The efficiency of photovoltaic cells exposed to pulsed laser light

    Science.gov (United States)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  3. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    Science.gov (United States)

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  4. LASERS: Parameters of a trigatron-driven low-pulse-repetition-rate TEA CO2 laser preionised by a surface corona discharge

    Science.gov (United States)

    Aram, M.; Behjat, A.; Shabanzadeh, M.; Mansori, F.

    2007-01-01

    The design of a TEA CO2 laser with UV preionisation by a surface corona discharge is described and the dependences of its average output energy on the gas-flow rate, discharge voltage and pulse repetition rate are presented. The scheme of the electric circuit and the geometry of the pre-ionisation system are considered. The electric circuit is designed to produce only impulse voltage difference between the laser electrodes. The triggering system of the trigatron is used to prevent the appearance of the arc. The dependences of the current, voltage and average output energy on the gas-mixture composition and applied voltages at a low pulse repetition rate are presented. The central output wavelength of the laser was measured with an IR spectrometer. Lasing at two adjacent vibrational-rotational transitions of the CO2 molecule was observed, which demonstrates the possibility of simultaneous lasing at several lines.

  5. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration

    International Nuclear Information System (INIS)

    Benedetti, P.A.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In this paper, the effect of laser pulse energy on double-pulse laser induced breakdown spectroscopy signal is studied. In particular, the energy of the first pulse has been changed, while the second pulse energy is held fixed. A systematic study of the laser induced breakdown spectroscopy signal dependence on the interpulse delay is performed, and the results are compared with the ones obtained with a single laser pulse of energy corresponding to the sum of the two pulses. At the same time, the crater formed at the target surface is studied by video-confocal microscopy, and the variation in crater dimensions is correlated to the enhancement of the laser induced breakdown spectroscopy signal. The results obtained are consistent with the interpretation of the double-pulse laser induced breakdown spectroscopy signal enhancement in terms of the changes in ambient gas pressure produced by the shock wave induced by the first laser pulse

  6. Adaptive Pulsed Laser Line Extraction for Terrain Reconstruction using a Dynamic Vision Sensor

    Directory of Open Access Journals (Sweden)

    Christian eBrandli

    2014-01-01

    Full Text Available Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor’s ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500Hz were achieved using a line laser of 3mW at a distance of 45cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2mm.

  7. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime.

    Science.gov (United States)

    Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin

    2015-05-04

    Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.

  8. 2 micron femtosecond fiber laser

    Science.gov (United States)

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  9. Synthesis and Properties of Platinum Nanoparticles by Pulsed Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Maria Isabel Mendivil Palma

    2016-01-01

    Full Text Available Platinum (Pt nanoparticles were synthesized by pulsed laser ablation in liquid (PLAL technique in different liquids (acetone, ethanol, and methanol. Ablation was performed using a Q-switched Nd:YAG laser with output energy of 230 mJ/pulse for 532 nm wavelength. Ablation time and laser energy fluence were varied for all the liquids. Effects of laser energy fluence, ablation time, and nature of the liquid were reported. The mean size, size distributions, shape, elemental composition, and optical properties of Pt nanoparticles synthesized by PLAL were examined by transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and UV-Visible absorption spectroscopy.

  10. Narrow linewidth picosecond UV pulsed laser with mega-watt peak power.

    Science.gov (United States)

    Huang, Chunning; Deibele, Craig; Liu, Yun

    2013-04-08

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system that generates 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser consists of a single frequency fiber laser (linewidth laser is operating in a 5-μs/10-Hz macropulse mode. The laser output has a transform-limited spectrum with a very narrow linewidth of individual longitudinal modes. The immediate application of the laser system is the laser-assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

  11. Aurora: A short-pulse multikilojoule KrF inertial fusion laser system

    International Nuclear Information System (INIS)

    Rosocha, L.A.

    1985-01-01

    Aurora is a laser system that serves as an operating technology demonstration prototype for large-scale high-energy KrF laser systems of interest for inertial fusion applications. This system will incorporate the following elements to achieve an end-to-end 248-nm laser fusion concept demonstration: an injection-locked oscillator-amplifier front end; an optical angular multiplexer to produce 96 encoded optical channels each of 5-nsec duration; a chain of four electron-beam-driven KrF laser amplifiers; automated alignment systems for beam alignment; a decoder to provide for pulse compression of some fraction of the total beam train to be delivered to target, and a target chamber to house and diagnose fusion targets. The front end configuration uses a stable resonator master oscillator to drive an injection-locked unstable resonator slave oscillator. An extension of existing technology has been used to develop an electrooptic switchout at 248 nm that produces a 5-nsec pulse from the longer slave oscillator pulse. This short pulse is amplified by a postamplifier. Using these discharge lasers, the front end then delivers at least 250 mJ of KrF laser light output to the optical encoder

  12. Parametric performance predictions for high-power pulsed electric CO lasers

    International Nuclear Information System (INIS)

    Center, R.E.; Caledonia, G.E.

    1975-01-01

    A kinetic model of the pulsed electrical CO laser is used to survey the time-dependent laser performance on parameters such as gas mixture, initial translational temperature, and discharge pulse length for both multiline and selected-line operation. Predictions are presented for the total output efficiency, spectral distributions of the stimulated transitions, energy partitioning in the vibrational and translational modes, and the translational temperature history in CO-N 2 mixtures. A brief description of the kinetic model is included. Simple scaling relationships are presented which can be used to scale the results to other densities in the pressure-broadened regime

  13. Controlling output pulse and prepulse in a resonant microwave pulse compressor

    International Nuclear Information System (INIS)

    Shlapakovski, A.; Artemenko, S.; Chumerin, P.; Yushkov, Yu.

    2013-01-01

    A resonant microwave pulse compressor with a waveguide H-plane-tee-based energy extraction unit was studied in terms of its capability to produce output pulses that comprise a low-power long-duration (prepulse) and a high-power short-duration part. The application of such combined pulses with widely variable prepulse and high-power pulse power and energy ratios is of interest in the research area of electronic hardware vulnerability. The characteristics of output radiation pulses are controlled by the variation of the H-plane tee transition attenuation at the stage of microwave energy storage in the compressor cavity. Results of theoretical estimations of the parameters tuning range and experimental investigations of the prototype S-band compressor (1.5 MW, 12 ns output pulse; ∼13.2 dB gain) are presented. The achievable maximum in the prepulse power is found to be about half the power of the primary microwave source. It has been shown that the energy of the prepulse becomes comparable with that of the short-duration (nanosecond) pulse, while the power of the latter decreases insignificantly. The possible range of variation of the prepulse power and energy can be as wide as 40 dB. In the experiments, the prepulse level control within the range of ∼10 dB was demonstrated.

  14. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    International Nuclear Information System (INIS)

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-01-01

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach

  15. Yb3+:Sr3Y2(BO3)4: A potential ultrashort pulse laser crystal

    International Nuclear Information System (INIS)

    Sun, Shijia; Xu, Jinlong; Wei, Qi; Lou, Fei; Huang, Yisheng; Yuan, Feifei; Zhang, Lizhen; Lin, Zhoubin; He, Jingliang; Wang, Guofu

    2015-01-01

    Highlights: • A Yb 3+ :Sr 3 Y 2 (BO 3 ) 4 crystal was grown successfully by Czochralski method. • The crystal has wide absorption and emission bandwidth. • 3.47 W continuous wave laser output with a slope efficiency of 29% was obtained. • The results show that the crystal is a promising ultrashort pulse laser material. - Abstract: A Yb 3+ :Sr 3 Y 2 (BO 3 ) 4 crystal was grown successfully by the Czochralski method. The polarized spectral properties and continuous wave laser output of this crystal were investigated in detail. The crystal has larger absorption and emission cross sections compared with many mature Yb 3+ -doped borate crystals. The full width at half maximum of the emission bands around 1023 nm are 69 nm (E//a), 61 nm (E//b) and 65 nm (E//c). 3.47 W continuous wave laser output with a slope efficiency of 29% and an optical conversion efficiency of 24% was obtained. The results reveal that Yb 3+ :Sr 3 Y 2 (BO 3 ) 4 crystal is an excellent candidate for ultrashort pulse laser crystal

  16. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    Science.gov (United States)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/Ilaser.

  17. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2011-01-01

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W...... of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2....... The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected....

  18. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses.

    Science.gov (United States)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-06-20

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.

  19. Output Beam Polarisation of X-ray Lasers with Transient Inversion

    Science.gov (United States)

    Janulewicz, K. A.; Kim, C. M.; Matouš, B.; Stiel, H.; Nishikino, M.; Hasegawa, N.; Kawachi, T.

    It is commonly accepted that X-ray lasers, as the devices based on amplified spontaneous emission (ASE), did not show any specific polarization in the output beam. The theoretical analysis within the uniform (single-mode) approximation suggested that the output radiation should show some defined polarization feature, but randomly changing from shot-to-shot. This hypothesis has been verified by experiment using traditional double-pulse scheme of transient inversion. Membrane beam-splitter was used as a polarization selector. It was found that the output radiation has a significant component of p-polarisation in each shot. To explain the effect and place it in the line with available, but scarce data, propagation and kinetic effects in the non-uniform plasma have been analysed.

  20. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    Science.gov (United States)

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  1. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  2. Technical advantages of disk laser technology in short and ultrashort pulse processes

    Science.gov (United States)

    Graham, P.; Stollhof, J.; Weiler, S.; Massa, S.; Faisst, B.; Denney, P.; Gounaris, E.

    2011-03-01

    This paper demonstrates that disk-laser technology introduces advantages that increase efficiency and allows for high productivity in micro-processing in both the nanosecond (ns) and picosecond (ps) regimes. Some technical advantages of disk technology include not requiring good pump beam quality or special wavelengths for pumping of the disk, high optical efficiencies, no thermal lensing effects and a possible scaling of output power without an increase of pump beam quality. With cavity-dumping, the pulse duration of the disk laser can be specified between 30 and hundreds of nanoseconds, but is independent of frequency, thus maintaining process stability. TRUMPF uses this technology in the 750 watts average power laser TruMicro 7050. High intensity, along with fluency, is important for high ablation rates in thinfilm removal. Thus, these ns lasers show high removal rates, above 60 cm2/s, in thin-film solar cell production. In addition, recent results in paint-stripping of aerospace material prove the green credentials and high processing rates inherent with this technology as it can potentially replace toxic chemical processes. The ps disk technology meanwhile is used in, for example, scribing of solar cells, wafer dicing and drilling injector nozzles, as the pulse duration is short enough to minimize heat input in the laser-matter interaction. In the TruMicro Series 5000, the multi-pass regenerative amplifier stage combines high optical-optical efficiencies together with excellent output beam quality for pulse durations of only 6 ps and high pulse energies of up to 0.25 mJ.

  3. Emission properties of diode laser bars during pulsed high-power operation

    International Nuclear Information System (INIS)

    Hempel, Martin; Tomm, Jens W; Elsaesser, Thomas; Hennig, Petra

    2011-01-01

    High-power diode laser bars (cm-bars) are subjected to single pulse step tests carried out up to and beyond their ultimate limits of operation. Laser nearfields and thermal behaviour are monitored for pulse widths in the 10–100 µs range with streak- and thermo-cameras, respectively. Thresholds of catastrophic optical damage are determined, and their dependence on the length of the injected current pulses is explained qualitatively. This approach permits testing the hardness of facet coatings of cm-bars with or without consideration of accidental single pre-damaged emitter failure effects and thermal crosstalk between the emitters. This allows for the optimization of pulsed operation parameters, helps limiting sudden degradation and provides insight into the mechanisms governing the device emission behaviour at ultimate output powers. (fast track communication)

  4. Practical Method for engineering Erbium-doped fiber lasers from step-like pulse excitations

    International Nuclear Information System (INIS)

    Causado-Buelvas, J D; Gomez-Cardona, N D; Torres, P

    2011-01-01

    A simple method, known as 'easy points', has been applied to the characterization of Erbium-doped fibers, aiming for the engineering of fiber lasers. Using low- optical-power flattop pulse excitations it has been possible to determine both the attenuation coefficients and the intrinsic saturation powers of doped single-mode fibers at 980 and 1550 nm. Laser systems have been projected for which the optimal fiber length and output power have been determined as a function of the input power. Ring and linear laser cavities have been set up, and the characteristics of the output laser have been obtained and compared with the theoretical predictions based on the 'easy points' parameters.

  5. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  6. CW and pulsed operation of a diode-end-pumped Tm:GdVO4 laser at room temperature

    International Nuclear Information System (INIS)

    Wang, Z G; Song, C W; Li, Y F; Ju, Y L; Wang, Y Z

    2009-01-01

    A room-temperature diode-end-pumped acousto-optical (AO) Q-switched Tm:GdVO 4 laser was firstly reported. The minimum AO Q-switch pulse width was measured to be about 48 ns with output power of 2 W and repetition rate of 5 kHz. Continuous-wave output power of 2.8 W at 1912 nm was obtained under the absorbed pump power of 15 W. In addition, laser pulse widths and the ratio of QCW power/CW power at different repetition rates were discussed

  7. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    OpenAIRE

    Lemos, N.; Cardoso, L.; Geada, J.; Figueira, G.; Albert, F.; Dias, J. M.

    2018-01-01

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a wav...

  8. A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging

    Science.gov (United States)

    Coyle, Barry; Poulios, Demetrios

    2013-01-01

    A fiber/solid-state hybrid seeded regenerative amplifier, capable of achieving high output energy with tunable pulse widths, has been developed for satellite laser ranging applications. The regenerative amplifier cavity uses a pair of Nd:YAG zigzag slabs oriented orthogonally to one another in order to make thermal lensing effects symmetrical and simplify optical correction schemes. The seed laser used is a fiber-coupled 1,064-nm narrowband (pumped by a single 120-W, pulsed 808-nm laser diode array. In this configuration, the average pump beam distribution in the slabs had a 1-D Gaussian shape, which matches the estimated cavity mode size. A half-wave plate between the slabs reduces losses from Fresnel reflections due to the orthogonal slabs Brewster-cut end faces. Successful "temporal" seeding of the regenerative amplifier cavity results in a cavity Q-switch pulse envelope segmenting into shorter pulses, each having the width of the input seed, and having a uniform temporal separation corresponding to the cavity round-trip time of approx. =10 ns. The pulse energy is allowed to build on successive passes in the regenerative amplifier cavity until a maximum is reached, (when cavity gains and losses are equal), after which the pulse is electro- optically switched out on the next round trip The overall gain of the amplifier is approx. =82 dB (or a factor of 1.26 million). After directing the amplified output through a LBO frequency doubling crystal, approx. = 2.1 W of 532-nm output (>1 mJ) was measured. This corresponds to a nonlinear conversion efficiency of >60%. Furthermore, by pulse pumping this system, a single pulse per laser shot can be created for the SLR (satellite laser ranging) measurement, and this can be ejected into the instrument. This is operated at the precise frequency needed by the measurement, as opposed to commercial short-pulsed, mode-locked systems that need to operate in a continuous fashion, or CW (continuous wave), and create pulses at many

  9. Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.; Novikov, I. I.; Maximov, M. V.; Ustinov, V. M.; Kuchinskii, V. I. [Ioffe Physical-Technical Institute, St. Petersburg (Russian Federation); Viktorov, E. A. [National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg (Russian Federation); Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium); Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Abusaa, M. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Arab American University, Jenin, Palestine (Country Unknown); Danckaert, J. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Kolykhalova, E. D. [St. Petersburg State Electrotechnical University “LETI,” St. Petersburg (Russian Federation); Soboleva, K. K. [St. Petersburg State Polytechnical University, St. Petersburg (Russian Federation); Zhukov, A. E. [Academic University, St. Petersburg (Russian Federation); Sibbett, W. [University of St. Andrews, St. Andrews (United Kingdom); Rafailov, E. U. [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Erneux, T. [Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium)

    2015-06-29

    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.

  10. Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    International Nuclear Information System (INIS)

    Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.; Novikov, I. I.; Maximov, M. V.; Ustinov, V. M.; Kuchinskii, V. I.; Viktorov, E. A.; Abusaa, M.; Danckaert, J.; Kolykhalova, E. D.; Soboleva, K. K.; Zhukov, A. E.; Sibbett, W.; Rafailov, E. U.; Erneux, T.

    2015-01-01

    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes

  11. Two-frequency operation of a hybrid TEA CO2 laser and its application to two-frequency pulse injection locking

    International Nuclear Information System (INIS)

    Sasaki, Koichi; Ohno, Hirotaka; Fujii, Takaharu; Tsukishima, Takashige.

    1990-10-01

    Simultaneous two-frequency oscillation of a hybrid TEA CO 2 laser is exhibited when the cw section is operated in a 'below threshold' state. The output of the hybrid laser thus obtained is injected into a main TEA CO 2 laser to obtain a power-modulated, long-pulse output with a well suppressed gain-switched spike. (author)

  12. Determination of pulse profile characteristics of multi spot retinal photocoagulation lasers.

    Science.gov (United States)

    Clarkson, Douglas McG; Makhzoum, Osama; Blackburn, John

    2015-10-01

    A system is described for determination of discrete pulse train characteristics of multi spot laser delivery systems for retinal photocoagulation. While photodiodes provide an ideal detection mechanism, measurement artifacts can potentially be introduced by the spatial pattern of the delivered beam relative to a discrete photodiode element. This problem was overcome by use of an integrating sphere to produce a uniform light field at the site of the photodiode detector. A basic current driven photodiode detection circuit incorporating an operational amplifier was used to generate a signal captured by a commercially available USB interface device at a rate of 10 kHz. Studies were undertaken of a Topcon Pascal Streamline laser system with output at a wavelength of 577 nm (yellow). This laser features the proprietary feature of 'Endpoint Management' ™ where pulses can be delivered as 100% of set energy levels with visible reaction on the retina and also at a reduced energy level to create potentially non visible but clinically effective lesions. Using the pulse train measurement device it was identified that the 'Endpoint Management' ™ delivery mode of pulses of lower energy was achieved by reducing the pulse duration of pulses for non-visible effect pulses while maintaining consistent beam power levels within the delivered pulse profile. The effect of eye geometry in determining safety and effectiveness of multi spot laser delivery for retinal photocoagulation is discussed. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  14. SBS pulse compression applied to a commercial Q-switch Nd-YAG laser

    International Nuclear Information System (INIS)

    Aliaga-Rossel, R.; Bayley, J.; Mamin, A.; Nizienko, Y.

    1997-01-01

    In optical diagnosis of dense Z-pinches, sub-nanosecond laser pulses are required in order to freeze the movement of the plasma during the probing. Commercial lasers can provide such type of pulses but they are either very expensive, or they have a very low energy per pulse. A technique that uses Stimulated Brillouin Scattering (SBS) to compress a 8 ns pulse of a commercial Q-switched Nd-YAG laser is reported here. To carry out this passive compression technique, a frequency doubled laser pulse of 10 ns was focused into a single SBS gas cell, 2 m long, filled with a mixture of argon and sulphurhexafluoride (SF 6 ) at a total pressure of 40 bar. A shorter and high intensity pulse was reflected from the cell (created by SBS) and it travelled back along its original path until it was separated from its original direction by using a dichroic polariser. The pumping volume of the SBS cell, the convergence of the incident beam and the pressure of the gas cell, were optimised to maximise both temporal compression and the output energy. Pulses of 10 ns were compressed to less than 400 ps with a conversion efficiency of 80%. This SBS pulse compression system has been used to make most of the optical measurements of a dense fibre pinch plasma produced in the MAGPIE generator

  15. Stable polarization short pulse passively Q-switched monolithic microchip laser with [110] cut Cr4+:YAG

    International Nuclear Information System (INIS)

    Wang, Y; Gong, M; Yan, P; Huang, L; Li, D

    2009-01-01

    A monolithic Nd:YAG microchip laser with [110] cut Cr 4+ :YAG is presented. The output beam is linearly polarized with polarization ratio higher than 100:1. The polarization direction is stable, independent of pump power, crystal temperature, LD temperature. In single longitudinal mode operation, stable 259 ps pulses at 2.5 kHz with 82 kW peak power and diffraction limited beam mode are output. With a simple and compact one-pass Nd:YVO 4 amplifier, 144 kW peak power is achieved. Single longitudinal and fundamental transverse mode is kept after passing through the amplifier stage. The microchip laser can be operated in two longitudinal modes with two sets of output pulses by increasing the pump power

  16. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes

    OpenAIRE

    Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C. T. Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei

    2018-01-01

    Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively....

  17. QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source

    Science.gov (United States)

    Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira

    2017-01-01

    Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.

  18. Moderate high power 1 to 20μs and kHz Ho:YAG thin disk laser pulses for laser lithotripsy

    Science.gov (United States)

    Renz, Günther

    2015-02-01

    An acousto-optically or self-oscillation pulsed thin disk Ho:YAG laser system at 2.1 μm with an average power in the 10 W range will be presented for laser lithotripsy. In the case of cw operation the thin disk Ho:YAG is either pumped with InP diode stacks or with a thulium fiber laser which leads to a laser output power of 20 W at an optical-to-optical efficiency of 30%. For the gain switched mode of operation a modulated Tm-fiber laser is used to produce self-oscillation pulses. A favored pulse lengths for uric acid stone ablation is known to be at a few μs pulse duration which can be delivered by the thin disk laser technology. In the state of the art laser lithotripter, stone material is typically ablated with 250 to 750 μs pulses at 5 to 10 Hz and with pulse energies up to a few Joule. The ablation mechanism is performed in this case by vaporization into stone dust and fragmentation. With the thin disk laser technology, 1 to 20 μs-laser pulses with a repetition rate of a few kHz and with pulse energies in the mJ-range are available. The ablation mechanism is in this case due to a local heating of the stone material with a decomposition of the crystalline structure into calcium carbonate powder which can be handled by the human body. As a joint process to this thermal effect, imploding water vapor bubbles between the fiber end and the stone material produce sporadic shock waves which help clear out the stone dust and biological material.

  19. Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers.

    Science.gov (United States)

    Tandoi, Giuseppe; Ironside, Charles N; Marsh, John H; Bryce, A Catrina

    2012-03-01

    We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers.

  20. Repetitive output laser system and method using target reflectivity

    International Nuclear Information System (INIS)

    Johnson, R.R.

    1978-01-01

    An improved laser system and method for implosion of a thermonuclear fuel pellet is described in which that portion of a laser pulse reflected by the target pellet is utilized in the laser system to initiate a succeeding target implosion, and in which the energy stored in the laser system to amplify the initial laser pulse, but not completely absorbed thereby, is used to amplify succeeding laser pulses initiated by target refγlection

  1. Ultrashort-pulse laser machining system employing a parametric amplifier

    Science.gov (United States)

    Perry, Michael D.

    2004-04-27

    A method and apparatus are provided for increasing the energy of chirped laser pulses to an output in the range 0.001 to over 10 millijoules at a repetition rate 0.010 to 100 kHz by using a two stage optical parametric amplifier utilizing a bulk nonlinear crystal wherein the pump and signal beam size can be independently adjusted in each stage.

  2. Multiplex Outputs ns Grade High-voltage Fast Pulse Generator Study

    International Nuclear Information System (INIS)

    Wang Xin; Chen Kenan

    2009-01-01

    Using a double-grid hydrogen thyratron, a fast pulse generator with four outputs, high-voltage, low jitter, was made to use at special occasion.In this paper, the basic structure of pulser, switching theory and double-grid driving of hydrogen thyratron was introduced, and also, the effects of grids driving pulses characteristics, the delay between too grids driving, the reservoir heater voltage and cathode heater voltage on the output are carefully examined in experiments. The pulse generator with four outputs was made to producing pulses with amplitude up to 4 kV, rise-time less than 15 ns and jitter less than 3 ns. (authors)

  3. Laser beam diagnostics for kilowatt power pulsed YAG laser

    International Nuclear Information System (INIS)

    Liu, Yi; Leong, Keng H.

    1992-01-01

    There is a growing need for high power YAG laser beam diagnostics with the recent introduction of such lasers in laser material processing. In this paper, we will describe the use of a commercially available laser beam analyzer (Prometec) to profile the laser beam from a 1600 W pulsed Nd:YAG laser that has a 1 mm fiber optic beam delivery system. The selection of laser pulse frequency and pulse width for the measurement is discussed. Laser beam propagation parameters by various optical components such as fibers and lenses can be determined from measurements using this device. The importance of such measurements will be discussed

  4. End-pumped Nd:YAG Q-switched laser with high energy and narrow pulse for glass carving

    Science.gov (United States)

    Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu

    2009-05-01

    In order to raise the accuracy of glass carving and improve deep cutting, a novel diode end-pumed solid-state laser is researched. Selecting proper volume of laser crytal, one continue wave laser diode which longitudinally pumped Nd:YAG crystal is performed and an applied optics coupling system is designed with self focusing.Computing with ray trace software and MATLAB software, the best parameter is obtained, so pumping beam is coupled efficiently to Nd:YAG.Used a Cr4+:YAG crystal with the singnal transmission of 82% and a line plane-concave cavity, nanosecond narrow pulse is gotten. After two thermal-electrical coolers kept the laser to work at constant temperature instead of water cooling, the volume of laser is markedly reduced. The method of thermal-electrical cooling could increase the system efficiency,achieve the effect of low mode output.Experimental results indicate that the maximum laser output energy in 1064 nm is 118mJ,pulse width is 5 ns, conversion efficiency from light to light is 15.7% under the condition of the incident power of 5 W and the diameter of the output laser spot is less than 1 mm. This end-pumped Nd:YAG Q-switched laser with the light output of high quality and long life, which has 0.01 mm accuracy after lens focusing can satisfy the glass carving with higher precision, rapid speed as well as easy control. It can be used in carving all kinds of glass and replace current CO2 laser.

  5. Studies on widely tunable ultra-short laser pulses using energy transfer distributed feedback dye laser

    International Nuclear Information System (INIS)

    Ahamed, M.B.; Ramalingam, A.; Palanisamy, P.K.

    2003-01-01

    This paper presents both theoretical and experimental study of the characteristics of Nd: YAG laser pumped energy transfer distributed feedback dye laser (ETDFDL). Using theoretical model proposed, the behavior of ETDFDL such as the characteristics of donor DFDL, the acceptor DFDL, the dependence of their pulse width and output power on donor-acceptor concentrations and pump power are studied for dye mixture Rhodamine 6G and Cresyl Violet in detail. Experimentally using prism-dye cell configuration, the ETDFDL output is obtained and the output energy of DFDL is measured at the emission peaks of donor and acceptor dyes for different pump powers and donor-acceptor concentrations. In addition, the DFDL linewidth measurement has been carried out at the lasing wavelengths of the donor and acceptor dyes using Fabry-Perot etalon and the tunability of DFDL is measured to be in the wavelength range of 545-680 nm

  6. Generation of dual-wavelength, synchronized, tunable, high energy, femtosecond laser pulses with nearly perfect gaussian spatial profile

    Science.gov (United States)

    Wang, J.-K.; Siegal, Y.; Lü, C.; Mazur, E.

    1992-07-01

    We use self-phase modulation in a single-mode fiber to produce broadband femtosecond laser pulses. Subsequent amplification through two Bethune cells yields high-energy, tunable, pulses synchronized with the output of an amplified colliding-pulse-modelocked (CPM) laser. We routinely obtain tunable 200 μJ pulses of 42 fs (fwhm) duration with a nearly perfect gaussian spatial profile. Although self-phase modulation in a single-mode fiber is widely used in femtosecond laser systems, amplification of a fiber-generated supercontinuum in a Bethune cell amplifier is a new feature which maintains the high-quality spatial profile while providing high gain. This laser system is particularly well suited for high energy dual-wavelength pump=probe experiments and time-resolved four-wave mixing spectroscopy.

  7. Programmable pulse sequence generator with multiple output lines

    Science.gov (United States)

    Drabczyk, Hubert

    2006-10-01

    This paper presents a novel concept of pulse sequence generator and its prototype as an electronic circuit testing laboratory tool. The generator has multiple output lines and is capable of using control data defining different pulse sequences to be given to the outputs. It is also possible to use different voltage levels in output signal and switch output lines for reading data from driven system. The pulse sequence generator can be used for runtime environment simulation, as hardware tester or auxiliary tool in new designs. Important design factors were to keep cost of the tool low and allow integration with other projects by using flexible architecture. The prototype was based on universal programmer with adjustable power supply, '51 microcontroller and Altera Cyclone chip. The generator communicates witch PC computer via RS232 port. Dedicated software was developed in the course of this project, to control the tool and data transmission. The prototype confirmed the possibility to create an inexpensive multipurpose laboratory tool for programming, testing and simulation of digital devices.

  8. Picosecond trigger system useful in mode-locked laser pulse measurements

    International Nuclear Information System (INIS)

    Cunin, B.; Miehe, J.A.; Sipp, B.; Thebault, J.

    1976-01-01

    A highly sensitive tunnel diode trigger useful in temporal intensity build-up measurements of mode-locked lasers has been developed; the device reduces notably the time walk due to the lack of repeatability in intensity of the laser output. The performance of the trigger have been established by means of a GHz wideband-0.1V/cm sensitive real-time oscilloscope and of an image converter camera having a picosecond resolution: the experimental results show that a variation of the amplitude of the laser pulse train of a factor 5 leads to a time jitter of less than 30 ps (Auth.)

  9. Pulsed inductive HF laser

    Energy Technology Data Exchange (ETDEWEB)

    Razhev, A M; Kargapol' tsev, E S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Churkin, D S; Demchuk, S V [Novosibirsk State University, Novosibirsk (Russian Federation)

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  10. Wavelength stabilized high pulse power laser diodes for automotive LiDAR

    Science.gov (United States)

    Knigge, A.; Klehr, A.; Wenzel, H.; Zeghuzi, A.; Fricke, J.; Maaßdorf, A.; Liero, A.; Tränkle, G.

    2018-03-01

    Diode lasers generating optical pulses with high peak power and lengths in the nanosecond range are key components of systems for free-space communication, metrology, material processing, spectroscopy, and light detection and ranging (LiDAR) as needed for object detection and autonomous driving. Automotive LiDAR systems demand additionally a good beam quality and low wavelength shift with temperature due to the wide operating temperature span. We present here internally wavelength stabilized lasers emitting ns optical pulses from an emission aperture between 30 μm and 100 μm with peak powers of tens of Watts at wavelengths around 905 nm. The vertical structure based on AlGaAs (confinement and cladding layers) and InGaAs (active quantum well) is especially optimized for pulsed operation with respect to the implementation of a surface Bragg grating with a high reflectivity. The fabricated 6 mm long distributed Bragg reflector (DBR) broad area (BA) lasers are electrically driven by an in-house developed high-speed unit generating 3 to 10 ns long nearly rectangular shaped current pulses with amplitudes of up to 250 A. Such lasers emit optical pulses with a peak power of more than 30 W at 95 A pulse current up to a temperature of 85°C with a wavelength shift as low as 65 pm/K and a lateral beam propagation factor less than 10. The influence of the lateral aperture width and the pulse length on the beam quality will be shown. A monolithic integration of 3 DBR BA lasers on a single chip whose emission can be combined into a single beam raises the output power to more than 100 W.

  11. Parameters of a trigatron-driven low-pulse-repetition-rate TEA CO2 laser preionised by a surface corona discharge

    International Nuclear Information System (INIS)

    Aram, M; Shabanzadeh, M; Mansori, F; Behjat, A

    2007-01-01

    The design of a TEA CO 2 laser with UV preionisation by a surface corona discharge is described and the dependences of its average output energy on the gas-flow rate, discharge voltage and pulse repetition rate are presented. The scheme of the electric circuit and the geometry of the pre-ionisation system are considered. The electric circuit is designed to produce only impulse voltage difference between the laser electrodes. The triggering system of the trigatron is used to prevent the appearance of the arc. The dependences of the current, voltage and average output energy on the gas-mixture composition and applied voltages at a low pulse repetition rate are presented. The central output wavelength of the laser was measured with an IR spectrometer. Lasing at two adjacent vibrational-rotational transitions of the CO 2 molecule was observed, which demonstrates the possibility of simultaneous lasing at several lines. (lasers)

  12. LASER ABLATION OF MONOCRYSTALLINE SILICON UNDER PULSED-FREQUENCY FIBER LASER

    Directory of Open Access Journals (Sweden)

    V. P. Veiko

    2015-05-01

    Full Text Available Subject of research. The paper deals with research of the surface ablation for single-crystal silicon wafers and properties of materials obtained in response to silicon ablation while scanning beam radiation of pulse fiber ytterbium laser with a wavelenght λ = 1062 nm in view of variation of radiation power and scanning modes. Method. Wafers of commercial p-type conductivity silicon doped with boron (111, n-type conductivity silicon doped with phosphorus (100 have been under research with a layer of intrinsical silicon oxide having the thickness equal to several 10 s of nanometers and SiO2 layer thickness from 120 to 300 nm grown by thermal oxidation method. The learning system comprises pulse fiber ytterbium laser with a wavelenght λ = 1062 nm. The laser rated-power output is equal to 20 W, pulse length is 100 ns. Pulses frequency is in the range from 20 kHz to 100 kHz. Rated energy in the pulse is equal to 1.0 mJ. Scanning has been carried out by means of two axial scanning device driven by VM2500+ and controlled by personal computer with «SinMarkТМ» software package. Scanning velocity is in the range from 10 mm/s to 4000 mm/s, the covering varies from 100 lines per mm to 3000 lines per mm. Control of samples has been carried out by means of Axio Imager A1m optical microscope Carl Zeiss production with a high definition digital video camera. All experiments have been carried out in the mode of focused laser beam with a radiation spot diameter at the substrate equal to 50 μm. The change of temperature and its distribution along the surface have been evaluated by FLIR IR imager of SC7000 series. Main results. It is shown that ablation occurs without silicon melting and with plasma torch origination. The particles of ejected silicon take part in formation of silicon ions plasma and atmosphere gases supporting the plasmo-chemical growth of SiO2. The range of beam scanning modes is determined where the growth of SiO2 layer is observed

  13. Acousto-optic replication of ultrashort laser pulses

    Science.gov (United States)

    Yushkov, Konstantin B.; Molchanov, Vladimir Ya.; Ovchinnikov, Andrey V.; Chefonov, Oleg V.

    2017-10-01

    Precisely controlled sequences of ultrashort laser pulses are required in various scientific and engineering applications. We developed a phase-only acousto-optic pulse shaping method for replication of ultrashort laser pulses in a TW laser system. A sequence of several Fourier-transform-limited pulses is generated from a single femtosecond laser pulse by means of applying a piecewise linear phase modulation over the whole emission spectrum. Analysis demonstrates that the main factor which limits maximum delay between the pulse replicas is spectral resolution of the acousto-optic dispersive delay line used for pulse shaping. In experiments with a Cr:forsterite laser system, we obtained delays from 0.3 to 3.5 ps between two replicas of 190 fs transform-limited pulses at the central wavelength of laser emission, 1230 nm.

  14. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.

    Science.gov (United States)

    Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W

    2014-01-27

    We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.

  15. Testing of a femtosecond pulse laser in outer space

    Science.gov (United States)

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-01-01

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future. PMID:24875665

  16. Laser-pulsed relativistic electron gun

    International Nuclear Information System (INIS)

    Sherman, N.K.

    1986-01-01

    A relativistic (β ≅ 0.8) electron gun with good emittance and subnanosecond pulse duration which can be synchronized to picosecond laser pulses is being developed at NRC for use in studies of particle acceleration by lasers. Bursts of electron pulses exceeding 280 keV in energy have been extracted into air form a laser-driven vacuum photodiode. Trains of 5 ps pulses of ultraviolet UV light illuminate a magnesium cathode. Photoelectrons emitted from the cathode are accelerated in a graded electrostatic potential set up by a 360 kV Marx-generator. The UV pulses are obtained by doubling the frequency of a 606 nm dye laser modelocked at 160 MHz. Electron energies were measured by residual range in an echelon of Al foils. Total charge per burst was measured by picoammeter. Time structure of the bursts has been examined with plastic scintillator and a fast photomultiplier. Tests on a low voltage photodiode achieved a current density of 180 A/cm/sup 2/ from an Mg cathode, with quantum efficiency of 2.4 x 10/sup -6/ electron per UV photon. The brevity and intensity of the laser pulses cause the electric charge collected per pulse to increase linearly with bias voltage rather than according to the Langmuir-Child law. Gun emittance is about 150 mm-msr and beam brightness is about 1A/cm/sup 2/-sr. Estimated duration of individual electron pulses of a burst is about 400 ps with instantaneous current of about 0.1 mA. Energy spread within one pulse is expected to be about 15%. This gun has the potential to be a useful source of relativistic electrons for laser acceleration studies

  17. Device for frequency modulation of a laser output spectrum

    Science.gov (United States)

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  18. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail: samokhvalov.itmo@gmail.com; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  19. Influence of the laser pulse duration on laser-produced plasma properties

    International Nuclear Information System (INIS)

    Drogoff, B Le; Margot, J; Vidal, F; Laville, S; Chaker, M; Sabsabi, M; Johnston, T W; Barthelemy, O

    2004-01-01

    In the framework of laser-induced plasma spectroscopy (LIPS) applications, time-resolved characteristics of laser-produced aluminium plasmas in air at atmospheric pressure are investigated for laser pulse durations ranging from 100 fs to 270 ps. Measurements show that for delays after the laser pulse longer than ∼100 ns, the plasma temperature increases slightly with the laser pulse duration, while the electron density is independent of it. In addition, as the pulse duration increases, the plasma radiation emission lasts longer and the spectral lines arise later from the continuum emission. The time dependence of the continuum emission appears to be similar whatever the duration of the laser pulse is, while the temporal evolution of the line emission seems to be affected mainly by the plasma temperature. Finally, as far as spectrochemical applications (such as LIPS) of laser-produced plasmas are concerned, this study highlights the importance of the choice of appropriate temporal gating parameters for each laser pulse duration

  20. Highly efficient actively Q-switched Yb:LGGG laser generating 3.26 mJ of pulse energy

    Science.gov (United States)

    Li, Yanbin; Zhang, Jian; Zhao, Ruwei; Zhang, Baitao; He, Jingliang; Jia, Zhitai; Tao, Xutang

    2018-05-01

    An efficient acousto-optic Q-switched laser operation of Yb:(LuxGd1-x)3Ga5O12 (x = 0.062) (Yb:LGGG) crystal is demonstrated, producing stable pulses with repetition rate ranging from 1 to 20 kHz. Under the absorbed pump power of 8.75 W, the maximum average output power of 3.26 W is obtained at the pulse repletion rate of 1 kHz, corresponding to the slope efficiency as high as 52%. The pulse width of 14.5 ns is achieved with the pulse energy and peak power of 3.26 mJ and 225 kW, respectively. It indicates great potential of Yb:LGGG crystal for generating pulsed lasers.

  1. High power ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  2. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  3. Laser ablation comparison by picosecond pulses train and nanosecond pulse

    Science.gov (United States)

    Lednev, V. N.; Filippov, M. N.; Bunkin, A. F.; Pershin, S. M.

    2015-12-01

    A comparison of laser ablation by a train of picosecond pulses and nanosecond pulses revealed a difference in laser craters, ablation thresholds, plasma sizes and spectral line intensities. Laser ablation with a train of picosecond pulses resulted in improved crater quality while ablated mass decreased up to 30%. A reduction in laser plasma dimensions for picosecond train ablation was observed while the intensity of atomic/ionic lines in the plasma spectra was greater by a factor of 2-4 indicating an improved excitation and atomization in the plasma.

  4. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Teghil, R; De Bonis, A; Galasso, A; Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P

    2008-01-01

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  5. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.

    2006-01-01

    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  6. Study of thermal response of superconducting NbN meander line by using 20 ps pulse laser

    International Nuclear Information System (INIS)

    Miki, Shigehito; Fujiwara, Daisuke; Simakage, Hisashi; Kawakami, Akira; Wang Zhen; Satoh, Kazuo; Yotsuya, Tsutomu; Ishida, Takekazu

    2005-01-01

    The thermal response of a superconducting NbN thin-film meander line was studied by irradiating with a 20 ps pulse laser. A 10 nm-thick NbN thin film was prepared by dc magnetron sputtering and then processed to fabricate a 3 μm-wide, 125.5 mm-long meander line. The device was placed in a 4 K refrigerator, and the bias temperature was kept below the critical temperature T c . The end of an optical fiber was fixed at the front of a meander line, which was then directly irradiated by using the 20 ps pulse laser. The output voltage was observed with a digital oscilloscope and a low-noise amplifier. The output signals of the thermal response were clearly observed

  7. All-Fiber, Directly Chirped Laser Source for Chirped-Pulse-Amplification

    Science.gov (United States)

    Xin, Ran

    Chirped-pulse-amplification (CPA) technology is widely used to produce ultra-short optical pulses (sub picosecond to femtoseconds) with high pulse energy. A chirped pulse laser source with flexible dispersion control is highly desirable as a CPA seed. This thesis presents an all-fiber, directly chirped laser source (DCLS) that produces nanosecond, linearly-chirped laser pulses at 1053 nm for seeding high energy CPA systems. DCLS produces a frequency chirp on an optical pulse through direct temporal phase modulation. DCLS provides programmable control for the temporal phase of the pulse, high pulse energy and diffraction-limited beam performance, which are beneficial for CPA systems. The DCLS concept is first described. Its key enabling technologies are identified and their experimental demonstration is presented. These include high-precision temporal phase control using an arbitrary waveform generator, multi-pass phase modulation to achieve high modulation depth, regenerative amplification in a fiber ring cavity and a negative feedback system that controls the amplifier cavity dynamics. A few technical challenges that arise from the multi-pass architecture are described and their solutions are presented, such as polarization management and gain-spectrum engineering in the DCLS fiber cavity. A DCLS has been built and its integration into a high energy OPCPA system is demonstrated. DCLS produces a 1-ns chirped pulse with a 3-nm bandwidth. The temporal phase and group delay dispersion on the DCLS output pulse is measured using temporal interferometry. The measured temporal phase has an ˜1000 rad amplitude and is close to a quadratic shape. The chirped pulse is amplified from 0.9 nJ to 76 mJ in an OPCPA system. The amplified pulse is compressed to close to its Fourier transform limit, producing an intensity autocorrelation trace with a 1.5-ps width. Direct compressed-pulse duration control by adjusting the phase modulation drive amplitude is demonstrated. Limitation

  8. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces

    International Nuclear Information System (INIS)

    Sprangle, P.; Penano, J.R.; Hafizi, B.; Kapetanakos, C.A.

    2004-01-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, -8 . Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated

  9. Self-seeded single-frequency laser peening method

    Science.gov (United States)

    DAne, C Brent; Hackey, Lloyd A; Harris, Fritz B

    2012-06-26

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  10. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  11. Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit

    Science.gov (United States)

    Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong

    2018-06-01

    A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.

  12. Laser cleaning of pulsed laser deposited rhodium films for fusion diagnostic mirrors

    International Nuclear Information System (INIS)

    Uccello, A.; Maffini, A.; Dellasega, D.; Passoni, M.

    2013-01-01

    Highlights: ► Pulsed laser deposition is exploited to produce Rh films for first mirrors. ► Pulsed laser deposition is exploited to produce tokamak-like C contaminants. ► Rh laser damage threshold has been evaluated for infrared pulses. ► Laser cleaning of C contaminated Rh films gives promising results. -- Abstract: In this paper an experimental investigation on the laser cleaning process of rhodium films, potentially candidates to be used as tokamak first mirrors (FMs), from redeposited carbon contaminants is presented. A relevant issue that lowers mirror's performance during tokamak operations is the redeposition of sputtered material from the first wall on their surface. Among all the possible techniques, laser cleaning, in which a train of laser pulses is launched to the surface that has to be treated, is a method to potentially mitigate this problem. The same laser system (Q-switched Nd:YAG laser with a fundamental wavelength of 1064-nm and 7-ns pulses) has been employed with three aims: (i) production by pulsed laser deposition (PLD) of Rh film mirrors, (ii) production by PLD of C deposits with controlled morphology, and (iii) investigation of the laser cleaning method onto C contaminated Rh samples. The evaluation of Rh films laser damage threshold, as a function of fluence and number of pulses, is discussed. Then, the C/Rh films have been cleaned by the laser beam. The exposed zones have been characterized by visual inspection and scanning electron microscopy (SEM), showing promising results

  13. Closed cycle high-repetition-rate pulsed HF laser

    Science.gov (United States)

    Harris, Michael R.; Morris, A. V.; Gorton, Eric K.

    1997-04-01

    The design and performance of a closed cycle high repetition rate HF laser is described. A short pulse, glow discharge is formed in a 10 SF6:1 H2 gas mixture at a total pressure of approximately 110 torr within a 15 by 0.5 by 0.5 cm3 volume. Transverse, recirculated gas flow adequate to enable repetitive operation up to 3 kHz is imposed by a centrifugal fan. The fan also forces the gas through a scrubber cell to eliminate ground state HF from the gas stream. An automated gas make-up system replenishes spent gas removed by the scrubber. Typical mean laser output powers up to 3 W can be maintained for extended periods of operation.

  14. Metal processing with ultrashort laser pulses

    Science.gov (United States)

    Banks, Paul S.; Felt, M. D.; Komashko, Aleksey M.; Perry, Michael D.; Rubenchik, Alexander M.; Stuart, Brent C.

    2000-08-01

    Femtosecond laser ablation has been shown to produce well-defined cuts and holes in metals with minimal heat effect to the remaining material. Ultrashort laser pulse processing shows promise as an important technique for materials processing. We will discuss the physical effects associated with processing based experimental and modeling results. Intense ultra-short laser pulse (USLP) generates high pressures and temperatures in a subsurface layer during the pulse, which can strongly modify the absorption. We carried out simulations of USLP absorption versus material and pulse parameters. The ablation rate as function of the laser parameters has been estimated. Since every laser pulse removes only a small amount of material, a practical laser processing system must have high repetition rate. We will demonstrate that planar ablation is unstable and the initially smooth crater bottom develops a corrugated pattern after many tens of shots. The corrugation growth rate, angle of incidence and the polarization of laser electric field dependence will be discussed. In the nonlinear stage, the formation of coherent structures with scales much larger than the laser wavelength was observed. Also, there appears to be a threshold fluence above which a narrow, nearly perfectly circular channel forms after a few hundred shots. Subsequent shots deepen this channel without significantly increasing its diameter. The role of light absorption in the hole walls will be discussed.

  15. High-power femtosecond pulse generation in a passively mode-locked Nd:SrLaAlO4 laser

    Science.gov (United States)

    Liu, Shan-De; Dong, Lu-Lu; Zheng, Li-He; Berkowski, Marek; Su, Liang-Bi; Ren, Ting-Qi; Peng, Yan-Dong; Hou, Jia; Zhang, Bai-Tao; He, Jing-Liang

    2016-07-01

    A high optical quality Nd:SrLaAlO4 (Nd:SLA) crystal was grown using the Czochralski method and showed broad fluorescence spectrum with a full width at half maximum value of 34 nm, which is beneficial for generating femtosecond laser pulses. A stable diode-pumped passively mode-locked femtosecond Nd:SLA laser with 458 fs pulse duration was achieved for the first time at a central wavelength of 1077.9 nm. The average output power of the continuous-wave mode-locked laser was 520 mW and the repetition rate was 78.5 MHz.

  16. Diode-pumped solid state laser. (Part V). ; Short pulse laser oscillation. Handotai laser reiki kotai laser. 5. ; Tan pulse hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M.; Bando, N. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-12-25

    A semiconductor laser (LD) excited solid state laser using an LD as an excited light source is under discussion for its practical applications to measurements, processing, communications, office automation, and medical areas. This paper describes the discussions given on the short pulse transmission using AOQ switching elements in the LD excited solid state laser with a long wave length band (1.3{mu}m), which is expected of its application in the communications and measurements area. Based on a possibility of raising a measurements resolution by making the pluses in the LD excited solid state laser, and experiments were performed using Nd:YLF as a laser host. as a results, it was found that the smaller the effective mode volume V {sub eff},the smaller the pulse width, and that the ratio of number of initial inversion distribution (N{sub i}/N{sub t}), an important parameter to determine pulse widths, can be obtained from the ratio of the LD exciting light to the input power (P{sub in}/P{sub t}). 7 refs., 14 figs., 2 tabs.

  17. A photodiode amplifier system for pulse-by-pulse intensity measurement of an x-ray free electron laser.

    Science.gov (United States)

    Kudo, Togo; Tono, Kensuke; Yabashi, Makina; Togashi, Tadashi; Sato, Takahiro; Inubushi, Yuichi; Omodani, Motohiko; Kirihara, Yoichi; Matsushita, Tomohiro; Kobayashi, Kazuo; Yamaga, Mitsuhiro; Uchiyama, Sadayuki; Hatsui, Takaki

    2012-04-01

    We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC). Output signals from the amplifiers were transmitted to a data acquisition system through a long cable in the form of a differential signal. The x-ray pulse intensities were calculated from the peak values of the signals by a waveform fitting procedure. This system can measure 10(3)-10(9) photons/pulse of ~10 keV x-rays by direct irradiation of a silicon PIN photodiode, and from 10(7)-10(11) photons/pulse by detecting the x-rays scattered by a diamond film using the silicon PIN photodiode. This system gives a relative accuracy of ~10(-3) with a proper gain setting of the amplifiers for each measurement. Using this system, we succeeded in detecting weak light at the developmental phase of the light source, as well as intense light during lasing of the x-ray free electron laser. © 2012 American Institute of Physics

  18. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    International Nuclear Information System (INIS)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-01-01

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  19. Influence of different approaches for dynamical performance optimization of monolithic passive colliding-pulse mode-locked laser diodes emitting around 850 nm

    Science.gov (United States)

    Prziwarka, T.; Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Weyers, M.; Knigge, A.; Tränkle, G.

    2018-02-01

    Monolithic laser diodes which generate short infrared pulses in the picosecond and sub-picosecond ranges with high peak power are ideal sources for many applications like e.g. THz-time-domain spectroscopy (TDS) scanning systems. The achievable THz bandwidth is limited by the length of the optical pulses. Due to the fact that colliding-pulse mode locking (CPM) leads to the shortest pulses which could reached by passive mode locking, we experimentally investigated in detail the dynamical and electro optical performance of InGaAsP based quantum well CPM laser diodes with well-established vertical layer structures. Simple design modifications whose implementation is technically easy were realized. Improvements of the device performance in terms of pulse duration, output power, and noise properties are presented in dependence on the different adaptions. From the results we extract an optimized configuration with which we have reached pulses with durations of ≍1.5 ps, a peak power of > 1 W and a pulse-to-pulse timing jitter < 200 fs. The laser diodes emit pulses at a wavelength around 850 nm with a repetition frequency of ≍ 12.4 GHz and could be used as pump source for GaAs antennas to generate THz-radiation. Approaches for reducing pulse width, increasing output power, and improving noise performance are described.

  20. Femtosecond pulsed laser ablation of GaAs

    International Nuclear Information System (INIS)

    Trelenberg, T.W.; Dinh, L.N.; Saw, C.K.; Stuart, B.C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed

  1. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    International Nuclear Information System (INIS)

    Höppner, H; Hage, A; Tanikawa, T; Schulz, M; Faatz, B; Riedel, R; Prandolini, M J; Teubner, U; Tavella, F

    2015-01-01

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation. (paper)

  2. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, K., E-mail: krasa@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Anastasescu, M.; Stroescu, H.; Gartner, M. [Institute of Physical Chemistry, “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2017-02-01

    Highlights: • Study of pulsed laser deposited AlN films at different laser pulse frequencies. • Higher laser pulse frequency promotes nanocrystallites formation at temperature 450 °C. • AFM and GIXRD detect randomly oriented wurtzite AlN structures. • Characterization of the nanocrystallites’ orientation by FTIR reflectance spectra. • Berreman effect is registered in p-polarised radiation at large incidence angles. - Abstract: Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A{sub 1}LO mode frequency was analysed and connected to the orientation of the particles’ optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers’ properties is discussed on this basis.

  3. Propagating Characteristics of Pulsed Laser in Rain

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2015-01-01

    Full Text Available To understand the performance of laser ranging system under the rain weather condition, we need to know the propagating characteristics of laser pulse in rain. In this paper, the absorption and attenuation coefficients were calculated based on the scattering theories in discrete stochastic media, and the propagating characteristics of laser pulse in rain were simulated and analyzed using Monte-Carlo method. Some simulation results were verified by experiments, and the simulation results are well matched with the experimental data, with the maximal deviation not less than 7.5%. The results indicated that the propagating laser beam would be attenuated and distorted due to the scattering and absorption of raindrops, and the energy attenuation and pulse shape distortion strongly depended on the laser pulse widths.

  4. Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes

    DEFF Research Database (Denmark)

    Bischoff, Svend; Sørensen, Mads Peter; Mørk, J.

    1995-01-01

    The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow...... absorber dynamics to achieve mode-locking. Significant chirp is predicted for pulses emitted from long lasers, in agreement with experiment. The pulse width shows a strong dependence on both cavity and saturable absorber length. (C) 1995 American Institute of Physics....

  5. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    . The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse......We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror...

  6. Pulse laser ablation at water-air interface

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro

    2010-06-01

    We studied a new pulse laser ablation phenomenon on a liquid surface layer, which is caused by the difference between the refractive indices of the two materials involved. The present study was motivated by our previous study, which showed that laser ablation can occur at the interface between a transparent material and a gas or liquid medium when the laser pulse is focused through the transparent material. In this case, the ablation threshold fluence is reduced remarkably. In the present study, experiments were conducted in water and air in order to confirm this phenomenon for a combination of two fluid media with different refractive indices. This phenomenon was observed in detail by pulse laser shadowgraphy. A high-resolution film was used to record the phenomenon with a Nd:YAG pulse laser with 10-ns duration as a light source. The laser ablation phenomenon on the liquid surface layer caused by a focused Nd:YAG laser pulse with 1064-nm wavelength was found to be followed by the splashing of the liquid surface, inducing a liquid jet with many ligaments. The liquid jet extension velocity was around 1000 m/s in a typical case. The liquid jet decelerated drastically due to rapid atomization at the tips of the ligaments. The liquid jet phenomenon was found to depend on the pulse laser parameters such as the laser fluence on the liquid surface, laser energy, and laser beam pattern. The threshold laser fluence for the generation of a liquid jet was 20 J/cm2. By increasing the incident laser energy with a fixed laser fluence, the laser focused area increased, which eventually led to an increase in the size of the plasma column. The larger the laser energy, the larger the jet size and the longer the temporal behavior. The laser beam pattern was found to have significant effects on the liquid jet’s velocity, shape, and history.

  7. Phase Noise Comparision of Short Pulse Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  8. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    Science.gov (United States)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  9. High reliability low jitter pulse generator

    Science.gov (United States)

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  10. Concave pulse shaping of a circularly polarized laser pulse from non-uniform overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Sup [School of Natural Science, UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kulagin, Victor V. [Sternberg Astronomical Institute, Moscow State University, Universitetsky prosp. 13, Moscow, 119992 (Russian Federation); Suk, Hyyong, E-mail: hysuk@gist.ac.kr [Department of Physics and Photon Science, GIST, 123 Cheomdan-gwangiro, Buk-gu, Gwangju, 500-712 (Korea, Republic of)

    2015-03-20

    Pulse shaping of circularly polarized laser pulses in nonuniform overdense plasmas are investigated numerically. Specifically we show by two-dimensional particle-in-cell simulations the generation of a concave pulse front of a circularly polarized, a few tens of petawatt laser pulse from a density-tapered, overdense plasma slab. The concept used for the transverse-directional shaping is the differential transmittance depending on the plasma density, and the laser intensity. For suitable selection of the slab parameters for the concave pulse shaping, we studied numerically the pulse transmittance, which can be used for further parameter design of the pulse shaping. The concavely shaped circularly polarized pulse is expected to add more freedom in controlling the ion-beam characteristics in the RPDA regime. - Highlights: • Laser pulse shaping for a concave front by non-uniform overdense plasma was studied. • Particle-in-cell (PIC) simulations were used for the investigation. • A laser pulse can be shaped by a density-tapered overdense plasma. • The concave and sharp pulse front are useful in many laser–plasma applications. • They are important for ion acceleration, especially in the radiation pressure dominant regime.

  11. Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses

    International Nuclear Information System (INIS)

    Da-Yong, Liu; Yan, Li; Yan-Ping, Dou; Heng-Chang, Guo; Hong, Yang; Qi-Huang, Gong

    2008-01-01

    Multi-mode interference waveguides are fabricated inside silica glass by transverse writing geometry with femtosecond laser pulses. The influences of several writing and reading factors on the output mode are systematically studied. The experimental results of straight waveguides are in good agreement with the simulations by the beam propagation method. By integrating a straight waveguide with a bent waveguide, a 1 × 2 multi-mode splitter is formed and 2 × 3 lobes are observed in the output mode. (fundamental areas of phenomenology (including applications))

  12. Thin disk laser with unstable resonator and reduced output coupler

    Science.gov (United States)

    Gavili, Anwar; Shayganmanesh, Mahdi

    2018-05-01

    In this paper, feasibility of using unstable resonator with reduced output coupling in a thin disk laser is studied theoretically. Unstable resonator is modeled by wave-optics using Collins integral and iterative method. An Yb:YAG crystal with 250 micron thickness is considered as a quasi-three level active medium and modeled by solving rate equations of energy levels populations. The amplification of laser beam in the active medium is calculated based on the Beer-Lambert law and Rigrod method. Using generalized beam parameters method, laser beam parameters like, width, divergence, M2 factor, output power as well as near and far-field beam profiles are calculated for unstable resonator. It is demonstrated that for thin disk laser (with single disk) in spite of the low thickness of the disk which leads to low gain factor, it is possible to use unstable resonator (with reduced output coupling) and achieve good output power with appropriate beam quality. Also, the behavior of output power and beam quality versus equivalent Fresnel number is investigated and optimized value of output coupling for maximum output power is achieved.

  13. Channeling and stability of laser pulses in plasmas

    International Nuclear Information System (INIS)

    Sprangle, P.; Krall, J.; Esarey, E.

    1995-01-01

    A laser pulse propagating in a plasma is found to undergo a combination of hose and modulation instabilities. The coupled equations for the laser beam envelope and centroid are derived and solved for a laser pulse of finite length propagating through either a uniform plasma or preformed plasma density channel. The laser envelope equation describes the pulse self-focusing and optical guiding in plasmas and is used to analyze the self-modulation instability. The laser centroid equation describes the transverse motion of the laser pulse (hosing) in plasmas. Significant coupling between the centroid and envelope motion as well as harmonic generation in the envelope can occur. In addition, the transverse profile of the generated wake field is strongly affected by the laser hose instability. Methods to reduce the laser hose instability are demonstrated. copyright 1995 American Institute of Physics

  14. Molecular dynamics study of lubricant depletion by pulsed laser heating

    Science.gov (United States)

    Seo, Young Woo; Rosenkranz, Andreas; Talke, Frank E.

    2018-05-01

    In this study, molecular dynamics simulations were performed to numerically investigate the effect of pulsed laser heating on lubricant depletion. The maximum temperature, the lubricant depletion width, the number of evaporated lubricant beads and the number of fragmented lubricant chains were studied as a function of laser peak power, pulse duration and repetition rate. A continuous-wave laser and a square pulse laser were simulated and compared to a Gaussian pulse laser. With increasing repetition rate, pulsed laser heating was found to approach continuous-wave laser heating.

  15. Regimes of self-pulsing in photonic crystal Fano lasers

    DEFF Research Database (Denmark)

    Rasmussen, Thorsten Svend; Yu, Yi; Mørk, Jesper

    2017-01-01

    Laser self-pulsing was a property exclusive to macroscopic laser systems until recently, where self-pulsing laser operation was demonstrated experimentally and theoretically in a microscopic photonic crystal Fano laser [1]. We now provide a detailed theoretical analysis of the self......-pulsing mechanism and laser characteristics with numerical simulations to demonstrate the parameter dependence of the self-pulsing regime and its limitations, indicating how the design may be optimised for applications in e.g. integrated on-chip communication systems....

  16. High energy HF pulsed lasers

    International Nuclear Information System (INIS)

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  17. Control of laser pulse waveform in longitudinally excited CO2 laser by adjustment of excitation circuit

    Science.gov (United States)

    Uno, Kazuyuki; Jitsuno, Takahisa

    2018-05-01

    In a longitudinally excited CO2 laser that had a 45 cm-long discharge tube with a 1:1:2 mixture of CO2/N2/He gas at a pressure of 3.0 kPa, we realized the generation of a short laser pulse with a spike pulse width of about 200 ns and a pulse tail length of several tens of microseconds, control of the energy ratio of the spike pulse part to the pulse tail part in the short laser pulse, the generation of a long laser pulse with a pulse width of several tens of microseconds, and control of the pulse width in the long laser pulse, by using four types of excitation circuits in which the capacitance was adjusted. In the short laser pulse, the energy ratio was in the range 1:14-1:112. In the long laser pulse, the pulse width was in the range 25.7-82.7 μs.

  18. The non-planar single-frequency ring laser with variable output coupling

    Science.gov (United States)

    Wu, Ke-ying; Yang, Su-hui; Wei, Guang-hui

    2002-03-01

    We put forward a novel non-planar single-frequency ring laser, which consists of a corner cube prism and a specially cut Porro prism made by Nd:YAG crystal. The relative angle between the corner cube and the Porro prism could be adjusted to control the output coupling of the laser resonator and the polarization-state of the output laser. A 1.06 μm single-frequency laser with 1 W output has been obtained.

  19. Effects of laser wavelengths and pulse energy ratio on the emission enhancement in dual pulse LIBS

    International Nuclear Information System (INIS)

    Ahmed, Rizwan; Iqbal, Javed; Baig, M Aslam

    2015-01-01

    We present new studies on the effects of laser wavelengths, pulse energy ratio and interpulse delay between two laser pulses in the collinear dual pulse configuration of laser-induced breakdown spectroscopy (LIBS) on an iron sample in air using the fundamental (1064 nm) and the second harmonics (532 nm) of Nd:YAG lasers. In the dual pulse LIBS, an optimum value of interpulse delay with an appropriate combination of laser wavelengths, and laser pulse energy ratio, yields a 30 times signal intensity enhancement in the neutral iron lines as compared with single pulse LIBS. A comparison in the spatial variations of electron temperature along the axis of the plume expansion in single and double pulse LIBS has also been studied. (letter)

  20. Investigation of laser plasma instabilities using picosecond laser pulses

    International Nuclear Information System (INIS)

    Kline, J L; Montgomery, D S; Yin, L; Flippo, K A; Shimada, T; Johnson, R P; Rose, H A; Albright, B J; Hardin, R A

    2008-01-01

    A new short-pulse version of the single-hot-spot configuration has been implemented to enhance the performance of experiments to understand Stimulated Raman Scattering. The laser pulse length was reduced from ∼200 to ∼3 ps. The reduced pulse length improves the experiment by minimizing effects such as plasma hydrodynamic evolution and ponderomotive filamentation of the interaction beam. In addition, the shortened laser pulses allow full length 2D particle-in-cell simulations of the experiments. Using the improved single-hot-spot configuration, a series of experiments to investigate kλ D scaling of SRS has been performed. Details of the experimental setup and initial results will be presented

  1. Thin film beam splitter multiple short pulse generation for enhanced Ni-like Ag x-ray laser emission.

    Science.gov (United States)

    Cojocaru, Gabriel V; Ungureanu, Razvan G; Banici, Romeo A; Ursescu, Daniel; Delmas, Olivier; Pittman, Moana; Guilbaud, Olivier; Kazamias, Sophie; Cassou, Kevin; Demailly, Julien; Neveu, Olivier; Baynard, Elsa; Ros, David

    2014-04-15

    An alternative, novel multiple pulse generation scheme was implemented directly after the optical compressor output of an x-ray pump laser. The new method uses a polarization sensitive thin film beam splitter and a half-wavelength wave plate for tuning the energy ratio in the multiple short pulses. Based on this method, an extensive study was made of the running parameters for a grazing incidence pumped silver x-ray laser (XRL) pumped with a long pulse of 145 mJ in 6 ns at 532 nm and up to 1.45 J in few picoseconds at 810 nm. Fivefold enhancement in the emission of the silver XRL was demonstrated using the new pump method.

  2. Fast pulsing dynamics of a vertical-cavity surface-emitting laser operating in the low-frequency fluctuation regime

    International Nuclear Information System (INIS)

    Sciamanna, M.; Rogister, F.; Megret, P.; Blondel, M.; Masoller, C.; Abraham, N. B.

    2003-01-01

    We analyze the dynamics of a vertical-cavity surface-emitting laser with optical feedback operating in the low-frequency fluctuation regime. By focusing on the fast pulsing dynamics, we show that the two linearly polarized modes of the laser exhibit two qualitatively different behaviors: they emit pulses in phase just after a power dropout and they emit pulses out of phase after the recovery process of the output power. As a consequence, two distinct statistical distributions of the fast pulsating total intensity are observed, either monotonically decaying from the noise level or peaked around the mean intensity value. We further show that gain self-saturation of the lasing transition strongly modifies the shape of the intensity distribution

  3. Continuous-Integration Laser Energy Lidar Monitor

    Science.gov (United States)

    Karsh, Jeremy

    2011-01-01

    This circuit design implements an integrator intended to allow digitization of the energy output of a pulsed laser, or the energy of a received pulse of laser light. It integrates the output of a detector upon which the laser light is incident. The integration is performed constantly, either by means of an active integrator, or by passive components.

  4. Effect of laser pulse parameters on the size and fluorescence of nanodiamonds formed upon pulsed-laser irradiation

    International Nuclear Information System (INIS)

    Bai, Peikang; Hu, Shengliang; Zhang, Taiping; Sun, Jing; Cao, Shirui

    2010-01-01

    The size of nanodiamonds formed upon laser irradiation could be easily controlled over simply adjusting laser pulse parameters. The stable size and structure of nanodiamonds were mostly determined by laser power density and pulse width. Both large nanodiamonds with multiply twinning structure (MTS) and small nanodiamonds with single crystalline structure (SCS) emitted strong visible light after surface passivation, and their fluorescence quantum yield (QY) was 4.6% and 7.1%, respectively.

  5. Effect of laser pulse parameters on the size and fluorescence of nanodiamonds formed upon pulsed-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Peikang [School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Hu, Shengliang, E-mail: hsliang@yeah.net [Key Laboratory of Instrumentation Science and Dynamic Measurement (North University of China), Ministry of Education, National Key Laboratory Science and Technology on Electronic Test and Measurement, Taiyuan 030051 (China); School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Zhang, Taiping; Sun, Jing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Cao, Shirui [School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China)

    2010-07-15

    The size of nanodiamonds formed upon laser irradiation could be easily controlled over simply adjusting laser pulse parameters. The stable size and structure of nanodiamonds were mostly determined by laser power density and pulse width. Both large nanodiamonds with multiply twinning structure (MTS) and small nanodiamonds with single crystalline structure (SCS) emitted strong visible light after surface passivation, and their fluorescence quantum yield (QY) was 4.6% and 7.1%, respectively.

  6. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1980-01-01

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization

  7. Characterization and modulation of femtosecond laser pulse

    International Nuclear Information System (INIS)

    Dorrer, Christophe

    1999-01-01

    This work brings some solutions to the characterization and control of femtosecond laser pulses. Spectral interferometry has been extensively studied; whereas this is a rather old technique, it has found new specific applications to short pulses. Several important points concerning the experimental implementation of this technique are treated. Sources of errors have been tracked and simple solutions have been found to enhance its reliability. A recently demonstrated technique for the complete characterization of short pulses has been used to characterize short pulses from Chirped Pulse Amplification Systems. This transposition of shearing interferometry to the optical frequency domain, known as Spectral Phase Interferometry for Direct Electric-field Reconstruction (SPlDER), is conceptually very interesting: for example, the inversion from the experimental data to the electric field to be characterized is completely algebraic. A reliable tool for the characterization and optimization of Chirped pulse amplification systems has been built on this principle. This is the first single-shot real-time characterization implementation of this technique. An improvement of the method has also allowed the first single-shot real-time characterization of a short pulse using a single mono-dimensional integrative detector and an algebraic inversion of the experimental data. The control of these pulses is also of prior interest. Through a collaboration with Thomson CSF-LCR, the demonstration of the use of an optically addressed light valve at the Fourier plane of a zero-dispersion line for spectral phase modulation has been made. This device allows a high-resolution control of the spectral phase of a short pulse. It is a well-adapted tool for the correction of the residual spectral phase, at the output of Chirped Pulse Amplification systems and the temporal synthesis of shaped pulses for specific experiments. (author) [fr

  8. Multiplex electric discharge gas laser system

    Science.gov (United States)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  9. Three-dimensional laser pulse intensity diagnostic for photoinjectors

    Directory of Open Access Journals (Sweden)

    Heng Li

    2011-11-01

    Full Text Available Minimizing the electron-beam emittance of photoinjectors is an important task for maximizing the brightness of the next-generation x-ray facilities, such as free-electron lasers and energy recovery linacs. Optimally shaped laser pulses can significantly reduce emittance. A reliable diagnostic for the laser pulse intensity is required for this purpose. We demonstrate measurement of three-dimensional spatiotemporal intensity profiles, with spatial resolution of 20  μm and temporal resolution of 130 fs. The capability is illustrated by measurements of stacked soliton pulses and pulses from a dissipative-soliton laser.

  10. Electron acceleration by a self-diverging intense laser pulse

    International Nuclear Information System (INIS)

    Singh, K.P.; Gupta, D.N.; Tripathi, V.K.; Gupta, V.L.

    2004-01-01

    Electron acceleration by a laser pulse having a Gaussian radial and temporal profile of intensity has been studied. The interaction region is vacuum followed by a gas. The starting point of the gas region has been chosen around the point at which the peak of the pulse interacts with the electron. The tunnel ionization of the gas causes a defocusing of the laser pulse and the electron experiences the action of a ponderomotive deceleration at the trailing part of the pulse with a lower intensity rather than an acceleration at the rising part of the laser pulse with a high intensity, and thus gains net energy. The initial density of the neutral gas atoms should be high enough to properly defocus the pulse; otherwise the electron experiences some deceleration during the trailing part of the pulse and the net energy gain is reduced. The rate of tunnel ionization increases with the increase in the laser intensity and the initial density of neutral gas atoms, and with the decreases in the laser spot size, which causes more defocusing of the laser pulse. The required initial density of neutral gas atoms decreases with the increase in the laser intensity and also with the decrease in the laser spot size

  11. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.

    1980-01-01

    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  12. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  13. A comparative study of pulsed dye laser versus long pulsed Nd:YAG laser treatment in recalcitrant viral warts.

    Science.gov (United States)

    Shin, Yo Sup; Cho, Eun Byul; Park, Eun Joo; Kim, Kwang Ho; Kim, Kwang Joong

    2017-08-01

    Viral warts are common infectious skin disease induced by human papillomavirus (HPV). But the treatment of recalcitrant warts is still challenging. In this study, we compared the effectiveness of pulsed dye laser (PDL) and long pulsed Nd:YAG (LPNY) laser in the treatment of recalcitrant viral warts. We retrospectively analyzed the medical records of patients with recalcitrant warts treated with laser therapy between January 2013 and February 2016. Seventy-two patients with recalcitrant warts were evaluated. Thirty-nine patients were treated with pulsed dye laser and thirty-three patients were treated with LPNY laser. The following parameters were used: PDL (spot size, 7 mm; pulse duration, 1.5 ms; and fluence, 10-14 J/cm 2 ) and LPNY (spot size, 5 mm; pulse duration, 20 ms; and fluence, 240-300 J/cm 2 ). Complete clearance of two patients (5.1%) in PDL group, and three patients (9.1%) in LPNY group were observed without significant side effects. The patients who achieved at least 50% improvement from baseline were 20 (51.3%) in PDL and 22 (66.7%) in LPNY, respectively. This research is meaningful because we compared the effectiveness of the PDL and LPNY in the recalcitrant warts. Both PDL and LPNY laser could be used as a safe and alternative treatment for recalcitrant warts.

  14. Laser-supported detonation waves and pulsed laser propulsion

    International Nuclear Information System (INIS)

    Kare, J.

    1990-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10 4 K, 10 2 atmospheres, 10 7 w/cm 2 ) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area

  15. Simulation and initial experiments of a high power pulsed TEA CO2 laser

    Science.gov (United States)

    Torabi, R.; Saghafifar, H.; Koushki, A. M.; Ganjovi, A. A.

    2016-01-01

    In this paper, the output characteristics of a UV pin array pre-ionized TEA CO2 laser have been simulated and compared with the associated experimental data. In our simulation, a new theoretical model has been improved for transient behavior analysis of the discharge current pulse. The laser discharge tube was modeled by a nonlinear RLC electric circuit as a real model for electron density calculation. This model was coupled with a six-temperature model (6TM) in order to simulation dynamic emission processes of the TEA CO2 laser. The equations were solved numerically by the fourth order Runge-Kutta numerical method and some important variables such as current and voltage of the main discharge, resistance of the plasma column and electron density in the main discharge region, were calculated as functions of time. The effects of non-dissociation factor, rotational quantum number and output coupler reflectivity were also studied theoretically. The experimental and simulation results are in good agreement.

  16. SBS pulse compression for excimer inertial fusion energy drivers

    International Nuclear Information System (INIS)

    Linford, G.J.

    1994-01-01

    A key requirement for the development of commercial fusion power plants utilizing inertial confinement fusion (ICF) as a source of thermonuclear power is the availability of reliable, efficient laser drivers. These laser drivers must be capable of delivering UV optical pulses having energies of the order of 5MJ to cryogenic deuterium-tritium (D/T) ICF targets. The current requirements for laser ICF target irradiation specify the laser wavelength, λ ca. 250 nm, pulse duration, τ p ca. 6 ns, bandwidth, Δλ ca. 0.1 nm, polarization state, etc. Excimer lasers are a leading candidate to fill these demanding ICF driver requirements. However, since excimer lasers are not storage lasers, the excimer laser pulse duration, τ pp , is determined primarily by the length of the excitation pulse delivered to the excimer laser amplifier. Pulsed power associated with efficiently generating excimer laser pulses has a time constant, τ pp which falls in the range, 30 τ p pp p . As a consequence, pulse compression is needed to convert the long excimer laser pulses to pulses of duration τ p . These main ICF driver pulses require, in addition, longer, lower power precursor pulses delivered to the ICF target before the arrival of the main pulse. Although both linear and non-linear optical (NLO) pulse compression techniques have been developed, computer simulations have shown that a ''chirped,'' self-seeded, stimulated Brillouin scattering (SBS) pulse compressor cell using SF 6 at a density, ρ ca. 1 amagat can efficiently compress krypton fluoride (KrF) laser pulses at λ=248 nm. In order to avoid the generation of output pulses substantially shorter than τ p , the optical power in the chirped input SBS ''seed'' beams was ramped. Compressed pulse conversion efficiencies of up to 68% were calculated for output pulse durations of τ p ca. ns

  17. Development of pulsed UV lasers and their application in laser spectroscopy

    International Nuclear Information System (INIS)

    De la Rosa, M I; Perez, C; Gruetzmacher, K; GarcIa, D; Bustillo, A

    2011-01-01

    The application of two-photon laser spectroscopy to plasma diagnostics requires tuneable UV-laser spectrometers providing: some mJ pulse energy at ns time scale with spectral quality close to Fourier Transform Limit, good pulse to pulse reproducibility and tuning linearity. We report about two different systems, a first laser specially optimized for the radiation at 243 nm, which is required for the 1S-2S two photon transition of atomic hydrogen, and a second one generating 205 nm suited for the transition 1S - 3S/3D.

  18. Hybrid Pulsed Nd:YAG Laser

    Science.gov (United States)

    Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team

    This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.

  19. Pulse power technology application to lasers

    International Nuclear Information System (INIS)

    Prestwich, K.R.

    1975-01-01

    Recent developments of intense relativistic electron beam accelerators and the associated pulse power technology are reviewed. The design of specific accelerators for gas laser excitation sources is discussed. A 3 MV, 800 kA, 24 ns electron beam accelerator under development for the electron beam fusion program is described along with the low jitter multichannel oil-dielectric rail switches developed for this application. This technology leads to the design of a 20 kJ, short pulse accelerator optimized gas laser excitation with radially converging electron beams. Other gas laser research requirements have led to the development of an accelerator that will produce a 0.5 MV, 20 kJ, 1 μs electron beam pulse. (auth)

  20. Laser-pulsed Plasma Chemistry: Laser-initiated Plasma Oxidation Of Niobium

    OpenAIRE

    Marks R.F.; Pollak R.A.; Avouris Ph.; Lin C.T.; Thefaine Y.J.

    1983-01-01

    We report the first observation of the chemical modification of a solid surface exposed to an ambient gas plasma initiated by the interaction of laser radiation with the same surface. A new technique, which we designate laser-pulsed plasma chemistry (LPPC), is proposed for activating heterogeneous chemical reactions at solid surfaces in a gaseous ambient by means of a plasma initiated by laser radiation. Results for niobium metal in one atmosphere oxygen demonstrate single-pulse, self-limitin...

  1. Self-seeded single-frequency solid-state ring laser and system using same

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-02-20

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  2. 50W CW output power and 12mJ pulses from a quasi-2-level Yb:YAG ceramic rod laser end-pumped at the 969nm zero-phonon line

    Science.gov (United States)

    Fries, Christian; Weitz, Marco; Theobald, Christian; v. Löwis of Menar, Patric; Bartschke, Jürgen; L'huillier, Johannes A.

    2015-02-01

    With the advent of high power and narrow bandwidth 969 nm pump diodes, direct pumping into the upper laser level of Yb:YAG and hence quasi-2-level lasers became possible. Pumping directly into the emitting level leads to higher quantum efficiency and reduction of non-radiative decay. Consequently, thermal load, thermal lensing and risk of fracture are reduced significantly. Moreover pump saturation and thermal population of uninvolved energy-levels in ground and excited states are benefical for a homogenous distribution of the pump beam as well as the reduction of reabsorption loss compared to 3-level systems, which allows for high-power DPSS lasers. Beside continuous-wave (cw) operation, nanosecond pulses with a repetition rate between 1 and 5 kHz are an attractive alternative to flashlamp-pumped systems (10-100 Hz) in various measurement applications that require higher data acquisition rates because of new faster detectors. Based on measurements of the absorption and a detailed numerical model for pump beam distribution, including beam propagation and saturation factors, power-scaling of a ceramic rod Yb:YAG oscillator was possible. Finally a cw output power of 50 W with 33 % pump efficiency at 1030 nm has been demonstrated (M2 dumping of this system. The cavity-dumped setup allowed for 3-10 ns pulses with a pulse energy of 12.5 mJ at 1 kHz (M2 < 1.1). In order to achieve these results a systematic experimental and numerical investigation on gain dynamics and the identification of different stable operating regimes has been carried out.

  3. Hose-Modulation Instability of Laser Pulses in Plasmas

    International Nuclear Information System (INIS)

    Sprangle, P.; Krall, J.; Esarey, E.

    1994-01-01

    A laser pulse propagating in a uniform plasma or a preformed plasma density channel is found to undergo a combination of hose and modulation instabilities, provided the pulse centroid has an initial tilt. Coupled equations for the laser centroid and envelope are derived and solved for a finite-length laser pulse. Significant coupling between the centroid and the envelope, harmonic generation in the envelope, and strong modification of the wake field can occur. Methods to reduce the growth rate of the laser hose instability are demonstrated

  4. Laser power sources and laser technology for accelerators

    International Nuclear Information System (INIS)

    Lowenthal, D.

    1986-01-01

    The requirements on laser power sources for advanced accelerator concepts are formidable. These requirements are driven by the need to deliver 5 TeV particles at luminosities of 10/sup 33/ - 10/sup 34/ cm/sup -2/ sec/sup -1/. Given that optical power can be transferred efficiently to the particles these accelerator parameters translate into single pulse laser output energies of several kilojoules and rep rates of 1-10 kHz. The average laser output power is then 10-20 MW. Larger average powers will be needed if efficient transfer proves not to be possible. A laser plant of this magnitude underscores the importance of high wall plug efficiency and reasonable cost in $/Watt. The interface between the laser output pulse format and the accelerator structure is another area that drives the laser requirements. Laser accelerators break up into two general architectures depending on the strength of the laser coupling. For strong coupling mechanisms, the architecture requires many ''small'' lasers powering the accelerator in a staged arrangement. For the weak coupling mechanisms, the architecture must feature a single large laser system whose power must be transported along the entire accelerator length. Both of these arrangements have demanding optical constraints in terms of phase matching sequential stages, beam combining arrays of laser outputs and optimizing coupling of laser power in a single accelerating stage

  5. Drilling of Copper Using a Dual-Pulse Femtosecond Laser

    Directory of Open Access Journals (Sweden)

    Chung-Wei Cheng

    2016-02-01

    Full Text Available The drilling of copper using a dual-pulse femtosecond laser with wavelength of 800 nm, pulse duration of 120 fs and a variable pulse separation time (0.1–150 ps is investigated theoretically. A one-dimensional two-temperature model with temperature-dependent material properties is considered, including dynamic optical properties and the thermal-physical properties. Rapid phase change and phase explosion models are incorporated to simulate the material ablation process. Numerical results show that under the same total laser fluence of 4 J/cm2, a dual-pulse femtosecond laser with a pulse separation time of 30–150 ps can increase the ablation depth, compared to the single pulse. The optimum pulse separation time is 85 ps. It is also demonstrated that a dual pulse with a suitable pulse separation time for different laser fluences can enhance the ablation rate by about 1.6 times.

  6. Nonlinear laser pulse response in a crystalline lens.

    Science.gov (United States)

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.

  7. A coaxial-output capacitor-loaded annular pulse forming line.

    Science.gov (United States)

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the

  8. A coaxial-output capacitor-loaded annular pulse forming line

    Science.gov (United States)

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the

  9. Stimulated brillouin backscatter of a short-pulse laser

    International Nuclear Information System (INIS)

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-01-01

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x' = x - V g t, t' = t, where V g is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency)

  10. Output power characteristics of the neutral xenon long laser

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

    1994-12-31

    Lasers which oscillate within inhomogeneously broadened gain media exhibit spectral hole burning and concomitant reduction in output power compared with equivalent homogeneously-broadened laser gain media. By increasing the cavity length, it may be possible to demonstrate at least a partial transition from an inhomogeneous laser cavity mode spectrum to a homogeneous spectrum. There are a number of high gain laser lines which are inhomogeneously-broadened transitions in electric discharges of neutral xenon. In neutral xenon lasers, as in the cases of many other gas lasers, the inhomogeneous spectral broadening mechanism arises from Doppler shifts, {Delta}{nu}{sub D}, of individual atoms in thermal motion within the electric discharge comprising the laser gain medium. Optical transitions corresponding to these noble gas atoms have natural linewidths, {Delta}{nu}{sub n}{lt}{Delta}{nu}{sub D}. Simulations of the output power characteristics of the xenon laser were carried out as a function of laser cavity parameters, including the cavity length, L. These calculations showed that when the intracavity mode spacing frequency, c/2L{lt}{Delta}{nu}{sub n}, the inhomogeneously broadened xenon mode spectrum converted to a homogeneously broadened oscillation spectrum with an increase in output power. These simulations are compared with experimental results obtained for the long laser oscillation characteristics of the (5d[5/2]{degree}{sub 2}{r_arrow}6p[3/2]{sub 1}) transition corresponding to the strong, high-gain 3.508 {mu} line in xenon.

  11. Laser-driven hydrothermal process studied with excimer laser pulses

    Science.gov (United States)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  12. Femtosecond versus picosecond laser pulses for film-free laser bioprinting.

    Science.gov (United States)

    Petit, Stephane; Kérourédan, Olivia; Devillard, Raphael; Cormier, Eric

    2017-11-01

    We investigate the properties of microjets in the context of film-free laser induced forward transfer in the femtosecond and picosecond regimes. The influence of the pulse duration (ranging from 0.4 to 12 ps) and the energy (ranging from 6 to 12 μJ) is systematically studied on the height, diameter, speed, volume, and shape of the jets. The 400 fs pulses generate thin and stable jets compatible with bioprinting, while 14 ps pulses generate more unstable jets. A pulse duration around 8 ps seems, therefore, to be an interesting trade-off to cover many bio-applications of microjets generated by lasers.

  13. A highly efficient Ho:YAG laser in-band pumped by a linewidth-narrowed Tm:YLF laser

    International Nuclear Information System (INIS)

    Duan, X M; Yang, C H; Yao, B Q; Wang, Y Z; Zhang, W S

    2013-01-01

    A highly efficient Tm:YLF-Ho:YAG laser system is presented in this paper. To obtain the narrow linewidth 1908 nm laser output, a volume Bragg grating combined with a Fabry–Perot (FP) etalon were used as wavelength selection devices. The maximum output power of 28.7 W was obtained with a slope efficiency of 42.3% in the Tm:YLF laser. An output wavelength of 1908.1 nm and FWHM linewidth of 60 pm were achieved at the maximum output level. Using this Tm:YLF laser as the pump source, high efficiency continuous wave and Q-switched operation of a Ho:YAG laser was demonstrated. Operating at continuous wave mode, up to 73.3% slope efficiency and 67.4% optical conversion efficiency were obtained in the Ho:YAG laser, corresponding to a diode-to-Ho optical conversion efficiency of 23.7%. For the Q-switched mode, when the incident Tm power was 27.3 W, the maximum single pulse energy of 3.4 mJ, pulse width of 15 ns and peak power of 229.3 kW were achieved at the pulse repetition rate of 5 kHz. The maximum average power of 18.3 W, pulse width of 18 ns and peak power of 103.6 kW were obtained at the pulse repetition rate of 10 kHz. (paper)

  14. LASER PROCESSING ON SINGLE CRYSTALS BY UV PULSE LASER

    OpenAIRE

    龍見, 雅美; 佐々木, 徹; 高山, 恭宜

    2009-01-01

    Laser processing by using UV pulsed laser was carried out on single crystal such as sapphire and diamond in order to understand the fundamental laser processing on single crystal. The absorption edges of diamond and sapphire are longer and shorter than the wave length of UV laser, respectively. The processed regions by laser with near threshold power of processing show quite different state in each crystal.

  15. Reactive pulsed laser deposition with gas jet

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.

    2001-01-01

    Different metal (Sn, Al, steel, Cu, W) thin films were synthesized by reactive pulsed laser deposition on steel, copper and glass wafers. In our work pulsed Nd:glass (10 J, 800μs) laser system was used. Jet of gas was created by electromagnetic valve perpendicularly to the laser beam. Nitrogen, oxygen and argon were used. We used several to tens laser shots to obtain visible with the naked eye layers. Thin layers were observed under an optical microscope. (author)

  16. Photodisruption in biological tissues using femtosecond laser pulses

    Science.gov (United States)

    Shen, Nan

    Transparent materials do not ordinarily absorb visible or near-infrared light. However, the intensity of a tightly focused femtosecond laser pulse is great enough that nonlinear absorption of the laser energy takes place in transparent materials, leading to optical breakdown and permanent material modification. Because the absorption process is nonlinear, absorption and material modification are confined to the extremely small focal volume. Optical breakdown in transparent or semi-transparent biological tissues depends on intensity rather than energy. As a result, focused femtosecond pulses induce optical breakdown with significantly less pulse energy than is required with longer pulses. The use of femtosecond pulses therefore minimizes the amount of energy deposited into the targeted region of the sample, minimizing mechanical and thermal effects that lead to collateral damage in adjacent tissues. We demonstrate photodisruptive surgery in animal skin tissue and single cells using 100-fs laser pulses. In mouse skin, we create surface incisions and subsurface cavities with much less collateral damage to the surrounding tissue than is produced with picosecond pulses. Using pulses with only a few nanojoules of energy obtained from an unamplified femtosecond oscillator, we destroy single mitochondria in live cells without affecting cell viability, providing insights into the structure of the mitochondrial network. An apparatus is constructed to perform subcellular surgery and multiphoton 3D laser scanning imaging simultaneously with a single laser and objective lens.

  17. High-power direct diode laser output by spectral beam combining

    Science.gov (United States)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  18. Electron laser acceleration in vacuum by a quadratically chirped laser pulse

    International Nuclear Information System (INIS)

    Salamin, Yousef I; Jisrawi, Najeh M

    2014-01-01

    Single MeV electrons in vacuum subjected to single high-intensity quadratically chirped laser pulses are shown to gain multi-GeV energies. The laser pulses are modelled by finite-duration trapezoidal and cos  2 pulse-shapes and the equations of motion are solved numerically. It is found that, typically, the maximum energy gain from interaction with a quadratic chirp is about half of what would be gained from a linear chirp. (paper)

  19. System for increasing laser pulse rate

    International Nuclear Information System (INIS)

    1980-01-01

    A technique of static elements is disclosed for combining a plurality of laser beams having time sequenced, pulsed radiation to achieve an augmented pulse rate. The technique may also be applied in a system for combining both time sequenced pulses and frequency distinct pulses for use in a system for isotope enrichment. (author)

  20. Development of frequency tunable Ti:sapphire laser and dye laser pumped by a pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Horn, Roland; Wendt, K.

    2001-01-01

    We investigated lasing characteristics of two kinds of tunable laser, liquid dye laser and solid Ti:sapphire crystal laser, pumped by high pulse repetition rate Nd:YAG laser. Dye laser showed drastically reduced pulsewidth compared with that of pump laser and it also contained large amount of amplified spontaneous emission. Ti:sapphire laser showed also reduced pulsewidth. But, the laser conversion pump laser and Ti:sapphire laser pulse, we used a Brewster-cut Pockel's cell for Q-switching. The laser was frequency doubled by a type I BBO crystal outside of the cavity.

  1. Pulsed laser-induced SEU in integrated circuits

    International Nuclear Information System (INIS)

    Buchner, S.; Kang, K.; Stapor, W.J.; Campbell, A.B.; Knudson, A.R.; McDonald, P.; Rivet, S.

    1990-01-01

    The authors have used a pulsed picosecond laser to measure the threshold for single event upset (SEU) and single event latchup (SEL) for two different kinds of integrated circuits. The relative thresholds show good agreement with published ion upset data. The consistency of the results together with the advantages of using a laser system suggest that the pulsed laser can be used for SEU/SEL hardness assurance of integrated circuits

  2. A ZnGeP{sub 2} Optical Parametric Oscillator with Mid-IR Output Power 3 W Pumped by a Tm, Ho:GdVO{sub 4} Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bao-Quan, Yao; Guo-Li, Zhu; You-Lun, Ju; Yue-Zhu, Wang [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150080 (China)

    2009-02-15

    We report an efficient mid-infrared optical parametric oscillator (OPO) pumped by a pulsed Tm,Ho-codoped GdVO4 laser. The 10-W Tm,Ho:GdVO4 laser pumped by a 801 nm diode produces 20ns pulses with a repetition rate of 10kHz at wavelength of 2.048 {mu}m. The ZnGeP{sub 2} (ZGP) OPO produces 15-ns pulses in the spectral regions 3.65-3.8 {mu}m and 4.45-4.65 {mu}m simultaneously. More than 3 W of mid-IR output power can be generated with a total OPO slope efficiency greater than 58% corresponding to incident 2 {mu}m pump power. The diode laser pump to mid-IR optical conversion efficiency is about 12%.

  3. SBS pulse compression for excimer inertial fusion energy drivers

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

    1994-12-31

    A key requirement for the development of commercial fusion power plants utilizing inertial confinement fusion (ICF) as a source of thermonuclear power is the availability of reliable, efficient laser drivers. These laser drivers must be capable of delivering UV optical pulses having energies of the order of 5MJ to cryogenic deuterium-tritium (D/T) ICF targets. The current requirements for laser ICF target irradiation specify the laser wavelength, {lambda} ca. 250 nm, pulse duration, {tau}{sub p} ca. 6 ns, bandwidth, {Delta}{lambda} ca. 0.1 nm, polarization state, etc. Excimer lasers are a leading candidate to fill these demanding ICF driver requirements. However, since excimer lasers are not storage lasers, the excimer laser pulse duration, {tau}{sub pp}, is determined primarily by the length of the excitation pulse delivered to the excimer laser amplifier. Pulsed power associated with efficiently generating excimer laser pulses has a time constant, {tau}{sub pp} which falls in the range, 30 {tau}{sub p}<{tau}{sub pp}<100{tau}{sub p}. As a consequence, pulse compression is needed to convert the long excimer laser pulses to pulses of duration {tau}{sub p}. These main ICF driver pulses require, in addition, longer, lower power precursor pulses delivered to the ICF target before the arrival of the main pulse. Although both linear and non-linear optical (NLO) pulse compression techniques have been developed, computer simulations have shown that a ``chirped,`` self-seeded, stimulated Brillouin scattering (SBS) pulse compressor cell using SF{sub 6} at a density, {rho} ca. 1 amagat can efficiently compress krypton fluoride (KrF) laser pulses at {lambda}=248 nm. In order to avoid the generation of output pulses substantially shorter than {tau}{sub p}, the optical power in the chirped input SBS ``seed`` beams was ramped. Compressed pulse conversion efficiencies of up to 68% were calculated for output pulse durations of {tau}{sub p} ca. ns.

  4. Estimation of the Maximum Output Power of Double-Clad Photonic Crystal Fiber Laser

    International Nuclear Information System (INIS)

    Chen Yue-E; Wang Yong; Qu Xi-Long

    2012-01-01

    Compared with traditional optical fiber lasers, double-clad photonic crystal fiber (PCF) lasers have larger surface-area-to-volume ratios. With an increase of output power, thermal effects may severely restrict output power and deteriorate beam quality of fiber lasers. We utilize the heat-conduction equations to estimate the maximum output power of a double-clad PCF laser under natural-convection, air-cooling, and water-cooling conditions in terms of a certain surface-volume heat ratio of the PCF. The thermal effects hence define an upper power limit of double-clad PCF lasers when scaling output power. (fundamental areas of phenomenology(including applications))

  5. Research on temperature characteristics of laser energy meter absorber irradiated by ms magnitude long pulse laser

    Science.gov (United States)

    Li, Nan; Qiao, Chunhong; Fan, Chengyu; Zhang, Jinghui; Yang, Gaochao

    2017-10-01

    The research on temperature characteristics for large-energy laser energy meter absorber is about continuous wave (CW) laser before. For the measuring requirements of millisecond magnitude long pulse laser energy, the temperature characteristics for absorber are numerically calculated and analyzed. In calculation, the temperature field distributions are described by heat conduction equations, and the metal cylinder cavity is used for absorber model. The results show that, the temperature of absorber inwall appears periodic oscillation with pulse structure, the oscillation period and amplitude respectively relate to the pulse repetition frequency and single pulse energy. With the wall deep increasing, the oscillation amplitude decreases rapidly. The temperature of absorber outerwall is without periodism, and rises gradually with time. The factors to affect the temperature rise of absorber are single pulse energy, pulse width and repetition frequency. When the laser irradiation stops, the temperature between absorber inwall and outerwall will reach agreement rapidly. After special technology processing to enhance the capacity of resisting laser damage for absorber inwall, the ms magnitude long pulse laser energy can be obtained with the method of measuring the temperature of absorber outerwall. Meanwhile, by optimization design of absorber structure, when the repetition frequency of ms magnitude pulse laser is less than 10Hz, the energy of every pulse for low repetition frequency pulse sequence can be measured. The work offers valuable references for the design of ms magnitude large-energy pulse laser energy meter.

  6. Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power.

    Science.gov (United States)

    Cong, Zhenhua; Zhang, Xingyu; Wang, Qingpu; Liu, Zhaojun; Chen, Xiaohan; Fan, Shuzhen; Zhang, Xiaolei; Zhang, Huaijin; Tao, Xutang; Li, Shutao

    2010-06-07

    A diode-side-pumped actively Q-switched intracavity frequency-doubled Nd:YAG/BaWO(4)/KTP Raman laser is studied experimentally and theoretically. Rate equations are used to analyze the Q-switched yellow laser by considering the transversal distributions of the intracavity photon density and the inversion population density. An 8.3 W 590 nm laser is obtained with a 125.8 W 808 nm pump power and a 15 kHz pulse repetition frequency. The corresponding optical conversion efficiency from diode laser to yellow laser is 6.57%, much higher than that of the former reported side-pumped yellow laser. The output powers with respect to the incident pump power are in agreement with the theoretical results on the whole.

  7. Output pulse height distribution of the GM counters

    International Nuclear Information System (INIS)

    Zhang Songshou; Xiong Jianping

    1995-01-01

    The GM counters are the radiation detectors most in use. It has special advantages compared with other detectors. This paper introduces the output pulse height distribution of the GM counters, gives the measuring instruments and methods. The measuring results, some discussions, and useful conclusion are given as well

  8. Wavelength stabilisation during current pulsing of tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2009-01-01

    The use of external feedback to stabilise the frequency of a tapered laser during current pulsing is reported. Using this technique more than 20 W of peak power in 60 ns pulses from the tapered laser is obtained and owing to the external feedback, the laser is tunable in the 778-808 nm range...

  9. Vib--rotational energy distributions and relaxation processes in pulsed HF chemical lasers

    International Nuclear Information System (INIS)

    Ben-Shaul, A.; Kompa, K.L.; Schmailzl, U.

    1976-01-01

    The rate equations governing the temporal evolution of photon densities and level populations in pulsed F+H 2 →HF+H chemical lasers are solved for different initial conditions. The rate equations are solved simultaneously for all relevant vibrational--rotational levels and vibrational--rotational P-branch transitions. Rotational equilibrium is not assumed. Approximate expressions for the detailed state-to-state rate constants corresponding to the various energy transfer processes (V--V, V--R,T, R--R,T) coupling the vib--rotational levels are formulated on the basis of experimental data, approximate theories, and qualitative considerations. The main findings are as follows: At low pressures, R--T transfer cannot compete with the stimulated emission, and the laser output largely reflects the nonequilibrium energy distribution in the pumping reaction. The various transitions reach threshold and decay almost independently and simultaneous lasing on several lines takes place. When a buffer gas is added in excess to the reacting mixture, the enhanced rotational relaxation leads to nearly single-line operation and to the J shift in lasing. Laser efficiency is higher at high inert gas pressures owing to a better extraction of the internal energy from partially inverted populations. V--V exchange enhances lasing from upper vibrational levels but reduces the total pulse intensity. V--R,T processes reduce the efficiency but do not substantially modify the spectral output distribution. The photon yield ranges between 0.4 and 1.4 photons/HF molecule depending on the initial conditions. Comparison with experimental data, when available, is fair

  10. Physics of laser fusion. Volume III. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Eimerl, D.; George, E.V.; Trenholme, J.B.; Simmons, W.W.; Hunt, J.T.

    1982-09-01

    High-power pulsed lasers can deliver sufficient energy on inertial-confinement fusion (ICF) time scales (0.1 to 10 ns) to heat and compress deuterium-tritium fuel to fusion-reaction conditions. Several laser systems have been examined, including Nd:glass, CO 2 , KrF, and I 2 , for their ICF applicability. A great deal of developmental effort has been applied to the Nd:glass laser and the CO 2 gas laser systems; these systems now deliver > 10 4 J and 20 x 10 12 W to ICF targets. We are constructing the Nova Nd:glass laser at LLNL to provide > 100 kJ and > 100 x 10 12 W of 1-μm radiation for fusion experimentation in the mid-1980s. For ICF target gain > 100 times the laser input, we expect that the laser driver must deliver approx. 3 to 5 MJ of energy on a time scale of 10 to 20 ns. In this paper we review the technological status of fusion-laser systems and outline approaches to constructing high-power pulsed laser drivers

  11. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, M., E-mail: martin.hansson@fysik.lth.se; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma. - Highlights: • Compact colliding pulse injection set-up used to produce low energy spread e-beams. • Beam charge controlled by rotating the polarization of injection pulse. • Peak energy controlled by point of collision to vary the acceleration length.

  12. Electron acceleration by laser produced wake field: Pulse shape effect

    Science.gov (United States)

    Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi

    2007-12-01

    Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.

  13. Driver circuit for pulse modulation of a semiconductor laser

    International Nuclear Information System (INIS)

    Ueki, A.

    1975-01-01

    A pulse modulation driver circuit for a semiconductor laser is disclosed which discriminates among input pulse signals composed of binary codes to detect the occurrence of a pulse having a code of ''I'' following a pulse having a code of ''0''. Detection of this pattern is used to control the driver to increase either or both the width or peak value of the pulse having a code of 1. The effect of this is to eliminate a pattern effect in the light emitted by the semiconductor laser caused by an attenuation of the population inversion in the laser. (U.S.)

  14. Single-pulse and multi-pulse femtosecond laser damage of optical single films

    International Nuclear Information System (INIS)

    Yuan Lei; Zhao Yuan'an; He Hongbo; Shao Jianda; Fan Zhengxiu

    2006-01-01

    Laser-induced damage of a single 500 nm HfO 2 film and a single 500 nm ZrO 2 film were studied with single- and multi-pulse femtosecond laser. The laser-induced damage thresholds (LIDT) of both samples by the 1-on-1 method and the 1000-on-1 method were reported. It was discovered that the LIDT of the HfO 2 single film was higher than that of the ZrO 2 single film by both test methods, which was explained by simple Keldysh's multiphoton ionization theory. The LIDT of multi-pulse was lower than that of single-pulse for both samples as a result of accumulative effect. (authors)

  15. Acute effects of pulsed-laser irradiation on the arterial wall

    Science.gov (United States)

    Nakamura, Fumitaka; Kvasnicka, Jan; Lu, Hanjiang; Geschwind, Herbert J.; Levame, Micheline; Bousbaa, Hassan; Lange, Francoise

    1992-08-01

    Pulsed laser coronary angioplasty with an excimer or a holmium-yttrium-aluminum-garnet (Ho:YAG) laser may become an alternative treatment for patients with coronary artery disease. However, little is known about its acute consequences on the normal arterial wall. This study was designed to examine the acute histologic consequences of these two pulsed lasers on the arterial wall of normal iliac arteries in rabbits. Irradiation with each laser was performed in 15 normal iliac sites on eight male New Zealand white rabbits. The excimer laser was operated at 308 nm, 25 Hz, 50 mJ/mm2/pulse, and 135 nsec/pulse and the Ho:YAG laser was operated at 2.1 micrometers , 3/5 Hz, 400 mJ/pulse, and 250 microsecond(s) ec/pulse. The excimer and Ho:YAG laser were coupled into a multifiber wire-guided catheter of 1.4 and 1.5 mm diameter, respectively. The sites irradiated with excimer or Ho:YAG laser had the same kinds of histologic features, consisting of exfoliation of the endothelium, disorganization of internal elastic lamina, localized necrosis of vascular smooth muscle cells, and fissures in the medial layer. However, the sites irradiated with excimer laser had lower grading scores than those irradiated with Ho:YAG laser (p vascular injury.

  16. Three-dimensional graphene based passively mode-locked fiber laser.

    Science.gov (United States)

    Yang, Y; Loeblein, M; Tsang, S H; Chow, K K; Teo, E H T

    2014-12-15

    We present an all-fiber passively mode-locked fiber laser incorporating three-dimensional (3D) graphene as a saturable absorber (SA) for the first time to the best of our knowledge. The 3D graphene is synthesized by template-directed chemical vapor deposition (CVD). The SA is then simply formed by sandwiching the freestanding 3D graphene between two conventional fiber connectors without any deposition process. It is demonstrated that such 3D graphene based SA is capable to produce high quality mode-locked pulses. A passively mode-locked fiber laser is constructed and stable output pulses with a fundamental repetition rate of ~9.9 MHz and a pulse width of ~1 ps are generated from the fiber laser. The average output power of the laser is ~10.5 mW while the output pulse is operating at single pulse region. The results imply that the freestanding 3D graphene can be applied as an effective saturable absorption material for passively mode-locked lasers.

  17. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    This thesis concerns the deposition of thin films for solar cells using pulsed laser deposition (PLD) and pulsed electron deposition (PED). The aim was to deposit copper tin sulfide (CTS) and zinc sulfide (ZnS) by pulsed laser deposition to learn about these materials in relation to copper zinc tin...... time. We compared the results of CZTS deposition by PLD at DTU in Denmark to CZTS made by PED at IMEM-CNR, where CIGS solar cells have successfully been fabricated at very low processing temperatures. The main results of this work were as follows: Monoclinic-phase CTS films were made by pulsed laser...... deposition followed by high temperature annealing. The films were used to understand the double band gap that we and other groups observed in the material. The Cu-content of the CTS films varied depending on the laser fluence (the laser energy per pulse and per area). The material transfer from...

  18. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    Science.gov (United States)

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  19. Longitudinally excited CO2 laser with multiple laser tubes

    Science.gov (United States)

    Uno, Kazuyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2016-11-01

    We developed a longitudinally excited CO2 laser system that was constituted of two or three laser tubes and a single driving circuit. The multiple laser tubes simultaneously produced almost the same short laser pulses with a spike pulse width of about 164 ns and a pulse tail length of about 74 μs with a single driving circuit. The double-tube system was constituted of two 30 cm-long laser tubes with inner diameters of 13 mm and 16 mm and a single driving circuit with an input energy of 2.18 J. The output energy of the 13 mm-tube was 23.3 mJ, and that of the 16 mm-tube was 21.9 mJ at a gas pressure of 4.2 kPa (CO2:N2:He = 1:1:2). The triple-tube system was constituted of three 30 cm-long laser tubes with inner diameters of 9 mm, 13 mm, and 16 mm and a single driving circuit with an input energy of 2.18 J. The output energy of the 9 mm tube was 15.9 mJ, that of the 13 mm tube was 24.1 mJ, and that of the 16 mm tube was 19.2 mJ at a gas pressure of 4.2 kPa. With the same driving circuit and the same input energy, the total output energies of the multitube laser systems were higher than the output energy of a single-tube system.

  20. Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser

    Science.gov (United States)

    He, Hong-Sen; Chen, Zhen; Li, Hong-Bin; Dong, Jun

    2018-05-01

    A high repetition rate, nanosecond, pulsed optical vortex beam has been generated in a Cr,Nd:YAG self-Q-switched microchip laser pumped by the annular-beam formed with a hollow focus lens. The lasing threshold for vortex pulses is 0.9 W. A pulse width of 6.5 ns and a repetition rate of over 330 kHz have been achieved. The average output power of 1 W and the slope efficiency of 46.6% have been obtained. The helicity of the optical vortices has been controlled by adjusting the tilted angle between Cr,Nd:YAG crystal and output coupler. The work provides a new method for developing pulsed optical vortices for potential applications on quantum communication and optical trapping.

  1. Laser ablation of UHMWPE-polyethylene by 438 nm high energy pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L.; Gammino, S.; Mezzasalma, A.M.; Visco, A.M.; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Krasa, J.; Laska, L.; Pfeifer, M.; Rohlena, K.; Boody, F.P

    2004-04-15

    Pulsed laser ablation of ultra-high-molecular-weight-polyethylene (UHMWPE) is investigated at Prague Asterix Laser System (PALS) Laboratory. The high ablation yield as a function of laser energy is presented at 438 nm laser wavelength. The mechanisms of the polymer ablation are studied on the base of ''in situ'' analysis, such as mass quadrupole spectrometry and time-of-flight measurements, and ''ex situ'' analysis, such as SEM investigations and Raman spectroscopy. Results show that the laser irradiation induces a strong polymer dehydrogenation and molecular emission due to different C{sub x}H{sub y} groups having high kinetic energy and high charge state. At a laser pulse energy of 150 J the H{sup +}, C{sup n+} ions (n=1 to 6) are emitted from the plasma with velocities of the order of 10{sup 8} cm/s, while the C{sub x}H{sub y} groups and the carbon clusters, detected up to C{sub 16}, have a velocity about one or two order magnitude lower. The laser ablation process produces a deep crater in the polymer, which depth depends on the laser pulse energy and it is of the order of 500 {mu}m. The crater volume increases with the laser pulse energy. Results demonstrated that the laser radiation modifies the polymer chains because dehydrogenated material and carbon-like structures are detected in the crater walls and in the bottom of the crater, respectively. A comparison of the experimental results with the data available in literature is presented and discussed.

  2. LASERS: A cryogenic slab CO laser

    Science.gov (United States)

    Ionin, Andrei A.; Kozlov, A. Yu; Seleznev, L. V.; Sinitsyn, D. V.

    2009-03-01

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ~12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ~14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ~ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour.

  3. Comparative study of diode-pumping self-injection and injection-locking Tm:YAG lasers

    International Nuclear Information System (INIS)

    Wu, C T; Chen, F; Ju, Y L; Wang, Y Z

    2013-01-01

    A comparative study of the laser characteristics of self-injection and injection-locking Tm:YAG lasers is given in this paper. At a pump energy of 145 mJ and Q-switched repetition rate of 100 Hz, an output energy of 2.39 mJ was obtained for an injection-locking Tm:YAG laser, with a pulse width of 403.2 ns and a pulse building-up time of 2.12 μs. Under the same conditions, the output energy, pulse width and pulse build-up time for a self-injection Tm:YAG laser were 2.21 mJ, 407.0 ns and 3.95 μs, respectively. The threshold of the Q-switched injection-locking Tm:YAG laser was much lower than that of the self-injection laser, and the pulse width was narrower and the pulse build-up time shorter. Additionally, the output spectrum was much purer for the injection-locking laser. (paper)

  4. Nonlinear optical studies on 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    Energy Technology Data Exchange (ETDEWEB)

    Matei, Andreea [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Marinescu, Maria, E-mail: maria.marinescu@chimie.unibuc.ro [UB - University of Bucharest, Faculty of Chemistry, 90-92 Şoseaua Panduri, Sector 5, RO-010184, Bucharest (Romania); Constantinescu, Catalin, E-mail: catalin.constantinescu@inflpr.ro [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Ion, Valentin; Mitu, Bogdana [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Ionita, Iulian [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); UB - University of Bucharest, Faculty of Physics, 405 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Dinescu, Maria [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Emandi, Ana [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); UB - University of Bucharest, Faculty of Chemistry, 90-92 Şoseaua Panduri, Sector 5, RO-010184, Bucharest (Romania)

    2016-06-30

    Graphical abstract: - Highlights: • A newly synthesized ferrocene-derivative exhibits SHG potential. • Matrix-assisted pulsed laser evaporation is employed for thin film fabrication. • The optical properties of the films are investigated, presented and discussed. • At maximum laser output power, the SHG signal is strongly influenced by thin film thickness. - Abstract: We present results on a new, laboratory synthesized ferrocene-derivative, i.e. 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid. Thin films with controlled thickness are deposited by matrix-assisted pulsed laser evaporation (MAPLE), on quartz and silicon substrates, with the aim of evaluating the nonlinear optical properties for potential optoelectronic applications. Dimethyl sulfoxide was used as matrix, with 1% wt. concentration of the guest compound. The frozen target is irradiated by using a Nd:YAG laser (4ω/266 nm, 7 ns pulse duration, 10 Hz repetition rate), at low fluences ranging from 0.1 to 1 J/cm{sup 2}. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to probe the surface morphology of the films. Fourier transform infrared (FTIR) and Raman spectroscopy reveal similar structure of the thin film material when compared to the starting material. The optical properties of the thin films are investigated by spectroscopic-ellipsometry (SE), and the refractive index dependence with respect to temperature is studied. The second harmonic generation (SHG) potential is assessed by using a femtosecond Ti:sapphire laser (800 nm, 60–100 fs pulse duration, 80 MHz repetition rate), at 200 mW maximum output power, revealing that the SHG signal intensity is strongly influenced by the films’ thickness.

  5. Ultra Stable, Industrial Green Tailored Pulse Fiber Laser with Diffraction-limited Beam Quality for Advanced Micromachining

    International Nuclear Information System (INIS)

    Deladurantaye, P; Roy, V; Desbiens, L; Drolet, M; Taillon, Y; Galarneau, P

    2011-01-01

    We report on a novel pulsed fiber laser platform providing pulse shaping agility at high repetition rates and at a wavelength of 532 nm. The oscillator is based on the direct modulation of a seed laser diode followed by a chain of fiber amplifiers. Advanced Large Mode Area (LMA) fiber designs as well as proprietary techniques to mitigate non-linear effects enable output energy per pulse up to 100 μJ at 1064 nm with diffraction-limited beam quality and narrow line widths suitable for efficient frequency conversion. Ultra stable pulses with tailored pulse shapes were demonstrated in the green region of the spectrum at repetition rates higher than 200 kHz. Pulse durations between 2.5 ns and 640 ns are available, as well as pulse to pulse dynamic shape selection at repetition rates up to 1 MHz. The pulse energy stability at 532 nm is better than ± 1.5%, 3σ, over 10 000 pulses. Excellent beam characteristics were obtained. The M 2 parameter is lower than 1.05, the beam waist astigmatism and beam waist asymmetry are below 10% and below 8% respectively, with high stability over time. We foresee that the small spot size, high repetition rate and pulse tailoring capability of this platform will provide advantages to practitioners who are developing novel, advanced processes in many industrially important applications.

  6. Pulsed-laser heating: a tool for studying degradation of materials subjected to repeated high-temperature excursions

    International Nuclear Information System (INIS)

    Goldberg, A.; Cornell, R.H.

    1980-01-01

    The use of pulsed-laser heating was evaluated as a means to obtain high cyclic peak temperatures with short rise times. A two-stage neodymium glass laser was used which produces a 600-μs pulse with energy outputs of up to 100 J. Small disk-shaped samples of AISI 4340 steel served as targets. Some of these were coated with a tungsten deposit. The rear face of some of the targets was instrumented for evaluation of temperature, strain, and stress response. Post-shot metallographic evaluations were made on a number of targets. We saw evidence of surface melting, cracking, and phase transformation. Surface damage was related to differences in the number of pulse cycles and input energy level, variables in the target materials, and the extent of strain-induced stresses. These experiments were performed in air at 1 atm and ambient laboratory temperature. 36 figures

  7. Interaction of intense femtosecond laser pulses with high-Z solids

    International Nuclear Information System (INIS)

    Zhidkov, A.; Sasaki, Akira; Utsumi, Takayuki; Fukumoto, Ichirou; Tajima, Toshiki; Yoshida, Masatake; Kondo, Kenichi

    2000-01-01

    A plasma irradiated by an intense very short pulse laser can be an ultimate high brightness source of incoherent inner-shell X-ray emission of 1-30 keV. The recently developed 100 TW, 20 fs laser facility in JAERI can make considerable enhancement here. To show this a hybrid model combining hydrodynamics and collisional particle-in-cell simulations is applied. Effect of laser prepulse on the interaction of an intense s-polarized femtosecond, ∼20/40 fs, laser pulse with high-Z solid targets is studied. A new absorption mechanism originating from the interaction of the laser pulse with plasma waves excited by the relativistic component of the Lorentz force is found to increase the absorption rate over 30% even for a very short laser pulse. The obtained hot electron temperature exceeds 0.5-1 MeV at optimal conditions for absorption. Results of the simulation for lower laser pulse intensities are in good agreement with the experimental measurements of the hot electron energy distribution. (author)

  8. D2O laser pumped by an injection-locked CO2 laser for ion-temperature measurements

    International Nuclear Information System (INIS)

    Okada, Tatsuo; Ohga, Tetsuaki; Yokoo, Masakazu; Muraoka, Katsunori; Akazaki, Masanori.

    1986-01-01

    The cooperative Thomson scattering method is one of the various new techniques proposed for measuring the temperature of ions in nuclear fusion critical plasma, for which a high-performance FIR laser pumped by an injection-locked CO 2 laser is required. This report deals with D 2 O laser with a wavelength of 385 μm which is pumped by injection-locked single-mole TEA CO 2 laser composed of a driver laser and an output-stage laser. A small-sized automatic pre-ionization type laser is employed for the driver. The resonator of the driver laser consists of a plane grating of littrow arrangement and ZnSe plane output mirrors with reflection factor of 50 %. An aperture and ZnSe etalon are inserted in the resonator to produce single transverse- and longitudinal-mode oscillation, respectively. The output-stage laser is also of the automatic pre-ionization type. Theoretically, an injection power of 0.1 pW/mm 3 is required for a CO 2 laser. Single-mode oscillation of several hundred nW/mm 3 can be produced by the CO 2 laser used in this study. Tuning of the output-stage laser is easily controlled by the driver laser. High stability of the injection-locked operation is demonstrated. CO 2 laser beam is introduced into the D 2 O laser through a KCl window to excite D 2 O laser beam in the axial direction. Input and output characteristics of the D 2 O laser are shown. Also presented are typical pulse shapes from the D 2 O laser pumped by a free-running CO 2 laser pulse or by an injection-locked single-mode CO 2 laser pulse. (Nogami, K.)

  9. Liquid Atomization Induced by Pulse Laser Reflection underneath Liquid Surface

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2009-05-01

    We observed a novel effect of pulse laser reflection at the interface between transparent materials with different refractive indices. The electric field intensity doubles when a laser beam is completely reflected from a material with a higher refractive index to a material with a lower index. This effect appreciably reduces pulse laser ablation threshold of transparent materials. We performed experiments to observe the entire ablation process for laser incidence on the water-air interface using pulse laser shadowgraphy with high-resolution film; the minimum laser fluence for laser ablation at the water-air interface was approximately 12-16 J/cm2. We confirmed that this laser ablation occurs only when the laser beam is incident on the water-air interface from water. Many slender liquid ligaments extend like a milk crown and seem to be atomized at the tip. Their detailed structures can be resolved only by pulse laser photography using high-resolution film.

  10. The chirped-pulse inverse free-electron laser: A high-gradient vacuum laser accelerator

    International Nuclear Information System (INIS)

    Hartemann, F.V.; Landahl, E.C.; Troha, A.L.; Van Meter, J.R.; Baldis, H.A.; Freeman, R.R.; Luhmann, N.C. Jr.; Song, L.; Kerman, A.K.; Yu, D.U.

    1999-01-01

    The inverse free-electron laser (IFEL) interaction is studied theoretically and computationally in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. The IFEL concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. copyright 1999 American Institute of Physics

  11. Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre

    CERN Document Server

    Konorov, S O; Kolevatova, O A; Beloglasov, V I; Skibina, N B; Shcherbakov, A V; Wintner, E; Zheltikov, A M

    2003-01-01

    Sequences of picosecond pulses with a total energy in the pulse train of about 1 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 mu m. The fluence of laser radiation coupled into the core of the fibre under these conditions exceeds the breakdown threshold of fused silica by nearly an order of magnitude. The laser beam coming out of the fibre is then focused to produce a breakdown on a solid surface. Parameters of laser radiation were chosen in such a way as to avoid effects related to the excitation of higher order waveguide modes and ionization of the gas filling the fibre in order to provide the possibility to focus the output beam into a spot with a minimum diameter, thus ensuring the maximum spatial resolution and the maximum power density in the focal spot.

  12. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    Science.gov (United States)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  13. Pulsed dye laser treatment of rosacea using a novel 15 mm diameter treatment beam.

    Science.gov (United States)

    Bernstein, Eric F; Schomacker, Kevin; Paranjape, Amit; Jones, Christopher J

    2018-04-10

    The pulsed-dye laser has been used to treat facial redness and rosacea for decades. Recent advances in dye laser technology enable 50% higher output energies supporting 50% larger treatment areas, and beam-diameters up to 15 mm with clinically-relevant fluences. In this study, we investigate this novel pulsed-dye laser using a 15 mm diameter beam for treatment of rosacea. Twenty subjects with erythemato-telangiectatic rosacea were enrolled in the study. A total of 4 monthly treatments were administered, first treating linear vessels with a 3 × 10 mm elliptical beam, then diffuse redness with a 15-mm diameter circular beam. Blinded assessment of digital, cross-polarized photographs taken 2 months following the last treatment was performed using an 11-point clearance scale. Nineteen subjects completed the study. Blinded reviewers correctly identified baseline photos in 55 out of the total of 57 images (96.5%). The blinded reviewers scored 17 of the 19 subjects with an improvement greater than 40%, and 11 of the 19 subjects greater than 50%. The average improvement was 53.9%. Side effects were limited to mild edema, mild to moderate erythema, and mild to moderate bruising. This study demonstrates that a newly designed pulsed-dye laser having a novel 15-mm diameter treatment beam improves the appearance of rosacea with a favorable safety profile. Lasers Surg. Med. 9999:1-5, 2018. © 2018 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. © 2018 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.

  14. Strategies for shortening the output pulse of silicon photomultipliers

    OpenAIRE

    Antoranz Canales, Pedro; Miranda Pantoja, José Miguel; Yebras Rivera, José Manuel

    2012-01-01

    In this work, three strategies for shortening the output pulse of a silicon photomultiplier (SiPM) are reported. The first strategy is passive filtering, where band-pass filtering removes the lowest frequency components in the signal, getting a noticeable reduction in pulse width (a compression ratio of 10: 1 was obtained). In the second place, a reflectometric scheme is proposed where the amplified signal coming from the SiPM is injected into a signal splitter with one of its stubs connected...

  15. Investigation of a high power UV pre-ionized tea CO2 laser for making purposes

    International Nuclear Information System (INIS)

    Tan Shiw Jin; Low Kum Seng

    1988-01-01

    A simple, high-power TEA CO 2 laser using profiled electrodes with capacitatively-coupled side-arcs to provide preionization is described. The output pulse energy, beam size and beam divergence of this laser is measured as well as the voltage across the two laser electrodes. The effect of various operating parameters on the output pulse energy and efficiency of this laser are also described. The laser, with a maximum output energy of 4 J per pulse, has been used successfully to mark plastic surfaces such as plastic Ic components. (author)

  16. Dependence of Parameters of Laser-Produced Au Plasmas on the Incident Laser Energy of Sub-Nanosecond and Picosecond Laser Pulses

    International Nuclear Information System (INIS)

    Woryna, E.; Badziak, J.; Makowski, J.; Parys, P.; Vankov, A.B.; Wolowski, J.; Krasa, J.; Laska, L.; Rohlena, K.

    2001-01-01

    The parameters of Au plasma as functions of laser energy for ps pulses are presented and compared with the ones for sub-ns pulses at nearly the same densities of laser energy. The experiments were performed at the IPPLM with the use of CPA (chirped pulse amplification) Nd:glass laser system. Thick Au foil targets were irradiated by normally incident focused laser beams with maximum intensities of 8x10 16 and 2x10 14 W/cm 2 for ps and sub-ns laser pulses, respectively. The characteristics of ion streams were investigated with the use of ion diagnostics methods based on the time-of flight technique. In these experiments the laser energies were changed in the range from 90 to 700 mJ and the measurements were performed at a given focus position FP = 0 and along the target normal for both the laser pulses. The charge carried by the ions, the maximum ion velocities of fast and thermal ion groups, the maximum ion current density as well as the area of photopeak in dependence on the incident laser energy for sub-ns and ps pulses were investigated and discussed. (author)

  17. Parametric study on femtosecond laser pulse ablation of Au films

    International Nuclear Information System (INIS)

    Ni Xiaochang; Wang Chingyue; Yang Li; Li Jianping; Chai Lu; Jia Wei; Zhang Ruobing; Zhang Zhigang

    2006-01-01

    Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N x φ th (N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research

  18. Pulsed low-level infrared laser alters mRNA levels from muscle repair genes dependent on power output in Wistar rats

    Science.gov (United States)

    Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2017-10-01

    Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm-2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.

  19. Pulsed atomic soliton laser

    International Nuclear Information System (INIS)

    Carr, L.D.; Brand, J.

    2004-01-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments

  20. Electron heating enhancement by frequency-chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Riazi, Z. [Physics and Accelerator School, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  1. Transient thermal analysis of semiconductor diode lasers under pulsed operation

    Science.gov (United States)

    Veerabathran, G. K.; Sprengel, S.; Karl, S.; Andrejew, A.; Schmeiduch, H.; Amann, M.-C.

    2017-02-01

    Self-heating in semiconductor lasers is often assumed negligible during pulsed operation, provided the pulses are `short'. However, there is no consensus on the upper limit of pulse width for a given device to avoid-self heating. In this paper, we present an experimental and theoretical analysis of the effect of pulse width on laser characteristics. First, a measurement method is introduced to study thermal transients of edge-emitting lasers during pulsed operation. This method can also be applied to lasers that do not operate in continuous-wave mode. Secondly, an analytical thermal model is presented which is used to fit the experimental data to extract important parameters for thermal analysis. Although commercial numerical tools are available for such transient analyses, this model is more suitable for parameter extraction due to its analytical nature. Thirdly, to validate this approach, it was used to study a GaSb-based inter-band laser and an InP-based quantum cascade laser (QCL). The maximum pulse-width for less than 5% error in the measured threshold currents was determined to be 200 and 25 ns for the GaSb-based laser and QCL, respectively.

  2. A phase stabilized and pulse shaped Ti:Sapphire oscillator-amplifier laser system for the LCLS rf photoinjector

    International Nuclear Information System (INIS)

    Kotseroglou, T.; Alley, R.; Clendenin, J.; Fisher, A.; Frisch, J.

    1998-04-01

    The authors have designed a laser system for the Linac Coherent Light Source rf photoinjector consisting of a Ti:Sapphire oscillator and 2 amplifiers using Chirped Pulse Amplification. The output after tripling will be 0.5 mJ tunable UV pulses at 120 Hz, with wavelength around 260 nm, pulsewidth of 10 ps FWHM and 200 fs rise and fall times. Amplitude stability is expected to be 1% rms in the UV and timing jitter better than 500 fs rms

  3. Cladding-pumped ytterbium-doped fiber laser with radially polarized output.

    Science.gov (United States)

    Lin, Di; Daniel, J M O; Gecevičius, M; Beresna, M; Kazansky, P G; Clarkson, W A

    2014-09-15

    A simple technique for directly generating a radially polarized output beam from a cladding-pumped ytterbium-doped fiber laser is reported. Our approach is based on the use of a nanograting spatially variant waveplate as an intracavity polarization-controlling element. The laser yielded ~32 W of output power (limited by available pump power) with a radially polarized TM (01)-mode output beam at 1040 nm with a corresponding slope efficiency of 66% and a polarization purity of 95%. The beam-propagation factor (M(2)) was measured to be ~1.9-2.1.

  4. Laser-Induced Damage with Femtosecond Pulses

    Science.gov (United States)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  5. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    Science.gov (United States)

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-08

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  6. Interaction of high power ultrashort laser pulses with plasmas

    International Nuclear Information System (INIS)

    Geissler, M.

    2000-12-01

    The invention of short laser-pulses has opened a vast application range from testing ultra high-speed semiconductor devices to precision material processing, from triggering and tracing chemical reactions to sophisticated surgical applications in opthalmology and neurosurgery. In physical science, ultrashort light pulses enable researchers to follow ultrafast relaxation processes in the microcosm on time scale never before accessible and study light-matter-interactions at unprecedented intensity levels. The aim of this thesis is to investigate the interaction of ultrashort high power laser pulses with plasmas for a broad intensity range. First the ionization of atoms with intense laser fields is investigated. For sufficient strong and low frequent laser pulses, electrons can be removed from the core by a tunnel process through a potential barrier formed by the electric field of the laser. This mechanism is described by a well-established theory, but the interaction of few-cycle laser pulses with atoms can lead to regimes where the tunnel theory loses its validity. This regime is investigated and a new description of the ionization is found. Although the ionization plays a major role in many high-energy laser processes, there exist no simple and complete model for the evolution of laser pulses in field-ionizing media. A new propagation equation and the polarization response for field-ionizing media are presented and the results are compared with experimental data. Further the interaction of high power laser radiation with atoms result in nonlinear response of the electrons. The spectrum of this induced nonlinear dipole moment reaches beyond visible wavelengths into the x-ray regime. This effect is known as high harmonic generation (HHG) and is a promising tool for the generation of coherent shot wavelength radiation, but the conversions are still not efficient enough for most practical applications. Phase matching schemes to overcome the limitation are discussed

  7. Controlling Plasma Channels through Ultrashort Laser Pulse Filamentation

    Science.gov (United States)

    Ionin, Andrey; Seleznev, Leonid; Sunchugasheva, Elena

    2013-09-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding long electric discharges is discussed. The research was supported by RFBR Grants 11-02-12061-ofi-m and 11-02-01100, and EOARD Grant 097007 through ISTC Project 4073 P

  8. Superluminous laser pulse in an active medium

    International Nuclear Information System (INIS)

    Fisher, D.L.; Tajima, T.

    1993-12-01

    Physical conditions are obtained to make the propagation velocity of a laser pulse and thus the phase velocity of the excited wake be at any desired value, including that equal to or greater than the speed of light. The provision of an active-plasma laser medium with an appropriately shaped pulse allows not only replenishment of laser energy loss to the wakefield but also acceleration of the group velocity of photons. A stationary solitary solution in the accelerated frame is obtained from the model equations and simulations thereof for the laser, plasma and atoms. This approach has applications in photonics and telecommunications as well as wakefield accelerators

  9. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    Science.gov (United States)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  10. New methods of generation of ultrashort laser pulses for ranging

    Science.gov (United States)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  11. Dynamics of a multiple-pulse-driven x-ray laser plasma

    International Nuclear Information System (INIS)

    Wan, A.S.; Da Silva, L.B.; Moreno, J.C.; Cauble, R.; Celliers, P.; Dalhed, H.E. Jr.; Koch, J.A.; Nilsen, J.

    1996-01-01

    In this paper we describe experimental and computational studies of multiple-pulse-driven laser plasma, which is the gain medium for a neon-like yttrium x-ray laser. Near-field emission profiles have been measured both with and without reinjection of the x-ray laser photons to couple with the amplifying medium created by later pulses using an external multilayer mirror. From the temporal and spatial evolution of the near-field emission profiles we can examine the pulse-to-pulse variation of the x-ray laser plasma due to changes in the hydrodynamics, laser deposition, and the injecting of x-ray laser photons back into an amplifying x-ray laser plasma. Using a combination of radiation hydrodynamics, atomic kinetics, and ray propagation codes, reasonable agreement has been obtained between simulations and the experimental results. copyright 1996 American Institute of Physics

  12. Nanosecond-pulsed Q-switched Nd:YAG laser at 1064 nm with a gold nanotriangle saturable absorber

    Science.gov (United States)

    Chen, Xiaohan; Li, Ping; Dun, Yangyang; Song, Teng; Ma, Baomin

    2018-06-01

    Gold nanotriangles (GNTs) were successfully employed as a saturable absorber (SA) to achieve passively Q-switched lasers for the first time. The performance of the Q-switched Nd:YAG laser at 1064 nm has been systematically investigated. The corresponding shortest pulsewidth, the threshold pump power and the maximum Q-switched average output power were 275.5 ns, 1.37 W, and 171 mW, respectively. To our knowledge, this is the shortest pulsewidth and the lowest threshold in a passively Q-switched laser at approximately 1.1 µm based on a gold nanoparticle SA (GNPs-SA). Our experimental results proved that the GNTs-SA can be used as a promising saturable absorber for nanosecond-pulsed lasers.

  13. High-power noise-like pulse generation using a 1.56-µm all-fiber laser system.

    Science.gov (United States)

    Lin, Shih-Shian; Hwang, Sheng-Kwang; Liu, Jia-Ming

    2015-07-13

    We demonstrated an all-fiber, high-power noise-like pulse laser system at the 1.56-µm wavelength. A low-power noise-like pulse train generated by a ring oscillator was amplified using a two-stage amplifier, where the performance of the second-stage amplifier determined the final output power level. The optical intensity in the second-stage amplifier was managed well to avoid not only the excessive spectral broadening induced by nonlinearities but also any damage to the device. On the other hand, the power conversion efficiency of the amplifier was optimized through proper control of its pump wavelength. The pump wavelength determines the pump absorption and therefore the power conversion efficiency of the gain fiber. Through this approach, the average power of the noise-like pulse train was amplified considerably to an output of 13.1 W, resulting in a power conversion efficiency of 36.1% and a pulse energy of 0.85 µJ. To the best of our knowledge, these amplified pulses have the highest average power and pulse energy for noise-like pulses in the 1.56-µm wavelength region. As a result, the net gain in the cascaded amplifier reached 30 dB. With peak and pedestal widths of 168 fs and 61.3 ps, respectively, for the amplified pulses, the pedestal-to-peak intensity ratio of the autocorrelation trace remains at the value of 0.5 required for truly noise-like pulses.

  14. Comparative study on Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation of urease thin films

    International Nuclear Information System (INIS)

    Smausz, Tomi; Megyeri, Gabor; Kekesi, Renata; Vass, Csaba; Gyoergy, Eniko; Sima, Felix; Mihailescu, Ion N.; Hopp, Bela

    2009-01-01

    Urease thin films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE) and Pulsed Laser Deposition from two types of targets: frozen water solutions of urease with different concentrations (1-10% m/v) and pure urease pellets. The fluence of the ablating KrF excimer laser was varied between 300 and 2200 mJ/cm 2 . Fourier transform infrared spectra of the deposited films showed no difference as compared to the original urease. Morphologic studies proved that the films consist of a smooth 'base' layer with embedded micrometer-sized droplets. Absorption-coefficient measurements contradicted the traditional 'absorptive matrix' model for MAPLE deposition. The laser energy was absorbed by urease clusters leading to a local heating-up and evaporation of the frozen matrix from the uppermost layer accompanied by the release of dissolved urease molecules. Significant enzymatic activity of urease was preserved only during matrix assisted transfer.

  15. Frequency modulation of semiconductor disk laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskii, I O; Korobko, D A; Okhotnikov, O G [Ulyanovsk State University, Ulyanovsk (Russian Federation)

    2015-07-31

    A numerical model is constructed for a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM), and the effect that the phase modulation caused by gain and absorption saturation in the semiconductor has on pulse generation is examined. The results demonstrate that, in a laser cavity with sufficient second-order dispersion, alternating-sign frequency modulation of pulses can be compensated for. We also examine a model for tuning the dispersion in the cavity of a disk laser using a Gires–Tournois interferometer with limited thirdorder dispersion. (control of radiation parameters)

  16. Heat effect of pulsed Er:YAG laser radiation

    Science.gov (United States)

    Hibst, Raimund; Keller, Ulrich

    1990-06-01

    Pulsed Er:YAG laser radiation has been found to be effective for dental enamel and dentin removal. Damage to the surrounding hard tissue is little, but before testing the Er:YAG laser clinically for the preparation of cavities, possible effects on the soft tissue of the pulp must be known. In order to estimate pulp damage , temperature rise in dentin caused by the laser radiation was measured by a thermocouple. Additionally, temperature distributions were observed by means of a thermal imaging system. The heat effect of a single Er:YAG laser pulse is little and limited to the vicinity of the impact side. Because heat energy is added with each additional pulse , the temperature distribution depends not only on the radiant energy, but also on the number of pulses and the repetition rate. Both irradiation conditions can be found , making irreversible pulp damage either likely or unlikely. The experimental observations can be explained qualitatively by a simple model of the ablation process.

  17. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  18. Comparison of pulsed dye laser versus combined pulsed dye laser and Nd:YAG laser in the treatment of inflammatory acne vulgaris.

    Science.gov (United States)

    Salah El Din, Manal Mohamed; Samy, Nevien Ahmed; Salem, Amira Eid

    2017-06-01

    Both pulsed dye laser and combined 585/1064-nm (sequential dual-wavelength PDL and Nd:YAG) laser improves inflammatory skin disorders including acne vulgaris. To compare the efficacy of 585-nm pulsed dye laser versus sequential dual-wavelength PDL and Nd:YAG in treatment of acne vulgaris. Thirty patients with acne vulgaris were treated by PDL alone on half of the face while contra lateral half was treated by combined 585/1064 nm laser. The study showed that inflammatory acne lesions count was significantly reduced by 82.5% (p 0.0001) on PDL sides and by 83.5% (p 0.00001) on combined 585/1064-nm side after 8 weeks, while reduction of non-inflammatory acne lesions was observed at 8 weeks by 58.4% and 71.5% respectively. However, difference between the two modalities was not statistically significant. PDL and combined PDL/Nd:YAG laser treatment were found to be an effective, safe and well-tolerated treatment option for inflammatory and non-inflammatory acne vulgaris.

  19. Using the ultra-long pulse width pulsed dye laser and elliptical spot to treat resistant nasal telangiectasia.

    Science.gov (United States)

    Madan, Vishal; Ferguson, Janice

    2010-01-01

    Thick linear telangiectasia on the ala nasi and nasolabial crease can be resistant to treatment with the potassium-titanyl-phosphate (KTP) laser and the traditional round spot on a pulsed dye laser (PDL). We evaluated the efficacy of a 3 mm x 10 mm elliptical spot using the ultra-long pulse width on a Candela Vbeam(R) PDL for treatment of PDL- and KTP laser-resistant nasal telangiectasia. Nasal telangiectasia resistant to PDL (12 patients) and KTP laser (12 patients) in 18 patients were treated with a 3 mm x 10 mm elliptical spot on the ultra-long pulse pulsed dye laser (ULPDL) utilising long pulse width [595 nm, 40 ms, double pulse, 30:20 dynamic cooling device (DCD)]. Six patients had previously received treatment with both PDL and KTP laser prior to ULPDL (40 treatments, range1-4, mean 2.2). Complete clearance was seen in ten patients, and eight patients displayed more than 80% improvement after ULPDL treatment. Self-limiting purpura occurred with round spot PDL and erythema with KTP laser and ULPDL. Subtle linear furrows along the treatment sites were seen in three patients treated with the KTP laser. ULPDL treatment delivered using a 3 mm x 10 mm elliptical spot was non-purpuric and highly effective in the treatment of nasal telangiectasia resistant to KTP laser and PDL.

  20. Effect of the temporal laser pulse asymmetry on pair production processes during intense laser-electron scattering

    Science.gov (United States)

    Hojbota, C. I.; Kim, Hyung Taek; Kim, Chul Min; Pathak, V. B.; Nam, Chang Hee

    2018-06-01

    We investigate the effects of laser pulse shape on strong-field quantum electrodynamics (QED) processes during the collision between a relativistic electron beam and an intense laser pulse. The interplay between high-energy photon emission and two pair production processes, i.e. nonlinear Breit–Wheeler (BW) and Trident, was investigated using particle-in-cell simulations. We found that the temporal evolution of these two processes could be controlled by using laser pulses with different degrees of asymmetry. The temporal envelope of the laser pulse can significantly affect the number of pairs coming from the Trident process, while the nonlinear BW process is less sensitive to it. This study shows that the two QED processes can be examined with state-of-the-art petawatt lasers and the discrimination of the two pair creation processes is feasible by adjusting the temporal asymmetry of the colliding laser pulse.

  1. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Thattey, S.S.; Dongare, A.S.; Suri, B.M.; Nair, L.G.

    1992-01-01

    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm -1 , which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm -1 . The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm -1 . (author). 6 refs., 11 figs

  2. A ns-Pulse Laser Microthruster

    International Nuclear Information System (INIS)

    Phipps, Claude R.; Luke, James R.; Helgeson, Wesley; Johnson, Richard

    2006-01-01

    We have developed a prototype device which demonstrates the feasibility of using ns-duration laser pulses in a laser microthruster. Relative to the ms-duration thrusters which we have demonstrated in the past, this change offers the use of any target material, the use of reflection-mode target illumination, and adjustable specific impulse. Specific impulse is adjusted by varying laser intensity on target. In this way, we were able to vary specific impulse from 200s to 3,200s on gold. We used a Concepts Research, Inc. microchip laser with 170mW average optical power, 8kHz repetition rate and 20μJ pulse energy for many of the measurements. Thrust was in the 100nN - 1μN range for all the work, requiring development of an extremely sensitive, low-noise thrust stand. We will discuss the design of metallic fuel delivery systems. Ablation efficiency near 100% was observed. Results obtained on metallic fuel systems agreed with simulations. We also report time-of-flight measurements on ejected metal ions, which gave velocities up to 80km/s

  3. Femtosecond Fiber Lasers

    Science.gov (United States)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  4. Thermal Effect of Pulsed Laser on Human Skin

    OpenAIRE

    N. C. Majumdar; V. K. Kochhar

    1985-01-01

    An attempt has been made to derive from theoretical considerations, some idea about safety limits of exposure with regard to radiant energy skin burns. This may be regarded as a preliminary enquiry in respect of thermal tissue damage by pulsed laser radiation, since the effects of isolated single pulses from ruby laser only have been considered. The study needs to be extended to other wavelengths as well as to trains of pulses.

  5. High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser

    International Nuclear Information System (INIS)

    Zhuang, W Z; Chang, M T; Su, K W; Huang, K F; Chen, Y F

    2013-01-01

    We report on high-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser. A semiconductor saturable absorber mirror is developed to achieve synchronously mode-locked operation at two spectral bands centered at 1031.67 and 1049.42 nm with a pulse duration of 1.54 ps and a pulse repetition rate of 80.3 GHz. With a diamond heat spreader to improve the heat removal efficiency, the average output power can be up to 1.1 W at an absorbed pump power of 5.18 W. The autocorrelation traces reveal that the mode-locked pulse is modulated with a beat frequency of 4.92 THz and displays a modulation depth to be greater than 80%. (paper)

  6. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses.

    Science.gov (United States)

    Lukač, Nejc; Jezeršek, Matija

    2018-05-01

    When attempting to clean surfaces of dental root canals with laser-induced cavitation bubbles, the resulting cavitation oscillations are significantly prolonged due to friction on the cavity walls and other factors. Consequently, the collapses are less intense and the shock waves that are usually emitted following a bubble's collapse are diminished or not present at all. A new technique of synchronized laser-pulse delivery intended to enhance the emission of shock waves from collapsed bubbles in fluid-filled endodontic canals is reported. A laser beam deflection probe, a high-speed camera, and shadow photography were used to characterize the induced photoacoustic phenomena during synchronized delivery of Er:YAG laser pulses in a confined volume of water. A shock wave enhancing technique was employed which consists of delivering a second laser pulse at a delay with regard to the first cavitation bubble-forming laser pulse. Influence of the delay between the first and second laser pulses on the generation of pressure and shock waves during the first bubble's collapse was measured for different laser pulse energies and cavity volumes. Results show that the optimal delay between the two laser pulses is strongly correlated with the cavitation bubble's oscillation period. Under optimal synchronization conditions, the growth of the second cavitation bubble was observed to accelerate the collapse of the first cavitation bubble, leading to a violent collapse, during which shock waves are emitted. Additionally, shock waves created by the accelerated collapse of the primary cavitation bubble and as well of the accompanying smaller secondary bubbles near the cavity walls were observed. The reported phenomena may have applications in improved laser cleaning of surfaces during laser-assisted dental root canal treatments.

  7. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas

    International Nuclear Information System (INIS)

    Solodov, A.

    2000-12-01

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  8. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.

    Science.gov (United States)

    Stachs, Oliver; Schumacher, Silvia; Hovakimyan, Marine; Fromm, Michael; Heisterkamp, Alexander; Lubatschowski, Holger; Guthoff, Rudolf

    2009-11-01

    To evaluate a new method for visualizing femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Laser Zentrum Hannover e.V., Hannover, Germany. Lenses removed from porcine eyes were modified ex vivo by femtosecond laser pulses (wavelength 1040 nm, pulse duration 306 femtoseconds, pulse energy 1.0 to 2.5 microJ, repetition rate 100 kHz) to create defined planes at which lens fibers separate. The femtosecond laser pulses were delivered by a 3-dimension (3-D) scanning unit and transmitted by focusing optics (numerical aperture 0.18) into the lens tissue. Lens fiber orientation and femtosecond laser-induced microincisions were examined using a confocal laser scanning microscope (CLSM) based on a Rostock Cornea Module attached to a Heidelberg Retina Tomograph II. Optical sections were analyzed in 3-D using Amira software (version 4.1.1). Normal lens fibers showed a parallel pattern with diameters between 3 microm and 9 microm, depending on scanning location. Microincision visualization showed different cutting effects depending on pulse energy of the femtosecond laser. The effects ranged from altered tissue-scattering properties with all fibers intact to definite fiber separation by a wide gap. Pulse energies that were too high or overlapped too tightly produced an incomplete cutting plane due to extensive microbubble generation. The 3-D CLSM method permitted visualization and analysis of femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Thus, 3-D CLSM may help optimize femtosecond laser-based procedures in the treatment of presbyopia.

  9. Possibilities of using pulsed lasers and copper-vapour laser system (CVL and CVLS) in modern technological equipment

    Science.gov (United States)

    Labin, N. A.; Bulychev, N. A.; Kazaryan, M. A.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.

    2015-12-01

    Research on CVL installations with an average power of 20-25 W of cutting and drilling has shown wide range of applications of these lasers for micromachining of metals and a wide range of non-metallic materials up to 1-2 mm. From the analysis indicated that peak power density in the focused light spot of 10-30 μm diameter must be 109 -1012 W/cm2 the productivity and quality micromachining, when the treatment material is preferably in the evaporative mode micro explosions, followed by the expansion of the superheated vapor and the liquid. To achieve such levels of power density, a minimum heat affected zone (5- 10 μm) and a minimum surface roughness of the cut (1-2 μm), the quality of the output beam of radiation should be as high. Ideally, to ensure the quality of the radiation, the structure of CVL output beam must be single-beam, diffraction divergence and have at duration pulses τi = 20-40 ns. The pulse energy should have low values of 0.1-1 mJ at pulse repetition rates of 10-20 kHz. Axis of the radiation beam instability of the pattern to be three orders of magnitude smaller than the diffraction limit of the divergence. The spot of the focused radiation beam must have a circular shape with clear boundary, and a Gaussian intensity distribution.

  10. Dynamics of focused femtosecond laser pulse during photodisruption of crystalline lens

    Science.gov (United States)

    Gupta, Pradeep Kumar; Singh, Ram Kishor; Sharma, R. P.

    2018-04-01

    Propagation of laser pulses of femtosecond time duration (focused through a focusing lens inside the crystalline lens) has been investigated in this paper. Transverse beam diffraction, group velocity dispersion, graded refractive index structure of the crystalline lens, self-focusing, and photodisruption in which plasma is formed due to the high intensity of laser pulses through multiphoton ionization have been taken into account. The model equations are the modified nonlinear Schrödinger equation along with a rate equation that takes care of plasma generation. A close analysis of model equations suggests that the femtosecond laser pulse duration is critical to the breakdown in the lens. Our numerical simulations reveal that the combined effect of self-focusing and multiphoton ionization provides the breakdown threshold. During the focusing of femtosecond laser pulses, additional spatial pulse splitting arises along with temporal splitting. This splitting of laser pulses arises on account of self-focusing, laser induced breakdown, and group velocity distribution, which modifies the shape of laser pulses. The importance of the present study in cavitation bubble generation to improve the elasticity of the eye lens has also been discussed in this paper.

  11. Design of pulsed laser diode drive power for ZY3(02) laser altimeter

    Science.gov (United States)

    Feng, Wen; Li, Mingshan; Meng, Peibei; Yan, Fanjiang; Li, Xu; Wang, Chunhui

    2017-11-01

    Solid laser pumped by semiconductor laser has the large value in the area of space laser technology, because of the advantages of high efficiency, small volume and long life. As the indispensable component of laser, laser power is also very important. Combined with ZY3(02) laser altimeter project, a high voltage(0-300V), high current(0-80A), long pulse width(0-230us) and high precision temperature semiconductor laser power is developed. IGBT is applied in the driving circuit as the switch to provide a current pulse for LD. The heating or cooling capacity of TEC is controlled by PID compensation circuit quickly adjusts the duty cycle of the UC1637 PWM signal, to realize the high accuracy controlling of LD working temperature. The tests in the external ambient temperature of 5°C, 20°C, 30°C show that the LD current pulse is stable and the stability of LD working temperature up to +/-0.1°C around the set point temperature, which ensure the highly stable operation of DPL.

  12. Ionization of a multilevel atom by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Andreev, A. V.; Stremoukhov, S. Yu.; Shutova, O. A.

    2010-01-01

    Specific features of ionization of single atoms by laser fields of a near-atomic strength are investigated. Calculations are performed for silver atoms interacting with femtosecond laser pulses with wavelengths λ = 800 nm (Ti:Sapphire) and λ = 1.064 μm (Nd:YAG). The dependences of the probability of ionization and of the form of the photoelectron energy spectra on the field of laser pulses for various values of their duration are considered. It is shown that the behavior of the probability of ionization in the range of subatomic laser pulse fields is in good agreement with the Keldysh formula. However, when the field strength attains values close to the atomic field strength, the discrepancies in these dependences manifested in a decrease in the ionization rate (ionization stabilization effect) or in its increase (accelerated ionization) are observed. These discrepancies are associated with the dependence of the population dynamics of excited discrete energy levels of the atom on the laser pulse field amplitude.

  13. High-energy, short-pulse, carbon-dioxide lasers

    International Nuclear Information System (INIS)

    Fenstermacher, C.A.

    1979-01-01

    Lasers for fusion application represent a special class of short-pulse generators; not only must they generate extremely short temporal pulses of high quality, but they must do this at ultra-high powers and satisfy other stringent requirements by this application. This paper presents the status of the research and development of carbon-dioxide laser systems at the Los Alamos Scientific Laboratory, vis-a-vis the fusion requirements

  14. Output Pressure and Pulse-Echo Characteristics of CMUTs as Function of Plate Dimensions

    DEFF Research Database (Denmark)

    Diederichsen, Søren Elmin; Hansen, Jesper Mark Fly; Engholm, Mathias

    2017-01-01

    This paper presents an experimental study of the acoustic performance of Capacitive Micromachined Ultrasonic Transducers (CMUTs) as function of plate dimensions. The objective is to increase the output pressure without decreasingthe pulse-echo signal. The CMUTs are fabricated with a LOCOS process......-to-peak output pressure and pulse-echo signal is obtained for the 9.3μm plate, which still has a moderate pulseecho bandwidth of 60%. The 9.3μm plate results in a 1.9 times higher peak-to-peak output pressure and a 3.6 times higherpulse-echo signal compared to the 2μm plate. By adjusting the plate dimensions...

  15. Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance.

    Science.gov (United States)

    Bader, Markus J; Pongratz, Thomas; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Sroka, Ronald

    2015-04-01

    In vitro investigations of Ho:YAG laser-induced stone fragmentation were performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long or short pulse mode was tested with regard to its fragmentation and laser hardware compatibility properties. The pulse duration is depending on the specific laser parameters. Fragmentation tests (hand-held, hands-free, single-pulse-induced crater) on artificial BEGO stones were performed under reproducible experimental conditions (fibre sizes: 365 and 200 µm; laser settings: 10 W through combinations of 0.5, 1, 2 J/pulse and 20, 10, 5 Hz, respectively). Differences in fragmentation rates between the two pulse duration regimes were detected with statistical significance for defined settings. Hand-held and motivated Ho:YAG laser-assisted fragmentation of BEGO stones showed no significant difference between short pulse mode and long pulse mode, neither in fragmentation rates nor in number of fragments and fragment sizes. Similarly, the results of the hands-free fragmentation tests (with and without anti-repulsion device) showed no statistical differences between long pulse and short pulse modes. The study showed that fragmentation rates for long and short pulse durations at identical power settings remain at a comparable level. Longer holmium laser pulse duration reduces stone pushback. Therefore, longer laser pulses may result in better clinical outcome of laser lithotripsy and more convenient handling during clinical use without compromising fragmentation effectiveness.

  16. Secondary wavelength stabilization of unbalanced Michelson interferometers for the generation of low-jitter pulse trains.

    Science.gov (United States)

    Shalloo, R J; Corner, L

    2016-09-01

    We present a double unbalanced Michelson interferometer producing up to four output pulses from a single input pulse. The interferometer is stabilized with the Hänsch-Couillaud method using an auxiliary low power continuous wave laser injected into the interferometer, allowing the stabilization of the temporal jitter of the output pulses to 0.02 fs. Such stabilized pulse trains would be suitable for driving multi-pulse laser wakefield accelerators, and the technique could be extended to include amplification in the arms of the interferometer.

  17. Advanced chemical oxygen iodine lasers for novel beam generation

    Science.gov (United States)

    Wu, Kenan; Zhao, Tianliang; Huai, Ying; Jin, Yuqi

    2018-03-01

    Chemical oxygen iodine laser, or COIL, is an impressive type of chemical laser that emits high power beam with good atmospheric transmissivity. Chemical oxygen iodine lasers with continuous-wave plane wave output are well-developed and are widely adopted in directed energy systems in the past several decades. Approaches of generating novel output beam based on chemical oxygen iodine lasers are explored in the current study. Since sophisticated physical processes including supersonic flowing of gaseous active media, chemical reacting of various species, optical power amplification, as well as thermal deformation and vibration of mirrors take place in the operation of COIL, a multi-disciplinary model is developed for tracing the interacting mechanisms and evaluating the performance of the proposed laser architectures. Pulsed output mode with repetition rate as high as hundreds of kHz, pulsed output mode with low repetition rate and high pulse energy, as well as novel beam with vector or vortex feature can be obtained. The results suggest potential approaches for expanding the applicability of chemical oxygen iodine lasers.

  18. Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)

    Science.gov (United States)

    Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.

    2017-03-01

    Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.

  19. Prepulse effect on intense femtosecond laser pulse propagation in gas

    International Nuclear Information System (INIS)

    Giulietti, Antonio; Tomassini, Paolo; Galimberti, Marco; Giulietti, Danilo; Gizzi, Leonida A.; Koester, Petra; Labate, Luca; Ceccotti, Tiberio; D'Oliveira, Pascal; Auguste, Thierry; Monot, Pascal; Martin, Philippe

    2006-01-01

    The propagation of an ultrashort laser pulse can be affected by the light reaching the medium before the pulse. This can cause a serious drawback to possible applications. The propagation in He of an intense 60-fs pulse delivered by a Ti:sapphire laser in the chirped pulse amplification (CPA) mode has been investigated in conditions of interest for laser-plasma acceleration of electrons. The effects of both nanosecond amplified spontaneous emission and picosecond pedestals have been clearly identified. There is evidence that such effects are basically of refractive nature and that they are not detrimental for the propagation of a CPA pulse focused to moderately relativistic intensity. The observations are fully consistent with numerical simulations and can contribute to the search of a stable regime for laser acceleration

  20. Pulsed laser dewetting of nickel catalyst for carbon nanofiber growth

    International Nuclear Information System (INIS)

    Guan, Y F; Pearce, R C; Simpson, M L; Rack, P D; Melechko, A V; Hensley, D K

    2008-01-01

    We present a pulsed laser dewetting technique that produces single nickel catalyst particles from lithographically patterned disks for subsequent carbon nanofiber growth through plasma enhanced chemical vapor deposition. Unlike the case for standard heat treated Ni catalyst disks, for which multiple nickel particles and consequently multiple carbon nanofibers (CNFs) are observed, single vertically aligned CNFs could be obtained from the laser dewetted catalyst. Different laser dewetting parameters were tested in this study, such as the laser energy density and the laser processing time measured by the total number of laser pulses. Various nickel disk radii and thicknesses were attempted and the resultant number of carbon nanofibers was found to be a function of the initial disk dimension and the number of laser pulses

  1. Closed-cycle 1-kHz-pulse-repetition-frequency HF(DF) laser

    Science.gov (United States)

    Harris, Michael R.; Morris, A. V.; Gorton, Eric K.

    1998-05-01

    We describe the design and performance of a closed cycle, high pulse repetition frequency HF(DF) laser. A short duration, glow discharge is formed in a 10 SF6:1 H2(D2) gas mixture at a total pressure of approximately 110 torr. A pair of profiled electrodes define a 15 X 0.5 X 0.5 cm3 discharge volume through which gas flow is forced in the direction transverse to the optical axis. A centrifugal fan provides adequate gas flow to enable operation up to 3 kHz repetition frequency. The fan also passes the gas through a scrubber cell in which ground state HF(DF) is eliminated from the gas stream. An automated gas make-up system replenishes the spent fuel gases removed by the scrubber. Total gas admission is regulated by monitoring the system pressure, whilst the correct fuel balance is maintained through measurement of the discharge voltage. The HF(DF) generation rate is determined to be close to 5 X 1019 molecules per second per watt of laser output. Typical mean laser output powers of up to 3 watts can be delivered for extended periods of time. The primary limitation to life is found to be the discharge pre- ionization system. A distributed resistance corona pre- ionizer is shown to be advantageous when compared with an alternative arc array scheme.

  2. Active manipulation of the selective alignment by two laser pulses

    International Nuclear Information System (INIS)

    Zeng-Qiang, Yang; Zhi-Rong, Guo; Gui-Xian, Ge

    2010-01-01

    This paper solves numerically the full time-dependent Schrödinger equation based on the rigid rotor model, and proposes a novel strategy to determine the optimal time delay of the two laser pulses to manipulate the molecular selective alignment. The results illustrate that the molecular alignment generated by the first pulse can be suppressed or enhanced selectively, the relative populations of even and odd rotational states in the final rotational wave packet can be manipulated selectively by precisely inserting the peak of the second laser pulse at the time when the slope for the alignment parameter by the first laser locates a local maximum for the even rotational states and a local minimum for the odds, and vice versa. The selective alignment can be further optimised by selecting the intensity ratio of the two laser pulses on the condition that the total laser intensity and pulse duration are kept constant. (atomic and molecular physics)

  3. Intensity Correlation Analysis on Blue-Violet FemtosecondPulses from a Dispersion-Compensated GaInN Mode-LockedSemiconductor Laser Diode

    Directory of Open Access Journals (Sweden)

    Shunsuke Kono

    2015-09-01

    Full Text Available We investigated the spectral and temporal characteristics of blue-violetfemtosecond optical pulses generated by a passively mode-locked GaInN laser diode ina dispersion-compensated external cavity. The output optical pulses at 400 nm wereanalyzed in detail by intensity auto- and cross-correlation measurements using secondharmonic generation on the surface of a β-BaB2O4 crystal. The obtained results clarifiedwavelength-dependent chirp characteristics of the optical pulses. The analysis suggestedthat a large frequency shift due to saturation in the saturable absorber and gain sectionsplayed an important role in the generation of femtosecond optical pulses.

  4. Theoretical research of multi-pulses laser induced damage in dielectrics

    International Nuclear Information System (INIS)

    Luo Jin; Liu Zhichao; Chen Songlin; Ma Ping

    2013-01-01

    The pulse width is different, the mechanism of the laser-matter interaction is different. Damage results from plasma formation and ablation forτ≤10 ps and from heat depositing and conventional melting for τ>100 ps. Two theoretical models of transparent dielectrics irradiated by multi-pulses laser are respectively developed based on the above-mentioned different mechanism. One is the dielectric breakdown model based on electron density evolution equation for femtosecond multi-pluses laser, the other is the dielectric heat-damage model based on Fourier's heat exchange equation for nanosecond multi-pluses laser. Using these models, the effects of laser parameters and material parameters on the laser-induced damage threshold of dielectrics are analyzed. The analysis results show that different parameters have different influence on the damage threshold. The effect of parameters on the multi -pulses damage threshold is not entirely the same to the single-pulse damage threshold. The multi-pulses damage mechanism of dielectrics is discussed in detail, considering the effect of different parameters. The discussion provides more information for understanding its damage process and more knowledge to improve its damage thresholds. And the relationship between damage threshold and pulse number is illustrated, it is in good agreement with experimental results. The illustration can help us to predict the multi-pulses damage threshold and the lifetime of optical components. (authors)

  5. New laser system for highly sensitive clinical pulse oximetry

    Science.gov (United States)

    Hamza, Mostafa; Hamza, Mohammad

    1996-04-01

    This paper describes the theory and design of a new pulse oximeter in which laser diodes and other compact laser sources are used for the measurement of oxygen saturation in patients who are at risk of developing hypoxemia. The technique depends upon illuminating special sites of the skin of the patient with radiation from modulated laser sources at selected wavelengths. The specific laser wavelengths are chosen based on the absorption characteristics of oxyhemoglobin, reduced hemoglobin and other interfering sources for obtaining more accurate measurements. The laser radiation transmitted through the tissue is detected and signal processing based on differential absorption laser spectroscopy is done in such a way to overcome the primary performance limitations of the conventionally used pulse oximetry. The new laser pulse oximeter can detect weak signals and is not affected by other light sources such as surgical lamps, phototherapy units, etc. The detailed description and operating characteristics of this system are presented.

  6. Ultra-short laser pulses. Petawatt and femtosecond

    International Nuclear Information System (INIS)

    Lemoine, P.

    1999-01-01

    This book deals with a series of new results obtained thanks to the use of ultra-short laser pulses. This branch of physics has made incredible progresses during the last 25 years. Ultra-short laser pulses offer the opportunity to explore the domain of ultra-high energies and of ultra-short duration events. Applications are various, from controlled nuclear fusion to eye surgery and to more familiar industrial applications such as electronics. (J.S.)

  7. Shaping of few-cycle laser pulses via a subwavelength structure

    International Nuclear Information System (INIS)

    Guo Liang; Xie Xiao-Tao; Zhan Zhi-Ming

    2013-01-01

    We theoretically investigate the propagation of few-cycle laser pulses in resonant two-level dense media with a subwavelength structure, which is described by the full Maxwell—Bloch equations without the frame of slowly varying envelope and rotating wave approximations. The input pulses can be shaped into shorter ones with a single or less than one optical cycle. The effect of the parameters of the subwavelength structure and laser pulses is studied. Our study shows that the media with a subwavelength structure can significantly shape the few-cycle pulses into a subcycle pulse, even for the case of chirp pulses as input fields. This suggests that such subwavelength structures have potential application in the shaping of few-cycle laser pulses. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. High-power Yb-doped continuous-wave and pulsed fibre lasers

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... In this article, a review of Yb-doped CW and pulsed fibre lasers along with our study on self-pulsing dynamics in CW fibre lasers to find its role in high-power fibre laser development and the physical ... Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India ...

  9. Absorption of femtosecond laser pulses by atomic clusters

    International Nuclear Information System (INIS)

    Lin Jingquan; Zhang Jie; Li Yingjun; Chen Liming; Lu Tiezheng; Teng Hao

    2001-01-01

    Energy absorption by Xe, Ar, He atomic clusters are investigated using laser pulses with 5 mJ energy in 150 fs duration. Experimental results show that the size of cluster and laser absorption efficiency are strongly dependent on several factors, such as the working pressure of pulse valve, atomic number Z of the gas. Absorption fraction of Xe clusters is as high as 45% at a laser intensity of 1 x 10 15 W/cm 2 with 20 x 10 5 Pa gas jet backing pressure. Absorption of the atomic clusters is greatly reduced by introducing pre-pulses. Ion energy measurements confirm that the efficient energy deposition results in a plasma with very high ion temperature

  10. Pulsed CO laser for isotope separation of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, Igor Y.; Koptev, Andrey V. [Rocket-Space Technics Department, Baltic State Technical University, 1, 1st Krasnoarmeyskaya st.,St. Petersburg, 190005 (Russian Federation)

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  11. Pulsed Nd:YAG laser beam drilling: A review

    Science.gov (United States)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  12. Detection of diamond in ore using pulsed laser Raman spectroscopy

    CSIR Research Space (South Africa)

    Lamprecht, GH

    2007-10-01

    Full Text Available is necessary for correcting for fluorescence of minerals and diamond itself. Various pulsed laser wavelengths from 266 to 1064 nm were used, as well as cw lasers for comparison. Wavelength scans of the regions of interest, indicated that pulsed lasers at 532...

  13. Colliding Pulse Mode-Locked Laser Diode using Multimode Interference Reflectors

    NARCIS (Netherlands)

    Gordon Gallegos, Carlos; Guzmán, R.C.; Jimenez, A.; Leijtens, X.J.M.; Carpintero, G.

    2014-01-01

    We present a novel fully monolithic Colliding Pulse Mode-Locked Laser Diode (CPML) using Multimode Interference Reflectors (MMIRs) to create the laser resonator. We demonstrate experimentally for the first time to our knowledge the Colliding Pulse mode-locking of a laser using MMIRs by observation

  14. Post-filament self-trapping of ultrashort laser pulses.

    Science.gov (United States)

    Mitrofanov, A V; Voronin, A A; Sidorov-Biryukov, D A; Andriukaitis, G; Flöry, T; Pugžlys, A; Fedotov, A B; Mikhailova, J M; Panchenko, V Ya; Baltuška, A; Zheltikov, A M

    2014-08-15

    Laser filamentation is understood to be self-channeling of intense ultrashort laser pulses achieved when the self-focusing because of the Kerr nonlinearity is balanced by ionization-induced defocusing. Here, we show that, right behind the ionized region of a laser filament, ultrashort laser pulses can couple into a much longer light channel, where a stable self-guiding spatial mode is sustained by the saturable self-focusing nonlinearity. In the limiting regime of negligibly low ionization, this post-filamentation beam dynamics converges to a large-scale beam self-trapping scenario known since the pioneering work on saturable self-focusing nonlinearities.

  15. Holographic measurement of distortion during laser melting: Additive distortion from overlapping pulses

    Science.gov (United States)

    Haglund, Peter; Frostevarg, Jan; Powell, John; Eriksson, Ingemar; Kaplan, Alexander F. H.

    2018-03-01

    Laser - material interactions such as welding, heat treatment and thermal bending generate thermal gradients which give rise to thermal stresses and strains which often result in a permanent distortion of the heated object. This paper investigates the thermal distortion response which results from pulsed laser surface melting of a stainless steel sheet. Pulsed holography has been used to accurately monitor, in real time, the out-of-plane distortion of stainless steel samples melted on one face by with both single and multiple laser pulses. It has been shown that surface melting by additional laser pulses increases the out of plane distortion of the sample without significantly increasing the melt depth. The distortion differences between the primary pulse and subsequent pulses has also been analysed for fully and partially overlapping laser pulses.

  16. Pulsed power supplies for laser flashlamps. Final report

    International Nuclear Information System (INIS)

    Bird, W.L. Jr.; Driga, M.D.; Mayhall, D.J.T.; Brennan, M.

    1978-10-01

    A preliminary engineering design of a compensated pulse alternator for driving laser flashlamps is presented. The work performed by the Center for Electromechanics at The University of Texas at Austin also includes the optimization and revision of the prototype design for a compensated pulse alternator power supply for the NOVA laser system at Lawrence Livermore Laboratory

  17. Components for monolithic fiber chirped pulse amplification laser systems

    Science.gov (United States)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  18. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  19. The influence of laser pulse waveform on laser-TIG hybrid welding of AZ31B magnesium alloy

    Science.gov (United States)

    Song, Gang; Luo, Zhimin

    2011-01-01

    By dividing laser pulse duration into two parts, three kinds of laser waveforms are designed, including a high power density pulse (HPDP) laser in a short duration set at the beginning of the laser waveform. This paper aims to find out the laser pulse waveform and idiographic critical values of HPDP, which can affect the magnesium penetration in laser-tungsten inert gas (TIG) hybrid welding. Results show that when the laser pulse duration of HPDP is not more than 0.4 ms, the welding penetration values of lasers with HPDP are larger than otherwise. Also, the welding penetration values of laser with HPDP have increased by up to 26.1%. It has been found that with HPDP, the laser can form the keyhole more easily because the interaction between laser and the plate is changed, when the TIG arc preheats the plate. Besides, the laser with high power density and short duration strikes on the plates so heavily that the corresponding background power can penetrate into the bottom of the keyhole and maintain the keyhole open, which facilitates the final welding penetration.

  20. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    Science.gov (United States)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  1. Self-organization of high intensity laser pulses propagating in gases

    International Nuclear Information System (INIS)

    Koga, James

    2001-01-01

    In recent years the development of high intensity short pulse lasers has opened up wide fields of science which had previously been difficult to study. Recent experiments of short pulse lasers propagating in air have shown that these laser pulses can propagate over very long distances (up to 12 km) with little or no distortion of the pulse. Here we present a model of this propagation using a modified version of the self-organized criticality model developed for sandpiles by Bak, Tang, and Weisenfeld. The additions to the sandpile model include the formation of plasma which acts as a threshold diffusion term and self-focusing by the nonlinear index of refraction which acts as a continuous inverse diffusion. Results of this simple model indicate that a strongly self-focusing laser pulse shows self-organized critical behavior. (author)

  2. Shaping the output pulse of a linear-transformer-driver module

    International Nuclear Information System (INIS)

    Long, Finis W.; McKee, G. Randall; Stoltzfus, Brian Scott; Woodworth, Joseph Ray; McKenney, John Lee; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John L.; Stygar, William A.; Savage, Mark Edward; LeChien, Keith R.; Van De Valde, David M.

    2008-01-01

    We demonstrate that a wide variety of current-pulse shapes can be generated using a linear-transformer-driver (LTD) module that drives an internal water-insulated transmission line. The shapes are produced by varying the timing and initial charge voltage of each of the module's cavities. The LTD-driven accelerator architecture outlined in (Phys. Rev. ST Accel. Beams 10, 030401 (2007)) provides additional pulse-shaping flexibility by allowing the modules that drive the accelerator to be triggered at different times. The module output pulses would be combined and symmetrized by water-insulated radial-transmission-line impedance transformers (Phys. Rev. ST Accel. Beams 11, 030401 (2008))

  3. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers

    International Nuclear Information System (INIS)

    Wang Bin; Zhang Hongchao; Qin Yuan; Wang Xi; Ni Xiaowu; Shen Zhonghua; Lu Jian

    2011-01-01

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO 2 film components with platinum high-absorptance inclusions was established. The temperature rises of TiO 2 films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations.

  4. Loss of power output and laser fibre degradation during 120 watt lithium-triborate HPS laser vaporisation of the prostate

    Science.gov (United States)

    Hermanns, Thomas; Sulser, Tullio; Hefermehl, Lukas J.; Strebel, Daniel; Michel, Maurice-Stephan; Müntener, Michael; Meier, Alexander H.; Seifert, Hans-Helge

    2009-02-01

    It has recently been shown that laser fibre deterioration leads to a significant decrease of power output during 80 W potassium titanyl phosphate (KTP) laser vaporisation (LV) of the prostate. This decrease results in inefficient vaporisation especially towards the end of the procedure. For the new 120 W lithium-triborate (LBO) High Performance System (HPS) laser not only higher power but also changes in beam characteristics and improved fibre quality have been advertised. However, high laser power has been identified as a risk factor for laser fibre degradation. Between July and September 2008 25 laser fibres were investigated during routine 120 W LBO-LV in 20 consecutive patients. Laser beam power was measured at baseline and after the application of every 25 kJ during the LV procedure. Postoperatively, the surgeon subjectively rated the performance of the respective fibre on a scale from 1 to 4 (1 indicating perfect and 4 insufficient performance). Additionally, microscopic examination of the fibre tip was performed. Median energy applied was 212 kJ. Changes of power output were similar for all fibres. Typically, a steep decrease of power output within the first 50 kJ was followed by a continuous mild decrease until the end of the procedure. After the application of 50 kJ the median power output was 63% (58-73% interquartile range) of the baseline value. The median power output at the end of the 275 kJ-lifespan of the fibres was 42% (40-47%). The median surgeons' rating of the overall performance of the laser fibres was 2 and the median estimated final decrease of power output 60%. Some degree of degradation at the emission window was microscopically detectable in all cases after the procedure. However, even after the application of 275 kJ, these structural changes were only moderate. Minor degradation of the laser fibre was associated with a significant decrease of power output during 120 W LBO-LV. However, following an early, steep decrease, power output

  5. Research on imploded plasma heating by short pulse laser for fast ignition

    International Nuclear Information System (INIS)

    Kodama, R.; Kitagawa, Y.; Mima, K.

    2001-01-01

    Since the peta watt module (PWM) laser was constructed in 1995, investigated are heating processes of imploded plasmas by intense short pulse lasers. In order to heat the dense plasma locally, a heating laser pulse should be guided into compressed plasmas as deeply as possible. Since the last IAEA Fusion Conference, the feasibility of fast ignition has been investigated by using the short pulse GEKKO MII glass laser and the PWM laser with GEKKO XII laser. We found that relativistic electrons are generated efficiently in a preformed plasma to heat dense plasmas. The coupling efficiency of short pulse laser energy to a solid density plasma is 40% when no plasmas are pre-formed, and 20% when a large scale plasma is formed by a long pulse laser pre-irradiation. The experimental results are confirmed by numerical simulations using the simulation code 'MONET' which stands for the Monte-Carlo Electron Transport code developed at Osaka. In the GEKKO XII and PWM laser experiments, intense heating pulses are injected into imploded plasmas. As a result of the injection of heating pulse, it is found that high energy electrons and ions could penetrate into imploded core plasmas to enhance neutron yield by factor 3∼5. (author)

  6. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

    Science.gov (United States)

    Lednev, Vasily N; Pershin, Sergey M; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Fedorov, Alexander N; Bukin, Vladimir V; Oshurko, Vadim B; Shchegolikhin, Alexander N

    2018-01-01

    A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

  7. The development of novel Ytterbium fiber lasers and their applications

    Science.gov (United States)

    Nie, Bai

    The aim of my Ph.D. research is to push the fundamental limits holding back the development of novel Yb fiber lasers with high pulse energy and short pulse duration. The purpose of developing these lasers is to use them for important applications such as multiphoton microscopy and laser-induced breakdown spectroscopy. My first project was to develop a short-pulse high-energy ultrafast fiber laser for multiphoton microscopy. To achieve high multiphoton efficiency and depth resolved tissue imaging, ultrashort pulse duration and high pulse energy are required. In order to achieve this, an all-normal dispersion cavity design was adopted. Output performances of the built lasers were investigated by varying several cavity parameters, such as pump laser power, fiber length and intra-cavity spectral filter bandwidth. It was found that the length of the fiber preceding the gain fiber is critical to the laser performance. Generally, the shorter the fiber is, the broader the output spectrum is. The more interesting parameter is the intra-cavity spectral filter bandwidth. Counter intuitively, laser cavities using narrower bandwidth spectral filters generated much broader spectra. It was also found that fiber lasers with very narrow spectral filters produced laser pulses with parabolic profile, which are referred to as self-similar pulses or similaritons. This type of pulse can avoid wave-breaking and is an optimal approach to generate pulses with high pulse energy and ultrashort pulse duration. With a 3nm intra-cavity spectral filter, output pulses with about 20 nJ pulse energy were produced and compressed to about 41 fs full-width-at-half-maximum (FWHM) pulse duration. Due to the loss in the compression device, the peak power of the compressed pulses is about 250 kW. It was the highest peak power generated from a fiber oscillator when this work was published. This laser was used for multiphoton microscopy on living tissues like Drosophila larva and fruit fly wings. Several

  8. Novel short-pulse laser diode source for high-resolution 3D flash lidar

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-06-01

    Imaging based on laser illumination is present in various fields of applications such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified the recent years. Among the various technologies currently studied, automotive lidars are a fast-growing one due to their accuracy to detect a wide range of objects at distances up to a few hundreds of meters in various weather conditions. First commercialized devices for ADAS were laser scanners. Since then, new architectures have recently appeared such as solid-state lidar and flash lidar that offer a higher compactness, robustness and a cost reduction. Flash lidars are based on time-of-flight measurements, with the particularity that they do not require beam scanners because only one short laser pulse with a large divergence is used to enlighten the whole scene. Depth of encountered objects can then be recovered from measurement of echoed light at once, hence enabling real-time 3D mapping of the environment. This paper will bring into the picture a cutting edge laser diode source that can deliver millijoule pulses as short as 12 ns, which makes them highly suitable for integration in flash lidars. They provide a 100-kW peak power highly divergent beam in a footprint of 4x5 cm2 (including both the laser diode and driver) and with a 30-% electrical-to-optical efficiency, making them suitable for integration in environments in which compactness and power consumption are a priority. Their emission in the range of 800-1000 nm is considered to be eye safe when taking into account the high divergence of the output beam. An overview of architecture of these state-of-the-art pulsed laser diode sources will be given together with some solutions for their integration in 3D mapping systems. Future work leads will be discussed for miniaturization of the laser diode and drastic cost reduction.

  9. High brightness diode-pumped organic solid-state laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien, E-mail: sebastien.forget@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430, Villetaneuse (France); CNRS, UMR 7538, LPL, F-93430, Villetaneuse (France)

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  10. Higher order harmonic generation in the intense laser pulse

    International Nuclear Information System (INIS)

    Parvizi, R.; Bahrampour, A.; Karimi, M.

    2006-01-01

    The high intensity pulse of laser field ionizes the atoms and electrons are going to the continuum states of atoms. electrons absorb energy from the strong laser field. The back ground electromagnetic field causes to come back the electrons to ground states of atoms and the absorbed energy is emitted as a high order odd harmonics of incident light. The intensity of emitted harmonics depends on the material atoms and the laser pulse shape. I this paper the effects of step pulse duration on the high order harmonic radiated by the Argon, Helium, and Hydrogen atoms are reported.

  11. Pulsed Laser Deposition: passive and active waveguides

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Flory, F.; Escoubas, L.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 438-449 ISSN 0268-1900 R&D Projects: GA ČR GA202/06/0216 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * pulsed laser deposition * laser ablation * passive waveguides * active waveguides * waveguide laser * sensors * thin films * butane detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.384, year: 2009

  12. A novel compact low impedance Marx generator with quasi-rectangular pulse output

    Science.gov (United States)

    Liu, Hongwei; Jiang, Ping; Yuan, Jianqiang; Wang, Lingyun; Ma, Xun; Xie, Weiping

    2018-04-01

    In this paper, a novel low impedance compact Marx generator with near-square pulse output based on the Fourier theory is developed. Compared with the traditional Marx generator, capacitors with different capacity have been used. It can generate a high-voltage quasi-rectangular pulse with a width of 100 ns at low impedance load, and it also has high energy density and power density. The generator consists of 16 modules. Each module comprises an integrative single-ended plastic case capacitor with a nominal value of 54 nF, four ceramic capacitors with a nominal value of 1.5 nF, a gas switch, a charging inductor, a grounding inductor, and insulators which provide mechanical support for all elements. In the module, different discharge periods from different capacitors add to the main circuit to form a quasi-rectangular pulse. The design process of the generator is analyzed, and the test results are provided here. The generator achieved pulse output with a rise time of 32 ns, pulse width of 120 ns, flat-topped width (95%-95%) of 50 ns, voltage of 550 kV, and power of 20 GW.

  13. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza, E-mail: r-massudi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411 (Iran, Islamic Republic of)

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  14. Research on determine the absolute neutron output of distributed pulse generators

    International Nuclear Information System (INIS)

    Li Bojun; Tang Zhangkui; Wang Dong; Yang Gaozhao; Peng Taiping

    2009-01-01

    In order to determine the absolute neutron output of distributed pulse generators, we deduced equivalent length to deal with experimental data, according to the different layout and weighting of multiple pulse generators. The deposited energy in scintillation crystal and the integral flux which drilling through crystal interface was simulated by MCNP code. The result shows the simulated proportion of different distributed pulse generators is approximately agreed with experimental data. The validity of the equivalent length model was proved by the consistent results between calculation and experimental data. (authors)

  15. Simulation of laser-tattoo pigment interaction in a tissue-mimicking phantom using Q-switched and long-pulsed lasers.

    Science.gov (United States)

    Ahn, K J; Kim, B J; Cho, S B

    2017-08-01

    Laser therapy is the treatment of choice in tattoo removal. However, the precise mechanisms of laser-tattoo pigment interactions remain to be evaluated. We evaluated the geometric patterns of laser-tattoo pigment particle interactions using a tattoo pigment-embedded tissue-mimicking (TM) phantom. A Q-switched (QS) neodymium-doped yttrium aluminum garnet laser was used at settings of 532-, 660-, and 1064-nm wavelengths, single-pulse and quick pulse-to-pulse treatment modes, and spot sizes of 4 and 7 mm. Most of the laser-tattoo interactions in the experimental conditions formed cocoon-shaped or oval photothermal and photoacoustic injury zones, which contained fragmented tattoo particles in various sizes depending on the conditions. In addition, a long-pulsed 755-nm alexandrite laser was used at a spot size of 6 mm and pulse widths of 3, 5, and 10 ms. The finer granular pattern of tattoo destruction was observed in TM phantoms treated with 3- and 5-ms pulse durations compared to those treated with a 10-ms pulse. We outlined various patterns of laser-tattoo pigment interactions in a tattoo-embedded TM phantom to predict macroscopic tattoo and surrounding tissue reactions after laser treatment for tattoo removal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Laser transmitter system

    International Nuclear Information System (INIS)

    Dye, R.A.

    1975-01-01

    A laser transmitter system is disclosed which utilizes mechanical energy for generating an output pulse. The laser system includes a current developing device such as a piezoelectric crystal which charges a storage device such as a capacitor in response to a mechanical input signal. The capacitor is coupled to a switching device, such as a silicon controlled rectifier (SCR). The switching device is coupled to a laser transmitter such as a GaAs laser diode, which provides an output signal in response to the capacitor being discharged

  17. Excimer Pumped Pulsed Tunable Dye Laser

    Science.gov (United States)

    Littman, Michael G.

    1988-06-01

    It has been recently shown and reported for the first time at this meeting, that Excimer pumping of a single-mode, short-cavity, grazing-incidence, longitudinally-pumped pulsed dye laser is feasible. In this paper the key concepts upon which this latest development is based are presented and are in a somewhat unusual form. This manuscript describes five specific dye laser examples. The five examples represent a progression from the simplest type of dye laser to the single-mode version mentioned above. The examples thus serve as a tutorial introduction to potential users of dye lasers. The article is organized into five sections or STEPS, each of which describes a different pulsed dye laser. Since the subtle points about dye lasers are best appreciated only after one actually attempts to build a working model, a PROCEDURES category is included in which details about the construction of the particular form of laser are given. As one reads through this category, think of it as looking over the shoulder of the laser builder. The NOTES category which follows is a brief but essential discussion explaining why various components and procedures are used, as well as how laser performance specifications are obtained. This subsection can he viewed as a discussion with the laser builder concerning the reasons for specific actions and choices made in the assembly of the example laser. The last category contains COMMENTS which provide additional related information pertaining to the example laser that goes beyond the earlier annotated discussion. If you like, these are the narrator's comments. At the end of the article, after the five sequential forms of the laser have been presented, there is a brief summation.

  18. Pulsed laser deposition to synthesize the bridge structure of artificial nacre: Comparison of nano- and femtosecond lasers

    Science.gov (United States)

    Melaibari, Ammar A.; Molian, Pal

    2012-11-01

    Nature offers inspiration to new adaptive technologies that allow us to build amazing shapes and structures such as nacre using synthetic materials. Consequently, we have designed a pulsed laser ablation manufacturing process involving thin film deposition and micro-machining to create hard/soft layered "brick-bridge-mortar" nacre of AlMgB14 (hard phase) with Ti (soft phase). In this paper, we report pulsed laser deposition (PLD) to mimic brick and bridge structures of natural nacre in AlMgB14. Particulate formation inherent in PLD is exploited to develop the bridge structure. Mechanical behavior analysis of the AlMgB14/Ti system revealed that the brick is to be 250 nm thick, 9 μm lateral dimensions while the bridge (particle) is to have a diameter of 500 nm for a performance equivalent to natural nacre. Both nanosecond (ns) and femtosecond (fs) pulsed lasers were employed for PLD in an iterative approach that involves varying pulse energy, pulse repetition rate, and target-to-substrate distance to achieve the desired brick and bridge characteristics. Scanning electron microscopy, x-ray photoelectron spectroscopy, and optical profilometer were used to evaluate the film thickness, particle size and density, stoichiometry, and surface roughness of thin films. Results indicated that both ns-pulsed and fs-pulsed lasers produce the desired nacre features. However, each laser may be chosen for different reasons: fs-pulsed laser is preferred for much shorter deposition time, better stoichiometry, uniform-sized particles, and uniform film thickness, while ns-pulsed laser is favored for industrial acceptance, reliability, ease of handling, and low cost.

  19. Generation and amplification of nanaosecond duration multiline hf laser pulses

    International Nuclear Information System (INIS)

    Getzinger, R.L.; Ware, K.D.; Carpenter, J.P.

    1976-01-01

    High-power, fast-rising pulses of hydrogen fluoride laser energy suitable for laser-fusion target interaction experiments can in principle be generated by directing an electro-optically shuttered oscillator pulse through one or more electron-beam driven amplifiers. A three-stage HF master oscillator-power amplifier (MOPA) configuration was constructed and tested using SF 6 -C 2 H 6 in which an E-O generated 4-ns-FWHM pulse was amplified in an electron-beam-excited third stage and subsequently isolated with a Brewster angle splitter. Independent experiments in which a 100-ns-FWHM pilot pulse interacted with the power amplifier demonstrated for the first time complete extraction of the available laser energy. These two results provide strong evidence that with upgrading to H 2 -F 2 , it should be possible to obtain nanosecond duration pulses with power levels sufficient for meaningful laser fusion target coupling experiments

  20. Laser wakefield electron acceleration. A novel approach employing supersonic microjets and few-cycle laser pulses

    International Nuclear Information System (INIS)

    Schmid, Karl

    2011-01-01

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four orders of magnitude larger than that attainable by conventional accelerators. This thesis demonstrates that laser pulses with an ultrashort duration of 8 fs and a peak power of 6 TW allow the production of electron energies up to 50 MeV via LWFA. The special properties of laser accelerated electron pulses, namely the ultrashort pulse duration, the high brilliance, and the high charge density, open up new possibilities in many applications of these electron beams. (orig.)

  1. Implementation of STUD Pulses at the Trident Laser and Initial Results

    Science.gov (United States)

    Johnson, R. P.; Shimada, T.; Montgomery, D. S.; Afeyan, B.; Hüller, S.

    2012-10-01

    Controlling and mitigating laser-plasma instabilities such as stimulated Brillouin scattering, stimulated Raman scattering, and crossed-beam energy transfer is important to achieve high-gain inertial fusion using laser drivers. Recent theory and simulations show that these instabilities can be largely controlled using laser pulses consisting of spike trains of uneven duration and delay (STUD) by modulating the laser on a picosecond time scale [1,2]. We have designed and implemented a STUD pulse generator at the LANL Trident Laser Facility using Fourier synthesis to produce a 0.5-ns envelope of psec-duration STUD pulses using a spatial light modulator. Initial results from laser propagation tests and measurements as well as initial laser-plasma characterization experiments will be presented.[4pt] [1] B. Afeyan and S. H"uller, ``Optimal Control of Laser Plasma Instabilities using STUD pulses,'' IFSA 2011, P.Mo.1, to appear in Euro. Phys. J. Web of Conf. (2012).[2] S. H"uller and B. Afeyan, ``Simulations of drastically reduced SBS with STUD pulses,'' IFSA 2011, O.Tu8-1, to appear in Euro. Phys. J. Web of Conf. (2012).

  2. Synchronization of sub-picosecond electron and laser pulses

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-01-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) copyright 1999 American Institute of Physics

  3. Compact 4-kHz XeF-laser with multisectional discharge gap

    Science.gov (United States)

    Andramanov, A. V.; Kabaev, S. A.; Lazhintsev, Boris V.; Nor-Arevyan, Vladimir A.; Selemir, V. D.

    2005-03-01

    An electric-discharge XeF-laser with a pulse repetition rate up to 4 kHz was developed. The laser electrode unit was made on the basis of plate-like electrodes with inductive-capacity discharge stabilization. The narrow discharge width laser energy was 3 mJ by using He/Xe/NF3 and Ne/Xe/NF3 mixtures at the total pressure of 0.8 atm and 1.2 atm, respectively. The maximum laser efficiency was ~ 0.73% The gas flow was formed with the help of a diametrical fan rotated by the direct-current motor with 80 W power. The gas velocity of 20 m/s in the interelectrode gap was achieved. The laser pulse energy for a pulse repetition rate up to 3.5...4 kHz was virtually equal to the laser pulse energy in the infrequently-repeating-pulse regime. The average output power of 12 W at the pulse repetition rate of 4 kHz was achieved. The relative root-mean-square pulse-to-pulse variation of the output energy σ = 2.5% was reached.

  4. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers.

    Science.gov (United States)

    Wang, Bin; Zhang, Hongchao; Qin, Yuan; Wang, Xi; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian

    2011-07-10

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO(2) film components with platinum high-absorptance inclusions was established. The temperature rises of TiO(2) films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations. © 2011 Optical Society of America

  5. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    International Nuclear Information System (INIS)

    Okishev, A.V.; Skeldon, M.D.; Keck, R.L.; Seka, W.

    2000-01-01

    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities

  6. Efficient laser emission from cladding waveguide inscribed in Nd:GdVO(4) crystal by direct femtosecond laser writing.

    Science.gov (United States)

    Liu, Hongliang; Tan, Yang; Vázquez de Aldana, Javier R; Chen, Feng

    2014-08-01

    We report on the fabrication of depressed cladding waveguides in Nd:GdVO(4) laser crystal by using femtosecond laser inscription. The cross section of the structure is a circular shape with a diameter of 150 μm. Under the optical pump at 808 nm, the continuous wave (cw) as well as pulsed (Q-switched by graphene saturable absorber) waveguide lasing at 1064 nm has been realized, supporting guidance of both TE and TM polarizations. The maximum output power of 0.57 W was obtained in the cw regime, while the maximum pulse energy of the pulsed laser emissions was up to 19 nJ (corresponding to a maximum average output power of 0.33 W, at a resonant frequency of 18 MHz). The slope efficiencies achieved for the cw and pulsed Nd:GdVO(4) waveguide lasers were as high as 68% and 52%, respectively.

  7. Ultra-short pulse, ultra-high intensity laser improvement techniques for laser-driven quantum beam science

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Kando, Masaki

    2014-01-01

    Recent development activities of the Quantum Beam Research Team in JAEA are reported. The downsized, petawatt and femtosecond pulse laser is described at first. The process of the system development and utilization effort of so-called J-KAREN is explained with its time and space control system. For high contrast, OPCPA (Optical Parametric Chirped Pulse Amplification) preamplifier is adopted by using the titanium-sapphire laser system in which only the seed light pulses can be amplified. In addition, high contrast is obtained by adopting the high energy seed light to the amplifier. The system configuration of J-KAREN laser is illustrated. Typical spectra with and without OPCPA, as well as the spectra with OPCPA adjustment and without one are shown. The result of the recompressed pulses is shown in which the pulse width of 29.5 femtoseconds is close to the theoretical limit. Considering the throughput of the pulse compressor is 64 percent it is possible to generate high power laser beam of about 600 terawatts. In the supplementary budget of 2012, it has been approved to cope with the aging or obsoleteness of the system and at the same time to further sophisticate the laser using system. The upgraded laser system is named as J-KAREN-P in which the repetition rate is improved and another booster amplifier is added to increase the power. The system configuration of J-KAREN-P after the upgrading is illustrated. (S. Funahashi)

  8. Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm.

    Science.gov (United States)

    Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang

    2007-10-15

    We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.

  9. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  10. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  11. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  12. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  13. Cladding-pumped Yb-doped fiber laser with vortex output beam

    OpenAIRE

    Lin, Di; Clarkson, William

    2015-01-01

    A simple technique for selectively generating a donut-shaped LP11 mode with vortex phase front in a cladding-pumped ytterbium-doped fiber laser is reported. The laser yielded 36W of output with a slope efficiency of 74%.

  14. Fundamentals of laser pulse irradiation of silicon

    International Nuclear Information System (INIS)

    Rimini, E.; Baeri, P.; Russo, G.

    1985-01-01

    A computer model has been developed to describe the space and time evolution of carrier concentration, carrier energy and lattice temperature during nanosecond and picosecond laser pulse irradiation of Si single crystals. In particular the dynamic response has been evaluated for energy density of the ps laser pulse below and above the density threshold for surface melting. The obtained data allow a comparison with time-resolved reflectivity measurements reported in the literature. The available data are fitted by the computer model assuming a relaxation time for the energy transfer from the carriers to the lattice of 1 ps. The validity of the thermal model used to describe laser annealing in the nanosecond regime is assessed. (author)

  15. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...

  16. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Z. Y. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621999 (China); Sheng, Z. M. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, J. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  17. Laser stand for irradiation of targets by laser pulses from the Iskra-5 facility at a repetition rate of 100 MHz

    International Nuclear Information System (INIS)

    Annenkov, V I; Garanin, Sergey G; Eroshenko, V A; Zhidkov, N V; Zubkov, A V; Kalipanov, S V; Kalmykov, N A; Kovalenko, V P; Krotov, V A; Lapin, S G; Martynenko, S P; Pankratov, V I; Faizullin, V S; Khrustalev, V A; Khudikov, N M; Chebotar, V S

    2009-01-01

    A train of a few tens of high-power subnanosecond laser pulses with a repetition period of 10 ns is generated in the Iskra-5 facility. The laser pulse train has an energy of up to 300 J and contains up to 40 pulses (by the 0.15 intensity level), the single pulse duration in the train being ∼0.5 ns. The results of experiments on conversion of a train of laser pulses to a train of X-ray pulses are presented. Upon irradiation of a tungsten target, a train of X-ray pulses is generated with the shape of an envelope in the spectral band from 0.18 to 0.28 keV similar to that of the envelope of the laser pulse train. The duration of a single X-ray pulse in the train is equal to that of a single laser pulse. (lasers)

  18. Histologic evaluation of laser lipolysis comparing continuous wave vs pulsed lasers in an in vivo pig model.

    Science.gov (United States)

    Levi, Jessica R; Veerappan, Anna; Chen, Bo; Mirkov, Mirko; Sierra, Ray; Spiegel, Jeffrey H

    2011-01-01

    To evaluate acute and delayed laser effects of subdermal lipolysis and collagen deposition using an in vivo pig model and to compare histologic findings in fatty tissue after continuous wave diode (CW) vs pulsed laser treatment. Three CW lasers (980, 1370, and 1470 nm) and 3 pulsed lasers (1064, 1320, and 1440 nm) were used to treat 4 Göttingen minipigs. Following administration of Klein tumescent solution, a laser cannula was inserted at the top of a 10 × 2.5-cm rectangle and was passed subdermally to create separate laser "tunnels." Temperatures at the surface and at intervals of 4-mm to 20-mm depths were recorded immediately after exposure and were correlated with skin injury. Full-thickness cutaneous biopsy specimens were obtained at 1 day, 1 week, and 1 month after exposure and were stained with hematoxylin-eosin and trichrome stain. Qualitative and semiquantitative histopathologic evaluations were performed with attention to vascular damage, lipolysis, and collagen deposition. Skin surface damage occurred at temperatures exceeding 46°C. Histologic examination at 1 day after exposure showed hemorrhage, fibrous collagen fiber coagulation, and adipocyte damage. Adipocytes surrounded by histiocytes, a marker of lipolysis, were present at 1 week and 1 month after exposure. Collagen deposition in subdermal fatty tissue and in reticular dermis of some specimens was noted at 1 week and had increased at 1 month. Tissue treated with CW laser at 1470 nm demonstrated greater hemorrhage and more histiocytes at damage sites than tissue treated with pulsed laser at 1440 nm. There was a trend toward more collagen deposition with pulsed lasers than with CW lasers, but this was not statistically significant. Histopathologic comparison between results of CW laser at 980 nm vs pulsed laser at 1064 nm showed the same trend. Hemorrhage differences may result from pulse duration variations. A theoretical calculation estimating temperature rise in vessels supported this

  19. Type-I cascaded quadratic soliton compression in lithium niobate: Compressing femtosecond pulses from high-power fiber lasers

    DEFF Research Database (Denmark)

    Bache, Morten; Wise, Frank W.

    2010-01-01

    The output pulses of a commercial high-power femtosecond fiber laser or amplifier are typically around 300–500 fs with wavelengths of approximately 1030 nm and tens of microjoules of pulse energy. Here, we present a numerical study of cascaded quadratic soliton compression of such pulses in LiNbO3....... However, the strong group-velocity dispersion implies that the pulses can achieve moderate compression to durations of less than 130 fs in available crystal lengths. Most of the pulse energy is conserved because the compression is moderate. The effects of diffraction and spatial walk-off are addressed......, and in particular the latter could become an issue when compressing such long crystals (around 10 cm long). We finally show that the second harmonic contains a short pulse locked to the pump and a long multi-picosecond red-shifted detrimental component. The latter is caused by the nonlocal effects...

  20. Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: Effects of temperature and energy fluence

    Energy Technology Data Exchange (ETDEWEB)

    Guillén, G. García; Palma, M.I. Mendivil [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Krishnan, B. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Universidad Autónoma de Nuevo León – Centro de Innovación, Investigación y Desarrollo de Ingeniería y Tecnología, Apodaca, Nuevo León 66600 (Mexico); Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455 (Mexico); and others

    2015-07-15

    Zinc oxide nanoparticles were prepared by pulsed laser ablation of a zinc metal target at different water temperatures (room temperature, 50, 70 and 90 °C). Ablation was carried out using 532 nm output from a pulsed (10 ns, 10 Hz) Nd:YAG laser at three different laser fluence. Analysis of the morphology, crystalline phase, elemental composition, optical and luminescent properties were done using Transmission Electron Microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS), UV–visible absorption spectroscopy and photoluminescence spectroscopy. TEM analysis showed that a change in temperature resulted in ZnO and Zn(OH){sub 2} nanoparticles with different sizes and morphologies. XPS results confirmed the compositions and chemical states of these nanoparticles. These zinc nanomaterials showed emission in the ultraviolet (UV) and blue regions. The results of this work demonstrated that by varying the liquid medium temperature, the structure, composition, morphology and optical properties of the nanomaterials could be modified during pulsed laser ablation in liquid. - Graphical abstract: Display Omitted - Highlights: • Zinc nanomaterial colloids were synthesized by PLAL. • Effects of laser fluence and the distilled water temperature were analyzed. • The final structure varied with the distilled water temperature and laser fluence. • The morphology was dependent on the distilled water temperature and laser fluence. • Zinc nanocolloids showed emission in the UV and blue region.

  1. Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: Effects of temperature and energy fluence

    International Nuclear Information System (INIS)

    Guillén, G. García; Palma, M.I. Mendivil; Krishnan, B.; Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das

    2015-01-01

    Zinc oxide nanoparticles were prepared by pulsed laser ablation of a zinc metal target at different water temperatures (room temperature, 50, 70 and 90 °C). Ablation was carried out using 532 nm output from a pulsed (10 ns, 10 Hz) Nd:YAG laser at three different laser fluence. Analysis of the morphology, crystalline phase, elemental composition, optical and luminescent properties were done using Transmission Electron Microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS), UV–visible absorption spectroscopy and photoluminescence spectroscopy. TEM analysis showed that a change in temperature resulted in ZnO and Zn(OH) 2 nanoparticles with different sizes and morphologies. XPS results confirmed the compositions and chemical states of these nanoparticles. These zinc nanomaterials showed emission in the ultraviolet (UV) and blue regions. The results of this work demonstrated that by varying the liquid medium temperature, the structure, composition, morphology and optical properties of the nanomaterials could be modified during pulsed laser ablation in liquid. - Graphical abstract: Display Omitted - Highlights: • Zinc nanomaterial colloids were synthesized by PLAL. • Effects of laser fluence and the distilled water temperature were analyzed. • The final structure varied with the distilled water temperature and laser fluence. • The morphology was dependent on the distilled water temperature and laser fluence. • Zinc nanocolloids showed emission in the UV and blue region

  2. Features of single and double ionization processes induced by few cycle laser pulses

    International Nuclear Information System (INIS)

    Starace, A.F.

    2005-01-01

    Full text: The advent of laser pulses with attosecond pulse lengths ushers in the regime of few cycle laser pulse interactions with atoms and ions, including the interesting cases of single and half cycle laser pulses. In this talk I will present results of recent studies of single electron ionization/detachment and double electron ionization/detachment produced by a few cycle laser pulse. For the former case, we shall demonstrate that the ionized/detached electron momentum distribution reflects the interference of electron probability wave packets produced by each half cycle of a single cycle pulse. Also, that the ionized/detached electron momentum distribution uniquely characterizes the phase of the single cycle laser pulse within the laser pulse envelope. Regarding double ionization/detachment, our numerical experiments have shown that single cycle and double half cycle pulses produce different electron angular distributions. Some double ionization features that are present only in the single cycle case can only have been produced by electron impact ionization during rescattering of an initially ionized electron and thus represent a sensitive measure of the rescattering process. Refs. 2 (author)

  3. Laser and Plasma Parameters for Laser Pulse Amplification by Stimulated Brillouin Backscattering in the Strong Coupling Regime

    Science.gov (United States)

    Gangolf, Thomas; Blecher, Marius; Bolanos, Simon; Lancia, Livia; Marques, Jean-Raphael; Cerchez, Mirela; Prasad, Rajendra; Aurand, Bastian; Loiseau, Pascal; Fuchs, Julien; Willi, Oswald

    2017-10-01

    In the ongoing quest for novel techniques to obtain ever higher laser powers, plasma amplification has drawn much attention, benefiting from the fact that a plasma can sustain much higher energy densities than a solid state amplifier. As a plasma process, Stimulated Brillouin Backscattering in the strong coupling regime (sc-SBS) can be used to transfer energy from one laser pulse (pump) to another (seed), by a nonlinear ion oscillation forced by the pump laser. Here, we report on experimental results on amplification by sc-SBS using the ARCTURUS Ti:Sapphire multi-beam laser system at the University of Duesseldorf, Germany. Counter-propagating in a supersonic Hydrogen gas jet target, an ultrashort seed pulse with a pulse duration between 30 and 160 fs and an energy between 1 and 12 mJ was amplified by a high-energy pump pulse (1.7 ps, 700 mJ). For some of the measurements, the gas was pre-ionized with a separate laser pulse (780 fs, 460 mJ). Preliminary analysis shows that the amplification was larger for the longer seed pulses, consistent with theoretical predictions.

  4. Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation

    Science.gov (United States)

    Ith, M.; Pratisto, H.; Altermatt, H. J.; Frenz, M.; Weber, H. P.

    1994-12-01

    The ability to use fiber-delivered erbium-laser radiation for non-contact arthroscopic meniscectomy in a liquid environment was studied. The laser radiation is transmitted through a water-vapor channel created by the leading part of the laser pulse. The dynamics of the channel formation around a submerged fiber tip was investigated with time-resolved flash photography. Strong pressure transients with amplitudes up to a few hundreds of bars measured with a needle hydrophone were found to accompany the channel formation process. Additional pressure transients in the range of kbars were observed after the laser pulse associated with the collapse of the vapor channel. Transmission measurements revealed that the duration the laser-induced channel stays open, and therefore the energy transmittable through it, is substantially determined by the laser pulse duration. The optimum pulse duration was found to be in the range between 250 and 350 µS. This was confirmed by histological evaluations of the laser incisions in meniscus: Increasing the pulse duration from 300 to 800 µs leads to a decrease in the crater depth from 1600 to 300 µm. A comparison of the histological examination after laser treatment through air and through water gave information on the influence of the vapor channel on the ablation efficiency, the cutting quality and the induced thermal damage in the adjacent tissue. The study shows that the erbium laser combined with an adequate fiber delivery system represents an effective surgical instrument liable to become increasingly accepted in orthopedic surgery.

  5. Ultrafast pulse lasers jump to macro applications

    Science.gov (United States)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  6. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study

    Science.gov (United States)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.

    2017-10-01

    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  7. Holograms made with a pulsed dye laser

    International Nuclear Information System (INIS)

    Fernandez-Guasti, M.; Iturbe-Castillo, D.; Silva-Perez, A.; Gil-Villegas, A.; Gonzalez-Torres, H.; Lopez-Guerrero, R.

    1989-01-01

    We report the obtention of holograms with a nitrogen pumped dye laser, whose source is inherently pulsed. We review the advantages and posibilities of holograms of moving objects which are impossible to make with CW lasers. The lasers used in these experiments were designed and built in the quantum optics laboratory at the Universidad Autonoma Metropolitana-Iztapalapa. (Author)

  8. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  9. Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt laser system

    International Nuclear Information System (INIS)

    Saleh, Ned; Flippo, Kirk; Nemoto, Koshichi; Umstadter, Donald; Crowell, Robert A.; Jonah, Charles D.; Trifunac, Alexander D.

    2000-01-01

    A laser based electron generator is shown, for the first time, to produce sufficient charge to conduct time resolved investigations of radiation induced chemical events. Electron pulses generated by focussing terawatt laser pulses into a supersonic helium gas jet are used to ionize liquid water. The decay of the hydrated electrons produced by the ionizing electron pulses is monitored with 0.3 μs time resolution. Hydrated electron concentrations as high as 22 μM were generated. The results show that terawatt lasers offer both an alternative to linear accelerators and a means to achieve subpicosecond time resolution for pulse radiolysis studies. (c) 2000 American Institute of Physics

  10. Polycrystal silicon recovery by means of a shaped laser pulse train

    International Nuclear Information System (INIS)

    Vitali, G.; Bertolotti, M.; Foti, G.

    1978-01-01

    A structure change from a polycrystal to single-crystal layer in ion-implanted Si samples has been obtained by single-pulse ruby-laser irradiation with a power density threshold of about 70 MW cm -2 (pulse length 50 nsec). Under these conditions surface mechanical damage is produced. A laser pulse train shaping technique was adopted to reduce the residual disorder in the layer after laser irradiation and to prevent mechanical damage

  11. Short-Pulse-Width Repetitively Q-Switched ~2.7-μm Er:Y2O3 Ceramic Laser

    Directory of Open Access Journals (Sweden)

    Xiaojing Ren

    2017-11-01

    Full Text Available A short-pulse-width repetitively Q-switched 2.7-μm Er:Y2O3 ceramic laser is demonstrated using a specially designed mechanical switch, a metal plate carved with slits of both slit-width and duty-cycle optimized. With a 20% transmission output coupler, stable pulse trains with durations (full-width at half-maximum, FWHM of 27–38 ns were generated with a repetition rate within the range of 0.26–4 kHz. The peak power at a 0.26 kHz repetition rate was ~3 kW.

  12. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    International Nuclear Information System (INIS)

    Singh, Mamta; Gupta, D. N.

    2016-01-01

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.

  13. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, North Campus, University of Delhi, Delhi 110 007 (India)

    2016-05-15

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.

  14. Dye laser spectrometer for the analysis of pulsed vacuum arcs

    International Nuclear Information System (INIS)

    Hargis, P.J. Jr.; Robertson, M.M.

    1975-01-01

    A pulsed dye laser spectrometer which is used to obtain detailed single shot spectroscopic measurements of the plasma in a pulsed vacuum arc was developed. The capabilities of this spectrometer are indicated by the detection of laser induced fluorescence signals from 10 6 neutral Ti atoms in the plasma of a pulsed vacuum arc with a Ti anode. (U.S.)

  15. Attosecond pulse trains from long laser-gas interaction targets

    International Nuclear Information System (INIS)

    Hauri, C.P.; Lopez-Martens, R.; Varju, K.; Ruchon, T.; Gustafsson, E.; L'Huillier, A.

    2006-01-01

    Complete test of publication follows. Many experiments in attosecond physics require high XUV photon flux as well as a clean attosecond pulse train (APT) temporal structure. Temporal characterization of high-order harmonic generation (HHG) in long interaction targets is thus of high interest. HHG being a very inefficient process, a large effort has been made to increase the amount of XUV photons emitted per infrared laser pulse. Besides quasi phase-matching in a modulated capillary, loose driving laser focusing conditions and subsequent self-channeling have shown to significantly increase the conversion efficiency. We characterized the temporal structure of APTs generated during the self-channeling of an intense IR driving laser pulse. Our first results indicate, however, that the temporal structure of the APT generated during the HHG process might be affected by quantum path interference and spectral phase distortion due to the self-channeling process itself. In particular, our measurements show that the relative spectral phase between consecutive harmonics can strongly vary depending on the target length and the position of the laser focus with respect to the target. In general for short gas targets, no clean APT structure can be expected since the individual attosecond pulses carry significant chirp. For longer targets, however, we observe a flattening of the harmonic spectral phase, resulting in near-transform-limited attosecond pulse trains. A complete analysis of the process is complex and involves detailed knowledge of the spatial and temporal evolution of the self-channeling driver laser pulse throughout the gas target.

  16. Synthesis and properties of palladium nanoparticles by pulsed laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mendivil, M.I. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Krishnan, B. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); CIIDIT – Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); Castillo, G.A. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66450 (Mexico); CIIDIT – Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico)

    2015-09-01

    Highlights: • Pd nanoparticle colloids were synthesized using PLAL technique. • Characterized by TEM, XPS and UV–vis spectroscopy. • Average size distribution was affected by different liquid media. • Laser post-irradiation was effective to regain optical properties. • Ultrasonic treatment helped to regain the optical properties. - Abstract: Pulsed laser ablation in liquid (PLAL) as a prominent technique for nanofabrication was employed to synthesize palladium (Pd) nanoparticles in different liquids. The synthesis of Pd nanoparticles was developed using a pulsed Nd:YAG laser with its fundamental wavelength output of 1064 nm (10 Hz, 10 ns) in a range of energy fluence (40.5–8 J/cm{sup 2}). Pure Pd metal target was immersed in distilled water, methanol–water mixture (1:1) and sodium dodecyl sulfate (SDS) to study the effect of the nature of the liquid media. Laser post-irradiation and ultrasonic treatments were applied to the precipitated colloidal solution to investigate their effects on the re-dispersion and stability. The mean size, size distributions, shape, elemental composition, optical properties and stability of nanoparticles synthesized by PLAL were examined by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. TEM characterizations showed smaller nanoparticles in methanol–water mixture in comparison with the other liquids. Spherical morphology was observed for Pd nanoparticles synthesized in distilled water and methanol–water mixture. In the case of SDS, spherical nanoparticles embedded on the surfactant were observed. The effect of energy fluence was different for each liquid media. Laser post-irradiation and ultrasonic agitation worked as efficient methods to re-disperse the precipitates of NPs and to recover their optical properties.

  17. Properties of pulsed laser deposited NiO/MWCNT thin films

    CSIR Research Space (South Africa)

    Yalisi, B

    2011-05-01

    Full Text Available Pulsed laser deposition (PLD) is a thin-film deposition technique, which uses short and intensive laser pulses to evaporate target material. The technique has been used in this work to produce selective solar absorber (SSA) thin film composites...

  18. Effect of laser pulse shaping parameters on the fidelity of quantum logic gates.

    Science.gov (United States)

    Zaari, Ryan R; Brown, Alex

    2012-09-14

    The effect of varying parameters specific to laser pulse shaping instruments on resulting fidelities for the ACNOT(1), NOT(2), and Hadamard(2) quantum logic gates are studied for the diatomic molecule (12)C(16)O. These parameters include varying the frequency resolution, adjusting the number of frequency components and also varying the amplitude and phase at each frequency component. A time domain analytic form of the original discretized frequency domain laser pulse function is derived, providing a useful means to infer the resulting pulse shape through variations to the aforementioned parameters. We show that amplitude variation at each frequency component is a crucial requirement for optimal laser pulse shaping, whereas phase variation provides minimal contribution. We also show that high fidelity laser pulses are dependent upon the frequency resolution and increasing the number of frequency components provides only a small incremental improvement to quantum gate fidelity. Analysis through use of the pulse area theorem confirms the resulting population dynamics for one or two frequency high fidelity laser pulses and implies similar dynamics for more complex laser pulse shapes. The ability to produce high fidelity laser pulses that provide both population control and global phase alignment is attributed greatly to the natural evolution phase alignment of the qubits involved within the quantum logic gate operation.

  19. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus

    2010-02-09

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  20. Pulse-shaping strategies in short-pulse fiber amplifiers

    International Nuclear Information System (INIS)

    Schimpf, Damian Nikolaus

    2010-01-01

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  1. Studying the mechanism of micromachining by short pulsed laser

    Science.gov (United States)

    Gadag, Shiva

    The semiconductor materials like Si and the transparent dielectric materials like glass and quartz are extensively used in optoelectronics, microelectronics, and microelectromechanical systems (MEMS) industries. The combination of these materials often go hand in hand for applications in MEMS such as in chips for pressure sensors, charge coupled devices (CCD), and photovoltaic (PV) cells for solar energy generation. The transparent negative terminal of the solar cell is made of glass on one surface of the PV cell. The positive terminal (cathode) on the other surface of the solar cell is made of silicon with a glass negative terminal (anode). The digital watches and cell phones, LEDs, micro-lens, optical components, and laser optics are other examples for the application of silicon and or glass. The Si and quartz are materials extensively used in CCD and LED for digital cameras and CD players respectively. Hence, three materials: (1) a semiconductor silicon and transparent dielectrics,- (2) glass, and (3) quartz are chosen for laser micromachining as they have wide spread applications in microelectronics industry. The Q-switched, nanosecond pulsed lasers are most extensively used for micro-machining. The nanosecond type of short pulsed laser is less expensive for the end users than the second type, pico or femto, ultra-short pulsed lasers. The majority of the research work done on these materials (Si, SiO 2, and glass) is based on the ultra-short pulsed lasers. This is because of the cut quality, pin point precision of the drilled holes, formation of the nanometer size microstructures and fine features, and minimally invasive heat affected zone. However, there are many applications such as large surface area dicing, cutting, surface cleaning of Si wafers by ablation, and drilling of relatively large-sized holes where some associated heat affected zone due to melting can be tolerated. In such applications the nanosecond pulsed laser ablation of materials is very

  2. Optimal control of quantum rings by terahertz laser pulses.

    Science.gov (United States)

    Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U

    2007-04-13

    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.

  3. Multi - pulse tea CO2 laser beam interaction with the TiN thin films

    International Nuclear Information System (INIS)

    Gakovic, B.; Trtica, M.; Nenadovic, T.; Pavlicevic, B.

    1998-01-01

    The interaction of various types of energetic beams including a laser beam with the high-hardness coatings is of great fundamental and technological interest. The Nd:YAG, excimer and CO 2 are frequently used laser beams for this purpose. The interaction of a laser beam with low thickness coatings, deposited on austenitic stainless steel, is insufficiently known in the literature. Titanium nitride (TiN) possess the excellent physico-chemical characteristics. For this reason TiN films/coatings are widely used. The purpose of this article is a consideration of the effect of TEA C0 2 laser radiation on the TiN film deposited on austenitic stainless steel substrate (AISI 316). Investigation of TiN morphological changes, after multipulse laser irradiation, shown dependence on laser fluence, number of laser pulses and the laser pulse shape. Subsequently fast heating and cooling during multi-pulse laser bombardment cause the grain growth of TiN layer. Both laser pulses (pulses with tail and tail-free pulses) produced periodical wave like structure on polished substrate material. Periodicity is observed also on AISI 316 protected with TiN layer, but only with laser pulse with tail. (author)

  4. Generation of short optical pulses for laser fusion. M.L. report No. 2451

    International Nuclear Information System (INIS)

    Kuizenga, D.J.

    1975-06-01

    This report considers some of the problems involved in generating the required short pulses for the laser-fusion program. Short pulses are required to produce the laser fusion, and pulses produced synchronously with this primary pulse are required for plasma diagnostics. The requirements of these pulses are first described. Several methods are considered in order to generate pulses at 1.064 μ to drive the Nd:Glass amplifiers to produce laser fusion. Conditions for optimum energy extraction per short pulse for Nd:YAG and Nd:Glass lasers are given. Four methods are then considered to produce these pulses: (1) using a fast switch to chop the required pulse out of a much longer Q-switched pulse; (2) active mode locking; (3) passive mode locking; and (4) a combination of active and passive mode locking. The use of cavity dumping is also considered to increase the energy per short pulse

  5. Energy losses estimation during pulsed-laser seam welding

    Czech Academy of Sciences Publication Activity Database

    Šebestová, Hana; Havelková, M.; Chmelíčková, H.

    2014-01-01

    Roč. 45, č. 3 (2014), s. 1116-1121 ISSN 1073-5615 R&D Projects: GA MŠk(CZ) LG13007 Institutional support: RVO:68378271 Keywords : laser welding * pulsed-laser * Nd:YAG laser Subject RIV: JP - Industrial Processing Impact factor: 1.461, year: 2014

  6. Propagation of femtosecond laser pulses through water in the linear absorption regime.

    Science.gov (United States)

    Naveira, Lucas M; Strycker, Benjamin D; Wang, Jieyu; Ariunbold, Gombojav O; Sokolov, Alexei V; Kattawar, George W

    2009-04-01

    We investigate the controversy regarding violations of the Bouguer-Lambert-Beer (BLB) law for ultrashort laser pulses propagating through water. By working at sufficiently low incident laser intensities, we make sure that any nonlinear component in the response of the medium is negligible. We measure the transmitted power and spectrum as functions of water cell length in an effort to confirm or disprove alleged deviations from the BLB law. We perform experiments at two different laser pulse repetition rates and explore the dependence of transmission on pulse duration. Specifically, we vary the laser pulse duration either by cutting its spectrum while keeping the pulse shape near transform-limited or by adjusting the pulses chirp while keeping the spectral intensities fixed. Over a wide range of parameters, we find no deviations from the BLB law and conclude that recent claims of BLB law violations are inconsistent with our experimental data. We present a simple linear theory (based on the BLB law) for propagation of ultrashort laser pulses through an absorbing medium and find our experimental results to be in excellent agreement with this theory.

  7. Modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for straight profile

    Science.gov (United States)

    Sharma, Amit; Yadava, Vinod

    2012-02-01

    Thin sheets of aluminium alloys are widely used in aerospace and automotive industries for specific applications. Nd:YAG laser beam cutting is one of the most promising sheetmetal cutting process for cutting sheets for any profile. Al-alloy sheets are difficult to cut by laser beam because of its highly reflective nature. This paper presents modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for straight profile. In the present study, four input process parameters such as oxygen pressure, pulse width, pulse frequency, and cutting speed and two output parameters such as average kerf taper ( Ta) and average surface roughness ( Ra) are considered. The hybrid approach comprising of Taguchi methodology (TM) and response surface methodology (RSM) is used for modelling whereas multi-objective optimization is performed using hybrid approach of TM and grey relational analysis (GRA) coupled with entropy measurement methodology. The entropy measurement methodology is employed for the calculation of weight corresponding to each quality characteristic. The results indicate that the hybrid approaches applied for modelling and optimization of the LBC process are reasonable.

  8. Characteristics and Applications of Spatiotemporally Focused Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Chenrui Jing

    2016-12-01

    Full Text Available Simultaneous spatial and temporal focusing (SSTF of femtosecond laser pulses gives rise to strong suppression of nonlinear self-focusing during the propagation of the femtosecond laser beam. In this paper, we begin with an introduction of the principle of SSTF, followed by a review of our recent experimental results on the characterization and application of the spatiotemporally focused pulses for femtosecond laser micromachining. Finally, we summarize all of the results and give a future perspective of this technique.

  9. Pulsed 1.55μm all-fiber laser combining high energy, ultranarrow linewidth and optimal spatial beam quality

    Science.gov (United States)

    Liégeois, Flavien; Hernandez, Yves; Kinet, Damien; Giannone, Domenico; Robin, Thierry; Cadier, Benoît

    2008-11-01

    In this letter, we report on the study of a new all-fiber laser source suitable for coherent Doppler LIDAR use in the eyesafe domain. The laser consists on a MOPA configuration where the Master Oscillator is a modulated ultranarrow (< 8 kHz) fiber laser. The optical amplifiers are also all-fibered and make use of a new Large Mode Area (LMA) index pedestal fiber that is very effective in limiting the non-linear effects without quality degradation of the laser beam. The amplified pulses have a maximum energy of 0.15 mJ for a duration of 340 ns at a repetition rate of 15 kHz. The average output power of the laser is 2.5 W, free of Stimulated Brillouin Scattering and with a measured M2 = 1.3.

  10. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-01-01

    We discuss the design and current status of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, VUV pulses driven by a high-current, GeV electron beam from the existing Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few cm. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing to the high current ( and 10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 1013 photons/pulse. Devices based both on SASE and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered

  11. Bringing Pulsed Laser Welding into Production

    DEFF Research Database (Denmark)

    Olsen, Flemmming Ove

    1996-01-01

    In this paper, some research and develop-ment activities within pulsed laser welding technology at the Tech-nical University of Denmark will be described. The laser group at the Insti-tute for Manufacturing Technology has nearly 20 years of experience in laser materials process-ing. Inter......-nationally the group is mostly known for its contri-butions to the development of the laser cutting process, but further it has been active within laser welding, both in assisting industry in bringing laser welding into production in several cases and in performing fundamental R & D. In this paper some research...... activities concerning the weldability of high alloyed austenitic stainless steels for mass production industry applying industrial lasers for fine welding will be described. Studies on hot cracking sensitivity of high alloyed austenitic stainless steel applying both ND-YAG-lasers and CO2-lasers has been...

  12. Free-electron laser driven by the LBNL laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K.E.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2008-01-01

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (∼10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10 13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  13. Production of quasi ellipsoidal laser pulses for next generation high brightness photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Rublack, T., E-mail: Tino.Rublack@desy.de [DESY, Zeuthen (Germany); Good, J.; Khojoyan, M.; Krasilnikov, M.; Stephan, F. [DESY, Zeuthen (Germany); Hartl, I.; Schreiber, S. [DESY, Hamburg (Germany); Andrianov, A.; Gacheva, E.; Khazanov, E.; Mironov, S.; Potemkin, A.; Zelenogorskii, V.V. [IAP/RAS, Nizhny Novgorod (Russian Federation); Syresin, E. [JINR, Dubna (Russian Federation)

    2016-09-01

    The use of high brightness electron beams in Free Electron Laser (FEL) applications is of increasing importance. One of the most promising methods to generate such beams is the usage of shaped photocathode laser pulses. It has already demonstrated that temporal and transverse flat-top laser pulses can produce very low emittance beams [1]. Nevertheless, based on beam simulations further improvements can be achieved using quasi-ellipsoidal laser pulses, e.g. 30% reduction in transverse projected emittance at 1 nC bunch charge. In a collaboration between DESY, the Institute of Applied Physics of the Russian Academy of Science (IAP RAS) in Nizhny Novgorod and the Joint Institute of Nuclear Research (JINR) in Dubna such a laser system capable of producing trains of laser pulses with a quasi-ellipsoidal distribution, has been developed. The prototype of the system was installed at the Photo Injector Test facility at DESY in Zeuthen (PITZ) and is currently in the commissioning phase. In the following, the laser system will be introduced, the procedure of pulse shaping will be described and the last experimental results will be shown.

  14. Comparison of pulsed electron beam-annealed and pulsed ruby laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wilson, S.R.; Appleton, B.R.; White, C.W.; Narayan, J.; Greenwald, A.C.

    1978-11-01

    Recently two new techniques, pulsed electron beam annealing and pulsed laser annealing, have been developed for processing ion-implanted silicon. These two types of anneals have been compared using ion-channeling, ion back-scattering, and transmission electron microscopy (TEM). Single crystal samples were implanted with 100 keV As + ions to a dose of approx. 1 x 10 16 ions/cm 2 and subsequently annealed by either a pulsed Ruby laser or a pulsed electron beam. Our results show in both cases that the near-surface region has melted and regrown epitaxially with nearly all of the implanted As (97 to 99%) incroporated onto lattice sites. The analysis indicates that the samples are essentially defect free and have complete electrical recovery

  15. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan, E-mail: dngupta@physics.du.ac.in

    2016-04-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  16. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    International Nuclear Information System (INIS)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan

    2016-01-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  17. Self-channeling of high-power laser pulses through strong atmospheric turbulence

    Science.gov (United States)

    Peñano, J.; Palastro, J. P.; Hafizi, B.; Helle, M. H.; DiComo, G. P.

    2017-07-01

    We present an unusual example of truly long-range propagation of high-power laser pulses through strong atmospheric turbulence. A form of nonlinear self-channeling is achieved when the laser power is close to the self-focusing power of air and the transverse dimensions of the pulse are smaller than the coherence diameter of turbulence. In this mode, nonlinear self-focusing counteracts diffraction, and turbulence-induced spreading is greatly reduced. Furthermore, the laser intensity is below the ionization threshold so that multiphoton absorption and plasma defocusing are avoided. Simulations show that the pulse can propagate many Rayleigh lengths (several kilometers) while maintaining a high intensity. In the presence of aerosols, or other extinction mechanisms that deplete laser energy, the pulse can be chirped to maintain the channeling.

  18. Simulation analysis of impulse characteristics of space debris irradiated by multi-pulse laser

    Science.gov (United States)

    Lin, Zhengguo; Jin, Xing; Chang, Hao; You, Xiangyu

    2018-02-01

    Cleaning space debris with laser is a hot topic in the field of space security research. Impulse characteristics are the basis of cleaning space debris with laser. In order to study the impulse characteristics of rotating irregular space debris irradiated by multi-pulse laser, the impulse calculation method of rotating space debris irradiated by multi-pulse laser is established based on the area matrix method. The calculation method of impulse and impulsive moment under multi-pulse irradiation is given. The calculation process of total impulse under multi-pulse irradiation is analyzed. With a typical non-planar space debris (cube) as example, the impulse characteristics of space debris irradiated by multi-pulse laser are simulated and analyzed. The effects of initial angular velocity, spot size and pulse frequency on impulse characteristics are investigated.

  19. Hypericin and pulsed laser therapy of squamous cell cancer in vitro.

    Science.gov (United States)

    Bublik, Michael; Head, Christian; Benharash, Peyman; Paiva, Marcos; Eshraghi, Adrian; Kim, Taiho; Saxton, Romaine

    2006-06-01

    This in vitro study compares continuous wave and pulsed laser light at longer wavelengths for activation of the phototoxic drug hypericin in human cancer cells. Two-photon pulsed laser light now allows high-resolution fluorescent imaging of cancer cells and should provide deeper tissue penetration with near infrared light for improved detection as well as phototoxicity in human tumors. Cultured Seoul National University (SNU)-1 tumor cells from a squamous cell carcinoma (SCC) were incubated with hypericin before photoirradiation at four laser wavelengths. Phototoxicity of hypericin sensitized SCC cells was measured by dimethyl thiazoldiphenyl (MTT) tetrazolium bromide cell viability assays and by confocal fluorescence microscopy via 532-nm and infrared two-photon pulsed laser light. Phototoxic response increased linearly with hypericin dose of 0.1-2 microM, light exposure time of 5-120 sec, and pulsed dye laser wavelengths of 514-593 nm. Light energy delivery for 50% cell phototoxicity (LD50) response was 9 joules at 514 nm, 3 joules at 550 nm, and less than 1 joule at the 593 nm hypericin light absorption maxima. Fluorescence confocal microscopy revealed membrane and perinuclear localization of hypericin in the SNU cells with membrane damage seen after excitation with visible 532 nm continuous wave light or two-photon 700-950 nm picosecond pulsed laser irradiation. Hypericin may be a powerful tumor targetting drug when combined with pulsed laser light in patients with recurrent head and neck SCC.

  20. Photovoltaic cells for laser power beaming

    Science.gov (United States)

    Landis, Geoffrey A.; Jain, Raj K.

    1992-01-01

    To better understand cell response to pulsed illumination at high intensity, the PC-1DC finite-element computer model was used to analyze the response of solar cells to pulsed laser illumination. Over 50% efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modelled, and the effect of laser intensity, wavelength, and bias point was studied. Designing a cell to accommodate pulsed input can be done either by accepting the pulsed output and designing a cell to minimize adverse effects due to series resistance and inductance, or to design a cell with a long enough minority carrier lifetime, so that the output of the cell will not follow the pulse shape. Two such design possibilities are a monolithic, low-inductance voltage-adding GaAs cell, or a high-efficiency, light-trapping silicon cell. The advantages of each design will be discussed.

  1. Self-guiding of high-intensity laser pulses for laser wake field acceleration

    International Nuclear Information System (INIS)

    Umstader, D.; Liu, X.

    1992-01-01

    A means of self-guiding an ultrashort and high-intensity laser pulse is demonstrated both experimentally and numerically. Its relevance to the laser wake field accelerator concept is discussed. Self-focusing and multiple foci formation are observed when a high peak power (P>100 GW), 1 μm, subpicosecond laser is focused onto various gases (air or hydrogen). It appears to result from the combined effects of self-focusing by the gas, and de-focusing both by diffraction and the plasma formed in the central high-intensity region. Quasi-stationary computer simulations show the same multiple foci behavior as the experiments. The results suggest much larger nonlinear electronic susceptibilities of a gas near or undergoing ionization in the high field of the laser pulse. Although self-guiding of a laser beam by this mechanism appears to significantly extend its high-intensity focal region, small-scale self-focusing due to beam non-uniformity is currently a limitation

  2. Laser fiber cleaving techniques: effects on tip morphology and power output.

    Science.gov (United States)

    Vassantachart, Janna M; Lightfoot, Michelle; Yeo, Alexander; Maldonado, Jonathan; Li, Roger; Alsyouf, Muhannad; Martin, Jacob; Lee, Michael; Olgin, Gaudencio; Baldwin, D Duane

    2015-01-01

    Proper cleaving of reusable laser fibers is needed to maintain optimal functionality. This study quantifies the effect of different cleaving tools on power output of the holmium laser fiber and demonstrates morphologic changes using microscopy. The uncleaved tips of new 272 μm reusable laser fibers were used to obtain baseline power transmission values at 3 W (0.6 J, 5 Hz). Power output for each of four cleaving techniques-11-blade scalpel, scribe pen cleaving tool, diamond cleaving wheel, and suture scissors-was measured in a single-blinded fashion. Dispersion of light from the fibers was compared with manufacturer specifications and rated as "ideal," "acceptable," or "unacceptable" by blinded reviewers. The fiber tips were also imaged using confocal and scanning electron microscopy. Independent samples Kruskal-Wallis test and chi square were used for statistical analysis (αtrend that was highly significant (Ptrend as the power output results (P<0.001). Microscopy showed that the scribe pen produced small defects along the fiber cladding but maintained a smooth, flat core surface. The other cleaving techniques produced defects on both the core and cladding. Cleaving techniques produce a significant effect on the initial power transmitted by reusable laser fibers. The scribe pen cleaving tool produced the most consistent and highest average power output.

  3. UV laser micromachining of piezoelectric ceramic using a pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Zeng, D.W.; Xie, C.S.; Li, K.; Chan, H.L.W.; Choy, C.L.; Yung, K.C.

    2004-01-01

    UV laser (λ=355 nm) ablation of piezoelectric lead zirconate titanate (PZT) ceramics in air has been investigated under different laser parameters. It has been found that there is a critical pulse number (N=750). When the pulse number is smaller than the critical value, the ablation rate decreases with increasing pulse number. Beyond the critical value, the ablation rate becomes constant. The ablation rate and concentrations of O, Zr and Ti on the ablated surface increase with the laser fluence, while the Pb concentration decreases due to the selective evaporation of PbO. The loss of the Pb results in the formation of a metastable pyrochlore phase. ZrO 2 was detected by XPS in the ablated zone. Also, the concentrations of the pyrochlore phase and ZrO 2 increase with increasing laser fluence. These results clearly indicate that the chemical composition and phase structure in the ablated zone strongly depend on the laser fluence. The piezoelectric properties of the cut PZT ceramic samples completely disappear due to the loss of the Pb and the existence of the pyrochlore phase. After these samples were annealed at 1150 C for 1 h in a PbO-controlled atmosphere, their phase structure and piezoelectric properties were recovered again. Finally, 1-3 and concentric-ring 2-2 PZT/epoxy composites were fabricated by UV laser micromachining and their thickness modes were measured by impedance spectrum analysis and a d 33 meter. Both composites show high piezoelectric properties. (orig.)

  4. Study on Writing Transmission Metal Grating with Pulse Shaping of Femtosecond Laser

    International Nuclear Information System (INIS)

    Ni, X C; Sun, Q; Wang, Ch Y; Yang, L; Wu, Y Z; Jia, W; Chai, L

    2006-01-01

    Pulse shaping in femtosecond(fs) laser micromachining is different from that of traditional laser, whose main purpose is to reduce focal scale size, wipe off fluorescence around laser beam, decrease pulse distortion, and fabricate all kinds of figures. To describe the spatial form of laser pulse around focal scale, the synchronous moving of focal objective and accepting material is presented. When a pinhole mask is placed in front of focal objective, the changing trend of laser spatial form around focal point with the laser beam diameter will be obtained by the diameter changing of the hole mask. Experimental results show that the diameter of laser pulse around focal point trends smoothly when the pinhole diameter is modulated to smaller, even the position of beam waist is changed. These phenomena can be explained by optical imaging theory. Finally, the transmission metal grating is written successfully with a selected parameter

  5. Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pérez del Pino, Ángel, E-mail: aperez@icmab.es; Cabana, Laura; Tobias, Gerard [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); György, Enikö [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, P. O. Box MG 36, 76900 Bucharest V (Romania); Ballesteros, Belén [ICN2—Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2014-03-07

    Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

  6. Pulsed Laser Centre (CLPU). The Salamanca peta watt laser; Centro de Laseres Pulsados (CLPU). El laser de Petavatio de Salamanca

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. R.

    2016-08-01

    With pulses lasting 30 photo seconds, the CLPU VEGA laser is capable of generating a peak power level of one peta watt, this making it one of the worlds most powerful lasers. When focussed it can reach extreme intensities. The way in which a pulse of this nature interacts with an atom or what its applications might be are among the questions answered by this article. (Author)

  7. INTERACTION OF LASER RADIATION WITH MATTER: Influence of a target on operation of a pulsed CO2 laser emitting microsecond pulses

    Science.gov (United States)

    Baranov, V. Yu; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1987-12-01

    The profile of pulses emitted by a TEA CO2 laser with an unstable resonator changed as a result of interaction of laser radiation with the surface of a metal in the presence of a breakdown plasma. This influence of a target on laser operation and its possible applications in laser processing of materials are analyzed.

  8. Diode laser in-band pumped, efficient 1645 nm continuous-wave and Q-switched Er:YLuAG lasers with near-diffraction-limited beam quality

    International Nuclear Information System (INIS)

    Li, Jing; Yang, SuHui; He, Tao

    2014-01-01

    Fiber-like Er:YLuAG laser rods were tested for continuous-wave (CW) and Q-switched operation. Two narrow-band laser diodes emitting at 1532 nm were used as pump sources. The pump power was confined in the laser rods via total internal reflection. In CW mode, a maximum output power of 7.2 W was measured from a 30 mm long Er:YLuAG laser rod, corresponding to an optical–optical efficiency of 26% and a slope efficiency of 78%. Er:YLuAG and Er:YAG lasers were compared experimentally and exhibited comparable performance, while the measured central wavelength of the Er:YLuAG laser was 1644.75 nm, slightly longer than the central wavelength of the Er:YAG laser in the same experimental circumstances. In Q-switched mode, an output energy of 3.5 mJ was obtained from a 25 mm Er:YLuAG laser rod with a pulse duration of 100 ns and a pulse repetition frequency of 100 Hz. The pulsed output had near-diffraction-limited beam quality with M 2 values of 1.13 and 1.11 in the x and y directions, respectively. (letter)

  9. Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment

    Science.gov (United States)

    Hamedi, M. J.; Torkamany, M. J.; Sabbaghzadeh, J.

    2011-04-01

    Commercial titanium sheets pre-coated with 300-μm thick graphite layer were treated by employing a pulsed Nd:YAG laser in order to enhance surface properties such as wear and erosion resistance. Laser in-situ alloying method produced a composite layer by melting the titanium substrate and dissolution of graphite in the melt pool. Correlations between pulsed laser parameters, microstructure and microhardness of the synthesized composite coatings were investigated. Effects of pulse duration and overlapping factor on the microstructure and hardness of the alloyed layer were deduced from Vickers micro-indentation tests, XRD, SEM and metallographic analyses of cross sections of the generated layer. Results show that the composite cladding layer was constituted with TiC intermetallic phase between the titanium matrix in particle and dendrite forms. The dendritic morphology of composite layer was changed to cellular grain structure by increasing laser pulse duration and irradiated energy. High values of the measured hardness indicate that deposited titanium carbide increases in the conditions with more pulse duration and low process speed. This occurs due to more dissolution of carbon into liquid Ti by heat input increasing and positive influence of the Marangoni flow in the melted zone.

  10. Visualization of cavitation bubbles induced by a laser pulse

    International Nuclear Information System (INIS)

    Testud-Giovanneschi, P.; Dufresne, D.; Inglesakis, G.

    1987-01-01

    The I.M.F.M. researchers working on Laser-Matter Interaction are studying the effects induced on matter by a pulsed radiation energy deposit. In this research, the emphasis is on the laser liquids interaction field and more particularly the cavitation induced by a laser pulse or ''optical-cavitation'' as termed by W. Lauterborn (1). For bubbles investigations, the visualizations form a basic diagnostic. This paper presents the experimental apparatus of formation of bubbles, the visualization apparatus and different typical examples of photographic recordings

  11. A pulsed laser polarization monitor for PEP

    International Nuclear Information System (INIS)

    Prescott, C.

    1975-01-01

    Back scattered circularly polarized laser photons are considered as a monitor for electron beam polarization. The up-down asymmetry of up to 10 percent can be measured using a wire ionization chamber with submillimeter resolution. With a pulsed laser backgrounds are to expected to be large

  12. Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization

    Science.gov (United States)

    Dumitrache, Ciprian

    Recent advances in the development of compact high power laser sources and fiber optic delivery of giant pulses have generated a renewed interest in laser ignition. The non-intrusive nature of laser ignition gives it a set of unique characteristics over the well-established capacitive discharge devices (or spark plugs) that are currently used as ignition sources in engines. Overall, the use of laser ignition has been shown to have a positive impact on engine operation leading to a reduction in NOx emission, fuel saving and an increased operational envelope of current engines. Conventionally, laser ignition is achieved by tightly focusing a high-power q-switched laser pulse until the optical intensity at the focus is high enough to breakdown the gas molecules. This leads to the formation of a spark that serves as the ignition source in engines. However, there are certain disadvantages associated with this ignition method. This ionization approach is energetically inefficient as the medium is transparent to the laser radiation until the laser intensity is high enough to cause gas breakdown. As a consequence, very high energies are required for ignition (about an order of magnitude higher energy than capacitive plugs at stoichiometric conditions). Additionally, the fluid flow induced during the plasma recombination generates high vorticity leading to high rates of flame stretching. In this work, we are addressing some of the aforementioned disadvantages of laser ignition by developing a novel approach based on a dual-pulse pre-ionization scheme. The new technique works by decoupling the effect of the two ionization mechanisms governing plasma formation: multiphoton ionization (MPI) and electron avalanche ionization (EAI). An UV nanosecond pulse (lambda = 266 nm) is used to generate initial ionization through MPI. This is followed by an overlapped NIR nanosecond pulse (lambda = 1064 nm) that adds energy into the pre-ionized mixture into a controlled manner until the

  13. The obtaining of giant laser pulses by optical pumping

    International Nuclear Information System (INIS)

    Briquet, Georges

    1970-12-01

    From coherent pumping studies a laser of short pulse duration was developed. Further study of laser effects in organic substances was envisaged. The first part of the work yielded awaited results, and led to the development of a single mode emitter (due to the small dimensions of the cavity). The principles of laser action were enumerated and the relative parameters defined. Various methods of obtaining pulses were discussed; the reasons behind the particular choice mode were given. A theoretical study was then made leading to the establishment of the fundamental equations defining the pulse formation process. An important part of the test deals with technical implications and the experimental results, which have arisen. The conclusion reviews possible applications. (author) [fr

  14. Short-pulse generation in a diode-end-pumped solid-state laser

    CSIR Research Space (South Africa)

    Ngcobo, S

    2010-09-01

    Full Text Available , Development of High Average Power Picosecond Laser Systems, Opto- Electronic Devices, (2002). INTRODUCTION A Nd:YVO4 modelocked laser has been constructed using a resonator designed according to the theoretical parameters. The laser produced pulses... theoretical PQSML,th of 2.08W. Short-Pulse Generation in a Diode-End-Pumped Solid-State Laser S. Ngcobo1,2, C. Bollig1 and H. Von Bergmann2 1CSIR National Laser Centre, PO Box 395, Pretoria, 0001, South Africa 2Laser Research Center, University...

  15. High intensive short laser pulse interaction with submicron clusters media

    International Nuclear Information System (INIS)

    Faenov, A. Ya

    2008-01-01

    The interaction of short intense laser pulses with structured targets, such as clusters, exhibits unique features, stemming from the enhanced absorption of the incident laser light compared to solid targets. Due to the increased absorption, these targets are heated significantly, leading to enhanced emission of x rays in the keV range and generation of electrons and multiple charged ions with kinetic energies from tens of keV to tens of MeV. Possible applications of these targets can be an electron/ion source for a table top accelerator, a neutron source for a material damage study, or an x ray source for microscopy or lithography. The overview of recent results, obtained by the high intensive short laser pulse interaction with different submicron clusters media will be presented. High resolution K and L shell spectra of plasma generated by superintense laser irradiation of micron sized Ar, Kr and Xe clusters have been measured with intensity 10"17"-10"19"W/cm"2"and a pulse duration of 30-1000fs. It is found that hot electrons produced by high contrast laser pulses allow the isochoric heating of clusters and shift the ion balance toward the higher charge states, which enhances both the X ray line yield and the ion kinetic energy. Irradiation of clusters, produced from such gas mixture, by a fs Ti:Sa laser pulses allows to enhance the soft X ray radiation of Heβ(665.7eV)and Lyα(653.7eV)of Oxygen in 2-8 times compare with the case of using as targets pure CO"2"or N"2"O clusters and reach values 2.8x10"10"(∼3μJ)and 2.7x10"10"(∼2.9μJ)ph/(sr·pulse), respectively. Nanostructure conventional soft X ray images of 100nm thick Mo and Zr foils in a wide field of view (cm"2"scale)with high spatial resolution (700nm)are obtained using the LiF crystals as soft X ray imaging detectors. When the target used for the ion acceleration studies consists of solid density clusters embedded into the background gas, its irradiation by high intensity laser light makes the target

  16. Influence of laser-supported detonation waves on metal drilling with pulsed CO2 lasers

    International Nuclear Information System (INIS)

    Stuermer, E.; von Allmen, M.

    1978-01-01

    Drilling of highly reflective metals in an ambient atmosphere with single TEA-CO 2 -laser pulses of fluences between 300 and 6000 J/cm 2 is reported. The drilling process was investigated by measuring the time-resolved laser power reflected specularly from the targets during the interaction and by analyzing the craters produced. Experiments were performed in ambient air, argon, and helium. Target damage was found to be strongly influenced by a laser-supported detonation (LSD) wave in the ambient gas. If the laser fluence exceeded a material-dependent damage threshold (copper: 300 J/cm 2 ), drilling occurred, but the efficiency was inversely related to the duration of the LSD wave. Efficient material removal is possible if the LSD wave can be dissipated within a small fraction of the laser pulse duration. This was achieved by small-F-number focusing of TEM 00 laser pulses of 5-μs duration. Replacing the ambient air at the target by a gas of lower density results in a further significant reduction of LSD-wave lifetime, and a correlated increase of the drilling yield. On copper targets a maximum drilling yield of 10 -5 cm 3 /J was observed in ambient helium at a laser fluence of 1 kJ/cm 2

  17. Synchronization of femtosecond laser pulses and RF signal by using a Sagnac loop Mach-Zehnder interferometer

    International Nuclear Information System (INIS)

    Dai Hui; Hajima, Ryoichi

    2008-11-01

    For future advanced energy recovery linac to generate femtosecond X-ray pulses, precise synchronization between sub-systems is highly desired. Typical synchronization methods based on direct photo detection are limited by detector nonlinearities, which lead to amplitude-to-phase conversion and introduce excess timing jitter. In this paper, we experimentally demonstrate an optical-electronic mixed phase lock loop to synchronize the RF signal and laser pulses. In this synchronism setup, a Sagnac-loop Mach-Zehnder interferometer has been used to suppress the excess noise of direct photo detection. This scheme transfers the timing information into a intensity imbalance between the two output beams of the interferometer. As experimental demonstration, the single side-band phase noise of RF signal from the VCO is locked to the mode-locked Ti:Sapphire laser in the spectrum covering the range of 10 kHz to 1 MHz. This synchronization scheme greatly reduces the phase noise and timing jitter of the RF signal. (author)

  18. Control of giant pulse duration in neodymium mini lasers with controllable cavity length and pulsed pumping

    International Nuclear Information System (INIS)

    Berenberg, Vladimir A.; Cervantes, Miguel A.; Terpugov, Vladimir S.

    2006-01-01

    In a solid-state laser incident on aLiNdP4O12 crystal, pumped by a short light pulse, giant pulse oscillation without the use of resonator Q switching is realized. Tuning of the oscillation pulse duration from 2 up to 20 ns is achieved by changing the cavity length from 24 to 3 mm, respectively. Our analysis of this mode of laser radiation is made on the basis of the rate equations. The factors influencing oscillation pulse duration a reinvestigated. It is shown that in a limiting case the minimal value of the pulse duration is limited by only the rate of excitation transfer from the pumping band to the metastable level

  19. Coherent combining pulse bursts in time domain

    Science.gov (United States)

    Galvanauskas, Almantas

    2018-01-09

    A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies using a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.

  20. STUDY OF THE PROPAGATION OF SHORT PULSE LASER WITH CAVITY USING NUMERICAL SIMULATION SOFTWARE

    Directory of Open Access Journals (Sweden)

    S. Terniche

    2015-07-01

    Full Text Available The purpose of this representation is to show the potentialities (Computational Time, access to the dynamic and feasibility of systematic studies of the numerical study of the nonlinear dynamics in laser cavity, assisted by software. We will give as an example, one type of cavity completely fibered composed of several elements and then studying the physical parameters of a pulse propagating into this cavity, determining its characteristics at the output. The results are interesting but we also projects to verify them experimentally by making assemblies similar to this type of cavities.

  1. Electromagnetically induced transparency with broadband laser pulses

    International Nuclear Information System (INIS)

    Yavuz, D. D.

    2007-01-01

    We suggest a scheme to slow and stop broadband laser pulses inside an atomic medium using electromagnetically induced transparency. Extending the suggestion of Harris et al. [Phys. Rev. Lett. 70, 552 (1993)], the key idea is to use matched Fourier components for the probe and coupling laser beams

  2. Solitary pulse-on-demand production by optical injection locking of passively Q-switched InGaN diode laser near lasing threshold

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X., E-mail: xi.zeng@csem.ch, E-mail: dmitri.boiko@csem.ch; Stadelmann, T.; Grossmann, S.; Hoogerwerf, A. C.; Boïko, D. L., E-mail: xi.zeng@csem.ch, E-mail: dmitri.boiko@csem.ch [Centre Suisse d' Electronique et de Microtechnique SA (CSEM), CH-2002 Neuchâtel (Switzerland); Sulmoni, L.; Lamy, J.-M.; Grandjean, N. [Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2015-02-16

    In this letter, we investigate the behavior of a Q-switched InGaN multi-section laser diode (MSLD) under optical injection from a continuous wave external cavity diode laser. We obtain solitary optical pulse generation when the slave MSLD is driven near free running threshold, and the peak output power is significantly enhanced with respect to free running configuration. When the slave laser is driven well above threshold, optical injection reduces the peak power. Using standard semiconductor laser rate equation model, we find that both power enhancement and suppression effects are the result of partial bleaching of the saturable absorber by externally injected photons.

  3. Pulsed and cw laser oscillations in LiF:F-2 color center crystal under laser diode pumping.

    Science.gov (United States)

    Basiev, Tasoltan T; Vassiliev, Sergey V; Konjushkin, Vasily A; Gapontsev, Valentin P

    2006-07-15

    Continuous-wave laser oscillations in LiF:F-2 crystal optically pumped by a laser diode at 970 nm were demonstrated for what is believed to be the first time. The slope efficiency of 14% and conversion efficiency of 5.5% were achieved for 80 micros pump pulse duration and 5 Hz pulse repetition rate. An efficiency twice as low was measured at a 6.25 kHz pulse repetition rate (50% off-duty factor) and in cw mode of laser operation.

  4. Ultrashort x-ray pulse generation by nonlinear Thomson scattering of a relativistic electron with an intense circularly polarized laser pulse

    Directory of Open Access Journals (Sweden)

    F. Liu

    2012-07-01

    Full Text Available The nonlinear Thomson scattering of a relativistic electron with an intense laser pulse is calculated numerically. The results show that an ultrashort x-ray pulse can be generated by an electron with an initial energy of 5 MeV propagating across a circularly polarized laser pulse with a duration of 8 femtosecond and an intensity of about 1.1×10^{21}  W/cm^{2}, when the detection direction is perpendicular to the propagation directions of both the electron and the laser beam. The optimal values of the carrier-envelop phase and the intensity of the laser pulse for the generation of a single ultrashort x-ray pulse are obtained and verified by our calculations of the radiation characteristics.

  5. Measuring the electric field of few-cycle laser pulses by attosecond cross correlation

    International Nuclear Information System (INIS)

    Bandrauk, Andre D.; Chelkowski, Szczepan; Shon, Nguyen Hong

    2002-01-01

    A new technique for directly measuring the electric field of linearly polarized few-cycle laser pulses is proposed. Based on the solution of the time-dependent Schroedinger equation (TDSE) for an H atom in the combined field of infrared (IR) femtosecond (fs) and ultraviolet (UV) attosecond (as) laser pulses we show that, as a function of the time delay between two pulses, the difference (or equivalently, asymmetry) of photoelectron signals in opposite directions (along the polarization vector of laser pulses) reproduces very well the profile of the electric field (or vector potential) in the IR pulse. Such ionization asymmetry can be used for directly measuring the carrier-envelope phase difference (i.e., the relative phase of the carrier frequency with respect to the pulse envelope) of the IR fs laser pulse

  6. Frequency conversion of high-intensity, femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  7. Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser

    Science.gov (United States)

    Matsumoto, Ayumu; Ohba, Hironori; Toshimitsu, Masaaki; Akaoka, Katsuaki; Ruas, Alexandre; Sakka, Tetsuo; Wakaida, Ikuo

    2018-04-01

    The decommissioning of the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi Nuclear Power Plant is an essential issue in nuclear R&D. Fiber-optic laser-induced breakdown spectroscopy (Fiber-optic LIBS) could be used for in-situ elemental analysis of the inside of the damaged reactors. To improve the performances under difficult conditions, using a long-pulse laser can be an efficient alternative. In this work, the emission spectra of zirconium metal in air obtained for a normal-pulse laser (6 ns) and a long-pulse laser (100 ns) (wavelength: 1064 nm, pulse energy: 12.5 mJ, spot diameter: 0.35 mm) are compared to investigate the fundamental aspects of fiber-optic LIBS with the long-pulse laser. The spectral features are considerably different: when the long-pulse laser is used, the atomic and molecular emission is remarkably enhanced. The enhancement of the atomic emission at the near infrared (NIR) region would lead to the observation of emission lines with minimum overlapping. To understand the differences in the spectra induced respectively from the normal-pulse laser and the long-pulse laser, photodiode signals, time-resolved spectra, plasma parameters, emission from the ambient air, and emission regions are investigated, showing the particular characteristics of the plasma produced by the long-pulse laser.

  8. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    Science.gov (United States)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  9. Iron plasma generation using a Nd:YAG laser pulse of several hundred picoseconds

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Jun, E-mail: jtamura@post.j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Kumaki, Masafumi [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Kondo, Kotaro [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Kanesue, Takeshi; Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-02-15

    We investigated the high intensity plasma generated by using a Nd:YAG laser to apply a laser-produced plasma to the direct plasma injection scheme. The capability of the source to generate high charge state ions strongly depends on the power density of the laser irradiation. Therefore, we focused on using a higher power laser with several hundred picoseconds of pulse width. The iron target was irradiated with the pulsed laser, and the ion current of the laser-produced iron plasma was measured using a Faraday cup and the charge state distribution was investigated using an electrostatic ion analyzer. We found that higher charge state iron ions (up to Fe{sup 21+}) were obtained using a laser pulse of several hundred picoseconds in comparison to those obtained using a laser pulse of several nanoseconds (up to Fe{sup 19+}). We also found that when the laser irradiation area was relatively large, the laser power was absorbed mainly by the contamination on the target surface.

  10. The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.; Adams, David P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)

    2015-12-07

    Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. High-speed photography was used to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a more uniform to a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.

  11. Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses

    International Nuclear Information System (INIS)

    Major, Zs.; Osterhoff, J.; Hoerlein, R.; Karsch, S.; Fuoloep, J.A.; Krausz, F.; Ludwig-Maximilians Universitaet, Muenchen

    2006-01-01

    Complete test of publication follows. In the quest for a way to generate ultrashort, high-power, few-cycle laser pulses the discovery of optical parametric amplification (OPA) has opened up to the path towards a completely new regime, well beyond that of conventional laser amplification technology. The main advantage of this parametric amplification process is that it allows for an extremely broad amplification bandwidth compared to any known laser amplifier medium. When combined with the chirped-pulse amplification (CPA) principle (i.e. OPCPA), on one hand pulses of just 10 fs duration and 8 mJ pulse energy have been demonstrated. On the other hand, pulse energies of up to 30 J were also achieved on a different OPCPA system; the pulse duration in this case, however, was 100 fs. In order to combine ultrashort pulse durations (i.e. pulses in the few-cycle regime) with high pulse energies (i.e. in the Joule range) we propose tu pump on OPCPA chain with TW-scale short pulses (100 fs - 1 ps instead of > 100 ps of previous OPCPA systems) delivered by a conventional CPA system. This approach inherently improves the conditions for generating high-power ultrashort pulses using OPCPA in the following ways. Firstly, the short pump pulse duration reduces the necessary stretching factor for the seed pulse, thereby increasing stretching and compression fidelity. Secondly, also due to the shortened pump pulse duration, a much higher contrast is achieved. Finally, the significantly increased pump power makes the use of thinner OPCPA crystals possible, which implies an even broader amplification bandwidth, thereby allowing for even shorter pulses. We carried out theoretical investigations to show the feasibility of such a set-up. Alongside these studies we will also present preliminary experimental results of an OPCPA system pumped by the output of our Ti:Sapphire ATLAS laser, currently delivering 350 mJ in 43 fs. An insight into the planned scaling of this technique to petawatt

  12. In Vitro Comparison of Holmium Lasers: Evidence for Shorter Fragmentation Time and Decreased Retropulsion Using a Modern Variable-pulse Laser.

    Science.gov (United States)

    Bell, John Roger; Penniston, Kristina L; Nakada, Stephen Y

    2017-09-01

    To compare the performance of variable- and fixed-pulse lasers on stone phantoms in vitro. Seven-millimeter stone phantoms were made to simulate calcium oxalate monohydrate stones using BegoStone plus. The in vitro setting was created with a clear polyvinyl chloride tube. For each trial, a stone phantom was placed at the open end of the tubing. The Cook Rhapsody H-30 variable-pulse laser was tested on both long- and short-pulse settings and was compared to the Dornier H-20 fixed-pulse laser; 5 trials were conducted for each trial arm. Fragmentation was accomplished with the use of a flexible ureteroscope and a 273-micron holmium laser fiber using settings of 1 J × 12 Hz. The treatment time (in minute) for complete fragmentation was recorded as was the total retropulsion distance (in centimeter) during treatment. Laser fibers were standardized for all repetitions. The treatment time was significantly shorter with the H-30 vs the H-20 laser (14.3 ± 2.5 vs 33.1 ± 8.9 minutes, P = .008). There was no difference between the treatment times using the long vs short pulse widths of the H-30 laser (14.4 ± 3.4 vs 14.3 ± 1.7 minutes, P = .93). Retropulsion differed by laser type and pulse width, H-30 long pulse (15.8 ± 5.7 cm), H-30 short pulse (54.8 ± 7.1 cm), and H-20 (33.2 ± 12.5 cm) (P laser fragmented stone phantoms in half the time of the H-20 laser regardless of the pulse width. Retropulsion effects differed between the lasers, with the H-30 causing the least retropulsion. Longer pulse widths result in less stone retropulsion. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Self-resonant wakefield excitation by intense laser pulse in plasmas

    International Nuclear Information System (INIS)

    Andreev, N.E.; Pogosova, A.A.; Gorbunov, L.M.; Ramazashvili, R.R.; Kirsanov, V.I.

    1993-01-01

    It is demonstrated by theoretical analysis and numerical calculations that in an underdense plasma the process of three-dimensional evolution of the short and strong laser pulse (with duration equal to several plasma periods) leads to compression and self-modulation of the pulse, so that during a fairly long period of time beats of pulse amplitude generates resonantly a strong and stable plasma wakefield. The intensity of the wake-field is so high that it can provide a new promising outlook for the plasma based accelerator concept. Linear analysis of dispersion relation predicts that taking into account transverse component of wavenumber considerably increases the growth rate of resonance instability of the pulse. The numerical simulations demonstrate that considered self-focusing and resonant-modulation instability are essentially three dimensional processes. Laser field evolution in each transverse cross section of the pulse is synchronized by the regular structure of plasma wave that is excited by the pulse. The considered effect of resonant modulation has a threshold. For the pulses with the intensity below the threshold the refraction dominates and no modulation appears. The studied phenomenon can be referred to as the Self-Resonant Wakefield (SRWF) excitation that is driven by self-focusing and self-modulation of laser pulse with quite a moderate initial duration. In fact, this method of excitation differs from both suggested in Ref.1 (PBWA) and in Refs.2,3 (LWFA), being even more than the combination of these concepts. Unlike the first scheme it does not require initially the two-frequency laser pulse, since the modulation here appears in the most natural way due to evolution of the pulse. In contrast with the LWFA, the considered SRWF generation scheme gives the possibility to raise the intensity of wake-excitation due to pulse self-focusing ( initial stage) and self modulation (second stage)

  14. Repetitively pulsed, double discharge TEA CO/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D C; James, D J; Ramsden, S A

    1975-10-01

    The design and operation of a repetitively pulsed TEA CO/sub 2/ laser is described. Average powers of up to 400 W at a repetition frequency of 200 pulses/s have been obtained. The system has also been used to provide long pulses (over 20 ..mu..s) and tunable single axial mode pulses.

  15. Shaping of pulses in optical grating-based laser systems for optimal control of electrons in laser plasma wake-field accelerator

    International Nuclear Information System (INIS)

    Toth, Cs.; Faure, J.; Geddes, C.G.R.; Tilborg, J. van; Leemans, W.P.

    2003-01-01

    In typical chirped pulse amplification (CPA) laser systems, scanning the grating separation in the optical compressor causes the well know generation of linear chirp of frequency vs. time in a laser pulse, as well as a modification of all the higher order phase terms. By setting the compressor angle slightly different from the optimum value to generate the shortest pulse, a typical scan around this value will produce significant changes to the pulse shape. Such pulse shape changes can lead to significant differences in the interaction with plasmas such as used in laser wake-field accelerators. Strong electron yield dependence on laser pulse shape in laser plasma wake-field electron acceleration experiments have been observed in the L'OASIS Lab of LBNL [1]. These experiments show the importance of pulse skewness parameter, S, defined here on the basis of the ratio of the ''head-width-half-max'' (HWHM) and the ''tail-width-halfmax'' (TWHM), respectively

  16. Pulsed Laser Annealing of Thin Films of Self-Assembled Nanocrystals

    KAUST Repository

    Baumgardner, William J.

    2011-09-27

    We investigated how pulsed laser annealing can be applied to process thin films of colloidal nanocrystals (NCs) into interconnected nanostructures. We illustrate the relationship between incident laser fluence and changes in morphology of PbSe NC films relative to bulk-like PbSe films. We found that laser pulse fluences in the range of 30 to 200 mJ/cm2 create a processing window of opportunity where the NC film morphology goes through interesting transformations without large-scale coalescence of the NCs. NC coalescence can be mitigated by depositing a thin film of amorphous silicon (a-Si) on the NC film. Remarkably, pulsed laser annealing of the a-Si/PbSe NC films crystallized the silicon while NC morphology and translational order of the NC film are preserved. © 2011 American Chemical Society.

  17. Envelope evolution of a laser pulse in an active medium

    International Nuclear Information System (INIS)

    Fisher, D.L.; Tajima, T.; Downer, M.C.; Siders, C.W.

    1994-11-01

    The authors show that the envelope velocity, v env , of a short laser pulse can, via propagation in an active medium, be made less than, equal to, or even greater than c, the vacuum phase velocity of light. Simulation results, based on moving frame propagation equations coupling the laser pulse, active medium and plasma, are presented, as well as equations that determines the design value of super- and sub-luminous v env . In this simulation the laser pulse evolves in time in a moving frame as opposed to their earlier work where the profile was fixed. The elimination of phase slippage and pump depletion effects in the laser wakefield accelerator is discussed as a particular application. Finally they discuss media properties necessary for an experimental realization of this technique

  18. Tailoring the laser pulse shape to improve the quality of the self-injected electron beam in laser wakefield acceleration

    International Nuclear Information System (INIS)

    Upadhyay, Ajay K.; Samant, Sushil A.; Krishnagopal, S.

    2013-01-01

    In laser wakefield acceleration, tailoring the shape of the laser pulse is one way of influencing the laser-plasma interaction and, therefore, of improving the quality of the self-injected electron beam in the bubble regime. Using three-dimensional particle-in-cell simulations, the evolution dynamics of the laser pulse and the quality of the self-injected beam, for a Gaussian pulse, a positive skew pulse (i.e., one with sharp rise and slow fall), and a negative skew pulse (i.e., one with a slow rise and sharp fall) are studied. It is observed that with a negative skew laser pulse there is a substantial improvement in the emittance (by around a factor of two), and a modest improvement in the energy-spread, compared to Gaussian as well as positive skew pulses. However, the injected charge is less in the negative skew pulse compared to the other two. It is also found that there is an optimal propagation distance that gives the best beam quality; beyond this distance, though the energy increases, the beam quality deteriorates, but this deterioration is least for the negative skew pulse. Thus, the negative skew pulse gives an improvement in terms of beam quality (emittance and energy spread) over what one can get with a Gaussian or positive skew pulse. In part, this is because of the lesser injected charge, and the strong suppression of continuous injection for the negative skew pulse.

  19. A cryogenic slab CO laser

    International Nuclear Information System (INIS)

    Ionin, Andrei A; Kozlov, A Yu; Seleznev, L V; Sinitsyn, D V

    2009-01-01

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ∼12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ∼14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ∼ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour. (lasers)

  20. Role of Laser Power, Wavelength, and Pulse Duration in Laser Assisted Tin-Induced Crystallization of Amorphous Silicon

    Directory of Open Access Journals (Sweden)

    V. B. Neimash

    2018-01-01

    Full Text Available This work describes tin-induced crystallization of amorphous silicon studied with Raman spectroscopy in thin-film structures Si-Sn-Si irradiated with pulsed laser light. We have found and analyzed dependencies of the nanocrystals’ size and concentration on the laser pulse intensity for 10 ns and 150 μm duration laser pulses at the wavelengths of 535 nm and 1070 nm. Efficient transformation of the amorphous silicon into a crystalline phase during the 10 ns time interval of the acting laser pulse in the 200 nm thickness films of the amorphous silicon was demonstrated. The results were analyzed theoretically by modeling the spatial and temporal distribution of temperature in the amorphous silicon sample within the laser spot location. Simulations confirmed importance of light absorption depth (irradiation wavelength in formation and evolution of the temperature profile that affects the crystallization processes in irradiated structures.

  1. Ultrashort Generation Regimes in the All-Fiber Kerr Mode-Locked Erbium-Doped Fiber Ring Laser for Terahertz Pulsed Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. S. Voropaev

    2015-01-01

    Full Text Available Many femtosecond engineering applications require for a stable generation of ultrashort pulses. Thus, in the terahertz pulsed spectroscopy a measurement error in the refractive index is strongly dependent on the pulse duration stability with allowable variation of few femtoseconds. The aim of this work is to study the ultrashort pulses (USP regimes stability in the all – fiber erbium doped ring laser with Kerr mode-locking. The study was conducted at several different values of the total resonator intra-cavity dispersion. Three laser schemes with the intra-cavity dispersion values from -1.232 ps2 to +0.008 ps2 have been studied. In the experiment there were two regimes of generation observed: the stretched pulse generation and ordinary soliton generation. Main attention is focused on the stability of regimes under study. The most stable regime was that of the stretched pulse generation with a spectrum form of sech2 , possible pulse duration of 490 fs at least, repetition rate of 2.9 MHz, and average output power of 17 mW. It is worth noting, that obtained regimes had characteristics suitable for the successful use in the terahertz pulsed spectroscopy. The results may be useful in the following areas of science and technology: a high-precision spectroscopy, optical frequency standards, super-continuum generation, and terahertz pulsed spectroscopy. The future system development is expected to stabilize duration and repetition rate of the obtained regime of ultra-short pulse generation.

  2. Self-compression of intense short laser pulses in relativistic magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Olumi, M.; Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Post code 15916-34311 Tehran (Iran, Islamic Republic of)

    2014-11-15

    The compression of a relativistic Gaussian laser pulse in a magnetized plasma is investigated. By considering relativistic nonlinearity and using non-linear Schrödinger equation with paraxial approximation, a second-order differential equation is obtained for the pulse width parameter (in time) to demonstrate the longitudinal pulse compression. The compression of laser pulse in a magnetized plasma can be observed by the numerical solution of the equation for the pulse width parameter. The effects of magnetic field and chirping are investigated. It is shown that in the presence of magnetic field and negative initial chirp, compression of pulse is significantly enhanced.

  3. Current pulse shaping of the load current on PTS

    Directory of Open Access Journals (Sweden)

    Minghe Xia

    2016-02-01

    Full Text Available The typical rise time of PTS machine is ∼110 ns with about 10 MA peak current under short pulse mode when all 24 modules discharge simultaneously. By distributing the trigger times of 12 laser beams logically and adjusting the statues of the pulse output switches, longer rise-time pulse can be obtained on the PTS facility. Based on the required pulse shape, whole circuit simulations will be used to calculate the trigger times of each laser triggering gas switch and the status of the pulse output switches. The rise time of the current is determined by the time difference between the first and last trigged laser triggering gas switches. In order to trigger the laser triggering gas switch, sufficient laser power is needed to be sent into the gap of the gas switches. The gas pressure and voltage difference on the two electrodes of the gas switches also affect the triggering of the gas switches, and the voltage added on the gas switch is determined by its transition time. Traditionally the trigger time difference should be less than the transition time of the two neighboring modules. A new simulation model of PTS shows one can break this transition time limits. Series of current pulse shaping experiments have been investigated on the PTS (Primary Test Stand. As results, more than 5 MA peak current were successfully achieved on the load with a rise time of 600 ns. This study and experiments of the pulse shaping on PTS demonstrate the adaptable ability of the PTS for offering different waveform of mega ampere current pulse for different research purpose.

  4. Selective photoionization of isotopic atoms with pulsed lasers

    International Nuclear Information System (INIS)

    Dai Changjian

    1994-01-01

    The dynamics of isotopically selective interactions between the radiation of three pulsed lasers and atoms with a four-levels scheme has been studied. Starting from the time-dependent Schroedinger equation with the rotating-wave approximation, authors applied Sylvester theorem to the dynamic equations associated with near-and off-resonant excitations, respectively. Authors obtained the explicit expressions for the four-levels occupation probabilities. The analytic treatment explored the properties of coherent oscillations occurred in the atomic excitation processes with intense monochromatic lasers. The conditions under which the population inversion takes place are derived from near-resonant excitations. The criteria to select the basic parameters of pulsed lasers involved in the process are also provided

  5. 36 W Q-switched Ho:YAG laser at 2097 nm pumped by a Tm fiber laser: evaluation of different Ho3+ doping concentrations

    Science.gov (United States)

    Antipov, O. L.; Eranov, I. D.; Kositsyn, R. I.

    2017-01-01

    A laser oscillator based on Ho:YAG crystal pumped by a Tm fiber laser with an acousto-optical Q-switch was optimized for maximum output power and pulse-to-pulse stability. Stable operation at 2097 nm in Q-switched mode is demonstrated, with pulse repetition rates from 10 to 30 kHz, and output power of 36 W (at 55 W of pump power at 1908 nm) in the good quality beam. The influence of Ho ion up-conversion and thermal lensing on the oscillation efficiency is discussed.

  6. Incubation behaviour in triazenepolymer thin films upon near-infrared femtosecond laser pulse irradiation

    International Nuclear Information System (INIS)

    Bonse, J; Wiggins, S M; Solis, J; Sturm, H; Urech, L; Wokaun, A; Lippert, T

    2007-01-01

    The effects of laser radiation induced by a sequence of ultrashort (130 fs), near-infrared (800 nm) Ti:sapphire laser pulses in ∼1 μm thick triazenepolymer films on glass substrates have been investigated by means of in-situ real-time reflectivity measurements featuring a ps-resolution streak camera and a ns-resolution photodiode set-up. The polymer films show incubation effects when each laser pulse in the sequence has a fluence below the single-pulse damage threshold. Non-damage conditions are maintained for several incubation pulses such that the reflectivity of the film shows a rapid decrease of up to 30% within 1 ns but subsequently recovers to its initial value on a ms timescale. Additional pulses lead to a permanent film damage. The critical number of laser pulses needed to generate a permanent damage of the film has been studied as a function of the laser fluence. Once damage is created, further laser pulses cause a partial removal of the film material from the glass substrate. Scanning force microscopy has been used to characterise ex-situ the irradiated surface areas. Based on these complementary measurements possible incubation mechanisms are discussed

  7. Formation of plasma channels in air under filamentation of focused ultrashort laser pulses

    International Nuclear Information System (INIS)

    Ionin, A A; Seleznev, L V; Sunchugasheva, E S

    2015-01-01

    The formation of plasma channels in air under filamentation of focused ultrashort laser pulses was experimentally and theoretically studied together with theoreticians of the Moscow State University and the Institute of Atmospheric Optics. The influence of various characteristics of ultrashort laser pulses on these plasma channels is discussed. Plasma channels formed under filamentation of focused laser beams with a wavefront distorted by spherical aberration (introduced by adaptive optics) and by astigmatism, with cross-section spatially formed by various diaphragms and with different UV and IR wavelengths, were experimentally and numerically studied. The influence of plasma channels created by a filament of a focused UV or IR femtosecond laser pulse (λ = 248 nm or 740 nm) on characteristics of other plasma channels formed by a femtosecond pulse at the same wavelength following the first one with varied nanosecond time delay was also experimentally studied. An application of plasma channels formed due to the filamentation of focused UV ultrashort laser pulses including a train of such pulses and a combination of ultrashort and long (∼100 ns) laser pulses for triggering and guiding long (∼1 m) electric discharges is discussed. (topical review)

  8. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Pedarnig, J. D.; Haslinger, M. J.; Bodea, M. A.; Huber, N.; Wolfmeir, H.; Heitz, J.

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe2O3 powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe2O3 pellets and Fe3O4 ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λL). The UV pulses (λL = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λL = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of td ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency.

  9. Emission Characteristics of Laser-Induced Plasma Using Collinear Long and Short Dual-Pulse Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Wang, Zhenzhen; Deguchi, Yoshihiro; Liu, Renwei; Ikutomo, Akihiro; Zhang, Zhenzhen; Chong, Daotong; Yan, Junjie; Liu, Jiping; Shiou, Fang-Jung

    2017-09-01

    Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.

  10. Self-focusing and guiding of short laser pulses in ionizing gases and plasmas

    International Nuclear Information System (INIS)

    Esarey, E.; Sprangle, P.; Krall, J.; Ting, A.

    1997-01-01

    The propagation of intense laser pulses in gases and plasmas is relevant to a wide range of applications, including laser-driven accelerators, laser-plasma channeling, harmonic generation, supercontinuum generation, X-ray lasers, and laser-fusion schemes. Here, several features of intense, short-pulse (≤1 ps) laser propagation in gases undergoing ionization and in plasmas are reviewed, discussed, and analyzed. The wave equations for laser pulse propagation in a gas undergoing ionization and in a plasma are derived. The source-dependent expansion method is discussed, which is a general method for solving the paraxial wave equation with nonlinear source terms. In gases, the propagation of high-power (near the critical power) laser pulses is considered including the effects of diffraction, nonlinear self-focusing, ionization, and plasma generation. Self-guided solutions and the stability of these solutions are discussed. In plasmas, optical guiding by relativistic effects, ponderomotive effects, and preformed density channels is considered. The self-consistent plasma response is discussed, including plasma wave effects and instabilities such as self-modulation. Recent experiments on the guiding of laser pulses in gases and in plasmas are briefly summarized

  11. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    Science.gov (United States)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  12. Raman laser amplification in preformed and ionizing plasmas

    International Nuclear Information System (INIS)

    Clark, D S; Fisch, N J

    2004-01-01

    The recently proposed backward Raman laser amplification scheme utilizes the stimulated Raman backscattering in plasma of a long pumping laser pulse to amplify a short, frequency downshifted seed pulse. The output intensity for this scheme is limited by the development of forward Raman scattering (FRS) or modulational instabilities of the highly amplified seed. Theoretically, focused output intensities as high as 1025 W/cm 2 and pulse lengths of less than 100 fs could be accessible by this technique for 1 (micro)m lasers--an improvement of 10 4 -10 5 in focused intensity over current techniques. Simulations with the particle-in-cell (PIC) code Zohar are presented which investigate the effects of FRS and modulational instabilities and of Langmuir wave breaking on the output intensity for Raman amplification. Using the intense seed pulse to photoionize the plasma simultaneous with its amplification (and hence avoid plasmas-based instabilities of the pump) is also investigated by PIC simulations. It is shown that both approaches can access focused intensities in the 1025 W/cm 2 range

  13. Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode.

    Science.gov (United States)

    Jelínková, Helena; Doroshenko, Maxim E; Jelínek, Michal; Sulc, Jan; Osiko, Vyacheslav V; Badikov, Valerii V; Badikov, Dmitrii V

    2013-08-15

    In this Letter, we demonstrate the pulsed and CW operation of the Dy:PbGa(2)S(4) laser directly pumped by the 1.7 μm laser diode. In the pulsed regime (pulse duration 5 ms; repetition rate 20 Hz), the maximum mean output power of 9.5 mW was obtained with the slope efficiency of 9.3% with respect to the absorbed pump power. The generated wavelength was 4.32 μm, and the laser beam cross section was approximately Gaussian on both axes. Stable CW laser generation was also successfully obtained with the maximum output power of 67 mW and the slope efficiency of 8%. Depopulation of the lower laser level by 1.7 μm pump radiation absorption followed by 1.3 μm upconversion fluorescence was demonstrated. These results show the possibility of construction of the compact diode-pumped solid-state pulsed or CW laser generating at 4.3 μm in the power level of tens mW operating at room temperature.

  14. Multi-pulse enhanced laser ion acceleration using plasma half cavity targets

    International Nuclear Information System (INIS)

    Scott, G. G.; Brenner, C. M.; Neely, D.; Green, J. S.; Robinson, A. P. L.; Spindloe, C.; Bagnoud, V.; Brabetz, C.; Zielbauer, B.; Carroll, D. C.; MacLellan, D. A.; McKenna, P.; Roth, M.; Wagner, F.

    2012-01-01

    We report on a plasma half cavity target design for laser driven ion acceleration that enhances the laser to proton energy conversion efficiency and has been found to modify the low energy region of the proton spectrum. The target design utilizes the high fraction of laser energy reflected from an ionized surface and refocuses it such that a double pulse interaction is attained. We report on numerical simulations and experimental results demonstrating that conversion efficiencies can be doubled, compared to planar foil interactions, when the secondary pulse is delivered within picoseconds of the primary pulse.

  15. Multi-pulse enhanced laser ion acceleration using plasma half cavity targets

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G. G.; Brenner, C. M.; Neely, D. [Central Laser Facility, STFC Rutherford Appleton Laboratory, OX11 0QX Didcot (United Kingdom); Department of Physics SUPA, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Green, J. S.; Robinson, A. P. L.; Spindloe, C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, OX11 0QX Didcot (United Kingdom); Bagnoud, V.; Brabetz, C.; Zielbauer, B. [PHELIX Group, Gesellschaft fuer Schwerionenforschung, D-64291 Darmstadt (Germany); Carroll, D. C.; MacLellan, D. A.; McKenna, P. [Department of Physics SUPA, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Roth, M. [Fachbereich Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Wagner, F. [PHELIX Group, Gesellschaft fuer Schwerionenforschung, D-64291 Darmstadt (Germany); Fachbereich Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)

    2012-07-09

    We report on a plasma half cavity target design for laser driven ion acceleration that enhances the laser to proton energy conversion efficiency and has been found to modify the low energy region of the proton spectrum. The target design utilizes the high fraction of laser energy reflected from an ionized surface and refocuses it such that a double pulse interaction is attained. We report on numerical simulations and experimental results demonstrating that conversion efficiencies can be doubled, compared to planar foil interactions, when the secondary pulse is delivered within picoseconds of the primary pulse.

  16. Nuclear fuel safety studies by laser pulse heating

    International Nuclear Information System (INIS)

    Viswanadham, C.S.; Kumar, Santosh; Dey, G.K.; Kutty, T.R.G.; Khan, K.B.; Kumar, Arun; Jathar, V.P.; Sahoo, K.C.

    2009-01-01

    The behaviour of nuclear fuels under transient heating conditions is vital to nuclear safety. A laser pulse based heating system to simulate the transient heating conditions experienced by the fuel during reactor accidents like LOCA and RIA is under development at BARC, Mumbai. Some of the concepts used in this system are under testing in pilot studies. This paper describes the results of some pilot studies carried out on unirradiated UO 2 specimens by laser pulse heating, followed by metallography and X-ray diffraction measurements. (author)

  17. Spectroscopic studies on diamond like carbon films synthesized by pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Madhusmita; Krishnan, R., E-mail: krish@igcar.gov.in; Ravindran, T. R.; Das, Arindam; Mangamma, G.; Dash, S.; Tyagi, A. K. [Material Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102, Tamil Nadu (India)

    2016-05-23

    Hydrogen free Diamond like Carbon (DLC) thin films enriched with C-C sp{sup 3} bonding were grown on Si (111) substrates at laser pulse energies varying from 100 to 400 mJ (DLC-100, DLC-200, DLC-300, DLC-400), by Pulsed Laser Ablation (PLA) utilizing an Nd:YAG laser operating at fundamental wavelength. Structural, optical and morphological evolutions as a function of laser pulse energy were studied by micro Raman, UV-Vis spectroscopic studies and Atomic Force Microscopy (AFM), respectively. Raman spectra analysis provided critical clues for the variation in sp{sup 3} content and optical energy gap. The sp{sup 3} content was estimated using the FWHM of the G peak and found to be in the range of 62-69%. The trend of evolution of sp{sup 3} content matches well with the evolution of I{sub D}/I{sub G} ratio with pulse energy. UV-Vis absorption study of DLC films revealed the variation of optical energy gap with laser pulse energy (1.88 – 2.23 eV), which matches well with the evolution of G-Peak position of the Raman spectra. AFM study revealed that roughness, size and density of particulate in DLC films increase with laser pulse energy.

  18. Influence of pulse width and target density on pulsed laser deposition of thin YBaCuO film

    International Nuclear Information System (INIS)

    Vikram, S.

    1999-01-01

    We have studied the effects of temporal pulse width and target density on the deposition of thin films of YBaCuO. A 248nm excimer laser and an 825nm Ti-sapphire laser were used to conduct the experiments with pulse widths of 27 ns, 16 ns, and 150 fs, and target densities of 80% and 90%. Scanning electron microscope photomicrographs and profilometer traces show a striking difference between nanosecond and femtosecond laser irradiation. Shortening the pulse width reduced particulate formation, provided stoichiometry, and improved the film properties. Decreasing the target density raised the ablation rate, produced thicker but nonuniform films, and reduced particulate formation

  19. Influence of pulse width and target density on pulsed laser deposition of thin YBaCuO film.

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, S.

    1999-01-20

    We have studied the effects of temporal pulse width and target density on the deposition of thin films of YBaCuO. A 248nm excimer laser and an 825nm Ti-sapphire laser were used to conduct the experiments with pulse widths of 27 ns, 16 ns, and 150 fs, and target densities of 80% and 90%. Scanning electron microscope photomicrographs and profilometer traces show a striking difference between nanosecond and femtosecond laser irradiation. Shortening the pulse width reduced particulate formation, provided stoichiometry, and improved the film properties. Decreasing the target density raised the ablation rate, produced thicker but nonuniform films, and reduced particulate formation.

  20. X-ray preionization for electric discharge lasers

    International Nuclear Information System (INIS)

    Lin, S.; Levatter, J.I.

    1979-01-01

    Using x rays of 60--200-keV photon energy (lambdaapprox.0.06--0.2 A) as an ionizing radiation source in a transmission-line-driven low-inductance discharge chamber, we have succeeded in generating spatially homogeneous pulsed avalanche discharges of several liter volume at greater than 1 atm pressure for up to 100-nsec duration. In concurrent laser generation experiments with relatively lossy windows, we have observed high-optical-quality pulsed uv laser output of up to 2 J/liter from such discharges in rare-gas/halogen mixtures, and IR laser output of up to 12.5 J/liter from a He/N 2 /CO 2 mixture

  1. Propagation of intense laser pulses in an underdense plasma

    International Nuclear Information System (INIS)

    Monot, P.; Auguste, T.; Gibbon, P.; Jakober, F.; Mainfray, G.

    1994-01-01

    Experiments carried out with a laser beam focused into a vacuum chamber onto a 3-mm long, pulsed hydrogen jet, at powers close to the critical power required for relativistic self focusing, have shown that an underdense plasma is able to significantly reduce the divergence of an intense laser pulse. The propagation mode is in good agreement with theoretical predictions of relativistic self focusing. 2 figs., 8 refs

  2. Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source

    International Nuclear Information System (INIS)

    Bito, Kotatsu; Okuno, Masanari; Kano, Hideaki; Leproux, Philippe; Couderc, Vincent; Hamaguchi, Hiro-o

    2013-01-01

    Highlights: ► We have developed a simultaneous measurement system of CARS and CSRS. ► We can obtain information on the electronic resonance effect with the measurement. ► The simultaneous measurement provides us with more reliable spectral information. - Abstract: We have developed a three-pulse non-degenerate multiplex coherent Raman microspectroscopic system using a white-light laser source. The fundamental output (1064 nm) of a Nd:YAG laser is used for the pump radiation with the white-light laser output (1100–1700 nm) for the Stokes radiation to achieve broadband multiplex excitations of vibrational coherences. The second harmonic (532 nm) of the same Nd:YAG laser is used for the probe radiation. Thanks to the large wavelength difference between the pump and probe radiations, coherent anti-Stokes Raman scattering (CARS) and coherent Stokes Raman scattering (CSRS) can be detected simultaneously. Simultaneous detection of CARS and CSRS enables us to obtain information on the electronic resonance effect that affects differently the CARS and CSRS signals. Simultaneous analysis of the CARS and CSRS signals provides us the imaginary part of χ (3) without introducing any arbitrary parameter in the maximum entropy method (MEM)

  3. Fiber-integrated tungsten disulfide saturable absorber (mirror) for pulsed fiber lasers

    Science.gov (United States)

    Chen, Hao; Li, Irene Ling; Ruan, Shuangchen; Guo, Tuan; Yan, Peiguang

    2016-08-01

    We propose two schemes for achieving tungsten disulfide (WS2)-based saturable absorber (SA) and saturable absorber mirror (SAM). By utilizing the pulsed laser deposition method, we grow the WS2 film on microfiber to form an evanescent field interaction SA device. Incorporating this SA device into a common ring-cavity erbium-doped fiber (EDF) laser, stably passive mode-locking can be achieved with pulse duration of 395 fs and signal-to-noise ratio of 64 dB. We also produce a fiber tip integrated WS2-SAM by utilizing the magnetron sputtering technique (MST). This new type of SAM combines the WS2 layer as SA and gold mirror as high reflective mirror. By employing the WS2-SAM, we construct the linear-cavity EDF lasers, and achieve passive mode-locking operation with pulse duration of ˜1 ns and SNR of ˜61 dB. We further achieve stably passive Q-switching operation with pulse duration of ˜160 ns and pulse energy of 54.4 nJ. These fiber-integrated SAs and SAMs have merits of compactness and reliability, paving the way for the development of new photonic devices such as SAs for pulsed laser technology.

  4. Ultrashort pulsed laser technology development program

    Science.gov (United States)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  5. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    Science.gov (United States)

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-04

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ.

  6. Energy and dose characteristics of ion bombardment during pulsed laser deposition of thin films under pulsed electric field

    International Nuclear Information System (INIS)

    Fominski, V.Yu.; Nevolin, V.N.; Smurov, I.

    2004-01-01

    Experiments on pulsed laser deposition of Fe films on Si substrates were performed with the aim to analyze the role of factors determining the formation of an energy spectrum and a dose of ions bombarding the film in strong pulsed electric fields. The amplitude of the high-voltage pulse (-40 kV) applied to the substrate and the laser fluence at the Fe target were fixed during the deposition. Owing to the high laser fluence (8 J/cm 2 ) at a relatively low power (20 mJ), the ionization of the laser plume was high, but the Fe vapor pressure near the substrate was low enough to avoid arcing. Electric signals from a target exposed to laser radiation were measured under different conditions (at different delay times) of application of electric pulses. The Si(100) substrates were analyzed using Rutherford ion backscattering/channeling spectrometry. The ion implantation dose occurred to be the highest if the high-voltage pulse was applied at a moment of time when the ion component of the plume approached the substrate. In this case, the implanted ions had the highest energy determined by the amplitude of the electric pulse. An advance or delay in applying a high-voltage pulse caused the ion dose and energy to decrease. A physical model incorporating three possible modes of ion implantation was proposed for the interpretation of the experimental results. If a laser plume was formed in the external field, ions were accelerated from the front of the dense plasma, and the ion current depended on the gas-dynamic expansion of the plume. The application of a high-voltage pulse, at the instant when the front approached the substrate, maintained the mode that was characteristic of the traditional plasma immersion ion implantation, and the ion current was governed by the dynamics of the plasma sheath in the substrate-to-target gap. In the case of an extremely late application of a high-voltage pulse, ions retained in the entire volume of the experimental chamber (as a result of the

  7. Influence of temperature on Yb:YAG/Cr:YAG microchip laser operation

    Science.gov (United States)

    Šulc, Jan; Eisenschreiber, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2017-02-01

    The goal of this work was an investigation of the temperature influence (in range from 80 up to 320 K) on the laser properties of Yb:YAG/Cr:YAG Q-switched diode-pumped microchip laser. This laser was based on monolith crystal (diameter 3mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3mm long) and saturable absorber (Cr:YAG crystal, 1.36mm long, initial transmission 90% @ 1031 nm). The laser resonator pump mirror (HT for pump radiation, HR for generated radiation) was directly deposited on the Yb:YAG monolith part. The output coupler with reflection 55% for the generated wavelength was placed on the Cr:YAG part. The microchip laser was placed in the temperature controlled cupreous holder inside vacuum chamber of the liquid nitrogen cryostat. For Yb:YAG part longitudinal pulsed pumping (pumping pulse length 2.5 ms, rep-rate 20 Hz, power amplitude 21W) a fibre coupled (core diameter 400 μm, NA= 0:22) laser diode, operating at wavelength 933 nm, was used. The microchip laser mean output power, pulse duration, repetition rate, emission wavelength, and laser beam profile were measured in dependence on temperature. The generated pulse length was in range from 2.2 ns to 1.1 ns (FWHM) with the minimum at 230 K. The single pulse energy was peaking (0.4 mJ) at 180 K. The highest peak power (325 kW) was obtained at 220 K. The highest pulse repetition rate (38 kHz) and output mean power (370mW) was reached for temperature 80 K.

  8. Molecular photoelectron holography with circularly polarized laser pulses.

    Science.gov (United States)

    Yang, Weifeng; Sheng, Zhihao; Feng, Xingpan; Wu, Miaoli; Chen, Zhangjin; Song, Xiaohong

    2014-02-10

    We investigate the photoelectron momentum distribution of molecular-ion H2+driven by ultrashort intense circularly polarized laser pulses. Both numerical solutions of the time-dependent Schrödinger equation (TDSE) and a quasiclassical model indicate that the photoelectron holography (PH) with circularly polarized pulses can occur in molecule. It is demonstrated that the interference between the direct electron wave and rescattered electron wave from one core to its neighboring core induces the PH. Moreover, the results of the TDSE predict that there is a tilt angle between the interference pattern of the PH and the direction perpendicular to the molecular axis. Furthermore, the tilt angle is sensitively dependent on the wavelength of the driven circularly polarized pulse, which is confirmed by the quasiclassical calculations. The PH induced by circularly polarized laser pulses provides a tool to resolve the electron dynamics and explore the spatial information of molecular structures.

  9. Plasma shape control by pulsed solenoid on laser ion source

    International Nuclear Information System (INIS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-01-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS

  10. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  11. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  12. Evaluation of cytogenetic effects of very short laser pulsed radiations

    International Nuclear Information System (INIS)

    Guedeney, G.; Courant, D.; Malarbet, J.-L.; Dolloy, M.-T.; Court, L.

    1992-01-01

    The aim of this study is to evaluate the capacity of a laser, delivering very short pulses in the near infrared spectrum with a high pulse ratio frequency, to induce genetic modification on biological tissues. Chromatid exchanges and chromosomal aberrations studies are used to test potential effect on human lymphocytes. The laser irradiation induces a significant increase of acentric fragments but the absence of dicentric suggests that a repetitive very short pulses irradiation has a relatively low capacity to induce genetic abnormalities. (author)

  13. Use of pre-pulse in laser spot welding of materials with high optical reflection

    Science.gov (United States)

    Mys, Ihor; Geiger, Manfred

    2003-11-01

    Laser micro welding has become a standard manufacturing technique, particularly in industry sectors, such as automotive and aerospace electronics or medical devices, where the requirements for strength, miniaturization and temperature resistance are constantly rising. So far the use of laser micro welding is limited due to the fluctuation of the quality of the welded joints, because the welding results for material with high optical reflection and thermal conductivity, such as copper and copper alloys, depend very strongly on the condition of the material surface. This paper presents investigations on the use of a laser pre-pulse in spot welding of electronic materials with Nd:YAG laser. In order to achieve reproducible joining results two strategies are followed-up. The first one utilizes a reflection-based process control for measuring the reflection during the short pre-pulse. The intensity of the reflected light is used to calculate an appropriated welding pulse power, which corresponds to the measured relative absorption. Adjustment of laser parameters according to the condition of the surface is done in real time before laser main pulse. A second possibility for the stabilization of copper welding is the employment of a short and powerful laser pre-pulse before laser main pulse. This pre-pulse affects the workpiece surface and creates more reproducible absorption conditions for the main pulse, independent from the initial situation on material surface.

  14. An experimental investigation of pulsed laser-assisted machining of AISI 52100 steel

    Science.gov (United States)

    Panjehpour, Afshin; Soleymani Yazdi, Mohammad R.; Shoja-Razavi, Reza

    2014-11-01

    Grinding and hard turning are widely used for machining of hardened bearing steel parts. Laser-assisted machining (LAM) has emerged as an efficient alternative to grinding and hard turning for hardened steel parts. In most cases, continuous-wave lasers were used as a heat source to cause localized heating prior to material removal by a cutting tool. In this study, an experimental investigation of pulsed laser-assisted machining of AISI 52100 bearing steel was conducted. The effects of process parameters (i.e., laser mean power, pulse frequency, pulse energy, cutting speed and feed rate) on state variables (i.e., material removal temperature, specific cutting energy, surface roughness, microstructure, tool wear and chip formation) were investigated. At laser mean power of 425 W with frequency of 120 Hz and cutting speed of 70 m/min, the benefit of LAM was shown by 25% decrease in specific cutting energy and 18% improvement in surface roughness, as compared to those of the conventional machining. It was shown that at constant laser power, the increase of laser pulse energy causes the rapid increase in tool wear rate. Pulsed laser allowed efficient control of surface temperature and heat penetration in material removal region. Examination of the machined subsurface microstructure and microhardness profiles showed no change under LAM and conventional machining. Continuous chips with more uniform plastic deformation were produced in LAM.

  15. Technique for long and absolute distance measurement based on laser pulse repetition frequency sweeping

    Science.gov (United States)

    Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.

    2017-11-01

    In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.

  16. Cutting and skin-ablative properties of pulsed mid-infrared laser surgery.

    Science.gov (United States)

    Kaufmann, R; Hartmann, A; Hibst, R

    1994-02-01

    Pulsed mid-infrared lasers allow a precise removal of soft tissues with only minimal thermal damage. To study the potential dermatosurgical usefulness of currently available systems at different wavelengths (2010-nm Thulium:YAG laser, 2100-nm Holmium:YAG laser, 2790-nm Erbium:YSGG laser, and 2940-nm Erbium:YAG laser) in vivo on pig skin. Immediate effects and wound healing of superficial laser-abrasions and incisions were compared with those of identical control lesions produced by dermabrasion, scalpel incisions, or laser surgery performed by a 1060-nm Nd:YAG and a 1060-nm CO2 laser (continuous and superpulsed mode). Best efficiency and least thermal injury was found for the pulsed Erbium:YAG laser, leading to ablative and incisional lesions comparable to those obtained by dermabrasion or superficial scalpel incisions, respectively. In contrast to other mid-infrared lasers tested, the 2940-nm Erbium:YAG laser thus provides a potential instrument for future applications in skin surgery, especially when aiming at a careful ablative removal of delicate superficial lesions with maximum sparing of adjacent tissue structures. However, in the purely incisional application mode pulsed mid-infrared lasers, though of potential usefulness in microsurgical indications (eg, surgery of the cornea), do not offer a suggestive alternative to simple scalpel surgery of the skin.

  17. Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Ancona, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); CNR-INFM Regional Laboratory ' LIT3' , Dipartimento Interuniversitario di Fisica, Bari (Italy); Nodop, D.; Limpert, J.; Nolte, S. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Tuennermann, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena (Germany)

    2009-01-15

    We have investigated the ultra-fast microdrilling of metals using a compact and cheap fiber amplified passively Q-switched microchip laser. This laser system delivers 100-ps pulses with repetition rates higher than 100 kHz and pulse energies up to 80 {mu}J. The ablation process has been studied on metals with quite different thermal properties (copper, carbon steel and stainless steel). The dependence of the ablation depth per pulse on the pulse energy follows the same logarithmic scaling laws governing laser ablation with sub-picosecond pulses. Structures ablated with 100-ps laser pulses are accompanied only by a thin layer of melted material. Despite this, results with a high level of precision are obtained when using the laser trepanning technique. This simple and affordable laser system could be a valid alternative to nanosecond laser sources for micromachining applications. (orig.)

  18. In vitro studies with a pulsed neodymium/YAG laser.

    Science.gov (United States)

    Venkatesh, S; Guthrie, S; Foulds, W S; Lee, W R; Cruickshank, F R; Bailey, R T

    1985-02-01

    The relationships between the destructive effects of Q-switched Nd/YAG laser pulses and a number of experimental parameters were studied for various target materials including in particular excised, fixed samples of human trabecular meshwork. The laser parameters altered were the pulse energy, the convergence angle of the focused beam, and the position of the focus of the beam relative to the target's axial position. The main finding was that it was possible to make deep holes, of a diameter less than 100 micron, in virtually transparent samples of trabecular meshwork with a laser delivery system of 6 degrees convergence and pulse energies of 14 mJ or more. The relevance of this and the other experimental results to the development of a reliable system for performing internal trabeculotomies for the treatment of open-angle glaucoma is presented.

  19. Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.

    Science.gov (United States)

    Kim, Jimyung; Delfyett, Peter J

    2008-07-21

    We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.

  20. Optimization Performance of a CO[subscript 2] Pulsed Tuneable Laser

    Science.gov (United States)

    Ribeiro, J. H. F.; Lobo, R. F. M.

    2009-01-01

    In this paper, a procedure is presented that will allow (i) the power and (ii) the energy of a pulsed and tuneable TEA CO[subscript 2] laser to be optimized. This type of laser represents a significant improvement in performance and portability. Combining a pulse mode with a grating tuning facility, it enables us to scan the working wavelength…

  1. Attosecond time-energy structure of X-ray free-electron laser pulses

    Science.gov (United States)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  2. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seipt, Daniel

    2012-12-20

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton

  3. Diode-pumped, single frequency Nd:YLF laser for 60-beam OMEGA laser pulse-shaping system

    International Nuclear Information System (INIS)

    Okishev, A.V.; Seka, W.

    1997-01-01

    The operational conditions of the OMEGA pulse-shaping system require an extremely reliable and low-maintenance master oscillator. The authors have developed a diode-pumped, single-frequency, pulsed Nd:YLF laser for this application. The laser generates Q-switched pulses of ∼160-ns duration and ∼10-microJ energy content at the 1,053-nm wavelength with low amplitude fluctuations (<0.6% rms) and low temporal jitter (<7 ns rms). Amplitude and frequency feedback stabilization systems have been used for high long-term amplitude and frequency stability

  4. Enhanced brightness x-ray lasers

    International Nuclear Information System (INIS)

    Wan, A.S.; Cauble, R.C.; Da Silva, L.B.; Moreno, J.C.; Nilsen, J.

    1994-09-01

    We are developing short-pulsed, enhanced-brightness, and coherent x-ray lasers (XRLs) for applications in areas such as plasma imaging. In a traveling wave pump setup the optical laser creating the XRL plasma sweeps along the lasant axis at the same speed as the x-rays. This technique becomes increasingly important as the target length increases and the gain duration shortens. An order of magnitude increase in output energy was measured with vs without traveling wave pump. Using multiple pulse techniques and multilayer mirrors to inject the output of one pulse back into the plasma formed by a later pulse we have begun to develop the x-ray analog of a multi-pass amplifler. The use of multiple pulses separated by as much as 1.6 ns reduces multilayer mirror damage. This injection technique is demonstrated by imaging the near-field emission profiles of the XRL. The addition of multilayer beamsplitter will allow us to effectively produce a soft XRL cavity

  5. Forward voltage short-pulse technique for measuring high power laser array junction temperature

    Science.gov (United States)

    Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

    2012-01-01

    The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

  6. Superintense fields from multiple ultrashort laser pulses retroreflected in circular geometry

    Science.gov (United States)

    Ooi, C. H. Raymond

    2010-02-01

    Laser field with superintensity beyond 1029 W/cm2 can be generated by coherent superposition of multiple 100 fs laser pulses in circular geometry setup upon retroreflection by a ring mirror. We have found the criteria for attaining such intensities using broadband ring mirror within the practical damage threshold and paraxial focusing regime. Simple expressions for the intensity enhancement factor are obtained, providing insight for achieving unlimited laser intensity. Higher intensities can be achieved by using few-cycle laser pulses.

  7. Photoacoustic tweezers with a pulsed laser: theory and experiments

    International Nuclear Information System (INIS)

    Zharov, V P; Malinsky, T V; Kurten, R C

    2005-01-01

    A novel noninvasive optical technique for manipulating particles and cells is presented that utilizes laser-generated forces in an absorbing medium surrounding the particles or cells. In this technique, a laser pulse creates near-object acoustic waves, which during interaction with the objects lead to then being moved or trapped. The main optical schemes are considered, and a theory is presented for this new optical tool, namely photoacoustic (PA) tweezer with pulsed laser. The magnitudes of forces acting on polystyrene particles suspended in water were estimated as a function of the particles' properties for circular and ring geometries of the laser beam. Results of our preliminary experiments demonstrated proof that the manipulation, trapping and even rotation of cells is possible with PA tweezers

  8. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong [Multimedia University, Centre for Advanced Devices and Systems (CADS), Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Setapak, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-08-15

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm{sup 2} to 8 J/cm{sup 2}. The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  9. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    International Nuclear Information System (INIS)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong; Yong, Thian-Khok; Yap, Seong-Shan

    2010-01-01

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm 2 to 8 J/cm 2 . The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  10. Scattering of Femtosecond Laser Pulses on the Negative Hydrogen Ion

    Science.gov (United States)

    Astapenko, V. A.; Moroz, N. N.

    2018-05-01

    Elastic scattering of ultrashort laser pulses (USLPs) on the negative hydrogen ion is considered. Results of calculations of the USLP scattering probability are presented and analyzed for pulses of two types: the corrected Gaussian pulse and wavelet pulse without carrier frequency depending on the problem parameters.

  11. Peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse

    International Nuclear Information System (INIS)

    Song, Q.; Wu, X. Y.; Wang, J. X.; Kawata, S.; Wang, P. X.

    2014-01-01

    In this paper, we qualitatively analyzed peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse. We unveiled the relationship between the changes in the orientation of the electron trajectory and the cusps in magnitude of the phase velocity of the optical field along the electron trajectory in a chirped laser pulse. We also explained how the chirp effect induced the singular point of the phase velocity. Finally, we discussed the phase velocity and phase witnessed by the electron in the particle's moving instantaneous frame

  12. Transient magnetized plasma as an optical element for high power laser pulses

    Directory of Open Access Journals (Sweden)

    Nobuhiko Nakanii

    2015-02-01

    Full Text Available Underdense plasma produced in gas jets by low intensity laser prepulses in the presence of a static magnetic field, B∼0.3  T, is shown experimentally to become an optical element allowing steering of tightly focused high power femtosecond laser pulses within several degrees along with essential enhancement of pulse’s focusability. Strong laser prepulses form a density ramp perpendicularly to magnetic field direction and, owing to the light refraction, main laser pulses propagate along the magnetic field even if it is tilted from the laser axis. Electrons generated in the laser pulse wake are well collimated and follow in the direction of the magnetic field; their characteristics are measured to be not sensitive to the tilt of magnetic field up to angles ±5°.

  13. Three types of pulses delivered from a nanotube-mode-locked fiber laser

    International Nuclear Information System (INIS)

    Yao, X K

    2015-01-01

    Three types of pulses are experimentally investigated in a switchable normal-dispersion nanotube-mode-locked fiber laser by adjusting polarizer controller and pump power. They are a standard dissipative-soliton (DS), conventional soliton (CS)-like pulse, and noiselike pulse, which correspond to three mode-locking states. The standard DS with a rectangular spectrum possesses a Gaussian-shape pulse. The CS-like operation has a Lorenz shape, and the spectrum involves several sidebands similar to the CS case. For the noiselike pulse with a bell-shaped spectrum, a 317 fs peak rides upon the 132.5 ps pedestal in the autocorrelation trace. The spectra of these three pulse operations are centered at three close wavelengths. The generation of three such different types of pulses in one identical normal- dispersion laser cavity may find an important application for the future of mode-locked laser research. (paper)

  14. Laser modification of silica, simulating pulse shape and length

    International Nuclear Information System (INIS)

    Corrales, L. Rene; Moore, Emily

    2009-01-01

    Computer simulations of instantaneous thermal heating due to a laser pulse is modeled as a pulse occurring over 1 or 100 fs, during which time the atoms within a cylinder are given excess kinetic energy to mimic the effect of adding energy locally to a system by a laser. The response of the material under conditions in which a similar amount of energy is dumped within 1 fs versus over a 100 fs pulse with two distinct shapes, square and Gaussian-like, is explored. Key physics disclosed is that with a pulse width of 100 fs, as the energy is being added it begins to dissipate away from region where it is added. With a 1 fs (instantaneous) pulse there is greater initial ballistic behavior than when it is dumped over a 100 fs period. In the latter, there are localized hot spots displaying ballistic behavior.

  15. Precision machining of pig intestine using ultrafast laser pulses

    Science.gov (United States)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  16. Adaptive feedforward control for improving output power response of CO2 laser; Tekiogata feedforward ni yoru laser shutsuryoku oto no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Y.; Takahashi, t.; Morita, A. [Mitsubishi Electric Corp., Tokyo (Japan)

    1998-03-31

    Feedback control has been used to stabilize the steady-state output power of a CO2 laser to overcome the problems caused by the change in the temperature/deterioration of CO2 gas. The transient response, however, is as slow as a few hundred milliseconds because of the slow dynamics of a thermopile power sensor. When machining conditions of a CO2 laser are changed, this rather slow response requires an extra dwell time, resulting in low productivity of the machining. To cope with this problem, the authors have developed adaptive feedforward control for a CO2 laser in addition to conventional feedback control. The model of a CO2 laser is described as a gain, which is varied by the setting parameters; laser power, pulse frequency and duty factor, as well as gas conditions. In this paper, two new variables, effective discharge power and threshold discharge power, are introduced to obtain a compact and adjustable model. With the proposed control system, the step response time of a laser power is reduced to less than ten milliseconds without overshoot, and can be set to desired constant time. The effects of such a fast and stable response on the machining speed and machining quality are examined. The experimental results show that for thin metal line-cutting, neither the melt-off area nor dross is observed even in the no-dwell time case. For thin metal hole-cutting, the machining speed is improved by 30%. 11 refs., 14 figs., 3 tabs.

  17. Pulsed CH3OH terahertz laser radiation pumped by 9P(36) CO2 lasers

    International Nuclear Information System (INIS)

    Jiu Zhixian; Zuo Duluo; Miao Liang; Cheng Zuhai

    2011-01-01

    An efficient pulsed CH 3 OH terahertz (THz) laser pumped by a TEA CO 2 laser was investigated experimentally. A simple terahertz cavity and a TEA CO 2 laser for the optically pumped THz radiation were studied experimentally. To improve THz laser energy and photon conversion efficiency, two different TEA CO 2 lasers were developed to pump CH 3 OH. When CH 3 OH was pumped by the 9P(36) line with different powers of the CO 2 laser, the generation of terahertz radiation with energy as high as 0.307mJ and 23.75mJ were obtained, respectively. The corresponding photon conversion efficiencies were 0.29% and 2.4%. The photon conversion efficiency increases by a factor of about 8. Meanwhile, higher peak power of pump laser effectively improves the photon conversion efficiency. And the optimum THz laser pressure increases with narrower pulse width of pump laser because of increasing absorptive gases molecules of CH 3 OH with higher peak power of pump laser.

  18. Output of CT images and treatment planning data to a laser printer

    International Nuclear Information System (INIS)

    Kleinschmidt, C.; Gfirtner, H.; Goetzfried, M.

    1992-01-01

    We introduce a program for the digital output of CT images with overlaid isodose maps to a laser printer. The high quality prints permit the additional output of treatment planning data on the same sheet. (orig.) [de

  19. Multiple pulse traveling wave excitation of neon-like germanium

    International Nuclear Information System (INIS)

    Moreno, J. C.; Nilsen, J.; Silva, L. B. da

    1995-01-01

    Traveling wave excitation has been shown to significantly increase the output intensity of the neon-like germanium x-ray laser. The driving laser pulse consisted of three 100 ps Gaussian laser pulses separated by 400 ps. Traveling wave excitation was employed by tilting the wave front of the driving laser by 45 degrees to match the propagation speed of the x-ray laser photons along the length of the target. We show results of experiments with the traveling wave, with no traveling wave, and against the traveling wave and comparisons to a numerical model. Gain was inferred from line intensity measurements at two lengths

  20. Brief review on pulse laser propulsion

    Science.gov (United States)

    Yu, Haichao; Li, Hanyang; Wang, Yan; Cui, Lugui; Liu, Shuangqiang; Yang, Jun

    2018-03-01

    Pulse laser propulsion (PLP) is an advanced propulsion concept can be used across a variety of fields with a wide range of applications. PLP reflects superior payload as well as decreased launch costs in comparison with other conventional methods of producing thrust, such as chemical propulsion or electric propulsion. Numerous researchers have attempted to exploit the potential applications of PLP. This paper first reviews concepts relevant to PLP, including the propulsion modes, breakdown regimes, and propulsion efficiency; the propulsion targets for different materials with the pulse laser are then discussed in detail, including the propulsion of solid and liquid microspheres. PLP applications such as the driven microsatellite, target surface particle removal, and orbital debris removal are also discussed. Although the PLP has been applied to a variety of fields, further research is yet warranted to establish its application in the aerospace field.

  1. Diode-pumped 2.8-μm laser emission from Er/sup 3+/:YLF at room temperature

    International Nuclear Information System (INIS)

    Kintz, G.J.; Allen, R.; Esterowitz, L.

    1987-01-01

    This paper details laser emission from an erbium-doped LiYF/sub 4/ sample longitudinally pumped at room temperature with a laser diode array observed in both pulsed and cw pumping. The threshold for pulsed emission is much less than for cw emission due to the lifetime of the terminal laser level being longer than the upper laser level. Depopulation of the lower laser level, which permits cw operation, is due to a cooperative upconversion process. The threshold energy for pulsed emission is 28 μJ when pumped with a 300-μs diode pulse. At 147 mW of diode power the threshold for cw emission occurs. The system relaxes to a steady state after 40 ms. The threshold for cw emission corresponds to --62 mW of diode power being absorbed into the crystal. Pulsed outputs of 21 μJ and cw outputs of 180 μW have been obtained. These low outputs and correspondingly low efficiencies are due to currently operating near threshold and in the self-terminating mode of the laser system. Higher concentrations and higher pumping rates should significantly improve the efficiency

  2. Nanosecond pulsed laser induced self-organized nano-dots patterns on GaSb surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yutaka, E-mail: yyoshida@cris.hokudai.ac.jp [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, N8, W13, Kita-ku, Sapporo 060-8628, Hokkaido (Japan); Creative Research Institution Sousei, Hokkaido University, N21, W10, Kita-ku, Sapporo 001-0021, Hokkaido (Japan); Oosawa, Kazuya; Wajima, Jyunya; Watanabe, Seiichi [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, N8, W13, Kita-ku, Sapporo 060-8628, Hokkaido (Japan); Matsuo, Yasutaka [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Hokkaido (Japan); Kato, Takahiko [Hitachi Research Laboratory, Hitachi, Ltd., 7-1-1 Omika, Hitachi-shi 319-1292, Ibaraki-ken (Japan); Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, N8, W13, Kita-ku, Sapporo 060-8628, Hokkaido (Japan)

    2014-07-01

    We report a technique for formation of two-dimensional (2D) nanodot (ND) patterns on gaillium antimoide (GaSb) using a nanosecond pulsed laser irradiation with 532 nm wavelength. The patterns have formed because of the interference and the self-organization under energy deposition of the laser irradiation, which induced the growth of NDs on the local area. The NDs are grown and shrunken in the pattern by energy depositions. In the laser irradiation with average laser energy density of 35 mJ cm⁻², large and small NDs are formed on GaSb surface. The large NDs have grown average diameter from 160 to 200 nm with increase of laser pulses, and the small NDs have shrunken average diameter from 75 to 30 nm. The critical dot size is required about 107 nm for growth of the NDs in the patterns. Nanosecond pulsed laser irradiation can control the self-organized ND size on GaSb in air as a function of the laser pulses.

  3. Periodic dark pulse emission induced by delayed feedback in a quantum well semiconductor laser

    Directory of Open Access Journals (Sweden)

    L. Li

    2012-12-01

    Full Text Available We report the experimental observation of periodic dark pulse emission in a quantum-well semiconductor laser with delayed optical feedback. We found that under appropriate operation conditions the laser can also emit a stable train of dark pulses. The repetition frequency of the dark pulse is determined by the external cavity length. Splitting of the dark pulse was also observed. We speculate that the observed dark pulse is a kind of temporal cavity soliton formed in the laser.

  4. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  5. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    Science.gov (United States)

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  6. Amorphization of silicon by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Jia, Jimmy; Li Ming; Thompson, Carl V.

    2004-01-01

    We have used femtosecond laser pulses to drill submicron holes in single crystal silicon films in silicon-on-insulator structures. Cross-sectional transmission electron microscopy and energy dispersive x-ray analysis of material adjacent to the ablated holes indicates the formation of a layer of amorphous Si. This demonstrates that even when material is ablated using femtosecond pulses near the single pulse ablation threshold, sufficient heating of the surrounding material occurs to create a molten zone which solidifies so rapidly that crystallization is bypassed

  7. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system.

    Science.gov (United States)

    Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian

    2015-02-01

    Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.

  8. Generation of Ultra-high Intensity Laser Pulses

    International Nuclear Information System (INIS)

    Fisch, N.J.; Malkin, V.M.

    2003-01-01

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10 25 W/cm 2 can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers

  9. Efficacy of long pulse Nd:YAG laser versus fractional Er:YAG laser in the treatment of hand wrinkles.

    Science.gov (United States)

    Robati, Reza M; Asadi, Elmira; Shafiee, Anoosh; Namazi, Nastaran; Talebi, Atefeh

    2018-04-01

    There are different modalities for hand rejuvenation. Fractional Er:YAG laser and long pulse Nd:YAG laser were introduced for treating hand wrinkles. We plan to compare fractional Er:YAG laser and long pulse Nd:YAG laser in a randomized controlled double-blind design with multiple sessions and larger sample size in comparison with previous studies. Thirty-three participants with hand wrinkles entered this study. They were randomly allocated to undergo three monthly laser treatments on each hand, one with a fractional Er:YAG laser and the other with a long pulse Nd:YAG laser. The evaluations included assessment of clinical improvement determined by two independent dermatologists not enrolled in the treatment along with measuring skin biomechanical property of hands using a sensitive biometrologic device with the assessment of cutaneous resonance running time (CRRT). Moreover, potential side effects and patients' satisfaction have been documented at baseline, 1 month after each treatment, and 3 months after the final treatment session. Clinical evaluation revealed both modalities significantly reduce hand wrinkles (p value lasers. Mean CRRT values also decreased significantly after the laser treatment compared to those of the baseline in both laser groups. There was no serious persistent side effect after both laser treatments. Both fractional Er:YAG and long pulse Nd:YAG lasers show substantial clinical improvement of hand skin wrinkles with no serious side effects. However, combination treatment by these lasers along with the other modalities such as fat transfer could lead to better outcomes in hand rejuvenation. IRCT2016032020468N4.

  10. Interaction of ultra-high intensity laser pulse with a mass limited targets

    International Nuclear Information System (INIS)

    Andreev, A.A.; Platonov, K.Yu.; Limpouch, J.; Psikal, J.; Kawata, S.

    2006-01-01

    Complete test of publication follows. Ultra-high intensity laser pulses may be produced now via CPA scheme by using very short laser pulses of a relatively low energy. Interaction of such pulses with massive target is not very efficient as the energy delivered to charged particles spreads out quickly over large distances and it is redistributed between many secondary particles. One possibility to limit this undesirable energy spread is to use mass limited targets (MLT), for example droplets, big clusters or small foil sections. This is an intermediate regime in target dimensions between bulk solid and nanometer-size atomic cluster targets. A few experimental and theoretical studies have been carried out on laser absorption, fast particle generation and induced nuclear fusion reactions in the interaction of ultrashort laser pulses with MLT plasma. We investigate here laser interactions with MLT via 2D3V relativistic electromagnetic PIC simulations. We assume spherical droplet as a typical MLT. However, the sphere is represented in 2D simulations by an infinite cylinder irradiated uniformly along its length. We assume that MLT is fully ionized before main pulse interaction either due to insufficient laser contrast or due to a prepulse. For simplicity, we assume homogeneous plasma of high initial temperature. We analyze the interaction of relativistic laser pulses of various polarizations with targets of different shapes, such as a foil, quadrant and sphere. The mechanisms of laser absorption, electron and ion acceleration are clarified for different laser and target parameters. When laser interacts with the target front side, kinetic energy of electrons rises rapidly with fast oscillations in the kinetic and field energy, caused by electron oscillations in the laser field. Small energy oscillations, observed later, are caused by the electron motion back and forth through the droplet. Approximately 40% of laser energy is transferred to the kinetic energy of electrons

  11. Pulsed Laser Interactions with Silicon Nano structures in Emitter Formation

    International Nuclear Information System (INIS)

    Huat, V.L.C.; Leong, C.S.; Kamaruzzaman Sopian, Saleem Hussain Zaidi

    2015-01-01

    Silicon wafer thinning is now approaching fundamental limits for wafer thickness owing to thermal expansion mismatch between Al and Si, reduced yields in wet-chemical processing as a result of fragility, and reduced optical absorption. An alternate manufacturing approach is needed to eliminate current manufacturing issues. In recent years, pulsed lasers have become readily available and costs have been significantly reduced. Pulsed laser interactions with silicon, in terms of micromachining, diffusions, and edge isolation, are well known, and have become industrial manufacturing tools. In this paper, pulsed laser interactions with silicon nano structures were identified as the most desirable solution for the fundamental limitations discussed above. Silicon nano structures have the capability for extremely high absorption that significantly reduces requirements for laser power, as well as thermal shock to the thinner wafer. Laser-assisted crystallization, in the presence of doping materials, leads to nano structure profiles that are highly desirable for sunlight absorption. The objective of this paper is the replacement of high temperature POCl_3 diffusion by laser-assisted phosphorus layers. With these improvements, complete low-temperature processing of thinner wafers was achievable with 3.7 % efficiency. Two-dimensional laser scanning was proved to be able to form uniformly annealed surfaces with higher fill factor and open-circuit voltage. (author)

  12. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Gregorčič, Peter, E-mail: peter.gregorcic@fs.uni-lj.si [Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana (Slovenia); Sedlaček, Marko; Podgornik, Bojan [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia); Reif, Jürgen [Brandenburgische Technische Universitaet – BTU Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany)

    2016-11-30

    Highlights: • Low number of differently polarized ps laser pulses is superimposed on tool steel. • Last pulses determine the ripples orientation for single spot and coherent traces. • Previously formed structures are overridden by later incident pulses. • Ripples contrast depends on total exposure, independent on pulses’ polarization. • Weak role of pre-formed structures makes interference scenarios questionable. - Abstract: Laser-induced periodic surface structures (LIPSS) are produced on cold work tool steel by irradiation with a low number of picosecond laser pulses. As expected, the ripples, with a period of about 90% of the laser wavelength, are oriented perpendicular to the laser polarization. Subsequent irradiation with the polarization rotated by 45° or 90° results in a corresponding rotation of the ripples. This is visible already with the first pulse and becomes almost complete – erasing the previous orientation – after as few as three pulses. The phenomenon is not only observed for single-spot irradiation but also for writing long coherent traces. The experimental results strongly defy the role of surface plasmon-polaritons as the predominant key to LIPSS formation.

  13. Self-Guiding of Ultrashort Relativistically Intense Laser Pulses to the Limit of Nonlinear Pump Depletion

    International Nuclear Information System (INIS)

    Ralph, J. E.; Marsh, K. A.; Pak, A. E.; Lu, W.; Clayton, C. E.; Fang, F.; Joshi, C.; Tsung, F. S.; Mori, W. B.

    2009-01-01

    A study of self-guiding of ultra short, relativistically intense laser pulses is presented. Here, the laser pulse length is on the order of the nonlinear plasma wavelength and the normalized vector potential is greater than one. Self-guiding of ultrashort laser pulses over tens of Rayliegh lengths is possible when driving a highly nonlinear wake. In this case, self-guiding is limited by nonlinear pump depletion. Erosion of the pulse due to diffraction at the head of the laser pulse is minimized for spot sizes close to the blow-out radius. This is due to the slowing of the group velocity of the photons at the head of the laser pulse. Using an approximately 10 TW Ti:Sapphire laser with a pulse length of approximately 50 fs, experimental results are presented showing self-guiding over lengths exceeding 30 Rayliegh lengths in various length Helium gas jets. Fully explicit 3D PIC simulations supporting the experimental results are also presented.

  14. Mid-infrared PbTe vertical external cavity surface emitting laser on Si-substrate with above 1 W output power

    Science.gov (United States)

    Rahim, M.; Fill, M.; Felder, F.; Chappuis, D.; Corda, M.; Zogg, H.

    2009-12-01

    Mid-infrared vertical external cavity surface emitting lasers (VECSELs) emitting above 1 W output power in pulsed mode and up to 17 mW in continuous mode at -172 °C were realized. Emission wavelength changes from 5 μm at -172 °C to 3.6 μm at 20 °C heat sink temperature. The active medium is a one wavelength thick PbTe layer grown by molecular beam epitaxy on a Si-substrate. It is followed by a 2.5 pair Pb1-yEuyTe/EuTe epitaxial Bragg mirror. The cavity is completed with an external curved Pb1-yEuyTe/BaF2 mirror. The VECSEL is optically pumped with 1.55 μm wavelength laser and In-soldered to Cu heat sink. No microstructural processing is needed.

  15. Shock wave generation in laser ablation studied using pulsed digital holographic interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Amer, Eynas; Gren, Per; Sjoedahl, Mikael [Division of Experimental Mechanics, Luleaa University of Technology, SE-971 87 Luleaa (Sweden)], E-mail: eynas.amer@ltu.se, E-mail: per.gren@ltu.se, E-mail: mikael.sjodahl@ltu.se

    2008-11-07

    Pulsed digital holographic interferometry has been used to study the shock wave induced by a Q-switched Nd-YAG laser ({lambda} = 1064 nm and pulse duration 12 ns) on a polycrystalline boron nitride (PCBN) ceramic target under atmospheric air pressure. A special setup based on using two synchronized wavelengths from the same laser for processing and measurement simultaneously has been introduced. Collimated laser light ({lambda} = 532 nm) passed through the volume along the target and digital holograms were recorded for different time delays after processing starts. Numerical data of the integrated refractive index field were calculated and presented as phase maps showing the propagation of the shock wave generated by the process. The location of the induced shock wave front was observed for different focusing and time delays. The amount of released energy, i.e. the part of the incident energy of the laser pulse that is eventually converted to a shock wave has been estimated using the point explosion model. The released energy is normalized by the incident laser pulse energy and the energy conversion efficiency between the laser pulse and PCBN target has been calculated at different power densities. The results show that the energy conversion efficiency seems to be constant around 80% at high power densities.

  16. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.

    Science.gov (United States)

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Chen, Feng; Vázquez de Aldana, Javier Rodríguez

    2013-08-12

    This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

  17. 50-fs pulse generation directly from a colliding-pulse mode-locked Ti:sapphire laser using an antiresonant ring mirror

    Science.gov (United States)

    Naganuma, Kazunori; Mogi, Kazuo

    1991-05-01

    50-fs pulses were directly generated from a colliding-pulse mode-locked Ti:sapphire laser. To achieve the colliding-pulse mode locking, a miniature antiresonant ring containing an organic saturable dye jet was employed as the end mirror for the linear cavity laser. Based on measured dispersion of intracavity elements, a prism pair was implemented to control the cavity dispersion. The generated pulses have no linear chirp but do exhibit parabolic instantaneous frequency owing to third-order dispersion introduced by the prism pair.

  18. The role of lasers and intense pulsed light technology in dermatology

    Directory of Open Access Journals (Sweden)

    Husain Z

    2016-02-01

    Full Text Available Zain Husain,1 Tina S Alster1,2 1Department of Dermatology, Georgetown University Hospital, 2Washington Institute of Dermatologic Laser Surgery, Washington, DC, USA Abstract: The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. Keywords: laser, intense pulsed light, treatment, dermatology, technology

  19. A Simple Approach for Enhancing the Output Performance of Solar-Pumped Solid-State Lasers

    Directory of Open Access Journals (Sweden)

    Dawei Liang

    2009-01-01

    Full Text Available A simple truncated fused silica elliptical cavity is proposed to enhance the output performance of solar-pumped solid-state lasers. The imaging property of the truncated elliptical cavity ensures an enhanced absorption distribution within an Nd:YAG rod. Optimum pumping parameters are found through ZEMAX nonsequential ray-tracing and LASCAD laser cavity analyses. Compared with the output laser performance of a 3D-compound parabolic concentrator-2D-compound parabolic concentrator (3D-CPC-2D-CPC cavity, the truncated cavity provides 11% more multimode and 72.7% more TEM00 laser powers. A laser beam of high beam quality can be produced efficiently. The standard tracking error for multimode laser power is also reduced to only 4.0% by the truncated cavity.

  20. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    International Nuclear Information System (INIS)

    Murari, Krishna

    2017-04-01

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria