WorldWideScience

Sample records for pulsed laser deposited

  1. Reactive pulsed laser deposition with gas jet

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.

    2001-01-01

    Different metal (Sn, Al, steel, Cu, W) thin films were synthesized by reactive pulsed laser deposition on steel, copper and glass wafers. In our work pulsed Nd:glass (10 J, 800μs) laser system was used. Jet of gas was created by electromagnetic valve perpendicularly to the laser beam. Nitrogen, oxygen and argon were used. We used several to tens laser shots to obtain visible with the naked eye layers. Thin layers were observed under an optical microscope. (author)

  2. Pulsed Laser Deposition: passive and active waveguides

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Flory, F.; Escoubas, L.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 438-449 ISSN 0268-1900 R&D Projects: GA ČR GA202/06/0216 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * pulsed laser deposition * laser ablation * passive waveguides * active waveguides * waveguide laser * sensors * thin films * butane detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.384, year: 2009

  3. Ultrashort pulse laser deposition of thin films

    Science.gov (United States)

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  4. Pulsed laser deposition of hydroxyapatite thin films

    Czech Academy of Sciences Publication Activity Database

    Koch, C.F.; Johnson, S.; Kumar, D.; Jelínek, Miroslav; Chrisey, D.B.; Doraiswamy, A.; Jin, C.; Narayan, R.J.; Mihailescu, I. N.

    2007-01-01

    Roč. 27, - (2007), s. 484-494 ISSN 0928-4931 Institutional research plan: CEZ:AV0Z10100522 Keywords : hydroxyapatite * pulsed laser deposition * bioactive ceramic s Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.486, year: 2007

  5. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    This thesis concerns the deposition of thin films for solar cells using pulsed laser deposition (PLD) and pulsed electron deposition (PED). The aim was to deposit copper tin sulfide (CTS) and zinc sulfide (ZnS) by pulsed laser deposition to learn about these materials in relation to copper zinc tin...... time. We compared the results of CZTS deposition by PLD at DTU in Denmark to CZTS made by PED at IMEM-CNR, where CIGS solar cells have successfully been fabricated at very low processing temperatures. The main results of this work were as follows: Monoclinic-phase CTS films were made by pulsed laser...... deposition followed by high temperature annealing. The films were used to understand the double band gap that we and other groups observed in the material. The Cu-content of the CTS films varied depending on the laser fluence (the laser energy per pulse and per area). The material transfer from...

  6. 25 years of pulsed laser deposition

    Science.gov (United States)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  7. Spectroscopic and imaging diagnostics of pulsed laser deposition laser plasmas

    International Nuclear Information System (INIS)

    Thareja, Raj K.

    2002-01-01

    An overview of laser spectroscopic techniques used in the diagnostics of laser ablated plumes used for thin film deposition is given. An emerging laser spectroscopic imaging technique for the laser ablation material processing is discussed. (author)

  8. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    International Nuclear Information System (INIS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R.M.

    2015-01-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence

  9. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  10. Pulsed laser ablation and deposition of niobium carbide

    International Nuclear Information System (INIS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J.V.; Galasso, A.; Teghil, R.

    2016-01-01

    Highlights: • We have deposited in vacuum niobium carbide films by fs and ns PLD. • We have compared PLD performed by ultra-short and short laser pulses. • The films deposited by fs PLD of NbC are formed by nanoparticles. • The structure of the films produced by fs PLD at 500 °C corresponds to NbC. - Abstract: NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation–deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  11. Femtosecond and nanosecond pulsed laser deposition of silicon and germanium

    Energy Technology Data Exchange (ETDEWEB)

    Reenaas, Turid Worren [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Lee, Yen Sian [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chowdhury, Fatema Rezwana; Gupta, Manisha; Tsui, Ying Yin [Department of Electrical and Computer Engineering, University of Alberta (Canada); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Ling [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kok, Soon Yie [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Shan, E-mail: seongshan@gmail.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-11-01

    Highlights: • Ge and Si were deposited by fs and ns laser at room temperature and at vacuum. • Ion of 10{sup 4} ms{sup −1} and 30–200 eV was obtained for ns ablation for Ge and Si. • Highly energetic ions of 10{sup 5} ms{sup −1} with 2–7 KeV were produced in fs laser ablation. • Nanocrystalline Si and Ge were deposited by using fs laser. • Nanoparticles < 10 nm haven been obtained by fs laser. - Abstract: 150 fs Ti:Sapphire laser pulsed laser deposition of Si and Ge were compared to a nanosecond KrF laser (25 ns). The ablation thresholds for ns lasers were about 2.5 J cm{sup −2} for Si and 2.1 J cm{sup −2} for Ge. The values were about 5–10 times lower when fs laser were used. The power densities were 10{sup 8}–10{sup 9} W cm{sup −2} for ns but 10{sup 12} W cm{sup −2} for fs. By using an ion probe, the ions emission at different fluence were measured where the emitting ions achieving the velocity in the range of 7–40 km s{sup −1} and kinetic energy in the range of 30–200 eV for ns laser. The ion produced by fs laser was measured to be highly energetic, 90–200 km s{sup −1}, 2–10 KeV. Two ion peaks were detected above specific laser fluence for both ns and fs laser ablation. Under fs laser ablation, the films were dominated by nano-sized crystalline particles, drastically different from nanosecond pulsed laser deposition where amorphous films were obtained. The ions characteristics and effects of pulse length on the properties of the deposited films were discussed.

  12. Comparative study on Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation of urease thin films

    International Nuclear Information System (INIS)

    Smausz, Tomi; Megyeri, Gabor; Kekesi, Renata; Vass, Csaba; Gyoergy, Eniko; Sima, Felix; Mihailescu, Ion N.; Hopp, Bela

    2009-01-01

    Urease thin films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE) and Pulsed Laser Deposition from two types of targets: frozen water solutions of urease with different concentrations (1-10% m/v) and pure urease pellets. The fluence of the ablating KrF excimer laser was varied between 300 and 2200 mJ/cm 2 . Fourier transform infrared spectra of the deposited films showed no difference as compared to the original urease. Morphologic studies proved that the films consist of a smooth 'base' layer with embedded micrometer-sized droplets. Absorption-coefficient measurements contradicted the traditional 'absorptive matrix' model for MAPLE deposition. The laser energy was absorbed by urease clusters leading to a local heating-up and evaporation of the frozen matrix from the uppermost layer accompanied by the release of dissolved urease molecules. Significant enzymatic activity of urease was preserved only during matrix assisted transfer.

  13. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  14. Pulsed laser deposition in Twente: from research tool towards industrial deposition

    NARCIS (Netherlands)

    Blank, David H.A.; Dekkers, Jan M.; Rijnders, Augustinus J.H.M.

    2014-01-01

    After the discovery of the perovskite high Tc superconductors in 1986, a rare and almost unknown deposition technique attracted attention. Pulsed laser deposition (PLD), or laser ablation as it was called in the beginning, became popular because of the possibility to deposit complex materials, like

  15. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  16. Pulsed-laser deposited ZnO for device applications

    NARCIS (Netherlands)

    King, S.L.; Gardeniers, Johannes G.E.; Boyd, I.W.

    1996-01-01

    The study investigates the growth by pulsed-laser deposition (PLD) of ZnO thin films for the eventual incorporation into piezo-electric actuators and other sensors being developed at the University of Twente. All films are purely c-axis oriented, and results are presented which suggest the

  17. Direct Patterning of Oxides by Pulsed Laser Stencil Deposition

    NARCIS (Netherlands)

    te Riele, P.M.

    2008-01-01

    This thesis describes a detailed study of the application of stencil technology in the patterning of epitaxial oxide thin films by pulsed laser deposition (PLD). Stencil patterning has been applied in thin film sub-micron patterning of metals successfully for decades since it has several advantages

  18. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study

    Science.gov (United States)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.

    2017-10-01

    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  19. ITO thin films deposited by advanced pulsed laser deposition

    International Nuclear Information System (INIS)

    Viespe, Cristian; Nicolae, Ionut; Sima, Cornelia; Grigoriu, Constantin; Medianu, Rares

    2007-01-01

    Indium tin oxide thin films were deposited by computer assisted advanced PLD method in order to obtain transparent, conductive and homogeneous films on a large area. The films were deposited on glass substrates. We studied the influence of the temperature (room temperature (RT)-180 deg. C), pressure (1-6 x 10 -2 Torr), laser fluence (1-4 J/cm 2 ) and wavelength (266-355 nm) on the film properties. The deposition rate, roughness, film structure, optical transmission, electrical conductivity measurements were done. We deposited uniform ITO thin films (thickness 100-600 nm, roughness 5-10 nm) between RT and 180 deg. C on a large area (5 x 5 cm 2 ). The films have electrical resistivity of 8 x 10 -4 Ω cm at RT, 5 x 10 -4 Ω cm at 180 deg. C and an optical transmission in the visible range, around 89%

  20. Laser cleaning of pulsed laser deposited rhodium films for fusion diagnostic mirrors

    International Nuclear Information System (INIS)

    Uccello, A.; Maffini, A.; Dellasega, D.; Passoni, M.

    2013-01-01

    Highlights: ► Pulsed laser deposition is exploited to produce Rh films for first mirrors. ► Pulsed laser deposition is exploited to produce tokamak-like C contaminants. ► Rh laser damage threshold has been evaluated for infrared pulses. ► Laser cleaning of C contaminated Rh films gives promising results. -- Abstract: In this paper an experimental investigation on the laser cleaning process of rhodium films, potentially candidates to be used as tokamak first mirrors (FMs), from redeposited carbon contaminants is presented. A relevant issue that lowers mirror's performance during tokamak operations is the redeposition of sputtered material from the first wall on their surface. Among all the possible techniques, laser cleaning, in which a train of laser pulses is launched to the surface that has to be treated, is a method to potentially mitigate this problem. The same laser system (Q-switched Nd:YAG laser with a fundamental wavelength of 1064-nm and 7-ns pulses) has been employed with three aims: (i) production by pulsed laser deposition (PLD) of Rh film mirrors, (ii) production by PLD of C deposits with controlled morphology, and (iii) investigation of the laser cleaning method onto C contaminated Rh samples. The evaluation of Rh films laser damage threshold, as a function of fluence and number of pulses, is discussed. Then, the C/Rh films have been cleaned by the laser beam. The exposed zones have been characterized by visual inspection and scanning electron microscopy (SEM), showing promising results

  1. Particulate generation during pulsed laser deposition of superconductor thin films

    International Nuclear Information System (INIS)

    Singh, R.K.

    1993-01-01

    The nature of evaporation/ablation characteristics during pulsed laser deposition strongly controls the quality of laser-deposited films. To understand the origin of particulates in laser deposited films, the authors have simulated the thermal history of YBa 2 Cu 3 O 7 targets under intense nanosecond laser irradiation by numerically solving the heat flow equation with appropriate boundary conditions. During planar surface evaporation of the target material, the sub-surface temperatures were calculated to be higher than the surface temperatures. While the evaporating surface of the target is constantly being cooled due to the latent heat of vaporization, subsurface superheating occurs due to the finite absorption depth of the laser beam. Sub-surface superheating was found to increase with decreasing absorption coefficient and thermal conductivity of the target, and with increasing energy density. The superheating may lead to sub-surface nucleation and growth of the gaseous phase which can expand rapidly leading to microexplosions and ''volume expulsion'' of material from the target. Experiments conducted by the authors and other research groups suggest a strong relation between degree of sub-surface superheating and particle density in laser-deposited films

  2. Pulsed laser deposition and characterization of cellulase thin films

    Science.gov (United States)

    Cicco, N.; Morone, A.; Verrastro, M.; Viggiano, V.

    2013-08-01

    Thin films of cellulase were obtained by pulsed laser deposition (PLD) on an appropriate substrate. Glycoside hydrolase cellulase has received our attention because it emerges among the antifouling enzymes (enzymes being able to remove and prevent the formation of micro-organism biofilms) used in industry and medicine field. Pressed cellulase pellets, used as target material, were ablated with pulses of a Nd-YAG laser working at wavelength of 532 nm. In this work, we evaluated the impact of PLD technique both on molecular structure and hydrolytic activity of cellulase. Characteristic chemical bonds and morphology of deposited layers were investigated by FTIR spectroscopy and SEM respectively. The hydrolytic activity of cellulase thin films was detected by a colorimetric assay.

  3. Pulsed laser deposition and characterisation of thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Morone, A [CNR, zona industriale di Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali

    1996-09-01

    Same concepts on pulsed laser deposition of thin films will be discussed and same examples of high transition temperature (HTc) BiSrCaCuO (BISCO) and low transition temperature NbN/MgO/NbN multilayers will be presented. X-ray and others characterizations of these films will be reported and discussed. Electrical properties of superconducting thin films will be realized as a function of structural and morphological aspect.

  4. Growth modes of pentacene films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wisz, G.; Kuzma, M.; Virt, I.; Sagan, P.; Rudyj, I.

    2011-01-01

    Thin pentacene films were deposited on KCl and ITO/glass substrates by the pulsed laser deposition method (PLD) using a YAG:Nd 3+ laser with a second harmonic (λ = 532 nm). We compared the structure of the layer on differently oriented substrates with respect to the pentacene plasma plume - vertical and parallel orientation. The structure of the layers formed was examined using SEM, RHEED and THEED methods. The lattice parameters of the layer deposited on KCl were determined from THEED pattern (a = 5.928 A, b 7.874 A, c = 14,98 A, α = 76.54 o , β 75.17 o , γ = 89.20 o ). The preferred direction [11-bar 0] of the layer growth on KCl substrate was addressed. The effect of the substrate orientation results in a different growth mode of the layers.

  5. Amorphous Terfenol-D films using nanosecond pulsed laser deposition

    International Nuclear Information System (INIS)

    Ma, James; O'Brien, Daniel T.; Kovar, Desiderio

    2009-01-01

    Thin films of Terfenol-D were produced by nanosecond pulsed laser deposition (PLD) at two fluences. Electron dispersive spectroscopy conducted using scanning electron and transmission electron microscopes showed that the film compositions were similar to that of the PLD target. Contrary to previous assertions that suggested that nanosecond PLD results in crystalline films, X-ray diffraction and transmission electron microscopy analysis showed that the films produced at both fluences were amorphous. Splatters present on the film had similar compositions to the overall film and were also amorphous. Magnetic measurements showed that the films had high saturation magnetization and magnetostriction, similar to high quality films produced using other physical vapor deposition methods.

  6. The spatial thickness distribution of metal films produced by large area pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, Nini; Schou, Jørgen; Linderoth, Søren

    2007-01-01

    Thin films of metals have been deposited in the large-area Pulsed Laser Deposition (PLD) Facility at Riso National Laboratory. Thin films of Ag and Ni were deposited with laser pulses from an excimer laser at 248 nm with a rectangular beam spot at a fluence of 10 J/cm(2) on glass substrates of 127...

  7. Chromium carbide thin films deposited by ultra-short pulse laser deposition

    International Nuclear Information System (INIS)

    Teghil, R.; Santagata, A.; De Bonis, A.; Galasso, A.; Villani, P.

    2009-01-01

    Pulsed laser deposition performed by a laser with a pulse duration of 250 fs has been used to deposit films from a Cr 3 C 2 target. Due to the different processes involved in the laser ablation when it is performed by an ultra-short pulse source instead of a conventional short pulse one, it has been possible to obtain in vacuum films containing only one type of carbide, Cr 3 C 2 , as shown by X-ray photoelectron spectroscopy. On the other hand, Cr 3 C 2 is not the only component of the films, since a large amount of amorphous carbon is also present. The films, deposited at room temperature, are amorphous and seem to be formed by the coalescence of a large number of particles with nanometric size. The film composition can be explained in terms of thermal evaporation from particles ejected from the target.

  8. Picosecond and subpicosecond pulsed laser deposition of Pb thin films

    Directory of Open Access Journals (Sweden)

    F. Gontad

    2013-09-01

    Full Text Available Pb thin films were deposited on Nb substrates by means of pulsed laser deposition (PLD with UV radiation (248 nm, in two different ablation regimes: picosecond (5 ps and subpicosecond (0.5 ps. Granular films with grain size on the micron scale have been obtained, with no evidence of large droplet formation. All films presented a polycrystalline character with preferential orientation along the (111 crystalline planes. A maximum quantum efficiency (QE of 7.3×10^{-5} (at 266 nm and 7 ns pulse duration was measured, after laser cleaning, demonstrating good photoemission performance for Pb thin films deposited by ultrashort PLD. Moreover, Pb thin film photocathodes have maintained their QE for days, providing excellent chemical stability and durability. These results suggest that Pb thin films deposited on Nb by ultrashort PLD are a noteworthy alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns. Finally, a comparison with the characteristics of Pb films prepared by ns PLD is illustrated and discussed.

  9. Pulsed laser deposition of high Tc superconducting thin films

    International Nuclear Information System (INIS)

    Singh, R.K.; Narayan, J.

    1990-01-01

    This paper reports on the pulsed laser evaporation (PLE) technique for deposition of thin films characterized by a number of unique properties. Based on the experimental characteristics, a theoretical model is developed which considers the formation and anisotropic three dimensional expansion of the laser generated plasma. This model explains most of the experimental features observed in PLE. We have also employed the PLE technique for in-situ fabrication of YBa 2 Cu 3 O 7 superconducting thin films on different substrates in the temperature range of 500--650 degrees C. At temperatures below 600 degrees C, a biased interposing ring between the substrate and the target was found to significantly improve the superconducting properties. The minimum ion channeling yields were between 3--3.5% for films deposited on (100) SrTiO 3 and (100) LaAlO 3 substrates

  10. Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition

    NARCIS (Netherlands)

    Doeswijk, L.M.; de Moor, Hugo H.C.; Rogalla, Horst; Blank, David H.A.

    2002-01-01

    Since most commercially available solar cells are still made from silicon, we are exploring the introduction of passivating qualities in oxides, with the potential to serve as an antireflection coating. Pulsed laser deposition (PLD) was used to deposit TiO2 and SrTiO3 coatings on silicon substrates.

  11. UV pulsed laser deposition of magnetite thin films

    International Nuclear Information System (INIS)

    Parames, M.L.; Mariano, J.; Rogalski, M.S.; Popovici, N.; Conde, O.

    2005-01-01

    Magnetite thin films were grown by pulsed laser deposition in O 2 reactive atmosphere from Fe 3 O 4 targets. The ablated material was deposited onto Si(1 0 0) substrates at various temperatures up to 623 K. The temperature dependence of structure and stoichiometry was investigated by X-ray diffraction (XRD) and conversion electron Moessbauer spectroscopy (CEMS). The XRD results show that films grown between 483 and 623 K are obtained as pure phase magnetite with an estimated average crystallite size increasing from 14 to 35 nm, respectively. This is in agreement with the CEMS spectra analysis, indicating isomer shift and internal field values for both the T d and O h sites close to those reported for the bulk material and a random orientation of the magnetic moments. The influence of the deposition temperature on the estimated Fe (9-x)/3 O 4 stoichiometry is related to an increase in the vacancy concentration from 483 to 623 K

  12. Resonant infrared pulsed laser deposition of a polyimide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Dygert, N L; Schriver, K E; Jr, R F Haglund [Department of Physics and Astronomy and W M Keck Foundation Free-Electron Laser Centre, Vanderbilt University, Nashville TN 37235 (United States)

    2007-04-15

    Poly(amic acid) (PAA), a precursor to polyimide, was successfully deposited on substrates without reaching curing temperature, by resonant infrared pulsed laser ablation. The PAA was prepared by dissolving pyromellitic dianhydride and 4, 4' oxidianiline in the polar solvent Nmethyl pyrrolidinone (NMP). The PAA was deposited in droplet-like morphologies when ablation occurred in air, and in string-like moieties in the case of ablation in vacuum. In the as-deposited condition, the PAA was easily removed by washing with NMP; however, once cured thermally for thirty minutes, the PAA hardened, indicating the expected thermosetting property. Plume shadowgraphy showed very clear contrasts in the ablation mechanism between ablation of the solvent alone and the ablation of the PAA, even at low concentrations. A Wavelength dependence in plume velocity was also observed.

  13. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Duta, L.; Oktar, F.N.; Stan, G.E.; Popescu-Pelin, G.; Serban, N.; Luculescu, C.; Mihailescu, I.N.

    2013-01-01

    Highlights: ► HA coatings synthesized by pulsed laser deposition. ► Comparative study of commercial vs. animal origin materials. ► HA coatings of animal origin were rougher and more adherent to substrates. ► Animal origin films can be considered as promising candidates for implant coatings. - Abstract: We report on the synthesis of novel ovine and bovine derived hydroxyapatite thin films on titanium substrates by pulsed laser deposition for a new generation of implants. The calcination treatment applied to produce the hydroxyapatite powders from ovine/bovine bones was intended to induce crystallization and to prohibit the transmission of diseases. The deposited films were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy. Pull-off adherence and profilometry measurements were also carried out. X-ray diffraction ascertained the polycrystalline hydroxyapatite nature of the powders and films. Fourier transform infrared spectroscopy evidenced the vibrational bands characteristic to a hydroxyapatite material slightly carbonated. The micrographs of the films showed a uniform distribution of spheroidal particulates with a mean diameter of ∼2 μm. Pull-off measurements demonstrated excellent bonding strength values between the hydroxyapatite films and the titanium substrates. Because of their physical–chemical properties and low cost fabrication from renewable resources, we think that these new coating materials could be considered as a prospective competitor to synthetic hydroxyapatite used for implantology applications.

  14. Pulsed laser deposition of ITO thin films and their characteristics

    International Nuclear Information System (INIS)

    Zuev, D. A.; Lotin, A. A.; Novodvorsky, O. A.; Lebedev, F. V.; Khramova, O. D.; Petuhov, I. A.; Putilin, Ph. N.; Shatohin, A. N.; Rumyanzeva, M. N.; Gaskov, A. M.

    2012-01-01

    The indium tin oxide (ITO) thin films are grown on quartz glass substrates by the pulsed laser deposition method. The structural, electrical, and optical properties of ITO films are studied as a function of the substrate temperature, the oxygen pressure in the vacuum chamber, and the Sn concentration in the target. The transmittance of grown ITO films in the visible spectral region exceeds 85%. The minimum value of resistivity 1.79 × 10 −4 Ω cm has been achieved in the ITO films with content of Sn 5 at %.

  15. Thin solid films deposited by pulsed laser ablating spray

    International Nuclear Information System (INIS)

    Song Guangle

    2002-01-01

    The fabricating technique of thin solid films deposited by pulsed laser ablating spray is a new technique. The background from which it came into being and the process of its evolution were briefly described. According to relative documents, basic principle of the technique was dwelt on. Based on the latest documents, the status quo, including the studying abroad and home, was discussed in detail. The advantages, shortcomings, prospect of its utility, the significance of studying as well as critic problems were summarized. Some proposal was suggested

  16. Defects in zinc oxide grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Francis C.C., E-mail: ccling@hku.hk [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Wang, Zilan; Ping Ho, Lok; Younas, M. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Anwand, W.; Wagner, A. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Su, S.C. [Institute of Optoelectronic Material and Technology, South China Normal University, Guangzhou 510631 (China); Shan, C.X. [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2016-01-01

    ZnO films are grown on c-plane sapphire using the pulsed laser deposition method. Systematic studies on the effects of annealing are performed to understand the thermal evolutions of the defects in the films. Particular attention is paid to the discussions of the ZnO/sapphire interface thermal stability, the Zn-vacancy related defects having different microstructures, the origins of the green luminescence (∼2.4–2.5 eV) and the near band edge (NBE) emission at 3.23 eV.

  17. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong [Multimedia University, Centre for Advanced Devices and Systems (CADS), Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Setapak, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-08-15

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm{sup 2} to 8 J/cm{sup 2}. The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  18. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    International Nuclear Information System (INIS)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong; Yong, Thian-Khok; Yap, Seong-Shan

    2010-01-01

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm 2 to 8 J/cm 2 . The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  19. History and current status of commercial pulsed laser deposition equipment

    International Nuclear Information System (INIS)

    Greer, James A

    2014-01-01

    This paper will review the history of the scale-up of the pulsed laser deposition (PLD) process from small areas ∼1 cm 2 up to 10 m 2 starting in about 1987. It also documents the history of commercialization of PLD as various companies become involved in selling fully integrated laser deposition tools starting in 1989. The paper will highlight the current state of the art of commercial PLD equipment for R and D that is available on the market today from mainstream vendors as well as production-oriented applications directed at piezo-electric materials for microelectromechanical systems and high-temperature superconductors for coated-conductor applications. The paper clearly demonstrates that considerable improvements have been made to scaling this unique physical vapour deposition process to useful substrate sizes, and that commercial deposition equipment is readily available from a variety of vendors to address a wide variety of technologically important thin-film applications. (paper)

  20. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  1. Effects of an external magnetic field in pulsed laser deposition

    Science.gov (United States)

    García, T.; de Posada, E.; Villagrán, M.; Ll, J. L. Sánchez; Bartolo-Pérez, P.; Peña, J. L.

    2008-12-01

    Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe 12O 19 target with and without the presence of a nonhomogeneous magnetic field of μ0H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.

  2. Effects of an external magnetic field in pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T. [Universidad Autonoma de la Ciudad de Mexico (UACM), Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, C.P. 09790, Mexico DF (Mexico)], E-mail: tupacgarcia@yahoo.com; Posada, E. de [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico); Villagran, M. [CCADET, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 70-186, C.P. 04510, Mexico DF (Mexico); Ll, J.L. Sanchez [Laboratorio de Magnetismo, Facultad de Fisica-IMRE, Universidad de La Habana, La Habana 10400 (Cuba); Bartolo-Perez, P.; Pena, J.L. [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico)

    2008-12-30

    Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe{sub 12}O{sub 19} target with and without the presence of a nonhomogeneous magnetic field of {mu}{sub 0}H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.

  3. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, K., E-mail: krasa@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Anastasescu, M.; Stroescu, H.; Gartner, M. [Institute of Physical Chemistry, “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2017-02-01

    Highlights: • Study of pulsed laser deposited AlN films at different laser pulse frequencies. • Higher laser pulse frequency promotes nanocrystallites formation at temperature 450 °C. • AFM and GIXRD detect randomly oriented wurtzite AlN structures. • Characterization of the nanocrystallites’ orientation by FTIR reflectance spectra. • Berreman effect is registered in p-polarised radiation at large incidence angles. - Abstract: Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A{sub 1}LO mode frequency was analysed and connected to the orientation of the particles’ optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers’ properties is discussed on this basis.

  4. Properties of pulsed laser deposited NiO/MWCNT thin films

    CSIR Research Space (South Africa)

    Yalisi, B

    2011-05-01

    Full Text Available Pulsed laser deposition (PLD) is a thin-film deposition technique, which uses short and intensive laser pulses to evaporate target material. The technique has been used in this work to produce selective solar absorber (SSA) thin film composites...

  5. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Como, N. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Martinez-Landeros, V. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Mejia, I. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Nascimento, C.D.; Azevedo, G. de M; Krug, C. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900 (Brazil); Quevedo-Lopez, M.A., E-mail: mquevedo@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States)

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10{sup −1} to 10{sup 4} Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10{sup 19} to 10{sup 13} cm{sup −3} and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm{sup 2}/V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10{sup 19} to 10{sup 13} cm{sup −3}. • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied.

  6. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N.; Martinez-Landeros, V.; Mejia, I.; Aguirre-Tostado, F.S.; Nascimento, C.D.; Azevedo, G. de M; Krug, C.; Quevedo-Lopez, M.A.

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10 −1 to 10 4 Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10 19 to 10 13 cm −3 and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm 2 /V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10 19 to 10 13 cm −3 . • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied

  7. Vertically aligned carbon nanotube growth by pulsed laser deposition and thermal chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Sohn, Jung Inn; Nam, Chunghee; Lee, Seonghoon

    2002-01-01

    We have grown vertically aligned carbon nanotubes on the various substrates such as a planar p-type Si(1 0 0) wafer, porous Si wafer, SiO 2 , Si 3 N 4 , Al 2 O 3 , and Cr by thermal chemical vapor deposition (CVD) at 800 deg.C, using C 2 H 2 gas as a carbon source and Fe catalyst films deposited by a pulsed laser on the substrates. The Fe films were deposited for 5 min by pulsed laser deposition (PLD). The advantage of Fe deposition by PLD over other deposition methods lies in the superior adhesion of Fe to a Si substrate due to high kinetic energies of the generated Fe species. Scanning electron microscopy (SEM) images show that vertically well-aligned carbon nanotubes are grown on Fe nanoparticles formed from the thermal annealing of the Fe film deposited by PLD on the various substrates. Atomic force microscopy (AFM) images show that the Fe film annealed at 800 deg.C is broken to Fe nanoparticles of 10-50 nm in size. We show that the appropriate density of Fe nanoparticles formed from the thermal annealing of the film deposited by PLD is crucial in growing vertically aligned carbon nanotubes. Using a PLD and a lift-off method, we developed the selective growth of carbon nanotubes on a patterned Fe-coated Si substrate

  8. Nanostructured high valence silver oxide produced by pulsed laser deposition

    International Nuclear Information System (INIS)

    Dellasega, D.; Facibeni, A.; Di Fonzo, F.; Russo, V.; Conti, C.; Ducati, C.; Casari, C.S.; Li Bassi, A.; Bottani, C.E.

    2009-01-01

    Among silver oxides, Ag 4 O 4 , i.e. high valence Ag(I)Ag(III) oxide, is interesting for applications in high energy batteries and for the development of antimicrobial coatings. We here show that ns UV pulsed laser deposition (PLD) in an oxygen containing atmosphere allows the synthesis of pure Ag 4 O 4 nanocrystalline thin films, permitting at the same time to control the morphology of the material at the sub-micrometer scale. Ag 4 O 4 films with a crystalline domain size of the order of tens of nm can be deposited provided the deposition pressure is above a threshold (roughly 4 Pa pure O 2 or 20 Pa synthetic air). The formation of this particular high valence silver oxide is explained in terms of the reactions occurring during the expansion of the ablated species in the reactive atmosphere. In particular, expansion of the PLD plasma plume is accompanied by formation of low stability Ag-O dimers and atomic oxygen, providing reactive species at the substrate where the film grows. Evidence of reactive collisions in the expanding ablation plume is obtained by analysis of the plume visible shape in inert and reactive atmospheres. In addition, we show how the dimensionless deposition parameter L, relating the target-to-substrate distance to the ablation plume maximum expansion length, can be used to classify different growth regimes. It is thus possible to vary the stoichiometry and the morphology of the films, from compact and columnar to foam-like, by controlling both the gas pressure and the target-to-substrate distance

  9. Nanometer sized structures grown by pulsed laser deposition

    KAUST Repository

    ElZein, Basma

    2015-10-01

    Nanometer sized materials can be produced by exposing a target to a laser source to remove material from the target and deposit the removed material onto a surface of a substrate to grow a thin film in a vacuum chamber

  10. Pulsed Laser Deposition of Tungsten Thin Films on Graphite

    International Nuclear Information System (INIS)

    Kassem, W.; Tabbal, M.; Roumie, M.

    2011-01-01

    Thin coatings of Tungsten were deposited on substrates fabricated by pre-depositing graphite thin layers on Si(100) wafers. We ablate pure W target using a 20 ns KrF excimer laser (248 nm) in an Ar ambient. The effect of background gas pressure, substrate temperature, and laser fluence, on the properties of the deposited W layers is studied using several techniques including X-Ray Diffraction, Atomic Force Microscopy, surface profilometry, and Rutherford Back-Scattering spectrometry. Our results indicate that the deposited layers consist of the well-crystallized body-centered-cubic α-W phase with bulk-like properties, particularly for films deposited at a substrate temperature of 450 0 C, laser fluence greater than 400mJ, and pressure of about 10mTorr. (author)

  11. Modelling of the energy density deposition profiles of ultrashort laser pulses focused in optical media

    International Nuclear Information System (INIS)

    Vidal, F; Lavertu, P-L; Bigaouette, N; Moore, F; Brunette, I; Giguere, D; Kieffer, J-C; Olivie, G; Ozaki, T

    2007-01-01

    The propagation of ultrashort laser pulses in dense optical media is investigated theoretically by solving numerically the nonlinear Schroedinger equation. It is shown that the maximum energy density deposition as a function of the pulse energy presents a well-defined threshold that increases with the pulse duration. As a consequence of plasma defocusing, the maximum energy density deposition is generally smaller and the size of the energy deposition zone is generally larger for shorter pulses. Nevertheless, significant values of the energy density deposition can be obtained near threshold, i.e., at lower energy than for longer pulses

  12. Matrix shaped pulsed laser deposition: New approach to large area and homogeneous deposition

    Energy Technology Data Exchange (ETDEWEB)

    Akkan, C.K.; May, A. [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany); Hammadeh, M. [Department for Obstetrics, Gynecology and Reproductive Medicine, IVF Laboratory, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Abdul-Khaliq, H. [Clinic for Pediatric Cardiology, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Aktas, O.C., E-mail: cenk.aktas@inm-gmbh.de [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany)

    2014-05-01

    Pulsed laser deposition (PLD) is one of the well-established physical vapor deposition methods used for synthesis of ultra-thin layers. Especially PLD is suitable for the preparation of thin films of complex alloys and ceramics where the conservation of the stoichiometry is critical. Beside several advantages of PLD, inhomogeneity in thickness limits use of PLD in some applications. There are several approaches such as rotation of the substrate or scanning of the laser beam over the target to achieve homogenous layers. On the other hand movement and transition create further complexity in process parameters. Here we present a new approach which we call Matrix Shaped PLD to control the thickness and homogeneity of deposited layers precisely. This new approach is based on shaping of the incoming laser beam by a microlens array and a Fourier lens. The beam is split into much smaller multi-beam array over the target and this leads to a homogenous plasma formation. The uniform intensity distribution over the target yields a very uniform deposit on the substrate. This approach is used to deposit carbide and oxide thin films for biomedical applications. As a case study coating of a stent which has a complex geometry is presented briefly.

  13. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present

  14. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  15. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    International Nuclear Information System (INIS)

    Geohegan, D.B.

    1994-01-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume

  16. Ellipsometric study of nanostructured carbon films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Bereznai, M.; Budai, J.; Hanyecz, I.; Kopniczky, J.; Veres, M.; Koos, M.; Toth, Z.

    2011-01-01

    When depositing carbon films by plasma processes the resulting structure and bonding nature strongly depends on the plasma energy and background gas pressure. To produce different energy plasma, glassy carbon targets were ablated by laser pulses of different excimer lasers: KrF (248 nm) and ArF (193 nm). To modify plume characteristics argon atmosphere was applied. The laser plume was directed onto Si substrates, where the films were grown. To evaluate ellipsometric measurements first a combination of the Tauc-Lorentz oscillator and the Sellmeier formula (TL/S) was applied. Effective Medium Approximation models were also used to investigate film properties. Applying argon pressures above 10 Pa the deposits became nanostructured as indicated by high resolution scanning electron microscopy. Above ∼ 100 and ∼ 20 Pa films could not be deposited by KrF and ArF laser, respectively. Our ellipsometric investigations showed, that with increasing pressure the maximal refractive index of both series decreased, while the optical band gap starts with a decrease, but shows a non monotonous course. Correlation between the size of the nanostructures, bonding structure, which was followed by Raman spectroscopy and optical properties were also investigated.

  17. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Teghil, R; De Bonis, A; Galasso, A; Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P

    2008-01-01

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  18. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    International Nuclear Information System (INIS)

    Toftmann, B.; Papantonakis, M.R.; Auyeung, R.C.Y.; Kim, W.; O'Malley, S.M.; Bubb, D.M.; Horwitz, J.S.; Schou, J.; Johansen, P.M.; Haglund, R.F.

    2004-01-01

    A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR-PLD). For the first time resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) was successfully demonstrated on a luminescent polymer system. In addition to this, an excimer laser has been used for UV-MAPLE depositions at 193 and 248-nm irradiation. Films deposited onto NaCl and quartz substrates were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence

  19. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Papantonalis, M.R.; Auyeung, R.C.Y.

    2004-01-01

    -PLD). For the first time resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) was successfully demonstrated on a luminescent polymer system. In addition to this, an excimer laser has been used for UV-MAPLE depositions at 193 and 248-nm irradiation. Films deposited onto NaCl and quartz substrates......A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR...... were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence. (C) 2003...

  20. The influences of target properties and deposition times on pulsed laser deposited hydroxyapatite films

    International Nuclear Information System (INIS)

    Bao Quanhe; Chen Chuanzhong; Wang Diangang; Liu Junming

    2008-01-01

    Hydroxyapatite films were produced by pulsed laser deposition from three kinds of hydroxyapatite targets and with different deposition times. A JXA-8800R electron probe microanalyzer (EPMA) with a Link ISIS300 energy spectrum analyzer was used to give the secondary electron image (SE) and determine the element composition of the films. The phases of thin film were analyzed by a D/max-γc X-ray diffractometer (XRD). The Fourier-transform infrared spectroscopy (FT-IR) was used to characterize the hydroxyl, phosphate and other functional groups. The results show that deposited films were amorphous which mainly composed of droplet-like particles and vibration of PO 4 3- groups. With the target sintering temperature deposition times increasing, the density of droplets is decreased. While with deposition times increasing, the density of droplets is increased. With the target sintering temperature and deposition time increasing, the ratio of Ca/P is increasing and higher than that of theoretical value of HA

  1. Influence of pulse width and target density on pulsed laser deposition of thin YBaCuO film

    International Nuclear Information System (INIS)

    Vikram, S.

    1999-01-01

    We have studied the effects of temporal pulse width and target density on the deposition of thin films of YBaCuO. A 248nm excimer laser and an 825nm Ti-sapphire laser were used to conduct the experiments with pulse widths of 27 ns, 16 ns, and 150 fs, and target densities of 80% and 90%. Scanning electron microscope photomicrographs and profilometer traces show a striking difference between nanosecond and femtosecond laser irradiation. Shortening the pulse width reduced particulate formation, provided stoichiometry, and improved the film properties. Decreasing the target density raised the ablation rate, produced thicker but nonuniform films, and reduced particulate formation

  2. Influence of pulse width and target density on pulsed laser deposition of thin YBaCuO film.

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, S.

    1999-01-20

    We have studied the effects of temporal pulse width and target density on the deposition of thin films of YBaCuO. A 248nm excimer laser and an 825nm Ti-sapphire laser were used to conduct the experiments with pulse widths of 27 ns, 16 ns, and 150 fs, and target densities of 80% and 90%. Scanning electron microscope photomicrographs and profilometer traces show a striking difference between nanosecond and femtosecond laser irradiation. Shortening the pulse width reduced particulate formation, provided stoichiometry, and improved the film properties. Decreasing the target density raised the ablation rate, produced thicker but nonuniform films, and reduced particulate formation.

  3. In-situ CdS/CdTe Heterojuntions Deposited by Pulsed Laser Deposition

    KAUST Repository

    Avila-Avendano, Jesus

    2016-04-09

    In this paper pulsed laser deposition (PLD) methods are used to study p-n CdTe/CdS heterojunctions fabricated in-situ. In-situ film deposition allows higher quality p-n interfaces by minimizing spurious contamination from the atmosphere. Morphologic and structural analyses were carried for CdTe films deposited on various substrates and different deposition conditions. The electrical characteristics and performance of the resulting p-n heterojunctions were studied as function of substrate and post-deposition anneal temperature. In-situ growth results on diodes with a rectification factor of ~ 105, an ideality factor < 2, and a reverse saturation current ~ 10-8 A. The carrier concentration in the CdTe film was in the range of ~ 1015 cm-3, as measured by C-V methods. The possible impact of sulfur diffusion from the CdS into the CdTe film is also investigated using High Resolution Rutherford Back-Scattering.

  4. In-situ CdS/CdTe Heterojuntions Deposited by Pulsed Laser Deposition

    KAUST Repository

    Avila-Avendano, Jesus; Mejia, Israel; Alshareef, Husam N.; Guo, Zaibing; Young, Chadwin; Quevedo-Lopez, Manuel

    2016-01-01

    In this paper pulsed laser deposition (PLD) methods are used to study p-n CdTe/CdS heterojunctions fabricated in-situ. In-situ film deposition allows higher quality p-n interfaces by minimizing spurious contamination from the atmosphere. Morphologic and structural analyses were carried for CdTe films deposited on various substrates and different deposition conditions. The electrical characteristics and performance of the resulting p-n heterojunctions were studied as function of substrate and post-deposition anneal temperature. In-situ growth results on diodes with a rectification factor of ~ 105, an ideality factor < 2, and a reverse saturation current ~ 10-8 A. The carrier concentration in the CdTe film was in the range of ~ 1015 cm-3, as measured by C-V methods. The possible impact of sulfur diffusion from the CdS into the CdTe film is also investigated using High Resolution Rutherford Back-Scattering.

  5. Determination of the Young's modulus of pulsed laser deposited epitaxial PZT thin films

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Woldering, L.A.; Abelmann, Leon; Rijnders, Augustinus J.H.M.; Elwenspoek, Michael Curt

    2011-01-01

    We determined the Young’s modulus of pulsed laser deposited epitaxially grown PbZr0.52Ti0.48O3 (PZT) thin films on microcantilevers by measuring the difference in cantilever resonance frequency before and after deposition. By carefully optimizing the accuracy of this technique, we were able to show

  6. Pure and Sn-doped ZnO films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Holmelund, E.; Schou, Jørgen; Tougaard, S.

    2002-01-01

    A new technique, metronome doping, has been used for doping of films during pulsed laser deposition (PLD). This technique makes it possible to dope continuously during film growth with different concentrations of a dopant in one deposition sequence. Films of pure and doped ZnO have been produced...

  7. Microstructure of pulsed-laser deposited PZT on polished and annealed MGO substrates

    NARCIS (Netherlands)

    King, S.L.; Coccia, L.G.; Gardeniers, Johannes G.E.; Boyd, I.W.

    1996-01-01

    Thin films of Lead-Zirconate-Titanate (PZT) have been grown by pulsed-laser-deposition (PLD) onto polished MgO substrates both with and without pre-annealing. The surface morphology of polished MgO substrates, which are widely used for deposition, is examined by AFM. Commercially available,

  8. Pulsed laser deposition of Tl-Ca-Ba-Cu-O films

    International Nuclear Information System (INIS)

    Ianno, N.J.; Liou, S.H.; Woollam, J.A.; Thompson, D.; Johs, B.

    1990-01-01

    Pulsed laser deposition is a technique commonly used to deposit high quality thin films of high temperature superconductors. This paper discusses the results obtained when this technique is applied to the deposition of Tl-Ca-Ba-Cu-O thin films using a frequency doubled Nd:YAG laser operating at 532 nm and an excimer laser operating at 248 nm. Films with onset temperatures of 125 K and zero resistance temperatures of 110 K deposited on (100) oriented MgO from a composite Tl2Ca2Ba2Cu3Ox target were obtained at both wavelengths upon appropriate post deposition annealing. Films deposited at 532 nm exhibit a rough surface, while those deposited at 248 nm are smooth and homogeneous. Upon annealing, films deposited at both wavelengths are single phase Tl2Ca2Ba2Cu3Ox. 12 refs

  9. WOx cluster formation in radio frequency assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    Filipescu, M.; Ossi, P.M.; Dinescu, M.

    2007-01-01

    The influence of oxygen gas pressure and radio-frequency power on the characteristics of the WO x films produced by laser ablation of a W target at room temperature in oxygen reactive atmosphere were investigated. Changing buffer gas pressure in the hundreds of Pa range affects the bond coordination, roughness and morphology of the deposited films, as investigated by micro-Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The combination of radio-frequency discharge and buffer gas pressure on film nanostructure, as reflected by bond coordination, surface morphology and roughness is discussed

  10. New results in pulsed laser deposition of poly-methyl-methacrylate thin films

    International Nuclear Information System (INIS)

    Cristescu, R.; Socol, G.; Mihailescu, I.N.; Popescu, M.; Sava, F.; Ion, E.; Morosanu, C.O.; Stamatin, I.

    2003-01-01

    Thin organic films based on poly-methyl-methacrylate (PMMA) polymer have been obtained by pulsed laser deposition (PLD) on silicon substrates. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Raman spectroscopy (RS). We observed that the film composition and structure depend on the laser fluence and on the temperature of the substrate during deposition

  11. Comparison of lanthanum substituted bismuth titanate (BLT) thin films deposited by sputtering and pulsed laser deposition

    International Nuclear Information System (INIS)

    Besland, M.P.; Djani-ait Aissa, H.; Barroy, P.R.J.; Lafane, S.; Tessier, P.Y.; Angleraud, B.; Richard-Plouet, M.; Brohan, L.; Djouadi, M.A.

    2006-01-01

    Bi 4-x La x Ti 3 O 12 (BLT x ) (x = 0 to 1) thin films were grown on silicon (100) and platinized substrates Pt/TiO 2 /SiO 2 /Si using RF diode sputtering, magnetron sputtering and pulsed laser deposition (PLD). Stoichiometric home-synthesized targets were used. Reactive sputtering was investigated in argon/oxygen gas mixture, with a pressure ranging from 0.33 to 10 Pa without heating the substrate. PLD was investigated in pure oxygen, at a chamber pressure of 20 Pa for a substrate temperature of 400-440 deg. C. Comparative structural, chemical, optical and morphological characterizations of BLT thin films have been performed by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Photoelectron Spectroscopy (XPS), Spectro-ellipsometric measurements (SE) and Atomic Force Microscopy (AFM). Both sputtering techniques allow to obtain uniform films with thickness ranging from 200 to 1000 nm and chemical composition varying from (Bi,La) 2 Ti 3 O 12 to (Bi,La) 4.5 Ti 3 O 12 , depending on deposition pressure and RF power. In addition, BLT films deposited by magnetron sputtering, at a pressure deposition ranging from 1.1 to 5 Pa, were well-crystallized after a post-deposition annealing at 650 deg. C in oxygen. They exhibit a refractive index and optical band gap of 2.7 and 3.15 eV, respectively. Regarding PLD, single phase and well-crystallized, 100-200 nm thick BLT films with a stoichiometric (Bi,La) 4 Ti 3 O 12 chemical composition were obtained, exhibiting in addition a preferential orientation along (200). It is worth noting that BLT films deposited by magnetron sputtering are as well-crystallized than PLD ones

  12. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  13. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    Science.gov (United States)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  14. The properties of Ge quantum rings deposited by pulsed laser deposition.

    Science.gov (United States)

    Ma, Xiying

    2010-07-01

    SiGe ring-shape nanostructures have attracted much research interest because of the interesting morphology, mechanical, and electromagnetic properties. In this paper, we present the planar Ge nanorings with well-defined sharp edges self-assembled on Si (100) matrix prepared with pulsed laser deposition (PLD) in the present of Ar gas. The transforming mechanism of the droplets is discussed, which a dynamic deformation model has been developed to simulate the self-transforming process of the droplets. The rings were found to be formed in two steps: from droplets to cones and from cones to rings via an elastic self-deforming process, which were likely to be driven by the lateral strain of Ge/Si layers and the surface tension.

  15. Pulsed 1064 nm Nd-YAG Laser Deposition of Titanium on Silicon in a Nitrogen Environment

    Directory of Open Access Journals (Sweden)

    Wilson Garcia

    1999-12-01

    Full Text Available Pulsed laser deposition (PLD technique was demonstrated for the deposition of titanium nitride (TiN thin films on Si (100 substrates. A 1064 nm pulsed Nd-YAG laser is focused on a titanium (99.5% target in a nitrogen environment to generate the atomic flux needed for the film deposition. Spectroscopic analysis of the plasma emission indicates the presence of atomic titanium and nitrogen, which are the precursors of TiN. Images of the films grown at different laser pulse energies show an increase in the number and size of deposited droplets and clusters with increasing laser pulse energy. A decrease in cluster and droplet size is also observed, with an increase in substrate temperature. EDS data show an increase in the titanium peak relative to the silicon as the ambient nitrogen pressure is decreased. An increase in deposition time was found to result in large clusters and irregularly shaped structures on the substrate. Post-deposition annealing of the samples enhanced the crystallinity of the film.

  16. Morphology and structural studies of WO_3 films deposited on SrTiO_3 by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kalhori, Hossein; Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael; Ranjbar, Mehdi; Salamati, Hadi

    2016-01-01

    Highlights: • Highly oriented WO_3 stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO_3 films at 700 °C from monoclinic to tetragonal. - Abstract: WO_3 films have been grown by pulsed laser deposition on SrTiO_3 (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  17. Characterization of ethylcellulose and hydroxypropyl methylcellulose thin films deposited by matrix-assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Palla-Papavlu, A., E-mail: apalla@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, Magurele, RO-077125 Bucharest (Romania); Rusen, L.; Dinca, V.; Filipescu, M. [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, Magurele, RO-077125 Bucharest (Romania); Lippert, T. [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen PSI (Switzerland); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, Magurele, RO-077125 Bucharest (Romania)

    2014-05-01

    In this study is reported the deposition of hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) by matrix-assisted pulsed laser evaporation (MAPLE). Both HPMC and EC were deposited on silicon substrates using a Nd:YAG laser (266 nm, 5 ns laser pulse and 10 Hz repetition rate) and then characterized by atomic force microscopy and Fourier transform infrared spectroscopy. It was found that for laser fluences up to 450 mJ/cm{sup 2} the structure of the deposited HPMC and EC polymer in the thin film resembles to the bulk. Morphological investigations reveal island features on the surface of the EC thin films, and pores onto the HPMC polymer films. The obtained results indicate that MAPLE may be an alternative technique for the fabrication of new systems with desired drug release profile.

  18. Applications of interface controlled pulsed-laser deposited polymer films in field-effect transistors

    Science.gov (United States)

    Adil, Danish; Ukah, Ndubuisi; Guha, Suchi; Gupta, Ram; Ghosh, Kartik

    2010-03-01

    Matrix assisted pulsed laser evaporation, a derivative of pulsed laser deposition (PLD), is an alternative method of depositing polymer and biomaterial films that allows homogeneous film coverage of high molecular weight organic materials for layer-by-layer growth without any laser induced damage. Polyfluorene (PF)-based conjugated polymers have attracted considerable attention in organic field-effect transistors (FETs). A co-polymer of PF (PFB) was deposited as a thin film using matrix assisted PLD employing a KrF excimer laser. Electrical characteristics of FETs fabricated using these PLD grown films were compared to those of FETs using spin-coated films. We show that threshold voltages, on/off ratios, and charge carrier motilities are significantly improved in PLD grown films. This is attributed to an improved dielectric-polymer interface.

  19. Characterization of ethylcellulose and hydroxypropyl methylcellulose thin films deposited by matrix-assisted pulsed laser evaporation

    Science.gov (United States)

    Palla-Papavlu, A.; Rusen, L.; Dinca, V.; Filipescu, M.; Lippert, T.; Dinescu, M.

    2014-05-01

    In this study is reported the deposition of hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) by matrix-assisted pulsed laser evaporation (MAPLE). Both HPMC and EC were deposited on silicon substrates using a Nd:YAG laser (266 nm, 5 ns laser pulse and 10 Hz repetition rate) and then characterized by atomic force microscopy and Fourier transform infrared spectroscopy. It was found that for laser fluences up to 450 mJ/cm2 the structure of the deposited HPMC and EC polymer in the thin film resembles to the bulk. Morphological investigations reveal island features on the surface of the EC thin films, and pores onto the HPMC polymer films. The obtained results indicate that MAPLE may be an alternative technique for the fabrication of new systems with desired drug release profile.

  20. Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Crovetto, Andrea; Yan, Chang

    2017-01-01

    We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed. At the ......We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed...

  1. Deposition of superconducting (Cu, C)-Ba-O films by pulsed laser deposition at moderate temperature

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuro; Kikunaga, Kazuya; Obara, Kozo; Terada, Norio; Kikuchi, Naoto; Tanaka, Yasumoto; Tokiwa, Kazuyasu; Watanabe, Tsuneo; Sundaresan, Athinarayanan; Shipra

    2007-01-01

    Superconducting (Cu, C)-Ba-O thin films have been epitaxially grown on (100) SrTiO 3 at a low growth temperature of 500-600 deg. C by pulsed laser deposition. The dependences of their crystallinity and transport properties on preparation conditions have been investigated in order to clarify the dominant parameters for carbon incorporation and the emergence of superconductivity. It has been revealed that the CO 3 content in the films increases with increasing both the parameters of partial pressure of CO 2 during film growth and those of growth rate and enhancement of superconducting properties. The present study has also revealed that the structural and superconducting properties of the (Cu, C)-Ba-O films are seriously deteriorated by the irradiation of energetic particles during deposition. Suppression of the radiation damage is another key for a high and uniform superconducting transition. By these optimizations, a superconducting onset temperature above 50 K and a zero-resistance temperature above 40 K have been realized

  2. Au nanostructure fabrication by pulsed laser deposition in open air: Influence of the deposition geometry

    Directory of Open Access Journals (Sweden)

    Rumen G. Nikov

    2017-11-01

    Full Text Available We present a fast and flexible method for the fabrication of Au nanocolumns. Au nanostructures were produced by pulsed laser deposition in air at atmospheric pressure. No impurities or Au compounds were detected in the resulting samples. The nanoparticles and nanoaggregates produced in the ablated plasma at atmospheric pressure led to the formation of chain-like nanostructures on the substrate. The dependence of the surface morphology of the samples on the deposition geometry used in the experimental set up was studied. Nanocolumns of different size and density were produced by varying the angle between the plasma plume and the substrate. The electrical, optical, and hydrophobic properties of the samples were studied and discussed in relation to their morphology. All of the nanostructures were conductive, with conductivity increasing with the accumulation of ablated material on the substrate. The modification of the electrical properties of the nanostructures was demonstrated by irradiation by infrared light. The Au nanostructures fabricated by the proposed technology are difficult to prepare by other methods, which makes the simple implementation and realization in ambient conditions presented in this work more ideal for industrial applications.

  3. X-ray absorption study of silicon carbide thin film deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Monaco, G.; Suman, M.; Garoli, D.; Pelizzo, M.G.; Nicolosi, P.

    2011-01-01

    Silicon carbide (SiC) is an important material for several applications ranging from electronics to Extreme UltraViolet (EUV) space optics. Crystalline cubic SiC (3C-SiC) has a wide band gap (near 2.4 eV) and it is a promising material to be used in high frequency and high energetic electronic devices. We have deposited, by means of pulsed laser deposition (PLD), different SiC films on sapphire and silicon substrates both at mild (650 o C) and at room temperature. The resulted films have different structures such as: highly oriented polycrystalline, polycrystalline and amorphous which have been studied by means of X-ray absorption spectroscopy (XAS) near the Si L 2,3 edge and the C K edge using PES (photoemission spectroscopy) for the analysis of the valence bands structure and film composition. The samples obtained by PLD have shown different spectra among the grown films, some of them showing typical 3C-SiC absorption structure, but also the presence of some Si-Si and graphitic bonds.

  4. Au nanostructure fabrication by pulsed laser deposition in open air: Influence of the deposition geometry.

    Science.gov (United States)

    Nikov, Rumen G; Dikovska, Anna Og; Nedyalkov, Nikolay N; Avdeev, Georgi V; Atanasov, Petar A

    2017-01-01

    We present a fast and flexible method for the fabrication of Au nanocolumns. Au nanostructures were produced by pulsed laser deposition in air at atmospheric pressure. No impurities or Au compounds were detected in the resulting samples. The nanoparticles and nanoaggregates produced in the ablated plasma at atmospheric pressure led to the formation of chain-like nanostructures on the substrate. The dependence of the surface morphology of the samples on the deposition geometry used in the experimental set up was studied. Nanocolumns of different size and density were produced by varying the angle between the plasma plume and the substrate. The electrical, optical, and hydrophobic properties of the samples were studied and discussed in relation to their morphology. All of the nanostructures were conductive, with conductivity increasing with the accumulation of ablated material on the substrate. The modification of the electrical properties of the nanostructures was demonstrated by irradiation by infrared light. The Au nanostructures fabricated by the proposed technology are difficult to prepare by other methods, which makes the simple implementation and realization in ambient conditions presented in this work more ideal for industrial applications.

  5. Heating effect of substrate of pulsed laser ablation deposition technique towards the orientation of carbon microstructure

    International Nuclear Information System (INIS)

    Choy, L.S.; Irmawati Ramli; Noorhana Yahya; Abdul Halim Shaari

    2009-01-01

    Full text: Carbon thin film has been successfully deposited by second harmonic Nd:YAG pulsed laser ablation deposition, PLAD. The topology and morphology of the deposited layers was studied by scanning electron microscopy (SEM) whereas emission dispersion X-ray (EDX) was used to determine the existence of elements that constitutes the microstructure. Substrate heated at 500 degree Celsius during the laser ablation showed the most homogenous lollipop microstructure as compared to mainly pillars of microstructure ablated at lower substrate temperature. It is found that this also avoid further diffusion of carbon into catalyst in forming iron carbide. (author)

  6. Pulsed laser deposition to synthesize the bridge structure of artificial nacre: Comparison of nano- and femtosecond lasers

    Science.gov (United States)

    Melaibari, Ammar A.; Molian, Pal

    2012-11-01

    Nature offers inspiration to new adaptive technologies that allow us to build amazing shapes and structures such as nacre using synthetic materials. Consequently, we have designed a pulsed laser ablation manufacturing process involving thin film deposition and micro-machining to create hard/soft layered "brick-bridge-mortar" nacre of AlMgB14 (hard phase) with Ti (soft phase). In this paper, we report pulsed laser deposition (PLD) to mimic brick and bridge structures of natural nacre in AlMgB14. Particulate formation inherent in PLD is exploited to develop the bridge structure. Mechanical behavior analysis of the AlMgB14/Ti system revealed that the brick is to be 250 nm thick, 9 μm lateral dimensions while the bridge (particle) is to have a diameter of 500 nm for a performance equivalent to natural nacre. Both nanosecond (ns) and femtosecond (fs) pulsed lasers were employed for PLD in an iterative approach that involves varying pulse energy, pulse repetition rate, and target-to-substrate distance to achieve the desired brick and bridge characteristics. Scanning electron microscopy, x-ray photoelectron spectroscopy, and optical profilometer were used to evaluate the film thickness, particle size and density, stoichiometry, and surface roughness of thin films. Results indicated that both ns-pulsed and fs-pulsed lasers produce the desired nacre features. However, each laser may be chosen for different reasons: fs-pulsed laser is preferred for much shorter deposition time, better stoichiometry, uniform-sized particles, and uniform film thickness, while ns-pulsed laser is favored for industrial acceptance, reliability, ease of handling, and low cost.

  7. Field emission study of pulsed laser deposition of gold on clean and oxidized tungsten tip

    Czech Academy of Sciences Publication Activity Database

    Plšek, Jan

    2014-01-01

    Roč. 292, FEB 2014 (2014), s. 717-725 ISSN 0169-4332 R&D Projects: GA MŠk LH13022 Institutional support: RVO:61388955 Keywords : nanoparticles * nucleation and growth * pulsed laser deposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.711, year: 2014

  8. Deposition of zinc oxide thin films by reactive pulsed laser ablation

    Czech Academy of Sciences Publication Activity Database

    Bílková, Petra; Zemek, Josef; Mitu, B.; Marotta, V.; Orlando, S.

    2006-01-01

    Roč. 252, - (2006), s. 4604-4609 ISSN 0169-4332 Grant - others:NATO-CNR Outreach Fellowships Programm 2001(XE) 219.34 Institutional research plan: CEZ:AV0Z10100521 Keywords : reactive pulsed laser deposition * zinc oxide * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.436, year: 2006

  9. Pulsed laser deposited KY3F10: Ho3+ thin films: Influence of target to substrate

    CSIR Research Space (South Africa)

    Debelo, NG

    2017-04-01

    Full Text Available The influence of target to substrate distance (dts) on the structural, morphological and photoluminescence (PL) properties of commercially obtained KY3F10 : Ho3+ phosphor thin films prepared by pulsed laser deposition is investigated for dts values...

  10. The minimum amount of "matrix " needed for matrix-assisted pulsed laser deposition of biomolecules

    DEFF Research Database (Denmark)

    Tabetah, Marshall; Matei, Andreea; Constantinescu, Catalin

    2014-01-01

    The ability of matrix-assisted pulsed laser evaporation (MAPLE) technique to transfer and deposit high-quality thin organic, bioorganic, and composite films with minimum chemical modification of the target material has been utilized in numerous applications. One of the outstanding problems in MAPLE...

  11. Optical Emission Spectroscopy of Plasma in Hybrid Pulsed Laser Deposition System

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Jelínek, Miroslav; Bulíř, Jiří; Lančok, Ján; Jastrabík, Lubomír; Zelinger, Zdeněk

    2002-01-01

    Roč. 52, Suppl. D (2002), s. 292-298 ISSN 0011-4626 R&D Projects: GA AV ČR IAA1010110 Keywords : optical emission spectroscopy * pulsed laser deposition * RF discharge Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.311, year: 2002

  12. Structural and magnetic properties of Gd/Fe multilayers grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Bahl, Christian Robert Haffenden; Pryds, Nini

    2010-01-01

    This work investigates the structural and the magnetic properties of Gd/Fe multilayered thin films grown by pulsed laser deposition onto Si (001) substrates at room temperature. he Fe layer thickness is varied from 70 to 150 nm and its effect on the structural and magnetic properties of Fe/Gd/Fe ...

  13. High Quality Zinc Oxide Thin films and Nanostructures Prepared by Pulsed Laser Deposition for Photodetectors

    KAUST Repository

    Flemban, Tahani H.

    2017-01-01

    is attributed to defect/impurity bands mediated by Gd dopants. In this dissertation, I study the effects of Gd concentration, oxygen pressure using pulsed laser deposition (PLD), and thermal annealing on the optical and structural properties of undoped and Gd

  14. Electronic properties of p-GaAs deposited on n-Si with pulsed-laser deposition

    International Nuclear Information System (INIS)

    Ullrich, B; Erlacher, A; Smith, H E; Mitchel, W C; Brown, G J

    2008-01-01

    By means of nanosecond laser pulses at 355, 532, and 1064 nm, p(Zn)-type GaAs was ablated and deposited on n-type Si. The samples showed rectification and Hall measurements established that the deposited material was p-type, but the active-doping concentration was six orders of magnitude below the target value. Because secondary-ion mass spectroscopy results indicated stoichiometric material transfer, we concluded that most of the Zn atoms do not act as acceptors because of the amorphous film texture. The work further showed indications that pulsed-laser deposition at 355 nm causes enhanced Si diffusion into the deposited film, compared to the ablations done at 532 and 1064 nm

  15. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2017-07-01

    Full Text Available We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD incorporated with radio-frequency (r.f.-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr. High oxygen vapor pressure (150 mTorr and low r.f. power (10 W are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  16. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Science.gov (United States)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  17. Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, C.A., E-mail: smythc2@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Mirza, I.; Lunney, J.G.; McCabe, E.M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Pulsed laser deposition (PLD) produces silver nanoparticle films. Black-Right-Pointing-Pointer These films can be used for surface-enhanced Raman spectroscopy (SERS). Black-Right-Pointing-Pointer Commercial film shows good SERS reproducibility but poor signal intensity. Black-Right-Pointing-Pointer PLD shows a good SERS response coupled with good reproducibility. - Abstract: Thin silver nanoparticle films, of thickness 7 nm, were deposited onto glass microslides using pulsed laser deposition (PLD). The films were then characterised using UV-vis spectroscopy and scanning transmission electron microscopy before Rhodamine 6G was deposited onto them for investigation using surface-enhanced Raman spectroscopy (SERS). The sensitivity obtained using SERS was compared to that obtained using a colloidal silver suspension and also to a commercial SERS substrate. The reproducibility of the films is also examined using statistical analysis.

  18. Pulsed Laser Deposition of BaTiO3 Thin Films on Different Substrates

    Directory of Open Access Journals (Sweden)

    Yaodong Yang

    2010-01-01

    Full Text Available We have studied the deposition of BaTiO3 (BTO thin films on various substrates. Three representative substrates were selected from different types of material systems: (i SrTiO3 single crystals as a typical oxide, (ii Si wafers as a semiconductor, and (iii Ni foils as a magnetostrictive metal. We have compared the ferroelectric properties of BTO thin films obtained by pulsed laser deposition on these diverse substrates.

  19. Epitaxial growth of atomically flat gadolinia-doped ceria thin films by pulsed laser deposition

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini; Schou, Jørgen

    the preparation of ultrathin seed layers in the first stage of the deposition process is often envisaged to control the growth and physical properties of the subsequent coating. This work suggests that the limitations of conventional pulsed laser deposition (PLD), performed at moderate temperature (400°C......10 layers with a thickness of 4 nm, 13 nm and 22 nm, respectively, grown on Mg(100), were studied by atomic force microscopy and X-ray reflectometry....

  20. Pulsed laser deposition of Cu-Sn-S for thin film solar cells

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt; Crovetto, Andrea; Bosco, Edoardo

    Thin films of copper tin sulfide were deposited from a target of the stoichiometry Cu:Sn:S ~1:2:3 using pulsed laser deposition (PLD). Annealing with S powder resulted in films close to the desired Cu2SnS3 stoichiometry although the films remained Sn rich. Xray diffraction showed that the final...... films contained both cubic-phase Cu2SnS3 and orthorhombic-phase SnS...

  1. Defect studies of thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Vlček, M; Čížek, J; Procházka, I; Novotný, M; Bulíř, J; Lančok, J; Anwand, W; Brauer, G; Mosnier, J-P

    2014-01-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  2. Ga–Ge–Te amorphous thin films fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Němec, P.; Nazabal, V.; Dussauze, M.; Ma, H.-L.; Bouyrie, Y.; Zhang, X.-H.

    2013-01-01

    UV pulsed laser deposition was employed for the fabrication of amorphous Ga–Ge–Te thin films. The local structure of the bulk glasses as well as corresponding thin films was studied using Raman scattering spectroscopy; the main structural motifs were found to be [GeTe 4 ], eventually [GaTe 4 ] corner-sharing tetrahedra and disordered Te chains. Optical functions of the films (refractive index, extinction coefficient) were characterized by variable angle spectroscopic ellipsometry. Photostability experiments showed all Ga–Ge–Te laser deposited films to be stable against 1550 nm laser irradiation in an as-deposited state. In an annealed state, the most photostable composition seems to be Ga 10 Ge 15 Te 75 . This particular composition was further studied from the point of view of thermal stability and stability against ageing in as-deposited state. - Highlights: ► Pulsed laser deposition was used for fabrication of amorphous Ga–Ge–Te thin films. ► GeTe 4 , eventually GaTe 4 tetrahedra and disordered Te chains form the film structure. ► Optical functions of Ge–Ga–Te films were characterized by spectroscopic ellipsometry. ► All as-deposited Ga–Ge–Te thin films are stable against 1550 nm irradiation. ► In annealed state, the most photostable composition seems to be Ga 10 Ge 15 Te 75

  3. Pulsed Laser Deposition of Polymers Doped with Fluorescent Probes. Application to Environmental Sensors

    International Nuclear Information System (INIS)

    Rebollar, E; Villavieja, Mm; Gaspard, S; Oujja, M; Corrales, T; Georgiou, S; Domingo, C; Bosch, P; Castillejo, M

    2007-01-01

    Pulsed laser deposition (PLD) has been used to obtain thin films of poly(methyl methacrylate) and polystyrene doped with fluorescent probes, amino aromatic compounds S5 and S6, that could be used to sense the presence of contaminating environmental agents. These dopants both in solution and inserted in polymeric films are sensitive to changes in pH, viscosity and polarity, increasing their fluorescence emission and/or modifying the position of their emission band. Films deposits on quartz substrates, obtained by irradiating targets with a Ti:Sapphire laser (800 nm, 120 fs pulse) were analyzed by optical and Environmental Scanning Electron Microscopy, Fluorescence Microscopy, Laser-Induced Fluorescence, Micro Raman Spectroscopy and Flow Injection Analysis-Mass Spectrometry. The transfer of the polymer and the probe to the substrate is observed to be strongly dependent on the optical absorption coefficient of the polymeric component of the target at the irradiation wavelength

  4. Pulsed laser deposition of the lysozyme protein: an unexpected “Inverse MAPLE” process

    DEFF Research Database (Denmark)

    Schou, Jørgen; Matei, Andreea; Constantinescu, Catalin

    2012-01-01

    Films of organic materials are commonly deposited by laser assisted methods, such as MAPLE (matrix-assisted pulsed laser evaporation), where a few percent of the film material in the target is protected by a light-absorbing volatile matrix. Another possibility is to irradiate the dry organic...... the ejection and deposition of lysozyme. This can be called an “inverse MAPLE” process, since the ratio of “matrix” to film material in the target is 10:90, which is inverse of the typical MAPLE process where the film material is dissolved in the matrix down to several wt.%. Lysozyme is a well-known protein...

  5. BN-based nano-composites obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Major, B.; Kosydar, R.; Major, L; Mroz, W.; Burdynska, S.; Jelinek, M.; Kot, M.; Kustosz, R.

    2006-01-01

    Boron nitride thin layers were produced by means of the pulsed laser deposition technique from hexagonal boron nitride target. Two types of laser i.e. Nd: YAG with Q-switch as well as KrF coupled with RF generator were used. Influence of deposition parameters on surface morphology, phase composition as well as mechanical properties is discussed. Results obtained using Fourier Transformed Infrared Spectroscopy, Transmission and Scanning Electron Microscopy, Atomic Force Microscopy are presented. Micromechanical properties measured during micro indentation, scratch and wear tests are also shown. (authors)

  6. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition

    Science.gov (United States)

    Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2015-07-01

    Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ~21% and 3-4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications.

  7. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W; Decker, Ulrich; Rauschenbach, Bernd

    2015-01-01

    Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ∼21% and 3–4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications. (paper)

  8. Energy and dose characteristics of ion bombardment during pulsed laser deposition of thin films under pulsed electric field

    International Nuclear Information System (INIS)

    Fominski, V.Yu.; Nevolin, V.N.; Smurov, I.

    2004-01-01

    Experiments on pulsed laser deposition of Fe films on Si substrates were performed with the aim to analyze the role of factors determining the formation of an energy spectrum and a dose of ions bombarding the film in strong pulsed electric fields. The amplitude of the high-voltage pulse (-40 kV) applied to the substrate and the laser fluence at the Fe target were fixed during the deposition. Owing to the high laser fluence (8 J/cm 2 ) at a relatively low power (20 mJ), the ionization of the laser plume was high, but the Fe vapor pressure near the substrate was low enough to avoid arcing. Electric signals from a target exposed to laser radiation were measured under different conditions (at different delay times) of application of electric pulses. The Si(100) substrates were analyzed using Rutherford ion backscattering/channeling spectrometry. The ion implantation dose occurred to be the highest if the high-voltage pulse was applied at a moment of time when the ion component of the plume approached the substrate. In this case, the implanted ions had the highest energy determined by the amplitude of the electric pulse. An advance or delay in applying a high-voltage pulse caused the ion dose and energy to decrease. A physical model incorporating three possible modes of ion implantation was proposed for the interpretation of the experimental results. If a laser plume was formed in the external field, ions were accelerated from the front of the dense plasma, and the ion current depended on the gas-dynamic expansion of the plume. The application of a high-voltage pulse, at the instant when the front approached the substrate, maintained the mode that was characteristic of the traditional plasma immersion ion implantation, and the ion current was governed by the dynamics of the plasma sheath in the substrate-to-target gap. In the case of an extremely late application of a high-voltage pulse, ions retained in the entire volume of the experimental chamber (as a result of the

  9. Pulsed laser deposition of AlMgB14 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Britson, Jason Curtis [Iowa State Univ., Ames, IA (United States)

    2008-11-18

    Hard, wear-resistant coatings of thin film borides based on AlMgB14 have the potential to be applied industrially to improve the tool life of cutting tools and pump vanes and may account for several million dollars in savings as a result of reduced wear on these parts. Past work with this material has shown that it can have a hardness of up to 45GPa and be fabricated into thin films with a similar hardness using pulsed laser deposition. These films have already been shown to be promising for industrial applications. Cutting tools coated with AlMgB14 used to mill titanium alloys have been shown to substantially reduce the wear on the cutting tool and extend its cutting life. However, little research into the thin film fabrication process using pulsed laser deposition to make AlMgB14 has been conducted. In this work, research was conducted into methods to optimize the deposition parameters for the AlMgB14 films. Processing methods to eliminate large particles on the surface of the AlMgB14 films, produce films that were at least 1m thick, reduce the surface roughness of the films, and improve the adhesion of the thin films were investigated. Use of a femtosecond laser source rather than a nanosecond laser source was found to be effective in eliminating large particles considered detrimental to wear reduction properties from the films. Films produced with the femtosecond laser were also found to be deposited at a rate 100 times faster than those produced with the nanosecond laser. However, films produced with the femtosecond laser developed a relatively high RMS surface roughness around 55nm. Attempts to decrease the surface roughness were largely unsuccessful. Neither increasing the surface temperature of the substrate during deposition nor using a double pulse to ablate the material was found to be extremely successful to reduce the surface roughness. Finally, the adhesion of the thin films to M2 tool steel

  10. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Craciun, D., E-mail: doina.craciun@inflpr.ro [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Socol, G. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Lambers, E. [Major Analytical Instrumentation Center, College of Engineering, University of Florida, Gainesville, FL 32611 (United States); McCumiskey, E.J.; Taylor, C.R. [Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States); Martin, C. [Ramapo College of New Jersey (United States); Argibay, N. [Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, NM 87123 (United States); Tanner, D.B. [Physics Department, University of Florida, Gainesville, FL 32611 (United States); Craciun, V. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania)

    2015-10-15

    Highlights: • Nanocrystalline ZrC thin film were grown on Si by pulsed laser deposition technique. • Structural properties weakly depend on the CH{sub 4} pressure used during deposition. • The optimum deposition pressure for low resistivity is around 2 × 10{sup −5} mbar CH{sub 4}. • ZrC films exhibited friction coefficients around 0.4 and low wear rates. - Abstract: Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH{sub 4} pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH{sub 4} pressures exhibited slightly higher nanohardness and Young modulus values than films deposited under higher pressures. Tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.

  11. Pulsed laser deposition of SrRuO3 thin-films: The role of the pulse repetition rate

    Directory of Open Access Journals (Sweden)

    H. Schraknepper

    2016-12-01

    Full Text Available SrRuO3 thin-films were deposited with different pulse repetition rates, fdep, epitaxially on vicinal SrTiO3 substrates by means of pulsed laser deposition. The measurement of several physical properties (e.g., composition by means of X-ray photoelectron spectroscopy, the out-of-plane lattice parameter, the electric conductivity, and the Curie temperature consistently reveals that an increase in laser repetition rate results in an increase in ruthenium deficiency in the films. By the same token, it is shown that when using low repetition rates, approaching a nearly stoichiometric cation ratio in SrRuO3 becomes feasible. Based on these results, we propose a mechanism to explain the widely observed Ru deficiency of SrRuO3 thin-films. Our findings demand these theoretical considerations to be based on kinetic rather than widely employed thermodynamic arguments.

  12. Modified Stranski-Krastanov growth in Ge/Si heterostructures via nanostenciled pulsed laser deposition.

    Science.gov (United States)

    MacLeod, J M; Cojocaru, C V; Ratto, F; Harnagea, C; Bernardi, A; Alonso, M I; Rosei, F

    2012-02-17

    The combination of nanostenciling with pulsed laser deposition (PLD) provides a flexible, fast approach for patterning the growth of Ge on Si. Within each stencilled site, the morphological evolution of the Ge structures with deposition follows a modified Stranski-Krastanov (SK) growth mode. By systematically varying the PLD parameters (laser repetition rate and number of pulses) on two different substrate orientations (111 and 100), we have observed corresponding changes in growth morphology, strain and elemental composition using scanning electron microscopy, atomic force microscopy and μ-Raman spectroscopy. The growth behaviour is well predicted within a classical SK scheme, although the Si(100) growth exhibits significant relaxation and ripening with increasing coverage. Other novel aspects of the growth include the increased thickness of the wetting layer and the kinetic control of Si/Ge intermixing via the PLD repetition rate.

  13. Effects of oxygen gas pressure on properties of iron oxide films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Guo, Qixin; Shi, Wangzhou; Liu, Feng; Arita, Makoto; Ikoma, Yoshifumi; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro

    2013-01-01

    Highlights: ► Pulsed laser deposition is a promising technique for growing iron oxide films. ► Crystal structure of the iron oxide films strongly depends on oxygen gas pressure. ► Optimum of the oxygen gas pressure leads single phase magnetite films with high crystal quality. -- Abstract: Iron oxide films were grown on sapphire substrates by pulsed laser deposition at oxygen gas pressures between 1 × 10 −5 and 1 × 10 −1 Pa with a substrate temperature of 600 °C. Atomic force microscope, X-ray diffraction, Raman spectroscopy, X-ray absorption fine structure, and vibrational sample magnetometer analysis revealed that surface morphology and crystal structure of the iron oxide films strongly depend on the oxygen gas pressure during the growth and the optimum oxygen gas pressure range is very narrow around 1 × 10 −3 Pa for obtaining single phase magnetite films with high crystal quality

  14. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    Energy Technology Data Exchange (ETDEWEB)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A [Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ovsianikov, A; Chichkov, B N [Laser Zentrum Hannover, Hollerithallee 8, 30419 Hannover (Germany); Stafslien, S; Chisholm, B, E-mail: roger_narayan@msn.co [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States)

    2009-12-15

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  15. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    International Nuclear Information System (INIS)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A; Ovsianikov, A; Chichkov, B N; Stafslien, S; Chisholm, B

    2009-01-01

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  16. Chromium-doped diamond-like carbon films deposited by dual-pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Písařík, Petr; Jelínek, Miroslav; Kocourek, Tomáš; Zezulová, M.; Remsa, Jan; Jurek, Karel

    2014-01-01

    Roč. 117, č. 1 (2014), s. 83-88 ISSN 0947-8396 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : diamond like carbon * chromium * contact angle * surface free energy * dual laser deposition * zeta potential Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2014

  17. Surface modification of biomaterials by pulsed laser ablation deposition and plasma/gamma polymerization

    Science.gov (United States)

    Rau, Kaustubh R.

    Surface modification of stainless-steel was carried out by two different methods: pulsed laser ablation deposition (PLAD) and a combined plasma/gamma process. A potential application was the surface modification of endovascular stents, to enhance biocompatibility. The pulsed laser ablation deposition process, had not been previously reported for modifying stents and represented a unique and potentially important method for surface modification of biomaterials. Polydimethylsiloxane (PDMS) elatomer was studied using the PLAD technique. Cross- linked PDMS was deemed important because of its general use for biomedical implants and devices as well as in other fields. Furthermore, PDMS deposition using PLAD had not been previously studied and any information gained on its ablation characteristics could be important scientifically and technologically. The studies reported here showed that the deposited silicone film properties had a dependence on the laser energy density incident on the target. Smooth, hydrophobic, silicone-like films were deposited at low energy densities (100-150 mJ/cm2). At high energy densities (>200 mJ/cm2), the films had an higher oxygen content than PDMS, were hydrophilic and tended to show a more particulate morphology. It was also determined that (1)the deposited films were stable and extremely adherent to the substrate, (2)silicone deposition exhibited an `incubation effect' which led to the film properties changing with laser pulse number and (3)films deposited under high vacuum were similar to films deposited at low vacuum levels. The mechanical properties of the PLAD films were determined by nanomechanical measurements which are based on the Atomic Force Microscope (AFM). From these measurements, it was possible to determine the modulus of the films and also study their scratch resistance. Such measurement techniques represent a significant advance over current state-of-the-art thin film characterization methods. An empirical model for

  18. Silver-doped layers of implants prepared by pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Kocourek, Tomáš; Jelínek, Miroslav; Mikšovský, Jan; Jurek, Karel; Čejka, Z.; Kopeček, Jaromír

    2013-01-01

    Roč. 1, č. 7 (2013), s. 59-61 ISSN 2327-5219 R&D Projects: GA AV ČR KAN300100801 Institutional support: RVO:68378271 Keywords : thin layer * silver * titanium alloy * steel * pulsed laser deposition * adhesion * implant Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.scirp.org/journal/PaperInformation.aspx?paperID=40308#.UvECAfu5dHA

  19. Hydrating behavior of Mg-based nano-layers prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wioniewski, Z; Bystrzycki, J; Mroz, W; Jastrzabski, C

    2009-01-01

    The hydriding behavior of Mg with TiO 2 and Si nanolayers prepared by the pulsed laser deposition (PLD) was studied. The phase structure, chemical composition and hydriding properties of the obtained Mg-based nanolayers were investigated by the XRD, TEM, AFM, RS, SIMS and the volumetric Sievert method. It was shown that PLD is an excellent technique for producing the complex structures based on Mg. Both, the kinetic and destabilization topics were investigated in this paper.

  20. Optical Characterization of SERS Substrates Based on Porous Au Films Prepared by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    V. V. Strelchuk

    2015-01-01

    Full Text Available The SERS (surface enhanced Raman spectroscopy substrates based on nanocomposite porous films with gold nanoparticles (Au NPs arrays were formed using the method of the pulsed laser deposition from the back low-energy flux of erosion torch particles on the glass substrate fixed at the target plain. The dependencies of porosity, and morphology of the surface of the film regions located near and far from the torch axis on the laser ablation regime, laser pulses energy density, their number, and argon pressure in the vacuum chamber, were ascertained. The Au NPs arrays with the controllable extinction spectra caused by the local surface plasmon resonance were prepared. The possibility of the formation of SERS substrates for the detection of the Rhodamine 6G molecules with the concentration 10−10 Mol/L with the enhancement factor 4·107 was shown.

  1. Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition

    DEFF Research Database (Denmark)

    Bodea, M. A.; Sbarcea, G.; Naik, G. V.

    2013-01-01

    Aluminum and gallium doped zinc oxide thin films with negative dielectric permittivity in the near infrared spectral range are grown by pulsed laser deposition. Composite ceramics comprising ZnO and secondary phase Al2O3 or Ga2O3 are employed as targets for laser ablation. Films deposited on glass...

  2. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    International Nuclear Information System (INIS)

    Khandelwal, Himanshu; Singh, Gurbhinder; Agrawal, Khelendra; Prakash, Satya; Agarwal, R.D.

    2013-01-01

    Highlights: ► Hydroxyapatite coating was successfully deposited on stainless steel substrate by pulse laser deposition at different energy levels (i.e. 300 mJ and 500 mJ, respectively). ► Variation in laser energy affects the surface characteristic of hydroxyapatite coating (particle size, surface roughness, uniformity, Ca/P ratio). ► Laser energy between 300 mJ and 500 mJ is the optimal choice for obtaining ideal Ca/P ratio. - Abstract: Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  3. Pulsed-laser deposition of smooth thin films of Er, Pr and Nd doped glasses

    Energy Technology Data Exchange (ETDEWEB)

    Epurescu, G. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania)], E-mail: george@nipne.ro; Vlad, A. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania); Institut fuer Angewandte Physik, Johannes-Kepler-Universitaet Linz, A-4040 Linz (Austria); Bodea, M.A. [Institut fuer Angewandte Physik, Johannes-Kepler-Universitaet Linz, A-4040 Linz (Austria); Vasiliu, C. [National Institute for Optoelectronics INOE 2000, Atomistilor 1, P.O. Box MG 05, 077125 Bucharest-Magurele (Romania); Dumitrescu, O. [University Politehnica of Bucharest, Faculty of Industrial Chemistry, Science and Engineering of Oxide Materials Department, Polizu Str. 1, sect. 1, Bucharest (Romania); Niciu, H. [National Institute of Glass, Department for Laser Glass Technology, 47 Th. Pallady Str., Sect.3, Bucharest (Romania); Elisa, M. [National Institute for Optoelectronics INOE 2000, Atomistilor 1, P.O. Box MG 05, 077125 Bucharest-Magurele (Romania); Siraj, K.; Pedarnig, J.D.; Baeuerle, D. [Institut fuer Angewandte Physik, Johannes-Kepler-Universitaet Linz, A-4040 Linz (Austria); Filipescu, M.; Nedelcea, A. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania); Galca, A.C. [National Institute of Materials Physics, Atomistilor 105bis, P.O. Box MG 07, RO- 77125, Magurele (Romania); Grigorescu, C.E.A. [National Institute for Optoelectronics INOE 2000, Atomistilor 1, P.O. Box MG 05, 077125 Bucharest-Magurele (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania)

    2009-03-01

    Thin films of complex oxides have been obtained by pulsed-laser deposition (PLD) from glass targets belonging to the system Li{sub 2}O-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-(RE){sub 2}O{sub 3}, with RE = Nd, Pr, Er. The films were deposited on quartz, silicon and ITO/glass substrates using a F{sub 2} laser ({lambda} = 157 nm, {iota} {approx} 20 ns) for ablation in vacuum. The structural, morphological and optical properties of the oxide films were investigated through IR and UV-VIS spectroscopy, Atomic Force Microscopy (AFM), Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy (SEM-EDX) and Spectroscopic Ellipsometry. The laser wavelength was found to be the key parameter to obtain thin films with very smooth surface. In this way new possibilities are opened to grow multilayer structures for photonic applications.

  4. Structural and optical properties of pulse laser deposited Ag2O thin films

    Science.gov (United States)

    Agasti, Souvik; Dewasi, Avijit; Mitra, Anirban

    2018-05-01

    We deposited Ag2O films in PLD system on glass substrate for a fixed partial oxygen gas pressure (70 mili Torr) and, with a variation of laser energy from 75 to 215 mJ/Pulse. The XRD patterns confirm that the films have well crystallinity and deposited as hexagonal lattice. The FESEM images show that the particle size of the films increased from 34.84 nm to 65.83 nm. The composition of the films is analyzed from EDX spectra which show that the percentage of oxygen increased by the increment of laser energy. From the optical characterization, it is observed that the optical band gap appears in the visible optical range in an increasing order from 0.87 to 0.98 eV with the increment of laser energy.

  5. Investigation of droplet formation in pulsed Nd:YAG laser deposition of metals and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Siew, Wee-Ong; Lee, Wai-Keat; Wong, Hin-Yong; Tou, Teck-Yong [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-12-15

    In the process of pulsed laser deposition of nickel (Ni) and ruthenium (Ru) thin films, the occurrence of phase explosion in ablation was found to affect the deposition rate and enhance the optical emissions from the plasma plume. Faster thin-film growth rates coincide with the onset of phase explosion as a result of superheating and/or sub-surface boiling which also increased the particulates found on the thin-film surface. These particulates were predominantly droplets which may not be round but flattened and also debris for the case of silicon (Si) ablation. The droplets from Ni and Ru thin films were compared in terms of size distribution and number density for different laser fluences. The origins of these particulates were correlated to the bubble and ripple formations on the targets while the transfer to the thin film surface was attributed to the laser-induced ejection from the targets. (orig.)

  6. Investigation of droplet formation in pulsed Nd:YAG laser deposition of metals and silicon

    International Nuclear Information System (INIS)

    Siew, Wee-Ong; Lee, Wai-Keat; Wong, Hin-Yong; Tou, Teck-Yong; Yong, Thian-Khok; Yap, Seong-Shan

    2010-01-01

    In the process of pulsed laser deposition of nickel (Ni) and ruthenium (Ru) thin films, the occurrence of phase explosion in ablation was found to affect the deposition rate and enhance the optical emissions from the plasma plume. Faster thin-film growth rates coincide with the onset of phase explosion as a result of superheating and/or sub-surface boiling which also increased the particulates found on the thin-film surface. These particulates were predominantly droplets which may not be round but flattened and also debris for the case of silicon (Si) ablation. The droplets from Ni and Ru thin films were compared in terms of size distribution and number density for different laser fluences. The origins of these particulates were correlated to the bubble and ripple formations on the targets while the transfer to the thin film surface was attributed to the laser-induced ejection from the targets. (orig.)

  7. Growth parameter enhancement for MoS{sub 2} thin films synthesized by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Serna, Martha I.; Higgins, Marissa; Quevedo-Lopez, Manuel A. [Materials Science and Engineering Department, The University of Texas at Dallas, 800 W Campbell Road RL 10, Richardson TX 75080 (United States); Moreno, Salvador [Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080 (United States); Choi, Hyunjoo [Department of Advanced Materials Engineering, Kookmin University, Jeongneung-dong Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Minary-Jolandan, Majid [Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080 (United States); Alan MacDiarmid Nanotech Institute, The University of Texas at Dallas, 800 W Campbell Road RL 10, Richardson TX 75080 (United States)

    2016-12-15

    Two-dimensional materials such as graphene and MoS{sub 2} have been the main focus of intense research efforts over the past few years. The most common method of exfoliating these materials, although efficient for lab-scale experiments, is not acceptable for large area and practical applications. Here, we report the deposition of MoS{sub 2} layered films on amorphous (SiO{sub 2}) and crystalline substrates (sapphire) using a pulsed laser deposition (PLD) method. Increased substrate temperature (∝700 C) and laser energy density (>530 mJ /cm{sup 2}) promotes crystalline MoS{sub 2} films < 20 nm, as demonstrated by fast Fourier transform (FFT) and transmission electron microscopy (TEM). The method reported here opens the possibility for large area layered MoS{sub 2} films by using a laser ablation processes. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Characteristics of tungsten oxide thin films prepared on the flexible substrates using pulsed laser deposition

    International Nuclear Information System (INIS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyuu, Yoshihito

    2008-01-01

    Tungsten trioxide (WO 3 ) thin films have been prepared on the flexible indium tin oxide (ITO) substrates by pulsed laser deposition (PLD) using WO 3 targets in oxygen gas. Color of the WO 3 film on the flexible ITO substrates depends on the oxygen gas mixture. The plasma plume produced by PLD using a Nd:YAG laser and WO 3 target is investigated by temporal and spatial-resolved optical emission spectroscopy. WO 3 films prepared on the flexible ITO substrates show electrochromic properties, even when the substrates are bent. The film color changes from blue to transparent within 10-20 s after the applied DC voltage is turned off

  9. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao; Shen Ji

    2011-01-01

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  10. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China); Shen Ji, E-mail: shenji@ustc.edu.c [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China)

    2011-02-15

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  11. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Stroescu, H.; Gartner, M.; Anastasescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Fogarassy, Zs. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, Konkoly Thege Miklos u. 29-33, H-1121 Budapest (Hungary); Mihailescu, N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A., E-mail: szekeres@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Bakalova, S. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania)

    2016-06-30

    Highlights: • Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. • 800 °C seed film boosts the next growth of crystalline structures at lower temperature. • Two-stage deposited AlN samples exhibit randomly oriented wurtzite structures. • Band gap energy values increase with deposition temperature. • Correlation was observed between single- and multi-stage AlN films. - Abstract: We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN “seed” layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4–2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0–5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  12. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang; Yao, Yingbang; Zhang, Q.; Zhang, Xixiang

    2014-01-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences

  13. In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition

    KAUST Repository

    Sarath Kumar, S. R.; Nayak, Pradipta K.; Hedhili, Mohamed N.; Khan, M. A.; Alshareef, Husam N.

    2013-01-01

    We report the in situ growth of p and n-type graphene thin films by ultraviolet pulsed laser deposition in the presence of argon and nitrogen, respectively. Electron microscopy and Raman studies confirmed the growth, while temperature dependent

  14. Parametric study of self-forming ZnO Nanowall network with honeycomb structure by Pulsed Laser Deposition

    KAUST Repository

    El Zein, B.; Boulfrad, Samir; Jabbour, Ghassan E.; Doghè che, Elhadj Hadj

    2014-01-01

    The successful synthesis of catalyst free zinc oxide (ZnO) Nanowall networks with honeycomb like structure by Pulsed Laser Deposition (PLD) is demonstrated in this paper. The synthesis was conducted directly on Silicon (Si) (1 0 0) and Glass

  15. Plume-induced stress in pulsed-laser deposited CeO2 films

    International Nuclear Information System (INIS)

    Norton, D.P.; Park, C.; Budai, J.D.; Pennycook, S.J.; Prouteau, C.

    1999-01-01

    Residual compressive stress due to plume-induced energetic particle bombardment in CeO 2 films deposited by pulsed-laser deposition is reported. For laser ablation film growth in low pressures, stresses as high as 2 GPa were observed as determined by substrate curvature and four-circle x-ray diffraction. The amount of stress in the films could be manipulated by controlling the kinetic energies of the ablated species in the plume through gas-phase collisions with an inert background gas. The film stress decreased to near zero for argon background pressures greater than 50 mTorr. At these higher background pressures, the formation of nanoparticles in the deposited film was observed. copyright 1999 American Institute of Physics

  16. Morphological and crystalline characterization of pulsed laser deposited pentacene thin films for organic transistor applications

    Science.gov (United States)

    Pereira, Antonio; Bonhommeau, Sébastien; Sirotkin, Sergey; Desplanche, Sarah; Kaba, Mamadouba; Constantinescu, Catalin; Diallo, Abdou Karim; Talaga, David; Penuelas, Jose; Videlot-Ackermann, Christine; Alloncle, Anne-Patricia; Delaporte, Philippe; Rodriguez, Vincent

    2017-10-01

    We show that high-quality pentacene (P5) thin films of high crystallinity and low surface roughness can be produced by pulsed laser deposition (PLD) without inducing chemical degradation of the molecules. By using Raman spectroscopy and X-ray diffraction measurements, we also demonstrate that the deposition of P5 on Au layers result in highly disordered P5 thin films. While the P5 molecules arrange within the well-documented 1.54-nm thin-film phase on high-purity fused silica substrates, this ordering is indeed destroyed upon introducing an Au interlayer. This observation may be one explanation for the low electrical performances measured in P5-based organic thin film transistors (OTFTs) deposited by laser-induced forward transfer (LIFT).

  17. Deposition of Y thin films by nanosecond UV pulsed laser ablation for photocathode application

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, A. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare-Lecce, 73100 Lecce (Italy); Anni, M. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Caricato, A.P. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare-Lecce, 73100 Lecce (Italy); Gontad, F., E-mail: francisco.gontad@le.infn.it [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare-Lecce, 73100 Lecce (Italy); Perulli, A. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Taurino, A. [National Research Council, Institute for Microelectronics & Microsystems, 73100 Lecce (Italy); Perrone, A. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare-Lecce, 73100 Lecce (Italy); Chiadroni, E. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati (Italy)

    2016-03-31

    In this work, yttrium (Y) thin films have been deposited on Si (100) substrates by the pulsed laser deposition technique. Ex-situ morphological, structural and optical characterisations of such films have been performed by scanning electron microscopy, X-ray diffractometry, atomic force microscopy and ellipsometry. Polycrystalline films with a thickness of 1.2 μm, homogenous with a root mean square roughness of about 2 nm, were obtained by optimised laser irradiation conditions. Despite the relatively high thickness, the films resulted very adherent to the substrates. The high quality of such thin films is important to the synthesis of metallic photocathodes based on Y thin film, which could be used as electron sources of high photoemission performance in radio-frequency guns. - Highlights: • Pulsed laser deposition of Yttrium thin films is investigated. • 1.2 μm thick films were deposited with very low RMS roughness. • The Y thin films were very adherent to the Si substrate • Optical characterisation showed a very high absorption coefficient for the films.

  18. Deposition of Y thin films by nanosecond UV pulsed laser ablation for photocathode application

    International Nuclear Information System (INIS)

    Lorusso, A.; Anni, M.; Caricato, A.P.; Gontad, F.; Perulli, A.; Taurino, A.; Perrone, A.; Chiadroni, E.

    2016-01-01

    In this work, yttrium (Y) thin films have been deposited on Si (100) substrates by the pulsed laser deposition technique. Ex-situ morphological, structural and optical characterisations of such films have been performed by scanning electron microscopy, X-ray diffractometry, atomic force microscopy and ellipsometry. Polycrystalline films with a thickness of 1.2 μm, homogenous with a root mean square roughness of about 2 nm, were obtained by optimised laser irradiation conditions. Despite the relatively high thickness, the films resulted very adherent to the substrates. The high quality of such thin films is important to the synthesis of metallic photocathodes based on Y thin film, which could be used as electron sources of high photoemission performance in radio-frequency guns. - Highlights: • Pulsed laser deposition of Yttrium thin films is investigated. • 1.2 μm thick films were deposited with very low RMS roughness. • The Y thin films were very adherent to the Si substrate • Optical characterisation showed a very high absorption coefficient for the films.

  19. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    OpenAIRE

    Meilkhova, O.; Čížek, J.; Lukáč,, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    ZnO films with thickness of ~80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects...

  20. Epitaxial growth of atomically flat gadolinia-doped ceria thin films by pulsed laser deposition

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini; Schou, Jørgen

    2011-01-01

    Epitaxial growth of Ce0.8Gd0.2O2(CGO) films on (001) TiO2-terminated SrTiO3 substrates by pulsed laser deposition was investigated using in situ reflective high energy electron diffraction. The initial film growth shows a Stransky–Krastanov growth mode. However, this three-dimensional island...... formation is replaced by a two-dimensional island nucleation during further deposition, which results in atomically smooth CGO films. The obtained high-quality CGO films may be attractive for the electrolyte of solid-oxide fuel cells operating at low temperature....

  1. Pulsed laser deposition of SiC thin films at medium substrate temperatures

    International Nuclear Information System (INIS)

    Katharria, Y.S.; Kumar, Sandeep; Choudhary, R.J.; Prakash, Ram; Singh, F.; Lalla, N.P.; Phase, D.M.; Kanjilal, D.

    2008-01-01

    Systematic studies of thin silicon carbide (SiC) films deposited on Si (100) substrates using pulsed laser deposition technique at room temperature, 370 deg. C and 480 deg. C are carried out. X-ray photoelectron spectroscopy showed the formation of SiC bonds in the films at these temperatures along with some graphitic carbon clusters. Fourier transform infrared analysis also confirmed the formation of SiC nanocrystallites in the films. Transmission electron microscopy and electron diffraction were used to study the structural properties of nanocrystallites formed in the films. Surface morphological analysis using atomic force microscopy revealed the growth of smooth films

  2. Pulsed laser deposition of II-VI and III-V semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Mele, A.; Di Palma, T.M.; Flamini, C.; Giardini Guidoni, A. [Rome, Univ. `La Sapienza` (Italy). Dep. di Chimica

    1998-12-01

    Pulsed laser irradiation of a solid target involves electronic excitation and heating, followed by expansion from the target of the elliptical gas cloud (plume) which can be eventually condensed on a suitable substrate. Pulsed laser ablation has been found to be a valuable technique to prepare II-VI and III-V thin films of semiconductor materials. Pulsed laser ablation deposition is discussed in the light of the results of an investigation on CdS, CdSe, CdTe and CdSe/CdTe multilayers and AIN, GaN and InN together with Al-Ga-In-N heterostructures. [Italiano] L`irradiazione di un target solido, mediante un fascio laser impulsato, genera una serie di processi che possono essere schematizzati come segue: riscaldamento ed eccitazione elettronica del target, da cui consegue l`espulsione di materiale sotto forma di una nube gassosa di forma ellissoidale (plume), che espande e puo` essere fatta depositare su un opportuno substrato. L`ablazione lasersi e` rivelata una tecnica valida per preparare film sottili di composti di elementi del II-VI e del III-V gruppo della tavola periodica. La deposizione via ablazione laser viene discussa alla luce dei risultati ottenuti nella preparazione di film di CdS, CdSe, CdTe e di film multistrato di CdSe/CdTe, di film di AIN, GaN, InN e di eterostrutture di Al-Ga-In-N.

  3. Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gyorgy, E. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania) and Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona, Campus UAB, 08193 Bellaterra (Spain)]. E-mail: egyorgy@icmab.es; Grigorescu, S. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Socol, G. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Janackovic, D. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Dindune, A. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Kanepe, Z. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Palcevskis, E. [Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Zdrentu, E.L. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania); Petrescu, S.M. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania)

    2007-07-31

    Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO{sub 2} doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF{sup *} ({lambda} = 248 nm, {tau} {>=} 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 deg. C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.

  4. Structural characterization of AlN films synthesized by pulsed laser deposition

    International Nuclear Information System (INIS)

    Szekeres, A.; Fogarassy, Zs.; Petrik, P.; Vlaikova, E.; Cziraki, A.; Socol, G.; Ristoscu, C.; Grigorescu, S.; Mihailescu, I.N.

    2011-01-01

    We obtained AlN thin films by pulsed laser deposition (PLD) from a polycrystalline AlN target using a pulsed KrF* excimer laser source (248 nm, 25 ns, intensity of ∼4 x 10 8 W/cm 2 , repetition rate 3 Hz, 10 J/cm 2 laser fluence). The target-Si substrate distance was 5 cm. Films were grown either in vacuum (10 -4 Pa residual pressure) or in nitrogen at a dynamic pressure of 0.1 and 10 Pa, using a total of 20,000 subsequent pulses. The films structure was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectral ellipsometry (SE). Our TEM and XRD studies showed a strong dependence of the film structure on the nitrogen content in the ambient gas. The films deposited in vacuum exhibited a high quality polycrystalline structure with a hexagonal phase. The crystallite growth proceeds along the c-axis, perpendicular to the substrate surface, resulting in a columnar and strongly textured structure. The films grown at low nitrogen pressure (0.1 Pa) were amorphous as seen by TEM and XRD, but SE data analysis revealed ∼1.7 vol.% crystallites embedded in the amorphous AlN matrix. Increasing the nitrogen pressure to 10 Pa promotes the formation of cubic (≤10 nm) crystallites as seen by TEM but their density was still low to be detected by XRD. SE data analysis confirmed the results obtained from the TEM and XRD observations.

  5. Fabrication of thin film CZTS solar cells with Pulsed Laser Deposition

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo

    behind the Quantum Efficiency (QE) curve. What do I learn by reading this thesis? You will learn how to deposit a thin film CZTS absorber layer with Pulsed Laser Deposition with the desired composition. In addition, you will see how material transfer in PLD, which is generally believed...... to be stoichiometric, can be very much non-stoichiometric. How to do it? I suggest to do PLD on a single sintered target (2CuS:ZnS:SnS) .The films are deposited at room temperature and then annealed in a furnace with some sulfur powder aside. The annealing step is as important as the PLD step to the final device...... the non-equilibrium properties of PLD for the production of CZTS films. This may enable one to deposit crystalline CZTS at lower substrate temperature, with no requirement for an annealing step afterwards. Preliminary results do not seem too encouraging. The main obstacle to this approach may...

  6. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Seong Shan Yap

    2015-01-01

    Full Text Available Nanostructured diamond-like carbon (DLC films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional deposition. The Raman spectra of the films confirmed that the films were diamond-like/amorphous in nature. Although grown at an angle, ion energy of >35 eV was obtained at the off-axis position. This was proposed to be responsible for subplantation growth of sp3 hybridized carbon. The condensation of energetic clusters and oblique angle deposition correspondingly gave rise to the formation of nanostructured DLC in this study.

  7. Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films

    International Nuclear Information System (INIS)

    Lux, Robert; Heinrich, Andreas; Leitenmeier, Stephan; Koerner, Timo; Herbort, Michael; Stritzker, Bernd

    2006-01-01

    Magneto-optical garnets are attractive because of their high Faraday rotation and low optical loss in the near infrared. Therefore their use is generally in nonreciprocal devices, i.e., as optical isolators in optical communication. In this paper we present data concerning the deposition of Bi 3 Fe 5 O 12 (BIG) thin films on (100) and (111) Gd 3 Ga 5 O 12 substrates using pulsed-laser deposition. Laser-induced processes on the surface of the oxide target used for ablation were analyzed and numerous films were deposited. We found the BIG film quality to be strongly affected by oxygen pressure, laser energy density, and the Bi/Fe film ratio, whereas temperature had a minor influence. We also investigated the BIG-film deposition using a target pressed from metallic Bi and Fe powders and found information on the growth behavior of BIG. We report on details of the film deposition and film properties determined by environmental scanning electron microscopy, energy dispersive x-ray analysis, Rutherford backscattering spectroscopy, and x-ray diffraction. In addition, we determined the Faraday rotation of the films

  8. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    International Nuclear Information System (INIS)

    Perez, J A; Riascos, H; Caicedo, J C; Cabrera, G; Yate, L

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser (λ = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  9. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J A; Riascos, H [Departamento de Fisica, Universidad Tecnologica de Pereira, Grupo plasma Laser y Aplicaciones A.A 097 (Colombia); Caicedo, J C [Grupo pelIculas delgadas, Universidad del Valle, Cali (Colombia); Cabrera, G; Yate, L, E-mail: jcaicedoangulo@gmail.com [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain)

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser ({lambda} = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  10. ZnO thin films on single carbon fibres fabricated by Pulsed Laser Deposition (PLD)

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, André; Engel, Sebastian [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Sangiorgi, Nicola [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133 Rome (Italy); Sanson, Alessandra [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Bartolomé, Jose F. [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Gräf, Stephan, E-mail: stephan.graef@uni-jena.de [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Müller, Frank A. [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena (Germany)

    2017-03-31

    Highlights: • Carbon fibres were entirely coated with thin films consisting of aligned ZnO crystals. • A Q-switched CO2 laser was utilised as radiation source. • Suitability of ZnO thin films on carbon fibres as photo anodes for DSSC was studied. - Abstract: Single carbon fibres were 360° coated with zinc oxide (ZnO) thin films by pulsed laser deposition using a Q-switched CO{sub 2} laser with a pulse duration τ ≈ 300 ns, a wavelength λ = 10.59 μm, a repetition frequency f{sub rep} = 800 Hz and a peak power P{sub peak} = 15 kW in combination with a 3-step-deposition technique. In a first set of experiments, the deposition process was optimised by investigating the crystallinity of ZnO films on silicon and polished stainless steel substrates. Here, the influence of the substrate temperature and of the oxygen partial pressure of the background gas were characterised by scanning electron microscopy and X-ray diffraction analyses. ZnO coated carbon fibres and conductive glass sheets were used to prepare photo anodes for dye-sensitised solar cells in order to investigate their suitability for energy conversion devices. To obtain a deeper insight of the electronic behaviour at the interface between ZnO and substrate I–V measurements were performed.

  11. SERS activity of silver and gold nanostructured thin films deposited by pulsed laser ablation

    Science.gov (United States)

    Agarwal, N. R.; Tommasini, M.; Fazio, E.; Neri, F.; Ponterio, R. C.; Trusso, S.; Ossi, P. M.

    2014-10-01

    Nanostructured Au and Ag thin films were obtained by nanosecond pulsed laser ablation in presence of a controlled Ar atmosphere. Keeping constant other deposition parameters such as target-to-substrate distance, incidence angle, laser wavelength and laser fluence, the film morphology, revealed by SEM, ranges from isolated NPs to island structures and sensibly depends on gas pressure (10-100 Pa) and on the laser pulse number (500-3 × 10). The control of these two parameters allows tailoring the morphology and correspondingly the optical properties of the films. The position and width of the surface plasmon resonance peak, in fact, can be varied with continuity. The films showed remarkable surface-enhanced Raman activity (SERS) that depends on the adopted deposition conditions. Raman maps were acquired on micrometer-sized areas of both silver and gold substrates selected among those with the strongest SERS activity. Organic dyes of interest in cultural heritage studies (alizarin, purpurin) have been also considered for bench marking the substrates produced in this work. Also the ability to detect the presence of biomolecules was tested using lysozyme in a label free configuration.

  12. Optical, compositional and structural properties of pulsed laser deposited nitrogen-doped Titanium-dioxide

    Science.gov (United States)

    Farkas, B.; Heszler, P.; Budai, J.; Oszkó, A.; Ottosson, M.; Geretovszky, Zs.

    2018-03-01

    N-doped TiO2 thin films were prepared using pulsed laser deposition by ablating metallic Ti target with pulses of 248 nm wavelength, at 330 °C substrate temperature in reactive atmospheres of N2/O2 gas mixtures. These films were characterized by spectroscopic ellipsometry, X-ray photoelectron spectroscopy and X-ray diffraction. Optical properties are presented as a function of the N2 content in the processing gas mixture and correlated to nitrogen incorporation into the deposited layers. The optical band gap values decreased with increasing N concentration in the films, while a monotonically increasing tendency and a maximum can be observed in case of extinction coefficient and refractive index, respectively. It is also shown that the amount of substitutional N can be increased up to 7.7 at.%, but the higher dopant concentration inhibits the crystallization of the samples.

  13. Roughness evolution in Ga doped ZnO films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Liu Yunyan; Cheng Chuanfu; Yang Shanying; Song Hongsheng; Wei Gongxiang; Xue Chengshan; Wang Yongzai

    2011-01-01

    We analyze the morphology evolution of the Ga doped ZnO(GZO) films deposited on quartz substrates by a laser deposition system. The surface morphologies of the film samples grown with different times are measured by the atomic force microscope, and they are analyzed quantitatively by using the image data. In the initial stage of the growth time shorter than 8 min, our analysis shows that the GZO surface morphologies are influenced by such factors as the random fluctuations, the smoothening effects in the deposition, the lateral strain and the substrate. The interface width uw(t) and the lateral correlation length ξ(t) at first decrease with deposition time t. For the growth time larger than 8 min, w(t) and ξ(t) increase with time and it indicates the roughening of the surface and the surface morphology exhibits the fractal characteristics. By fitting data of the roughness w(t) versus deposition time t larger than 4 min to the power-law function, we obtain the growth exponent β is 0.3; and by the height-height correlation functions of the samples to that of the self-affine fractal model, we obtain the value of roughness exponent α about 0.84 for all samples with different growth time t.

  14. Production of porous PTFE-Ag composite thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kecskeméti, Gabriella; Hopp, Béla; Smausz, Tomi; Tóth, Zsolt; Szabó, Gábor

    2012-01-01

    The suitability of pulsed laser deposition technique for preparation of polytetrafluoroethylene (PTFE) and silver (Ag) composite thin films was demonstrated. Disk-shaped targets combined from silver and Teflon with various percentages were ablated with pulses of an ArF excimer laser. The chemical composition of the deposited layers was estimated based on deposition rates determined for the pure PTFE and Ag films. EDX and SEM analyses using secondary electron and backscattered electron images proved that the morphology of the layers is determined by the PTFE which is the main constituent and it is transferred mostly in form of grains and clusters forming a sponge-like structure with high specific surface. The Ag content is distributed over the surface of the PTFE structure. Contact angle measurements showed that with increasing the amount of Ag in the deposited layers the surface significantly enhanced the wetting properties. Conductivity experiments demonstrated that when the average silver content of the layers was increased from 0.16 to 3.28 wt% the resistance of our PTFE-Ag composite films decreased with about three orders of magnitudes (from ∼10 MΩ to ∼10 kΩ). The properties of these films suggest as being a good candidate for future electrochemical sensor applications.

  15. Optical Properties of Nitrogen-Substituted Strontium Titanate Thin Films Prepared by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Alexander Wokaun

    2009-09-01

    Full Text Available Perovskite-type N-substituted SrTiO3 thin films with a preferential (001 orientation were grown by pulsed laser deposition on (001-oriented MgO and LaAlO3 substrates. Application of N2 or ammonia using a synchronized reactive gas pulse produces SrTiO3-x:Nx films with a nitrogen content of up to 4.1 at.% if prepared with the NH3 gas pulse at a substrate temperature of 720 °C. Incorporating nitrogen in SrTiO3 results in an optical absorption at 370-460 nm associated with localized N(2p orbitals. The estimated energy of these levels is ≈2.7 eV below the conduction band. In addition, the optical absorption increases gradually with increasing nitrogen content.

  16. Deposition of high Tc superconductor thin films by pulsed excimer laser ablation and their post-synthesis processing

    International Nuclear Information System (INIS)

    Ogale, S.B.

    1992-01-01

    This paper describes the use of pulsed excimer laser ablation technique for deposition of high quality superconductor thin films on different substrate materials such as Y stabilized ZrO 2 , SrTiO 3 , LiNbO 3 , Silicon and Stainless Steels, and dopant incorporation during the film depositions. Processing of deposited films using ion and laser beams for realisation of device features are presented. 28 refs., 16 figs

  17. Chemical, mechanical, and tribological properties of pulsed-laser-deposited titanium carbide and vanadium carbide

    International Nuclear Information System (INIS)

    Krzanowski, J.E.; Leuchtner, R.E.

    1997-01-01

    The chemical, mechanical, and tribological properties of pulsed-laser-deposited TiC and VC films are reported in this paper. Films were deposited by ablating carbide targets using a KrF (λ = 248 nm) laser. Chemical analysis of the films by XPS revealed oxygen was the major impurity; the lowest oxygen concentration obtained in a film was 5 atom%. Oxygen was located primarily on the carbon sublattice of the TiC structure. The films were always substoichiometric, as expected, and the carbon in the films was identified primarily as carbidic carbon. Nanoindentation hardness tests gave values of 39 GPa for TiC and 26 GPa for VC. The friction coefficient for the TiC films was 0.22, while the VC film exhibited rapid material transfer from the steel ball to the substrate resulting in steel-on-steel tribological behavior

  18. Ultrashort Pulsed Laser Ablation of Magnesium Diboride: Plasma Characterization and Thin Films Deposition

    Directory of Open Access Journals (Sweden)

    Angela De Bonis

    2015-01-01

    Full Text Available A MgB2 target has been ablated by Nd:glass laser with a pulse duration of 250 fs. The plasma produced by the laser-target interaction, showing two temporal separated emissions, has been characterized by time and space resolved optical emission spectroscopy and ICCD fast imaging. The films, deposited on silicon substrates and formed by the coalescence of particles with nanometric size, have been analyzed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. The first steps of the films growth have been studied by Transmission Electron Microscopy. The films deposition has been studied by varying the substrate temperature from 25 to 500°C and the best results have been obtained at room temperature.

  19. Room temperature pulsed laser deposition of Si{sub x} C thin films in different compositions

    Energy Technology Data Exchange (ETDEWEB)

    Hanyecz, I.; Budai, J. [University of Szeged, Department of Optics and Quantum Electronics, P.O. Box 406, Szeged (Hungary); Oszko, A. [University of Szeged, Department of Solid State and Radiochemistry, P.O. Box 168, Szeged (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, Budapest (Hungary); Toth, Z. [Research Group on Laser Physics of the Hungarian Academy of Sciences, P.O. Box 406, Szeged (Hungary)

    2010-09-15

    Amorphous silicon-carbon alloy films in different compositions were prepared by pulsed laser deposition from two-component targets containing pure silicon and carbon parts. The silicon-carbon ratio in the films was varied by adjusting the number of laser shots on the constituent silicon and carbon targets. The composition, optical properties, thickness, and bonding structure of the films were determined by backscattering spectrometry, spectroscopic ellipsometry, and X-ray photoelectron spectroscopy, respectively. Backscattering spectrometry data were used to determine the deposition rate of silicon and carbon. This enabled the calculation of the number of the shots onto each target to reach a predefined composition. As the film composition changed from carbon to silicon, it was shown that the microscopic and macroscopic properties of the films also changed from a diamond-like carbon phase to an amorphous silicon phase via graphite- and silicon-carbide-like composite. (orig.)

  20. Pulsed Laser deposition of Al2O3 thin film on silicon

    International Nuclear Information System (INIS)

    Lamagna, A.; Duhalde, S.; Correra, L.; Nicoletti, S.

    1998-01-01

    Al 2 O 3 thin films were fabricated by pulsed laser deposition (PLD) on Si 3 N 4 /Si, to improve the thermal and electrical isolation of gas sensing devices. The microstructure of the films is analysed as a function of the deposition conditions (laser fluence, oxygen pressure, target-substrate distance and substrate temperature). X-ray analysis shows that only a sharp peak that coincides with the corundum (116) reflection can be observed in all the films. But, when they are annealed at temperatures above 1,200 degree centigrade, a change in the crystalline structure of some films occurs. The stoichiometry and morphology of the films with and without thermal treatment are compared using environmental scanning electron microscopy (SEM) and EDAX analysis. (Author) 14 refs

  1. Review of progress in pulsed laser deposition and using Nd:YAG laser in processing of high Tc superconductors

    International Nuclear Information System (INIS)

    Chen, C.W.; Mukherjee, K.

    1993-01-01

    The current progress in pulsed laser ablation of high-temperature superconductors is reviewed with emphasis on the effect of pulse-width and wavelength, nature of the plasma plume, post-annealing and methods to improve quality of films grown at low temperature. An ion beam assisted millisecond pulsed laser vapor deposition process has been developed to fabricate YBa 2 Cu 3 O x high T. superconductor thin films. Solution to target overheating problem, effects of oxygen ion beam, properties of deposited films, and effect of silver buffer layer on YSZ substrate are presented. A new laser calcining process has been used to produce near single phase high T c superconductors of Bi-Pb-Sr-Ca-Cu-0 system. The total processing time was reduced to about 100 hours which is about half of that for conventional sintering. For this compound both resistance and magnetic susceptibility data showed an onset of superconducting transition at about 110K. A sharp susceptibility drop was observed above 106K. The zero resistance temperature was about 98K. High T c phase was formed via a different kinetic path in laser calcined sample compare with the conventionally processed sample

  2. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition

    Science.gov (United States)

    Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.

    2018-05-01

    Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.

  3. Growth and annealing effect of SrTiO{sub 3} thin films grown by pulsed laser deposition using fourth harmonic Nd:YAG pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, Koji; Fujiwara, Takumi; Yokota, Akinobu; Nakamura, Motonori; Yoshimoto, Ken' ichi [National Institute of Technology, Asahikawa College, 2-2-1-6 Shunkodai, Asahikawa 071-8142 (Japan)

    2017-06-15

    SrTiO{sub 3} homoepitaxial films were grown by pulsed laser deposition (PLD) using a fourth harmonic Nd:YAG pulsed laser. The substrate temperature was kept constant at 600, 700, or 800 C. The laser energy was set at 9-25 mJ on the polycrystal SrTiO{sub 3} target. Post-procedure annealing was performed in the air for 24 h. The X-ray diffraction measurement results showed that the lattice constant of the film was only 0.010 Aa larger than that of the substrate and was not dependent on the annealing temperature. We demonstrated the possibility of growing near-stoichiometric SrTiO{sub 3} film by PLD using an Nd:YAG laser. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Organic/hybrid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    Science.gov (United States)

    Stiff-Roberts, Adrienne D.; Ge, Wangyao

    2017-12-01

    Some of the most exciting materials research in the 21st century attempts to resolve the challenge of simulating, synthesizing, and characterizing new materials with unique properties designed from first principles. Achievements in such development for organic and organic-inorganic hybrid materials make them important options for electronic and/or photonic devices because they can impart multi-functionality, flexibility, transparency, and sustainability to emerging systems, such as wearable electronics. Functional organic materials include small molecules, oligomers, and polymers, while hybrid materials include inorganic nanomaterials (such as zero-dimensional quantum dots, one-dimensional carbon nanotubes, or two-dimensional nanosheets) combined with organic matrices. A critically important step to implementing new electronic and photonic devices using such materials is the processing of thin films. While solution-based processing is the most common laboratory technique for organic and hybrid materials, vacuum-based deposition has been critical to the commercialization of organic light emitting diodes based on small molecules, for example. Therefore, it is desirable to explore vacuum-based deposition of organic and hybrid materials that include larger macromolecules, such as polymers. This review article motivates the need for physical vapor deposition of polymeric and hybrid thin films using matrix-assisted pulsed laser evaporation (MAPLE), which is a type of pulsed laser deposition. This review describes the development of variations in the MAPLE technique, discusses the current understanding of laser-target interactions and growth mechanisms for different MAPLE variations, surveys demonstrations of MAPLE-deposited organic and hybrid materials for electronic and photonic devices, and provides a future outlook for the technique.

  5. Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    Tanaskovic, D.; Jokic, B.; Socol, G.; Popescu, A.; Mihailescu, I.N.; Petrovic, R.; Janackovic, Dj.

    2007-01-01

    Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 , or bioglasses in the system SiO 2 -Na 2 O-K 2 O-CaO-MgO-P 2 O 5 with SiO 2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* (λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H 2 O vapors, while the bioglass layers were deposited in O 2 . Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications

  6. Design and spectroscopic reflectometry characterization of pulsed laser deposition combinatorial libraries

    International Nuclear Information System (INIS)

    Schenck, Peter K.; Bassim, Nabil D.; Otani, Makoto; Oguchi, Hiroyuki; Green, Martin L.

    2007-01-01

    The goal of the design of pulsed laser deposition (PLD) combinatorial library films is to optimize the compositional coverage of the films while maintaining a uniform thickness. The deposition pattern of excimer laser PLD films can be modeled with a bimodal cos n distribution. Deposited films were characterized using a spectroscopic reflectometer (250-1000 nm) to map the thickness of both single composition calibration films and combinatorial library films. These distribution functions were used to simulate the composition and thickness of multiple target combinatorial library films. The simulations were correlated with electron-probe microanalysis wavelength-dispersive spectroscopy (EPMA-WDS) composition maps. The composition and thickness of the library films can be fine-tuned by adjusting the laser spot size, fluence, background gas pressure, target geometry and other processing parameters which affect the deposition pattern. Results from compositionally graded combinatorial library films of the ternary system Al 2 O 3 -HfO 2 -Y 2 O 3 are discussed

  7. Structure and properties of TiC, VC, and TiC/VC thin films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Krzanowski, J.E.; Leuchtner, R.E.

    1996-01-01

    A study has been conducted on the mechanical, tribological and chemical properties of pulsed laser deposited (PLD) TiC, VC and TiC/VC thin films. The TiC films were deposited at 375 C and 5 mTorr Ar, while the TiC/VC films were deposited from a composite target at 475 C at pressures of base vacuum and 50 mTorr Ar. XRD analysis revealed the films had the expected B1 structure, although XPS analysis showed a significant oxygen content. Tribological studies were conducted using a ball-on-disk test, and the wear behavior depended on the surface condition and film composition. One TiC/VC film exhibited little wear but caused significant ball wear, indicating mixed carbide films are promising candidates for wear-resistant coatings

  8. Role of temperature and energy density in the pulsed laser deposition of zirconium oxide thin film

    International Nuclear Information System (INIS)

    Mittra, Joy; Abraham, G.J.; Viswanadham, C.S.; Kulkarni, U.D.; Dey, G.K.

    2011-01-01

    Present work brings out the effects of energy density and substrate temperature on pulsed laser deposition of zirconium oxide thin film on Zr-base alloy substrates. The ablation of sintered zirconia has been carried out using a KrF excimer laser having 30 ns pulse width and 600 mJ energy at source at 10 Hz repetition rate. To comprehend effects of these parameters on the synthesized thin film, pure zirconia substrate has been ablated at two different energy densities, 2 J.cm -2 and 5 J.cm -2 , keeping the substrate at 300 K, 573 K and 873 K, respectively. After visual observation, deposited thin films have been examined using Raman Spectroscopy (RS) and X-ray Photo-electron Spectroscopy (XPS). It has been found that the oxide deposited at 300 K temperature does not show good adherence with the substrate and deteriorates further with the reduction in energy density of the incident laser. The oxide films, deposited at 573 K and 873 K, have been found to be adherent with the substrate and appear lustrous black. These indicate that the threshold for adherence of the zirconia film on the Zr-base alloy substrate lies in between 300 K and 573 K. Analysis of Raman spectra has indicated that thin films of zirconia, deposited using pulsed laser, on the Zr-base metallic substrate are initially in amorphous state. Experimental evidence has indicated a strong link among the degree of crystallinity of the deposited oxide film, the substrate temperature and the energy density. It also has shown that the crystallization of the oxide film is dependent on the substrate temperature and the duration of holding at high temperature. The O:Zr ratios of the films, analyzed from the XPS data, have been found to be close to but less than 2. This appears to explain the reason for the transformation of amorphous oxide into monoclinic and tetragonal phases, below 573 K, and not into cubic phase, which is reported to be more oxygen deficient. (author)

  9. Topography evolution of germanium thin films synthesized by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    P. Schumacher

    2017-04-01

    Full Text Available Germanium thin films were deposited by Pulsed Laser Deposition (PLD onto single crystal Ge (100 and Si (100 substrates with a native oxide film on the surface. The topography of the surface was investigated by Atomic Force Microscopy (AFM to evaluate the scaling behavior of the surface roughness of amorphous and polycrystalline Ge films grown on substrates with different roughnesses. Roughness evolution was interpreted within the framework of stochastic rate equations for thin film growth. Here the Kardar-Parisi-Zhang equation was used to describe the smoothening process. Additionally, a roughening regime was observed in which 3-dimensional growth occurred. Diffusion of the deposited Ge adatoms controlled the growth of the amorphous Ge thin films. The growth of polycrystalline thin Ge films was dominated by diffusion processes only in the initial stage of the growth.

  10. Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laser deposition

    Science.gov (United States)

    Hakoda, Teruyuki; Yamamoto, Shunya; Kawaguchi, Kazuhiro; Yamaki, Tetsuya; Kobayashi, Tomohiro; Yoshikawa, Masahito

    2010-12-01

    Carbon-based films with nitrogen species on their surface were prepared on a glassy carbon (GC) substrate for application as a non-platinum cathode catalyst for polymer electrolyte fuel cells. Cobalt and carbon were deposited in the presence of N 2 gas using a pulsed laser deposition method and then the metal Co was removed by HCl-washing treatment. Oxygen reduction reaction (ORR) activity was electrochemically determined using a rotating disk electrode system in which the film samples on the GC substrate were replaceable. The ORR activity increased with the temperature of the GC substrate during deposition. A carbon-based film prepared at 600 °C in the presence of N 2 at 66.7 Pa showed the highest ORR activity among the tested samples (0.66 V vs. NHE). This film was composed of amorphous carbons doped with pyridine type nitrogen atoms on its surface.

  11. Optoelectronic Characterization of Ta-Doped ZnO Thin Films by Pulsed Laser Deposition.

    Science.gov (United States)

    Koo, Horng-Show; Peng, Jo-Chi; Chen, Mi; Chin, Hung-I; Chen, Jaw-Yeh; Wu, Maw-Kuen

    2015-11-01

    Transparent conductive oxide of Ta-doped ZnO (TZO) film with doping amount of 3.0 wt% have been deposited on glass substrates (Corning Eagle XG) at substrate temperatures of 100 to 500 degrees C by the pulsed laser deposition (PLD) technique. The effect of substrate temperature on the structural, optical and electronic characteristics of Ta-doped ZnO (TZO) films with 3.0 wt% dopant of tantalum oxide (Ta2O5) was measured and demonstrated in terms of X-ray diffraction (XRD), ultraviolet-visible spectrometer (UV-Vis), four-probe and Hall-effect measurements. X-ray diffraction pattern shows that TZO films grow in hexagonal crystal structure of wurtzite phase with a preferred orientation of the crystallites along (002) direction and exhibits better physical characteristics of optical transmittance, electrical conductivity, carrier concentration and mobility for the application of window layer in the optoelectronic devices of solar cells, OLEDs and LEDs. The lowest electrical resistivity (ρ) and the highest carrier concentration of the as-deposited film deposited at 300 degrees C are measured as 2.6 x 10(-3) Ω-cm and 3.87 x 10(-20) cm(-3), respectively. The highest optical transmittance of the as-deposited film deposited at 500 degrees C is shown to be 93%, compared with another films deposited below 300 degrees C. It is found that electrical and optical properties of the as-deposited TZO film are greatly dependent on substrate temperature during laser ablation deposition.

  12. Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions

    Science.gov (United States)

    Majewska, N.; Gazda, M.; Jendrzejewski, R.; Majumdar, S.; Sawczak, M.; Śliwiński, G.

    2017-08-01

    Organic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm2(V·s)-1. However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic solvents toluene, xylene, dichloromethane and 1,1-dichloroethane (0.23-1% wt) were cooled to temperatures in the range of 16.5-163 K and served as targets. The target ablation was provided by a pulsed 1064 nm or 266 nm laser. For films of thickness up to 100 nm deposited on Si, glass and ITO glass substrates, the Raman and AFM data show presence of the mixed crystalline and amorphous rubrene phases. Agglomerates of rubrene crystals are revealed by SEM observation too, and presence of oxide/peroxide (C42H28O2) in the films is concluded from matrix-assisted laser desorption/ionization time-of-flight spectroscopic analysis.

  13. Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation

    Science.gov (United States)

    Barraza, E. Tomas; Dunlap-Shohl, Wiley A.; Mitzi, David B.; Stiff-Roberts, Adrienne D.

    2018-02-01

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) was used to deposit the metal-halide perovskite (MHP) CH3NH3PbI3 (methylammonium lead triiodide, or MAPbI), creating phase-pure films. Given the moisture sensitivity of these crystalline, multi-component organic-inorganic hybrid materials, deposition of MAPbI by RIR-MAPLE required a departure from the use of water-based emulsions as deposition targets. Different chemistries were explored to create targets that properly dissolved MAPbI components, were stable under vacuum conditions, and enabled resonant laser energy absorption. Secondary phases and solvent contamination in the resulting films were studied through Fourier transform infrared (FTIR) absorbance and x-ray diffraction (XRD) measurements, suggesting that lingering excess methylammonium iodide (MAI) and low-vapor pressure solvents can distort the microstructure, creating crystalline and amorphous non-perovskite phases. Thermal annealing of films deposited by RIR-MAPLE allowed for excess solvent to be evaporated from films without degrading the MAPbI structure. Further, it was demonstrated that RIR-MAPLE does not require excess MAI to create stoichiometric films with optoelectronic properties, crystal structure, and film morphology comparable to films created using more established spin-coating methods for processing MHPs. This work marks the first time a MAPLE-related technique was used to deposit MHPs.

  14. In situ monitoring of electrical resistance during deposition of Ag and Al thin films by pulsed laser deposition: comparative study

    Czech Academy of Sciences Publication Activity Database

    Abdellaoui, N.; Pereira, A.; Novotný, Michal; Bulíř, Jiří; Fitl, Přemysl; Lančok, Ján; Moine, B.; Pillonnet, A.

    2017-01-01

    Roč. 418, Oct (2017), s. 517-521 ISSN 0169-4332 R&D Projects: GA MŠk LO1409; GA ČR GA16-22092S; GA ČR(CZ) GA14-10279S; GA MŠk LM2015088; GA MŠk(CZ) 7AMB14FR010 Institutional support: RVO:68378271 Keywords : pulsed laser deposition * metallic thin film * in-situ resistance measurement * silver * aluminium Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.387, year: 2016

  15. Synthesis of nanostructured SiC using the pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Zhang, H.X.; Feng, P.X.; Makarov, V.; Weiner, B.R.; Morell, G.

    2009-01-01

    We report the new results on the direct synthesis of nanostructured silicon carbide (SiC) materials using the pulsed laser deposition technique. Scanning electron microscopy images revealed that SiC nanoholes, nanosprouts, nanowires, and nanoneedles were obtained. The crystallographic structure, chemical composition, and bond structure of the nanoscale SiC materials were investigated using X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Raman scattering spectroscopy. The transverse optical mode and longitudinal optical mode in Raman spectra were found to become sharper as the substrate temperature was increased, while the material structure evolved from amorphous to crystalline

  16. Si nanostructures grown by picosecond high repetition rate pulsed laser deposition

    International Nuclear Information System (INIS)

    Pervolaraki, M.; Komninou, Ph.; Kioseoglou, J.; Athanasopoulos, G.I.; Giapintzakis, J.

    2013-01-01

    One-step growth of n-doped Si nanostructures by picosecond ultra fast pulsed laser deposition at 1064 nm is reported for the first time. The structure and morphology of the Si nanostructures were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. Transmission electron microscopy studies revealed that the shape of the Si nanostructures depends on the ambient argon pressure. Fibrous networks, cauliflower formations and Si rectangular crystals grew when argon pressure of 300 Pa, 30 Pa and vacuum (10 −3 Pa) conditions were used, respectively. In addition, the electrical resistance of the vacuum made material was investigated

  17. Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells

    OpenAIRE

    Nematollahi, Mohammadreza; Yang, Xiaodong; Aas, Lars Martin Sandvik; Ghadyani, Zahra; Kildemo, Morten; Gibson, Ursula; Reenaas, Turid Worren

    2015-01-01

    We have investigated the structural and optical properties of Cr-doped ZnS (ZnS:Cr) thin films (0–7.5 at.% Cr) for use in intermediate band solar cells. The films were grown on Si(100) in molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) equipments. Introducing Cr into ZnS resulted in Cr related subbandgap absorption, but also reduced the grain size. The sub-bandgap absorption increased with increasing Cr content, and with increasing growth temperature, but did not depend on the ...

  18. Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Čížek, J.; Kužel, R.; Bulíř, Jiří; Lančok, Ján; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.; Anwand, W.; Brauer, G.

    2012-01-01

    Roč. 45, č. 22 (2012), 1-12 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GAP108/11/0958; GA ČR GP202/09/P324 Institutional research plan: CEZ:AV0Z10100522 Keywords : ZnO thin film * pulsed laser deposition * x-ray diffraction positron implantation spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.528, year: 2012 http://dx.doi.org/10.1088/0022-3727/45/22/225101

  19. Si nanostructures grown by picosecond high repetition rate pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pervolaraki, M., E-mail: pervolaraki@ucy.ac.cy [Nanotechnology Research Center and Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos Av., PO Box 20537, 1678 Nicosia (Cyprus); Komninou, Ph.; Kioseoglou, J. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Athanasopoulos, G.I. [Nanotechnology Research Center and Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos Av., PO Box 20537, 1678 Nicosia (Cyprus); Giapintzakis, J., E-mail: giapintz@ucy.ac.cy [Nanotechnology Research Center and Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos Av., PO Box 20537, 1678 Nicosia (Cyprus)

    2013-08-01

    One-step growth of n-doped Si nanostructures by picosecond ultra fast pulsed laser deposition at 1064 nm is reported for the first time. The structure and morphology of the Si nanostructures were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. Transmission electron microscopy studies revealed that the shape of the Si nanostructures depends on the ambient argon pressure. Fibrous networks, cauliflower formations and Si rectangular crystals grew when argon pressure of 300 Pa, 30 Pa and vacuum (10{sup −3} Pa) conditions were used, respectively. In addition, the electrical resistance of the vacuum made material was investigated.

  20. Kinetic-energy induced smoothening and delay of epitaxial breakdown in pulsed-laser deposition

    International Nuclear Information System (INIS)

    Shin, Byungha; Aziz, Michael J.

    2007-01-01

    We have isolated the effect of kinetic energy of depositing species from the effect of flux pulsing during pulsed-laser deposition (PLD) on surface morphology evolution of Ge(001) homoepitaxy at low temperature (100 deg. C). Using a dual molecular beam epitaxy (MBE) PLD chamber, we compare morphology evolution from three different growth methods under identical experimental conditions except for the differing nature of the depositing flux: (a) PLD with average kinetic energy 300 eV (PLD-KE); (b) PLD with suppressed kinetic energy comparable to thermal evaporation energy (PLD-TH); and (c) MBE. The thicknesses at which epitaxial breakdown occurs are ranked in the order PLD-KE>MBE>PLD-TH; additionally, the surface is smoother in PLD-KE than in MBE. The surface roughness of the films grown by PLD-TH cannot be compared due to the early epitaxial breakdown. These results demonstrate convincingly that kinetic energy is more important than flux pulsing in the enhancement of epitaxial growth, i.e., the reduction in roughness and the delay of epitaxial breakdown

  1. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    Science.gov (United States)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  2. Decoration of silica nanowires with gold nanoparticles through ultra-short pulsed laser deposition

    Science.gov (United States)

    Gontad, F.; Caricato, A. P.; Cesaria, M.; Resta, V.; Taurino, A.; Colombelli, A.; Leo, C.; Klini, A.; Manousaki, A.; Convertino, A.; Rella, R.; Martino, M.; Perrone, A.

    2017-10-01

    The ablation of a metal target at laser energy densities in the range of 1-10 TW/cm2 leads to the generation of nanoparticles (NP) of the ablated material. This aspect is of particular interest if the immobilization of NPs on three-dimensional (3D) substrates is necessary as for example in sensing applications. In this work the deposition of Au NP by irradiation of a Au bulk target with a sub-picosecond laser beam (500 fs; 248 nm; 10 Hz) on 2D (silica and Si(100)) and 3D substrates (silica nanowire forests) is reported for different number of laser pulses (500, 1000, 1500, 2000, 2500). A uniform coverage of small Au NPs (with a diameter of few nm) on both kinds of substrates has been obtained using a suitable number of laser pulses. The presence of spherical droplets, with a diameter ranging from tens of nm up to few μm was also detected on the substrate surface and their presence can be explained by the weak electron-phonon coupling of Au. The optical characterization of the samples on 2D and 3D substrates evidenced the surface plasmon resonance peak characteristic of the Au NPs although further improvements of the size-distribution are necessary for future applications in sensing devices.

  3. Pulsed-laser ablation of co-deposits on JT-60 graphite tile

    International Nuclear Information System (INIS)

    Sakawa, Youichi; Watanabe, Daisuke; Shibahara, Takahiro; Sugiyama, Kazuyoshi; Tanabe, Tetsuo

    2007-01-01

    Pulsed laser ablation of the co-deposits on a JT-60 open-divertor tile using the fourth harmonic of a 20 ps-Nd: YAG laser has been investigated. With increasing the laser intensity, three regions, non-ablation region (NAR), weak-ablation region (WAR), and strong-ablation region (SAR) were distinguished. Transition from NAR to WAR and WAR to SAR occurred at the threshold laser intensity for laser ablation and that for strong ionization of carbon atoms, respectively. The ablation accompanied desorption of H 2 and C 2 H 2 , with minor contribution of other hydrocarbons, while production of H 2 O was small. In NAR and WAR the number of the hydrogen desorbed by the laser irradiation was less than that of hydrogen retained in the ablated volume, while in SAR it was much larger, owing to thermal desorption of hydrogen gas from the region surrounding the ablated volume. For the ablative removal of hydrogen isotopes, SAR is more desirable because of higher removal efficiency and less production of hydrocarbons

  4. Pulsed-laser ablation of co-deposits on JT-60 graphite tile

    Energy Technology Data Exchange (ETDEWEB)

    Sakawa, Youichi [Institute of Laser Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan)]. E-mail: sakawa-y@ile.osaka-u.ac.jp; Watanabe, Daisuke [Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Shibahara, Takahiro [Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Sugiyama, Kazuyoshi [Interdisciplinary School of Engineering Science, Kyushu University, Fukuoka, Fukuoka 812-8581 (Japan); Tanabe, Tetsuo [Interdisciplinary School of Engineering Science, Kyushu University, Fukuoka, Fukuoka 812-8581 (Japan)

    2007-08-01

    Pulsed laser ablation of the co-deposits on a JT-60 open-divertor tile using the fourth harmonic of a 20 ps-Nd: YAG laser has been investigated. With increasing the laser intensity, three regions, non-ablation region (NAR), weak-ablation region (WAR), and strong-ablation region (SAR) were distinguished. Transition from NAR to WAR and WAR to SAR occurred at the threshold laser intensity for laser ablation and that for strong ionization of carbon atoms, respectively. The ablation accompanied desorption of H{sub 2} and C{sub 2}H{sub 2}, with minor contribution of other hydrocarbons, while production of H{sub 2}O was small. In NAR and WAR the number of the hydrogen desorbed by the laser irradiation was less than that of hydrogen retained in the ablated volume, while in SAR it was much larger, owing to thermal desorption of hydrogen gas from the region surrounding the ablated volume. For the ablative removal of hydrogen isotopes, SAR is more desirable because of higher removal efficiency and less production of hydrocarbons.

  5. Preparation, characterization and optical properties of Gadolinium doped ceria thin films by pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Nagaraju, P.; Vijaya Kumar, Y.; Vishnuvardhan Reddy, C.; Ramana Reddy, M.V.; Phase, D.M; Raghavendra Reddy, V.

    2013-01-01

    The growth of Gadolinium doped ceria thin films with controlled surface structure for device quality applications presents a significant problem for experimental investigation. In the present study gadolinium doped cerium oxide thin films were prepared by pulsed laser deposition (PLD) and were studied for their surface structure evaluation in relation to the optimized operating conditions during the stage of film preparation. The deposition was made with gadolinium concentration of 10 mole% to ceria pellets. The films were deposited on quartz substrate in the presence of oxygen partial pressure of 1.5 x 10 -3 torr using KrF Excimer laser with laser energy 220 mJ at a substrate temperature 700℃. The effect of annealing temperature on 10 mole% GDC thin film was investigated. The film thickness was measured by using AMBIOS make XP-l stylus profiler. As prepared and annealed thin films were characterized for crystallinity, particle size and orientation by using G.I.XRD. The films were characterized using atomic force microscopy (AFM). The AFM results gave a consistent picture of the evolution of GDC film surface morphologies and microstructures in terms of surface roughness, grain distribution and mean grain size. The optical transmittance spectra was used to determine the optical constants such as optical band gap, refractive index, extinction coefficient of as prepared and annealed thin films. (author)

  6. Transmission of reactive pulsed laser deposited VO{sub 2} films in the THz domain

    Energy Technology Data Exchange (ETDEWEB)

    Émond, Nicolas; Hendaoui, Ali; Ibrahim, Akram; Al-Naib, Ibraheem; Ozaki, Tsuneyuki; Chaker, Mohamed, E-mail: chaker@emt.inrs.ca

    2016-08-30

    Highlights: • Synthesis of vanadium dioxide (VO{sub 2}) thin films as a function of oxygen pressure (2–25 mTorr) using Reactive Pulsed Laser Deposition (RPLD). • Characterization of RPLD-grown VO{sub 2} thin films in the THz frequency range. • THz switches and/or sensors require VO{sub 2} films deposited at low oxygen pressure (i.e. low transition temperature, large amplitude contrast of THz transmission, narrow hysteresis width). • THz optical memory applications require VO{sub 2} films deposited at high oxygen pressure (broad hysteresis width). - Abstract: This work reports on the characteristics of the insulator-to-metal transition (IMT) of reactive pulsed laser deposited vanadium dioxide (VO{sub 2}) films in the terahertz (THz) frequency range, namely the transition temperature T{sub IMT}, the amplitude contrast of the THz transmission over the IMT ΔA, the transition sharpness ΔT and the hysteresis width ΔH. XRD analysis shows the sole formation of VO{sub 2} monoclinic structure with an enhancement of (011) preferential orientation when varying the O{sub 2} pressure (P{sub O2}) during the deposition process from 2 to 25 mTorr. THz transmission measurements as a function of temperature reveal that VO{sub 2} films obtained at low P{sub O2} exhibit low T{sub IMT}, large ΔA, and narrow ΔH. Increasing P{sub O2} results in VO{sub 2} films with higher T{sub IMT}, smaller ΔA, broader ΔH and asymmetric hysteresis loop. The good control of the VO{sub 2} IMT features in the THz domain could be further exploited for the development of advanced smart devices, such as ultrafast switches, modulators, memories and sensors.

  7. Influence of silicon orientation and cantilever undercut on the determination of Young's modulus of pulsed laser deposited PZT

    NARCIS (Netherlands)

    Nazeer, H.; Woldering, L.A.; Abelmann, Leon; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Elwenspoek, Michael Curt

    In this work we show for the first time that the effective in-plane Young’s modulus of PbZr0.52Ti0.48O3 (PZT) thin films, deposited by pulsed laser deposition (PLD) on dedicated single crystal silicon cantilevers, is independent of the in-plane orientation of cantilevers.

  8. Thickness dependence of the switching voltage in all-oxide ferroelectric thin-film capacitors prepared by pulsed laser deposition

    NARCIS (Netherlands)

    Cillessen, J.F.M.; Prins, M.W.J.; Wolf, R.M.

    1997-01-01

    Thin-film ferroelectric capacitors consisting of PbZr0.53Ti0.47O3 sandwiched between La0.5Sr0.5CoO3 electrodes have been deposited using pulsed laser deposition. The combination of oxidic perovskite-type materials results in capacitors with a coercive field (Ec) which is comparable with values for

  9. Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    Novotný, M; Bulíř, J; Lančok, J; Čížek, J; Kužel, R; Connolly, J; McCarthy, E; Krishnamurthy, S; Mosnier, J-P; Anwand, W; Brauer, G

    2012-01-01

    ZnO thin films were grown by pulsed laser deposition on three different substrates: sapphire (0 0 0 1), MgO (1 0 0) and fused silica (FS). The structure and morphology of the films were characterized by x-ray diffraction and scanning electron microscopy and defect studies were carried out using slow positron implantation spectroscopy (SPIS). Films deposited on all substrates studied in this work exhibit the wurtzite ZnO structure and are characterized by an average crystallite size of 20-100 nm. However, strong differences in the microstructure of films deposited on various substrates were found. The ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit local epitaxy, i.e. a well-defined relation between film crystallites and the substrate. Domains with different orientation relationships with the substrate were found in both films. On the other hand, the film deposited on the FS substrate exhibits fibre texture with random lateral orientation of crystallites. Extremely high compressive in-plane stress of σ ∼ 14 GPa was determined in the film deposited on the MgO substrate, while the film deposited on sapphire is virtually stress-free, and the film deposited on the FS substrate exhibits a tensile in-plane stress of σ ∼ 0.9 GPa. SPIS investigations revealed that the concentration of open-volume defects in the ZnO films is substantially higher than that in a bulk ZnO single crystal. Moreover, the ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit a significantly higher density of defects than the film deposited on the amorphous FS substrate. (paper)

  10. Pulsed laser deposition of YBCO films on ISD MgO buffered metal tapes

    CERN Document Server

    Ma, B; Koritala, R E; Fisher, B L; Markowitz, A R; Erck, R A; Baurceanu, R; Dorris, S E; Miller, D J; Balachandran, U

    2003-01-01

    Biaxially textured magnesium oxide (MgO) films deposited by inclined-substrate deposition (ISD) are desirable for rapid production of high-quality template layers for YBCO-coated conductors. High-quality YBCO films were grown on ISD MgO buffered metallic substrates by pulsed laser deposition (PLD). Columnar grains with a roof-tile surface structure were observed in the ISD MgO films. X-ray pole figure analysis revealed that the (002) planes of the ISD MgO films are tilted at an angle from the substrate normal. A small full-width at half maximum (FWHM) of approx 9deg was observed in the phi-scan for ISD MgO films deposited at an inclination angle of 55deg . In-plane texture in the ISD MgO films developed in the first approx 0.5 mu m from the substrate surface, and then stabilized with further increases in film thickness. Yttria-stabilized zirconia and ceria buffer layers were deposited on the ISD MgO grown on metallic substrates prior to the deposition of YBCO by PLD. YBCO films with the c-axis parallel to the...

  11. Pulsed laser deposition and characterization of multilayer metal-carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Siraj, K., E-mail: khurram.uet@gmail.com [Advance Physics Laboratory, Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Khaleeq-ur-Rahman, M.; Rafique, M.S.; Munawar, M.Z. [Advance Physics Laboratory, Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Naseem, S.; Riaz, S. [Center for Solid State Physics, University of Punjab, Lahore (Pakistan)

    2011-05-15

    Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 deg. C, while post-deposition annealing at 400 deg. C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.

  12. Pulsed laser deposition and characterization of multilayer metal-carbon thin films

    International Nuclear Information System (INIS)

    Siraj, K.; Khaleeq-ur-Rahman, M.; Rafique, M.S.; Munawar, M.Z.; Naseem, S.; Riaz, S.

    2011-01-01

    Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 deg. C, while post-deposition annealing at 400 deg. C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.

  13. Growth of centimeter-scale atomically thin MoS2 films by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Gene Siegel

    2015-05-01

    Full Text Available We are reporting the growth of single layer and few-layer MoS2 films on single crystal sapphire substrates using a pulsed-laser deposition technique. A pulsed KrF excimer laser (wavelength: 248 nm; pulse width: 25 ns was used to ablate a polycrystalline MoS2 target. The material thus ablated was deposited on a single crystal sapphire (0001 substrate kept at 700 °C in an ambient vacuum of 10−6 Torr. Detailed characterization of the films was performed using atomic force microscopy (AFM, Raman spectroscopy, UV-Vis spectroscopy, and photoluminescence (PL measurements. The ablation of the MoS2 target by 50 laser pulses (energy density: 1.5 J/cm2 was found to result in the formation of a monolayer of MoS2 as shown by AFM results. In the Raman spectrum, A1g and E12g peaks were observed at 404.6 cm−1 and 384.5 cm−1 with a spacing of 20.1 cm−1, confirming the monolayer thickness of the film. The UV-Vis absorption spectrum exhibited two exciton absorption bands at 672 nm (1.85 eV and 615 nm (2.02 eV, with an energy split of 0.17 eV, which is in excellent agreement with the theoretically predicted value of 0.15 eV. The monolayer MoS2 exhibited a PL peak at 1.85 eV confirming the direct nature of the band-gap. By varying the number of laser pulses, bi-layer, tri-layer, and few-layer MoS2 films were prepared. It was found that as the number of monolayers (n in the MoS2 films increases, the spacing between the A1g and E12g Raman peaks (Δf increases following an empirical relation, Δ f = 26 . 45 − 15 . 42 1 + 1 . 44 n 0 . 9 cm − 1 .

  14. Shape effect in FMR of Ni-Co-Mn-In layers obtained by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Dubiel Łukasz

    2017-01-01

    Full Text Available We have studied thin layers of Ni50-xCoxMn50-yIny alloys on (001 Si substrate obtained by pulsed laser deposition method (PLD using YAG Nd3+ laser operating at second harmonic. The target was bulk Ni50-xCoxMn50-yIny (x = 5, y = 14.5 alloy prepared by induction melting of pure elements under argon atmosphere. Magnetic properties were investigated on Bruker X band EPR spectrometer (9.36 GHz at room temperature. The magnetic resonance spectrum consists of non-symmetric lines with resonance field within wide field range (2500-4800 Gs depending on the orientation of the static field in the plane perpendicular to the layer. Calculated spectroscopic splitting factor g = 2.09.

  15. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Gontad, F., E-mail: francisco.gontad@le.infn.it [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Solombrino, L. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Chiadroni, E. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati (Italy); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Perrone, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy)

    2016-11-11

    In this work Magnesium (Mg) and Yttrium (Y) thin films have been deposited on Copper (Cu) polycrystalline substrates by the pulsed laser ablation technique for photocathode application. Such metallic materials are studied for their interesting photoemission properties and are proposed as a good alternative to the Cu photocathode, which is generally used in radio-frequency guns. Mg and Y films were uniform with no substantial differences in morphology; a polycrystalline structure was found for both of them. Photoemission measurements of such cathodes based on thin films were performed, revealing a quantum efficiency higher than Cu bulk. Photoemission theory according to the three-step model of Spicer is invoked to explain the superior photoemission performance of Mg with respect to Y. - Highlights: • Mg and Y thin film photocathodes were successfully prepared by pulsed laser deposition. • Mg quantum efficiency is higher than Y, despite its higher work function. • The three-step model of Spicer justify the difference in quantum efficiency.

  16. Growth and characterization of polycrystalline Ge1-xCx by reactive pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez, M.P.; Farias, M.H.; Castillon, F.F.; Diaz, Jesus A.; Avalos, M.; Ulloa, L.; Gallegos, J.A.; Yee-Madeiros, H.

    2011-01-01

    Polycrystalline thin films of Ge-C were grown on Si (1 1 1) substrates by means of reactive pulsed laser deposition with methane pressure of 100 mTorr. Effect substrate temperature, T s , on C incorporation to substitutional sites (x) in Ge 1-x C x was investigated systematically by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyzes. The substrate temperatures were ranging from 250 to 400 deg. C. The substitutional C composition x in the films by XRD were estimated using the Vegard's linear law. The maximum value of x calculated by XRD was 0.032 for T s of 350 deg. C. The position of the C 1s peak at 283.4 eV in the XPS spectrum confirmed the germanium-carbon alloys. XRD measurements indicated that x increased with T s from 250 deg. C to 350 deg. C. At T s = 400 deg. C, the estimation of x was lowered. However, the C content calculated by XPS analyzes increased with T s being more these values than substitutional C composition x. XPS and XRD analyzes demonstrate that the remaining C atoms are incorporated to interstitial sites. The use of the T s plays important roles in the incorporation of substitutional C and in restraining C-cluster formation in the reactive pulsed laser deposition growth of Ge-C/Si.

  17. Smooth silk fibroin nanofilm deposited by 1064-nm pulsed laser beam from an opaque target

    International Nuclear Information System (INIS)

    Nozaki, R.; Nakayama, S.; Senna, M.

    2013-01-01

    In an attempt to prepare smooth nanostructured thin films of silk fibroin (SF) by near-infrared (NIR) pulsed laser deposition, an opaque target was prepared from an emulsified aqueous solution of SF. Upon irradiation of 1064-nm pulsed laser beam at its fluence 5 J/cm 2 , a thin film of SF was deposited on the Si(100) substrate with its root-mean-square surface roughness, 0.37 nm, smoother than those obtained from a compressed target of SF powders by approximately an order of magnitude. The attainment of an extra-smooth film from the opaque target was discussed in terms of multiple Mie scattering of the incident NIR beam, leading to an increase in the plasma density, intensified optical breakdown, ablation of better dispersed SF molecular units, and a film with more intensive intermolecular cross-linking. - Highlights: • Thin film of silk fibroin with its RMS surface roughness, R rms , 0.37 nm was obtained. • The use of a target from an emulsified solution of SF was the key issue. • Mechanism involved was elucidated in terms of enhanced Mie scattering

  18. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  19. Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Ou, Sin-Liang; Wuu, Dong-Sing; Fu, Yu-Chuan; Liu, Shu-Ping; Horng, Ray-Hua; Liu, Lei; Feng, Zhe-Chuan

    2012-01-01

    Highlights: ► The β-Ga2O3 thin films are prepared by pulsed laser deposition. ► The substrate temperature affects the structural, optical and etching properties of the grown films. ► The optical transmittance and band gap of the films increased with increasing the substrate temperature. ► The etching treatments for gallium oxide are performed in 49 mol% HF solution at room temperature. ► The gallium oxide thin film grown at 400 °C has the highest etching rate of 490 nm s −1 . - Abstract: The gallium oxide films were deposited on (0 0 1) sapphire at various substrate temperatures from 400 to 1000 °C by pulsed laser deposition using a KrF excimer laser. The etching treatments for as-grown gallium oxide were performed in a 49 mol% HF solution at room temperature. The structural, optical and etching properties of the grown films were investigated in terms of high resolution X-ray diffraction, optical transmittance, atomic force microscopy, and X-ray photoelectron spectroscopy. The phase transition from amorphous to polycrystalline β-Ga 2 O 3 structure was observed with increasing growth temperature. From the optical transmittance measurements, the films grown at 550–1000 °C exhibit a clear absorption edge at deep ultraviolet region around 250–275 nm wavelength. It was found that the optical band gap of gallium oxide films increased from 4.56 to 4.87 eV when the substrate temperature increased from 400 to 1000 °C. As the substrate temperature increases, the crystallinity of gallium oxide film is enhanced and the etching rate is decreased. The high etching rate of 490 nm s −1 for gallium oxide film grown at 400 °C could be due to its amorphous phase, which is referred to higher void ratio and looser atomic structure.

  20. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    Science.gov (United States)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C. N.; Mihailescu, I. N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A. C.; Luculescu, C. R.; Craciun, V.

    2012-11-01

    The influence of target-substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10-4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  1. Highly conducting and transparent Ti-doped CdO films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gupta, R.K.; Ghosh, K.; Patel, R.; Kahol, P.K.

    2009-01-01

    Titanium-doped cadmium oxide thin films were deposited on quartz substrate by pulsed laser deposition technique. The effect of substrate temperature on structural, optical and electrical properties was studied. The films grown at high temperature show (2 0 0) preferred orientation, while films grown at low temperature have both (1 1 1) and (2 0 0) orientation. These films are highly transparent (63-79%) in visible region, and transmittance of the films depends on growth temperature. The band gap of the films varies from 2.70 eV to 2.84 eV for various temperatures. It is observed that resistivity increases with growth temperature after attaining minimum at 150 deg. C, while carrier concentration continuously decreases with temperature. The low resistivity, high transmittance and wide band gap titanium-doped CdO films could be an excellent candidate for future optoelectronic and photovoltaic applications.

  2. Functionalized porphyrin conjugate thin films deposited by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Iordache, S. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, A.C.; Popescu, C.E.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Ciucu, A.A. [University of Bucharest, Faculty of Chemistry, Bucharest (Romania); Balan, A.; Stamatin, I. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Fagadar-Cosma, E. [Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223-Timisoara (Romania); Chrisey, D.B. [Tulane University, Departments of Physics and Biomedical Engineering, New Orleans, LA 70118 (United States)

    2013-08-01

    We report on the deposition of nanostructured porphyrin-base, 5(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin thin films by matrix assisted pulsed laser evaporation onto silicon substrates with screen-printed electrodes. AFM investigations have shown that at 400 mJ/cm{sup 2} fluence a topographical transition takes place from the platelet-like stacking porphyrin-based nanostructures in a perpendicular arrangement to a quasi-parallel one both relative to the substrate surface. Raman spectroscopy has shown that the chemical structure of the deposited thin films is preserved for fluences within the range of 200–300 mJ/cm{sup 2}. Cyclic voltammograms have demonstrated that the free porphyrin is appropriate as a single mediator for glucose in a specific case of screen-printed electrodes, suggesting potential for designing a new class of biosensors.

  3. Compositional and structural properties of pulsed laser-deposited ZnS:Cr films

    Science.gov (United States)

    Nematollahi, Mohammadreza; Yang, Xiaodong; Seim, Eivind; Vullum, Per Erik; Holmestad, Randi; Gibson, Ursula J.; Reenaas, Turid W.

    2016-02-01

    We present the properties of Cr-doped zinc sulfide (ZnS:Cr) films deposited on Si(100) by pulsed laser deposition. The films are studied for solar cell applications, and to obtain a high absorption, a high Cr content (2.0-5.0 at.%) is used. It is determined by energy-dispersive X-ray spectroscopy that Cr is relatively uniformly distributed, and that local Cr increases correspond to Zn decreases. The results indicate that most Cr atoms substitute Zn sites. Consistently, electron energy loss and X-ray photoelectron spectroscopy showed that the films contain mainly Cr2+ ions. Structural analysis showed that the films are polycrystalline and textured. The films with ~4 % Cr are mainly grown along the hexagonal [001] direction in wurtzite phase. The average lateral grain size decreases with increasing Cr content, and at a given Cr content, increases with increasing growth temperature.

  4. Quantitative TEM analysis of Al/Cu multilayer systems prepared by pulsed laser deposition

    DEFF Research Database (Denmark)

    Liu, Haihua; Pryds, Nini; Schou, Jørgen

    2010-01-01

    Thin films composed of alternating Al/Cu/Al layers were deposited on a (111) Si substrate using pulsed laser deposition (PLD). The thicknesses of the film and the individual layers, and the detailed internal structure within the layers were characterized by means of transmission electron microscopy...... for the formation of the first layer of nano-sized Al grains. The results demonstrate that the PLD technique is a powerful tool to produce nano-scale multilayered metal films with controllable thickness and grain sizes....... (TEM), high-resolution TEM (HRTEM), and energy-filtered TEM (EFTEM). Each Al or Cu layer consists of a single layer of nano-sized grains of different orientations. EFTEM results revealed a layer of oxide about 2 nm thick on the surface of the Si substrate, which is considered to be the reason...

  5. Raman spectroscopy of ZnMnO thin films grown by pulsed laser deposition

    Science.gov (United States)

    Orozco, S.; Riascos, H.; Duque, S.

    2016-02-01

    ZnMnO thin films were grown by Pulsed Laser Deposition (PLD) technique onto Silicon (100) substrates at different growth conditions. Thin films were deposited varying Mn concentration, substrate temperature and oxygen pressure. ZnMnO samples were analysed by using Raman Spectroscopy that shows a red shift for all vibration modes. Raman spectra revealed that nanostructure of thin films was the same of ZnO bulk, wurzite hexagonal structure. The structural disorder was manifested in the line width and shape variations of E2(high) and E2(low) modes located in 99 and 434cm-1 respectively, which may be due to the incorporation of Mn ions inside the ZnO crystal lattice. Around 570cm-1 was found a peak associated to E1(LO) vibration mode of ZnO. 272cm-1 suggest intrinsic host lattice defects. Additional mode centred at about 520cm-1 can be overlap of Si and Mn modes.

  6. Apparatus and method for pulsed laser deposition of materials on wires and pipes

    Science.gov (United States)

    Fernandez, Felix E.

    2003-01-01

    Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

  7. Pulsed laser deposition of yttrium photocathode suitable for use in radio-frequency guns

    Science.gov (United States)

    Lorusso, A.; Trovò, M.; Demidovich, A.; Cinquegrana, P.; Gontad, F.; Broitman, E.; Chiadroni, E.; Perrone, A.

    2017-12-01

    Yttrium (Y) thin film was grown by pulsed laser deposition (PLD) on a copper (Cu) polycrystalline substrate. Ex situ morphological and structural characterisations of the circular Y film of 1.2 µm thickness and 3 mm diameter have shown a very low droplet density on the film surface and a crystalline feature with a preferred orientation along the Y (100) plane. Moreover, Y thin film resulted in being very adherent to the Cu substrate and more scratch resistant than Cu bulk. A twin thin film was deposited also on a Cu backflange of a radio-frequency (RF) gun to test the suitability of the metallic thin film as photocathode. It was observed that the Y-coated photocathode was characterised by a quantum efficiency ( QE) higher than that of the Cu bulk photocathode even if the presence of space charge effects didn't allow deriving the absolute maximum value of QE of Y photocathode.

  8. Templated synthesis of gold-iron alloy nanoparticles using pulsed laser deposition

    International Nuclear Information System (INIS)

    Chang, Won-Suk; Park, Jin-Won; Rawat, Vijay; Sands, Timothy; Lee, Gil U

    2006-01-01

    A means for synthesizing paramagnetic nanoparticles composed of an Au-Fe alloy is described using pulsed laser deposition (PLD) of the alloy into a mesoporous alumina membrane template. Nanoparticles 46 ± 13 nm in diameter and composed of a 17% Fe alloy have been created by depositing a 35% Fe alloy into a template with 65 nm diameter pores. These paramagnetic nanoparticles had a saturation magnetization of 11.5 emu g -1 at 2000 G, and their UV-visible extinction spectrum was dominated by strong absorption similar to that of Fe 3 O 4 nanoparticles. The surfaces of these nanoparticles were readily functionalized with a dense monolayer of DNA oligonucleotides that had a 5' thiol group. The Au-Fe nanoparticles appear to be well suited for biotechnological applications and single molecule measurements as they can be synthesized in a specific size range, are strongly paramagnetic, and may be easily functionalized with biological macromolecules

  9. Sims Characterisation of ZnO Layer Prepared By Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Andrej Vincze

    2005-01-01

    Full Text Available New material development requires new technologies to create and prepare basic material for semiconductor industry and device applications. Materials have given properties, which exhibit particulary small tolerances. One of the most important and promising material is recently ZnO. ZnO has specific properties for near UV emission and absorption optical devices. The pulsed laser deposition (PLD is one of the methods to prepare this type of material. The aim of this paper is to compare properties of ZnO layers deposited from pure Zn target in oxygen atmosphere and the analysis of their surface properties by secondary ion mass spectroscopy (SIMS, atomic force microscopy (AFM and scanning electron microscopy (SEM.

  10. Structural modification of titanium surface by octacalcium phosphate via Pulsed Laser Deposition and chemical treatment

    Directory of Open Access Journals (Sweden)

    I.V. Smirnov

    2017-06-01

    Full Text Available In the present study, the Pulsed Laser Deposition (PLD technique was applied to coat titanium for orthopaedic and dental implant applications. Calcium carbonate (CC was used as starting coating material. The deposited CC films were transformed into octacalcium phosphate (OCP by chemical treatments. The results of X-ray diffraction (XRD, Raman, Fourier Transform Infrared Spectroscopy (FTIR and scanning electron microscopy (SEM studies revealed that the final OCP thin films are formed on the titanium surface. Human myofibroblasts from peripheral vessels and the primary bone marrow mesenchymal stromal cells (BMMSs were cultured on the investigated materials. It was shown that all the investigated samples had no short-term toxic effects on cells. The rate of division of myofibroblast cells growing on the surface and saturated BMMSs concentration for the OCP coating were about two times faster than of cells growing on the CC films.

  11. Pulsed-laser-deposited YBCO thin films using modified MTG processed targets

    CERN Document Server

    Kim, C H; Kim, I T; Hahn, T S

    1999-01-01

    YBCO thin films were deposited by pulsed laser deposition from targets fabricated using the modified melt-textured growth (MTG) method and the solid-state sintering (SSS) method. All of the films showed c-axis orientations, but the films from the MTG targets had better crystallinity than those from the SSS targets. As the substrate temperature was increased, T sub c and J sub c of the films increased. The films from the MTG targets showed better superconducting properties than those from the SSS targets. From the composition analysis of the targets, the Y-richer vapor species arriving at the substrate from the MTG targets are thought to form a thermodynamically more stable YBCO phase with less cation disorder.

  12. Growth of strained, ferroelectric NaNbO{sub 3} thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sellmann, Jan; Schwarzkopf, Jutta; Duk, Andreas; Kwasniewski, Albert; Schmidbauer, Martin; Fornari, Roberto [IKZ, Berlin (Germany)

    2012-07-01

    Due to its promising ferro-/piezoelectric properties and high Curie temperature NaNbO{sub 3} has attracted much attention. In contrast to bulk crystals, thin epitaxial films may incorporate and maintain a certain compressive or tensile lattice strain, depending on the used substrate/film combination. This deformation of the crystal lattice is known to strongly influence the ferroelectric properties of perovskites. In the case of NaNbO{sub 3} compressive strain is achieved in films deposited on NdGaO{sub 3} and SrTiO{sub 3} substrates while deposition on DyScO{sub 3} and TbScO{sub 3} leads to tensile in-plane strain. In order to characterize and practically apply the ferroelectric films, it is necessary to embed them in a capacitor structure for which we use pseudomorphically grown SrRuO{sub 3} as bottom electrodes. We report on the deposition of SrRuO{sub 3} and NaNbO{sub 3} single layers on SrTiO{sub 3}, DyScO{sub 3}, TbScO{sub 3} and NbGaO{sub 3} substrates by means of pulsed laser deposition. By adjusting the substrate temperature, the oxygen partial pressure and the laser frequency we have successfully deposited smooth, strained, single phase NaNbO{sub 3} thin films. Investigations of the films by atomic force microscopy and high resolution X-ray diffraction reveal the dependence of the surface morphology and the incorporated lattice strain on the deposition parameters and the lattice mismatch, respectively. All films exhibit piezoelectric properties, as proven by piezoresponse force microscopy.

  13. Excimer pulsed laser deposition and annealing of YSZ nanometric films on Si substrates

    International Nuclear Information System (INIS)

    Caricato, A.P.; Barucca, G.; Di Cristoforo, A.; Leggieri, G.; Luches, A.; Majni, G.; Martino, M.; Mengucci, P.

    2005-01-01

    We report experimental results obtained for electrical and structural characteristics of yttria-stabilised zirconia (YSZ) thin films deposited by pulsed laser deposition (PLD) on Si substrates at room temperature. Some samples were submitted to thermal treatments in different ambient atmospheres (vacuum, N 2 and O 2 ) at a moderate temperature. The effects of thermal treatments on the film electrical properties were studied by C-V and I-V measurements. Structural characteristics were obtained by X-ray diffraction (XRD), X-ray reflectivity (XRR) and transmission electron microscopy (TEM) analyses. The as-deposited film was amorphous with an in-depth non-uniform density. The annealed films became polycrystalline with a more uniform density. The sample annealed in O 2 was uniform over all the thickness. Electrical characterisation showed large hysteresis, high leakage current and positive charges trapped in the oxide in the as-deposited film. Post-deposition annealing, especially in O 2 atmosphere, improved considerably the electrical properties of the films

  14. Fabrication of Nb/Pb structures through ultrashort pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, Francisco; Lorusso, Antonella, E-mail: antonella.lorusso@le.infn.it; Perrone, Alessio [Dipartimento di Matematica e Fisica “E. De Giorgi,” Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Klini, Argyro; Fotakis, Costas [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 100 N. Plastira St., GR 70013 Heraklion, Crete (Greece); Broitman, Esteban [Thin Film Physics Division, IFM, Linköping University, 581-83 Linköping (Sweden)

    2016-07-15

    This work reports the fabrication of Nb/Pb structures with an application as photocathode devices. The use of relatively low energy densities for the ablation of Nb with ultrashort pulses favors the reduction of droplets during the growth of the film. However, the use of laser fluences in this ablation regime results in a consequent reduction in the average deposition rate. On the other hand, despite the low deposition rate, the films present a superior adherence to the substrate and an excellent coverage of the irregular substrate surface, avoiding the appearance of voids or discontinuities on the film surface. Moreover, the low energy densities used for the ablation favor the growth of nanocrystalline films with a similar crystalline structure to the bulk material. Therefore, the use of low ablation energy densities with ultrashort pulses for the deposition of the Nb thin films allows the growth of very adherent and nanocrystalline films with adequate properties for the fabrication of Nb/Pb structures to be included in superconducting radiofrequency cavities.

  15. One-pot synthesis and transfer of PMMA/Ag photonic nanocomposites by pulsed laser deposition

    Science.gov (United States)

    Karoutsos, V.; Koutselas, I.; Orfanou, P.; Mpatzaka, Th.; Vasileiadis, M.; Vassilakopoulou, A.; Vainos, N. A.; Perrone, A.

    2015-08-01

    Nanocomposite films comprising metallic nanoparticles in polymer matrices find increasing use in emerging photonic, electronic and microsystem applications owing to their tailored advanced functionalities. The versatile development of such films based on poly-methyl-methacrylate (PMMA) matrix having embedded Ag nanoparticles is addressed here. Two low-cost one-pot chemical methods for the synthesis of bulk target nanocomposite materials are demonstrated. These nanocomposites are subsequently transferred via pulsed laser deposition using 193 nm ArF excimer laser radiation, producing films maintaining the structural and functional properties. Both target- and laser-deposited materials have been thoroughly characterized using microscopic, spectroscopic and thermal analysis methods. Infrared spectra demonstrated the close molecular PMMA chain similarity for both target and film materials, though structural alterations identified by thermal analysis proved the enhanced characteristics of films grown. High-resolution electron microscopy proved the transfer of Ag nanoparticles sized 10-50 nm. Visible absorption peaked in the spectral range of 430-440 nm and attributed to the Ag nanocomposite plasmonic response verifying the transfer of the functional performance from target to film.

  16. Structural and Optical Properties of Eu Doped ZnO Nanorods prepared by Pulsed Laser Deposition

    KAUST Repository

    Alarawi, Abeer

    2014-06-23

    Nano structured wide band gap semiconductors have attracted attention of many researchers due to their potential electronic and optoelectronic applications. In this thesis, we report successful synthesis of well aligned Eu doped ZnO nano-rods prepared, for the first time to our knowledge, by pulsed laser deposition (PLD) without any catalyst. X-ray diffraction (XRD) patterns shows that these Eu doped ZnO nanorods are grown along the c-axis of ZnO wurtzite structure. We have studied the effect of the PLD growth conditions on forming vertically aligned Eu doped ZnO nanorods. The structural properties of the material are investigated using a -scanning electron microscope (SEM). The PLD parameters must be carefully controlled in order to obtain c-axis oriented ZnO nanorods on sapphire substrates, without the use of any catalyst. The experiments conducted in order to identify the optimal growth conditions confirmed that, by adjusting the target-substrate distance, substrate temperature, laser energy and deposition duration, the nanorod size could be successfully controlled. Most importantly, the results indicated that the photoluminescence (PL) properties reflect the quality of the ZnO nanorods. These parameters can change the material’s structure from one-dimensional to two-dimensional however the laser energy and frequency affect the size and the height of the nanorods; the xygen pressure changes the density of the nanorods.

  17. Models of WO x films growth during pulsed laser deposition at elevated pressures of reactive gas

    Science.gov (United States)

    Gnedovets, A. G.; Fominski, V. Y.; Nevolin, V. N.; Romanov, R. I.; Fominski, D. V.; Soloviev, A. A.

    2017-12-01

    The films of tungsten oxides were prepared by pulsed laser ablation of W target in a reactive gas atmosphere (air of laboratory humidity). Optical analysis and ion signal measurements for the laser plume allowed to recognise a threshold gas pressure that suppresses the deposition of non-scattered atomic flux from the plume. When the pressure exceeds about 40 Pa, the films grow due to the deposition of species that could be formed in collisions of W atoms with reactive molecules (e.g., O2). Kinetic Monte Carlo method was used for modelling film growth. Comparison of the model structures with the experimentally prepared films has shown that the growth mechanism of ballistic deposition at a pressure of 40 Pa could be changed on the diffusion limited aggregation at a pressure of ~100 Pa. Thus, a cauliflower structure of the film transformed to a web-like structure. For good correlation of experimental and model structures of WO x , a dimension of structural elements in the model should coincide with W-O cluster size.

  18. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    CERN Document Server

    Li Peng; Mazumder, J

    2003-01-01

    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates.

  19. Characteristics of LaB{sub 6} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Craciun, Valentin; Socol, Gabriel; Craciun, Doina, E-mail: doina.craciun@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, Magurele 077125 (Romania); Cristea, Daniel [Materials Science Department, Transilvania University of Brasov, Brasov 500036 (Romania); Lambers, Eric [Major Analytical Instrumentation Center (MAIC), University of Florida, Gainesville, Florida 32611 (United States); Trusca, Roxana [Faculty of Applied Chemistry and Material Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Bucharest 011061, 060042 (Romania); Fairchild, Steven [Air Force Research Laboratory, Materials and Manufacturing Directorate (AFRL/RXA) Wright-Patterson AFB, Ohio 45433-7707 (United States); Back, Tyson; Gruen, Greggory [Air Force Research Laboratory, Materials and Manufacturing Directorate (AFRL/RXA) Wright-Patterson AFB, Ohio 45433-7707 and Energy and Environmental Engineering Division, University of Dayton Research Institute, Dayton, Ohio 45469-0170 (United States)

    2016-09-15

    LaB{sub 6} thin films were deposited at a temperature of 500 °C under vacuum or Ar atmosphere by the pulsed laser deposition technique on (100) Si substrates using a KrF laser. Grazing incidence x-ray diffraction investigations found that films were nanocrystalline, with grain size dimensions from 86 to 102 nm and exhibited microstrain values around 1.1%. Simulations of the x-ray reflectivity curves acquired from the deposited films showed that films had a density around 4.55 g/cm{sup 3}, and were very smooth, with a surface roughness root-mean-square of 1.5 nm, which was also confirmed by scanning electron and atomic force microscopy measurements. All films were covered by a ∼2 nm thick contamination layer that formed when samples were exposed to the ambient. Auger electron spectroscopy investigations found very low oxygen impurity levels below 1.5 at. % once the contamination surface layer was removed by Ar ion sputtering. Four point probe measurements showed that films were conductive, with a resistivity value around 200 μΩ cm for those deposited under Ar atmosphere and slightly higher for those deposited under vacuum. Nanoindentation and scratch investigations showed that films were rather hard, H ∼ 16 GPa, E ∼ 165 GPa, and adherent to the substrate. Thermionic emission measurements indicated a work function value of 2.66 eV, very similar to other reported values for LaB{sub 6}.

  20. Experimental Study of Direct Laser Deposition of Ti-6Al-4V and Inconel 718 by Using Pulsed Parameters

    Directory of Open Access Journals (Sweden)

    Kamran Shah

    2014-01-01

    Full Text Available Laser direct metal deposition (LDMD has developed from a prototyping to a single metal manufacturing tool. Its potential for creating multimaterial and functionally graded structures is now beginning to be explored. This work is a first part of a study in which a single layer of Inconel 718 is deposited on Ti-6Al-4V substrate. Single layer tracks were built at a range of powder mass flow rates using a coaxial nozzle and 1.5 kW diode laser operating in both continuous and pulsed beam modes. This part of the study focused on the experimental findings during the deposition of Inconel 718 powder on Ti-6Al-4V substrate. Scanning electron microscopy (SEM and X-ray diffraction analysis were performed for characterization and phase identification. Residual stress measurement had been carried out to ascertain the effects of laser pulse parameters on the crack development during the deposition process.

  1. Post-annealing effects on pulsed laser deposition-grown GaN thin films

    International Nuclear Information System (INIS)

    Cheng, Yu-Wen; Wu, Hao-Yu; Lin, Yu-Zhong; Lee, Cheng-Che; Lin, Ching-Fuh

    2015-01-01

    In this work, the post-annealing effects on gallium nitride (GaN) thin films grown from pulsed laser deposition (PLD) are investigated. The as-deposited GaN thin films grown from PLD are annealed at different temperatures in nitrogen ambient. Significant changes of the GaN crystal properties are observed. Raman spectroscopy is used to observe the crystallinity, the change of residual stress, and the thermal decomposition of the annealed GaN thin films. X-ray diffraction is also applied to identify the crystal phase of GaN thin films, and the surface morphology of GaN thin films annealed at different temperatures is observed by scanning electron microscopy. Through the above analyses, the GaN thin films grown by PLD undergo three stages: phase transition, stress alteration, and thermal decomposition. At a low annealing temperature, the rock salt GaN in GaN films is transformed into wurtzite. The rock salt GaN diminishes with increasing annealing temperature. At a medium annealing temperature, the residual stress of the film changes significantly from compressive strain to tensile strain. As the annealing temperature further increases, the GaN undergoes thermal decomposition and the surface becomes granular. By investigating the annealing temperature effects and controlling the optimized annealing temperature of the GaN thin films, we are able to obtain highly crystalline and strain-free GaN thin films by PLD. - Highlights: • The GaN thin film is grown on sapphire by pulsed laser deposition. • The GaN film undergoes three stages with increasing annealing temperature. • In the first stage, the film transfers from rock salt to wurtzite phase. • In the second stage, the stress in film changes from compressive to tensile. • In the final stage, the film thermally decomposes and becomes granular

  2. Formation of copper tin sulfide films by pulsed laser deposition at 248 and 355 nm

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt; Crovetto, Andrea; Canulescu, Stela

    2016-01-01

    The influence of the laser wavelength on the deposition of copper tin sulfide (CTS) and SnS-rich CTS with a 248-nm KrF excimer laser (pulse length τ = 20 ns) and a 355-nm frequency-tripled Nd:YAG laser (τ = 6 ns) was investigated. A comparative study of the two UV wavelengths shows that the CTS...... film growth rate per pulse was three to four times lower with the 248-nm laser than the 355-nm laser. SnS-rich CTS is more efficiently ablated than pure CTS. Films deposited at high fluence have submicron and micrometer size droplets, and the size and area density of the droplets do not vary significantly...

  3. Growth of superconducting MgB2 films by pulsed-laser deposition using a Nd-YAG laser

    International Nuclear Information System (INIS)

    Badica, P; Togano, K; Awaji, S; Watanabe, K

    2006-01-01

    Thin films of MgB 2 on r-cut Al 2 O 3 substrates have been grown by pulsed-laser deposition (PLD) using a Nd-YAG laser (fourth harmonic-266 nm) instead of the popular KrF excimer laser. The growth window to obtain superconducting films is laser energy 350-450 mJ and vacuum pressure with Ar-buffer gas of 1-8/10 Pa (initial background vacuum 0.5-1 x 10 -3 Pa). Films were deposited at room temperature and post-annealed in situ and ex situ at temperatures of 500-780 0 C and up to 1 h. Films are randomly oriented with maximum critical temperature (offset of resistive transition) of 27 K. SEM/TEM/EDS investigations show that they are mainly composed of small sphere-like particles (≤20 nm), and contain oxygen and some carbon, uniformly distributed in the flat matrix, but the amount of Mg and/or oxygen is higher in the aggregates-droplets (100-1000 nm) observed on the surface of the film's matrix. Some aspects of the processing control and dependences on film characteristics are discussed. The technique is promising for future development of coated conductors

  4. Photoluminescence of Eu-doped LiYF4 thin films grown by pulsed laser deposition and matrix-assisted pulsed laser evaporation

    International Nuclear Information System (INIS)

    Stokker-Cheregi, F; Matei, A; Dinescu, M; Secu, C E; Secu, M

    2014-01-01

    Matrix-assisted pulsed laser evaporation (MAPLE) has been investigated as an alternative to the pulsed laser deposition (PLD) technique for Eu 3+ -doped crystalline LiYF 4 thin-films deposition. MAPLE assumes laser ablation of a frozen target made of the material of interest diluted in a solvent, rather than that of a bulk target, of either pressed powder or single crystal, used in the case of PLD. Our approach stems from the assumption that laser ablation of a frozen dilute target would result in thin films with improved morphology, as compared to PLD. Indeed, we find that roughness values of samples obtained by the MAPLE technique are four times lower than in the case of PLD. A lower transmittance was noticed for PLD obtained layers with respect to those grown by MAPLE due to strong scattering of light by the morphological defects. Photoluminescence spectra are showing characteristic Eu 3+ -ion luminescence bands at 578, 591, 612, 650 and 698 nm ( 5 D 0  →  7 F J ); crystal field splitting of the bands indicates dopant ions incorporation in the host material during transfer by either PLD or MAPLE. (paper)

  5. Utilizing pulsed laser deposition lateral inhomogeneity as a tool in combinatorial material science.

    Science.gov (United States)

    Keller, David A; Ginsburg, Adam; Barad, Hannah-Noa; Shimanovich, Klimentiy; Bouhadana, Yaniv; Rosh-Hodesh, Eli; Takeuchi, Ichiro; Aviv, Hagit; Tischler, Yaakov R; Anderson, Assaf Y; Zaban, Arie

    2015-04-13

    Pulsed laser deposition (PLD) is widely used in combinatorial material science, as it enables rapid fabrication of different composite materials. Nevertheless, this method was usually limited to small substrates, since PLD deposition on large substrate areas results in severe lateral inhomogeneity. A few technical solutions for this problem have been suggested, including the use of different designs of masks, which were meant to prevent inhomogeneity in the thickness, density, and oxidation state of a layer, while only the composition is allowed to be changed. In this study, a possible way to take advantage of the large scale deposition inhomogeneity is demonstrated, choosing an iron oxide PLD-deposited library with continuous compositional spread (CCS) as a model system. An Fe₂O₃-Nb₂O₅ library was fabricated using PLD, without any mask between the targets and the substrate. The library was measured using high-throughput scanners for electrical, structural, and optical properties. A decrease in electrical resistivity that is several orders of magnitude lower than pure α-Fe₂O₃ was achieved at ∼20% Nb-O (measured at 47 and 267 °C) but only at points that are distanced from the center of the PLD plasma plume. Using hierarchical clustering analysis, we show that the PLD inhomogeneity can be used as an additional degree of freedom, helping, in this case, to achieve iron oxide with much lower resistivity.

  6. Structural, morphological and optical properties of pulsed laser deposited ZnSe/ZnSeO3 thin films

    Science.gov (United States)

    Hassan, Syed Ali; Bashir, Shazia; Zehra, Khushboo; Salman Ahmed, Qazi

    2018-04-01

    The effect of varying laser pulses on structural, morphological and optical behavior of Pulsed Laser Deposited (PLD) ZnSe/ZnSeO3 thin films has been investigated. The films were grown by employing Excimer laser (100 mJ, 248 nm, 18 ns, 30 Hz) at various number of laser pulses i.e. 3000, 4000, 5000 and 6000 with elevated substrate temperature of 300 °C. One film was grown at Room Temperature (RT) by employing 3000 number of laser pulses. In order to investigate the structural analysis of deposited films, XRD analysis was performed. It was observed that the room temperature is not favorable for the growth of crystalline film. However, elevated substrate temperature to 300°C, two phases with preferred orientation of ZnSeO3 (2 1 2) and ZnSe (3 3 1) were identified. AFM and SEM analysis were performed to explore the surface morphology of grown films. Morphological analysis also confirmed the non-uniform film growth at room temperature. At elevated substrate temperature (300 °C), the growth of dendritic rods and cubical crystalline structures are observed for lower number of laser pulses i.e. 3000 and 4000 respectively. With increased number of pulses i.e. 5000 and 6000, the films surface morphology becomes smooth which is confirmed by measurement of surface RMS roughness. Number of grains, skewness, kurtosis and other parameters have been evaluated by statistical analysis. In order to investigate the thickness, and optical properties of deposited films, ellipsometery and UV–Vis spectroscopy techniques were employed. The estimated band gap energy is 2.67 eV for the film grown at RT, whereas band gap values varies from 2.80 eV to 3.01 eV for the films grown at 300 °C with increasing number of laser pulses.

  7. Low-temperature processed ZnO and CdS photodetectors deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N; Moreno, S; Mejia, I; Quevedo-Lopez, M A

    2014-01-01

    UV-VIS photodetectors using an interdigital configuration, with zinc oxide (ZnO) and cadmium sulfide (CdS) semiconductors deposited by pulsed laser deposition, were fabricated with a maximum processing temperature of 100 °C. Without any further post-growth annealing, the photodetectors are compatible with flexible and transparent substrates. Aluminum (Al) and indium tin oxide (ITO) were investigated as contacts. Focusing on underwater communications, the impact of metal contact (ITO versus Al) was investigated to determine the maximum responsivity using a laser with a 405 nm wavelength. As expected, the responsivity increases for reduced metal finger separation. This is a consequence of reduced carrier transit time for shorter finger separation. For ITO, the highest responsivities for both films (ZnO and CdS) were ∼3 A W −1 at 5 V. On the other hand, for Al contacts, the maximum responsivities at 5 V were ∼0.1 A W −1 and 0.7 A W −1 for CdS and ZnO, respectively. (paper)

  8. Nanomechanical properties of GaSe thin films deposited on Si(1 1 1) substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    Jian, Sheng-Rui; Juang, Jenh-Yih; Luo, Chih-Wei; Ku, Shin-An; Wu, Kaung-Hsiung

    2012-01-01

    Highlights: ► GaSe thin films are grown by PLD. ► Structural properties of GaSe thin films are measured by XRD. ► Hardness and Young’s modulus of GaSe thin films are measured by nanoindentation. - Abstract: The correlations between the crystalline structure and mechanical properties of GaSe thin films were investigated by means of X-ray diffraction (XRD) and nanoindentation techniques. The GaSe thin films were deposited on Si(1 1 1) substrates deposited at various deposition temperatures using pulsed laser deposition (PLD). The XRD results indicate that all the GaSe thin films are pure hexagonal phase with highly (0 0 0 l)-oriented characteristics. Nanoindentation results revealed apparent discontinuities (so-called multiple “pop-in” events) in the load-displacement curve, while no discontinuity was observed in the unloading segment of the load-displacement curve. The hardness and Young’s modulus of GaSe thin films determined by the continuous stiffness measurements (CSM) method indicated that both mechanical parameters increased with the increasing deposition temperature with the hardness and the Young’s modulus being increased from 1.2 ± 0.1 to 1.8 ± 0.1 GPa and from 39.6 ± 1.2 to 68.9 ± 2.7 GPa, respectively, as the deposition temperature was raised from 400 to 475 °C. These results suggest that the increased grain size might have played a prominent role in determining the mechanical properties of the PLD-derived GaSe thin films.

  9. Yttria and ceria doped zirconia thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saporiti, F.; Juarez, R. E., E-mail: cididi@fi.uba.ar [Grupo de Materiales Avanzados, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Audebert, F. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Boudard, M. [Laboratoire des Materiaux et du Genie Physique (CNRS), Grenoble (France)

    2013-11-01

    The Yttria stabilized Zirconia (YSZ) is a standard electrolyte for solid oxide fuel cells (SOFCs), which are potential candidates for next generation portable and mobile power sources. YSZ electrolyte thin films having a cubic single phase allow reducing the SOFC operating temperature without diminishing the electrochemical power density. Films of 8 mol% Yttria stabilized Zirconia (8YSZ) and films with addition of 4 weight% Ceria (8YSZ + 4CeO{sub 2}) were grown by pulsed laser deposition (PLD) technique using 8YSZ and 8YSZ + 4CeO{sub 2} targets and a Nd-YAG laser (355 nm). Films have been deposited on Soda-Calcia-Silica glass and Si(100) substrates at room temperature. The morphology and structural characteristics of the samples have been studied by means of X-ray diffraction and scanning electron microscopy. Films of a cubic-YSZ single phase with thickness in the range of 1-3 Micro-Sign m were grown on different substrates (author)

  10. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Isobe, Shigehito [Creative Research Institution, Hokkaido University, Sapporo 001-0021 (Japan); Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Orimo, Shin-ichi [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-09-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10{sup −2} Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R{sub RMS} of ∼0.4 nm.

  11. Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Cao, B Q; Lorenz, M; Rahm, A; Wenckstern, H von; Czekalla, C; Lenzner, J; Benndorf, G; Grundmann, M

    2007-01-01

    Phosphorus-doped ZnO (ZnO:P) nanowires were successfully prepared by a novel high-pressure pulsed-laser deposition process using phosphorus pentoxide as the dopant source. Detailed cathodoluminescence studies of single ZnO:P nanowires revealed characteristic phosphorus acceptor-related peaks: neutral acceptor-bound exciton emission (A 0 , X, 3.356 eV), free-to-neutral-acceptor emission (e, A 0 , 3.314 eV), and donor-to-acceptor pair emission (DAP, ∼3.24 and ∼3.04 eV). This means that stable acceptor levels with a binding energy of about 122 meV have been induced in the nanowires by phosphorus doping. Moreover, the induced acceptors are distributed homogeneously along the doped nanowires

  12. How to obtain a magnetic hard-soft architecture by pulsed laser deposition

    International Nuclear Information System (INIS)

    Fix, T; Trassin, M; Hassan, R Sayed; Schmerber, G; Viart, N; Meny, C; Colis, S; Dinia, A

    2007-01-01

    In spin valve type systems, one ferromagnetic electrode must be magnetically hard to act as a reference layer while the other electrode must be magnetically soft to act as a sensor or storage layer. This magnetic hard-soft architecture can usually be obtained by four different methods: the use of two ferromagnets with different coercive fields (here CoFe 2 and Ni 80 Fe 20 ), the use of an underlayer enhancing the coercive field of one of the two ferromagnets (here Ta and Ru), the use of a ferromagnet coupled to a ferrimagnet or antiferromagnet (here NiO/CoFe 2 and CoFe 2 O 4 /CoFe 2 ), or the use of an artificial antiferromagnet (here CoFe 2 /Ru/CoFe 2 ). We show that at least the first and the third methods seem to work with pulsed laser deposition in the thermodynamic conditions used

  13. Memory properties of a Ge nanoring MOS device fabricated by pulsed laser deposition.

    Science.gov (United States)

    Ma, Xiying

    2008-07-09

    The non-volatile charge-storage properties of memory devices with MOS structure based on Ge nanorings have been studied. The two-dimensional Ge nanorings were prepared on a p-Si(100) matrix by means of pulsed laser deposition (PLD) using the droplet technique combined with rapid annealing. Complete planar nanorings with well-defined sharp inner and outer edges were formed via an elastic self-transformation droplet process, which is probably driven by the lateral strain of the Ge/Si layers and the surface tension in the presence of Ar gas. The low leakage current was attributed to the small roughness and the few interface states in the planar Ge nanorings, and also to the effect of Coulomb blockade preventing injection. A significant threshold-voltage shift of 2.5 V was observed when an operating voltage of 8 V was implemented on the device.

  14. Amorphous indium gallium zinc oxide thin film grown by pulse laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Bhaumik V., E-mail: bhaumik-phy@yahoo.co.in; Joshi, U. S. [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad-380 009 (India)

    2016-05-23

    Highly electrically conducting and transparent in visible light IGZO thin film were grown on glass substrate at substrate temperature of 400 C by a pulse laser deposition techniques. Structural, surface, electrical, and optical properties of IGZO thin films were investigated at room temperature. Smooth surface morphology and amorphous nature of the film has been confirmed from the AFM and GIXRD analysis. A resistivity down to 7.7×10{sup −3} V cm was reproducibly obtained while maintaining optical transmission exceeding 70% at wavelengths from 340 to 780 nm. The carrier densities of the film was obtain to the value 1.9×10{sup 18} cm{sup 3}, while the Hall mobility of the IGZO thin film was 16 cm{sup 2} V{sup −1}S{sup −1}.

  15. Hydroxyapatite coatings on titanium dioxide thin films prepared by pulsed laser deposition method

    International Nuclear Information System (INIS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Nakashima, Shouta; Kawazoe, Syuichi; Toma, Tetsuya

    2006-01-01

    Hydroxyapatite (HAp) coated on titanium dioxide (TiO 2 ) thin films has been developed to supplement the defects of both TiO 2 and HAp. Thin films have been prepared by pulsed laser deposition (PLD) method using HAp and HAp(10%) + TiO 2 targets. X-ray diffraction (XRD) shows that there are many small peaks of Ca 1 0(PO 4 ) 6 (OH) 2 crystal, and no impurity other than HAp is detected in HAp films prepared using pure HAp target. The composition ratio of the film was analyzed by X-ray photoelectron spectroscopy (XPS). HAp coatings on TiO 2 thin films have been prepared using HAp(10%) + TiO 2 targets. XRD and XPS measurements suggest that crystalline HAp + TiO 2 thin films are obtained by the PLD method using HAp(10%) + TiO 2 target

  16. Characterization of homoepitaxial and heteroepitaxial ZnO films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Q. [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)]. E-mail: chenzq@taka.jaeri.go.jp; Yamamoto, S. [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Kawasuso, A. [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Xu, Y. [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Sekiguchi, T. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2005-05-15

    Homo- and heteroepitaxial ZnO films were grown on ZnO (0001) and Al{sub 2}O{sub 3} (1-bar 1-bar 2-bar -bar 0) substrates by using pulsed laser deposition. The X-ray diffraction and Raman measurements for these films show good correspondence with the bulk ZnO substrate, which confirms successful growth of c-axis oriented ZnO layer. Strong UV emission was also observed in these films, indicating good optical quality. However, the surface roughness differs very much for the homo- and heteroepitaxial film, that is, much less for the homoepitaxial layer. Positron annihilation measurements reveal a higher vacancy concentration in the homoepitaxial layer.

  17. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.

    Science.gov (United States)

    Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki

    2018-06-08

    Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.

  18. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Takeuchi, Ichiro, E-mail: takeuchi@umd.edu [Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740 (United States); Yao, Yangyi; Hsu, Wei-Lun; Dagenais, Mario [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740 (United States)

    2016-01-15

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  19. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Yangang Liang

    2016-01-01

    Full Text Available We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH3NH3PbI3 thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  20. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    International Nuclear Information System (INIS)

    Oguchi, Hiroyuki; Isobe, Shigehito; Kuwano, Hiroki; Shiraki, Susumu; Hitosugi, Taro; Orimo, Shin-ichi

    2015-01-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10 −2 Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R RMS of ∼0.4 nm

  1. Study of graphene growth on copper foil by pulsed laser deposition at reduced temperature

    Science.gov (United States)

    Abd Elhamid, Abd Elhamid M.; Hafez, Mohamed A.; Aboulfotouh, Abdelnaser M.; Azzouz, Iftitan M.

    2017-01-01

    Graphene has been successfully grown on commercial copper foil at low temperature of 500 °C by pulsed laser deposition (PLD). X-ray diffraction patterns showed that films have been grown in the presence of Cu(111) and Cu(200) facets. Raman spectroscopy was utilized to study the effects of temperature, surface structure, and cooling rate on the graphene growth. Raman spectra indicate that the synthesis of graphene layers rely on the surface quality of the Cu substrate together with the proper cooling profile coupled with graphene growth temperature. PLD-grown graphene film on Cu has been verified by transmission electron microscopy. Surface mediated growth of graphene on Cu foil substrate revealed to have a favorable catalytic effect. High growth rate of graphene and less defects can be derived using fast cooling rate.

  2. Modeling of thermal, electronic, hydrodynamic, and dynamic deposition processes for pulsed-laser deposition of thin films

    International Nuclear Information System (INIS)

    Liu, C.L.; LeBoeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Chen, K.R.; Puretzky, A.A.

    1994-11-01

    Various physical processes during laser ablation of solids for pulsed-laser deposition (PLD) are studied using a variety of computational techniques. In the course of the authors combined theoretical and experimental effort, they have been trying to work on as many aspects of PLD processes as possible, but with special focus on the following areas: (a) the effects of collisional interactions between the particles in the plume and in the background on the evolving flow field and on thin film growth, (b) interactions between the energetic particles and the growing thin films and their effects on film quality, (c) rapid phase transformations through the liquid and vapor phases under possibly nonequilibrium thermodynamic conditions induced by laser-solid interactions, (d) breakdown of the vapor into a plasma in the early stages of ablation through both electronic and photoionization processes, (c) hydrodynamic behavior of the vapor/plasma during and after ablation. The computational techniques used include finite difference (FD) methods, particle-in-cell model, and atomistic simulations using molecular dynamics (MD) techniques

  3. Pulsed laser deposition of semiconductor-ITO composite films on electric-field-applied substrates

    International Nuclear Information System (INIS)

    Narazaki, Aiko; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki; Yabe, Akira; Sasaki, Takeshi; Koshizaki, Naoto

    2002-01-01

    The DC electric-field effect on the crystallinity of II-VI semiconductor in composite systems has been investigated for CdS-ITO films fabricated via alternative pulsed laser deposition (PLD) of CdS and indium tin oxide (ITO) on electric-field-applied substrates. The alternative laser ablation was performed under irradiation of ArF excimer laser in mixture gas of helium and oxygen. The application of electric-field facilitated the preferential crystal-growth of CdS in nanometer scale at low pressure, whereas all the films grown without the field were amorphous. There is a large difference in the crystallization between the films grown on field-applied and heated substrates; the latter showed the crystal-growth with random orientations. This difference indicates that the existence of electric-field has an influence on the transformation from amorphous to crystalline phase of CdS. The driving force for the field-induced crystallization is also discussed in the light of the Joule heat

  4. High fluence deposition of polyethylene glycol films at 1064 nm by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.

    2007-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) has been applied for deposition of thin polyethylene glycol (PEG) films with infrared laser light at 1064 nm. We have irradiated frozen targets (of 1 wt.% PEG dissolved in water) and measured the deposition rate in situ with a quartz crystal 2...... microbalance. The laser fluence needed to produce PEG films turned out to be unexpectedly high with a threshold of 9 J/cm(2) and the deposition rate was much lower than that with laser light at 355 nm. Results from matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI......-TOF-MS) analysis demonstrate that the chemistry, molecular weight and polydispersity of the PEG films were identical to the starting material. Studies of the film surface with scanning electron microscopy (SEM) indicate that the Si-substrate is covered by a relatively homogenous PEG film with few bare spots. (c...

  5. Preparation of calcium-doped boron nitride by pulsed laser deposition

    International Nuclear Information System (INIS)

    Anzai, Atsushi; Fuchigami, Masayo; Yamanaka, Shoji; Inumaru, Kei

    2012-01-01

    Highlights: ► Ca-doped boron nitride was prepared by pulsed laser deposition. ► The films do not have long range order structure in terms of XRD. ► But the films had short-range order structure of h-BN sheets. ► Ca-free films had the same optical band gap as crystalline bulk h-BN (5.8 eV.) ► Ca-doping brought about decreases of the optical band gap by ca. 0.4 eV. -- Abstract: Calcium-doped BN thin films Ca x BN y (x = 0.05–0.1, y = 0.7–0.9) were grown on α-Al 2 O 3 (0 0 1) substrates by pulsed laser deposition (PLD) using h-BN and Ca 3 N 2 disks as the targets under nitrogen radical irradiation. Infrared ATR spectra demonstrated the formation of short range ordered structure of BN hexagonal sheets, while X-ray diffraction gave no peak indicating the absence of long-range order structure in the films. It was notable that Ca-doped film had 5.45–5.55 eV of optical band gap, while the band gap of Ca-free films was 5.80–5.85 eV. This change in the band gap is ascribed to interaction of Ca with the BN sheets; first principle calculations on h-BN structure indicated that variation of inter-plane distance between the BN layers did not affect the band gap. This study highlights that PLD could prepare BN having short-range structure of h-BN sheets and being doped with electropositive cation which varies the optical band gap of the films.

  6. Relationship between the Ca/P ratio of hydroxyapatite thin films and the spatial energy distribution of the ablation laser in pulsed laser deposition

    NARCIS (Netherlands)

    Nishikawa, H.; Hasegawa, T; Miyake, A.; Tashiro, Y.; Hashimoto, Y.; Blank, David H.A.; Rijnders, Augustinus J.H.M.

    2016-01-01

    Variation of the Ca/P ratio in hydroxyapatite (Ca10(PO4)6(OH)2) thin films was studied in relation to the spot size of the ablation laser for two different spatial energy distributions in pulsed laser deposition. One energy distribution is the defocus method with a raw distribution and the other is

  7. Diamond-like carbon prepared by pulsed laser deposition with ion bombardment: physical properties

    Science.gov (United States)

    Písařík, P.; Mikšovský, J.; Remsa, J.; Zemek, J.; Tolde, Z.; Jelínek, M.

    2018-01-01

    Diamond-like carbon (DLC) and titanium-doped DLC thin films were prepared by unique hybrid system consisting of pulsed laser deposition, ion source (bombardment) and magnetron sputtering. The influence of deposition parameters (ion energies, deposition pressures and magnetron power) on composition and physical properties was studied. Composition and sp 3/ sp 2 ratio were determined by XPS. sp 3/ sp 2 ratio was in the range from 1.4 to 2.2 for undoped DLC and from 3.4 to 4.8 for Ti-DLC. AFM showed that the layers were smooth, but with small amounts of random droplets. The measurements of the contact angle and determination of surface free energy were made for water, diiodomethane and ethylene glycol. Hardness and reduced Young's modulus varied from 20 to 31 GPa and from 182 to 276 GPa, respectively. Film adhesion was determined by scratch test; L C3 reached 23 N for DLC and 27 N for TiDLC. Optimization of sp 3/ sp 2 ratio, hardness and adhesion to biomedical alloys will advance the DLC coatings usability in the field of implantology.

  8. Phase transition and thermal expansion studies of alumina thin films prepared by reactive pulsed laser deposition.

    Science.gov (United States)

    Balakrishnan, G; Thirumurugesan, R; Mohandas, E; Sastikumar, D; Kuppusami, P; Songl, J I

    2014-10-01

    Aluminium oxide (Al2O3) thin films were deposited on Si (100) substrates at an optimized oxygen partial pressure of 3 x 10(-3) mbar at room temperature by pulsed laser deposition (PLD). The films were characterized by high temperature X-ray diffraction (HTXRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The HTXRD pattern showed the cubic y-Al2O3 phase in the temperature range 300-973 K. At temperatures ≥ 1073 K, the δ and θ-phases of Al2O3 were observed. The mean linear thermal expansion coefficient and volume thermal expansion coefficient of γ-Al2O3 was found to be 12.66 x 10(-6) K(-1) and 38.87 x 10(-6) K(-1) in the temperature range 300 K-1073 K. The field emission scanning electron microscopy revealed a smooth and structureless morphology of the films deposited on Si (100). The atomic force microscopy study indicated the increased crystallinity and surface roughness of the films after annealing at high temperature.

  9. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Melikhova, O.; Čížek, J.; Lukáč, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO

  10. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Melikhova, O., E-mail: oksivmel@yahoo.com [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Čížek, J.; Lukáč, F.; Vlček, M. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Novotný, M.; Bulíř, J.; Lančok, J. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Anwand, W.; Brauer, G. [Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510 119, D-01314 Dresden (Germany); Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P. [National Centre for Plasma Science and Technology, School of Physical Sciences, Glasnevin, Dublin 9 (Ireland)

    2013-12-15

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO.

  11. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    International Nuclear Information System (INIS)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C.N.; Mihailescu, I.N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A.C.; Luculescu, C.R.; Craciun, V.

    2012-01-01

    Highlights: ► TCO thin films were grown by PLD on PET substrate at low temperature. ► We found that the quality of TCO on PET substrate depends on the target–substrate distance. ► TCO with high transparency (>95%) and reduced electrical resistivity (∼5 × 10 −4 Ω cm) were obtained. ► Optimized TCO films deposited on PET were free of any cracks. - Abstract: The influence of target–substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10 −4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  12. Structural and Magnetic Properties of Mn doped ZnO Thin Film Deposited by Pulsed Laser Deposition

    KAUST Repository

    Baras, Abdulaziz

    2011-07-01

    Diluted magnetic oxide (DMO) research is a growing field of interdisciplinary study like spintronic devices and medical imaging. A definite agreement among researchers concerning the origin of ferromagnetism in DMO has yet to be reached. This thesis presents a study on the structural and magnetic properties of DMO thin films. It attempts to contribute to the understanding of ferromagnetism (FM) origin in DMO. Pure ZnO and Mn doped ZnO thin films have been deposited by pulsed laser deposition (PLD) using different deposition conditions. This was conducted in order to correlate the change between structural and magnetic properties. Structural properties of the films were characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM). The superconducting quantum interference device (SQUID) was used to investigate the magnetic properties of these films. The structural characterizations showed that the quality of pure ZnO and Mn doped ZnO films increased as oxygen pressure (PO) increased during deposition. All samples were insulators. In Mn doped films, Mn concentration decreased as PO increased. The Mn doped ZnO samples were deposited at 600˚C and oxygen pressure from 50-500mTorr. All Mn doped films displayed room temperature ferromagnetism (RTFM). However, at 5 K a superparamagnetic (SPM) behavior was observed in these samples. This result was accounted for by the supposition that there were secondary phase(s) causing the superparamagnetic behavior. Our findings hope to strengthen existing research on DMO origins and suggest that secondary phases are the core components that suppress the ferromagnetism. Although RTFM and SPM at low temperature has been observed in other systems (e.g., Co doped ZnO), we are the first to report this behavior in Mn doped ZnO. Future research might extend the characterization and exploration of ferromagnetism in this system.

  13. Microstructure evolution in pulsed laser deposited epitaxial Ge-Sb-Te chalcogenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Ulrich; Lotnyk, Andriy, E-mail: andriy.lotnyk@iom-leipzig.de; Thelander, Erik; Rauschenbach, Bernd

    2016-08-15

    The thin film deposition and structure of highly oriented telluride compounds is of particular interest for phase-change applications in next-generation non-volatile memory such as heterostructure designs, as well as for the investigation of novel optical, thermoelectric and ferroelectric properties in layered telluride compounds. In this work, epitaxial Ge-Sb-Te thin films were successfully produced by pulsed laser deposition on silicon with and without amorphous SiO{sub x} interlayer at elevated process temperatures from a Ge{sub 2}Sb{sub 2}Te{sub 5} target. Aberration-corrected high-resolution scanning transmission electron microscopy (STEM) imaging reveals a distinct interface configuration of the trigonal phase connected by a quasi van der Waals gap (vacancy) to the Sb/Te-passivated single crystalline Si substrate, yet also an intermediate textured growth regime in which the substrate symmetry is only weakly coupled to the thin film orientation, as well as strong deviation of composition at high deposition temperatures. Textured growth of Ge-Sb-Te thin film was also observed on SiO{sub x}/Si substrate with no evidence of an intermediate Sb/Te surface layer on top of an SiO{sub x} layer. In addition, particular defect structures formed by local reorganization of the stacking sequence across the vacancy gap are observed and appear to be intrinsic to these van der Waals-layered compounds. Theoretical image simulations of preferred stacking sequences can be matched to individual building blocks in the Ge-Sb-Te grain. - Highlights: • Atomic-resolution Cs-corrected STEM imaging of PLD deposited Ge-Sb-Te thin films. • Changing of overall composition with increasing deposition temperature. • Direct imaging of surface passivation Sb/Te layer at the Ge-Sb-Te/Si(111) interface. • The Sb/Te passivation layer is not a prerequisite for highly oriented growth of Ge-Sb-Te thin films.

  14. Synthesis of few-layer, large area hexagonal-boron nitride by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Glavin, Nicholas R. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States); Jespersen, Michael L. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); University of Dayton Research Institute, 300 College Park, Dayton, OH 45469 (United States); Check, Michael H. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); Hu, Jianjun [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); University of Dayton Research Institute, 300 College Park, Dayton, OH 45469 (United States); Hilton, Al M. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States); Wyle Laboratories, Dayton, OH 45433 (United States); Fisher, Timothy S. [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States); Voevodin, Andrey A. [Nanoelectronic Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433 (United States)

    2014-12-01

    Pulsed laser deposition (PLD) has been investigated as a technique for synthesis of ultra-thin, few-layer hexagonal boron nitride (h-BN) thin films on crystalline highly ordered pyrolytic graphite (HOPG) and sapphire (0001) substrates. The plasma-based processing technique allows for increased excitations of deposited atoms due to background nitrogen gas collisional ionizations and extended resonance time of the energetic species presence at the condensation surface. These processes permit growth of thin, polycrystalline h-BN at 700 °C, a much lower temperature than that required by traditional growth methods. Analysis of the as-deposited films reveals epitaxial-like growth on the nearly lattice matched HOPG substrate, resulting in a polycrystalline h-BN film, and amorphous BN (a-BN) on the sapphire substrates, both with thicknesses of 1.5–2 nm. Stoichiometric films with boron-to-nitrogen ratios of unity were achieved by adjusting the background pressure within the deposition chamber and distance between the target and substrate. The reduction in deposition temperature and formation of stoichiometric, large-area h-BN films by PLD provide a process that is easily scaled-up for two-dimensional dielectric material synthesis and also present a possibility to produce very thin and uniform a-BN. - Highlights: • PLD was used to synthesize boron nitride thin films on HOPG and sapphire substrates. • Lattice matched substrate allowed for formation of polycrystalline h-BN. • Nitrogen gas pressure directly controlled film chemistry and structure. • Technique allows for ultrathin, uniform films at reduced processing temperatures.

  15. Pulsed laser deposited Pb(Zr,Ti)O3 thin films with excellent piezoelectric and mechanical properties

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Woldering, L.A.; Abelmann, Leon; Elwenspoek, Michael Curt

    We present for the first time the combined measured piezoelectric and mechanical properties of epitaxial, (110) oriented Pb(ZrxTi1-x) (PZT) thin films grown on microfabricated silicon cantilevers using pulsed laser deposition (PLD, x=0.4, 0.52, 0.6 and 0.8). The grown PZT thin films develop a strong

  16. Compositional dependence of the Young's modulus and piezoelectric coefficient of (110)-oriented pulsed laser deposited PZT thin films

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Sardan Sukas, Ö.; Abelmann, Leon; Elwenspoek, Michael Curt

    2014-01-01

    In this contribution, we report on the compositional dependence of the mechanical and piezoelectric properties of Pb(ZrₓTi₿₋ₓ)O₃ (PZT) thin films fabricated by pulsed laser deposition (PLD). These films grow epitaxially on silicon with a (110) preferred orientation and have excellent piezoelectric

  17. Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti: sapphire waveguides

    NARCIS (Netherlands)

    Grivas, C.; May-Smith, T.C.; Shepherd, D.P.; Eason, R.W.; Pollnau, Markus; Jelinek, M.

    2004-01-01

    Active rib waveguides with depths and widths varying from 3 to 5 μm and from 9 to 24 μm, respectively, have been structured by $Ar^{+}$-beam etching in pulsed laser deposited Ti:sapphire layers. Losses in the channel structures were essentially at the same levels as the unstructured planar waveguide

  18. Electron microscopy studies of octa-calcium phosphate thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Iliescu, Monica; Nelea, V.; Werckmann, J.; Mihailescu, I.N.; Socol, G.; Bigi, Adriana; Bracci, Barbara

    2004-04-01

    Octa-calcium phosphate (OCP), Ca{sub 8}(HPO{sub 4}){sub 2}(PO{sub 4}){sub 4}{center_dot}5H{sub 2}O, is present as transient compound in the precipitation of hydroxyapatite (HA) and biological apatites. Because of these characteristics, OCP plays a crucial role in the in-vivo mineralization of human bones and teeth. The use of OCP in developing new generations of bone prosthesis stands therefore for an innovative challenge. This paper reports studies of OCP structures grown in the form of thin films by pulsed laser deposition (PLD) with emphasis on electron microscopy investigations. OCP films were grown on etched Ti substrates, using an UV KrF* excimer laser source ({lambda}=248 nm, {tau}{>=}20 ns). Films were deposited in low-pressure (50 Pa) water vapors environment on substrates heated at 20-180 deg. C. We performed annealing treatments in water vapors and ambient pressure at substrate temperatures identical to those used during deposition. Comprehensive structural and morphological investigations were carried out with different based-electron microscopy procedures. Grazing incidence X-ray diffraction (GIXRD) and white light confocal microscopy were also applied to characterize the films. Ca/P atomic ratio of films was determined by energy dispersive X-ray spectrometry, electron energy loss spectroscopy and X-ray photoelectron spectroscopy. The obtained films generally exhibit an amorphous structure, as evidenced by GIXRD. Nevertheless, cross-section transmission electron microscopy investigations provide supplementary information about the film characteristics and material crystallization in small domains. OCP nanoparticles coalesce and grow perpendicular to the substrate in a tree-like structure, comparable to a coral reef.

  19. Zn-vacancy related defects in ZnO grown by pulsed laser deposition

    Science.gov (United States)

    Ling, F. C. C.; Luo, C. Q.; Wang, Z. L.; Anwand, W.; Wagner, A.

    2017-02-01

    Undoped and Ga-doped ZnO (002) films were grown c-sapphire using the pulsed laser deposition (PLD) method. Znvacancy related defects in the films were studied by different positron annihilation spectroscopy (PAS). These included Doppler broadening spectroscopy (DBS) employing a continuous monenergetic positron beam, and positron lifetime spectroscopy using a pulsed monoenergetic positron beam attached to an electron linear accelerator. Two kinds of Znvacancy related defects namely a monovacancy and a divacancy were identified in the films. In as-grown undoped samples grown with relatively low oxygen pressure P(O2)≤1.3 Pa, monovacancy is the dominant Zn-vacancy related defect. Annealing these samples at 900 oC induced Zn out-diffusion into the substrate and converted the monovacancy to divacancy. For the undoped samples grown with high P(O2)=5 Pa irrespective of the annealing temperature and the as-grown degenerate Ga-doped sample (n=1020 cm-3), divacancy is the dominant Zn-vacancy related defect. The clustering of vacancy will be discussed.

  20. Enhancement of coercivity with reduced grain size in CoCrPt film grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Liang, Q.; Hu, X.F.; Li, H.Q.; He, X.X.; Wang, Xiaoru; Zhang, W.

    2006-01-01

    We report a pulsed laser deposition (PLD) growth of VMn/CoCrPt bilayer with a magnetic coercivity (H c ) of 2.2 kOe and a grain size of 12 nm. The effects of VMn underlayer on magnetic properties of CoCrPt layer were studied. The coercivity, H c , and squareness, S, of VMn/CoCrPt bilayer, is dependent on the thickness of VMn. The grain size of the CoCrPt film can also be modified by laser parameters. High laser fluence used for CoCrPt deposition produces a smaller grain size. Enhanced H c and reduced grain size in VMn/CoCrPt is explained by more pronounced surface phase segregation during deposition at high laser fluence

  1. Electrical properties of multilayer (DLC-TiC) films produced by pulsed laser deposition

    Science.gov (United States)

    Alawajji, Raad A.; Kannarpady, Ganesh K.; Nima, Zeid A.; Kelly, Nigel; Watanabe, Fumiya; Biris, Alexandru S.

    2018-04-01

    In this work, pulsed laser deposition was used to produce a multilayer diamond like carbon (ML (DLC-TiC)) thin film. The ML (DLC-TiC) films were deposited on Si (100) and glass substrates at various substrate temperatures in the range of 20-450 °C. Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy were utilized to characterize the prepared films. Raman analysis revealed that as the substrate temperature increased, the G-peak position shifted to a higher raman shift and the full width at half maximum of the G and D bands decreased. XPS analysis indicated a decrease in sp3/sp2 ratio and an increase in Ti-C bond intensity when the substrate temperature was increased. Additionally, the surface roughness of ML (DLC-TiC) filmswas affected by the type and temperature of the substrate. The electrical measurement results indicated that the electrical resistivity of the ML (DLC-TiC) film deposited on Si and glass substrates showed the same behavior-the resistivity decreased when substrate temperature increased. Furthermore, the ML (DLC-TiC) films deposited on silicon showed lower electrical resistivity, dropping from 8.39E-4 Ω-cm to 5.00E-4 Ω-cm, and, similarly, the films on the glass substrate displayed a drop in electrical resistivity from 1.8E-2 Ω-cm to 1.2E-3 Ω-cm. These enhanced electrical properties indicate that the ML (DLC-TiC) films have widespread potential as transducers for biosensors in biological research; electrochemical electrodes, because these films can be chemically modified; biocompatible coatings for medicals tools; and more.

  2. Stoichiometry control of SrVO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Scheiderer, Philipp; Schmitt, Matthias; Sing, Michael; Claessen, Ralph [Universitaet Wuerzburg, Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), 97074 Wuerzburg (Germany)

    2016-07-01

    Oxide heterostructures exhibit fascinating properties, e.g., the coexistence of superconductivity and ferromagnetism at the interface of LaAlO{sub 3}/SrTiO{sub 3}, but the extraordinary electronic properties of transition metal oxides caused by electron correlation yet wait to be fully harnessed. One suitable candidate for future device applications is the correlated metal SrVO{sub 3}, which can be prepared by pulsed laser deposition (PLD) on commonly used substrates such as SrTiO{sub 3}. Sample fabrication by PLD offers a wide variety of possibilities to manipulate the structural and electronic properties of the grown films in a controlled way. Here we report on the manipulation of the cation and oxygen stoichiometry of SrVO{sub 3} thin films by tuning the laser flux density of the PLD-ablation process and the oxygen background pressure during growth, respectively. In situ photoemission, x-ray diffraction, and temperature dependent resistivity measurements enable us to monitor the structural and electronic changes: Cation off-stoichiometry causes a strong increase of the out-of-plane lattice constant as well as a lower residual resistivity ratio, while excess oxygen is found to induce a shift to higher vanadium valences. After exposure to air a similar shift is detected, indicating an overoxidation of the SrVO{sub 3} film.

  3. Ultra-Smooth ZnS Films Grown on Silicon via Pulsed Laser Deposition

    Science.gov (United States)

    Reidy, Christopher; Tate, Janet

    2011-10-01

    Ultra-smooth, high quality ZnS films were grown on (100) and (111) oriented Si wafers via pulsed laser deposition with a KrF excimer laser in UHV (10-9 Torr). The resultant films were examined with optical spectroscopy, electron diffraction, and electron probe microanalysis. The films have an rms roughness of ˜1.5 nm, and the film stoichiometry is approximately Zn:S :: 1:0.87. Additionally, each film exhibits an optical interference pattern which is not a function of probing location on the sample, indicating excellent film thickness uniformity. Motivation for high-quality ZnS films comes from a proposed experiment to measure carrier amplification via impact ionization at the boundary between a wide-gap and a narrow-gap semiconductor. If excited charge carriers in a sufficiently wide-gap harvester can be extracted into a narrow-gap host material, impact ionization may occur. We seek near-perfect interfaces between ZnS, with a direct gap between 3.3 and 3.7 eV, and Si, with an indirect gap of 1.1 eV.

  4. Pulsed laser deposition of metallic films on the surface of diamond particles for diamond saw blades

    International Nuclear Information System (INIS)

    Jiang Chao; Luo Fei; Long Hua; Hu Shaoliu; Li Bo; Wang Youqing

    2005-01-01

    Ti or Ni films have been deposited on the diamond particle surfaces by pulsed laser deposition. Compressive resistance of the uncoated and coated diamond particles was measured, respectively, in the experiments. The compressive resistance of the Ti-coated diamonds particles was found much higher than that of the uncoated ones. It increased by 39%. The surface morphology is observed by the metallography microscope. The surface of the uncoated diamonds particles had many hollows and flaws, while the surface of Ni-coated diamond particles was flat and smooth, and the surface of Ti-coated diamond particles had some metal masses that stood out of the surface of the Ti-coated film. The components of the metallic films of diamond particles were examined by X-ray diffractometry (XRD). TiC was found formed on the Ti-coated diamond surface, which resulted in increased surface bonding strength between the diamond particles and the Ti films. Meanwhile, TiC also favored improving the bonding strength between the coated diamond particles and the binding materials. Moreover, the bending resistance of the diamond saw blade made of Ti-coated diamond was drastically higher than that of other diamond saw blades, which also played an important role in improving the blade's cutting ability and lifetime. Therefore, it was most appropriate that the diamond saw blade was made of Ti-coated diamond particles rather than other materials

  5. Investigation of ZnTe thin films grown by Pulsed Laser Deposition method

    International Nuclear Information System (INIS)

    Kotlyarchuk, B.; Savchuk, V.

    2007-01-01

    This paper is devoted to optimization of the Pulsed Laser Deposition (PLD) growth condition of ZnTe films on various substrates and subsequent investigation of relevant parameters of growth process, structural, optical and electrical properties of grown films. Studies of the effect of growth parameters on the structural quality and properties of grown films were carried out. X-ray diffraction measurements showed that the ZnTe films, which have been deposited at optimal substrate temperatures, were characterized by a (111) preferred orientation with large average grain size. The optical transmission and reflectance in the energy range 1.5-5.5 eV for films grown at various substrate temperatures were measured. We calculated the variation in the absorption coefficient with the photon energy from the transmittance spectrum for samples grown at various substrate temperatures. Obtained data were analyzed and the value of the absorption coefficient, for allowed direct transitions, has been determined as a function of photon energy. We found that the undoped ZnTe films, which were grown by the PLD method, are typically p-type and possess resistivity in the range of 10 3 Ωcm at room temperature. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Stoichiometric transfer of material in the infrared pulsed laser deposition of yttrium doped Bi-2212 films

    International Nuclear Information System (INIS)

    De Vero, Jeffrey C.; Blanca, Glaiza Rose S.; Vitug, Jaziel R.; Garcia, Wilson O.; Sarmago, Roland V.

    2011-01-01

    Highlights: → This work describes the stoichiometric transfer of Y-doped Bi-2212 during IR-PLD. → As-deposited films show spheroidal morphology with similar composition as the target. Relatively flat and highly c-axis oriented films were obtained after heat treatment. → IR-PLD can be a viable technique in growing other high Tc superconducting materials. - Abstract: Films of Y-doped Bi-2212 were successfully grown on MgO (1 0 0) substrates by infrared pulsed laser deposition (IR-PLD). With post-heat treatments, smooth and highly c-axis oriented films were obtained. The average compositions of the films have the same stoichiometry as the target. Y content is also preserved on the grown films at all doping levels. The electrical properties of the grown Y-doped Bi-2212 films exhibit the expected electrical properties of the bulk Y-doped Bi-2212. This is attributed to the stoichiometric transfer of material by IR-PLD.

  7. Thermal stability of pulsed laser deposited iridium oxide thin films at low oxygen atmosphere

    Science.gov (United States)

    Gong, Yansheng; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng

    2013-11-01

    Iridium oxide (IrO2) thin films have been regarded as a leading candidate for bottom electrode and diffusion barrier of ferroelectric capacitors, some process related issues need to be considered before integrating ferroelectric capacitors into memory cells. This paper presents the thermal stability of pulsed laser deposited IrO2 thin films at low oxygen atmosphere. Emphasis was given on the effect of post-deposition annealing temperature at different oxygen pressure (PO2) on the crystal structure, surface morphology, electrical resistivity, carrier concentration and mobility of IrO2 thin films. The results showed that the thermal stability of IrO2 thin films was strongly dependent on the oxygen pressure and annealing temperature. IrO2 thin films can stably exist below 923 K at PO2 = 1 Pa, which had a higher stability than the previous reported results. The surface morphology of IrO2 thin films depended on PO2 and annealing temperature, showing a flat and uniform surface for the annealed films. Electrical properties were found to be sensitive to both the annealing temperature and oxygen pressure. The room-temperature resistivity of IrO2 thin films with a value of 49-58 μΩ cm increased with annealing temperature at PO2 = 1 Pa. The thermal stability of IrO2 thin films as a function of oxygen pressure and annealing temperature was almost consistent with thermodynamic calculation.

  8. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    Energy Technology Data Exchange (ETDEWEB)

    Herklotz, A. [ORNL, Materials Science and Technology Division, Bethel Valley Road, Oak Ridge, Tennessee 37831-6056 (United States); Martin Luther University Halle-Wittenberg, Institute for Physics, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Dörr, K. [Martin Luther University Halle-Wittenberg, Institute for Physics, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Ward, T. Z.; Eres, G. [ORNL, Materials Science and Technology Division, Bethel Valley Road, Oak Ridge, Tennessee 37831-6056 (United States); Christen, H. M.; Biegalski, M. D. [ORNL, Center for Nanophase Materials Sciences, Bethel Valley Road, Oak Ridge, Tennessee 37831-6496 (United States)

    2015-03-30

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr{sub n+1}Ti{sub n}O{sub 3n+1} Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  9. Strain dependent magnetic properties of LSMO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Prajapat, C.L.; Gupta, N.; Singh, M.R.; Mishra, P.K.; Gupta, S.K.; Ravikumar, G.; Bhattacharya, D.; Singh, Surendra; Basu, S.; Roul, B.K.

    2014-01-01

    Perovskite manganites exhibiting colossal magnetoresistance (CMR) are ideal candidates for growth of epitaxial multilayers with oxide high temperature superconductors owing to their structural similarity and comparable growth conditions. They are widely employed in studies on superconductor/ferromagnet-superlattices. Among the manganites, La 2/3 Sr 1/3 MnO 3 (LSMO) has one of the highest FM transition temperatures (above 300K). Magnetic properties of films that are dependent on strain (such as coercivity) can be tuned by varying deposition conditions, by using different substrates and varying thickness of films in nano range. Lattice mismatch between LSMO with STO and MgO substrates are 0.6% and 8% respectively. This mismatch produces tensile strain in LSMO films and changes its magnetic properties. We study the change in magnetic properties of epitaxial LSMO thin films on MgO (100) and STO (100) substrates with varying thickness to change the strain in the film. LSMO films are prepared by pulsed laser deposition

  10. Fabrication of 100 A class, 1 m long coated conductor tapes by metal organic chemical vapor deposition and pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V.; Lee, H.G.; Li, Y.; Xiong, X.; Qiao, Y.; Reeves, J.; Xie, Y.; Knoll, A.; Lenseth, K

    2003-10-15

    SuperPower has been scaling up YBa{sub 2}Cu{sub 3}O{sub x}-based second-generation superconducting tapes by techniques such as pulsed laser deposition (PLD) using industrial laser and metal organic chemical vapor deposition (MOCVD). Both techniques offer advantage of high deposition rates, which is important for high throughput. Using highly-polished substrates produced in a reel-to-reel polishing facility and buffer layers deposited in a pilot ion beam assisted deposition facility, meter-long second-generation high temperature superconductor tapes have been produced. 100 A class, meter-long coated conductor tapes have been reproducibly demonstrated in this work by both MOCVD and PLD. The best results to date are 148 A over 1.06 m by MOCVD and 135 A over 1.1 m by PLD using industrial laser.

  11. High performance diamond-like carbon layers obtained by pulsed laser deposition for conductive electrode applications

    Science.gov (United States)

    Stock, F.; Antoni, F.; Le Normand, F.; Muller, D.; Abdesselam, M.; Boubiche, N.; Komissarov, I.

    2017-09-01

    For the future, one of the biggest challenge faced to the technologies of flat panel display and various optoelectronic and photovoltaic devices is to find an alternative to the use of transparent conducting oxides like ITO. In this new approach, the objective is to grow high conductive thin-layer graphene (TLG) on the top of diamond-like carbon (DLC) layers presenting high performance. DLC prepared by pulsed laser deposition (PLD) have attracted special interest due to a unique combination of their properties, close to those of monocrystalline diamond, like its transparency, hardness and chemical inertia, very low roughness, hydrogen-free and thus high thermal stability up to 1000 K. In our future work, we plane to explore the synthesis of conductive TLG on top of insulating DLC thin films. The feasibility and obtained performances of the multi-layered structure will be explored in great details in the short future to develop an alternative to ITO with comparable performance (conductivity of transparency). To select the best DLC candidate for this purpose, we focus this work on the physicochemical properties of the DLC thin films deposited by PLD from a pure graphite target at two wavelengths (193 and 248 nm) at various laser fluences. A surface graphenization process, as well as the required efficiency of the complete structure (TLG/DLC) will clearly be related to the DLC properties, especially to the initial sp3/sp2 hybridization ratio. Thus, an exhaustive description of the physicochemical properties of the DLC layers is a fundamental step in the research of comparable performance to ITO.

  12. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.

    Science.gov (United States)

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-02-10

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  13. Phase transitions in LiCoO2 thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Huang Rong; Hitosugi, Taro; Fisher, Craig A.J.; Ikuhara, Yumi H.; Moriwake, Hiroki; Oki, Hideki; Ikuhara, Yuichi

    2012-01-01

    Highlights: ► Epitaxial LiCoO 2 thin films were formed on the Al 2 O 3 (0 0 0 1) substrate by PLD at room temperature and annealed at 600 °C in air. ► The orientation relationship between film and substrate is revealed. ► Crystalline phases in the RT deposited and annealed thin films are clearly identified. ► Atomic level interface structure indicates an interface reaction during annealing. ► A phase transition mechanism from fully disordered LiCoO 2 to fully ordered LiCoO 2 is proposed. - Abstract: Microstructures of epitaxial LiCoO 2 thin films formed on the (0 0 0 1) surface of sapphire (α-Al 2 O 3 ) substrates by pulsed laser deposition at room temperature and annealed at 600 °C in air were investigated by a combination of selected-area electron diffraction, high-resolution transmission electron microscopy, spherical-aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, and electron energy-loss spectroscopy. As-deposited LiCoO 2 thin films consisted of epitaxial grains of the fully cation-disordered phase (γ) with a cubic rock-salt structure. During annealing, this cubic-structured phase transformed into the fully ordered trigonal (α) phase oriented with its basal plane parallel to the surface of the sapphire substrate. Although overall the film appeared to be a single crystal, a small number of Co 3 O 4 grains were also observed in annealed thin films, indicating that some Li and O had been lost during processing. The atomically sharp interface between the film and substrate also became rougher during annealing, with step defects being formed, suggesting that a localized reaction occurred at the interface.

  14. Pulsed laser deposition of lysozyme: the dependence on shot numbers and the angular distribution

    DEFF Research Database (Denmark)

    Constantinescu, C.; Matei, A.; Schou, Jørgen

    2013-01-01

    The ejection of molecules from a pressed solid target of lysozyme induced by laser ablation in the UV-regime at a wavelength of 355 nm was investigated. The ablation studies were carried out in vacuum at a laser fluence of 2 J/cm2 for which a significant fraction of proteins remains intact....... This was verified by matrix-assisted laser desorption ionization (MALDI) spectrometry of thin films deposited on silicon substrates. The deposition rate of lysozyme was found to decrease with the number of shots and was correlated with increasing thermal damage of the lysozyme. This was monitored by measurements...... of the optical reflectivity of dry lysozyme. The angular distribution of the mass deposition can be fitted well by Anisimov’s hydrodynamic model. The total deposited yield over the entire hemisphere from direct laser ablation of lysozyme was estimated from this model and found to be three orders of magnitude...

  15. Ion-Assisted Pulsed Laser Deposition of amorphous tetrahedral-coordinated carbon films

    Science.gov (United States)

    Friedmann, T. A.; Tallant, D. R.; Sullivan, J. P.; Siegal, M. P.; Simpson, R. L.

    1994-04-01

    A parametric study has been performed of amorphous tetrahedral carbon (a-tC) films produced by ion-assisted pulsed laser deposition (IAPLD). The ion voltage, current density, and feed gas composition (nitrogen in argon) have been varied. The resultant films were characterized by thickness, residual stress, Raman spectroscopy, and electrical resistivity. The Raman spectra have been fit to two gaussian peaks, the so called graphitic (G) peak and the disorder (D) peak. It has been found that the magnitude of the D peak and the residual compressive stress are inversely correlated. At low beam voltages and currents, the magnitude of the D peak is low, increasing as the ion beam voltage and current are raised. The ion beam voltage has the most dramatic effect on the magnitude of the D peak. At low voltages (200-500 V) the magnitude of the D peak is greater for ion beams with high percentages of nitrogen possibly indicative of C-N bonding in the films. At higher voltages (500-1500 V) the D peak intensity is less sensitive to the nitrogen content of the beam.

  16. Stabilization of stoichiometric LaTiO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Matthias; Scheiderer, Philipp; Goessmann, Alex; Sing, Michael; Claessen, Ralph [Universitaet Wuerzburg, Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), 97074 Wuerzburg (Germany)

    2016-07-01

    Like in the famous oxide heterostructure LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) a two dimensional electron system is found at the interface between the strongly correlated Mott insulator LaTi{sup 3+}O{sub 3} and the band insulator STO. In contrast to LAO, the stabilization of LaTi{sup 3+}O{sub 3} requires strong reducing growth conditions since the thermodynamically stable bulk phase is the oxygen-rich La{sub 2}Ti{sup 4+}{sub 2}O{sub 7}. Therefore, we have systematically studied the impact of oxidizing and reducing background atmospheres and the influence of the substrate on LaTi{sup 3+}O{sub 3} thin film growth by pulsed laser deposition. In situ x-ray photoelectron spectroscopy of the films prepared on STO exhibit overoxidation probably due to oxygen out-diffusion from the STO substrate, which is reduced for growth on DyScO{sub 3} due to the lower oxygen mobility. In addition, we found that a LAO capping layer of a few unit cells thickness acting like a diffusion barrier for oxygen prevents the LTO film from overoxidation during storage in air.

  17. Thermal evolution of defects in undoped zinc oxide grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zilan; Su, Shichen; Ling, Francis Chi-Chung, E-mail: ccling@hku.hk [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Anwand, W.; Wagner, A. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany)

    2014-07-21

    Undoped ZnO films are grown by pulsed laser deposition on c-plane sapphire with different oxygen pressures. Thermal evolutions of defects in the ZnO films are studied by secondary ion mass spectroscopy (SIMS), Raman spectroscopy, and positron annihilation spectroscopy (PAS), and with the electrical properties characterized by the room temperature Hall measurement. Oxygen deficient defect related Raman lines 560 cm{sup −1} and 584 cm{sup −1} are identified and their origins are discussed. Thermal annealing induces extensive Zn out-diffusion at the ZnO/sapphire interface and leaves out Zn-vacancy in the ZnO film. Two types of Zn-vacancy related defects with different microstructures are identified in the films. One of them dominates in the samples grown without oxygen. Annealing the sample grown without oxygen or growing the samples in oxygen would favor the Zn-vacancy with another microstructure, and this Zn-vacancy defect persists after 1100 °C annealing.

  18. Thermal evolution of defects in undoped zinc oxide grown by pulsed laser deposition

    Science.gov (United States)

    Wang, Zilan; Su, Shichen; Ling, Francis Chi-Chung; Anwand, W.; Wagner, A.

    2014-07-01

    Undoped ZnO films are grown by pulsed laser deposition on c-plane sapphire with different oxygen pressures. Thermal evolutions of defects in the ZnO films are studied by secondary ion mass spectroscopy (SIMS), Raman spectroscopy, and positron annihilation spectroscopy (PAS), and with the electrical properties characterized by the room temperature Hall measurement. Oxygen deficient defect related Raman lines 560 cm-1 and 584 cm-1 are identified and their origins are discussed. Thermal annealing induces extensive Zn out-diffusion at the ZnO/sapphire interface and leaves out Zn-vacancy in the ZnO film. Two types of Zn-vacancy related defects with different microstructures are identified in the films. One of them dominates in the samples grown without oxygen. Annealing the sample grown without oxygen or growing the samples in oxygen would favor the Zn-vacancy with another microstructure, and this Zn-vacancy defect persists after 1100 °C annealing.

  19. Thermal evolution of defects in undoped zinc oxide grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wang, Zilan; Su, Shichen; Ling, Francis Chi-Chung; Anwand, W.; Wagner, A.

    2014-01-01

    Undoped ZnO films are grown by pulsed laser deposition on c-plane sapphire with different oxygen pressures. Thermal evolutions of defects in the ZnO films are studied by secondary ion mass spectroscopy (SIMS), Raman spectroscopy, and positron annihilation spectroscopy (PAS), and with the electrical properties characterized by the room temperature Hall measurement. Oxygen deficient defect related Raman lines 560 cm −1 and 584 cm −1 are identified and their origins are discussed. Thermal annealing induces extensive Zn out-diffusion at the ZnO/sapphire interface and leaves out Zn-vacancy in the ZnO film. Two types of Zn-vacancy related defects with different microstructures are identified in the films. One of them dominates in the samples grown without oxygen. Annealing the sample grown without oxygen or growing the samples in oxygen would favor the Zn-vacancy with another microstructure, and this Zn-vacancy defect persists after 1100 °C annealing.

  20. Optical Properties and Microstructure of Silver-Copper Nanoparticles Synthesized by Pulsed Laser Deposition

    Science.gov (United States)

    Hirai, Makoto; Kumar, Ashok

    2007-12-01

    Utilizing a pulsed laser deposition (PLD) method, silver-copper (Ag-Cu) nanoparticles have been synthesized by changing the surface area ratio of the target ( S R = S Cu/( S Ag + S Cu)) from 0 to 30%. The peak absorption attributed to surface plasmon resonance (SPR) increased when increasing S R up to 15%, above which it decreased. The peak shifts seem to be induced by the changes in the conductivity and morphology of the Ag-Cu nanoparticles. Additionally, the interplanar spacings of the Ag-Cu nanoparticles prepared at S R = 15% corresponded to the Ag {111}, {200}, {220}, and Cu {111} planes. However, since the interplanar spacings attributed to the Cu {200} and {220} planes were not detected, the Ag-Cu nanoparticles were believed to possess a lattice constant ( a) close not to the Cu phase ( a = 3.615 Å) but to the Ag phase ( a = 4.086 Å). Moreover, confirming the presence of Cu atoms in the nanoparticles using energy dispersive X-ray (EDX) spectra, Ag-Cu nanoparticles may be a solid solution in which Cu atoms partially replace Ag atoms in the fcc structure.

  1. Growth of InN films on spinel substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, K. [Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Megruro-ku, Tokyo 153-8505 (Japan); Ohta, J.; Fujioka, H. [Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Megruro-ku, Tokyo 153-8505 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kanagawa 213-0012 (Japan); Oshima, M. [Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2007-10-15

    We have grown InN films on MgAl{sub 2}O{sub 4}(111) substrates with atomically flat surfaces using pulsed laser deposition (PLD) and compared their structural properties with those grown on (Mn,Zn)Fe{sub 2}O{sub 4}(111) substrates. It has been revealed that InN(0001) films grow on MgAl{sub 2}O{sub 4}(111) with an in-plane epitaxial relationship of InN[1 anti 100]//MgAl{sub 2}O{sub 4}[1 anti 10], achieving a lattice mismatch minimum. The InN films exhibited a clear sixfold rotational symmetry, without 30 rotational domains and with a full width at half maximum value of the InN 0002 rocking curve being 17.5 arcmin. Comparison between InN films grown on MgAl{sub 2}O{sub 4} and those on (Mn,Zn)Fe{sub 2}O{sub 4} led us to conclude that suppression of the interfacial reactions between the InN films and the substrate is inherently important to obtain high quality InN on substrates with a spinel structure. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Phase control of Mn-based spinel films via pulsed laser deposition

    International Nuclear Information System (INIS)

    Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.; Bedzyk, Michael J.; Fenter, Paul

    2016-01-01

    Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn_2O_4 and fully charged cathode Mn_2O_4. The tetragonal MgMn_2O_4 (MMO) phase is obtained on MgAl_2O_4 substrates, while the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn_2O_4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn_2O_4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.

  3. Preparation and characterization of VOx nanorods using pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Rama, N.; Senthil Kumar, E.; Ramachandra Rao, M.S.

    2009-01-01

    Full text: Vanadium oxide (VO x ) is one of the most functional oxides of the transition metal oxide family. This versatility comes because of the ability of Vanadium to exist as both monovalent and multivalent in these oxides. These oxides find potential usage in the field of thermochromism electrochromism catalysts, electrochemistry etc. especially in their nano-form because of their increased sensitivity to these applications. These nano-forms are usually prepared using conventional techniques such as solgel techniques, vapour phase transport, hydrothermal synthesis etc. In this work we have used pulsed laser deposition technique to fabricate vanadium oxide nanorods for the first time. The grown nanorods has a predominant VO 2 phase with a secondary phase of V 3 O 7 . The diameters of the rods were around 300 nm with Raman spectra showing all the group vibrations corresponding to VO x phase. The nanorods exhibited photoluminescence in the visible range due to the presence of oxygen defects. These results, including the mechanism of growth of these nanorods, will be discussed in detail. The existence of multivalence in these rods finds potential applications in electrochemistry while the visible photoluminescence in optical applications

  4. Plasma interactions determine the composition in pulsed laser deposited thin films

    Science.gov (United States)

    Chen, Jikun; Döbeli, Max; Stender, Dieter; Conder, Kazimierz; Wokaun, Alexander; Schneider, Christof W.; Lippert, Thomas

    2014-09-01

    Plasma chemistry and scattering strongly affect the congruent, elemental transfer during pulsed laser deposition of target metal species in an oxygen atmosphere. Studying the plasma properties of La0.6Sr0.4MnO3, we demonstrate for as grown La0.6Sr0.4MnO3-δ films that a congruent transfer of metallic species is achieved in two pressure windows: ˜10-3 mbar and ˜2 × 10-1 mbar. In the intermediate pressure range, La0.6Sr0.4MnO3-δ becomes cation deficient and simultaneously almost fully stoichiometric in oxygen. Important for thin film growth is the presence of negative atomic oxygen and under which conditions positive metal-oxygen ions are created in the plasma. This insight into the plasma chemistry shows why the pressure window to obtain films with a desired composition and crystalline structure is narrow and requires a careful adjustment of the process parameters.

  5. Plasma interactions determine the composition in pulsed laser deposited thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Conder, Kazimierz; Wokaun, Alexander; Schneider, Christof W.; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Laboratory of Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2014-09-15

    Plasma chemistry and scattering strongly affect the congruent, elemental transfer during pulsed laser deposition of target metal species in an oxygen atmosphere. Studying the plasma properties of La{sub 0.6}Sr{sub 0.4}MnO{sub 3}, we demonstrate for as grown La{sub 0.6}Sr{sub 0.4}MnO{sub 3-δ} films that a congruent transfer of metallic species is achieved in two pressure windows: ∼10{sup −3} mbar and ∼2 × 10{sup −1} mbar. In the intermediate pressure range, La{sub 0.6}Sr{sub 0.4}MnO{sub 3-δ} becomes cation deficient and simultaneously almost fully stoichiometric in oxygen. Important for thin film growth is the presence of negative atomic oxygen and under which conditions positive metal-oxygen ions are created in the plasma. This insight into the plasma chemistry shows why the pressure window to obtain films with a desired composition and crystalline structure is narrow and requires a careful adjustment of the process parameters.

  6. Pulsed laser deposition of oxide gate dielectrics for pentacene organic field-effect transistors

    International Nuclear Information System (INIS)

    Yaginuma, S.; Yamaguchi, J.; Itaka, K.; Koinuma, H.

    2005-01-01

    We have fabricated Al 2 O 3 , LaAlO 3 (LAO), CaHfO 3 (CHO) and CaZrO 3 (CZO) thin films for the dielectric layers of field-effect transistors (FETs) by pulsed laser deposition (PLD). The films exhibited very smooth surfaces with root-mean-squares (rms) roughnesses of ∼1.3 A as evaluated by using atomic force microscopy (AFM). The breakdown electric fields of Al 2 O 3 , LAO, CHO and CZO films were 7, 6, 10 and 2 MV/cm, respectively. The magnitude of the leak current in each film was low enough to operate FET. We performed a comparative study of pentacene FET fabricated using these oxide dielectrics as gate insulators. High field-effect mobility of 1.4 cm 2 /V s and on/off current ratio of 10 7 were obtained in the pentacene FET using LAO gate insulating film. Use of the LAO films as gate dielectrics has been found to suppress the hysteresis of pentacene FET operations. The LAO films are relevant to the dielectric layer of organic FETs

  7. Pulsed laser deposited Al-doped ZnO thin films for optical applications

    Directory of Open Access Journals (Sweden)

    Gurpreet Kaur

    2015-02-01

    Full Text Available Highly transparent and conducting Al-doped ZnO (Al:ZnO thin films were grown on glass substrates using pulsed laser deposition technique. The profound effect of film thickness on the structural, optical and electrical properties of Al:ZnO thin films was observed. The X-ray diffraction depicts c-axis, plane (002 oriented thin films with hexagonal wurtzite crystal structure. Al-doping in ZnO introduces a compressive stress in the films which increase with the film thickness. AFM images reveal the columnar grain formation with low surface roughness. The versatile optical properties of Al:ZnO thin films are important for applications such as transparent electromagnetic interference (EMI shielding materials and solar cells. The obtained optical band gap (3.2–3.08 eV was found to be less than pure ZnO (3.37 eV films. The lowering in the band gap in Al:ZnO thin films could be attributed to band edge bending phenomena. The photoluminescence spectra gives sharp visible emission peaks, enables Al:ZnO thin films for light emitting devices (LEDs applications. The current–voltage (I–V measurements show the ohmic behavior of the films with resistivity (ρ~10−3 Ω cm.

  8. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    Science.gov (United States)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-12-01

    In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La0.4Ca0.6MnO3 target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10-1 mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  9. Highly textured fresnoite thin films synthesized in situ by pulsed laser deposition with CO2 laser direct heating

    International Nuclear Information System (INIS)

    Lorenz, Michael; Stölzel, Marko; Brachwitz, Kerstin; Hochmuth, Holger; Grundmann, Marius; De Pablos-Martin, Araceli; Patzig, Christian; Höche, Thomas

    2014-01-01

    Fresnoite Ba 2 TiSi 2 O 8 (BTS) thin films were grown and crystallized in situ using pulsed laser deposition (PLD) with CO 2 laser direct heating of the a-plane sapphire (1 1 0) substrates up to 1250 °C. Starting with 775 °C growth temperature, (0 0 1)- and (1 1 0)-textured BTS and BaTiO 3 phases, respectively, could be assigned in the films, and the typical fern-like BTS crystallization patterns appear. For higher process temperatures of 1100 to 1250 °C, atomically smooth, terraced surface of the films was found, accompanied by crystalline high-temperature phases of Ba–Ti–Si oxides. HAADF micrographs taken in both scanning transmission electron microscopy and energy-dispersive x-ray spectrometry mode show details of morphology and elemental distribution inside the films and at the interface. To balance the inherent Si deficiency of the BTS films, growth from glassy BTS × 2 SiO 2 and BTS × 2.5 SiO 2 targets was considered as well. The latter targets are ideal for PLD since the employed glasses possess 100% of the theoretical density and are homogeneous at the atomic scale. (paper)

  10. Pulsed laser deposition of nanostructured Co-B-O thin films as efficient catalyst for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, H., E-mail: jadhav.hs2013@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Singh, A.K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patel, N.; Fernandes, R.; Gupta, S.; Kothari, D.C. [Department of Physics and National Centre for Nanosciences & Nanotechnology, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400098 (India); Miotello, A. [Dipartimento di Fisica, Università degli Studi di Trento, I-38123 Povo, Trento (Italy); Sinha, S. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-11-30

    Highlights: • Pulsed laser deposition was used to deposit Co-B-O film nanocatalyst. • Co-B-O NPs are well separated, stable and immobilized on film surface. • Catalytic H{sub 2} production was studied by hydrolysis of Sodium Borohydride. • Four times higher H{sub 2} production rate was recorded for Co-B-O film than Co-B-O powder. • High particle density, polycrystalline nature and good stability against agglomeration of Co NPs. - Abstract: Nanoparticles assembled Co-B-O thin film catalysts were synthesized by pulsed laser deposition (PLD) technique for hydrolysis of Sodium Borohydride (SBH). Surface morphology of the deposited films was investigated using SEM and TEM, while compositional analysis was studied using XPS. Structural properties of Co-B-O films were examined using XRD and HRTEM. Laser process is able to produce well separated and immobilized Co-B-O NPs on the film surface which act as active centers leading to superior catalytic activity producing hydrogen at a significantly higher rate as compared to bulk powder. Co-B-O thin film catalyst produces hydrogen at a maximum rate of ∼4400 ml min{sup −1} g{sup −1} of catalyst, which is four times higher than powder catalyst. PLD parameters such as laser fluence and substrate-target distance were varied during deposition in order to understand the role of size and density of the immobilized Co-B-O NPs in the catalytic process. Films deposited at 3–5 cm substrate-target distance showed better performance than that deposited at 6 cm, mainly on account of the higher density of active Co-B-O NPs on the films surface. Features such as high particle density, polycrystalline nature of Co NPs and good stability against agglomeration mainly contribute towards the superior catalytic activity of Co-B-O films deposited by PLD.

  11. Effect of laser beam parameters on magnetic properties of Nd-Fe-B thick-film magnets fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Fukunaga, H.; Nakano, M.; Yanai, T.; Kamikawatoko, T.; Yamashita, F.

    2011-01-01

    The effects of varying the laser power and the spot diameter of a laser beam on the magnetic properties, morphology, and deposition rate of Nd-Fe-B thick-film magnets fabricated by pulsed laser deposition (PLD) were investigated. Reducing the laser fluence on the target reduces the remanence and increases the Nd content and consequently the coercivity of the prepared films. The spot size of the laser beam was found to affect the film surface morphology, the deposition rate, and the reproducibility of the magnetic properties of the prepared films. Reducing the spot size reduces the number of droplets and the reproducibility of the magnetic properties and increases the droplet size. Controlling the spot size of the laser beam enabled us to maximize the deposition rate. Consequently, a coercivity of 1210 kA/m and a remanence of 0.51 T were obtained at a deposition rate of 11.8 μm/(h·W). This deposition rate is 30% greater than the highest previously reported deposition rate by PLD.

  12. F-doped SnO2 thin films grown on flexible substrates at low temperatures by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kim, H.; Auyeung, R.C.Y.; Pique, A.

    2011-01-01

    Fluorine-doped tin oxide (SnO 2 :F) films were deposited on polyethersulfone plastic substrates by pulsed laser deposition. The electrical and optical properties of the SnO 2 :F films were investigated as a function of deposition conditions such as substrate temperature and oxygen partial pressure during deposition. High quality SnO 2 :F films were achieved under an optimum oxygen pressure range (7.4-8 Pa) at relatively low growth temperatures (25-150 deg. C). As-deposited films exhibited low electrical resistivities of 1-7 mΩ-cm, high optical transmittance of 80-90% in the visible range, and optical band-gap energies of 3.87-3.96 eV. Atomic force microscopy measurements revealed a reduced root mean square surface roughness of the SnO 2 :F films compared to that of the bare substrates indicating planarization of the underlying substrate.

  13. Influences of ambient gases on the structure and the composition of calcium phosphate films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kim, Hye-Lee; Kim, Young-Sun; Kim, Dae-Joon; Lee, Won-Jun; Han, Jung-Suk

    2006-01-01

    Calcium phosphate films were prepared by using a pulsed KrF-laser deposition (PLD) method with a hydroxyapatite target in various ambient gases, such as Ar, O 2 and H 2 O. The influence of the ambient gas on the properties of the deposited films was investigated. The chamber pressure and the substrate temperature were fixed at 0.25 Torr and 600 .deg. C, respectively. Calcium-rich amorphous calcium phosphate films were deposited with a low density in Ar due to the preferential resputtering of phosphorus from the growing film. In an O 2 ambient, the density and the Ca/P ratio of the films were similar to those of the target. However, the deposited film was amorphous calcium phosphate and did not contain OH - groups. Polycrystalline hydroxyapatite films can be deposited in a H 2 O ambient because a sufficient supply of OH - groups from the ambient gas is essential for the growth of a hydroxyapatite film.

  14. Smooth YBa2Cu3O7-x thin films prepared by pulsed laser deposition in O2/Ar atmosphere

    DEFF Research Database (Denmark)

    Kyhle, Anders; Skov, Johannes; Hjorth, Søren

    1994-01-01

    We report on pulsed laser deposition of YBa2Cu3O7-x in a diluted O2/Ar gas resulting in thin epitaxial films which are almost outgrowth-free. Films were deposited on SrTiO3 or MgO substrates around 800-degrees-C at a total chamber pressure of 1.0 mbar, varying the argon partial pressure from 0 to 0.......6 mbar. The density of boulders and outgrowths usual for laser deposited films varies strongly with Ar pressure: the outgrowth density is reduced from 1.4 x 10(7) to 4.5 x 10(5) cm-2 with increasing Ar partial pressure, maintaining a critical temperature T(c,zero) almost-equal-to 90 K and a transport...... critical current density J(c)(77 K) greater-than-or-equal-to 10(6) A/cm2 by extended oxygenation time during cool down....

  15. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  16. Structural, microstructural and transport properties study of lanthanum lithium titanium perovskite thin films grown by Pulsed Laser Deposition

    International Nuclear Information System (INIS)

    Maqueda, O.; Sauvage, F.; Laffont, L.; Martinez-Sarrion, M.L.; Mestres, L.; Baudrin, E.

    2008-01-01

    Lanthanum lithium titanate thin films were grown by Pulsed Laser Deposition. La 0.57 Li 0.29 TiO 3 dense films with smooth surfaces were obtained after optimization of the growth parameters. Such films deposited at 700 deg. C under 15 Pa are nano-crystalline with domains corresponding to the cubic and tetragonal modifications of this phase. In relation to the measured conductivities/activation energy and to previous works, we clearly underlined that the films of practical interest, prepared at relatively low temperature, are predominantly formed from the tetragonal ordered phase

  17. Uniform thin films of TiO2 nanoparticles deposited by matrix-assisted pulsed laser evaporation

    International Nuclear Information System (INIS)

    Caricato, A.P.; Manera, M.G.; Martino, M.; Rella, R.; Romano, F.; Spadavecchia, J.; Tunno, T.; Valerini, D.

    2007-01-01

    We report morphological and optical properties of a colloidal TiO 2 nanoparticle film, deposited on a quartz substrate by using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. Atomic Force Microscopy demonstrated that a good uniformity of the deposition can be obtained. The presence of agglomerates with dimensions of about 1 μm in size was noticed. Form UV-vis transmission spectra, recorded in the 200-800 nm range, the optical constants and the energy gap were determined besides the film thickness. The optical constants resulted in agreement with the values reported in literature for TiO 2 nanoparticle thin films

  18. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    International Nuclear Information System (INIS)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-01-01

    Highlights: • The flip-over effect in PLD is observed up to high deposition pressures. • Consistent congruent transfer of the target composition is generally not correct. • The choice of deposition pressure can change the film composition strongly. • Large compositional changes appear at high off-axis angles and large spot sizes. - Abstract: In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La 0.4 Ca 0.6 MnO 3 target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10 −1 mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  19. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-G-P, Alejandro [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Schneider, Christof W., E-mail: christof.schneider@psi.ch [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Lippert, Thomas; Wokaun, Alexander [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland)

    2015-12-01

    Highlights: • The flip-over effect in PLD is observed up to high deposition pressures. • Consistent congruent transfer of the target composition is generally not correct. • The choice of deposition pressure can change the film composition strongly. • Large compositional changes appear at high off-axis angles and large spot sizes. - Abstract: In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La{sub 0.4}Ca{sub 0.6}MnO{sub 3} target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10{sup −1} mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  20. Creation of leak-proof silicon carbide diffusion barriers by means of pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Reinecke, A.-M.; Lustfeld, M.; Lippmann, W., E-mail: wolfgang.lippmann@tu-dresden.de; Hurtado, A.

    2014-05-01

    TRISO (tristructural isotropic) coated fuel particles are a crucial element of the HTR safety concept. While TRISO coated particles have been proven as a very efficient barrier for a large range of fission products in HTR experimental reactors, some particular fission products could still diffuse at a considerable rate. Most importantly, radioactive silver {sup 110m}Ag was found to be released from coated particles. In future HTRs with active components like a gas turbine in the primary circuit, such silver contamination may severely limit maintainability of these parts with the result of reduced life-time performance. So far, experimental analyses on silver diffusion through silicon carbide have led to contradictory results. In this work, an alternative method was used to generate silicon carbide layers as a basis for analysis of silver diffusion. With pulsed laser deposition (PLD), it is possible to generate coatings of different materials and various kinds of compounds. In particular, this technology allows the generation of layers very well defined with respect to their composition, purity and density. The microstructure can precisely be manipulated through various parameters. Based on different silicon carbide coatings with well-defined properties, we are going to investigate the silver diffusion process. Our goal is to derive the properties of an ideal silicon carbide coating preventing silver diffusion entirely. In this paper we present the major aspects of our work creating crystalline SiC layers as well as silver and CsI layers both on plane and spherical substrates. Analyses with X-ray diffraction, X-ray spectrometry and secondary ion mass spectrometry show that complex multilayer systems comprising a graphite substrate, a crystalline SiC layer and an intermediate silver layer were successfully created. Major challenges to approach in the future are the handling of high-level intrinsic stresses forming in the layer structure as well as the high vapour

  1. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-08-01

    Thin films of Cu2Sb, prepared on stainless steel and copper substrates with a pulsed laser deposition technique at room temperature, have been evaluated as electrodes in lithium cells. The electrodes operate by a lithium insertion/copper extrusion reaction mechanism, the reversibility of which is superior when copper substrates are used, particularly when electrochemical cycling is restricted to the voltage range 0.65-1.4 V vs. Li/Li+. The superior performance of Cu2Sb films on copper is attributed to the more active participation of the extruded copper in the functioning of the electrode. The continual and extensive extrusion of copper on cycling the cells leads to the isolation of Li3Sb particles and a consequent formation of Sb. Improved cycling stability of both types of electrodes was obtained when cells were cycled between 0.65 and 1.4 V. A low-capacity lithium-ion cell with Cu2Sb and LiNi0.8Co0.15Al0.05O2 electrodes, laminated from powders, shows excellent cycling stability over the voltage range 3.15 - 2.2 V, the potential difference corresponding to approximately 0.65-1.4 V for the Cu2Sb electrode vs. Li/Li+. Chemical self-discharge of lithiated Cu2Sb electrodes by reaction with the electrolyte was severe when cells were allowed to relax on open circuit after reaching a lower voltage limit of 0.1 V. The solid electrolyte interphase (SEI) layer formed on Cu2Sb electrodes after cells had been cycled between 1.4 and 0.65 V vs. Li/Li+ was characterized by Fourier-transform infrared spectroscopy; the SEI layer contributes to the large irreversible capacity loss on the initial cycle of these cells. The data contribute to a better understanding of the electrochemical behavior of intermetallic electrodes in rechargeable lithium batteries.

  2. Data mining for better material synthesis: The case of pulsed laser deposition of complex oxides

    Science.gov (United States)

    Young, Steven R.; Maksov, Artem; Ziatdinov, Maxim; Cao, Ye; Burch, Matthew; Balachandran, Janakiraman; Li, Linglong; Somnath, Suhas; Patton, Robert M.; Kalinin, Sergei V.; Vasudevan, Rama K.

    2018-03-01

    The pursuit of more advanced electronics, and finding solutions to energy needs often hinges upon the discovery and optimization of new functional materials. However, the discovery rate of these materials is alarmingly low. Much of the information that could drive this rate higher is scattered across tens of thousands of papers in the extant literature published over several decades but is not in an indexed form, and cannot be used in entirety without substantial effort. Many of these limitations can be circumvented if the experimentalist has access to systematized collections of prior experimental procedures and results. Here, we investigate the property-processing relationship during growth of oxide films by pulsed laser deposition. To do so, we develop an enabling software tool to (1) mine the literature of relevant papers for synthesis parameters and functional properties of previously studied materials, (2) enhance the accuracy of this mining through crowd sourcing approaches, (3) create a searchable repository that will be a community-wide resource enabling material scientists to leverage this information, and (4) provide through the Jupyter notebook platform, simple machine-learning-based analysis to learn the complex interactions between growth parameters and functional properties (all data/codes available on https://github.com/ORNL-DataMatls). The results allow visualization of growth windows, trends and outliers, which can serve as a template for analyzing the distribution of growth conditions, provide starting points for related compounds and act as a feedback for first-principles calculations. Such tools will comprise an integral part of the materials design schema in the coming decade.

  3. Pulsed laser deposition from ZnS and Cu2SnS3 multicomponent targets

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt; Cazzaniga, Andrea Carlo; Canulescu, Stela

    2015-01-01

    Thin films of ZnS and Cu2SnS3have been produced by pulsed laser deposition (PLD), the latter for the firsttime. The effect of fluence and deposition temperature on the structure and the transmission spectrumas well as the deposition rate has been investigated, as has the stoichiometry of the films...

  4. Optical properties of zinc phthalocyanine thin films prepared by pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Bulíř, Jiří; Bensalah-Ledoux, A.; Guy, S.; Fitl, P.; Vrňata, M.; Lančok, Ján; Moine, B.

    2014-01-01

    Roč. 117, č. 1 (2014), 377-381 ISSN 0947-8396 R&D Projects: GA ČR(CZ) GAP108/11/1298 Grant - others:AVČR(CZ) M100101271 Institutional support: RVO:68378271 Keywords : optical properties * zinc phthalocyanine * laser deposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2014

  5. Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Madiba, I.G., E-mail: madibagiven@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Empa, Swiss Federal Laboratories Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Émond, N.; Chaker, M. [Institut National de la Recherche Scientifique (INRS),1650 Blvd. Lionel-Boulet, Varennes, Québec J3X1S2 (Canada); Thema, F.T. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Tadadjeu, S.I. [iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Department of Electrical, Electronics and Computer Engineering, French South African Institute of Technology/Cape Peninsula University of Technology, Bellville campus, PO Box 1906, Bellville, 7530 (South Africa); Muller, U.; Zolliker, P. [Empa, Swiss Federal Laboratories Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Braun, A. [ETH Zurich, Swiss Federal Institute of Technology, CH-8057, Zurich (Switzerland); Empa, Swiss Federal Laboratories Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Kotsedi, L. [iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); and others

    2017-07-31

    Highlights: • Synthesis of VO{sub 2} thin films by Reactive pulsed laser deposition has been achieved. • Properties VO{sub 2} remain mainly unaffected when subjected to gamma ray doses similar to those encountered during space missions. • The long range crystal structure of VO{sub 2} remains intact upon irradiation on different doses up to 100 kGy. • XPS reveals a shift from V{sup 4+} to V{sup 5+} oxidation state upon irradiation, due to the frenkel pair formation on the surface. • Irradiated films show the characteristic SMT of VO{sub 2}, although the electrical and optical properties are slightly affected. - Abstract: Vanadium oxide films are considered suitable coatings for various applications such as thermal protective coating of small spacecrafts because of their thermochromic properties. While in outer space, such coating will be exposed to cosmic radiations which include γ-rays. To study the effect of these γ-rays on the coating properties, we have deposited vanadium dioxide (VO{sub 2}) films on silicon substrates and subjected them to extensive γ-irradiations with typical doses encountered in space missions. The prevalent crystallographic phase after irradiation remains the monoclinic VO{sub 2} phase but the films preferential orientation shifts to lower angles due to the presence of disordered regions caused by radiations. Raman spectroscopy measurements also evidences that the VO{sub 2} structure is slightly affected by gamma irradiation. Indeed, increasing the gamma rays dose locally alters the crystalline and electronic structures of the films by modifying the V–V inter-dimer distance, which in turns favours the presence of the VO{sub 2} metallic phase. From the XPS measurements of V2p and O1s core level spectra, an oxidation of vanadium from V{sup 4+} towards V{sup 5+} is revealed. The data also reveal a hydroxylation upon irradiation which is corroborated by the vanishing of a low oxidation state peak near the Fermi energy in the

  6. Parametric study of self-forming ZnO Nanowall network with honeycomb structure by Pulsed Laser Deposition

    KAUST Repository

    El Zein, B.

    2014-02-01

    The successful synthesis of catalyst free zinc oxide (ZnO) Nanowall networks with honeycomb like structure by Pulsed Laser Deposition (PLD) is demonstrated in this paper. The synthesis was conducted directly on Silicon (Si) (1 0 0) and Glass-ITO substrates without the intermediate of metal catalyst, template or chemical etching. Kinetic of growth and effects of gas pressure and substrate temperature were studied by depositing ZnO films on P type Si (1 0 0) substrates with different deposition parameters. The optimized growth parameters were found as: 10 mTorr oxygen pressure, 600 C substrate temperature, and deposition duration equal or higher than 10 min. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Photoluminescence (PL) measurements were used to investigate structural, microstructural and optical properties of ZnO Nanowall networks produced. They exhibit a non-uniform size high quality honeycomb structure with low deep level defects. © 2013 Elsevier B.V.

  7. Enhanced dielectric properties of ZrO2 thin films prepared in nitrogen ambient by pulsed laser deposition

    International Nuclear Information System (INIS)

    Zhu, J; Li, T L; Pan, B; Zhou, L; Liu, Z G

    2003-01-01

    ZrO 2 thin films were fabricated in O 2 ambient and in N 2 ambient by pulsed laser deposition (PLD), respectively. X-ray diffraction revealed that films prepared at 400 deg. C remained amorphous. The dielectric properties of amorphous ZrO 2 films were investigated by measuring the capacitance-frequency characteristics of Pt/ZrO 2 /Pt capacitor structures. The dielectric constant of the films deposited in N 2 ambient was larger than that of the films deposited in O 2 ambient. The dielectric loss was lower for films prepared in N 2 ambient. Atom force microscopy investigation indicated that films deposited in N 2 ambient had smoother surface than films deposited in O 2 ambient. Capacitance-voltage and current-voltage characteristics were studied. The equivalent oxide thickness (EOT) of films with 6.6 nm physical thickness deposited in N 2 ambient is lower than that of films deposited in O 2 ambient. An EOT of 1.38 nm for the film deposited in N 2 ambient was obtained, while the leakage current density was 94.6 mA cm -2 . Therefore, ZrO 2 thins deposited in N 2 ambient have enhanced dielectric properties due to the incorporation of nitrogen which leads to the formation of Zr-doped nitride interfacial layer, and is suggested to be a potential material for alternative high-k (high dielectric constant) gate dielectric applications

  8. Morphology and structural studies of WO{sub 3} films deposited on SrTiO{sub 3} by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kalhori, Hossein, E-mail: h.kalhori@ph.iut.ac.ir [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of); Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Ranjbar, Mehdi; Salamati, Hadi [Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of)

    2016-12-30

    Highlights: • Highly oriented WO{sub 3} stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO{sub 3} films at 700 °C from monoclinic to tetragonal. - Abstract: WO{sub 3} films have been grown by pulsed laser deposition on SrTiO{sub 3} (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  9. Optical properties and surface characterization of pulsed laser-deposited Cu2ZnSnS4 by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Crovetto, Andrea; Cazzaniga, Andrea; Ettlinger, Rebecca B.; Schou, Jørgen; Hansen, Ole

    2015-01-01

    Cu 2 ZnSnS 4 films prepared by pulsed laser deposition at different temperatures are characterized by spectroscopic ellipsometry. The focus is on confirming results from direct measurement techniques, by finding appropriate models of the surface overlayer for data fitting, and extracting the dielectric function of the films. It is found that the surface overlayer changes with film thickness and deposition temperature. Adopting different ellipsometry measurements and modeling strategies for each film, dielectric functions are extracted and compared. As the deposition temperature is increased, the dielectric functions exhibit additional critical points related to optical transitions in the material other than absorption across the fundamental band gap. In the case of a thin film < 200 nm thick, surface features observed by scanning electron microscopy and atomic force microscopy are accurately reproduced by ellipsometry data fitting. - Highlights: • Inhomogeneous Cu 2 ZnSnS 4 films are prepared by pulsed laser deposition. • The film surface includes secondary phases and topographic structures. • We model a film surface layer that fits ellipsometry data. • Ellipsometry data fits confirm results from direct measurement techniques. • We obtain the dielectric function of inhomogeneous Cu 2 ZnSnS 4 films

  10. TiCN thin films grown by reactive crossed beam pulsed laser deposition

    Science.gov (United States)

    Escobar-Alarcón, L.; Camps, E.; Romero, S.; Muhl, S.; Camps, I.; Haro-Poniatowski, E.

    2010-12-01

    In this work, we used a crossed plasma configuration where the ablation of two different targets in a reactive atmosphere was performed to prepare nanocrystalline thin films of ternary compounds. In order to assess this alternative deposition configuration, titanium carbonitride (TiCN) thin films were deposited. Two crossed plasmas were produced by simultaneously ablating titanium and graphite targets in an Ar/N2 atmosphere. Films were deposited at room temperature onto Si (100) and AISI 4140 steel substrates whilst keeping the ablation conditions of the Ti target constant. By varying the laser fluence on the carbon target it was possible to study the effect of the carbon plasma on the characteristics of the deposited TiCN films. The structure and composition of the films were analyzed by X-ray Diffraction, Raman Spectroscopy and non-Rutherford Backscattering Spectroscopy. The hardness and elastic modulus of the films was also measured by nanoindentation. In general, the experimental results showed that the TiCN thin films were highly oriented in the (111) crystallographic direction with crystallite sizes as small as 6.0 nm. It was found that the hardness increased as the laser fluence was increased, reaching a maximum value of about 33 GPa and an elastic modulus of 244 GPa. With the proposed configuration, the carbon content could be easily varied from 42 to 5 at.% by changing the laser fluence on the carbon target.

  11. Elimination of impurity phase formation in FePt magnetic thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wang, Ying; Medwal, Rohit; Sehdev, Neeru; Yadian, Boluo; Tan, T.L.; Lee, P.; Talebitaher, A.; Ilyas, Usman; Ramanujan, R.V.; Huang, Yizhong; Rawat, R.S.

    2014-01-01

    The formation of impurity phases in FePt thin films severely degrades its magnetic properties. The X-ray diffraction patterns of FePt thin films, synthesized using pulsed laser deposition (PLD), showed peaks corresponding to impurity phases, resulting in softer magnetic properties. A systematic investigation was carried to determine the factors that might have led to impurity phase formation. The factors include (i) PLD target composition, (ii) substrate material, (iii) annealing parameters such as temperature, duration and ambience and (iv) PLD deposition parameters such as chamber ambience, laser energy fluence and target–substrate distance. Depositions on the different substrates revealed impurity phase formation only on Si substrates. It was found that the target composition, PLD chamber ambience, and annealing ambience were not the factors that caused the impurity phase formation. The annealing temperature and duration influenced the impurity phases, but are not the cause of their formation. A decrease in the laser energy fluence and increase of the target–substrate distance resulted in elimination of the impurity phases and enhancement in the magnetic and structural properties of FePt thin films. The energy of the ablated plasma species, controlled by the laser energy fluence and the target–substrate distance, is found to be the main factor responsible for the formation of the impurity phases.

  12. Nature of the pulsed laser process for the deposition of high T/sub c/ superconducting thin films

    International Nuclear Information System (INIS)

    Venkatesan, T.; Wu, X.D.; Inam, A.

    1988-01-01

    The pulsed laser thin-film deposition process can enable preparation of thin films of complex composition with good control over the film stoichiometry. The film compositions are similar to that of the target pellet and as a consequence this technique appears to be an ideal method for preparing high T/sub c/ thin films on a variety of substrates.The factors which contribute to this beneficial phenomenon have been explored by a laser ionization mass spectrometry (LIMS) and a post ablation ionization (PAI) neutral velocity analysis technique in order to determine the mass and velocities of the laser ejected material. In addition, x-ray absorption measurements on films deposited onto substrates at room temperature were performed in order to identify the presence of short-range crystalline order in the films. Both of these studies rule out the ejection of stoichiometric clusters of material from the pellet during the laser ablation/deposition process. Instead, binary and ternary suboxides are emitted from the target pellet. These suboxides most likely have unit sticking coefficient to the substrate which could contribute to the preservation of the film stoichiometry. The velocity distribution of several neutral species (e.g., BaO) indicates that particles have energies of several eV. Thus the effective temperatures of the emitted species are ∼15 x 10 3 K, and these energetic particles may facilitate growth of the crystalline films at low substrate temperatures

  13. High Quality Zinc Oxide Thin films and Nanostructures Prepared by Pulsed Laser Deposition for Photodetectors

    KAUST Repository

    Flemban, Tahani H.

    2017-12-11

    Zinc oxide (ZnO) semiconductors have been utilized by many researchers, due to its unique properties beneficial for functional devices. In particular, gadolinium (Gd)–doped ZnO exhibits high ferromagnetic and electrical properties, which is attributed to defect/impurity bands mediated by Gd dopants. In this dissertation, I study the effects of Gd concentration, oxygen pressure using pulsed laser deposition (PLD), and thermal annealing on the optical and structural properties of undoped and Gd-doped ZnO films and nanostructures. Moreover, as the growth of practical ZnO nanostructures-based devices without catalyst, while presently challenging, is highly important for many applications. Thus, for the first time, a novel method is developed for growing well aligned ZnO nanorods (NRs) by optimizing PLD conditions using Gd-doped ZnO target without any catalyst in a single step. This study shows that, both the lattice orientation of the substrate and the Gd characteristics are significant in enhancing the NR growth. Our findings reveal that precise control of the NR density can be achieved by changing the oxygen partial pressure. Furthermore, due to the Gd incorporation, these NRs possess favorable electrical properties with a significant mobility of 177 cm2 (V.s)-1 compared to that reported in literature. Nonetheless significant challenges need to be overcome to achieve reproducible and stable p-type ZnO for commercial applications. Hence, several attempts based on n-type ZnO grown on foreign p-type substrates were made to achieve high-performance devices and overcome the issues arising when p-type doped ZnO is employed. Moreover, Growth of ZnO nanostructures on a foreign p-type substrates does not require a lattice-matched p-type substrate. Thus, for the first time, PLD conditions are improved to grow high quality ZnO nanotubes (NTs) with high optical, structural and electrical properties on a p-type Si (100) substrate without catalyst for high-performance devices. A

  14. Photoluminescence properties of powder and pulsed laser-deposited PbS nanoparticles in SiO2

    International Nuclear Information System (INIS)

    Dhlamini, M.S.; Terblans, J.J.; Ntwaeaborwa, O.M.; Ngaruiya, J.M.; Hillie, K.T.; Botha, J.R.; Swart, H.C.

    2008-01-01

    Thin films of lead sulfide (PbS) nanoparticles embedded in an amorphous silica (SiO 2 ) host were grown on Si(1 0 0) substrates at different temperatures by the pulsed laser deposition (PLD) technique. Surface morphology and photoluminescence (PL) properties of samples were analyzed with scanning electron microscopy (SEM) and a 458 nm Ar + laser, respectively. The PL data show a blue-shift from the normal emission at ∼3200 nm in PbS bulk to ∼560-700 nm in nanoparticulate PbS powders and thin films. Furthermore, the PL emission of the films was red-shifted from that of the powders at ∼560 to ∼660 nm. The blue-shifting of the emission wavelengths from 3200 to ∼560-700 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the red-shift between powders and thin-film PbS nanoparticles is speculated to be due to an increase in the defect concentration. The red-shift increased slightly with an increase in deposition temperature, which suggests that there has been a relative growth in particle sizes during the PLD of the films at higher temperatures. Generally, the PL emission of the powders was more intense than that of the films, although the intensity of some of the films was improved marginally by post-deposition annealing at 400 deg. C. This paper compares the PL properties of powder and pulsed laser-deposited thin films of PbS nanoparticles and the effects of deposition temperatures

  15. Correlations between optical properties, microstructure, and processing conditions of Aluminum nitride thin films fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Baek, Jonghoon; Ma, James; Becker, Michael F.; Keto, John W.; Kovar, Desiderio

    2007-01-01

    Aluminum nitride (AlN) films were deposited using pulsed laser deposition (PLD) onto sapphire (0001) substrates with varying processing conditions (temperature, pressure, and laser fluence). We have studied the dependence of optical properties, structural properties and their correlations for these AlN films. The optical transmission spectra of the produced films were measured, and a numerical procedure was applied to accurately determine the optical constants for films of non-uniform thickness. The microstructure and texture of the films were studied using various X-ray diffraction techniques. The real part of the refractive index was found to not vary significantly with processing parameters, but absorption was found to be strongly dependent on the deposition temperature and the nitrogen pressure in the deposition chamber. We report that low optical absorption, textured polycrystalline AlN films can be produced by PLD on sapphire substrates at both low and high laser fluence using a background nitrogen pressure of 6.0 x 10 -2 Pa (4.5 x 10 -4 Torr) of 99.9% purity

  16. Benefits of carbon addition on the hydrogen absorption properties of Mg-based thin films grown by Pulsed Laser Deposition

    International Nuclear Information System (INIS)

    Darok, X.; Rougier, A.; Bhat, V.; Aymard, L.; Dupont, L.; Laffont, L.; Tarascon, J.-M.

    2006-01-01

    Mg-Ni thin films were grown using Pulsed Laser Deposition. In situ optical changes from shiny metallic to transparent states were observed for films deposited in vacuum and under an Ar/H 2 gas mixture (93/7%), respectively. Optical changes were also achieved by ex situ hydrogenation under hydrogen gas pressure of 15 bars at 200 deg. C. However, after ex situ hydrogenation, the optical transmittance of the Mg-based hydrogenated thin films did not exceed 25%. Such limitation was attributed to oxygen contamination, as deduced by High Resolution Transmission Electron Microscopy observations, showing the co-existence of both Mg-based and MgO phases for as-deposited films. A significant decrease in oxygen contamination was successfully achieved with the addition of carbon, leading to the preparation of (Mg-based)-C x (x < 20%) thin films showing a faster and easier hydrogenation

  17. A short review on the pulsed laser deposition of Er3+ ion doped oxide glass thin films for integrated optics

    International Nuclear Information System (INIS)

    Irannejad, M.; Zhao, Z.; Jose, G.; Steenson, D.P.; Jha, A.

    2010-01-01

    Short pulsed (ns) excimer laser was employed as a technique for the deposition of more than 2 μm thick glassy films from phosphorous pentoxide and tungsten lanthanum modified tellurite bulk glasses. High quality glass thin films with measured propagation loss less than 0.15, 0.71 and 2.3 dB.cm -1 were obtained after optimization of deposition parameters for silica, siloxane and semiconductor substrates. The optical, spectroscopic and microstructural properties of deposited thin films were compared with bulk glass materials for demonstrating the differences in the properties, which must be optimized for device engineering. Channel waveguides were fabricated after using reactive ion etching technique, up to 2 μm thickness by using CHF 3 and Ar gas mixture

  18. Optical and electrical properties of In-doped CdO thin films fabricated by pulse laser deposition

    International Nuclear Information System (INIS)

    Zheng, B.J.; Lian, J.S.; Zhao, L.; Jiang, Q.

    2010-01-01

    Transparent indium-doped cadmium oxide (In-CdO) thin films were deposited on quartz glass substrates by pulse laser deposition (PLD) from ablating Cd-In metallic target at a fixed pressure 10 Pa and a fixed substrate temperature 300 deg. C. The influences of indium concentrations in target on the microstructure, optical and electrical performances were studied. When the indium concentration reaches to 3.9 wt%, the as-deposited In-CdO film shows high optical transmission in visible light region, obviously enhanced direct band gap energy (2.97 eV), higher carrier concentration and lower electric resistivity compared with the undoped CdO film, while a further increase of indium concentration to 5.6 wt% induces the formation of In 2 O 3 , which reverse the variation of these parameters and performance.

  19. The influence of substrate temperature and deposition pressure on pulsed laser deposited thin films of CaS:Eu{sup 2+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Nyenge, R.L. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa); Physics Department, Kenyatta University, P.O. Box 43844-0100, Nairobi (Kenya); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa); Ntwaeaborwa, O.M., E-mail: ntwaeab@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa)

    2016-01-01

    The aim of this study was to investigate the influence of substrate temperature and argon deposition pressure on the structure, morphology and photoluminescence emission (PL) properties of pulsed laser deposited thin films of CaS:Eu{sup 2+}. The PL intensity improved significantly upon reaching substrate temperature of 650 °C. The (200) peak gradually became the preferred orientation. The increase in PL intensity as well as surface roughness is attributed to improved crystallinity and higher growth rates, respectively. The best PL intensity as a function of deposition pressure was obtained at an argon pressure of 80 mTorr. The initial increase and eventual drop in PL intensity as deposition pressure increases is ascribed to the changes in growth rates.

  20. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2017-02-01

    Full Text Available A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC, and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  1. Deposition of Au/TiO2 film by pulsed laser

    International Nuclear Information System (INIS)

    Zhao Chongjun; Zhao Quanzhong; Zhao Qitao; Qiu Jianrong; Zhu Congshan

    2006-01-01

    Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl 4 solution containing TiO 2 colloid and accompanied by the TiO 2 particles, were deposited on the substrate surface. The film consisting of Au/TiO 2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO 2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO 2 film was also discussed

  2. Substrate temperature effects on the structure and properties of ZnMnO films prepared by pulsed laser deposition

    Science.gov (United States)

    Riascos, H.; Duque, J. S.; Orozco, S.

    2017-01-01

    ZnMnO thin films were grown on silicon substrates by pulsed laser deposition (PLD). Pulsed Nd:YAG laser was operated at a wavelength of 1064 nm and 100 mJ. ZnMnO thin films were deposited at the vacuum pressure of 10-5 Torr and with substrate temperature from room temperature to 600 °C. The effects of substrate temperature on the structural and Optical properties of ZnMnO thin films have been investigated by X-ray diffraction (XRD), Raman spectroscopy and Uv-vis spectroscopy. From XRD data of the samples, it can be showed that temperature substrate does not change the orientation of ZnMnO thin films. All the films prepared have a hexagonal wurtzite structure, with a dominant (002) peak around 2θ=34.44° and grow mainly along the c-axis orientation. The substrate temperature improved the crystallinity of the deposited films. Uv-vis analysis showed that, the thin films exhibit high transmittance and low absorbance in the visible region. It was found that the energy band to 300 ° C is 3.2 eV, whereas for other temperatures the values were lower. Raman reveals the crystal quality of ZnMnO thin films.

  3. The growth of the metallic ZrNx thin films on P-GaN substrate by pulsed laser deposition

    Science.gov (United States)

    Gu, Chengyan; Sui, Zhanpeng; Li, Yuxiong; Chu, Haoyu; Ding, Sunan; Zhao, Yanfei; Jiang, Chunping

    2018-03-01

    Although metal nitride thin films have attractive prospects in plasmonic applications due to its stable properties in harsh environments containing high temperatures, shock, and contaminants, the effect of deposition parameters on the properties of the metallic ZrN grown on III-N semiconductors by pulse laser deposition still lacks of detailed exploration. Here we have successfully prepared metallic ZrNx films on p-GaN substrate by pulsed laser deposition in N2 ambient of various pressures at a fixed substrate temperature (475 °C). It is found that the films exhibit quite smooth surfaces and (111) preferred orientation. The X-ray photoelectron spectroscopy measurements indicate that carbon contamination can be completely removed and oxygen contamination is significantly reduced on the film surfaces after cleaning using Ar+ sputtering. The N/Zr ratio increases from 0.64 to 0.75 when the N2 pressure increases from 0.5 Pa to 3 Pa. The optical reflectivity spectra measured by the UV-vis-NIR spectrophotometer show that the ZrNx is a typical and good metallic-like material and its metallic properties can be tuned with changing the film compositions.

  4. Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    2013-01-01

    Thin films of C60 were deposited by matrix-assisted pulsed laser evaporation (MAPLE) from a frozen target of anisole with 0.67 wt% C60. Above a fluence of 1.5 J/cm2 the C60 films are strongly non-uniform and are resulting from transfer of matrix-droplets containing fullerenes. At low fluence...... the fullerene molecules in the films are intact, the surface morphology is substantially improved and there are no measurable traces of the matrix molecules in the film. This may indicate a regime of dominant evaporation at low fluence which merges into the MAPLE regime of liquid ejection of the host matrix...

  5. In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition

    KAUST Repository

    Sarath Kumar, S. R.

    2013-11-07

    We report the in situ growth of p and n-type graphene thin films by ultraviolet pulsed laser deposition in the presence of argon and nitrogen, respectively. Electron microscopy and Raman studies confirmed the growth, while temperature dependent electrical conductivity and Seebeck coefficient studies confirmed the polarity type of graphene films. Nitrogen doping at different sites of the honeycomb structure, responsible for n-type conduction, is identified using X-ray photoelectron spectroscopy, for films grown in nitrogen. A diode-like rectifying behavior is exhibited by p-n junction diodes fabricated using the graphene films.

  6. Structure and properties of (Sr, Ca)CuO2-BaCuO2 superlattices grown by pulsed laser interval deposition

    NARCIS (Netherlands)

    Koster, Gertjan; Verbist, Karen; Rijnders, Augustinus J.H.M.; Rogalla, Horst; van Tendeloo, Gustaav; Blank, David H.A.

    2001-01-01

    We report on the preparation of CuBa2(SrxCa1¿x)nCun¿1Oy compounds by fabrication of (Ba,Sr,Ca)CuO2 superlattices with pulsed laser deposition (PLD). A technique called interval deposition is used to suppress multi-level or island growth resulting in high-quality superlattice structures. Both, the

  7. Fabrication of Co thin films using pulsed laser deposition method with or without employing external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ehsani, M.H., E-mail: Ehsani@semnan.ac.ir [Thin Film Laboratory, Faculty of Physics, Semnan University (Iran, Islamic Republic of); Mehrabad, M. Jalali [Thin Film Laboratory, Faculty of Physics, Semnan University (Iran, Islamic Republic of); Kameli, P. [Department of Physics, Isfahan University of technology, Isfahan 8415683111 (Iran, Islamic Republic of)

    2016-11-01

    In this work, the external magnetic field effects on growth condition during deposition processes of the Co thin films were studied. Two specimens of Co films with different condition (with and without external magnetic field) were synthesized by pulsed laser deposition method. Structural and magnetic properties of the Co thin films were systematically studied, using atomic force microscope analysis and magnetization measurement, respectively. During the deposition processes, the external applied magnetic field had been provided by a permanent magnet. The experimental results show that the external magnetic field enables one to tune the magnetic properties of the deposited thin films. To clarify this effect, using Multi-Physics COMSOL simulation environment, a study of vapor flux by applied magnetic field during deposition were performed. Comparison between experimental data and output data of the simulation show promising accommodation and approve the existence of a strong correlation between the structural and magnetic properties of the specimens, and deposition rate of Co thin films. - Graphical abstract: Simulation results of the cobalt particles tracing sputtered from the source to substrate with an external magnetic field. Convergence of the particles flux (left) and also the spiral motion of the cobalt particles (right) increase dramatically as they approach the substrate and NdFe35 magnet. - Highlights: • The external magnetic field effects on growth condition during deposition processes of the Co thin films were studied. • Structural and magnetic properties of the Co thin films were systematically studied, using atomic force microscope analysis and magnetization measurement, respectively. • The experimental results show that the external magnetic field enables one to tune the magnetic properties of the deposited thin films. • To clarify this effect, using Multi-Physics COMSOL simulation environment, a study of vapor flux by applied magnetic field

  8. Growth of Cu2ZnSnS4(CZTS) by Pulsed Laser Deposition for Thin film Photovoltaic Absorber Material

    Science.gov (United States)

    Nandur, Abhishek; White, Bruce

    2014-03-01

    CZTS (Cu2ZnSnS4) has become the subject of intense interest because it is an ideal candidate absorber material for thin-film solar cells with an optimal band gap (1.5 eV), high absorption coefficient (104 cm-1) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since thin films are deposited under high vacuum with excellent stoichiometry transfer from the target. CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of laser energy fluence and substrate temperature and post-deposition sulfur annealing on the surface morphology, composition and optical absorption have been investigated. Optimal CZTS thin films exhibited a band gap of 1.54 eV with an absorption coefficient of 4x104cm-1. A solar cell utilizing PLD grown CZTS with the structure SLG/Mo/CZTS/CdS/ZnO/ITO showed a conversion efficiency of 5.85% with Voc = 376 mV, Jsc = 38.9 mA/cm2 and Fill Factor, FF = 0.40.

  9. Optical performance of thin films produced by the pulsed laser deposition of SiAlON and Er targets

    Energy Technology Data Exchange (ETDEWEB)

    Camps, I., E-mail: camps@io.cfmac.csic.es [Laser Processing Group, Instituto de Óptica, CSIC, C/Serrano 121, 28006 Madrid (Spain); Ramírez, J.M. [MIND-IN2UB, Departament d’Electrònica, Universitat de Barcelona, c/Martí i Franqués 1, 08028 Barcelona (Spain); Mariscal, A.; Serna, R. [Laser Processing Group, Instituto de Óptica, CSIC, C/Serrano 121, 28006 Madrid (Spain); Garrido, B. [MIND-IN2UB, Departament d’Electrònica, Universitat de Barcelona, c/Martí i Franqués 1, 08028 Barcelona (Spain); Perálvarez, M.; Carreras, J. [IREC, Fundació Privada Institut de Recerca en Energia de Catalunya (Spain); Barradas, N.P.; Alves, L.C. [C" 2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2695-066 Bobadela (Portugal); Alves, E. [IPFN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2695-066 Bobadela (Portugal)

    2015-05-01

    Highlights: • PLD production of Er-doped thin films from a low cost commercial SiAlON target. • The role of the ablation fluence on the composition, optical properties as well as on the light emission performance at 1.5 μm. • The optimized performance is obtained for the samples deposited at the higher used ablation energy density. Further improvement was achieved through annealing. - Abstract: We report the preparation and optical performance of thin films produced by pulsed laser deposition in vacuum at room temperature, by focusing an ArF excimer laser onto two separate targets: a commercial ceramic SiAlON and a metallic Er target. As a result of the alternate deposition Er:SiAlON films were formed. The as grown films exhibited an Er-related emission peaking at 1532 nm. The role of the PLD energy density during deposition on the final matrix film was investigated, in order to achieve an optimized matrix composition with enhanced optical properties, and its effect on the light emission performance.

  10. Pulsed laser deposition of YBCO coated conductor using Y2O3 as the seed and cap layer

    International Nuclear Information System (INIS)

    Barnes, P N; Nekkanti, R M; Haugan, T J; Campbell, T A; Yust, N A; Evans, J M

    2004-01-01

    Although a variety of buffer layers have been routinely reported, a standard architecture commonly used for the Y Ba 2 Cu 3 O 7-x (YBCO) coated conductor is Y BCO/CeO 2 /Y SZ/CeO 2 /substrate or Y BCO/CeO 2 /Y SZ/Y 2 O 3 /substrate where ceria is typically the cap layer. CeO 2 is generally used as only a seed (or cap layer) since cracking within the film occurs in thicker CeO 2 layers due to the stress of lattice mismatching. Y 2 O 3 has been proposed as a seed and as a cap layer but usually not for both in a given architecture, especially with all layers deposited in situ. Yttrium oxide films grown on nickel by electron beam evaporation processes were found to be dense and crack free with good epitaxy. In this report, pulsed laser deposition (PLD) of Y 2 O 3 is given where Y 2 O 3 serves as both the seed and cap layer in the YBCO architecture. A comparison to PLD CeO 2 is provided. Deposited layers of the YBCO coated conductor are also grown by laser ablation. Initial deposition resulted in specimens on textured Ni substrates with current densities of more than 1 MA cm -2 at 77 K, self-field

  11. Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma

    Science.gov (United States)

    Khan, T. M.; Pokle, A.; Lunney, J. G.

    2018-04-01

    Two methods of atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver are described. In both methods the ablation plume, produced by a 248 nm, 20 ns excimer laser in gas, is strongly confined near the target and forms a nanoparticle aerosol. For both the flowing gas, and the atmospheric plasma from a dielectric barrier discharge plasma source, the aerosol is entrained in the flow and carried to a substrate for deposition. The nanoparticle films produced by both methods were examined by electron microscopy and optical absorption spectroscopy. With plasma assistance, the deposition rate was significantly enhanced and the film morphology altered. With argon gas, isolated nanoparticles of 20 nm size were obtained, whereas in argon plasma, the nanoparticles are aggregated in clusters of 90 nm size. Helium gas also leads to the deposition of isolated nanoparticles, but with helium plasma, two populations of nanoparticles are observed: one of rounded particles with a mean size of 26 nm and the other of faceted particles with a mean size 165 nm.

  12. Growth of centimeter-scale atomically thin MoS{sub 2} films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Gene; Venkata Subbaiah, Y. P.; Prestgard, Megan C.; Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-05-01

    We are reporting the growth of single layer and few-layer MoS{sub 2} films on single crystal sapphire substrates using a pulsed-laser deposition technique. A pulsed KrF excimer laser (wavelength: 248 nm; pulse width: 25 ns) was used to ablate a polycrystalline MoS{sub 2} target. The material thus ablated was deposited on a single crystal sapphire (0001) substrate kept at 700 °C in an ambient vacuum of 10{sup −6} Torr. Detailed characterization of the films was performed using atomic force microscopy (AFM), Raman spectroscopy, UV-Vis spectroscopy, and photoluminescence (PL) measurements. The ablation of the MoS{sub 2} target by 50 laser pulses (energy density: 1.5 J/cm{sup 2}) was found to result in the formation of a monolayer of MoS{sub 2} as shown by AFM results. In the Raman spectrum, A{sub 1g} and E{sup 1}{sub 2g} peaks were observed at 404.6 cm{sup −1} and 384.5 cm{sup −1} with a spacing of 20.1 cm{sup −1}, confirming the monolayer thickness of the film. The UV-Vis absorption spectrum exhibited two exciton absorption bands at 672 nm (1.85 eV) and 615 nm (2.02 eV), with an energy split of 0.17 eV, which is in excellent agreement with the theoretically predicted value of 0.15 eV. The monolayer MoS{sub 2} exhibited a PL peak at 1.85 eV confirming the direct nature of the band-gap. By varying the number of laser pulses, bi-layer, tri-layer, and few-layer MoS{sub 2} films were prepared. It was found that as the number of monolayers (n) in the MoS{sub 2} films increases, the spacing between the A{sub 1g} and E{sup 1}{sub 2g} Raman peaks (Δf) increases following an empirical relation, Δf=26.45−(15.42)/(1+1.44 n{sup 0.9}) cm{sup −1}.

  13. Structure and composition of layers of Ni-Co-Mn-In Heusler alloys obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wisz, Grzegorz; Sagan, Piotr; Stefaniuk, Ireneusz; Cieniek, Bogumil; Maziarz, Wojciech; Kuzma, Marian

    2017-01-01

    In present work we were analysing thin layers of Ni-Co-Mn-In alloys, grown by pulsed laser deposition method (PLD) on Si, NaCl and glass substrates. For target ablation the second harmonics of YAG:Nd 3+ laser was used. The target had the composition Ni 45 Co 5 Mn 34.5 In 14.5 . The morphology of the layers and composition were studied by electron microscopy TESCAN Vega3 equipped with microanalyzer EDS – Easy EdX system working with Esprit Bruker software. The X-ray diffraction measurements (XRD), performed on spectrometer Bruker XRD D8 Advance system, reveals Ni 2 -Mn-In cubic phase having lattice constant a = 6.02Å.

  14. Structural, morphological and local electric properties of TiO2 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gyoergy, E; Pino, A Perez del; Sauthier, G; Figueras, A; Alsina, F; Pascual, J

    2007-01-01

    Titanium dioxide (TiO 2 ) thin films were synthesized on (1 0 0) Si substrates by reactive pulsed laser deposition (PLD) technique. A frequency quadrupled Nd : YAG (λ = 266 nm, τ FWHM ≅ 5 ns, ν = 10 Hz) laser source was used for the irradiations of metallic Ti targets. The experiments were performed in controlled oxygen atmosphere. Crystallinity, surface morphology and local electric properties of the obtained oxide thin films were investigated by x-ray diffractometry, micro-Raman spectroscopy and current sensing atomic force microscopy. An inter-relation was found between the surface morphology, the crystalline structure and the nano-scale electric properties which open the possibility of synthesizing by the PLD technique TiO 2 thin films with tunable functional properties for future applications such as photocatalysts, gas sensors or solar energy converters

  15. Structural characterization of ultrathin Cr-doped ITO layers deposited by double-target pulsed laser ablation

    International Nuclear Information System (INIS)

    Cesaria, Maura; Caricato, Anna Paola; Leggieri, Gilberto; Luches, Armando; Martino, Maurizio; Maruccio, Giuseppe; Catalano, Massimo; Manera, Maria Grazia; Rella, Roberto; Taurino, Antonietta

    2011-01-01

    In this paper we report on the growth and structural characterization of very thin (20 nm) Cr-doped ITO films, deposited at room temperature by double-target pulsed laser ablation on amorphous silica substrates. The role of Cr atoms in the ITO matrix is carefully investigated with increasing doping content by transmission electron microscopy (TEM). Selected-area electron diffraction, conventional bright field and dark field as well as high-resolution TEM analyses, and energy dispersive x-ray spectroscopy demonstrate that (i) crystallization features occur despite the low growth temperature and small thickness, (ii) no chromium or chromium oxide secondary phases are detectable, regardless of the film doping levels, (iii) the films crystallize as crystalline flakes forming large-angle grain boundaries; (iv) the observed flakes consist of crystalline planes with local bending of the crystal lattice. Thickness and compositional information about the films are obtained by Rutherford back-scattering spectrometry. Results are discussed by considering the combined effects of growth temperature, smaller ionic radius of the Cr cation compared with the trivalent In ion, doping level, film thickness, the double-target doping technique and peculiarities of the pulsed laser deposition method.

  16. Structural characterization of ultrathin Cr-doped ITO layers deposited by double-target pulsed laser ablation

    Science.gov (United States)

    Cesaria, Maura; Caricato, Anna Paola; Leggieri, Gilberto; Luches, Armando; Martino, Maurizio; Maruccio, Giuseppe; Catalano, Massimo; Grazia Manera, Maria; Rella, Roberto; Taurino, Antonietta

    2011-09-01

    In this paper we report on the growth and structural characterization of very thin (20 nm) Cr-doped ITO films, deposited at room temperature by double-target pulsed laser ablation on amorphous silica substrates. The role of Cr atoms in the ITO matrix is carefully investigated with increasing doping content by transmission electron microscopy (TEM). Selected-area electron diffraction, conventional bright field and dark field as well as high-resolution TEM analyses, and energy dispersive x-ray spectroscopy demonstrate that (i) crystallization features occur despite the low growth temperature and small thickness, (ii) no chromium or chromium oxide secondary phases are detectable, regardless of the film doping levels, (iii) the films crystallize as crystalline flakes forming large-angle grain boundaries; (iv) the observed flakes consist of crystalline planes with local bending of the crystal lattice. Thickness and compositional information about the films are obtained by Rutherford back-scattering spectrometry. Results are discussed by considering the combined effects of growth temperature, smaller ionic radius of the Cr cation compared with the trivalent In ion, doping level, film thickness, the double-target doping technique and peculiarities of the pulsed laser deposition method.

  17. Growth and characterization of polycrystalline Ge{sub 1-x}C{sub x} by reactive pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.P., E-mail: mayrap@fisica.uh.cu [Instituto de Ciencia y Tecnologia de Materiales, Zapata y G, P.O. Box 10400, Universidad de La Habana (Cuba); Farias, M.H.; Castillon, F.F.; Diaz, Jesus A.; Avalos, M. [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Km 107 Carretera Tijuana-Ensenada, C.P. 22800 Ensenada, Baja California (Mexico); Ulloa, L. [Universidad de Guadalajara, (CUCEI) Blvd. Marcelino Garcia Barragan 1421, C.P. 44430 Guadalajara, Jalisco (Mexico); Gallegos, J.A.; Yee-Madeiros, H. [Escuela Superior de Fisica y Matematicas-IPN, UP' ALM' , Colonia Lindavista 07738 (Mexico)

    2011-03-15

    Polycrystalline thin films of Ge-C were grown on Si (1 1 1) substrates by means of reactive pulsed laser deposition with methane pressure of 100 mTorr. Effect substrate temperature, T{sub s}, on C incorporation to substitutional sites (x) in Ge{sub 1-x}C{sub x} was investigated systematically by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyzes. The substrate temperatures were ranging from 250 to 400 deg. C. The substitutional C composition x in the films by XRD were estimated using the Vegard's linear law. The maximum value of x calculated by XRD was 0.032 for T{sub s} of 350 deg. C. The position of the C 1s peak at 283.4 eV in the XPS spectrum confirmed the germanium-carbon alloys. XRD measurements indicated that x increased with T{sub s} from 250 deg. C to 350 deg. C. At T{sub s} = 400 deg. C, the estimation of x was lowered. However, the C content calculated by XPS analyzes increased with T{sub s} being more these values than substitutional C composition x. XPS and XRD analyzes demonstrate that the remaining C atoms are incorporated to interstitial sites. The use of the T{sub s} plays important roles in the incorporation of substitutional C and in restraining C-cluster formation in the reactive pulsed laser deposition growth of Ge-C/Si.

  18. Reactive pulsed laser deposition of Cu2ZnSnS4 thin films in H2S

    International Nuclear Information System (INIS)

    Surgina, G.D.; Zenkevich, A.V.; Sipaylo, I.P.; Nevolin, V.N.; Drube, W.; Teterin, P.E.; Minnekaev, M.N.

    2013-01-01

    Cu 2 ZnSnS 4 (CZTS) thin films have been grown by reactive pulsed laser deposition in H 2 S atmosphere, combining the alternate ablation from the metallic (Cu) and alloyed (Zn x Sn) targets at room temperature. The morphological, structural and optical properties of as grown CZTS thin films with varying compositions as well as upon annealing in N 2 atmosphere are investigated by Rutherford backscattering spectrometry, X-ray diffraction, Raman spectroscopy and optical spectrophotometry. The chemical bonding in the “bulk” of the CZTS films is elucidated via hard X-ray photoemission spectroscopy measurements. The formation of the good quality stoichiometric polycrystalline CZTS films is demonstrated upon optimization of the growth parameters. - Highlights: ► The new method of Cu 2 ZnSnS 4 (CZTS) thin films growth in H 2 S was realized. ► CZTS films were grown by pulsed laser deposition from Cu and alloyed Zn–Sn targets. ► The effect of the processing parameters on the CZTS properties was investigated. ► The chemical bonding in the “bulk” of CZTS films was studied

  19. Structural characterization of ultrathin Cr-doped ITO layers deposited by double-target pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Cesaria, Maura; Caricato, Anna Paola; Leggieri, Gilberto; Luches, Armando; Martino, Maurizio; Maruccio, Giuseppe [Physics Department, University of Salento, Via Arnesano, 73100 Lecce (Italy); Catalano, Massimo; Manera, Maria Grazia; Rella, Roberto; Taurino, Antonietta, E-mail: antonietta.taurino@le.imm.cnr.it [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, 73100 Lecce (Italy)

    2011-09-14

    In this paper we report on the growth and structural characterization of very thin (20 nm) Cr-doped ITO films, deposited at room temperature by double-target pulsed laser ablation on amorphous silica substrates. The role of Cr atoms in the ITO matrix is carefully investigated with increasing doping content by transmission electron microscopy (TEM). Selected-area electron diffraction, conventional bright field and dark field as well as high-resolution TEM analyses, and energy dispersive x-ray spectroscopy demonstrate that (i) crystallization features occur despite the low growth temperature and small thickness, (ii) no chromium or chromium oxide secondary phases are detectable, regardless of the film doping levels, (iii) the films crystallize as crystalline flakes forming large-angle grain boundaries; (iv) the observed flakes consist of crystalline planes with local bending of the crystal lattice. Thickness and compositional information about the films are obtained by Rutherford back-scattering spectrometry. Results are discussed by considering the combined effects of growth temperature, smaller ionic radius of the Cr cation compared with the trivalent In ion, doping level, film thickness, the double-target doping technique and peculiarities of the pulsed laser deposition method.

  20. The growth of nanostructured Cu{sub 2}ZnSnS{sub 4} films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Che Sulaiman, Nurul Suhada; Nee, Chen Hon [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Ling [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Lee, Yen Sian [UM Power Energy Dedicated Advanced Centre (UMPEDAC), University of Malaya, 50603 Kuala Lumpur (Malaysia); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Shan, E-mail: seongshan@gmail.com [UM Power Energy Dedicated Advanced Centre (UMPEDAC), University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-11-01

    Highlights: • Nanostructured CZTS films were grown at room temperature by using 355 nm laser. • CZTS films with E{sub g} of 1.9 eV have been obtained at 2 J cm{sup −2} at room temperature. • At high fluence, Cu/Sn rich droplets affected the overall quality of the films. • Improved crystallinity and E{sub g} of 1.5 eV was obtained at substrate temperature as low as 100 °C. - Abstract: In this work, we investigated on the growth of Cu{sub 2}ZnSnS{sub 4} films by using pulsed Nd:YAG laser (355 nm) ablation of a quaternary Cu{sub 2}ZnSnS{sub 4} target. Depositions were performed at laser fluence from 0.5 to 4 J cm{sup −2}. The films were grown at substrate temperature from 27 °C to 300 °C onto glass and silicon substrates. The dependence of the film morphology, composition, and optical properties are studied and discussed with respect to laser fluence and substrate temperature. Composition analysis from energy dispersive X-ray spectral results show that CZTS films with composition near stoichiometric were obtained at an optimized fluence at 2 J cm{sup −2} by 355 nm laser where the absorption coefficient is >10{sup 4} cm{sup −1}, and optical band gap from a Tauc plot was ∼1.9 eV. At high fluence, Cu and Sn rich droplets were detected which affect the overall quality of the films. The presence of the droplets was associated to the high degree of preferential and subsurface melting on the target during high fluence laser ablation. Crystallinity and optical band gap (1.5 eV) were improved when deposition was performed at substrate temperature of 100 °C.

  1. Bonding structure and mechanical properties of B-C-N thin films synthesized by pulsed laser deposition at different laser fluences

    International Nuclear Information System (INIS)

    Wang, C.B.; Xiao, J.L.; Shen, Q.; Zhang, L.M.

    2016-01-01

    Boron carbon nitride (B-C-N) thin films have been grown by pulsed laser deposition under different laser fluences changing from 1.0 to 3.0 J/cm"2. The influence of laser fluence on microstructure, bonding structure, and mechanical properties of the films was studied, so as to explore the possibility of improving their mechanical properties by controlling bonding structure. The bonding structure identified by FT-IR and XPS indicated the coexistence of B-N, B-C, N-C and N=C bonds in the films, suggesting the formation of a ternary B-C-N hybridization. There is a clear evolution of bonding structure in the B-C-N films with the increasing of laser fluence. The variation of the mechanical properties as a function of laser fluence was also in accordance with the evolution of B-C and sp"3 N-C bonds whereas contrary to that of sp"2 B-N and N=C bonds. The hardness and modulus reached the maximum value of 33.7 GPa and 256 GPa, respectively, at a laser fluence of 3.0 J/cm"2, where the B-C-N thin films synthesized by pulsed laser deposition possessed the highest intensity of B-C and N-C bonds and the lowest fraction of B-N and N=C bonds. - Highlights: • Improvement of mechanical property by controlling bonding structure is explored. • A clear evolution of bonding structure with the increasing of laser fluence • Variation of property is in accordance with the evolution of B−C and N−C bonds.

  2. Nanoparticle and nanorod films deposited by matrix assisted pulsed laser evaporation

    Science.gov (United States)

    Caricato, A. P.; Cesaria, M.; Luches, A.; Martino, M.

    2012-07-01

    The promising results obtained with the MAPLE-deposition of nanostructured thin films, to be used in different fields, are reviewed. Nanoparticles (TiO2, SnO2, CdS) and nanorods (TiO2) with well defined dimensions were suspended in appropriate solvents (distilled water, toluene) with low concentration (1wt% or less). The solutions were flash frozen at the liquid nitrogen temperature to form the targets to be laser irradiated. The MAPLE process allowed a successful transfer from the target to rough and flat substrates, preserving the starting composition and crystalline phase of the nanostructures in a wide range of experimental conditions. In contrast, a careful choice of the laser fluence is mandatory to avoid shape modifications. Growth of metal nanoparticles with a low dispersion in size was also obtained by the MAPLE technique, starting from target solutions of a metallorganic element (AcPd) diluted in different solvents (acetone, diethyl ether). It seems that selecting the solvent with appropriate values of viscosity and boiling temperatures, it is possible to modulate the nanoparticles size. Most of the deposited nanostructured films were tested as sensing elements for gas sensors.

  3. Inorganic nanocomposite films with polymer nanofillers made by the concurrent multi-beam multi-target pulsed laser deposition

    Science.gov (United States)

    Darwish, Abdalla M.; Sarkisov, Sergey S.; Mele, Paolo; Saini, Shrikant; Moore, Shaelynn; Bastian, Tyler; Dorlus, Wydglif; Zhang, Xiaodong; Koplitz, Brent

    2017-08-01

    We report on the new class of inorganic nanocomposite films with the inorganic phase hosting the polymer nanofillers made by the concurrent multi-beam multi-target pulsed laser deposition of the inorganic target material and matrix assisted pulsed laser evaporation of the polymer (MBMT-PLD/MAPLE). We used the exemplary nanocomposite thermoelectric films of aluminum-doped ZnO known as AZO with the nanofillers made of poly(methyl methacrylate) known as PMMA on various substrates such as SrTiO3, sapphire, fused silica, and polyimide. The AZO target was ablated with the second harmonic (532 nm) of the Nd:YAG Q-switched laser while PMMA was evaporated from its solution in chlorobenzene frozen in liquid nitrogen with the fundamental harmonic (1064 nm) of the same laser (50 Hz pulse repetition rate). The introduction of the polymer nanofillers increased the electrical conductivity of the nanocomposite films (possibly due to the carbonization of PMMA and the creation of additional channels of electric current) three times and reduced the thermal conductivity by 1.25 times as compared to the pure AZO films. Accordingly, the increase of the thermoelectric figure-of merit ZT would be 4 times. The best performance was observed for the sapphire substrates where the films were the most uniform. The results point to a huge potential of the optimization of a broad variety of optical, opto-electronic, and solar-power nanocomposite inorganic films by the controllable introduction of the polymer nanofillers using the MBMT-PLD/MAPLE method.

  4. Hydroxyapatite thin films synthesized by pulsed laser deposition and magnetron sputtering on PMMA substrates for medical applications

    International Nuclear Information System (INIS)

    Socol, G.; Macovei, A.M.; Miroiu, F.; Stefan, N.; Duta, L.; Dorcioman, G.; Mihailescu, I.N.; Petrescu, S.M.; Stan, G.E.; Marcov, D.A.; Chiriac, A.; Poeata, I.

    2010-01-01

    Functionalized implants represent an advanced approaching in implantology, aiming to improve the biointegration and the long-term success of surgical procedures. We report on the synthesis of hydroxyapatite (HA) thin films on polymethylmetacrylate (PMMA) substrates - used as cranio-spinal implant-type structures - by two alternative methods: pulsed laser deposition (PLD) and radio-frequency magnetron sputtering (MS). The deposition parameters were optimized in order to avoid the substrate overheating. Stoichiometric HA structures were obtained by PLD with incident laser fluences of 1.4-2.75 J/cm 2 , pressures of 30-46.66 Pa and 10 Hz pulses repetition rate. The MS depositions were performed at constant pressure of 0.3 Pa in inert and reactive atmospheres. SEM-EDS, XRD, FTIR and pull-out measurements were performed assessing the apatitic-type structure of the prepared films along with their satisfactory mechanical adhesion. Cell viability, proliferation and adhesion tests in osteosarcoma SaOs2 cell cultures were performed to validate the bioactive behaviour of the structures and to select the most favourable deposition regimes. For PLD, this requires a low fluence of 1.4 J/cm 2 , reduced pressure of water vapours and a 100 o C/4 h thermal treatment. For MS, the best results were obtained for 80% Ar + 20% O 2 reactive atmosphere at low RF power (∼75 W). Cells grown on these coatings exhibit behaviour similar to those grown on the standard borosilicate glass control: increased viability, good proliferation, and optimal cell adhesion. In vitro tests proved that HA/PMMA neurosurgical structures prepared by PLD and MS are compatible for the interaction with human bone cells.

  5. Properties of CoSb{sub 3} films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Christen, H M; Mandrus, D G; Norton, D P; Boatner, L A; Sales, B C

    1997-07-01

    Polycrystalline CoSb{sub 3} films were grown on a variety of electrically insulating substrates by pulsed laser ablation from a stoichiometric hot-pressed target. These films are fully crystallized in the skutterudite structure, and the grains exhibit a strongly preferred alignment of the cubic [310]-axis perpendicular to the substrate surface. The film quality is studied for different single-crystal substrates and as a function of growth temperature and background gas. Hall measurements show that the films are p-type semiconducting with a room-temperature carrier density of 3 x 10{sup 20} holes/cm{sup 3}. The Hall mobility is found to be 50 to 60 cm{sup 2}/Vs, which is high for such a heavily-doped material. The Seebeck coefficient and the resistivity are measured as a function of temperature and are compared to bulk measurements.

  6. Catalytic Activity of Silicon Nanowires Decorated with Gold and Copper Nanoparticles Deposited by Pulsed Laser Ablation

    Directory of Open Access Journals (Sweden)

    Michele Casiello

    2018-01-01

    Full Text Available Silicon nanowires (SiNWs decorated by pulsed laser ablation with gold or copper nanoparticles (labeled as AuNPs@SiNWs and CuNPs@SiNWs were investigated for their catalytic properties. Results demonstrated high catalytic performances in the Caryl–N couplings and subsequent carbonylations for gold and copper catalysts, respectively, that have no precedents in the literature. The excellent activity, attested by the very high turn over number (TON values, was due both to the uniform coverage along the NW length and to the absence of the chemical shell surrounding the metal nanoparticles (MeNPs. A high recyclability was also observed and can be ascribed to the strong covalent interaction at the Me–Si interface by virtue of metal “silicides” formation.

  7. Pulsed-laser-deposited, single-crystalline Cu2O films with low resistivity achieved through manipulating the oxygen pressure

    Science.gov (United States)

    Liu, Xiaohui; Xu, Meng; Zhang, Xijian; Wang, Weiguang; Feng, Xianjin; Song, Aimin

    2018-03-01

    Low-resistivity, single-crystalline Cu2O films were realized on MgO (110) substrates through manipulating the oxygen pressure (PO2) of pulsed-laser deposition. X-ray diffraction and high resolution transmission electron microscopy measurements revealed that the films deposited at PO2 of 0.06 and 0.09 Pa were single phase Cu2O and the 0.09-Pa-deposited film exhibited the best crystallinity with an epitaxial relationship of Cu2O (110)∥MgO (110) with Cu2O (001)∥MgO (001). The pure phase Cu2O films exhibited higher transmittances and larger band gaps with an optical band gap of 2.56 eV obtained for the 0.09 Pa-deposited film. Hall-effect measurements demonstrated that the Cu2O film deposited at 0.09 Pa had the lowest resistivity of 6.67 Ω cm and highest Hall mobility of 23.75 cm2 v-1 s-1.

  8. Influences of ambient gases on the structure and the composition of calcium phosphate films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Lee; Kim, Young-Sun; Kim, Dae-Joon; Lee, Won-Jun [Sejong University, Seoul (Korea, Republic of); Han, Jung-Suk [Seoul National University, Seoul (Korea, Republic of)

    2006-11-15

    Calcium phosphate films were prepared by using a pulsed KrF-laser deposition (PLD) method with a hydroxyapatite target in various ambient gases, such as Ar, O{sub 2} and H{sub 2}O. The influence of the ambient gas on the properties of the deposited films was investigated. The chamber pressure and the substrate temperature were fixed at 0.25 Torr and 600 .deg. C, respectively. Calcium-rich amorphous calcium phosphate films were deposited with a low density in Ar due to the preferential resputtering of phosphorus from the growing film. In an O{sub 2} ambient, the density and the Ca/P ratio of the films were similar to those of the target. However, the deposited film was amorphous calcium phosphate and did not contain OH{sup -} groups. Polycrystalline hydroxyapatite films can be deposited in a H{sub 2}O ambient because a sufficient supply of OH{sup -} groups from the ambient gas is essential for the growth of a hydroxyapatite film.

  9. Structural transformations in MoOx thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Camacho-Lopez, M.A.; Haro-Poniatowski, E.; Escobar-Alarcon, L.

    2004-01-01

    In this work, laser-induced crystallization in MoO x thin films (1.8≤x≤2.1) is reported. This transformation involves a MoO x oxidation and subsequently a crystallization process from amorphous MoO 3 to crystalline αMoO 3 . For comparison purposes crystallization is induced thermally, in an oven, as well. The crystallization kinetics is monitored by Raman spectroscopy; a threshold in the energy density necessary to induce the phase transformation is determined in the case of photo-crystallization. This threshold depends on the type of substrate on which the film is deposited. For the thin films deposited on glass substrates, the structural transformation is from amorphous MoO x to the thermodynamically stable αMoO 3 crystalline phase. For the thin films deposited on Si(100) the structural transformation is from amorphous MoO x to a mixture of αMoO 3 and the thermodynamically unstable βMoO 3 crystalline phases. The structural transformations are also characterized by scanning electron microscopy and light-transmission experiments. (orig.)

  10. Structural transformations in MoO{sub x} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, M.A.; Haro-Poniatowski, E. [Departamento de Fisica, Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, 09340, Mexico D. F. (Mexico); Escobar-Alarcon, L. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, 11801, Mexico D. F. (Mexico)

    2004-01-01

    In this work, laser-induced crystallization in MoO{sub x} thin films (1.8{<=}x{<=}2.1) is reported. This transformation involves a MoO{sub x} oxidation and subsequently a crystallization process from amorphous MoO{sub 3} to crystalline {alpha}MoO{sub 3}. For comparison purposes crystallization is induced thermally, in an oven, as well. The crystallization kinetics is monitored by Raman spectroscopy; a threshold in the energy density necessary to induce the phase transformation is determined in the case of photo-crystallization. This threshold depends on the type of substrate on which the film is deposited. For the thin films deposited on glass substrates, the structural transformation is from amorphous MoO{sub x} to the thermodynamically stable {alpha}MoO{sub 3} crystalline phase. For the thin films deposited on Si(100) the structural transformation is from amorphous MoO{sub x} to a mixture of {alpha}MoO{sub 3} and the thermodynamically unstable {beta}MoO{sub 3} crystalline phases. The structural transformations are also characterized by scanning electron microscopy and light-transmission experiments. (orig.)

  11. Eu{sup 3+} activated GaN thin films grown on sapphire by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Perea-Lopez, Nestor; Tao, Jonathan H. [Materials Science and Engineering Program, University of California at San Diego, La Jolla, CA 92093 (United States); McKittrick, Joanna [Materials Science and Engineering Program, University of California at San Diego, La Jolla, CA 92093 (United States); Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Talbot, Jan B. [Materials Science and Engineering Program, University of California at San Diego, La Jolla, CA 92093 (United States); Department of Nanoengineering, University of California at San Diego, La Jolla, CA 92093 (United States); Raukas, M.; Laski, J.; Mishra, K.C. [OSRAM SYLVANIA Central Research, Beverly, MA 01915-1068 (United States); Hirata, Gustavo [CCMC-UNAM, Km. 107 Carretera Tijuana-Ensenada, C. P. 22800 Ensenada Baja California (Mexico)

    2008-07-01

    By means of pulsed laser deposition, polycrystalline thin films of GaN doped with Eu{sup 3+} were grown on sapphire. The PLD target was formed in three steps. First, stoichiometric amounts of Ga{sub 2}O{sub 3} and Eu{sub 2}O{sub 3} were dissolved in nitric acid, which produces Ga{sub (1-x)}Eu{sub x} (NO{sub 3}){sub 3}. Next, the nitrates were oxidized in a tubular furnace with O{sub 2} flow forming Ga{sub 2(1-x)}Eu{sub 2x}O{sub 3}. Finally, the oxide powder was flushed with anhydrous ammonia to produce the desired nitride product: Ga{sub (1-x)}Eu{sub x}N. Film growth was done in a stainless steel vacuum chamber partially filled with N{sub 2} (400 mTorr). For the deposit, the 3{sup rd} harmonic of a Nd:YAG laser ({lambda}=355 nm) was focused on the surface of the target. After deposition, annealing in NH{sub 3} was required to produce films with pure GaN hexagonal phase. The luminescence of the film was characterized by photo- and cathodoluminescence. In addition, the chemical and structural properties were analyzed by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Direct measurement of burn up monitor by Pulsed Laser Deposition (PLD) followed by Isotopic Dilution Mass Spectrometry

    International Nuclear Information System (INIS)

    Sajimol, R.; Manoravi, P.; NaIini, S.; Balasubramanian, R.; Joseph, M.

    2012-01-01

    Burn-up measurement is an important aspect in the assessment of fuel performance especially for experimental nuclear fuels. Conventional mass spectrometric technique offer the best accuracy for determination of burn-up but they suffer from the labour intensive and time consuming chemical separation procedures followed by mass spectrometric analysis. Our laboratory has reported a potential laser mass spectrometric technique with advantages of (i) direct and fast measurement of ion intensities of selected rare earth element and residual heavy element atoms to deduce burn up and (ii) adaptability to remote handling of radioactive samples. Direct quantification of burn up monitor element in fuel in the form of pellet as well as liquid was probed by pulsed laser deposition followed by Isotopic Dilution Mass Spectrometric technique (IDMS). The procedure involving laser ablation of heavy element (namely U and Pu) and fission product (Nd, La etc) from a simulated spent fuel matrix followed by isotopic dilution mass spectrometry using thermal ionization mass spectrometry (TIMS) has been presently attempted to arrive at the rare earth element to heavy element ratio to deduce burn up using the methodology described in our earlier work. The details of IDMS technique has been reviewed by Heumann et al. Accurately weighed amounts of major rare earth fission products such as Nd, La, Ce and Sm in solution form were mixed with known quantity of uranium solution (all the weights are corresponding to their fission yields and the residual heavy element atoms after a given burn up) and mixed together to attain uniformity. The solution is then dried and resulting powder was pelletized and sintered. Subsequently, the pellet was ablated with pulsed laser (8 ns, 532 nm, Nd-YAG) and the plume was deposited on a glass plate. This deposit was dissolved in minimum amount of nitric acid. A known volume of the solution was mixed with spike (for e.g., 150 Nd/ 142 Nd, 233 U/ 238 U in this study

  13. Growth and characterization of ternary Ni, Mg–Al and Ni–Al layered double hydroxides thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Matei, A.; Ion, V.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Zavoianu, R. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania)

    2016-09-01

    Layered double hydroxides (LDHs) are a class of layered materials consisting of positively charged brucite-like layers and exchangeable interlayer anions. Layered double hydroxides containing a transition metal which undergoes a reversible redox reaction in the useful potential range have been proposed as electrode coating materials due to their properties of charge transport and redox catalysts in basic solutions. Ni–Al,(Ni,Mg)–Al and, as reference, non-electronically conductive Mg–Al double hydroxides thin films were obtained via pulsed laser deposition technique. The thin films were deposited on different substrates (Si, glass) by using a Nd:YAG laser (1064 nm) working at a repetition rate of 10 Hz. X-ray diffraction, Atomic Force Microscopy, Energy Dispersive X-ray spectroscopy, Fourier Transform Infra-Red Spectroscopy, Secondary Ions Mass Spectrometry, Impedance Analyzer and ellipsometry were the techniques used for the as deposited thin films investigation. The optical properties of Ni based LDH thin films and the effect of the Ni amount on the structural, morphological and optical response are evidenced. The optical band gap values, covering a domain between 3.84 eV and 4.38 eV, respond to the Ni overall concentration: the higher Ni amount the lower the band gap value. - Highlights: • Ternary Ni, Mg–Al and Ni–Al layered double hydroxides thin films were deposited. • The effect of the nickel is evidenced. • The possibility to tailor the materials accompanied by an optical response is shown.

  14. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  15. Experimental and numerical study of the chemical composition of WSex thin films obtained by pulsed laser deposition in vacuum and in a buffer gas atmosphere

    International Nuclear Information System (INIS)

    Grigoriev, S.N.; Fominski, V.Yu.; Gnedovets, A.G.; Romanov, R.I.

    2012-01-01

    WSe x thin films were obtained by pulsed laser deposition in vacuum and at various Ar gas pressures up to 10 Pa. Stoichiometry and chemical state of the WSe x films were studied by means of Rutherford backscattering spectrometry and X-ray photoelectron spectroscopy. In the case of pulsed laser deposition of WSe x films in vacuum the value of stoichiometric coefficient x was 1.3. During the deposition in argon at pressures of 2-10 Pa the value of x varied from 1.5 to 2.2. To explain the influence of the buffer gas, a model was used that takes into account the following processes: (1) congruent pulsed laser evaporation of the WSe 2.2 target; (2) scattering of laser-evaporated W and Se atoms in Ar; (3) sputtering of the deposited film by high-energy atoms from the laser plume. Experimentally, the velocity distributions of laser-evaporated W and Se atoms in vacuum were determined by the time-of-flight measurements. Collision Monte Carlo simulations were used to quantify the impact of the buffer gas on the energy and the incidence angle distributions of the deposited W and Se atoms. Model distributions were used to determine the chemical composition of the WSe x films, depending on the efficiency of the preferential sputtering of Se atoms.

  16. Pulsed laser deposition of piezoelectric lead zirconate titanate thin films maintaining a post-CMOS compatible thermal budget

    Science.gov (United States)

    Schatz, A.; Pantel, D.; Hanemann, T.

    2017-09-01

    Integration of lead zirconate titanate (Pb[Zrx,Ti1-x]O3 - PZT) thin films on complementary metal-oxide semiconductor substrates (CMOS) is difficult due to the usually high crystallization temperature of the piezoelectric perovskite PZT phase, which harms the CMOS circuits. In this work, a wafer-scale pulsed laser deposition tool was used to grow 1 μm thick PZT thin films on 150 mm diameter silicon wafers. Three different routes towards a post-CMOS compatible deposition process were investigated, maintaining a post-CMOS compatible thermal budget limit of 445 °C for 1 h (or 420 °C for 6 h). By crystallizing the perovskite LaNiO3 seed layer at 445 °C, the PZT deposition temperature can be lowered to below 400 °C, yielding a transverse piezoelectric coefficient e31,f of -9.3 C/m2. With the same procedure, applying a slightly higher PZT deposition temperature of 420 °C, an e31,f of -10.3 C/m2 can be reached. The low leakage current density of below 3 × 10-6 A/cm2 at 200 kV/cm allows for application of the post-CMOS compatible PZT thin films in low power micro-electro-mechanical-systems actuators.

  17. Preparation and characterization of Ge2Sb2Te5 phase change films on elastic substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbing; Thelander, Erik; Benke, Julia; Rauschenbach, Bernd [Leibniz Institute of Surface Modification, 04318 Leipzig (Germany)

    2012-07-01

    Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) thin films have attracted a great deal of interest as an active layer for data storage media due to its high switching rate and extremely good reversibility. Here we demonstrate the preparation of high-quality GST films on elastic polyimide substrates by pulsed laser deposition (PLD). The composition and chemical state of the films were investigated by energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS), respectively. The effect of annealing temperature on the crystalline nature of the films was also studied. As-deposited films were found to be amorphous. Crystalline phases with face-centered cubic and hexagonal structures appeared at 180 and 300 degrees, respectively. Importantly, no phase separation could be seen in the annealed films. Furthermore, reflectivity measurements were performed to characterize the as-deposited and annealed films, showing a high reflectivity contrast (up to 23%) between full crystalline and amorphous films. Our results indicate that PLD deposited GST film on polyimide substrate is a promising candidate for use in future flexible memory devices.

  18. As-grown enhancement of spinodal decomposition in spinel cobalt ferrite thin films by Dynamic Aurora pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Nipa [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Physics, Jagannath University, Dhaka 1100 (Bangladesh); Kawaguchi, Takahiko; Kumasaka, Wataru [Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Das, Harinarayan [Materials Science Division, Atomic Energy Centre, Dhaka 1000 (Bangladesh); Shinozaki, Kazuo [School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Sakamoto, Naonori [Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan); Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan); Wakiya, Naoki, E-mail: wakiya.naoki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2017-06-15

    Highlights: • As-grown enhancement of spinodal decomposition (SD) in Co{sub x}Fe{sub 3−x}O{sub 4} film is observed. • Magnetic-field-induced ion-impingement enhances SD without any post-annealing. • The enhancement of SD is independent of the lattice-mismatch-induced strain. • This approach can promote SD in any thin film without post-deposition annealing. - Abstract: Cobalt ferrite Co{sub x}Fe{sub 3−x}O{sub 4} thin films with composition within the miscibility gap were grown using Dynamic Aurora pulsed laser deposition. X-ray diffraction patterns reveal as-grown phase separation to Fe-rich and Co-rich phases with no post-deposition annealing. The interconnected surface microstructure of thin film shows that this phase separation occurs through spinodal decomposition enhanced by magnetic-field-induced ion-impingement. The lattice parameter variation of the thin films with the magnetic field indicates that the composition fluctuations can be enhanced further by increasing the magnetic field. Results show that spinodal decomposition enhancement by magnetic-field-induced ion-impingement is independent of the lattice-mismatch-induced strain. This approach can promote spinodal decomposition in any thin film with no post-deposition annealing process.

  19. Study of temperature dependence and angular distribution of poly(9,9-dioctylfluorene) polymer films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    International Nuclear Information System (INIS)

    Caricato, A.P.; Anni, M.; Manera, M.G.; Martino, M.; Rella, R.; Romano, F.; Tunno, T.; Valerini, D.

    2009-01-01

    Poly(9,9-dioctylfluorene) (PFO) polymer films were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique. The polymer was diluted (0.5 wt%) in tetrahydrofuran and, once cooled to liquid nitrogen temperature, it was irradiated with a KrF excimer laser. 10,000 laser pulses were used to deposit PFO films on Si substrates at different temperatures (-16, 30, 50 and 70 deg. C). One PFO film was deposited with 16,000 laser pulses at a substrate temperature of 50 deg. C. The morphology, optical and structural properties of the films were investigated by SEM, AFM, PL and FTIR spectroscopy. SEM inspection showed different characteristic features on the film surface, like deflated balloons, droplets and entangled polymer filaments. The roughness of the films was, at least partially, controlled by substrate heating, which however had the effect to reduce the deposition rate. The increase of the laser pulse number modified the target composition and increased the surface roughness. The angular distribution of the material ejected from the target confirmed the forward ejection of the target material. PFO films presented negligible modification of the chemical structure respect to the bulk material.

  20. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  1. Experimental study of Pulsed Laser Deposited Cu2ZnSnS 4 (CZTS) thin films for photovoltaic applications

    Science.gov (United States)

    Nandur, Abhishek S.

    Thin film solar cells are gaining momentum as a renewable energy source. Reduced material requirements (15 mum in total thickness) solar cells. Among the various thin film solar absorbers that have been proposed, CZTS (Cu2ZnSnS4) has become the subject of intense interest because of its optimal band gap (1.45 eV), high absorption coefficient (104 cm--1 ) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since films are deposited under high vacuum with excellent stoichiometry transfer from the target. Defect-free, near-stoichiometric poly-crystalline CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of fabrication parameters such as laser energy density, deposition time, substrate temperature and sulfurization (annealing in sulfur) on the surface morphology, composition and optical absorption of the CZTS thin films were examined. The results show that the presence of secondary phases, present both in the bulk and on the surface, affected the electrical and optical properties of the CZTS thin films and the CZTS based TFSCs. After selectively etching away the secondary phases with DIW, HCl and KCN, it was observed that their removal improved the performance of CZTS based TFSCs. Optimal CZTS thin films exhibited an optical band gap of 1.54 eV with an absorption coefficient of 4x10 4cm-1 with a low volume of secondary phases. A TFSC fabricated with the best CZTS thin film obtained from the experimental study done in this thesis showed a conversion efficiency of 6.41% with Voc = 530 mV, Jsc= 27.5 mA/cm2 and a fill factor of 0.44.

  2. Advantageous use of metallic cobalt in the target for pulsed laser deposition of cobalt-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Minju, E-mail: mjying@bnu.edu.cn, E-mail: g.gehring@sheffield.ac.uk [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Blythe, Harry J.; Gerriu, Fatma M.; Fox, A. Mark; Gehring, Gillian A., E-mail: mjying@bnu.edu.cn, E-mail: g.gehring@sheffield.ac.uk [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Dizayee, Wala [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Department of Science, Salahaddin University, Erbil (Iraq); Heald, Steve M. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-08-15

    We investigate the magnetic properties of ZnCoO thin films grown by pulsed laser deposition (PLD) from targets made containing metallic Co or CoO precursors instead of the usual Co{sub 3}O{sub 4}. We find that the films grown from metallic Co precursors in an oxygen rich environment contain negligible amounts of Co metal and have a large magnetization at room temperature. Structural analysis by X-ray diffraction and magneto-optical measurements indicate that the enhanced magnetism is due, in part, from Zn vacancies that partially compensate the naturally occurring n-type defects. We conclude that strongly magnetic films of Zn{sub 0.95}Co{sub 0.05}O that do not contain metallic cobalt can be grown by PLD from Co-metal-precursor targets if the films are grown in an oxygen atmosphere.

  3. Growth and Characterisation of Pulsed-Laser Deposited Tin Thin Films on Cube-Textured Copper at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Szwachta G.

    2016-06-01

    Full Text Available High-quality titanium nitride thin films have been grown on a cube-textured copper surface via pulsed laser deposition. The growth of TiN thin films has been very sensitive to pre-treatment procedure and substrate temperature. It is difficult to grow heteroexpitaxial TiN films directly on copper tape due to large differences in lattice constants, thermal expansion coefficients of the two materials as well as polycrystalline structure of substrate. The X-Ray diffraction measurement revealed presence of high peaks belonged to TiN(200 and TiN(111 thin films, depending on used etcher of copper surface. The electron diffraction patterns of TiN(200/Cu films confirmed the single-crystal nature of the films with cube-on-cube epitaxy. The high-resolution microscopy on our films revealed sharp interfaces between copper and titanium nitride with no presence of interfacial reaction.

  4. Pulsed laser deposition and thermoelectric properties of In-and Yb-doped CoSb3 skutterudite thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2011-07-29

    In-and Yb-doped CoSb3 thin films were prepared by pulsed laser deposition. Process optimization studies revealed that a very narrow process window exists for the growth of single-phase skutterudite films. The electrical conductivity and Seebeck coefficient measured in the temperature range 300-700 K revealed an irreversible change on the first heating cycle in argon ambient, which is attributed to the enhanced surface roughness of the films or trace secondary phases. A power factor of 0.68 W m-1 K-1 was obtained at ∼700 K, which is nearly six times lower than that of bulk samples. This difference is attributed to grain boundary scattering that causes a drop in film conductivity. Copyright © Materials Research Society 2011.

  5. Growth and properties of SrBi2TaNbO9 ferroelectric thin films using pulsed laser deposition

    International Nuclear Information System (INIS)

    Yang Pingxiong; Deng Hongmei; Shi Meirong; Tong Ziyang; Qin Sumei

    2007-01-01

    High quality SrBi 2 TaNbO 9 (SBTN) ferroelectric thin films were fabricated on platinized silicon by pulsed laser deposition. Microstructure and ferroelectric properties of the films were characterized. Optical fatigue (light/bias) for the thin films was studied and the average remanent polarization dropped by nearly 55% due to the bias/illumination treatment. Optical properties of the thin films were studied by spectroscopic ellipsometry (SE) from the ultraviolet to the infrared region. Optical constants, n ∼ 0.16 in the infrared region and n ∼ 2.12 in the visible spectral region, were determined through refractive index functions. The band gap energy is estimated to be 3.93 eV

  6. Channel layer thickness dependence of In-Ti-Zn-O thin-film transistors fabricated using pulsed laser deposition

    International Nuclear Information System (INIS)

    Zhang, Q.; Shan, F. K.; Liu, G. X.; Liu, A.; Lee, W. J.; Shin, B. C.

    2014-01-01

    Amorphous indium-titanium-zinc-oxide (ITZO) thin-film transistors (TFTs) with various channel thicknesses were fabricated at room temperature by using pulsed laser deposition. The channel layer thickness (CLT) dependence of the TFTs was investigated. All the ITZO thin films were amorphous, and the surface roughnesses decreased slightly first and then increased with increasing CLT. With increasing CLT from 35 to 140 nm, the on/off current ratio and the field-effect mobility increased, and the subthreshold swing decreased. The TFT with a CLT of 210 nm exhibited the worst performance, while the ITZO TFT with a CLT of 140 nm exhibited the best performance with a subthreshold voltage of 2.86 V, a mobility of 53.9 cm 2 V -1 s -1 , a subthreshold swing of 0.29 V/decade and an on/off current ratio of 10 9 .

  7. Structural and magnetic properties in Mn-doped ZnO films prepared by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Li, Qiang; Wang, Yuyin; Liu, Jiandang; Kong, Wei; Ye, Bangjiao

    2014-01-01

    We investigated the structural and magnetic properties of Zn 0.95 Mn 0.05 O films prepared on sapphire substrates by pulsed-laser deposition. Only low temperature ferromagnetism (Curie temperature lower than 50 K) was observed in Mn-doped samples, while pure ZnO film shows a typical paramagnetic behavior. Structural analyses indicate that the substitutional Mn 2+ ions play a significant role for the low temperature ferromagnetism. Lattice defects such as V O and V Zn were not proven to be effective factors for the origin of ferromagnetism in the films. The low temperature ferromagnetism might be interpreted as p–d hybridization from indirect coupling of Mn ions (Mn–O–Mn).

  8. Multifractal spectra of scanning electron microscope images of SnO2 thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Chen, Z.W.; Lai, J.K.L.; Shek, C.H.

    2005-01-01

    The concept of fractal geometry has proved useful in describing structures and processes in experimental systems. In this Letter, the surface topographies of SnO 2 thin films prepared by pulsed laser deposition for various substrate temperatures were measured by scanning electron microscope (SEM). Multifractal spectra f(α) show that the higher the substrate temperature, the wider the spectrum, and the larger the Δf(Δf=f(α min )-f(α max )). It is apparent that the nonuniformity of the height distribution increases with the increasing substrate temperature, and the liquid droplets of SnO 2 thin films are formed on previous thin films. These results show that the SEM images can be characterized by the multifractal spectra

  9. Positive magnetoresistance in ferromagnetic Nd-doped In2O3 thin films grown by pulse laser deposition

    KAUST Repository

    Xing, G. Z.

    2014-05-23

    We report the magnetic and magnetotransport properties of (In 0.985Nd0.015)2O2.89 thin films grown by pulse laser deposition. The clear magnetization hysteresis loops with the complementary magnetic domain structure reveal the intrinsic room temperature ferromagnetism in the as-prepared films. The strong sp-f exchange interaction as a result of the rare earth doping is discussed as the origin of the magnetotransport behaviours. A positive magnetoresistance (∼29.2%) was observed at 5 K and ascribed to the strong ferromagnetic sp-f exchange interaction in (In0.985Nd0.015)2O 2.89 thin films due to a large Zeeman splitting in an external magnetic field of 50 KOe. © 2014 AIP Publishing LLC.

  10. Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization

    Directory of Open Access Journals (Sweden)

    M. C. Onbasli

    2014-10-01

    Full Text Available Yttrium iron garnet (YIG, Y 3Fe5O12 films have been epitaxially grown on Gadolinium Gallium Garnet (GGG, Gd3Ga5O12 substrates with (100 orientation using pulsed laser deposition. The films were single-phase, epitaxial with the GGG substrate, and the root-mean-square surface roughness varied between 0.14 nm and 0.2 nm. Films with thicknesses ranging from 17 to 200 nm exhibited low coercivity (<2 Oe, near-bulk room temperature saturation moments (∼135 emu cm−3, in-plane easy axis, and damping parameters as low as 2.2 × 10−4. These high quality YIG thin films are useful in the investigation of the origins of novel magnetic phenomena and magnetization dynamics.

  11. Structural and magnetic properties of epitaxial delafossite CuFeO{sub 2} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Toyanath; Senty, Tess R.; Trappen, Robbyn; Zhou, Jinling; Borisov, Pavel; Holcomb, Mikel B.; Bristow, Alan D.; Lederman, David [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Chen, Song; Song, Xueyan [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6070 (United States); Ferrari, Piero; Cabrera, Alejandro L. [Pontificia Universidad Catolica, Instituto de Física, Santiago (Chile)

    2015-01-07

    Growth of pure phase delafossite CuFeO{sub 2} thin films on Al{sub 2}O{sub 3} (00.1) substrates by pulsed laser deposition was systematically investigated as a function of growth temperature and oxygen pressure. X-ray diffraction, transmission electron microscopy, Raman scattering, and x-ray absorption spectroscopy confirmed the existence of the delafossite phase. Infrared reflectivity spectra determined a band edge at 1.15 eV, in agreement with the bulk delafossite data. Magnetization measurements on CuFeO{sub 2} films demonstrated a phase transition at T{sub C} ≈ 15 ± 1 K, which agrees with the first antiferromagnetic transition at 14 K in the bulk CuFeO{sub 2}. Low temperature magnetic phase is best described by commensurate, weak ferromagnetic spin ordering along the c-axis.

  12. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    Directory of Open Access Journals (Sweden)

    Chih-Ping Yen

    2016-08-01

    Full Text Available The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP, and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE for application to dye-sensitized solar cell (DSSC is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  13. TiO2 nanoparticle thin film deposition by matrix assisted pulsed laser evaporation for sensing applications

    International Nuclear Information System (INIS)

    Caricato, A.P.; Capone, S.; Ciccarella, G.; Martino, M.; Rella, R.; Romano, F.; Spadavecchia, J.; Taurino, A.; Tunno, T.; Valerini, D.

    2007-01-01

    The MAPLE technique has been used for the deposition of nanostructured titania (TiO 2 ) nanoparticles thin films to be used for gas sensors applications. An aqueous solution of TiO 2 nanoparticles, synthesised by a novel chemical route, was frozen at liquid nitrogen temperature and irradiated with a pulsed ArF excimer laser in a vacuum chamber. A uniform distribution of TiO 2 nanoparticles with an average size of about 10 nm was deposited on Si and interdigitated Al 2 O 3 substrates as demonstrated by high resolution scanning electron microscopy-field emission gun inspection (SEM-FEG). Energy dispersive X-ray (EDX) analysis revealed the presence of only the titanium and oxygen signals and FTIR (Fourier transform infra-red) revealed the TiO 2 characteristic composition and bond. A comparison with a spin coated thin film obtained from the same solution of TiO 2 nanoparticles is reported. The sensing properties of the films deposited on interdigitated substrates were investigated, too

  14. Stoichiometry and characterization of aluminum oxynitride thin films grown by ion-beam-assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zabinski, J.S. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Hu, J.J. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)], E-mail: Jianjun.Hu@WPAFB.AF.MIL; Bultman, J.E. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Pierce, N.A. [Propulsion Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Voevodin, A.A. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)

    2008-07-31

    Oxides are inherently stable in air at elevated temperatures and may serve as wear resistant matrices for solid lubricants. Aluminum oxide is a particularly good candidate for a matrix because it has good diffusion barrier properties and modest hardness. Most thin film deposition techniques that are used to grow alumina require high temperatures to impart crystallinity. Crystalline films are about twice as hard as amorphous ones. Unfortunately, the mechanical properties of most engineering steels are degraded at temperatures above 250-350 deg. C. This work is focused on using energetic reactive ion bombardment during simultaneous pulsed laser deposition to enhance film crystallization at low temperatures. Alumina films were grown at several background gas pressures and temperatures, with and without Ar ion bombardment. The films were nearly stoichiometric except for depositions in vacuum. Using nitrogen ion bombardment, nitrogen was incorporated into the films and formed the Al-O-N matrix. Nitrogen concentration could be controlled through selection of gas pressure and ion energy. Crystalline Al-O-N films were grown at 330 deg. C with a negative bias voltage to the substrate, and showed improved hardness in comparison to amorphous films.

  15. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Chih-Ping [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Yu, Pin-Feng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China); Wang, Jyhpyng [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Taoyuan 320, Taiwan (China); Lin, Jiunn-Yuan [Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China); Chen, Yen-Mu [SuperbIN Co., Ltd., Taipei 114, Taiwan (China); Chen, Szu-yuan, E-mail: sychen@ltl.iams.sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Taoyuan 320, Taiwan (China)

    2016-08-15

    The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP), and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE) for application to dye-sensitized solar cell (DSSC) is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  16. Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Němec, P. [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Charrier, J. [FOTON, UMR CNRS 6082, Enssat, 6 rue de Kerampont, BP 80518, 22305 Lannion (France); Cathelinaud, M. [Missions des Ressources et Compétences Technologiques, UPS CNRS 2274, 92195 Meudon (France); Allix, M. [CEMHTI-CNRS, Site Haute Température, Orléans (France); Adam, J.-L.; Zhang, S. [Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France); Nazabal, V., E-mail: virginie.nazabal@univ-rennes1.fr [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France)

    2013-07-31

    Amorphous chalcogenide and alumino-silicate thin films were fabricated by the pulsed laser deposition technique. Prepared films were characterized in terms of their morphology, chemical composition, and optical properties. Multilayered thin film stacks for reflectors and vertical microcavities were designed for telecommunication wavelength and the window of atmosphere transparency (band II) at 1.54 μm and 4.65 μm, respectively. Bearing in mind the benefit coming from the opportunity of an efficient wavelength tuning or, conversely, to stabilize the photoinduced effects in chalcogenide films as well as to improve their mechanical properties and/or their chemical durability, several pairs of materials from pure chalcogenide layers to chalcogenide/oxide layers were investigated. Different layer stacks were fabricated in order to check the compatibility between dissimilar materials which can have a strong influence on the interface roughness, adhesion, density, and homogeneity, for instance. Three different reflector designs were formulated and tested including all-chalcogenide layers (As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70}) and mixed chalcogenide-oxide layers (As{sub 40}Se{sub 60}/alumino-silicate and Ga{sub 10}Ge{sub 15}Te{sub 75}/alumino-silicate). Prepared multilayers showed good compatibility between different material pairs deposited by laser ablation despite the diversity of chemical compositions. As{sub 40}Se{sub 60}/alumino-silicate reflector showed the best parameters; its stop band (R > 97% at 8° off-normal incidence) has a bandwidth of ∼ 100 nm and it is centered at 1490 nm. The quality of the different mirrors developed was good enough to try to obtain a microcavity structure for the 1.5 μm telecommunication wavelength made of chalcogenide layers. The microcavity structure consists of Ga{sub 5}Ge{sub 20}Sb{sub 10}S{sub 65} (doped with 5000 ppm of Er{sup 3+}) spacer surrounded by two 10-layer As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70

  17. Residual stress and Young's modulus of pulsed laser deposited PZT thin films: Effect of thin film composition and crystal direction of Si cantilevers

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Abelmann, Leon; Sardan Sukas, Ö.

    2016-01-01

    We investigated the residual stress and Young's modulus of Pb(ZrxTi1 - x)O3 (PZT) thin films with a (110) preferred orientation and a composition x ranging from 0.2 to 0.8. The films are grown by pulsed laser deposition on silicon cantilevers aligned along the <110> and <100> silicon crystal

  18. Particle growth mechanisms in Ag-ZrO2 and Au-ZrO2 granular films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Konstantinovic, Zorica; Muro, Montserrat Garcia del; Varela, Manuel; Batlle, Xavier; Labarta, AmIlcar

    2006-01-01

    Thin films consisting of Ag and Au nanoparticles embedded in amorphous ZrO 2 matrix were grown by pulsed laser deposition in a wide range of metal volume concentrations in the dielectric regime (0.08 Ag Au c (Ag)∼0.28 and x c (Au)∼0.52)

  19. Influence of oxygen pressure and aging on LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates

    KAUST Repository

    Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel; David, Adrian; Lin, Weinan; Wu, Tao

    2014-01-01

    The crystal structures of LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates at oxygen pressure of 10−3 millibars or 10−5 millibars, where kinetics of ablated species hardly depend on oxygen background pressure, are compared. Our

  20. Lead-free (K0.5Na0.5)NbO3 thin films by pulsed laser deposition driving MEMS-based piezoelectric cantilevers

    NARCIS (Netherlands)

    Nguyen, Duc Minh; Dekkers, Jan M.; Houwman, Evert Pieter; Vu, H.T.; Vu, Hung N.; Rijnders, Augustinus J.H.M.

    2016-01-01

    Thin film capacitors of the lead-free (K0.5Na0.5)NbO3 (KNN) with (100) orientation were grown on Pt/Ti/SiO2/SOI (silicon-on-insulator) substrates by pulsed laser deposition. The films are pure phases and do not show other crystal orientations. The remnant polarization Pr, saturation polarization

  1. Factors controlling the microstructure of Ce0.9Gd0.1O2-δ films in pulsed laser deposition process

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Heiroth, S.; Döbeli, M.

    2010-01-01

    Films of Ce0.9Gd0.1O2-delta (CGO10) are prepared at a range of conditions by pulsed laser deposition (PLD) on a single crystal Si (100) and MgO (100), and on a polycrystalline Pt/MgO (100) substrate. The relationship between the film microstructure, crystallography, chemical composition and PLD p...

  2. Extended analysis of the frequency dependence of the admittance of MIS structures with pulsed-laser-deposited AlN films

    Energy Technology Data Exchange (ETDEWEB)

    Simeonov, S; Bakalova, S; Szekeres, A; Kafedjiijska, E [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Grigorescu, S; Socol, G; Mihailescu, I N [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-54, RO-77125, Bucharest-Magurele (Romania)], E-mail: sbakalova@issp.bas.bg

    2008-05-01

    MIS structures with AlN films deposited on p-Si by pulsed laser deposition were prepared and admittance measurements were carried out in the frequency range of 100 Hz - 10 MHz. The density of traps in the AlN film and at the AlN/Si interface was evaluated using the electrical characteristics obtained, and the hopping mechanism of charge transport was determined from the dispersion of the a.c. conductance.

  3. Comparative study of LaNiO$_3$/LaAlO$_3$ heterostructures grown by pulsed laser deposition and oxide molecular beam epitaxy

    OpenAIRE

    Wrobel, F.; Mark, A. F.; Christiani, G.; Sigle, W.; Habermeier, H. -U.; van Aken, P. A.; Logvenov, G.; Keimer, B.; Benckiser, E.

    2017-01-01

    Variations in growth conditions associated with different deposition techniques can greatly affect the phase stability and defect structure of complex oxide heterostructures. We synthesized superlattices of the paramagnetic metal LaNiO3 and the large band gap insulator LaAlO3 by atomic layer-by-layer molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) and compared their crystallinity, microstructure as revealed by high-resolution transmission electron microscopy images and resistiv...

  4. Influence of annealing temperature on structural and magnetic properties of pulsed laser-deposited YIG films on SiO2 substrate

    Science.gov (United States)

    Nag, Jadupati; Ray, Nirat

    2018-05-01

    Yttrium Iron Garnet (Y3Fe5O12) was synthesized by solid state/ceramic process. Thin films of YIG were deposited on SiO2 substrate at room temperature(RT) and at substrate temperature (Ts) 700 °C using pulsed laser deposition (PLD) technique. RT deposited thin films are amorphous in nature and non-magnetic. After annealing at temperature 800 ° RT deposited thin films showed X-ray peaks as well as the magnetic order. Magnetic ordering is enhanced by annealing temperature(Ta ≥ 750 °C) and resulted good quality of films with high magnetization value.

  5. Impact of cation stoichiometry on the early stage of growth of SrTiO{sub 3} deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chencheng, E-mail: c.xu@fz-juelich.de; Moors, Marco; Dittmann, Regina

    2015-12-30

    Highlights: • Stoichiometry dependence of SrTiO{sub 3} sub-monolayer growth monitored by RHEED/AFM. • Reduced surface diffusion of non-stoichiometric SrTiO{sub 3} was detected. • A modified step density model correlates surface diffusion and RHEED minimum. - Abstract: By performing in situ growth studies during pulsed laser deposition, we observed a strong reduction of the surface diffusion coefficients for slightly non-stoichiometric SrTiO{sub 3}. Both, stoichiometric and non-stoichiometric thin films exhibit 2D layer by layer growth. However, in the non-stoichiometric case the 2D island coalescence is significantly delayed, which goes along with a shift of the reflection high electron energy diffraction (RHEED) minimum. We could explain this shift of the RHEED minimum by developing a model for the step density evolution taking into account finite surface diffusion.

  6. Time-Resolved Quantum Cascade Laser Absorption Spectroscopy of Pulsed Plasma Assisted Chemical Vapor Deposition Processes Containing BCl3

    Science.gov (United States)

    Lang, Norbert; Hempel, Frank; Strämke, Siegfried; Röpcke, Jürgen

    2011-08-01

    In situ measurements are reported giving insight into the plasma chemical conversion of the precursor BCl3 in industrial applications of boriding plasmas. For the online monitoring of its ground state concentration, quantum cascade laser absorption spectroscopy (QCLAS) in the mid-infrared spectral range was applied in a plasma assisted chemical vapor deposition (PACVD) reactor. A compact quantum cascade laser measurement and control system (Q-MACS) was developed to allow a flexible and completely dust-sealed optical coupling to the reactor chamber of an industrial plasma surface modification system. The process under the study was a pulsed DC plasma with periodically injected BCl3 at 200 Pa. A synchronization of the Q-MACS with the process control unit enabled an insight into individual process cycles with a sensitivity of 10-6 cm-1·Hz-1/2. Different fragmentation rates of the precursor were found during an individual process cycle. The detected BCl3 concentrations were in the order of 1014 molecules·cm-3. The reported results of in situ monitoring with QCLAS demonstrate the potential for effective optimization procedures in industrial PACVD processes.

  7. Growth and characterization of nitrogen-doped TiO2 thin films prepared by reactive pulsed laser deposition

    International Nuclear Information System (INIS)

    Sauthier, G.; Ferrer, F.J.; Figueras, A.; Gyoergy, E.

    2010-01-01

    Nitrogen-doped titanium dioxide (TiO 2 ) thin films were grown on (001) SiO 2 substrates by reactive pulsed laser deposition. A KrF* excimer laser source (λ = 248 nm, τ FWHM ≅ 10 ns, ν = 10 Hz) was used for the irradiations of pressed powder targets composed by both anatase and rutile phase TiO 2 . The experiments were performed in a controlled reactive atmosphere consisting of oxygen or mixtures of oxygen and nitrogen gases. The obtained thin film crystal structure was investigated by X-ray diffraction, while their chemical composition as well as chemical bonding states between the elements were studied by X-ray photoelectron spectroscopy. An interrelation was found between nitrogen concentration, crystalline structure, bonding states between the elements, and the formation of titanium oxinitride compounds. Moreover, as a result of the nitrogen incorporation in the films a continuous red-shift of the optical absorption edge accompanied by absorption in the visible spectral range between 400 and 500 nm wavelength was observed.

  8. Electrical characterization of Ni/n-ZnO/p-Si/Al heterostructure fabricated by pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Chand, Subhash; Kumar, Rajender

    2014-01-01

    Highlights: • The Ni/n-ZnO/p-Si/Al heterojunction diodes are fabricated by pulsed laser deposition. • The band gap of the deposit ZnO films was found to be 3.43 eV. • Forward I–V data of Ni/n-ZnO/p-Si/Al hetrojunction are interpreted in terms of thermionic emission–diffusion mechanism. • The C–V characteristics of the Ni/n-ZnO/p-Si/Al hetrojunction diode are measured in the temperature range 80–300 K. • The barrier height of Ni/n-ZnO/p-Si/Al hetrojunction diode is also calculated from C–V measurements. - Abstract: The ZnO thin films are grown on the p-Si for the heterojunction fabrication by pulsed laser deposition method. X-ray diffraction study showed that the texture of the film is hexagonal with a strong (0 0 2) plane as preferred direction. High purity vacuum evaporated nickel and aluminum metals were used to make contacts to the n-ZnO and p-Si, respectively. The current–voltage characteristics of Ni/n-ZnO/p-Si(1 0 0)/Al hetero structure measured over the temperature range 80–300 K have been studied on the basis of thermionic emission diffusion mechanism. The equivalent Schottky barrier height and diode ideality factor are determined by fitting of measured current–voltage data in to thermionic diffusion equation. It is observed that the barrier height decreases and the ideality factor increases with decrease of temperature and the activation energy plot exhibit non-linear behavior. These characteristics are attributed to the Gaussian distribution of barrier heights. The capacitance–voltage characteristics of Ni/n-ZnO/p-Si(1 0 0)/Al heterojunction diode are also studied over wide temperature range. From the measured capacitance–voltage data the built in voltage and impurity concentration in n-type ZnO is estimated

  9. Low temperature epitaxy of Ge-Sb-Te films on BaF{sub 2} (111) by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Thelander, E., E-mail: erik.thelander@iom-leipzig.de; Gerlach, J. W.; Ross, U.; Lotnyk, A.; Rauschenbach, B. [Leibniz-Institut für Oberflächenmodifizierung e.V., Leipzig 04318 (Germany)

    2014-12-01

    Pulsed laser deposition was employed to deposit epitaxial Ge{sub 2}Sb{sub 2}Te{sub 5}-layers on the (111) plane of BaF{sub 2} single crystal substrates. X-ray diffraction measurements show a process temperature window for epitaxial growth between 85 °C and 295 °C. No crystalline growth is observed for lower temperatures, whereas higher temperatures lead to strong desorption of the film constituents. The films are of hexagonal structure with lattice parameters consistent with existing models. X-ray pole figure measurements reveal that the films grow with one single out-of-plane crystal orientation, but rotational twin domains are present. The out-of-plane epitaxial relationship is determined to be Ge{sub 2}Sb{sub 2}Te{sub 5}(0001) || BaF{sub 2}(111), whereas the in-plane relationship is characterized by two directions, i.e., Ge{sub 2}Sb{sub 2}Te{sub 5} [-12-10] || BaF{sub 2}[1-10] and Ge{sub 2}Sb{sub 2}Te{sub 5}[1-210] || BaF{sub 2}[1-10]. Aberration-corrected high-resolution scanning transmission electron microscopy was used to resolve the local atomic structure and confirm the hexagonal structure of the films.

  10. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pryds, N. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark)]. E-mail: nini.pryds@risoe.dk; Toftmann, B. [Department of Optics and Plasma Research, Riso National Laboratory, DK-4000 Roskilde (Denmark); Bilde-Sorensen, J.B. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark); Schou, J. [Department of Optics and Plasma Research, Riso National Laboratory, DK-4000 Roskilde (Denmark); Linderoth, S. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark)

    2006-04-30

    Films of yttria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive X-ray spectrometry in a scanning electron microscope (SEM) with use of a method similar to one described by Bishop and Poole. The attenuation of the electron-induced X-rays from the Si wafer by the film was monitored at a number of points along a diameter and the thickness was determined by Monte Carlo simulations of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine the thickness of a large film, i.e. up to diameters of 125 mm, in a relatively short time, without destroying the substrate, without the need of a standard sample and without the need of a flat substrate. We have also demonstrated that by controlling the deposition parameters large-area YSZ films with uniform thickness can be produced.

  11. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition

    International Nuclear Information System (INIS)

    Pryds, N.; Toftmann, B.; Bilde-Sorensen, J.B.; Schou, J.; Linderoth, S.

    2006-01-01

    Films of yttria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive X-ray spectrometry in a scanning electron microscope (SEM) with use of a method similar to one described by Bishop and Poole. The attenuation of the electron-induced X-rays from the Si wafer by the film was monitored at a number of points along a diameter and the thickness was determined by Monte Carlo simulations of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine the thickness of a large film, i.e. up to diameters of 125 mm, in a relatively short time, without destroying the substrate, without the need of a standard sample and without the need of a flat substrate. We have also demonstrated that by controlling the deposition parameters large-area YSZ films with uniform thickness can be produced

  12. Ferroelectric BaTiO3 thin films on Ti substrate fabricated using pulsed-laser deposition.

    Science.gov (United States)

    He, J; Jiang, J C; Liu, J; Collins, G; Chen, C L; Lin, B; Giurgiutiu, V; Guo, R Y; Bhalla, A; Meletis, E I

    2010-09-01

    We report on the fabrication of ferroelectric BaTiO3 thin films on titanium substrates using pulsed laser deposition and their microstructures and properties. Electron microscopy studies reveal that BaTiO3 films are composed of crystalline assemblage of nanopillars with average cross sections from 100 nm to 200 nm. The BaTiO3 films have good interface structures and strong adhesion with respect to Ti substrates by forming a rutile TiO2 intermediate layer with a gradient microstructure. The room temperature ferroelectric polarization measurements show that the as-deposited BTO films possess nearly the same spontaneous polarization as the bulk BTO ceramics indicating formation of ferroelectric domains in the films. Successful fabrication of such ferroelectric films on Ti has significant importance for the development of new applications such as structural health monitoring spanning from aerospace to civil infrastructure. The work can be extended to integrate other ferroelectric oxide films with various promising properties to monitor the structural health of materials.

  13. Gas Sensing Properties of Metal Doped WO3 Thin Film Sensors Prepared by Pulsed Laser Deposition and DC Sputtering Process

    Science.gov (United States)

    Bhuiyan, Md. Mosharraf Hossain; Ueda, Tsuyoshi; Ikegami, Tomoaki; Ebihara, Kenji

    2006-10-01

    Tungsten trioxide (WO3) thin films gas sensors were prepared by the KrF excimer pulsed laser deposition (PLD) method. The films were prepared on the quartz glass, silicon and also on the Al2O3 sensor substrates with platinum interdigitated electrodes. The effect of doping of the platinum (Pt), palladium (Pd) or gold (Au) on the WO3 thin film was also investigated. These metals were doped to the WO3 thin film by the DC sputtering process during the PLD. The substrate temperature and the oxygen pressure were 400 °C and 100 mTorr, respectively, during the deposition. The films were characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The sensitivity of the prepared sensors to 60 ppm NO gas was examined using the two terminal resistance method in a chamber at atmospheric pressure and operating temperatures of 25-350 °C. The sensitivity of the WO3 thin films doped with Pt, Pd, or Au was found to be higher than that of the undoped WO3 thin film.

  14. Inverted fractal analysis of TiO{sub x} thin layers grown by inverse pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Égerházi, L., E-mail: egerhazi.laszlo@gmail.com [University of Szeged, Faculty of Medicine, Department of Medical Physics and Informatics, Korányi fasor 9., H-6720 Szeged (Hungary); Smausz, T. [University of Szeged, Faculty of Science, Department of Optics and Quantum Electronics, Dóm tér 9., H-6720 Szeged (Hungary); Bari, F. [University of Szeged, Faculty of Medicine, Department of Medical Physics and Informatics, Korányi fasor 9., H-6720 Szeged (Hungary)

    2013-08-01

    Inverted fractal analysis (IFA), a method developed for fractal analysis of scanning electron microscopy images of cauliflower-like thin films is presented through the example of layers grown by inverse pulsed laser deposition (IPLD). IFA uses the integrated fractal analysis module (FracLac) of the image processing software ImageJ, and an objective thresholding routine that preserves the characteristic features of the images, independently of their brightness and contrast. IFA revealed f{sub D} = 1.83 ± 0.01 for TiO{sub x} layers grown at 5–50 Pa background pressures. For a series of images, this result was verified by evaluating the scaling of the number of still resolved features on the film, counted manually. The value of f{sub D} not only confirms the fractal structure of TiO{sub x} IPLD thin films, but also suggests that the aggregation of plasma species in the gas atmosphere may have only limited contribution to the deposition.

  15. Microstructural, nanomechanical, and microtribological properties of Pb thin films prepared by pulsed laser deposition and thermal evaporation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Broitman, Esteban, E-mail: esbro@ifm.liu.se [Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping (Sweden); Flores-Ruiz, Francisco J. [Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping, Sweden and Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Querétaro, Querétaro 76230 (Mexico); Di Giulio, Massimo [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Gontad, Francisco; Lorusso, Antonella; Perrone, Alessio [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce, Italy and INFN-Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy)

    2016-03-15

    In this work, the authors compare the morphological, structural, nanomechanical, and microtribological properties of Pb films deposited by thermal evaporation (TE) and pulsed laser deposition (PLD) techniques onto Si (111) substrates. Films were investigated by scanning electron microscopy, surface probe microscopy, and x-ray diffraction in θ-2θ geometry to determine their morphology, root-mean-square (RMS) roughness, and microstructure, respectively. TE films showed a percolated morphology with densely packed fibrous grains while PLD films had a granular morphology with a columnar and tightly packed structure in accordance with the zone growth model of Thornton. Moreover, PLD films presented a more polycrystalline structure with respect to TE films, with RMS roughness of 14 and 10 nm, respectively. Hardness and elastic modulus vary from 2.1 to 0.8 GPa and from 14 to 10 GPa for PLD and TE films, respectively. A reciprocal friction test has shown that PLD films have lower friction coefficient and wear rate than TE films. Our study has demonstrated for first time that, at the microscale, Pb films do not show the same simple lubricious properties measured at the macroscale.

  16. Organic Thin Films Deposited by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation: Fundamentals and Applications

    Science.gov (United States)

    Ge, Wangyao

    Thin film deposition techniques are indispensable to the development of modern technologies as thin film based optical coatings, optoelectronic devices, sensors, and biological implants are the building blocks of many complicated technologies, and their performance heavily depends on the applied deposition technique. Particularly, the emergence of novel solution-processed materials, such as soft organic molecules, inorganic compounds and colloidal nanoparticles, facilitates the development of flexible and printed electronics that are inexpensive, light weight, green and smart, and these thin film devices represent future trends for new technologies. One appealing feature of solution-processed materials is that they can be deposited into thin films using solution-processed deposition techniques that are straightforward, inexpensive, high throughput and advantageous to industrialize thin film based devices. However, solution-processed techniques rely on wet deposition, which has limitations in certain applications, such as multi-layered film deposition of similar materials and blended film deposition of dissimilar materials. These limitations cannot be addressed by traditional, vacuum-based deposition techniques because these dry approaches are often too energetic and can degrade soft materials, such as polymers, such that the performance of resulting thin film based devices is compromised. The work presented in this dissertation explores a novel thin film deposition technique, namely emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE), which combines characteristics of wet and dry deposition techniques for solution-processed materials. Previous studies have demonstrated the feasibility of emulsion-based RIR-MAPLE to deposit uniform and continuous organic, nanoparticle and blended films, as well as hetero-structures that otherwise are difficult to achieve. However, fundamental understanding of the growth mechanisms that govern

  17. SrZnO nanostructures grown on templated Al2O3 substrates by pulsed laser deposition

    Science.gov (United States)

    Labis, Joselito P.; Alanazi, Anwar Q.; Albrithen, Hamad A.; El-Toni, Ahmed Mohamed; Hezam, Mahmoud; Elafifi, Hussein Elsayed; Abaza, Osama M.

    2017-09-01

    The parameters of pulsed laser deposition (PLD) have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO). In this work, SrZnO nanostructures are grown on Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ˜300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL), while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002) preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.

  18. SrZnO nanostructures grown on templated Al2O3 substrates by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Joselito P. Labis

    2017-09-01

    Full Text Available The parameters of pulsed laser deposition (PLD have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO. In this work, SrZnO nanostructures are grown on Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ∼300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL, while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002 preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.

  19. Effect of boron incorporation on the structure and electrical properties of diamond-like carbon films deposited by femtosecond and nanosecond pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, A. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Bourgeois, O. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Rouzaud, J.-N. [Laboratoire de Geologie, UMR 8538 CNRS, Ecole Normale Superieure, 45 Rue d' Ulm, 75230 Paris Cedex 05 (France); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Loir, A.-S. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Garden, J.-L. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Garrelie, F. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Donnet, C., E-mail: christophe.donnet@univ-st-etienne.f [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France)

    2009-12-31

    The influence of the incorporation of boron in diamond-like carbon (DLC) films on the microstructure of the coatings has been investigated. The boron-containing DLC films (a-C:B) have been deposited by pulsed laser deposition (PLD) at room temperature in high vacuum conditions, by ablating graphite and boron targets either with a femtosecond pulsed laser (800 nm, 150 fs, fs-DLC) or with a nanosecond pulsed laser (248 nm, 20 ns, ns-DLC). Alternative ablation of the graphite and boron targets has been carried out to deposit the a-C:B films. The film structure and composition have been highlighted by coupling Field Emission Scanning Electron Microscopy, Electron Energy Loss Spectroscopy and High Resolution Transmission Electron Microscopy. Using the B K-edge, EELS characterization reveals the boron effect on the carbon bonding. Moreover, the plasmon energy reveals a tendency of graphitization associated to the boron doping. Pure boron particles have been characterized by HRTEM and reveal that those particles are amorphous or crystallized. The nanostructures of the boron-doped ns-DLC and the boron-doped fs-DLC are thus compared. In particular, the incorporation of boron in the DLC matrix is highlighted, depending on the laser used for deposition. Electrical measurements show that some of these films have potentialities to be used in low temperature thermometry, considering their conductivity and temperature coefficient of resistance (TCR) estimated within the temperature range 160-300 K.

  20. Growth and microstructure of columnar Y-doped SrZrO{sub 3} films deposited on Pt-coated MgO by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Sijun, E-mail: sluo1@tulane.edu; Riggs, Brian C.; Shipman, Joshua T.; Adireddy, Shiva; Sklare, Samuel C.; Chrisey, Douglas B., E-mail: dchrisey@tulane.edu [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Zhang, Xiaodong; Koplitz, Brent [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2015-07-21

    Direct integration of proton conductor films on Pt-coated substrates opens the way to film-based proton transport devices. Columnar SrZr{sub 0.95}Y{sub 0.05}O{sub 3−δ} (SZY) films with dense microstructure were deposited on Pt-coated MgO(100) substrates at 830 °C by pulsed laser deposition. The optimal window of ambient O{sub 2} pressure for good crystallinity of SZY films is from 400 to 600 mTorr. The ambient O{sub 2} compresses the plasma plume of SZY and increases the deposition rate. The 10 nm thick Ti adhesion layer on MgO(100) greatly affects the orientation of the sputtered Pt layers. Pt deposited directly on MgO shows a highly (111)-preferred orientation and leads to preferentially oriented SZY films while the addition of a Ti adhesion layer makes Pt show a less preferential orientation that leads to randomly oriented SZY films. The RMS surface roughness of preferentially oriented SZY films is larger than that of randomly oriented SZY films deposited under the same ambient O{sub 2} pressure. As the O{sub 2} pressure increased, the RMS surface roughness of preferentially oriented SZY films increased, reaching 45.7 nm (2.61% of film thickness) at 600 mTorr. This study revealed the ambient O{sub 2} pressure and orientation dependent surface roughness of SZY films grown on Pt-coated MgO substrates, which provides the potential to control the surface microstructure of SZY films for electrochemical applications in film-based hydrogen devices.

  1. Effects of laser energy fluence on the onset and growth of the Rayleigh–Taylor instabilities and its influence on the topography of the Fe thin film grown in pulsed laser deposition facility

    International Nuclear Information System (INIS)

    Mahmood, S.; Rawat, R. S.; Wang, Y.; Lee, S.; Tan, T. L.; Springham, S. V.; Lee, P.; Zakaullah, M.

    2012-01-01

    The effect of laser energy fluence on the onset and growth of Rayleigh–Taylor (RT) instabilities in laser induced Fe plasma is investigated using time-resolved fast gated imaging. The snow plow and shock wave models are fitted to the experimental results and used to estimate the ablation parameters and the density of gas atoms that interact with the ablated species. It is observed that RT instability develops during the interface deceleration stage and grows for a considerable time for higher laser energy fluence. The effects of RT instabilities formation on the surface topography of the Fe thin films grown in pulsed laser deposition system are investigated (i) using different laser energy fluences for the same wavelength of laser radiation and (ii) using different laser wavelengths keeping the energy fluence fixed. It is concluded that the deposition achieved under turbulent condition leads to less smooth deposition surfaces with bigger sized particle agglomerates or network.

  2. Antiferromagnetic–paramagnetic state transition of NiO synthesized by pulsed laser deposition

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-01-01

    Full Text Available respectively from Raman spectroscopy study. These particle sizes are known be affected by substrate temperature during the deposition. Electron spin resonance (ESR) results demonstrated a strange antiferromagnetic to paramagnetic transition at a room...

  3. Dual purpose laser ablation-inductively coupled plasma mass spectrometry for pulsed laser deposition and diagnostics of thin film fabrication: preliminary study.

    Science.gov (United States)

    Azdejković, Mersida Janeva; van Elteren, Johannes Teun; Rozman, Kristina Zuzek; Jaćimović, Radojko; Sarantopoulou, Evangelia; Kobe, Spomenka; Cefalas, Alkiviadis Constantinos

    2009-08-15

    PLD (pulsed laser deposition) is an attractive technique to fabricate thin films with a stoichiometry reflecting that of the target material. Conventional PLD instruments are more or less black boxes in which PLD is performed virtually "blind", i.e. without having great control on the important PLD parameters. In this preliminary study, for the first time, a 213 nm Nd-YAG commercial laser ablation-inductively coupled plasma mass spectrometer (LA-ICPMS) intended for microanalysis work was used for PLD under atmospheric pressure and in and ex situ ICPMS analysis for diagnostics of the thin film fabrication process. A PLD demonstration experiment in a He atmosphere was performed with a Sm(13.8)Fe(82.2)Ta(4.0) target-Ta-coated silicon wafer substrate (contraption with defined geometry in the laser ablation chamber) to transfer the permanent magnetic properties of the target to the film. Although this paper is not dealing with the magnetic properties of the film, elemental analysis was applied as a means of depicting the PLD process. It was shown that in situ ICPMS monitoring of the ablation plume as a function of the laser fluence, beam diameter and repetition rate may be used to ensure the absence of large particles (normally having a stoichiometry somewhat different from the target). Furthermore, ex situ microanalysis of the deposited particles on the substrate, using the LA-ICPMS as an elemental mapping tool, allowed for the investigation of PLD parameters critical in the fabrication of a thin film with appropriate density, homogeneity and stoichiometry.

  4. Biological and physical properties of pulsed-laser-deposited zirconia/hydroxyapatite on titanium: in vitro study

    Czech Academy of Sciences Publication Activity Database

    Teuberová, Z.; Seydlová, M.; Dostálová, T.; Dvořánková, B.; Smetana, K. Jr.; Jelínek, Miroslav; Mašínová, Petra; Kocourek, Tomáš; Kolářová, K.; Wilson, J.

    2007-01-01

    Roč. 17, č. 1 (2007), s. 45-49 ISSN 1054-660X R&D Projects: GA MZd NR8512 Institutional research plan: CEZ:AV0Z10100522 Keywords : dental implants * hydroxyapatite * titanium * laser deposition * PLD Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.696, year: 2007

  5. P-doped strontium titanate grown using two target pulsed laser deposition for thin film solar cells

    Science.gov (United States)

    Man, Hamdi

    Thin-film solar cells made of Mg-doped SrTiO3 p-type absorbers are promising candidates for clean energy generation. This material shows p-type conductivity and also demonstrates reasonable absorption of light. In addition, p-type SrTiO3 can be deposited as thin films so that the cost can be lower than the competing methods. In this work, Mg-doped SrTiO3 (STO) thin-films were synthesized and analyzed in order to observe their potential to be employed as the base semiconductor in photovoltaic applications. Mg-doped STO thin-films were grown by using pulsed laser deposition (PLD) using a frequency quadrupled Yttrium Aluminum Garnet (YAG) laser and with a substrate that was heated by back surface absorption of infrared (IR) laser light. The samples were characterized using X-ray photoelectron spectroscopy (XPS) and it was observed that Mg atoms were doped successfully in the stoichiometry. Reflection high energy electron diffraction (RHEED) spectroscopy proved that the thin films were polycrystalline. Kelvin Probe work function measurements indicated that the work function of the films were 4.167 eV after annealing. UV/Vis Reflection spectroscopy showed that Mg-doped STO thin-films do not reflect significantly except in the ultraviolet region of the spectrum where the reflection percentage increased up to 80%. Self-doped STO thin-films, Indium Tin Oxide (ITO) thin films and stainless steel foil (SSF) were studied in order to observe their characteristics before employing them in Mg-doped STO based solar cells. Self-doped STO thin films were grown using PLD and the results showed that they are capable of serving as the n-type semiconductor in solar cell applications with oxygen vacancies in their structure and low reflectivity. Indium Tin Oxide thin-films grown by PLD system showed low 25-50 ?/square sheet resistance and very low reflection features. Finally, commercially available stainless steel foil substrates were excellent substrates for the inexpensive growth of

  6. Optimisation study of the synthesis of vanadium oxide nanostructures using pulsed laser deposition

    CSIR Research Space (South Africa)

    Masina, BN

    2014-02-01

    Full Text Available produced aluminium plasma” J. Phys. D.: Appl. Phys. 35, 2935 – 2938 (2002). [16] Geohegan D.B., “Physics and diagnostics of laser plume propagation for high Tc superconductor film growth” Thin Solid Films 220, 138 – 145 (1992). [17] Wood R.F., Leboeuf J...

  7. Pulsed laser deposition of aluminum-doped ZnO films at 355 nm

    DEFF Research Database (Denmark)

    Holmelund, E.; Schou, Jørgen; Thestrup Nielsen, Birgitte

    2004-01-01

    Conducting, transparent films of aluminium-doped ZnO (AZO) have been produced at the laser wavelength 355 nm. The most critical property, the electric resistivity, is up to a factor of 8 above that for films produced at shorter wavelengths. In contrast, the transmission of visible light through...

  8. Defect studies of ZnO films prepared by pulsed laser deposition on various substrates

    International Nuclear Information System (INIS)

    Melikhova, O; Čížek, J; Procházka, I; Kužel, R; Novotný, M; Bulír, J; Lancok, J; Anwand, W; Brauer, G; Connolly, J; McCarthy, E; Krishnamurthy, S; Mosnier, J-P

    2013-01-01

    ZnO thin films deposited on various substrates were characterized by slow positron implantation spectroscopy (SPIS) combined with X-ray diffraction (XRD). All films studied exhibit wurtzite structure and crystallite size 20–100 nm. The mosaic spread of crystallites is relatively small for the films grown on single crystalline substrates while it is substantial for the film grown on amorphous substrate. SPIS investigations revealed that ZnO films deposited on single crystalline substrates exhibit significantly higher density of defects than the film deposited on amorphous substrate. This is most probably due to a higher density of misfit dislocations, which compensate for the lattice mismatch between the film and the substrate.

  9. Effect of oxygen partial pressure on the microstructural, optical and gas sensing characterization of nanostructured Gd doped ceria thin films deposited by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Nagaraju P.

    2017-12-01

    Full Text Available Microstructural properties of 10 mol% gadolinium doped ceria (CeO2 thin films that were deposited on quartz substrate at substrate temperature of 1023 K by using pulsed laser deposition with different oxygen partial pressures in the range of 50–200 mTorr. The influence of oxygen partial pressure on microstructural, morphological, optical and gas sensing characterization of the thin films was systematically studied. The microstructure of the thin films was investigated using X-ray diffraction, atomic force microscopy and Raman spectroscopy. Morphological studies have been carried out using scanning electron microscope. The experimental results confirmed that the films were polycrystalline in nature with cubic fluorite structure. Optical properties of the thin films were examined using UV–vis spectrophotometer. The optical band gap calculated from Tauc’s relation. Gas sensing characterization has been carried at different operating temperatures (room temperature to 523 K for acetone gas. Response and recovery times of the sensor were calculated using transient response plot.

  10. Large Area Deposition of MoS2 by Pulsed Laser Deposition with In-Situ Thickness Control

    KAUST Repository

    Serna, Martha I.

    2016-05-24

    A scalable and catalyst-free method to deposit stoichiometric Molybdenum Disulfide (MoS2) films over large areas is reported with the maximum area limited by the size of the substrate holder. The method allows deposition of MoS2 layers on a wide range of substrates without any additional surface preparation including single crystals (sapphire and quartz), polycrystalline (HfO2), and amorphous (SiO2). The films are deposited using carefully designed MoS2 targets fabricated with excess of sulfur (S) and variable MoS2 and S particle size. Uniform and layered MoS2 films as thin as two monolayers, with an electrical resistivity of 1.54 × 104 Ω cm-1 were achieved. The MoS2 stoichiometry was as confirmed by High Resolution Rutherford Backscattering Spectrometry (HRRBS). With the method reported here, in situ graded MoS2 films ranging from ~1 to 10 monolayers can also be deposited.

  11. Large Area Deposition of MoS2 by Pulsed Laser Deposition with In-Situ Thickness Control

    KAUST Repository

    Serna, Martha I.; Yoo, Seong H.; Moreno, Salvador; Xi, Yang; Oviedo, Juan Pablo; Choi, Hyunjoo; Alshareef, Husam N.; Kim, Moon J.; Minary-Jolandan, Majid; Quevedo-Lopez, Manuel A.

    2016-01-01

    A scalable and catalyst-free method to deposit stoichiometric Molybdenum Disulfide (MoS2) films over large areas is reported with the maximum area limited by the size of the substrate holder. The method allows deposition of MoS2 layers on a wide range of substrates without any additional surface preparation including single crystals (sapphire and quartz), polycrystalline (HfO2), and amorphous (SiO2). The films are deposited using carefully designed MoS2 targets fabricated with excess of sulfur (S) and variable MoS2 and S particle size. Uniform and layered MoS2 films as thin as two monolayers, with an electrical resistivity of 1.54 × 104 Ω cm-1 were achieved. The MoS2 stoichiometry was as confirmed by High Resolution Rutherford Backscattering Spectrometry (HRRBS). With the method reported here, in situ graded MoS2 films ranging from ~1 to 10 monolayers can also be deposited.

  12. Synthesis of Few-Layer, Large Area Hexagonal-Boron Nitride by Pulsed Laser Deposition (POSTPRINT)

    Science.gov (United States)

    2014-09-01

    invention that may relate to them. This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public Affairs Office (PAO) and...ered with a shutter. Depositions were performed in nitrogen background gas, where pressure was controlled by a butterfly valve to preset values within

  13. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, N. S., E-mail: nsokolov@fl.ioffe.ru; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V. [Ioffe Physical-Technical Institute of Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Maksimova, K. Yu.; Grunin, A. I. [Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Tabuchi, M. [Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603 (Japan)

    2016-01-14

    Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  14. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    International Nuclear Information System (INIS)

    Sokolov, N. S.; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V.; Maksimova, K. Yu.; Grunin, A. I.; Tabuchi, M.

    2016-01-01

    Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y 3 Fe 5 O 12 (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films

  15. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang

    2014-11-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences. The symmetries of the fundamental Raman modes in 50-700 cm-1 were identified based on group theory. The symmetries of the high order Raman modes in 900-1500 cm-1 of BiFeO3 are determined for the first time, which can provide strong clarifications to the symmetry of the fundamental peaks in 400-700 cm-1 in return. Moreover, the lattice structures of BiFeO3 films are identified consequently on the basis of Raman spectroscopy. BiFeO3 films on SrRuO3 coated SrTiO3 (0 0 1) substrate, CaRuO3 coated SrTiO3 (0 0 1) substrate and tin-doped indium oxide substrate are found to be in the rhombohedral structure, while BiFeO3 film on SrRuO3 coated Nb: SrTiO3 (0 0 1) substrate is in the monoclinic structure. Our results suggest that polarized Raman spectroscopy would be a feasible tool to study the lattice structure of BiFeO3 films.

  16. Control of the magnetic properties of LaMnO3 epitaxial thin films grown by Pulsed Laser Deposition

    Science.gov (United States)

    Martinez, Benjamin; Roqueta, Jaume; Pomar, Alberto; Balcells, Lluis; Frontera, Carlos; Konstantinovic, Zorica; Sandiumenge, Felip; Santiso, Jose; Advanced materials characterization Team; Thin films growth Team

    2015-03-01

    LaMnO3 (LMO), the parent compound of colossal magnetoresistance based manganites has gained renewed attention as a building block in heterostructures with unexpected properties. In its bulk phase, stoichiometric LMO is an A-type antiferromagnetic (AFM) insulator (TN = 140K) with orthorhombic structure that easily accommodate an oxygen excess by generating cationic (La or Mn) vacancies. As a result, a fraction of Mn 3+ changes to Mn 4+ leading to a double-exchange mediated ferromagnetic (FM) behavior. In thin films the AFM phase has been elusive up to now and thin films with FM ordering are usually reported. In this work, we have systematically studied the growth process of LaMnO3 thin films by pulsed laser deposition on SrTiO3 (001) substrates under different oxygen partial pressures (PO2) . A close correlation between the structure (explored by XRD) and the magnetic properties (SQUID measurements) of the films with PO2 has been identified. At high PO2 FM behavior is observed. In contrast, at very low PO2, the results obtained for unit cell volume (close to stoichiometric bulk values) and magnetic moment (0.2 μB/Mn) strongly indicate antiferromagnetic ordering. We acknowledge financial support from the Spanish MINECO (MAT2012-33207).

  17. Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition

    Science.gov (United States)

    Shibuya, Keisuke; Sawa, Akihito

    2015-10-01

    We systematically examined the effects of the substrate temperature (TS) and the oxygen pressure (PO2) on the structural and optical properties polycrystalline V O2 films grown directly on Si(100) substrates by pulsed-laser deposition. A rutile-type V O2 phase was formed at a TS ≥ 450 °C at PO2 values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O2 films significantly increased at growth temperatures of 550 °C or more due to agglomeration of V O2 on the surface of the silicon substrate. An apparent change in the refractive index across the metal-insulator transition (MIT) temperature was observed in V O2 films grown at a TS of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the TS and PO2, and was maximal for a V O2 film grown at 450 °C under 20 mTorr. Based on the results, we derived the PO2 versus 1/TS phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O2 films on silicon platforms.

  18. Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition

    Directory of Open Access Journals (Sweden)

    Keisuke Shibuya

    2015-10-01

    Full Text Available We systematically examined the effects of the substrate temperature (TS and the oxygen pressure (PO2 on the structural and optical properties polycrystalline V O2 films grown directly on Si(100 substrates by pulsed-laser deposition. A rutile-type V O2 phase was formed at a TS ≥ 450 °C at PO2 values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O2 films significantly increased at growth temperatures of 550 °C or more due to agglomeration of V O2 on the surface of the silicon substrate. An apparent change in the refractive index across the metal–insulator transition (MIT temperature was observed in V O2 films grown at a TS of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the TS and PO2, and was maximal for a V O2 film grown at 450 °C under 20 mTorr. Based on the results, we derived the PO2 versus 1/TS phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O2 films on silicon platforms.

  19. Pulsed laser deposition of chalcogenide sulfides from multi- and single-component targets: the non-stoichiometric material transfer

    DEFF Research Database (Denmark)

    Schou, Jørgen; Ganskukh, Mungunshagai; Ettlinger, Rebecca Bolt

    2018-01-01

    The mass transfer from target to films is incongruent for chalcogenide sulfides in contrast to the expectations of pulsed laser deposition (PLD) as a stoichiometric film growth process. Films produced from a CZTS (Cu2ZnSnS4) multi-component target have no Cu below a fluence threshold of 0.2 J/cm2......, and the Cu content is also very low at low fluence from a single-component target. Above this threshold, the Cu content in the films increases almost linearly up to a value above the stoichiometric value, while the ratio of the concentration of the other metals Zn to Sn (Zn/Sn) remains constant. Films...... of a similar material CTS (Cu2SnS3) have been produced by PLD from a CTS target and exhibits a similar trend in the same fluence region. The results are discussed on the basis of solid-state data and the existing data from the literature....

  20. Controlling the electrical and the optical properties of amorphous IGZO films prepared by using pulsed laser deposition

    International Nuclear Information System (INIS)

    Lee, Minseong; Dho, Joonghoe

    2011-01-01

    We have investigated the effects of substrate temperature and oxygen pressure on the electrical and the optical properties of amorphous InGaZnO4 (a-IGZO) films grown on glass substrates by using pulsed laser deposition. X-ray diffraction and scanning electron microscopy data suggest that the a-IGZO starts to crystallize around ∼600 .deg. C. The electrical resistivity and the carrier density of the a-IGZO film showed large variations with changes in the substrate temperature or the oxygen pressure. The resistivity of the a-IGZO film was minimized at ∼200 .deg. C and ∼10 mTorr. The energy gap estimated from the optical transmittance showed an increasing tendency with increasing of substrate temperature up to ∼200 .deg. C or with increasing of oxygen pressure up to 100 mTorr, and it was about ∼3.0 eV at 200 .deg. C and 10 mTorr. Remarkably, the optical transmittance for the a-IGZO film showed a clear variation in the violet color region with changing of the substrate temperature and oxygen pressure. Our results suggest that both the substrate temperature and the oxygen pressure can be exploited as key parameters to control the electrical and the optical properties of a-IGZO films.

  1. Sb-related defects in Sb-doped ZnO thin film grown by pulsed laser deposition

    Science.gov (United States)

    Luo, Caiqin; Ho, Lok-Ping; Azad, Fahad; Anwand, Wolfgang; Butterling, Maik; Wagner, Andreas; Kuznetsov, Andrej; Zhu, Hai; Su, Shichen; Ling, Francis Chi-Chung

    2018-04-01

    Sb-doped ZnO films were fabricated on c-plane sapphire using the pulsed laser deposition method and characterized by Hall effect measurement, X-ray photoelectron spectroscopy, X-ray diffraction, photoluminescence, and positron annihilation spectroscopy. Systematic studies on the growth conditions with different Sb composition, oxygen pressure, and post-growth annealing were conducted. If the Sb doping concentration is lower than the threshold ˜8 × 1020 cm-3, the as-grown films grown with an appropriate oxygen pressure could be n˜4 × 1020 cm-3. The shallow donor was attributed to the SbZn related defect. Annealing these samples led to the formation of the SbZn-2VZn shallow acceptor which subsequently compensated for the free carrier. For samples with Sb concentration exceeding the threshold, the yielded as-grown samples were highly resistive. X-ray diffraction results showed that the Sb dopant occupied the O site rather than the Zn site as the Sb doping exceeded the threshold, whereas the SbO related deep acceptor was responsible for the high resistivity of the samples.

  2. Yttrium-enriched YBa2Cu3Ox thin films for coated conductors fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Khoryushin, Alexey V.; Mozhaev, Peter B.; Mozhaeva, Julia E.; Andersen, Niels H.; Grivel, Jean-Claude; Hansen, Jørn Bindslev; Jacobsen, Claus S.

    2013-01-01

    Highlights: ► YBCO films were fabricated by PLD from targets of various elemental compositions. ► The Y-enriched films contain yttria nanoparticles which provide efficient pinning. ► The best film has 5.5× higher j c (5 T,50 K) = 2.6MA/cm 2 comparing with a reference film. ► The Y-enriched films remain c-oriented up to 500 nm. ► Films demonstrate no j c suppression with thickness and remarkable stability with time. -- Abstract: The effects of excess yttria on the structural and electrical properties of the YBa 2 Cu 3 O x (YBCO) thin films are studied. The films were deposited on (LaAlO 3 ) 0.3 –(Sr 2 AlTaO 8 ) 0.7 substrates by pulsed laser ablation from targets with different elemental composition. An increase of yttrium content of the target leads to formation of porous films with significantly improved current-carrying capabilities. Structural studies of these films reveal presence of yttria nanoparticles embedded into the YBCO matrix. The highest obtained critical current density in an external magnetic field of 5 T was 2.6 MA/cm 2 at 50 K and 9.4 MA/cm 2 at 20 K. The fabricated Y-enriched YBCO films remain c-oriented at least up to 600 nm thickness with no significant suppression of the critical current density

  3. Vis-Near-Infrared Photodetectors Based on Methyl Ammonium Lead Iodide Thin Films by Pulsed Laser Deposition

    Science.gov (United States)

    Patel, Nagabhushan; Dias, Sandra; Krupanidhi, S. B.

    2018-04-01

    Organic-inorganic hybrid perovskite materials are considered as promising candidates for emerging thin-film photodetectors. In this work, we discuss the application of the CH3NH3PbI3 thin films by pulsed laser deposition for photodetection applications. With this method, we obtained good perovskite film coverage on fluorine-doped tin oxide-coated substrates and observed wel- developed grains. The films showed no sign of degradation over several months of testing. We investigated the surface morphology and surface roughness of the films by field emission scanning electron microscopy and atomic force microscopy. The optical response of the films was studied using ultraviolet-visible and photoluminescence spectroscopy. We carried out a study on the solar and infrared photodetection of CH3NH3PbI3 thin films. The values of the responsivity, sensitivity, external quantum efficiency and specific detectivity under 1 sun illumination and 0.7 V bias were 105.4 A/W, 1.9, 2.38 × 104% and 1.5 × 1012 Jones, respectively.

  4. Optoelectronic Properties and Structural Characterization of GaN Thick Films on Different Substrates through Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Wei-Kai Wang

    2017-01-01

    Full Text Available Approximately 4-μm-thick GaN epitaxial films were directly grown onto a GaN/sapphire template, sapphire, Si(111, and Si(100 substrates by high-temperature pulsed laser deposition (PLD. The influence of the substrate type on the crystalline quality, surface morphology, microstructure, and stress states was investigated by X-ray diffraction (XRD, photoluminescence (PL, atomic force microscopy (AFM, transmission electron microscopy (TEM, and Raman spectroscopy. Raman scattering spectral analysis showed a compressive film stress of −0.468 GPa for the GaN/sapphire template, whereas the GaN films on sapphire, Si(111, and Si(100 exhibited a tensile stress of 0.21, 0.177, and 0.081 GPa, respectively. Comparative analysis indicated the growth of very close to stress-free GaN on the Si(100 substrate due to the highly directional energetic precursor migration on the substrate’s surface and the release of stress in the nucleation of GaN films during growth by the high-temperature (1000 °C operation of PLD. Moreover, TEM images revealed that no significant GaN meltback (Ga–Si etching process was found in the GaN/Si sample surface. These results indicate that PLD has great potential for developing stress-free GaN templates on different substrates and using them for further application in optoelectronic devices.

  5. Thin films of polymer blends deposited by matrix-assisted pulsed laser evaporation: Effects of blending ratios

    International Nuclear Information System (INIS)

    Paun, Irina Alexandra; Ion, Valentin; Moldovan, Antoniu; Dinescu, Maria

    2011-01-01

    In this work, we show successful use of matrix-assisted pulsed laser evaporation (MAPLE) for obtaining thin films of PEG:PLGA blends, in the view of their use for controlled drug delivery. In particular, we investigate the influence of the blending ratios on the characteristics of the films. We show that the roughness of the polymeric films is affected by the ratio of each polymer within the blend. In addition, we perform Fourier transformed infrared spectroscopy (FTIR) measurements and we find that the intensities ratios of the infrared absorption bands of the two polymers are consistent with the blending ratios. Finally, we assess the optical constants of the polymeric films by spectroscopic ellipsometry (SE). We point out that the blending ratios exert an influence on the optical characteristics of the films and we validate the SE results by atomic force microscopy and UV-vis spectrophotometry. In all, we stress that the ratios in which the two polymers are blended have significant impact on the morphology, chemical structure and optical characteristics of the polymeric films deposited by MAPLE.

  6. Effect of substrate temperature on the microstructural properties of titanium nitride nanowires grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gbordzoe, S.; Kotoka, R.; Craven, Eric; Kumar, D.; Wu, F.; Narayan, J.

    2014-01-01

    The current work reports on the growth and microstructural characterization of titanium nitride (TiN) nanowires on single crystal silicon substrates using a pulsed laser deposition method. The physical and microstructural properties of the nanowires were characterized using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The corrosion properties of the TiN nanowires compared to TiN thin film were evaluated using Direct Current potentiodynamic and electrochemical impedance spectroscopy. The nanowires corroded faster than the TiN thin film, because the nanowires have a larger surface area which makes them more reactive in a corrosive environment. It was observed from the FESEM image analyses that as the substrate temperature increases from 600 °C to 800 °C, there was an increase in both diameter (25 nm–50 nm) and length (150 nm–250 nm) of the nanowire growth. There was also an increase in spatial density with an increase of substrate temperature. The TEM results showed that the TiN nanowires grow epitaxially with the silicon substrate via domain matching epitaxy paradigm, despite a large misfit

  7. Optically transparent and durable Al2O3 coatings for harsh environments by ultra short pulsed laser deposition

    Science.gov (United States)

    Korhonen, Hannu; Syväluoto, Aki; Leskinen, Jari T. T.; Lappalainen, Reijo

    2018-01-01

    Nowadays, an environmental protection is needed for a number of optical applications in conditions quickly impairing the clarity of optical surfaces. Abrasion resistant optical coatings applied onto plastics are usually based on alumina or polysiloxane technology. In many applications transparent glasses and ceramics need a combination of abrasive and chemically resistant shielding or other protective solutions like coatings. In this study, we intended to test our hypothesis that clear and pore free alumina coating can be uniformly distributed on glass prisms by ultra short pulsed laser deposition (USPLD) technique to protect the sensitive surfaces against abrasives. Abrasive wear tests were carried out by the use of SiC emery paper using specified standard procedures. After the wear tests the measured transparencies of coated prisms turned out to be close those of the prisms before coating. The coating on sensitive surfaces consistently displayed enhanced wear resistance exhibiting still high quality, even after severe wear testing. Furthermore, the coating modified the surface properties towards hydrophobic nature in contrast to untreated prisms, which became very hydrophilic especially due to wear.

  8. The growth of zinc phthalocyanine thin films by pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Šebera, Jakub; Bensalah-Ledoux, A.; Guy, S.; Bulíř, Jiří; Fitl, Přemysl; Vlček, Jan; Zákutná, D.; Marešová, Eva; Hubík, Pavel; Kratochvílová, Irena; Vrňata, M.; Lančok, Ján

    2016-01-01

    Roč. 31, č. 1 (2016), s. 163-172 ISSN 0884-2914 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR(CZ) GA14-10279S; GA MŠk(CZ) 7AMB14FR010 Institutional support: RVO:68378271 Keywords : organometallic * film * laser ablation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.673, year: 2016

  9. Pulsed laser deposition of HfO{sub 2} thin films on indium zinc oxide: Band offsets measurements

    Energy Technology Data Exchange (ETDEWEB)

    Craciun, D.; Craciun, V., E-mail: valentin.craciun@inflpr.ro

    2017-04-01

    Highlights: • High quality amorphous IZO and HfO{sub 2} films were obtained by PLD technique. • XPS measurements were used to obtain the valence band alignment in HfO{sub 2}/IZO heterostructure. • A valence band offset (ΔE{sub V}) of 1.75 eV was obtained for the HfO{sub 2}/IZO heterostructure. • A conduction band offset (ΔE{sub C}) of 0.65 eV was estimated for the HfO{sub 2}/IZO heterostructure. - Abstract: One of the most used dielectric films for amorphous indium zinc oxide (IZO) based thin films transistor is HfO{sub 2}. The estimation of the valence band discontinuity (ΔE{sub V}) of HfO{sub 2}/IZO heterostructure grown using the pulsed laser deposition technique, with In/(In + Zn) = 0.79, was obtained from X-ray photoelectron spectroscopy (XPS) measurements. The binding energies of Hf 4d5, Zn 2p3 and In 3d5 core levels and valence band maxima were measured for thick pure films and for a very thin HfO{sub 2} film deposited on a thick IZO film. A value of ΔE{sub V} = 1.75 ± 0.05 eV was estimated for the heterostructure. Taking into account the measured HfO{sub 2} and IZO optical bandgap values of 5.50 eV and 3.10 eV, respectively, a conduction band offset ΔE{sub C} = 0.65 ± 0.05 eV in HfO{sub 2}/IZO heterostructure was then obtained.

  10. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Science.gov (United States)

    Pandiyan, Rajesh; Oulad Elhmaidi, Zakaria; Sekkat, Zouheir; Abd-lefdil, Mohammed; El Khakani, My Ali

    2017-02-01

    We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu2ZnSnS4 (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (Ta), but their crystallinity is much improved for Ta ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with Ta (from ∼14 nm at RT to 70 nm at Ta = 500 °C with a value around 40 nm for Ta = 300-400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV-vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at Ta = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS spectroscopies to determine their chemical bondings, the position of their valence band maximum (relative to Fermi level), and their work function values. This enabled us to sketch out, as accurately as possible, the band alignment of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials.

  11. Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition

    Science.gov (United States)

    Stender, Dieter; Schäuble, Nina; Weidenkaff, Anke; Montagne, Alex; Ghisleni, Rudy; Michler, Johann; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-01-01

    The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ) is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.

  12. Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Dieter Stender

    2015-01-01

    Full Text Available The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.

  13. Co-P-B catalyst thin films prepared by electroless and pulsed laser deposition for hydrogen generation by hydrolysis of alkaline sodium borohydride: A comparison

    International Nuclear Information System (INIS)

    Patel, N.; Fernandes, R.; Bazzanella, N.; Miotello, A.

    2010-01-01

    Co-P-B catalyst thin films have been synthesized on Ni-foam and glass substrate by using electroless deposition (ED) and pulsed laser deposition (PLD) respectively. The efficiency of these catalyst films was tested by catalytic hydrolysis of NaBH 4 for H 2 generation. While the chemically produced Co-P-B film on Ni-foam shows similar activity as that of their corresponding powder, the Co-P-B film deposited by PLD exhibits much superior H 2 generation rate as compared to Co-P-B powder. We attribute this increased efficiency to the special features of the Co-P-B films which are in the form of nanoparticle-assembled films, a peculiar characteristic of PLD films for appropriate choice of the pulse laser parameters. The surface nanoparticle-configuration increases the active surface area and also favors electronic exchange mechanisms to promote hydrolysis process for H 2 gas generation. The films deposited by using laser energy density of 3 J/cm 2 show the highest activity in connection to the best configuration of the ablated nanoparticles. Different numbers of Co-P-B layers were deposited on Ni-foam by ED and it was found that at least four layers are required for complete coverage of the foam to have the best activity.

  14. Effect of annealing on structural and optical properties of Cu_2ZnSnS_4 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Surgina, G.D.; Nevolin, V.N.; Sipaylo, I.P.; Teterin, P.E.; Medvedeva, S.S.; Lebedinsky, Yu.Yu.; Zenkevich, A.V.

    2015-01-01

    In this work, we compare the effect of different types of thermal annealing on the morphological, structural and optical properties of Cu_2ZnSnS_4 (CZTS) thin films grown by reactive Pulsed Laser Deposition in H_2S flow. Rutherford backscattering spectrometry, atomic force microscopy, X-ray diffraction, Raman spectroscopy and optical spectrophotometry data reveal dramatic increase of the band gap and the crystallite size without the formation of secondary phases upon annealing in N_2 at the optimized conditions. - Highlights: • Cu_2ZnSnS_4 (CZTS) thin films were grown at room temperature. • Reactive Pulsed Laser Deposition in H_2S flow was used as a growth method. • Effect of annealing conditions on CZTS structural and optical properties is revealed. • Both the grain size and the band gap of CZTS film increase following the annealing. • Annealing in N_2 effectively inhibits the formation of Sn_xS secondary phases.

  15. Electrical characterization of the temperature dependence in CdTe/CdS heterojunctions deposited in-situ by pulsed laser deposition

    Science.gov (United States)

    Avila-Avendano, Jesus; Quevedo-Lopez, Manuel; Young, Chadwin

    2018-02-01

    The I-V and C-V characteristics of CdTe/CdS heterojunctions deposited in-situ by Pulsed Laser Deposition (PLD) were evaluated. In-situ deposition enables the study of the CdTe/CdS interface by avoiding potential impurities at the surface and interface as a consequence of exposure to air. The I-V and C-V characteristics of the resulting junctions were obtained at different temperatures, ranging from room temperature to 150 °C, where the saturation current (from 10-8 to 10-4 A/cm2), ideality factor (between 1 and 2), series resistance (from 102 to 105 Ω), built-in potential (0.66-0.7 V), rectification factor (˜106), and carrier concentration (˜1016 cm-3) were obtained. The current-voltage temperature dependence study indicates that thermionic emission is the main transport mechanism at the CdTe/CdS interface. This study also demonstrated that the built-in potential (Vbi) calculated using a thermionic emission model is more accurate than that calculated using C-V extrapolation since C-V plots showed a Vbi shift as a function of frequency. Although CdTe/CdS is widely used for photovoltaic applications, the parameters evaluated in this work indicate that CdTe/CdS heterojunctions could be used as rectifying diodes and junction field effect transistors (JFETs). JFETs require a low PN diode saturation current, as demonstrated for the CdTe/CdS junction studied here.

  16. Thermal stability of amorphous carbon films grown by pulsed laser deposition

    Science.gov (United States)

    Friedmann, T. A.; McCarty, K. F.; Barbour, J. C.; Siegal, M. P.; Dibble, Dean C.

    1996-03-01

    The thermal stability in vacuum of amorphous tetrahedrally coordinated carbon (a-tC) films grown on Si has been assessed by in situ Raman spectroscopy. Films were grown in vacuum on room-temperature substrates using laser fluences of 12, 22, and 45 J/cm2 and in a background gas of either hydrogen or nitrogen using a laser fluence of 45 J/cm2. The films grown in vacuum at high fluence (≳20J/cm2) show little change in the a-tC Raman spectra with temperature up to 800 °C. Above this temperature the films convert to glassy carbon (nanocrystalline graphite). Samples grown in vacuum at lower fluence or in a background gas (H2 or N2) at high fluence are not nearly as stable. For all samples, the Raman signal from the Si substrate (observed through the a-tC film) decreases in intensity with annealing temperature indicating that the transparency of the a-tC films is decreasing with temperature. These changes in transparency begin at much lower temperatures (˜200 °C) than the changes in the a-tC Raman band shape and indicate that subtle changes are occurring in the a-tC films at lower temperatures.

  17. Preparation of SiC and Ag/SiC coatings on TRISO surrogate particles by Pulsed Laser Deposition

    International Nuclear Information System (INIS)

    Lustfeld, Martin; Reinecke, Anne-Maria; Lippman, Wolfgang; Hurtado, Antonio; Ruiz-Moreno, Ana

    2014-01-01

    Recently published research results suggest significant advantages of using nanocrystalline instead of coarse grained SiC for nuclear applications. In this work it was attempted to prepare nanocrystalline SiC coatings on TRISO surrogate kernels using the pulsed laser deposition (PLD) process. As a plasma-based physical vapor deposition process, PLD allows the synthesis of dense and stoichiometric coatings in the amorphous or nanocrystalline phase. Two different types of TRISO surrogate kernels were used with outer diameters of 500 pm and 800 μm, respectively: plain Al_2O_3 kernels and ZrO_2 kernels coated with TRISO-like buffer and pyrolytic carbon (PyC) layers. In a second step, the PLD process was used for the preparation of multilayer coatings consisting of a Ag layer buried with a SiC layer. The samples were analyzed regarding their morphology, microstructure, crystalline phase and chemical composition using scanning electron microscopy (SEM), laser scanning microscopy (LSM), x-ray diffraction (XRD) and energy- dispersive x-ray spectroscopy (EDX). The samples will be used in future work for out-of-pile investigations of both thermal stability and Ag retention capability of nanocrystalline SiC layers. X-ray diflraction measurements did not confirm nano crystallinity of the SiC coatings, but rather indicated that the coatings were mainly amorphous possibly with a little fraction of the nanocrystalline phase. Further analyses showed that some of the SiC coatings had an adequate stoichiometric composition and that Ag/SiC multilayer coatings were successfully produced by PLD. Coatings on TRISO- like buffer and PyC layers exhibited good adhesion to the substrate while coatings on Al_2O_3 kernels were susceptible to delamination. The results suggest that PLD is generally suitable for SiC coating of TRISO particles. However, further optimization of the process parameters such as the coating temperature is needed to obtain fine- grained non-columnar SiC layers that are

  18. Pulsed inductive HF laser

    Energy Technology Data Exchange (ETDEWEB)

    Razhev, A M; Kargapol' tsev, E S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Churkin, D S; Demchuk, S V [Novosibirsk State University, Novosibirsk (Russian Federation)

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  19. Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition

    Science.gov (United States)

    Leedy, Kevin D.; Chabak, Kelson D.; Vasilyev, Vladimir; Look, David C.; Boeckl, John J.; Brown, Jeff L.; Tetlak, Stephen E.; Green, Andrew J.; Moser, Neil A.; Crespo, Antonio; Thomson, Darren B.; Fitch, Robert C.; McCandless, Jonathan P.; Jessen, Gregg H.

    2017-07-01

    Si-doped Ga2O3 thin films were fabricated by pulsed laser deposition on semi-insulating (010) β-Ga2O3 and (0001) Al2O3 substrates. Films deposited on β-Ga2O3 showed single crystal, homoepitaxial growth as determined by high resolution transmission electron microscopy and x-ray diffraction. Corresponding films deposited on Al2O3 were mostly single phase, polycrystalline β-Ga2O3 with a preferred (20 1 ¯ ) orientation. An average conductivity of 732 S cm-1 with a mobility of 26.5 cm2 V-1 s-1 and a carrier concentration of 1.74 × 1020 cm-3 was achieved for films deposited at 550 °C on β-Ga2O3 substrates as determined by Hall-Effect measurements. Two orders of magnitude improvement in conductivity were measured using native substrates versus Al2O3. A high activation efficiency was obtained in the as-deposited condition. The high carrier concentration Ga2O3 thin films achieved by pulsed laser deposition enable application as a low resistance ohmic contact layer in β-Ga2O3 devices.

  20. Pulsed atomic soliton laser

    International Nuclear Information System (INIS)

    Carr, L.D.; Brand, J.

    2004-01-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments

  1. Improvement in the electronic quality of pulsed laser deposited CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} thin films via post-deposition elemental sulfur annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Beres, M., E-mail: matthewcberes@gmail.com [University of California, Department of Mechanical Engineering, 6141 Etcheverry Hall, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Yu, K.M., E-mail: kinmanyu@cityu.edu.hk [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Syzdek, J., E-mail: jego.mejl@gmail.com [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Bio-Logic USA, 9050 Executive Park Dr NW, Knoxville, TN 37923 (United States); Mao, S.S., E-mail: ssmao@me.berkeley.edu [University of California, Department of Mechanical Engineering, 6141 Etcheverry Hall, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States)

    2016-06-01

    We synthesized CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} thin films on soda lime glass substrates using pulsed laser deposition and post-annealing under different conditions. Increasing substrate temperature during deposition and vacuum annealing after deposition both increased grain size but had negligible effect on the electronic properties of the films. As-deposited films demonstrated P-type conductivities with high carrier concentrations and low Hall mobilities, but annealing in elemental sulfur environment significantly improved the electronic properties of the films. We found that the incorporation of even small quantities of sulfur into the films reduced carrier concentrations by over three orders of magnitude and increased Hall mobilities by an order of magnitude. This resulted in films with resistivity ~ 5 Ω·cm suitable for photovoltaic applications. - Highlights: • CIGSe thin films were deposited by pulsed laser deposition. • Laser deposition parameters and annealing parameters were investigated. • As-deposited films demonstrated high hole concentrations and low Hall mobilities. • Elemental sulfur annealing significantly enhanced the electronic quality of films.

  2. Growth of epitaxial Pb(Zr,Ti)O3 films by pulsed laser deposition

    Science.gov (United States)

    Lee, J.; Safari, A.; Pfeffer, R. L.

    1992-10-01

    Lead zirconate titanate (PZT) thin films with a composition near the morphotropic phase boundary have been grown on MgO (100) and Y1Ba2Cu3Ox (YBCO) coated MgO substrates. Substrate temperature and oxygen pressure were varied to achieve ferroelectric films with a perovskite structure. Films grown on MgO had the perovskite structure with an epitaxial relationship with the MgO substrate. On the other hand, films grown on the YBCO/MgO substrate had an oriented structure to the surface normal with a misorientation in the plane parallel to the surface. The measured dielectric constant and loss tangent at 1 kHz were 670 and 0.05, respectively. The remnant polarization and coercive field were 42 μC/cm2 and 53 kV/cm. A large internal bias field (12 kV/cm) was observed in the as-deposited state of the undoped PZT films.

  3. Nanoscale monoclinic domains in epitaxial SrRuO3 thin films deposited by pulsed laser deposition

    Science.gov (United States)

    Ghica, C.; Negrea, R. F.; Nistor, L. C.; Chirila, C. F.; Pintilie, L.

    2014-07-01

    In this paper, we analyze the structural distortions observed by transmission electron microscopy in thin epitaxial SrRuO3 layers used as bottom electrodes in multiferroic coatings onto SrTiO3 substrates for future multiferroic devices. Regardless of the nature and architecture of the multilayer oxides deposited on the top of the SrRuO3 thin films, selected area electron diffraction patterns systematically revealed the presence of faint diffraction spots appearing in forbidden positions for the SrRuO3 orthorhombic structure. High-resolution transmission electron microscopy (HRTEM) combined with Geometric Phase Analysis (GPA) evidenced the origin of these forbidden diffraction spots in the presence of structurally disordered nanometric domains in the SrRuO3 bottom layers, resulting from a strain-driven phase transformation. The local high compressive strain (-4% ÷ -5%) measured by GPA in the HRTEM images induces a local orthorhombic to monoclinic phase transition by a cooperative rotation of the RuO6 octahedra. A further confirmation of the origin of the forbidden diffraction spots comes from the simulated diffraction patterns obtained from a monoclinic disordered SrRuO3 structure.

  4. Growth of Sr1-xNdxCuOy thin films by rf-magnetron sputtering and pulsed-laser deposition

    International Nuclear Information System (INIS)

    Sugii, N.; Ichikawa, M.; Kuba, K.; Sakurai, T.; Iamamoto, K.; Yamauchi, H.

    1992-01-01

    This paper reports on Sr 1- x Nd x CuO y thin films grown on SrTiO 3 substrates by rf-magnetron sputtering and pulsed-laser deposition. The sputter-deposited film with x=0 has an infinite-layer structure whose lattice constants are: a=0.390 nm and c=0.347 nm. When x is larger than 0.1, the films contain a phase of the Sr 14 Cu 24 O 41 structure. The laser-deposited films of Sr 1- x Nd x CuO y with x ≥ 0.075 were single phase of the infinite-layer structure. The lattice parameter c decreased and the lattice parameter a increased, as the Nd content, x, increased. The films with x=0.10 and 0.125 exhibited superconducting onset temperatures around 26 K. Weak Meissner signals were observed for these films at temperatures below 30 K

  5. Structural and electrical properties of room temperature pulsed laser deposited and post-annealed thin SrRuO3 films

    International Nuclear Information System (INIS)

    Gautreau, O.; Harnagea, C.; Normandin, F.; Veres, T.; Pignolet, A.

    2007-01-01

    Good quality strontium ruthenate (SrRuO 3 ) thin continuous films (15 to 125 nm thick) have been synthesized on silicon (100) substrates by room temperature pulsed laser deposition under vacuum followed by a post-deposition annealing, a route unexplored and yet not reported for SrRuO 3 film growth. The presence of an interfacial Sr 2 SiO 4 layer has been identified for films annealed at high temperature, and the properties of this interface layer as well as the properties of the SrRuO 3 film have been analyzed and characterized as a function of the annealing temperature. The room temperature resistivity of the SrRuO 3 films deposited by laser ablation at room temperature and post-annealed is 2000 μΩ.cm. A critical thickness of 120 nm has been determined above which the influence of the interface layer on the resistivity becomes negligible

  6. Enhancement on field emission characteristics of pulsed laser deposited diamondlike carbon films using Au precoatings

    International Nuclear Information System (INIS)

    Chuang, F.Y.; Sun, C.Y.; Cheng, H.F.; Lin, I.N.

    1997-01-01

    Using Au precoatings has been observed to significantly enhance the field emission properties of diamondlike carbon (DLC) films deposited on Si substrates. The electron emission can be turned on at a low field as 7 V/μm and a large emission current density as 2000 μA/cm 2 can be obtained at 20 V/μm applied field. However, preannealing the Au-coated Si substrates at 500 degree C for 30 min is necessary to achieve such a performance. Microscopic examination on surface and cross-sectional morphologies of the DLC/Au/Si films using atomic force microscopy and scanning electron microscopy, respectively, in conjunction with the elemental depth profile examination of these films using secondary ion mass spectroscopy, indicated that substantial interdiffusion between DLC, Au, and Si layers has occurred. Such kind of reaction is proposed to lower the resistance for electrons to transport across the interfaces and, thereafter, enhances the field emission properties of the DLC/Au/Si films. copyright 1997 American Institute of Physics

  7. Growth of Sr2CrReO6 epitaxial thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Orna, J.; Morellon, L.; Algarabel, P.A.; Pardo, J.A.; Magen, C.; Varela, M.; Pennycook, S.J.; De Teresa, J.M.; Ibarra, M.R.

    2010-01-01

    We report the growth, structural, magnetic, and electrical transport properties of epitaxial Sr 2 CrReO 6 thin films. We have succeeded in depositing films with a high crystallinity and a relatively large cationic order in a narrow window of growth parameters. The epitaxy relationship is Sr 2 CrReO 6 (SCRO) (0 0 1) [1 0 0]-parallel SrTiO 3 (STO) (0 0 1) [1 1 0] as determined by high-resolution X-ray diffraction and scanning transmission electron microscopy (STEM). Typical values of saturation magnetization of M S (300 K)=1 μ B /f.u. and ρ (300 K)=2.8 mΩ cm have been obtained in good agreement with previous published results in sputtered epitaxial thin films. We estimate that the antisite defects concentration in our thin films is of the order of 14%, and the measured Curie temperature is T C =481(2) K. We believe these materials be of interest as electrodes in spintronic devices.

  8. Ion beam modification of structural and optical properties of GeO2 thin films deposited at various substrate temperatures using pulsed laser deposition

    Science.gov (United States)

    Rathore, Mahendra Singh; Vinod, Arun; Angalakurthi, Rambabu; Pathak, A. P.; Singh, Fouran; Thatikonda, Santhosh Kumar; Nelamarri, Srinivasa Rao

    2017-11-01

    High energy heavy ion irradiation-induced modification of high quality crystalline GeO2 thin films grown at different substrate temperatures ranging from 100 to 500 °C using pulsed laser deposition has been investigated. The pristine films were irradiated with 100 MeV Ag7+ ions at fixed fluence of 1 × 1013 ions/cm2. These pristine and irradiated films have been characterized using X-ray diffraction, atomic force microscopy, Raman spectroscopy, Fourier transform infrared and photoluminescence spectroscopy. The XRD and Raman results of pristine films confirm the formation of hexagonal structure of GeO2 films, whereas the irradiation eliminates all the peaks except major GeO2 peak of (101) plane. It is evident from the XRD results that crystallite size changes with substrate temperature and SHI irradiation. The surface morphology of films was studied by AFM. The functional group of pristine and irradiated films was investigated by IR transmission spectra. Pristine films exhibited strong photoluminescence around 342 and 470 nm due to oxygen defects and a red shift in the PL bands is observed after irradiation. Possible mechanism of tuning structural and optical properties of pristine as well as irradiated GeO2 films with substrate temperature and ion beam irradiation has been reported in detail.

  9. Pulsed Laser Deposition of Zinc Sulfide Thin Films on Silicon: The influence of substrate orientation and preparation on thin film morphology and texture

    OpenAIRE

    Heimdal, Carl Philip J

    2014-01-01

    The effect of orientation and preparation of silicon substrates on the growth morphology and crystalline structure of ZnS thin films deposited by pulsed laser deposition (PLD) has been investigated through scanning electron microscopy (SEM) and grazing incidence x-ray diffraction (GIXRD). ZnS thin films were grown on silicon (100) and (111), on HF-treated and untreated silicon (100) as well as substrates coated with Al, Ge and Au. The ZnS films showed entirely different morphologies for ZnS f...

  10. The properties of samarium-doped zinc oxide/phthalocyanine structure for optoelectronics prepared by pulsed laser deposition and organic molecular evaporation

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Marešová, Eva; Fitl, Přemysl; Vlček, Jan; Bergmann, M.; Vondráček, Martin; Yatskiv, Roman; Bulíř, Jiří; Hubík, Pavel; Hruška, Petr; Drahokoupil, Jan; Abdellaoui, N.; Vrňata, M.; Lančok, Ján

    2016-01-01

    Roč. 122, č. 3 (2016), 1-8, č. článku 225. ISSN 0947-8396 R&D Projects: GA MŠk(CZ) LG15050; GA ČR(CZ) GAP108/11/0958; GA MŠk(CZ) LM2011029; GA ČR(CZ) GA14-10279S; GA MŠk(CZ) 7AMB14FR010 Institutional support: RVO:68378271 ; RVO:67985882 Keywords : samarium-doped zinc oxide zinc/phthalocyanine deposition * evaporation * pulsed laser deposition * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2016

  11. Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films

    Science.gov (United States)

    Madiba, I. G.; Émond, N.; Chaker, M.; Thema, F. T.; Tadadjeu, S. I.; Muller, U.; Zolliker, P.; Braun, A.; Kotsedi, L.; Maaza, M.

    2017-07-01

    Vanadium oxide films are considered suitable coatings for various applications such as thermal protective coating of small spacecrafts because of their thermochromic properties. While in outer space, such coating will be exposed to cosmic radiations which include γ-rays. To study the effect of these γ-rays on the coating properties, we have deposited vanadium dioxide (VO2) films on silicon substrates and subjected them to extensive γ-irradiations with typical doses encountered in space missions. The prevalent crystallographic phase after irradiation remains the monoclinic VO2 phase but the films preferential orientation shifts to lower angles due to the presence of disordered regions caused by radiations. Raman spectroscopy measurements also evidences that the VO2 structure is slightly affected by gamma irradiation. Indeed, increasing the gamma rays dose locally alters the crystalline and electronic structures of the films by modifying the V-V inter-dimer distance, which in turns favours the presence of the VO2 metallic phase. From the XPS measurements of V2p and O1s core level spectra, an oxidation of vanadium from V4+ towards V5+ is revealed. The data also reveal a hydroxylation upon irradiation which is corroborated by the vanishing of a low oxidation state peak near the Fermi energy in the valence band. Our observations suggest that gamma radiations induce the formation of Frenkel pairs. Moreover, THz transmission measurements show that the long range structure of VO2 remains intact after irradiation whilst the electrical measurements evidence that the coating resistivity decreases with gamma irradiation and that their transition temperature is slightly reduced for high gamma ray doses. Even though gamma rays are only one of the sources of radiations that are encountered in space environment, these results are very promising with regards to the potential of integration of such VO2 films as a protective coating for spacecrafts.

  12. Unexpected formation by pulsed laser deposition of nanostructured Fe/olivine thin films on MgO substrates

    International Nuclear Information System (INIS)

    Legrand, C.; Dupont, L.; Davoisne, C.; Le Marrec, F.; Perriere, J.; Baudrin, E.

    2011-01-01

    Olivine-type LiFePO 4 thin films were grown on MgO (1 0 0) substrates by pulsed laser deposition (PLD). The formation of an original nanostructure is evidenced by transmission electron microscopy measurements. Indeed, on focused ion beam prepared cross sections of the thin film, we observe, the amazing formation of metallic iron/olivine nanostructures. The appearance of such a structure is explained owing to a topotactic relation between the two phases as well as a strong Mg diffusion from the substrate to the film surface. Magnesium migration is thus concomitant with the creation of metallic iron domains that grow from the core of the film to the surface leading to large protuberances. To the best of our knowledge, this is the first report on iron extrusion from the olivine-type LiFePO 4 . -- Graphical Abstract: HRTEM image of olivine/Fe nanostructure obtained by PLD. Display Omitted Research highlights: → This manuscript describes the attempt to prepare textured LiFePO 4 by PLD. This is presently a challenge to better understand the physical properties of the material, used as cathode in lithium ion batteries. → We describe for the first time the iron extrusion from this material. Indeed, there were recent reports on the possible non-stoichiometry, i.e. lithium or oxygen. However, on the iron side, only some defect were observed for hydrothermally prepared material but the extrusion is new in this paper. → We prepared interesting nanostructures which could be used for different fundamental studies: electric and magnetic measurements.

  13. Pulsed laser deposition of SmFeAsO1-δ on MgO(100) substrates

    Science.gov (United States)

    Haindl, Silvia; Kinjo, Hiroyuki; Hanzawa, Kota; Hiramatsu, Hidenori; Hosono, Hideo

    2018-04-01

    Layered iron oxyarsenides are novel interesting semimetallic compounds that are itinerant antiferromagnets in their ground state with a transition to high-temperature superconductivity upon charge carrier doping. The rare earth containing mother compounds offer rich physics due to different antiferromagnetic orderings: the alignment of Fe magnetic moments within the FeAs sublattice, which is believed to play a role for the superconducting pairing mechanism, and the ordering of the rare-earth magnetic moments at low temperatures. Here, we present thin film preparation and a film growth study of SmFeAsO on MgO(100) substrates using pulsed laser deposition (PLD). In general, the PLD method is capable to produce iron oxyarsenide thin films, however, competition with impurity phase formation narrows the parameter window. We assume that the film growth in an ultra-high vacuum (UHV) environment results in an oxygen-deficient phase, SmFeAsO1-δ. Despite the large lattice misfit, we find epitaxial oxyarsenide thin film growth on MgO(100) with evolving film thickness. Bragg reflections are absent in very thin films although they locally show indications for pseudomorphic growth of the first unit cells. We propose the possibility for a Stranski-Krastanov growth mode as a result of the large in-plane lattice misfit between the iron oxypnictide and the MgO unit cells. A columnar 3-dimensional film growth mode dominates and the surface roughness is determined by growth mounds, a non-negligible parameter for device fabrication as well as in the application of surface sensitive probes. Furthermore, we found evidence for a stratified growth in steps of half a unit cell, i.e. alternating growth of (FeAs)- and (SmO1-δ)+ layers, the basic structural components of the unit cell. We propose a simple model for the growth kinetics of this compound.

  14. ZnO homoepitaxy on the O polar face of hydrothermal and melt-grown substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, D.J. [Nanovation SARL, Orsay (France); Technical Univ. of Troyes (France); CNRS, Troyes (France); Hosseini Teherani, F. [Nanovation SARL, Orsay (France); Largeteau, A.; Demazeau, G. [ICMCB-CNRS, Bordeaux 1 University (Science and Technology), Pessac (France); Moisson, C.; Turover, D. [Novasic, Savoie Technolac, Arche Bat. 4, BP 267, Le Bourget du Lac (France); Nause, J. [Cermet Inc., Atlanta, GA (United States); Garry, G. [Thales Research, Domaine de Corbeville, Orsay (France); Kling, R.; Gruber, T. [Ulm University, Department of Semiconductor Physics, Ulm (Germany); Waag, A. [Braunschweig Technical University, Institute of Semiconductor Technology, Braunschweig (Germany); Jomard, F.; Galtier, P.; Lusson, A. [LPSC-CNRS, Meudon (France); Monteiro, T.; Soares, M.J.; Neves, A.; Carmo, M.C.; Peres, M. [University of Aveiro, Physics Department, Aveiro (Portugal); Lerondel, G.; Hubert, C. [Technical University of Troyes-CNRS (FRE2671), 12 rue Marie Curie, BP 2060, Troyes (France)

    2007-07-15

    2 cm diameter hydrothermal ZnO crystals were grown and then made into substrates using both mechanical and chemical-mechanical polishing (CMP). CMP polishing showed superior results with an (0002) {omega} scan full width half maximum (FWHM) of 67 arcsec and an root mean square (RMS) roughness of 2 Aa. In comparison, commercial melt-grown substrates exhibited broader X-ray diffraction (XRD) linewidths with evidence of sub-surface crystal damage due to polishing, including a downward shift of c-lattice parameter. Secondary ion mass spectroscopy revealed strong Li, Fe, Co, Al and Si contamination in the hydrothermal crystals as opposed to the melt-grown substrates, for which glow discharge mass spectroscopy studies had reported high levels of Pb, Fe, Cd and Si. Low temperature photoluminescence (PL) studies indicated that the hydrothermal crystal had high defect and/or impurity concentrations compared with the melt-grown substrate. The dominant bound exciton for the melt-grown substrate was indexed to Al. ZnO films were grown using pulsed laser deposition. The melt-grown substrates gave superior results with XRD (0002) {omega} and 2{theta}/{omega} WHM of 124 and 34 arcsec, respectively. Atomic force microscope measurements indicated a low RMS roughness (1.9 nm) as confirmed by fringes in the XRD 2{theta}/{omega} scan. It was suggested that the improvement in XRD response relative to the substrate might be due to ''healing'' of sub-surface polishing damage due to the elevated T{sub s} used for the growth. Indeed the c-lattice parameter for the homoepitaxial layer on the melt-grown substrate had become that which would be expected for strain-free ZnO. Furthermore, the stability of the PL peak positions relative to bulk ZnO, confirmed that the films appear practically strain free. (orig.)

  15. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyan, Rajesh [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); Oulad Elhmaidi, Zakaria [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); Sekkat, Zouheir [Optics & Photonics Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat (Morocco); Abd-lefdil, Mohammed [University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); El Khakani, My Ali, E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada)

    2017-02-28

    Highlights: • High quality CZTS thin films grown by means of PLD technique without resorting to any post sulfurization process. • Effect of thermal annealing treatments (in the 200–500 °C range) on the structural, morphological and optoelectronic properties of PLD-CZTS films. • Experimental determination of key optoelectronic parameters (i.e.; E{sub g}, VBM, ϕ, I{sub p}, and χ) enabling the reconstruction of energy band electronic structure of the PLD-CZTS films. • Investigation on the energy band alignments of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials. - Abstract: We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (T{sub a}), but their crystallinity is much improved for T{sub a} ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with T{sub a} (from ∼14 nm at RT to 70 nm at T{sub a} = 500 °C with a value around 40 nm for T{sub a} = 300–400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV–vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at T{sub a} = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS

  16. Electrical and optical characteristics of ITO films by pulsed laser deposition using a 10 wt.% SnO2-doped In2O3 ceramic target

    International Nuclear Information System (INIS)

    Kim, Sang Hyeob; Park, Nae-Man; Kim, TaeYoub; Sung, GunYong

    2005-01-01

    We have investigated the effect of the oxygen pressure and the deposition temperature on the electrical and optical properties of the Sn-doped indium oxide (ITO) films on quartz glass substrate by pulsed laser deposition (PLD) using a 10 wt.% SnO 2 -doped In 2 O 3 target. The resistivity and the carrier concentration of the films were decreased due to the decrease of the oxygen vacancy while increasing the oxygen pressure. With increasing deposition temperature, the resistivity of the films was decreased and the carrier concentration was increased due to the grain growth and the enhancement of the Sn diffusion. We have optimized the PLD process to deposit a highly conductive and transparent ITO film, which shows the optical transmittance of 88% and the resistivity of 2.49x10 -4 Ω cm for the film thickness of 180 nm

  17. Pulsed laser deposited MnCo{sub 2}O{sub 4} protective layer on SS430 for solid oxide fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Anshu, E-mail: gauranshu20@gmail.com, E-mail: ahamed.vza@gmail.com; Mohiddon, Md. Ahamad, E-mail: gauranshu20@gmail.com, E-mail: ahamed.vza@gmail.com [National Institute of Technology Andhra Pradesh, Tadepalliguem 534101 (India); Prasad, Muvva D. [UGC Networking Centre, School of Chemistry, University of Hyderabad, Hyderabad 500046, India. Phone:+91-40-23134382, Fax:+91-40-23010227 (India)

    2016-05-23

    The growth and oxidation study of pulsed laser deposited MnCo{sub 2}O{sub 4} protective layer on SS430 substrate for solid oxide fuel cell application is demonstrated. MnCo{sub 2}O{sub 4} has been achieved in three different ways including, deposition at higher substrate temperature (700°C), and deposition at room temperature on pre-oxidized and untreated SS430 substrate followed by annealing at 700°C for 2 hrs. X-ray diffraction and Raman spectroscopy has been applied to demonstrate the kind of phases developed in each case. These three samples were subjected to heat treatment at 750°C for 5 hr. The extent of undesired Fe{sub 2}O{sub 3} phase formation in the post deposition heat treated samples is discussed based on Raman spectroscopic results.

  18. Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daeho; Pan, Heng; Kim, Eunpa; Grigoropoulos, Costas P. [University of California, Department of Mechanical Engineering, Berkeley, CA (United States); Ko, Seung Hwan [Korea Advanced Institute of Science and Technology (KAIST), Department of Mechanical Engineering, Daejeon (Korea, Republic of); Park, Hee K. [AppliFlex LLC, Sunnyvale, CA (United States)

    2012-04-15

    A solution-processable, high-concentration transparent ZnO nanoparticle (NP) solution was successfully synthesized in a new process. A highly transparent ZnO thin film was fabricated by spin coating without vacuum deposition. Subsequent ultra-short-pulsed laser annealing at room temperature was performed to change the film properties without using a blanket high temperature heating process. Although the as-deposited NP thin film was not electrically conductive, laser annealing imparted a large conductivity increase and furthermore enabled selective annealing to write conductive patterns directly on the NP thin film without a photolithographic process. Conductivity enhancement could be obtained by altering the laser annealing parameters. Parametric studies including the sheet resistance and optical transmittance of the annealed ZnO NP thin film were conducted for various laser powers, scanning speeds and background gas conditions. The lowest resistivity from laser-annealed ZnO thin film was about 4.75 x 10{sup -2} {omega} cm, exhibiting a factor of 10{sup 5} higher conductivity than the previously reported furnace-annealed ZnO NP film and is even comparable to that of vacuum-deposited, impurity-doped ZnO films within a factor of 10. The process developed in this work was applied to the fabrication of a thin film transistor (TFT) device that showed enhanced performance compared with furnace-annealed devices. A ZnO TFT performance test revealed that by just changing the laser parameters, the solution-deposited ZnO thin film can also perform as a semiconductor, demonstrating that laser annealing offers tunability of ZnO thin film properties for both transparent conductors and semiconductors. (orig.)

  19. Crystalline nanostructured Cu doped ZnO thin films grown at room temperature by pulsed laser deposition technique and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Qasem A. [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Rao, Saleem G.; Yamani, Zain H. [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, Mohammed A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2013-04-01

    We report structural and optical properties of Cu doped ZnO (ZnO:Cu) thin films deposited on glass substrate at room temperature by pulsed laser deposition (PLD) method without pre and post annealing contrary to all previous reports. For preparation of (ZnO:Cu) composites pure Zn and Cu targets in special geometrical arrangements were exposed to 248 nm radiations generated by KrF exciter laser. The laser energy was 200 mJ with 10 Hz frequency and 20 ns pulse width. The effect of Cu concentration on crystal structure, morphology, and optical properties were investigated by XRD, FESEM and photoluminescence spectrometer respectively. A systematic shift in ZnO (0 0 2) peak with Cu concentration observed in XRD spectra demonstrated that Cu ion has been incorporated in ZnO lattice. Uniform film with narrow size range grains were observed in FESEM images. The photoluminescence (PL) spectra measured at room temperature revealed a systematic red shift in ZnO emission peak and decrease in the band gap with the increase in Cu concentration. These results entail that PLD technique can be realized to deposit high quality crystalline ZnO and ZnO:Cu thin films without pre and post heat treatment which is normally practiced worldwide for such structures.

  20. Pulsed Laser Cladding of Ni Based Powder

    Science.gov (United States)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.

    2017-06-01

    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  1. Pulsed laser deposition of Ag nanoparticles on titanium hydroxide/oxide nanobelt arrays for highly sensitive surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Jing, Yuting; Wang, Huanwen; Zhao, Jie; Yi, Huan; Wang, Xuefeng

    2015-01-01

    Highlights: • Silver nanoparticles (NPs) were deposited on Ti(OH) 4 nanobelt by pulsed laser deposition (PLD). • The highest enhancement factor of 10 6 and a maximum relative standard deviation (RSD) of 0.18. • Ag 2 O play important role for the high sensitivity Raman phenomenon. • Charge transfer from Ag NPs is also responsible for the enhancement ability. - Abstract: Surface-enhanced Raman scattering (SERS) substrate of Ti(OH) 4 nanobelt arrays (NBAs) was synthesized by a hydrothermal reaction, on which silver nanoparticles (NPs) were deposited by pulsed laser deposition (PLD). Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) revealed the effective high specific surface area with silver NPs decorated on three-dimensional NBAs. Using rhodamine 6G (R6G) as an analyte molecule, the highest enhancement factor of 10 6 and a maximum relative standard deviation (RSD) of 0.18 were obtained. It has been found that the specific morphology of these composite nanobelt arrays and the formation of Ag 2 O play important role for the high sensitivity Raman phenomenon. In addition, the surface plasmon resonance wavelength of Ag decorated Ti(OH) 4 NBAs and the charge transfer from Ag NPs are also responsible for the enhancement ability. For comparison SERS was investigated with silver particles decorated on TiO 2 NBAs, which is much less active

  2. Nonlinear optical studies on 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    Energy Technology Data Exchange (ETDEWEB)

    Matei, Andreea [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Marinescu, Maria, E-mail: maria.marinescu@chimie.unibuc.ro [UB - University of Bucharest, Faculty of Chemistry, 90-92 Şoseaua Panduri, Sector 5, RO-010184, Bucharest (Romania); Constantinescu, Catalin, E-mail: catalin.constantinescu@inflpr.ro [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Ion, Valentin; Mitu, Bogdana [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Ionita, Iulian [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); UB - University of Bucharest, Faculty of Physics, 405 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Dinescu, Maria [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Emandi, Ana [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); UB - University of Bucharest, Faculty of Chemistry, 90-92 Şoseaua Panduri, Sector 5, RO-010184, Bucharest (Romania)

    2016-06-30

    Graphical abstract: - Highlights: • A newly synthesized ferrocene-derivative exhibits SHG potential. • Matrix-assisted pulsed laser evaporation is employed for thin film fabrication. • The optical properties of the films are investigated, presented and discussed. • At maximum laser output power, the SHG signal is strongly influenced by thin film thickness. - Abstract: We present results on a new, laboratory synthesized ferrocene-derivative, i.e. 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid. Thin films with controlled thickness are deposited by matrix-assisted pulsed laser evaporation (MAPLE), on quartz and silicon substrates, with the aim of evaluating the nonlinear optical properties for potential optoelectronic applications. Dimethyl sulfoxide was used as matrix, with 1% wt. concentration of the guest compound. The frozen target is irradiated by using a Nd:YAG laser (4ω/266 nm, 7 ns pulse duration, 10 Hz repetition rate), at low fluences ranging from 0.1 to 1 J/cm{sup 2}. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to probe the surface morphology of the films. Fourier transform infrared (FTIR) and Raman spectroscopy reveal similar structure of the thin film material when compared to the starting material. The optical properties of the thin films are investigated by spectroscopic-ellipsometry (SE), and the refractive index dependence with respect to temperature is studied. The second harmonic generation (SHG) potential is assessed by using a femtosecond Ti:sapphire laser (800 nm, 60–100 fs pulse duration, 80 MHz repetition rate), at 200 mW maximum output power, revealing that the SHG signal intensity is strongly influenced by the films’ thickness.

  3. Pulsed laser-deposited nanocrystalline GdB{sub 6} thin films on W and Re as field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Suryawanshi, Sachin R.; More, Mahendra A. [Savitribai Phule Pune University, Department of Physics, Centre for Advanced Studies in Materials Science and Condensed Matter Physics, Pune (India); Singh, Anil K.; Sinha, Sucharita [Bhabha Atomic Research Centre, Laser and Plasma Technology Division, Trombay, Mumbai (India); Phase, Deodatta M. [UGC-DAE Consortium for Scientific Research Indore Centre, Indore (India); Late, Dattatray J. [CSIR-National Chemical Laboratory, Physical and Materials Chemistry Division, Pune (India)

    2016-10-15

    Gadolinium hexaboride (GdB{sub 6}) nanocrystalline thin films were grown on tungsten (W), rhenium (Re) tips and foil substrates using optimized pulsed laser deposition (PLD) technique. The X-ray diffraction analysis reveals formation of pure, crystalline cubic phase of GdB{sub 6} on W and Re substrates, under the prevailing PLD conditions. The field emission (FE) studies of GdB{sub 6}/W and GdB{sub 6}/Re emitters were performed in a planar diode configuration at the base pressure ∝10{sup -8} mbar. The GdB{sub 6}/W and GdB{sub 6}/Re tip emitters deliver high emission current densities of ∝1.4 and 0.811 mA/cm{sup 2} at an applied field of ∝6.0 and 7.0 V/μm, respectively. The Fowler-Nordheim (F-N) plots were found to be nearly linear showing metallic nature of the emitters. The noticeably high values of field enhancement factor (β) estimated using the slopes of the F-N plots indicate that the PLD GdB{sub 6} coating on W and Re substrates comprises of high-aspect-ratio nanostructures. Interestingly, the GdB{sub 6}/W and GdB{sub 6}/Re planar emitters exhibit excellent current stability at the preset values over a long-term operation, as compared to the tip emitters. Furthermore, the values of workfunction of the GdB{sub 6}/W and GdB6/Re emitters, experimentally measured using ultraviolet photoelectron spectroscopy, are found to be same, ∝1.6 ± 0.1 eV. Despite possessing same workfunction value, the FE characteristics of the GdB{sub 6}/W emitter are markedly different from that of GdB{sub 6}/Re emitter, which can be attributed to the growth of GdB{sub 6} films on W and Re substrates. (orig.)

  4. High energy HF pulsed lasers

    International Nuclear Information System (INIS)

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  5. Structural, electrical and magnetic studies of Co:SnO{sub 2} and (Co,Mo):SnO{sub 2} films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dalui, S., E-mail: ssdalui@fc.ul.pt [University of Lisbon, Physics Dept. and ICEMS, 1749-016 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa and ICEMS, 1959-007 Lisboa (Portugal); Rout, S. [University of Lisbon, Physics Dept. and ICEMS, 1749-016 Lisboa (Portugal); Silvestre, A.J. [Instituto Superior de Engenharia de Lisboa and ICEMS, 1959-007 Lisboa (Portugal); Lavareda, G. [New University of Lisbon, Mater. Sci. Dept. and CTS, 2829-516 Caparica (Portugal); Pereira, L.C.J. [Instituto Superior Técnico, ITN and CFMCUL, 2686-953 Sacavém (Portugal); Brogueira, P. [Instituto Superior Técnico, Physics Dept. and ICEMS, 1049-001 Lisboa (Portugal); Conde, O. [University of Lisbon, Physics Dept. and ICEMS, 1749-016 Lisboa (Portugal)

    2013-08-01

    Here we report on the structural, optical, electrical and magnetic properties of Co-doped and (Co,Mo)-codoped SnO{sub 2} thin films deposited on r-cut sapphire substrates by pulsed laser deposition. Substrate temperature during deposition was kept at 500 °C. X-ray diffraction analysis showed that the undoped and doped films are crystalline with predominant orientation along the [1 0 1] direction regardless of the doping concentration and doping element. Optical studies revealed that the presence of Mo reverts the blue shift trend observed for the Co-doped films. For the Co and Mo doping concentrations studied, the incorporation of Mo did not contribute to increase the conductivity of the films or to enhance the ferromagnetic order of the Co-doped films.

  6. Effects of introduction of argon on structural and transparent conducting properties of ZnO-In2O3 thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Moriga, Toshihiro; Mikawa, Michio; Sakakibara, Yuji; Misaki, Yukinori; Murai, Kei-ichiro; Nakabayashi, Ichiro; Tominaga, Kikuo; Metson, James B.

    2005-01-01

    Indium-zinc oxide thin films were deposited on a glass substrate from a ZnO and In 2 O 3 mixed target by a pulsed laser deposition technique. The effects on surface texture, structure and transparent conducting properties of the introduction of argon into the chamber during the depositions of amorphous and homologous ZnO-In 2 O 3 thin films were examined. The compositional range where amorphous films formed was widened by the introduction of argon. Resistivity in the region where the amorphous phase appeared increased slightly, with an increase of zinc content, due to the counteractions of decreased Hall mobility and increased carrier concentration. Introduction of argon improved surface roughness of the films and reduced and regulated particle and/or crystallite sizes of the films

  7. Effect of nitrogen environment on NdFeB thin films grown by radio frequency plasma beam assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    Constantinescu, C.; Patroi, E.; Codescu, M.; Dinescu, M.

    2013-01-01

    Highlights: ► NdFeB thin films grown by PLD, in vacuum and in nitrogen, are presented. ► Nitrogen inclusion in thin film structures is related to improved coercitivity. ► Magnetical, optical and morphological properties of the thin films are discussed. - Abstract: NdFeB is a very attractive material for applications in electrical engineering and in electronics, for high-tech devices where high coercive field and high remanence are needed. In this paper we demonstrate that the deposition of nitrogen doped NdFeB thin films by pulsed laser deposition, in the presence of a nitrogen radiofrequency plasma beam, exhibit improved magnetic properties and surface morphology, when compared to vacuum deposited NdFeB layers. A Nd:YAG pulsed laser (3ω and 4ω) was focused on a NdFeB target, in vacuum, or in the presence of a nitrogen plasma beam. Substrate temperature (RT-850 °C), nitrogen gas pressure, and radiofrequency power (75–150 W), were particularly varied. The thin films were investigated by means of X-ray diffraction, atomic force microscopy, scanning electron microscopy, spectroscopic-ellipsometry, and vibrating sample magnetometry.

  8. Effect of nitrogen environment on NdFeB thin films grown by radio frequency plasma beam assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, C., E-mail: catalin.constantinescu@inflpr.ro [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor bd., Magurele, RO-077125, Bucharest (Romania); Patroi, E.; Codescu, M. [National Institute for Research and Development in Electrical Engineering - Advanced Research, 313 Spl. Unirii, Sector 3, RO-030138, Bucharest (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor bd., Magurele, RO-077125, Bucharest (Romania)

    2013-03-01

    Highlights: Black-Right-Pointing-Pointer NdFeB thin films grown by PLD, in vacuum and in nitrogen, are presented. Black-Right-Pointing-Pointer Nitrogen inclusion in thin film structures is related to improved coercitivity. Black-Right-Pointing-Pointer Magnetical, optical and morphological properties of the thin films are discussed. - Abstract: NdFeB is a very attractive material for applications in electrical engineering and in electronics, for high-tech devices where high coercive field and high remanence are needed. In this paper we demonstrate that the deposition of nitrogen doped NdFeB thin films by pulsed laser deposition, in the presence of a nitrogen radiofrequency plasma beam, exhibit improved magnetic properties and surface morphology, when compared to vacuum deposited NdFeB layers. A Nd:YAG pulsed laser (3{omega} and 4{omega}) was focused on a NdFeB target, in vacuum, or in the presence of a nitrogen plasma beam. Substrate temperature (RT-850 Degree-Sign C), nitrogen gas pressure, and radiofrequency power (75-150 W), were particularly varied. The thin films were investigated by means of X-ray diffraction, atomic force microscopy, scanning electron microscopy, spectroscopic-ellipsometry, and vibrating sample magnetometry.

  9. Processing and properties of Pb(Mg(1/3)Nb(2/3))O3--PbTiO3 thin films by pulsed laser deposition

    Science.gov (United States)

    Tantigate, C.; Lee, J.; Safari, A.

    1995-03-01

    The objectives of this study were to prepare in situ Pb(Mg(1/3)Nb(2/3))O3 (PMN) and PMN-PT thin films by pulsed laser deposition and to investigate the electrical features of thin films for possible dynamic random access memory (DRAM) and microactuator applications. The impact of processing parameters such compositions, substrate temperature, and oxygen pressure on perovskite phase formation and dielectric characteristics were reported. It was found that the highest dielectric constant, measured at room temperature and 10 kHz, was attained from the PMN with 99% perovskite.

  10. Optical and microwave dielectric properties of pulsed laser deposited Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Andrews; Goud, J. Pundareekam; Raju, K. C. James [School of Physics, University of Hyderabad, Hyderabad, Telangana 500046 (India); Emani, Sivanagi Reddy [Advanced Center of Research in High Energy Materials (ACRHEM), School of Physics, University of Hyderabad, Telangana 500046 (India)

    2016-05-23

    Optical properties of pulsed laser deposited (PLD) sodium bismuth titanate thin films (NBT), are investigated at wavelengths of 190-2500 nm. Microwave dielectric properties were investigated using the Split Post Dielectric Resonator (SPDR) technique. At 10 GHz, the NBT films have a dielectric constant of 205 and loss tangent of 0.0373 at room temperature. The optical spectra analysis reveals that NBT thin films have an optical band gap E{sub g}=3.55 eV and it has a dielectric constant of 3.37 at 1000 nm with dielectric loss of 0.299. Hence, NBT is a promising candidate for photonic device applications.

  11. Angular distribution of species in pulsed laser deposition of LaxCa1-xMnO3

    Science.gov (United States)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-05-01

    The angular distribution of species from a La0.4Ca0.6MnO3 target irradiated with a 248 nm nanosecond pulsed laser was investigated by Rutherford backscattering spectrometry for four different Ar pressures. The film thickness angular distribution was also analyzed using profilometry. Depending on the background gas pressure, the target to substrate distance, and the angular location the film thickness and composition varies considerably. In particular the film composition could vary by up to 17% with respect to the composition of the target material.

  12. Growth of LiMn{sub 2}O{sub 4} thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries

    Energy Technology Data Exchange (ETDEWEB)

    Julien, C. [Univ. Pierre et Marie Curie, Paris (France). LMDH; Haro-Poniatowski, E. [Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, Mexico (Mexico); Camacho-Lopez, M.A. [LMDH, UMR 7603, Universite Pierre et Marie Curie, 4 place Jussieu, 75252, Paris (France); Escobar-Alarcon, L. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico (Mexico); Jimenez-Jarquin, J. [Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, Mexico (Mexico)

    2000-03-01

    Films of LiMn{sub 2}O{sub 4} were grown by pulsed-laser deposition (PLD) onto silicon wafers using sintered targets which consisted in the mixture of LiMn{sub 2}O{sub 4} and Li{sub 2}O powders. The film formation has been studied as a function of the preparation conditions, i.e. composition of the target, substrate temperature, and oxygen partial pressure in the deposition chamber. Composition, morphology and structural properties of PLD films have been investigated using Rutherford backscattering spectroscopy, scanning electron microscopy, X-ray diffraction and Raman scattering spectroscopy. The films deposited from target LiMn{sub 2}O{sub 4}+15% Li{sub 2}O have an excellent crystallinity when deposited onto silicon substrate maintained at 300 C in an oxygen partial pressure of 100 mTorr. It is found that such a film crystallizes in the spinel structure (Fd3m symmetry) as evidenced by X-ray diffraction. Well-textured polycrystalline films exhibit crystallite size of 300 nm. Pulsed-laser deposited LiMn{sub 2}O{sub 4} thin films obtained with a polycrystalline morphology were successfully used as cathode materials in lithium microbatteries. The Li//LiMn{sub 2}O{sub 4} thin film cells have been tested by cyclic voltammetry and galvanostatic charge-discharge techniques in the potential range 3.0-4.2 V. Specific capacity as high as 120 mC/cm{sup 2} {mu}m was measured on polycrystalline films. The chemical diffusion coefficients for the Li{sub x}Mn{sub 2}O{sub 4} thin films appear to be in the range of 10{sup -11}-10{sup -12} cm{sup 2}/s. Electrochemical measurements show a good cycleability of PLD films when cells are charged-discharged at current densities of 5-25 {mu}A/cm{sup 2}. (orig.)

  13. Electrical and structural properties of La0.8Sr0.2Mn0.5Co0.5O3±δ films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, Nini; Christensen, Bo Toftmann; Schou, Jørgen

    2005-01-01

    La0.8Sr0.2Mn0.5Co0.5O3 (LSMCO) films for the use as contact layers or protective coatings in solid oxide fuel cells (SOFC) have been deposited on glass substrates by pulsed laser deposition (PLD). PLD is an obvious technique for thin film production of complex oxides, because of the ability...

  14. Structural, optical and magnetic properties of Mn doped ZnO thin films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, Arun, E-mail: aruncusat@gmail.com [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Jayaraj, M.K., E-mail: mkj@cusat.ac.in [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Kumar, Mukesh; Chandra, Ramesh [Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee 247 667, Uttarakhand (India)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Defect induced Raman active modes in Mn doped ZnO thin films. Black-Right-Pointing-Pointer Room temperature ferromagnetism. Black-Right-Pointing-Pointer Morphological variations of ZnO thin films with Mn doping. Black-Right-Pointing-Pointer Variation of refractive index of ZnO thin films with Mn doping. - Abstract: Zn{sub 1-x}Mn{sub x}O thin films were grown by pulsed laser deposition. The phase purity and the structure were confirmed by X-ray diffraction studies. The films have a transmittance more than 80% in the visible region. The refractive index of Zn{sub 0.90}Mn{sub 0.10}O films is found to be 1.77 at 550 nm. The presence of non-polar E{sub 2}{sup high} and E{sub 2}{sup low} Raman modes in thin films indicates that 'Mn' doping does not change the wurtzite structure of ZnO. Apart from the normal modes of ZnO the Zn{sub 1-x}Mn{sub x}O ceramic targets show two additional modes at 332 cm{sup -1} (I{sub 1}) and 524 cm{sup -1} (I{sub 2}). The broad Raman peaks (340-600 cm{sup -1}) observed Zn{sub 0.90}Mn{sub 0.10}O thin films can be deconvoluted into five peaks, denoted as P{sub 1}-P{sub 5}. The possible origins of Raman peaks in Zn{sub 1-x}Mn{sub x}O films are the structural disorder and morphological change caused by the Mn dopant. The B{sub 1}{sup low}, {sup 2}B{sub 1}{sup low}, B{sub 1}{sup high} and A{sub 1}{sup LO} modes as well as the surface phonon mode have been observed in heavily Mn-doped ZnO films. Zn{sub 0.98}Mn{sub 0.02}O thin film shows room temperature ferromagnetism. The saturation magnetic moment of the Zn{sub 0.98}Mn{sub 0.02}O thin film is 0.42{mu}{sub B}/Mn atom. The undoped ZnO film prepared under the same condition shows diamagnetic nature. At higher doping concentrations the formation of Mn clusters suppress the room temperature ferromagnetism in Zn{sub 1-x}Mn{sub x}O thin films and shows paramagnetism. XPS confirms the incorporation of Mn{sup 2+} into the ZnO lattice.

  15. La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films deposited by pulsed laser ablation for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Maurizio; Cesaria, Maura; Caricato, Anna Paola [Physics Department, University of Salento, Via Arnesano, 73100 Lecce (Italy); Maruccio, Giuseppe [Physics Department, University of Salento, Via Arnesano, 73100 Lecce (Italy); NNL CNR-Istituto di Nanoscienze, Via Arnesano, 73100 Lecce (Italy); Cola, Adriano; Farella, Isabella [Institute for Microelectronics and Microsystems, IMM-CNR, 73100 Lecce (Italy)

    2011-08-15

    Among spintronic materials, mixed-valence manganite La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) is widely investigated due to its half-metal nature. LSMO thin films were grown by pulsed laser deposition (PLD) onto amorphous silica substrates heated at nearly 600 C. An ArF excimer laser was chosen to induce ablation due to its more energetic photons compared to the other quoted excimer laser sources. Different oxygen pressures were considered in order to study the influence of oxygen on the LSMO optical and electrical properties. In this respect, the visible transparency percentage of the deposited films is found good enough for spin-OLED applications. The absorption coefficient shows an absorption band tunable as a function of the oxygen content. Its energetic location and evolution with the oxygen content demonstrate it originates from radiative transitions between the spin-majority bands separated by the Jahn-Teller distortion. All of this lets relate the deposition oxygen pressure to the Mn{sup 3+} ion content in each film and interpret electrical data. The 200 and 100 nm thick samples exhibit weak metallic transport behavior at room temperature with a resistivity of 4.8 and 6.9 {omega} cm, respectively. Concerning the resistivity response versus temperature, the measured low metal-insulator transition temperature (150 K) is related to the sample structural features as involved by the depositions. Two different transport mechanisms describe the conductivity regime of the deposited samples, namely the small polaron variable range hopping (VRH) and the Arrhenius law. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Fabrication of TiNb{sub 2}O{sub 7} thin film electrodes for Li-ion micro-batteries by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Daramalla, V. [Materials Research Centre, Indian Institute of Science, Bengalore 560012 (India); Penki, Tirupathi Rao; Munichandraiah, N. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengalore 560012 (India); Krupanidhi, S.B., E-mail: sbk@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bengalore 560012 (India)

    2016-11-15

    Graphical abstract: The TiNb{sub 2}O{sub 7} thin film electrodes as anode material in Li-ion rechargeable micro-batteries are successfully demonstrated. The pulsed laser deposited TiNb{sub 2}O{sub 7} thin film electrode delivers high discharge specific capacity of 143 μAh μm{sup −1} cm{sup −2} at 50 μA cm{sup −2} current density, with 92% coulombic efficiency. The thin films are very stable in crystal structure, with good fast reversible reaction at average Li-insertion voltage 1.65 V. - Highlights: • TiNb{sub 2}O{sub 7} thin films fabricated by pulsed laser deposition. • TiNb{sub 2}O{sub 7} as anode thin films demonstrated successfully. • High discharge specific capacity with 92% coulombic efficiency. • Excellent crystal stability and good reversible reaction. - Abstract: Pulsed laser deposited TiNb{sub 2}O{sub 7} thin films are demonstrated as anode materials in rechargeable Li-ion micro-batteries. The monoclinic and chemically pure TiNb{sub 2}O{sub 7} films in different morphologies were successfully deposited at 750 °C. The single phase formation was confirmed by grazing incident X-ray diffraction, micro-Raman spectroscopy, high resolution transmission electron microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The oxygen partial pressure during the deposition significantly influenced the properties of TiNb{sub 2}O{sub 7} films. The TiNb{sub 2}O{sub 7} thin films exhibited excellent stability with fast kinetics reversible reaction. The TiNb{sub 2}O{sub 7} films showed initial discharge specific capacity of 176, 143 μAh μm{sup −1} cm{sup −2} at 30, 50 μA cm{sup −2} current densities respectively with 92% coulombic efficiency in a non-aqueous electrolyte consisting of Li{sup +} ions. The high discharge specific capacity of TiNb{sub 2}O{sub 7} thin films may be attributed to nanometer grain size with high roughness which offers high surface area for Li-diffusion during charge and discharge

  17. Effect of annealing on structural and optical properties of Cu{sub 2}ZnSnS{sub 4} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Surgina, G.D., E-mail: silvereye@bk.ru [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow 115409 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Nevolin, V.N. [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow 115409 (Russian Federation); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); Sipaylo, I.P.; Teterin, P.E. [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow 115409 (Russian Federation); Medvedeva, S.S. [Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Lebedinsky, Yu.Yu.; Zenkevich, A.V. [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow 115409 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation)

    2015-11-02

    In this work, we compare the effect of different types of thermal annealing on the morphological, structural and optical properties of Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films grown by reactive Pulsed Laser Deposition in H{sub 2}S flow. Rutherford backscattering spectrometry, atomic force microscopy, X-ray diffraction, Raman spectroscopy and optical spectrophotometry data reveal dramatic increase of the band gap and the crystallite size without the formation of secondary phases upon annealing in N{sub 2} at the optimized conditions. - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were grown at room temperature. • Reactive Pulsed Laser Deposition in H{sub 2}S flow was used as a growth method. • Effect of annealing conditions on CZTS structural and optical properties is revealed. • Both the grain size and the band gap of CZTS film increase following the annealing. • Annealing in N{sub 2} effectively inhibits the formation of Sn{sub x}S secondary phases.

  18. Epitaxial growth of high purity cubic InN films on MgO substrates using HfN buffer layers by pulsed laser deposition

    International Nuclear Information System (INIS)

    Ohba, R.; Ohta, J.; Shimomoto, K.; Fujii, T.; Okamoto, K.; Aoyama, A.; Nakano, T.; Kobayashi, A.; Fujioka, H.; Oshima, M.

    2009-01-01

    Cubic InN films have been grown on MgO substrates with HfN buffer layers by pulsed laser deposition (PLD). It has been found that the use of HfN (100) buffer layers allows us to grow cubic InN (100) films with an in-plane epitaxial relationship of [001] InN //[001] HfN //[001] MgO . X-ray diffraction and electron back-scattered diffraction measurements have revealed that the phase purity of the cubic InN films was as high as 99%, which can be attributed to the use of HfN buffer layers and the enhanced surface migration of the film precursors by the use of PLD. - Graphical abstract: Cubic InN films have been grown on MgO substrates with HfN buffer layers by pulsed laser deposition (PLD). It has been revealed that the phase purity of the cubic InN films was as high as 99 %, which can be attributed to the use of HfN buffer layers and the enhanced surface migration of the film precursors by the use of PLD.

  19. Wafer-scale growth of highly textured piezoelectric thin films by pulsed laser deposition for micro-scale sensors and actuators

    Science.gov (United States)

    Nguyen, M. D.; Tiggelaar, R.; Aukes, T.; Rijnders, G.; Roelof, G.

    2017-11-01

    Piezoelectric lead-zirconate-titanate (PZT) thin films were deposited on 4-inch (111)Pt/Ti/SiO2/Si(001) wafers using large-area pulsed laser deposition (PLD). This study was focused on the homogeneity in film thickness, microstructure, ferroelectric and piezoelectric properties of PZT thin films. The results indicated that the highly textured (001)-oriented PZT thin films with wafer-scale thickness homogeneity (990 nm ± 0.8%) were obtained. The films were fabricated into piezoelectric cantilevers through a MEMS microfabrication process. The measured longitudinal piezoelectric coefficient (d 33f = 210 pm/V ± 1.6%) and piezoelectric transverse coefficient (e 31f = -18.8 C/m2 ± 2.8%) were high and homogeneity across wafers. The high piezoelectric properties on Si wafers will extend industrial application of PZT thin films and further development of piezoMEMS.

  20. In Vitro and In Vivo Osteogenic Activity of Titanium Implants Coated by Pulsed Laser Deposition with a Thin Film of Fluoridated Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2018-04-01

    Full Text Available To enhance biocompatibility, osteogenesis, and osseointegration, we coated titanium implants, by krypton fluoride (KrF pulsed laser deposition, with a thin film of fluoridated hydroxyapatite (FHA. Coating was confirmed by scanning electron microscopy (SEM and scanning probe microscopy (SPM, while physicochemical properties were evaluated by attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Calcium deposition, osteocalcin production, and expression of osteoblast genes were significantly higher in rat bone marrow mesenchymal stem cells seeded on FHA-coated titanium than in cells seeded on uncoated titanium. Implantation into rat femurs also showed that the FHA-coated material had superior osteoinductive and osseointegration activity in comparison with that of traditional implants, as assessed by microcomputed tomography and histology. Thus, titanium coated with FHA holds promise as a dental implant material.

  1. DEVICE FOR INVESTIGATION OF MAGNETRON AND PULSED-LASER PLASMA

    Directory of Open Access Journals (Sweden)

    A. P. Burmakov

    2012-01-01

    Full Text Available Various modifications of complex pulsed laser and magnetron deposition thin-film structures unit are presented. They include joint and separate variants of layer deposition. Unit realizes the plasma parameters control and enhances the possibility of laser-plasma and magnetron methods of coatings deposition.

  2. High power ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  3. Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers

    Science.gov (United States)

    Caricato, A. P.; Buonsanti, R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Taurino, A.; Rella, R.

    2011-09-01

    Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3-4 nm × 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of ˜150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of ˜13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.

  4. Films of brookite TiO{sub 2} nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO{sub 2} gas-sensing layers

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P.; Cesaria, M.; Luches, A.; Martino, M. [University of Salento, Department of Physics, Lecce (Italy); Buonsanti, R. [Istituto di Nanoscienze del CNR, National Nanotechnology Laboratory (NNL), Lecce (Italy); Catalano, M.; Manera, M.G.; Taurino, A.; Rella, R. [IMM-CNR, Institute for Microelectronics and Microsystems, Lecce (Italy); Cozzoli, P.D. [Istituto di Nanoscienze del CNR, National Nanotechnology Laboratory (NNL), Lecce (Italy); University of Salento, Department of Innovation Engineering, Lecce (Italy)

    2011-09-15

    Titanium dioxide (TiO{sub 2}) nanorods in the brookite phase, with average dimensions of 3-4 nm x 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO{sub 2}) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm{sup 2} and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of {proportional_to}150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO{sub 2} nanorods and crystalline spherical nanoparticles with an average diameter of {proportional_to}13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO{sub 2} mixed in dry air were obtained. (orig.)

  5. Growth modes and epitaxy of FeAl thin films on a-cut sapphire prepared by pulsed laser and ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xiang; Trautvetter, Moritz; Ziemann, Paul [Institut für Festkörperphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Wiedwald, Ulf [Institut für Festkörperphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Fakultät für Physik, Universität Duisburg-Essen, Lotharstraße 1, 47057 Duisburg (Germany)

    2014-01-14

    FeAl films around equiatomic composition are grown on a-cut (112{sup ¯}0) sapphire substrates by ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD) at ambient temperature. Subsequent successive annealing is used to establish chemical order and crystallographic orientation of the films with respect to the substrate. We find a strongly [110]-textured growth for both deposition techniques. Pole figures prove the successful preparation of high quality epitaxial films by PLD with a single in-plane orientation. IBAD-grown films, however, exhibit three in-plane orientations, all of them with broad angular distributions. The difference of the two growth modes is attributed to the existence of a metastable intermediate crystalline orientation as concluded from nonassisted sputter depositions at different substrate temperatures. The formation of the chemically ordered crystalline B2 phase is accompanied by the expected transition from ferromagnetic to paramagnetic behavior of the films. In accordance with the different thermally induced structural recovery, we find a step-like magnetic transition to paramagnetic behavior after annealing for 1 h at T{sub A} = 300 °C for IBAD deposition, while PLD-grown films show a gradual decrease of ferromagnetic signals with rising annealing temperatures.

  6. The effects of ZnO buffer layers on the properties of phosphorus doped ZnO thin films grown on sapphire by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kim, K-W; Lugo, F J; Lee, J H; Norton, D P

    2012-01-01

    The properties of phosphorus doped ZnO thin films grown on sapphire by pulsed laser deposition were examined, specifically focusing on the effects of undoped ZnO buffer layers. In particular, buffer layers were grown under different conditions; the transport properties of as-deposited and rapid thermal annealed ZnO:P films were then examined. As-deposited films showed n-type conductivity. After rapid thermal annealing, the film on buffer layer grown at a low temperature showed the conversion of carrier type to p-type for specific growth conditions while the films deposited on buffer layer grown at a high temperature remained n-type regardless of growth condition. The films deposited on buffer layer grown at a low temperature showed higher resistivity and more significant change of the transport properties upon rapid thermal annealing. These results suggest that more dopants are incorporated in films with higher defect density. This is consistent with high resolution x-ray diffraction results for phosphorus doped ZnO films on different buffer layers. In addition, the microstructure of phosphorus doped ZnO films is substantially affected by the buffer layer.

  7. Model, prediction, and experimental verification of composition and thickness in continuous spread thin film combinatorial libraries grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Bassim, N. D.; Schenck, P. K.; Otani, M.; Oguchi, H.

    2007-01-01

    Pulsed laser deposition was used to grow continuous spread thin film libraries of continuously varying composition as a function of position on a substrate. The thickness of each component that contributes to a library can be empirically modeled to a bimodal cosine power distribution. We deposited ternary continuous spread thin film libraries from Al 2 O 3 , HfO 2 , and Y 2 O 3 targets, at two different background pressures of O 2 : 1.3 and 13.3 Pa. Prior to library deposition, we deposited single component calibration films at both pressures in order to measure and fit the thickness distribution. Following the deposition and fitting of the single component films, we predict both the compositional coverage and the thickness of the libraries. Then, we map the thickness of the continuous spread libraries using spectroscopic reflectometry and measure the composition of the libraries as a function of position using mapping wavelength-dispersive spectrometry (WDS). We then compare the compositional coverage of the libraries and observe that compositional coverage is enhanced in the case of 13.3 Pa library. Our models demonstrate linear correlation coefficients of 0.98 for 1.3 Pa and 0.98 for 13.3 Pa with the WDS

  8. Laser system using ultra-short laser pulses

    Science.gov (United States)

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  9. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1980-01-01

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization

  10. The effect of the fluence on the properties of La-Ca-Mn-O thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Canulescu, S.; Lippert, Th.; Wokaun, A.; Doebeli, M.; Weidenkaff, A.; Robert, R.; Logvinovich, D.

    2007-01-01

    Thin films of La 0.6 Ca 0.4 MnO 3-δ were deposited on SrTiO 3 (100) by PRCLA (Pulsed Reactive Crossed-Beam Laser Ablation). The dependence of the structural and transport properties of the films on the laser fluence and different target to substrate distances during the growth are studied. Both parameters have a direct influence on the films thickness and velocity of the ions arriving at the substrate, which influence the film properties directly. The surface roughness of the La 0.6 Ca 0.4 MnO 3-δ thin films is depending mainly on the laser fluence and less on the target-substrate distance. Lower laser fluences and therefore lower growth rates yield film with lower roughness, i.e. in the range of 0.2 nm. The electronic transport measurements show a decrease of the transition temperature from metal to semiconductor with an increase of the target to substrate distance. This is related to an increase of the films thickness and therefore decrease of the strain in the films due to the lattice mismatch with the substrate. The magnetoresistance values are also strongly affected by the tensile strain, i.e. they increase for higher strained films

  11. Crystalline phase control and growth selectivity of β-MnO{sub 2} thin films by remote plasma assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abi-Akl, M.; Tabbal, M., E-mail: malek.tabbal@aub.edu.lb; Kassem, W.

    2016-08-01

    In this paper, we exploit the effect of coupling an oxygen remote plasma source to Pulsed Laser Deposition (PLD) for the growth of pure and well crystallized β-MnO{sub 2} films. Films were grown on Si substrates by laser ablation of a MnO target in oxygen ambient and remote plasma. X-Ray Diffraction, Fourier Transform Infra-Red spectroscopy and Raman scattering were used to determine the crystalline structure and bonding in the grown layers, whereas Atomic Force Microscopy was used to study their morphology and surface roughness. Deposition at 500 °C and high oxygen pressure (33.3–66.6 Pa) resulted in the formation of films with roughness of 12 nm consisting of nsutite γ-MnO{sub 2}, a structure characterized by the intergrowth of the pyrolusite β-MnO{sub 2} in a ramsdellite R-MnO{sub 2} matrix. Deposition at the same temperature but low pressure (1.33–3.33 Pa) in oxygen ambient lead to the formation of Mn{sub 2}O{sub 3} whereas plasma activation within the same pressure range induced the growth of single phase highly crystalline β-MnO{sub 2} having smooth surfaces with a roughness value of 0.6 nm. Such results underline the capability of remote plasma assisted PLD in selecting and controlling the crystalline phase of manganese oxide layers. - Highlights: • MnO{sub 2} films were grown by Remote Plasma Assisted Pulsed Laser Deposition. • Crystalline MnO{sub 2} is formed at a substrate temperature of 500 °C. • Smooth crystalline single phase β-MnO{sub 2} films were obtained at 1.33–3.33 Pa. • Deposition at 1.33–3.33 Pa without plasma activation lead to the growth of Mn{sub 2}O{sub 3}. • Without plasma, mixed phases of MnO{sub 2} polymorphs are obtained at 33.3 Pa and above.

  12. Comparative physical, chemical and biological assessment of simple and titanium-doped ovine dentine-derived hydroxyapatite coatings fabricated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L.; Mihailescu, N.; Popescu, A.C.; Luculescu, C.R. [National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele (Romania); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele (Romania); Çetin, G.; Gunduz, O. [Department of Bioengineering, Faculty of Engineering, Marmara University, 34722 Istanbul (Turkey); Oktar, F.N. [Department of Bioengineering, Faculty of Engineering, Marmara University, 34722 Istanbul (Turkey); Department of Medical Imaging Techniques, Vocational School of Health Services, Marmara University, 34668 Istanbul (Turkey); Nanotechnology and Biomaterials Application & Research Centre, Marmara University, 34722 Istanbul (Turkey); Popa, A.C. [National Institute of Materials Physics, 077125 Magurele (Romania); Army Centre for Medical Research, 010195 Bucharest (Romania); Kuncser, A.; Besleaga, C. [National Institute of Materials Physics, 077125 Magurele (Romania); Stan, G.E., E-mail: george_stan@infim.ro [National Institute of Materials Physics, 077125 Magurele (Romania)

    2017-08-15

    Highlights: • Pulsed laser deposition of Ti doped hydroxyapatite films of biological origin. • Downgrade of films’ crystallinity and increase of roughness induced by Ti doping. • Bonding strength values superior to minimum value imposed by ISO standards. • Excellent biocompatibility in hMSC cultures of Ti doped structures. • Ti doped hydroxyapatite films as feasible materials for implantology applications. - Abstract: We report on the synthesis by Pulsed Laser Deposition of simple and Ti doped hydroxyapatite thin films of biological (ovine dentine) origin. Detailed physical, chemical, mechanical and biological investigations were performed. Morphological examination of films showed a surface composed of spheroidal particulates, of micronic size. Compositional analyses pointed to the presence of typical natural doping elements of bone, along with a slight non-stoichiometry of the deposited films. Structural investigations proved the monophasic hydroxyapatite nature of both simple and Ti doped films. Ti doping of biological hydroxyapatite induced an overall downgrade of the films crystallinity together with an increase of the films roughness. It is to be emphasized that bonding strength values measured at film/Ti substrate interface were superior to the minimum value imposed by International Standards regulating the load-bearing implant coatings. In vitro tests on Ti doped structures, compared to simple ones, revealed excellent biocompatibility in human mesenchymal stem cell cultures, a higher proliferation rate and a good cytocompatibility. The obtained results aim to elucidate the overall positive role of Ti doping on the hydroxyapatite films performance, and demonstrate the possibility to use this novel type of coatings as fe