WorldWideScience

Sample records for pulsed heavy ion

  1. Intense Pulsed Heavy Ion Beam Technology

    Science.gov (United States)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  2. Heavy ion acceleration using femtosecond laser pulses

    CERN Document Server

    Petrov, G M; Thomas, A G R; Krushelnick, K; Beg, F N

    2015-01-01

    Theoretical study of heavy ion acceleration from ultrathin (<200 nm) gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations the time history of the laser bullet is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity , duration 32 fs, focal spot size 5 mkm and energy 27 Joules the calculated reflection, transmission and coupling coefficients from a 20 nm foil are 80 %, 5 % and 15 %, respectively. The conversion efficiency into gold ions is 8 %. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon and flux . Analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the Radiation Pressure Acceleration regime and the onset of the Target Normal Sheath Acceleratio...

  3. Pulsed, Inductively Generated, Streaming Plasma Ion Source for Heavy Ion Fusion Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Steven C. Glidden; Howard D Sanders; John B. Greenly; Daniel L. Dongwoo

    2006-04-28

    This report describes a compact, high current density, pulsed ion source, based on electrodeless, inductively driven gas breakdown, developed to meet the requirements on normalized emittance, current density, uniformity and pulse duration for an ion injector in a heavy-ion fusion driver. The plasma source produces >10 μs pulse of Argon plasma with ion current densities >100 mA/cm2 at 30 cm from the source and with strongly axially directed ion energy of about 80 eV, and sub-eV transverse temperature. The source has good reproducibility and spatial uniformity. Control of the current density during the pulse has been demonstrated with a novel modulator coil method which allows attenuation of the ion current density without significantly affecting the beam quality. This project was carried out in two phases. Phase 1 used source configurations adapted from light ion sources to demonstrate the feasibility of the concept. In Phase 2 the performance of the source was enhanced and quantified in greater detail, a modulator for controlling the pulse shape was developed, and experiments were conducted with the ions accelerated to >40 kV.

  4. Effects of irradiation of energetic heavy ions on digital pulse shape analysis with silicon detectors

    Science.gov (United States)

    Barlini, S.; Carboni, S.; Bardelli, L.; Le Neindre, N.; Bini, M.; Borderie, B.; Bougault, R.; Casini, G.; Edelbruck, P.; Olmi, A.; Pasquali, G.; Poggi, G.; Rivet, M. F.; Stefanini, A. A.; Baiocco, G.; Berjillos, R.; Bonnet, E.; Bruno, M.; Chbihi, A.; Cruceru, I.; Degerlier, M.; Dueñas, J. A.; Galichet, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lopez, O.; Marchi, T.; Martel, I.; Morelli, L.; Parlog, M.; Piantelli, S.; Petrascu, H.; Rosato, E.; Seredov, V.; Vient, E.; Vigilante, M.; Fazia Collaboration

    2013-04-01

    The next generation of 4π detector arrays for heavy ion studies will largely use Pulse Shape Analysis to push the performance of silicon detectors with respect to ion identification. Energy resolution and pulse shape identification capabilities of silicon detectors under prolonged irradiation by energetic heavy ions have thus become a major issue. In this framework, we have studied the effects of irradiation by energetic heavy ions on the response of neutron transmutation doped (nTD) silicon detectors. Sizeable effects on the amplitude and the risetime of the charge signal have been found for detectors irradiated with large fluences of stopped heavy ions, while much weaker effects were observed by punching-through ions. The robustness of ion identification based on digital pulse shape techniques has been evaluated.

  5. Chamber transport of ''foot'' pulses for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.M.; Callahan-Miller, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.

    2002-02-20

    Indirect-drive targets for heavy-ion fusion must initially be heated by ''foot'' pulses that precede the main heating pulses by tens of nanoseconds. These pulses typically have a lower energy and perveance than the main pulses, and the fusion-chamber environment is different from that seen by later pulses. The preliminary particle-in-cell simulations of foot pulses here examine the sensitivity of the beam focusing to ion-beam perveance, background-gas density, and pre-neutralization by a plasma near the chamber entry port.

  6. Pulse height defect of energetic heavy ions in ion-implanted Si detectors

    Science.gov (United States)

    Pasquali, G.; Casini, G.; Bini, M.; Calamai, S.; Olmi, A.; Poggi, G.; Stefanini, A. A.; Saint-Laurent, F.; Steckmeyer, J. C.

    1998-02-01

    The pulse height defect in ion-implanted silicon detectors for elastically scattered 93Nb, 100Mo, 116Sn, 120Sn and 129Xe ions, at energies ranging from about 4 to 25 A MeV has been measured. The results are compared with two widely used parametrizations taken from the literature.

  7. Pulse height defect of energetic heavy ions in ion-implanted Si detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pasquali, G.; Casini, G.; Bini, M.; Calamai, S.; Olmi, A.; Poggi, G.; Stefanini, A.A. [Istituto Nazionale di Fisica Nucleare, Florence (Italy)]|[Univ. of Florence (Italy); Saint-Laurent, F. [DRFC/STEP, CEN Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Steckmeyer, J.C. [Laboratoire de Physique Corpuscolaire, ISMRA, 14050 Caen Cedex (France)

    1998-03-01

    The pulse height defect in ion-implanted silicon detectors for elastically scattered {sup 93}Nb, {sup 100}Mo, {sup 116}Sn, {sup 120}Sn and {sup 129}Xe ions, at energies ranging from about 4 to 25 A MeV has been measured. The results are compared with two widely used parametrizations taken from the literature. (orig.). 14 refs.

  8. A new digital pulse power supply in heavy ion research facility in Lanzhou

    Science.gov (United States)

    Wang, Rongkun; Chen, Youxin; Huang, Yuzhen; Gao, Daqing; Zhou, Zhongzu; Yan, Huaihai; Zhao, Jiang; Shi, Chunfeng; Wu, Fengjun; Yan, Hongbin; Xia, Jiawen; Yuan, Youjin

    2013-11-01

    To meet the increasing requirements of the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), a new digital pulse power supply, which employs multi-level converter, was designed. This power supply was applied with a multi H-bridge converters series-parallel connection topology. A new control model named digital power supply regulator system (DPSRS) was proposed, and a pulse power supply prototype based on DPSRS has been built and tested. The experimental results indicate that tracking error and ripple current meet the requirements of this design. The achievement of prototype provides a perfect model for HIRFL-CSR power supply system.

  9. A new digital pulse power supply in heavy ion research facility in Lanzhou

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rongkun, E-mail: wangrongkun@impcas.ac.cn [Institute of Modern Physics, Lanzhou, 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Youxin; Huang, Yuzhen; Gao, Daqing; Zhou, Zhongzu; Yan, Huaihai [Institute of Modern Physics, Lanzhou, 730000 (China); Zhao, Jiang; Shi, Chunfeng; Wu, Fengjun [Institute of Modern Physics, Lanzhou, 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yan, Hongbin; Xia, Jiawen; Yuan, Youjin [Institute of Modern Physics, Lanzhou, 730000 (China)

    2013-11-01

    To meet the increasing requirements of the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), a new digital pulse power supply, which employs multi-level converter, was designed. This power supply was applied with a multi H-bridge converters series-parallel connection topology. A new control model named digital power supply regulator system (DPSRS) was proposed, and a pulse power supply prototype based on DPSRS has been built and tested. The experimental results indicate that tracking error and ripple current meet the requirements of this design. The achievement of prototype provides a perfect model for HIRFL-CSR power supply system. -- Highlights: • The converters topology of series-parallel connection improves the power supply's performance. • The SOPC based on dual Nios II processors improves the real-time performance of system. • Pulse mode is implemented in digital power supply based on FPGA, with a smaller tracking error.

  10. Beam dynamics analysis in pulse compression using electron beam compact simulator for Heavy Ion Fusion

    Directory of Open Access Journals (Sweden)

    Kikuchi Takashi

    2013-11-01

    Full Text Available In a final stage of an accelerator system for heavy ion inertial fusion (HIF, pulse shaping and beam current increase by bunch compression are required for effective pellet implosion. A compact simulator with an electron beam was constructed to understand the beam dynamics. In this study, we investigate theoretically and numerically the beam dynamics for the extreme bunch compression in the final stage of HIF accelerator complex. The theoretical and numerical results implied that the compact experimental device simulates the beam dynamics around the stagnation point for initial low temperature condition.

  11. A Single Pulse Beam Emittance Measurement for the CERN Heavy Ion Linac

    CERN Document Server

    Crescenti, M

    1995-01-01

    A new device for transverse emittance measurement has been installed in the 4.2 MeV/u filter region of the CERN Heavy Ion Linac (Linac 3). It allows to obtain pulse-to-pulse (every 1.2 sec) visualisation of the Linac 3 beam parameters in order to tune the machine and to match the beam for injection into the first circular accelerator, the PS Booster. The system is based on the "multi-slit" technique similar to the well-known "pepper pot" method. A plate with a series of horizontal or vertical slits is placed in the beam, defining positions in the phase plane. Particles pass through the slits and drift to a scintillator screen where they produce light. The screen is looked at by an externally triggered high resolution CCD camera. For each slit position the light intensity distribution, in the limit of infinitesimal slit aperture, is proportional to the angle distribution of the particles and therefore, provides the angular distribution in the phase plane. The video signal from the camera is digitised and the r...

  12. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    Science.gov (United States)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  13. Generation of heavy ion beams using high-intensity short pulse lasers

    Science.gov (United States)

    Petrov, George; McGuffey, Chris; Thomas, Alec; Krushelnick, Karl; Beg, Farhat

    2016-10-01

    A theoretical study of ion acceleration from high-Z material irradiated by intense sub-picosecond lasers is presented. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. At least four technical hurdles have been identified: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration and poor energy coupling due to high reflectivity of the plasma. Using two dimensional particle-in-cell (PIC) simulations, we observed transitions from Radiation Pressure Acceleration (RPA) to the Breakout Afterburner regime (BoA) and to Target Normal Sheath Acceleration (TNSA) akin to light ions. The numerical simulations predict gold ions beams with high directionality (high fluxes (>1011 ions/sr) and energy (>10 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  14. Bucharest heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceausescu, V.; Dobrescu, S.; Duma, M.; Indreas, G.; Ivascu, M.; Papureanu, S.; Pascovici, G.; Semenescu, G.

    1986-02-15

    The heavy ion accelerator facility of the Heavy Ion Physics Department at the Institute of Physics and Nuclear Engineering in Bucharest is described. The Tandem accelerator development and the operation of the first stage of the heavy ion postaccelerating system are discussed. Details are given concerning the resonance cavities, the pulsing system matching the dc beam to the RF cavities and the computer control system.

  15. Comparison of Single-Event Transients Induced in an Operational Amplifier (LM124) by Pulsed Laser Light and a Broad Beam of Heavy Ions

    Science.gov (United States)

    Buchner, Steve; McMorrow, Dale; Poivey, Christian; Howard, James, Jr.; Pease, Rom; Savage, Mark; Boulghassoul, Younis; Massengill, Lloyd

    2003-01-01

    A comparison of transients from heavy-ion and pulsed-laser testing shows good agreement for many different voltage configurations. The agreement is illustrated by comparing directly individual transients and plots of transient amplitude versus width.

  16. Generation of quasi-monoenergetic heavy ion beams via staged shock wave acceleration driven by intense laser pulses in near-critical plasmas

    Science.gov (United States)

    Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-09-01

    Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.

  17. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    Science.gov (United States)

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  18. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient

    Science.gov (United States)

    Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.

    2013-10-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. FluidsPFLDAS0031-917110.1063/1.1692942 13, 472 (1970); Max and Perkins, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.27.1342 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. FluidsPFLDAS0031-917110.1063/1.1693437 14, 371 (1971); Silva , Phys. Rev. E1063-651X10.1103/PhysRevE.59.2273 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca , Lect. Note Comput. Sci.9783

  19. Implementation of a neural network for digital pulse shape analysis on a FPGA for on-line identification of heavy ions

    Science.gov (United States)

    Jiménez, R.; Sánchez-Raya, M.; Gómez-Galán, J. A.; Flores, J. L.; Dueñas, J. A.; Martel, I.

    2012-05-01

    Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have been recently proposed as an alternative to energy loss and time of flight methods. However this technique requires a large amount of memory for storing the shapes of charge and current signals. We have implemented a hardware solution for fast on-line processing of the signals producing the relevant information needed for particle identification. Since the pulse shape analysis can be formulated in terms of a pattern recognition problem, a neural network has been implemented in a FPGA device. The design concept has been tested using 12,13C ions produced in heavy ion reactions. The actual latency of the system is about 20 μs when using a clock frequency of 50 MHz.

  20. Implementation of a neural network for digital pulse shape analysis on a FPGA for on-line identification of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, R., E-mail: naharro@uhu.es [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Sanchez-Raya, M.; Gomez-Galan, J.A. [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Flores, J.L. [Departamento Ingenieria Electrica y Termica, Universidad de Huelva, 21071 Huelva (Spain); Duenas, J.A.; Martel, I. [Departamento de Fisica Aplicada, Universidad de Huelva, 21071 Huelva (Spain)

    2012-05-11

    Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have been recently proposed as an alternative to energy loss and time of flight methods. However this technique requires a large amount of memory for storing the shapes of charge and current signals. We have implemented a hardware solution for fast on-line processing of the signals producing the relevant information needed for particle identification. Since the pulse shape analysis can be formulated in terms of a pattern recognition problem, a neural network has been implemented in a FPGA device. The design concept has been tested using {sup 12,13}C ions produced in heavy ion reactions. The actual latency of the system is about 20 {mu}s when using a clock frequency of 50 MHz.

  1. The Pulse Line Ion Accelerator Concept

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Richard J.

    2006-02-15

    The Pulse Line Ion Accelerator concept was motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The concept might be described crudely as an ''air core'' induction linac where the PFN is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  2. Ion sources for heavy ion fusion (invited)

    Science.gov (United States)

    Yu, Simon S.; Eylon, S.; Chupp, W.; Henestroza, E.; Lidia, S.; Peters, C.; Reginato, L.; Tauschwitz, A.; Grote, D.; Deadrick, F.

    1996-03-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K+ ions of 950 mA peak from a 6.7 in. curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 μs. The measured normalized edge emittance of less than 1 π mm mrad is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described.

  3. Heavy ion storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  4. Progress Toward Heavy Ion IFE

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R; Logan, B G; Waldron, W L; Sabbi, G L; Callahan-Miller, D A; Peterson, P F; Goodin, D T

    2002-01-17

    Successful development of Heavy Ion Fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy ion targets indicates that high gain (60-130) may be possible with a -3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLEE-II design, which uses an array of flibe jets to protect chamber structures from x-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLEE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HE. A target injector experiment capable of > 5 Hz operation has been designed and construction will start in 2002. Methods for mass production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed.

  5. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  6. Analysis of Single-Event Effects in a Radiation-Hardened Low-Jitter PLL Under Heavy Ion and Pulsed Laser Irradiation

    Science.gov (United States)

    Chen, Zhuojun; Lin, Min; Ding, Ding; Zheng, Yunlong; Sang, Zehua; Zou, Shichang

    2017-01-01

    A radiation-hardened low-jitter phase-locked loop (PLL) with a low-mismatch charge pump and a robust voltage-controlled oscillator is designed in a 130 nm PD-SOI process. In order to evaluate the overall response to single-event effects, the accumulated phase jitter has been put forward, which can exclude the inherent noise floor and accumulate all the radiation-induced noise. Then the single-event sensitivity of the proposed PLL is comprehensively analyzed by heavy ion and pulsed laser tests.

  7. Influence of crystal-orientation effects on pulse-shape-based identification of heavy-ions stopped in silicon detectors

    Science.gov (United States)

    Bardelli, L.; Bini, M.; Casini, G.; Pasquali, G.; Poggi, G.; Barlini, S.; Becla, A.; Berjillos, R.; Borderie, B.; Bougault, R.; Bruno, M.; Cinausero, M.; D'Agostino, M.; de Sanctis, J.; Dueñas, J. A.; Edelbruck, P.; Geraci, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lavergne, L.; Marini, P.; Nannini, A.; Negoita, F.; Olmi, A.; Ordine, A.; Piantelli, S.; Rauly, E.; Rivet, M. F.; Rosato, E.; Scian, C.; Stefanini, A. A.; Vannini, G.; Velica, S.; Vigilante, M.; Fazia Collaboration

    2009-07-01

    Current and charge signals have been collected for Se ions at 408 MeV, S at 160 MeV and Ni at 703 MeV, all stopped in silicon detectors. Some detectors were cut 0∘ off the axis and some off the axis. Important effects on the shape of the silicon current and charge signals have been observed, depending on the orientation of the impinging ion relative to the crystal axes and planes. A degradation of the energy and risetime resolution of about a factor ˜3 with respect to the measured optimal values (for example 7∘ off-axis orientation) is observed for ion impinging directions close to crystal axes and/or planes, i.e. the common scenario for normal incidence on 0∘ cut detectors. For Pulse Shape Analysis applications, the necessity of using such "random" oriented silicon detectors is demonstrated.

  8. Influence of crystal-orientation effects on pulse-shape-based identification of heavy-ions stopped in silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bardelli, L. [University of Florence (Italy); I.N.F.N. Sezione di Firenze (Italy)], E-mail: bardelli@fi.infn.it; Bini, M. [University of Florence (Italy); I.N.F.N. Sezione di Firenze (Italy); Casini, G. [I.N.F.N. Sezione di Firenze (Italy); Pasquali, G.; Poggi, G. [University of Florence (Italy); I.N.F.N. Sezione di Firenze (Italy); Barlini, S. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Becla, A. [Jagiellonian University, Institute of Physics, Reymonta 4, 30-059 Krakow (Poland); Berjillos, R. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Borderie, B. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Bougault, R. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Bruno, M. [University of Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Cinausero, M. [I.N.F.N. Laboratori Nazionali di Legnaro (Italy); D' Agostino, M.; De Sanctis, J. [University of Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Duenas, J.A. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Edelbruck, P. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Geraci, E. [University of Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Gramegna, F. [I.N.F.N. Laboratori Nazionali di Legnaro (Italy); Kordyasz, A. [Heavy Ion Laboratory, Warsaw University, Pasteura 5a, 02-093 Warsaw (Poland); Kozik, T. [Jagiellonian University, Institute of Physics, Reymonta 4, 30-059 Krakow (Poland)] (and others)

    2009-07-01

    Current and charge signals have been collected for Se ions at 408 MeV, S at 160 MeV and Ni at 703 MeV, all stopped in silicon detectors. Some detectors were cut 0 deg. off the <111> axis and some off the <100> axis. Important effects on the shape of the silicon current and charge signals have been observed, depending on the orientation of the impinging ion relative to the crystal axes and planes. A degradation of the energy and risetime resolution of about a factor {approx}3 with respect to the measured optimal values (for example 7 deg. off-axis orientation) is observed for ion impinging directions close to crystal axes and/or planes, i.e. the common scenario for normal incidence on 0 deg. cut detectors. For Pulse Shape Analysis applications, the necessity of using such 'random' oriented silicon detectors is demonstrated.

  9. A heavy load for heavy ions

    CERN Multimedia

    2003-01-01

    On 25 September, the two large coils for the dipole magnet of ALICE, the LHC experiment dedicated to heavy ions, arrived at Point 2 on two heavy load trucks after a 1200 km journey from their assembly in Vannes, France.

  10. Heavy ion therapy: Bevalac epoch

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  11. Heavy ion acceleration in the Breakout Afterburner regime

    CERN Document Server

    Petrov, G M; Thomas, A G R; Krushelnick, K; Beg, F N

    2015-01-01

    Theoretical study of heavy ion acceleration from an ultrathin (20 nm) gold foil irradiated by sub-picosecond lasers is presented. Using two dimensional particle-in-cell simulations we identified two highly efficient ion acceleration schemes. By varying the laser pulse duration we observed a transition from Radiation Pressure Acceleration to the Breakout Afterburner regime akin to light ions. The underlying physics and ion acceleration regimes are similar to that of light ions, however, nuances of the acceleration process make the acceleration of heavy ions more challenging. Two laser systems are studied in detail: the Texas Petawatt Laser and the Trident laser, the former having pulse duration 180 fs, intermediate between very short femtosecond pulses and picosecond pulses. Both laser systems generated directional gold ions beams (~10 degrees half-angle) with fluxes in excess of 1011 ion/sr and normalized energy >10 MeV/nucleon.

  12. Results of heavy ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R. [Lawrence Berkeley Lab., CA (United States). Life Sciences Div.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.

  13. Heavy ion fusion 2 MV injector

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Eylon, S.; Henestroza, E. [Lawrence Berkeley Lab., CA (United States). Accelerator and Fusion Research Div.] [and others

    1995-04-01

    A heavy-ion-fusion driver-scale injector has been constructed and operated at Lawrence Berkeley Laboratory. The injector has produced 2.3 MV and 950 mA of K{sup +}, 15% above original design goals in energy and current. Normalized edge emittance of less than 1 {pi} mm-mr was measured over a broad range of parameters. The head-to-tail energy flatness is less than {+-} 0.2% over the 1 {micro}s pulse.

  14. Heavy-ion nucleus scattering

    CERN Document Server

    Rahman, M A; Haque, S

    2003-01-01

    Heavy ion-nucleus scattering is an excellent laboratory to probe high spin phenomena, exotic nuclei and for the analysis of various exit channels. The Strong Absorption Model or the generalized diffraction models, which are semi-classical in nature, have been employed in the description of various heavy ion-nucleus scattering phenomena with reasonable success. But one needs to treat the deflection function (scattering angles) quantum mechanically in the Wave Mechanical picture for the appropriate description of the heavy-ion nucleus scattering phenomena. We have brought the mathematics for the cross-section of the heavy-ion nucleus scattering to an analytic expression taking account of the deflection function (scattering angles) quantum mechanically. sup 9 Be, sup 1 sup 6 O, sup 2 sup 0 Ne and sup 3 sup 2 S heavy-ion beams elastic scattering from sup 2 sup 8 Si, sup 2 sup 4 Mg and sup 4 sup 0 Ca target nuclei at various projectile energies over the range 20-151 MeV have been analysed in terms of the 2-paramet...

  15. Laser-driven multicharged heavy ion beam acceleration

    Science.gov (United States)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Z.; Nishio, K.; Pikuz, T. A.; Faenov, A. Y.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2015-05-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. The laser pulse of ions accelerated up to 0.9 GeV are demonstrated. This is achieved by the high intensity laser field of ˜ 1021Wcm-2 interacting with the solid density target. The demonstrated iron ions with high charge to mass ratio (Q/M) is difficult to be achieved by the conventional heavy ion source technique in the accelerators.

  16. RHIC heavy ion operations performance

    CERN Document Server

    Satogata, T; Ferrone, R; Pilat, F

    2006-01-01

    The Relativistic Heavy Ion Collider (RHIC) completed its fifth year of operation in 2005, colliding copper ion beams with ps=200 GeV/u and 62.4 GeV/u[1]. Previous heavy ion runs have collided gold ions at ps=130 GeV/u, 200 GeV/u, and 62.4 GeV/u[2], and deuterons and gold ions at ps=200 GeV/u[3]. This paper discusses operational performance statistics of this facility, including Cu- Cu delivered luminosity, availability, calendar time spent in physics stores, and time between physics stores. We summarize the major factors affecting operations efficiency, and characterize machine activities between physics stores.

  17. The Toledo heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Haar, R.R. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Beideck, D.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Curtis, L.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Kvale, T.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Sen, A. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Schectman, R.M. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Stevens, H.W. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States))

    1993-06-01

    The recently installed 330 kV electrostatic positive ion accelerator at the University of Toledo is described. Experiments have been performed using ions ranging from H[sup +] to Hg[sup 2+] and exotic molecules such as HeH[sup +]. Most of these experiments involve the beam-foil studies of the lifetimes of excited atomic states and the apparatus used for these experiments is also described. Another beamline is available for ion-implantation. The Toledo heavy ion accelerator facility welcomes outside users. (orig.)

  18. Relativistic heavy-ion collisions

    CERN Document Server

    Bhalerao, Rajeev S

    2014-01-01

    The field of relativistic heavy-ion collisions is introduced to the high-energy physics students with no prior knowledge in this area. The emphasis is on the two most important observables, namely the azimuthal collective flow and jet quenching, and on the role fluid dynamics plays in the interpretation of the data. Other important observables described briefly are constituent quark number scaling, ratios of particle abundances, strangeness enhancement, and sequential melting of heavy quarkonia. Comparison is made of some of the basic heavy-ion results obtained at LHC with those obtained at RHIC. Initial findings at LHC which seem to be in apparent conflict with the accumulated RHIC data are highlighted.

  19. Timescales in heavy ion collisions

    CERN Document Server

    Lisa, Mike

    2016-01-01

    The study of high energy collisions between heavy nuclei is a field unto itself, distinct from nuclear and particle physics. A defining aspect of heavy ion physics is the importance of a bulk, self-interacting system with a rich space-time substructure. I focus on the issue of timescales in heavy ion collisions, starting with proof from low-energy collisions that femtoscopy can, indeed, measure very long timescales. I then discuss the relativistic case, where detailed measurements over three orders of magnitude in energy reveal a timescale increase that might be due to a first-order phase transition. I discuss also consistency in evolution timescales as determined from traditional longitudinal sizes and a novel analysis using shape information.

  20. High-Intensity, High Charge-State Heavy Ion Sources

    CERN Document Server

    Alessi, J

    2004-01-01

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions will be reviewed. These sources include ECR, EBIS, and Laser ion sources. The benefits and limitations for these type sources will be described, for both dc and pulsed applications. Possible future improvements in these type sources will also be discussed.

  1. Recent progress in heavy ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.J.

    1977-03-01

    A summary is given of the progress during the last several years in the technology of sources of high charge state positive heavy ions and negative heavy ions. Subjects covered include recent results in ECR and EBIS source development and comparison of various source types for high charge state heavy ions.

  2. Heavy ions: Report from Relativistic Heavy Ion Collider

    Indian Academy of Sciences (India)

    Sonia Kabana

    2012-10-01

    We review selected highlights from the experiments at the Relativistic Heavy Ion Collider (RHIC) exploring the QCD phase diagram. A wealth of new results appeared recently from RHIC due to major recent upgrades, like for example the $\\Upsilon$ suppression in central nucleus-nucleus collisions which has been discovered recently in both RHIC and LHC. Furthermore, we discuss RHIC results from the beam energy scan (BES) program aiming to search for a possible critical point and to map out the QCD phase diagram.

  3. Respiratory motion management using audio-visual biofeedback for respiratory-gated radiotherapy of synchrotron-based pulsed heavy-ion beam delivery

    Energy Technology Data Exchange (ETDEWEB)

    He, Pengbo; Ma, Yuanyuan; Huang, Qiyan; Yan, Yuanlin [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Qiang, E-mail: liqiang@impcas.ac.cn; Liu, Xinguo; Dai, Zhongying; Zhao, Ting; Fu, Tingyan; Shen, Guosheng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-11-01

    Purpose: To efficiently deliver respiratory-gated radiation during synchrotron-based pulsed heavy-ion radiotherapy, a novel respiratory guidance method combining a personalized audio-visual biofeedback (BFB) system, breath hold (BH), and synchrotron-based gating was designed to help patients synchronize their respiratory patterns with synchrotron pulses and to overcome typical limitations such as low efficiency, residual motion, and discomfort. Methods: In-house software was developed to acquire body surface marker positions and display BFB, gating signals, and real-time beam profiles on a LED screen. Patients were prompted to perform short BHs or short deep breath holds (SDBH) with the aid of BFB following a personalized standard BH/SDBH (stBH/stSDBH) guiding curve or their own representative BH/SDBH (reBH/reSDBH) guiding curve. A practical simulation was performed for a group of 15 volunteers to evaluate the feasibility and effectiveness of this method. Effective dose rates (EDRs), mean absolute errors between the guiding curves and the measured curves, and mean absolute deviations of the measured curves were obtained within 10%–50% duty cycles (DCs) that were synchronized with the synchrotron’s flat-top phase. Results: All maneuvers for an individual volunteer took approximately half an hour, and no one experienced discomfort during the maneuvers. Using the respiratory guidance methods, the magnitude of residual motion was almost ten times less than during nongated irradiation, and increases in the average effective dose rate by factors of 2.39–4.65, 2.39–4.59, 1.73–3.50, and 1.73–3.55 for the stBH, reBH, stSDBH, and reSDBH guiding maneuvers, respectively, were observed in contrast with conventional free breathing-based gated irradiation, depending on the respiratory-gated duty cycle settings. Conclusions: The proposed respiratory guidance method with personalized BFB was confirmed to be feasible in a group of volunteers. Increased effective dose

  4. Linear induction accelerator for heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, D.

    1976-09-01

    There is considerable recent interest in the use of high energy (..gamma.. = 1.1), heavy (A greater than or equal to 100) ions to irradiate deuterium--tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. A discussion is given of how the technology of Linear Induction Accelerators--well known to be matched to high current and short pulse length--may offer significant advantages for this application.

  5. Semiholography for heavy ion collisions

    Science.gov (United States)

    Mukhopadhyay, Ayan; Preis, Florian

    2017-03-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  6. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2016-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  7. Heavy Ion Physics in CMS

    CERN Document Server

    Baur, G; Chatrchyan, Serguei; Contardo, Didier; Damgov, Jordan; De Min, Alberto; Denegri, Daniel; Drapier, Olivier; Geist, Walter; Genchev, Vladimir; Haroutunian, Roger; Hayrapetyan, M G; Hencken, K; Jenkovszky, L L; Kartvelishvili, Vakhtang; Kharlov, Yuri; Kodolova, Olga; Kotlinski, Danek; Kruglov, Nikolai A; Kva, R

    2000-01-01

    This note summarizes the CMS potential for Heavy Ions Collisions studies. The main physics topic is the study of Y to muon pair decays in view of Y family supression studies, with a detailed discussion of muon reconstruction efficiencies and purities in conditions of central Pb-Pb collisions. We also discuss energy flow and impact parameter measurements, the observability of continuum muon pairs and of Z to mu + mu decays, and of jets and hard direct photons as a means to study jet quenching. We also discuss pA interactions as well as gamma-gamma physics. The instrumental specificities of CMS for heavy ion running are discussed, including trigger and data acquisition aspects.

  8. Central collisions of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Sun-yiu.

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R D project was performed.

  9. Phenomenology of Heavy Flavors in Ultrarelativistic Heavy-Ion Collisions

    CERN Document Server

    Isayev, A A

    2010-01-01

    Some recent experimental results obtained in collisions of heavy nuclei ($\\sqrt{s}=200$ GeV) at BNL Relativistic Heavy-Ion Collider (RHIC) are discussed. The probes of dense matter created in heavy-ion collision by quarkonia, $D$ and $B$ mesons containing heavy charm and beauty quarks are considered. The centrality, rapidity and transverse momentum dependences of the nuclear modification factor and elliptic flow coefficient are presented and their possible theoretical interpretation is provided.

  10. The ANSTO high energy heavy ion microprobe

    Science.gov (United States)

    Siegele, Rainer; Cohen, David D.; Dytlewski, Nick

    1999-10-01

    Recently the construction of the ANSTO High Energy Heavy Ion Microprobe (HIMP) at the 10 MV ANTARES tandem accelerator has been completed. The high energy heavy ion microprobe focuses not only light ions at energies of 2-3 MeV, but is also capable of focusing heavy ions at high energies with ME/ q2 values up to 150 MeV amu and greater. First performance tests and results are reported here.

  11. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  12. Study of the heavy ion bunch compression in CSRm

    Institute of Scientific and Technical Information of China (English)

    YIN Da-Yu; LIU Yong; YUAN You-Jing; YANG Jian-Cheng; LI Peng; LI Jie; CHAI Wei-Ping

    2013-01-01

    The feasibility of attaining nanosecond pulse length heavy ion beam is studied in the main ring (CSRm)of the Heavy Ion Research Facility in Lanzhou.Such heavy ion beam can be produced by non-adiabatic compression,and it is implemented by a fast rotation in the longitudinal phase space.In this paper,the possible beam parameters during longitudinal bunch compression are studied with the envelope model and Particle in Cell simulation,and the results are compared.The result shows that the short bunch 238U28+ with the pulse duration of about 50 ns at the energy of 200 MeV/u can be obtained which can satisfy the research of high density plasma physics experiment.

  13. Calorimetric low temperature detectors for heavy ion physics

    Energy Technology Data Exchange (ETDEWEB)

    Egelhof, P.; Kraft-Bermuth, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Mainz Univ. (Germany). Inst. fuer Physik

    2005-05-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics at present and at the next generation heavy ion facilities is given with a special emphasis on the conditions for heavy ion detection and the potential advantage of cryogenic detectors for applications in heavy ion physics. Two types of calorimetric low temperature detectors for the detection of energetic heavy ions have been developed and their response to the impact of heavy ions was investigated systematically for a wide range of energies (E=0.1-360 MeV/amu) and ion species ({sup 4}He.. {sup 238}U). Excellent results with respect to energy resolution, {delta}E/E ranging from 1 to 5 x 10{sup -3} even for the heaviest ions, and other basic detector properties such as energy linearity with no indication of a pulse height defect, energy threshold, detection efficiency and radiation hardness have been obtained, representing a considerable improvement as compared to conventional heavy ion detectors based on ionization. With the achieved performance, calorimetric low temperature detectors bear a large potential for applications in various fields of basic and applied heavy ion research. A brief overview of a few prominent examples, such as high resolution nuclear spectroscopy, high resolution nuclear mass determination, which may be favourably used for identification of superheavy elements or in direct reaction experiments with radioactive beams, as well as background discrimination in accelerator mass spectrometry, is given, and first results are presented. For instance, the use of cryogenic detectors allowed to improve the sensitivity in trace analysis of {sup 236}U by one order of magnitude and to determine the up to date smallest isotope ratio of {sup 236}U/{sup 238}U = 6.1 x 10{sup -12} in a sample of natural uranium. Besides the detection of heavy ions, the concept of cryogenic detectors also

  14. The Relativistic Heavy Ion Collider

    Science.gov (United States)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  15. Heavy Ion Physics at CMS

    CERN Document Server

    Veres, Gabor

    2017-01-01

    In the present proceedings recent heavy ion results from the Compact Muon Solenoid collaboration at the LHC are presented. These contain comparisons between small and large collision systems, as well as studies of energy evolution, thus include data collected in proton-proton collisions at 13 TeV (2015 and 2016), proton-proton and lead-lead collisions at 5 TeV (2015), and proton-lead collisions at 5 TeV and 8 TeV (2016) center-of-mass energy per nucleon pair. They provide new insights into the properties of the extremely high density and high temperature matter created in heavy ion collisions, while pointing out similarities and differences in comparison to smaller collision systems. These include gluon distribution functions in the lead nucleus; the azimuthal anisotropy of final state particle distributions in all the three different collision systems; charge separation signals from proton-lead collisions and consequences for the Chiral Magnetic Effect; new studies of parton energy loss and its dependence on...

  16. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  17. Heavy ion physics at the LHC

    CERN Document Server

    Schükraft, Jürgen

    2002-01-01

    The field of ultra-relativistic heavy ion physics, which started some 15 years ago at the Brookhaven AGS and the CERN SPS with fixed target experiments, is entering today a new era with the recent start-up of the Relativistic Heavy Ion Collider RHIC and preparations well under way for a new large heavy ion experiment at the Large Hadron Collider (LHC). At this crossroads, the article will give a summary of the experimental program and our current view of heavy ion physics at the LHC, concentrating in particular on physics topics that are different or unique compared to current facilities.

  18. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  19. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  20. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  1. Laser ion source for high brightness heavy ion beam

    Science.gov (United States)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  2. QCD in heavy ion collisions

    CERN Document Server

    Iancu, Edmond

    2014-01-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  3. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  4. Relativistic heavy-ion physics: Experimental overview

    Indian Academy of Sciences (India)

    Itzhak Tserruya

    2003-04-01

    The field of relativistic heavy-ion physics is reviewed with emphasis on new results and highlights from the first run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super proton synchrotron (SPS) at CERN and the AGS at BNL.

  5. Probing QED Vacuum with Heavy Ions

    CERN Document Server

    Rafelski, Johann; Müller, Berndt; Reinhardt, Joachim; Greiner, Walter

    2016-01-01

    We recall how nearly half a century ago the proposal was made to explore the structure of the quantum vacuum using slow heavy-ion collisions. Pursuing this topic we review the foundational concept of spontaneous vacuum decay accompanied by observable positron emission in heavy-ion collisions and describe the related theoretical developments in strong fields QED.

  6. Ion Acceleration by Short Chirped Laser Pulses

    Directory of Open Access Journals (Sweden)

    Jian-Xing Li

    2015-02-01

    Full Text Available Direct laser acceleration of ions by short frequency chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1% can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies in the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e., higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  7. Ion Acceleration by Short Chirped Laser Pulses

    CERN Document Server

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  8. Process in high energy heavy ion acceleration

    Science.gov (United States)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  9. Heavy Ion Acceleration in Impulsive Solar Flares

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2002-01-01

    The abundance enhancements of heavy ions Ne, Mg, Si and Fe in impulsive solar energetic particle (SEP) eventsare explained by a plasma acceleration mechanism. In consideration of the fact that the coronal plasma is mainlycomposed of hydrogen and helium ions, we think that theion-ion hybrid wave and quasi-perpendicular wave can.be excited by the energetic electron beam in impulsive solar flares. These waves may resonantly be absorbed byheavy ions when the frequencies of these waves are close to the second-harmonic gyrofrequencies of these heavyions. This requires the coronal plasma temperature to be located in the range ofT ~ (5 - 9) × 106 K in impulsivesolar flares and makes the average ionic charge state of these heavy ions in impulsive SEP events higher than theaverage ionic charge state of these heavy ions in gradual SEP events. These pre-heated and enhanced heavy ionsin impulsive SEP events.

  10. Laser ion source for isobaric heavy ion collider experiment.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  11. Benchmarking of Heavy Ion Transport Codes

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [ORNL; Ronningen, Reginald M. [Michigan State University, East Lansing; Heilbronn, Lawrence [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in designing and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required.

  12. Design status of heavy ion injector program

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, E.O.; Meyer, E.A.; Riepe, K.B.; Rutkowski, H.L.; Shurter, R.P.; Van Haaften, F.W.

    1985-10-01

    Design and development of a sixteen beam, heavy ion injector is in progress at Los Alamos National Laboratory (LANL) to demonstrate the injector technology for the High Temperature Experiment (HTE) proposed by Lawrence Berkeley Laboratory. The injector design provides for individual ion sources mounted to a support plate defining the sixteen beam array. The beamlets are electrostatically accelerated through a series of electrodes inside an evacuated (10 X torr) high voltage (HV) accelerating column. The column consists of two 28-inch diameter insulator modules made of 85 percent Al2O3 ceramic rings brazed to niobium feedthrough rings to which the electrodes are mechanically attached. Field shaping is used to minimize electron avalanche induced flashover along the inside surface of the ceramic rings. The column is self-supporting and is cantilevered from one end of the containment vessel. A brazed assembly was chosen to provide the required bond strength and high vacuum capability. The HV pulsed power supply is a 2MV Marx generator cantilevered from the opposite end of the containment vessel. The stainless steel pressure vessel (PV) contains a 65 psig mixture of SF6(30%) and nitrogen (70%) to provide the electrical insulation.

  13. Proceedings of the heavy ion fusion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R C [ed.

    1978-01-01

    These proceedings contain reviews of current laboratory programs dealing with inertial fusion driven by beams of heavy ions, as well as several individually abstracted invited talks, workshop reports and contributed papers.

  14. Historical aspects of heavy ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1995-03-01

    This paper presents historical developments of heavy-ion radiotherapy including discussion of HILAC and HIMAC and discussion of cooperation between Japan and the United States, along with personal reflections.

  15. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  16. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  17. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  18. Heavy ion isotope resolution with polymer detectors

    OpenAIRE

    Vidal-Quadras Roca, Alejo; Ortega Girón, Manuel; Fernández Moreno, Francisco; Font Garcia, Josep Lluís; Casas Ametller, Montserrat; Baixeras Divar, Carmen; Gonzalo Cestero, Miguel

    1984-01-01

    The heavy ion mass resolution power of polymer detectors Lexan and cellulose nitrate is systematically studied both for accelerator and for cosmic ions. It is concluded that a satisfactory isotopic discrimination, better than 1 u, is hardly attainable with these detectors. Peer Reviewed

  19. 2-MV electrostatic quadrupole injector for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan, J.W.; Prost, L.; Seidl, P.A.

    2004-11-10

    High current and low emittance are principal requirements for heavy-ion injection into a linac driver for inertial fusion energy. An electrostatic quadrupole (ESQ) injector is capable of providing these high charge density and low emittance beams. We have modified the existing 2-MV Injector to reduce beam emittance and to double the pulse length. We characterize the beam delivered by the modified injector to the High Current Transport Experiment (HCX) and the effects of finite rise time of the extraction voltage pulse in the diode on the beam head. We demonstrate techniques for mitigating aberrations and reducing beam emittance growth in the injector.

  20. Propagation of heavy baryons in heavy-ion collisions

    Science.gov (United States)

    Das, Santosh K.; Torres-Rincon, Juan M.; Tolos, Laura; Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo

    2016-12-01

    The drag and diffusion coefficients of heavy baryons (Λc and Λb ) in the hadronic phase created in the latter stage of the heavy-ion collisions at RHIC and LHC energies have been evaluated recently. In this work we compute some experimental observables, such as the nuclear suppression factor RA A and the elliptic flow v2 of heavy baryons at RHIC and LHC energies, highlighting the role of the hadronic phase contribution to these observables, which are going to be measured at Run 3 of LHC. For the time evolution of the heavy quarks in the quark and gluon plasma (QGP) and heavy baryons in the hadronic phase, we use the Langevin dynamics. For the hadronization of the heavy quarks to heavy baryons we employ Peterson fragmentation functions. We observe a strong suppression of both the Λc and Λb . We find that the hadronic medium has a sizable impact on the heavy-baryon elliptic flow whereas the impact of hadronic medium rescattering is almost unnoticeable on the nuclear suppression factor. We evaluate the Λc/D ratio at RHIC and LHC. We find that the Λc/D ratio remains unaffected due to the hadronic phase rescattering which enables it as a nobel probe of QGP phase dynamics along with its hadronization.

  1. Heavy ion induced mutation in arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tano, Shigemitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy ions, He, C, Ar and Ne were irradiated to the seeds of Arabidopsis thaliana for inducing the new mutants. In the irradiated generation (M{sub 1}), germination and survival rate were observed to estimate the relative biological effectiveness in relation to the LET including the inactivation cross section. Mutation frequencies were compared by using three kinds of genetic loci after irradiation with C ions and electrons. Several interesting new mutants were selected in the selfed progenies of heavy ion irradiated seeds. (author)

  2. Inertially confined fusion using heavy ion drivers

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B. (Stanford Linear Accelerator Center, Menlo Park, CA (United States)); Bangerter, R.O. (Lawrence Berkeley Lab., CA (United States)); Bock, R. (Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)); Hogan, W.J.; Lindl, J.D. (Lawrence Livermore National Lab., CA (United States))

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF (2) Which problems are most appropriate for such collaboration (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  3. Inertially confined fusion using heavy ion drivers

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Bangerter, R.O. [Lawrence Berkeley Lab., CA (United States); Bock, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Hogan, W.J.; Lindl, J.D. [Lawrence Livermore National Lab., CA (United States)

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF? (2) Which problems are most appropriate for such collaboration? (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues? (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral? (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF? The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  4. Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2/sup 0/K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (..delta..E/E approximately equal to 2 x 10/sup -4/) or very good time resolution (..delta.. t approximately equal to 30 psec).

  5. Heavy ions at the Future Circular Collider

    CERN Document Server

    Dainese, A; Armesto, N; d'Enterria, D; Jowett, J M; Lansberg, J -P; Milhano, J G; Salgado, C A; Schaumann, M; van Leeuwen, M; Albacete, J L; Andronic, A; Antonioli, P; Apolinario, L; Bass, S; Beraudo, A; Bilandzic, A; Borsanyi, S; Braun-Munzinger, P; Chen, Z; Mendez, L Cunqueiro; Denicol, G S; Eskola, K J; Floerchinger, S; Fujii, H; Giubellino, P; Greiner, C; Grosse-Oetringhaus, J F; Ko, C -M; Kotko, P; Krajczar, K; Kutak, K; Laine, M; Liu, Y; Lombardo, M P; Luzum, M; Marquet, C; Masciocchi, S; Okorokov, V; Paquet, J -F; Paukkunen, H; Petreska, E; Pierog, T; Ploskon, M; Ratti, C; Rezaeian, A H; Riegler, W; Rojo, J; Roland, C; Rossi, A; Salam, G P; Sapeta, S; Schicker, R; Schmidt, C; Stachel, J; Uphoff, J; van Hameren, A; Watanabe, K; Xiao, B -W; Yuan, F; Zaslavsky, D; Zhou, K; Zhuang, P

    2016-01-01

    The Future Circular Collider (FCC) Study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode, seven times larger than the nominal LHC energies. Operating such machine with heavy ions is an option that is being considered in the accelerator design studies. It would provide, for example, Pb-Pb and p-Pb collisions at sqrt{s_NN} = 39 and 63 TeV, respectively, per nucleon-nucleon collision, with integrated luminosities above 30 nb^-1 per month for Pb-Pb. This is a report by the working group on heavy-ion physics of the FCC Study. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of the Quark-Gluon Plasma, of gluon saturation, of photon-induced collisions, as well as connections with other fields of high-energy physics.

  6. Pair creation in heavy ion channeling

    Directory of Open Access Journals (Sweden)

    N.A. Belov

    2016-04-01

    Full Text Available Heavy ions channeled through crystals with multi-GeV kinetic energies can create electron–positron pairs. In the framework of the ion, the energy of virtual photons arising from the periodic crystal potential may exceed the threshold 2mec2. The repeated periodic collisions with the crystal ions yield high pair production rates. When the virtual photon frequency matches a nuclear transition in the ion, the production rate can be resonantly increased. In this two-step excitation-pair conversion scheme, the excitation rates are coherently enhanced, and scale approximately quadratically with the number of crystal sites along the channel.

  7. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  8. Experimental Verification of Heavy Ion Simulation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    1 IntroductionThe investigation of radiation damage induced by high dose neutrons and/or protons is a currently interesting topic in nuclear power, ADS etc., The lack of high dose neutron and proton sources hampers this investigation. The advent of heavy ion accelerators opens up a way to study radiation damage caused by high dose neutron and/or proton irradiation[1]. The displacement rate of heavy ions is much higher than that of neutrons and protons. Higher displacement rate leads to short irradiation time. An irradiation dose of -20 dpa takes about a year in a reactor, while only a few minutes or hours by

  9. Jets in Heavy Ion Collisions with CMS

    CERN Document Server

    Salur, Sevil

    2016-01-01

    Jet physics in heavy ion collisions is a rich field which has been rapidly evolving since the first observations of medium interactions at RHIC through back-to-back hadron correlations and at LHC via reconstructed jets. In order to completely characterize the final state via jet-medium interactions and distinguish between competing energy loss mechanisms complementary and robust jet observables are investigated. Latest developments of jet finding techniques and their applications to heavy ion environments are discussed with an emphasis given on experimental results from CMS experiment.

  10. European heavy ion ICF driver development

    CERN Document Server

    Plass, Günther

    1996-01-01

    Approaches in Europe to heavy ion induced Inertial Confinement Fusion are oriented toward the linac-plus- storage ring technique. Despite the very limited support of this work, technical pro gress was achieved in some important areas. For the immediate future, a substantial intensity upgrade of the GSI accelerator facilities at Darmstadt is being implemented, leading to specific energy depositions of the order of 100 kJ/g and plasma temperatures of 10 to 20 eV. For the longer term, a conceptual design study of a heavy ion based Ignition Facility is being initiated.

  11. Holographic heavy ion collisions with baryon charge

    CERN Document Server

    Casalderrey-Solana, Jorge; van der Schee, Wilke; Triana, Miquel

    2016-01-01

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15\\%. %The rapidity profile of the charge is wider than the profile of the local energy density. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  12. Heavy Flavor Production in Heavy Ion Collisions at CMS

    CERN Document Server

    Sun, Jian

    2016-01-01

    Studies of Heavy flavor production are of great interest in heavy ion collisions. In the produced medium, the binding potential between a quark and antiquark in quarkonium is screened by surrounding light quarks and antiquarks. Thus, the various quarkonium states are expected to be melt at different temperatures depending on their binding energies, which allows us to characterize the QCD phase transition. In addition, open heavy flavor production are relevant for flavor-dependence of the in-medium parton energy loss. In QCD, gluons are expected to lose more energy compared to quarks when passing through the QGP due to the larger color charge. Compared to light quarks, heavy quarks are expected to lose less radiative energy because gluon radiation is suppressed at angles smaller than the ratio of the quark mass to its energy. This dead cone effect (and its disappearance at high transverse momentum) can be studied using open heavy flavor mesons and heavy flavor tagged jets. With CMS detector, quarkonia, open he...

  13. Computing for Heavy Ion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G.; Schiff, D.; Hristov, P.; Menaud, J.M.; Hrivnacova, I.; Poizat, P.; Chabratova, G.; Albin-Amiot, H.; Carminati, F.; Peters, A.; Schutz, Y.; Safarik, K.; Ollitrault, J.Y.; Hrivnacova, I.; Morsch, A.; Gheata, A.; Morsch, A.; Vande Vyvre, P.; Lauret, J.; Nief, J.Y.; Pereira, H.; Kaczmarek, O.; Conesa Del Valle, Z.; Guernane, R.; Stocco, D.; Gruwe, M.; Betev, L.; Baldisseri, A.; Vilakazi, Z.; Rapp, B.; Masoni, A.; Stoicea, G.; Brun, R

    2005-07-01

    This workshop was devoted to the computational technologies needed for the heavy quarkonia and open flavor production study at LHC (large hadron collider) experiments. These requirements are huge: peta-bytes of data will be generated each year. Analysing this will require the equivalent of a few thousands of today's fastest PC processors. The new developments in terms of dedicated software has been addressed. This document gathers the transparencies that were presented at the workshop.

  14. Progress on the Los Alamos heavy-ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D.C.; Riepe, K.B.; Ballard, E.O.; Meyer, E.A.; Shurter, R.P.; Van Haaften, F.W.; Humphries S. Jr.

    1986-01-21

    Heavy-ion fusion using an induction linac requires injection of multiple high-current beams from a pulsed electrostatic accelerator at as high a voltage as practical. Los Alamos National Laboratory is developing a 16-beam, 2-MeV, pulsed electrostatic accelerator for Al/sup +/ ions. The ion source will use a pulsed metal vapor arc plasma. A biased grid wil control plasma flux into the ion extraction region. This source has achieved a normalized emittance of epsilon/sub n/<3x10/sup -7/..pi..-m-rad with Al/sup +/ ions. An 800 kV Marx prototype with a laser fired diverter is being assembled. The ceramic accelerating column sections have been brazed and leak tested. Voltage hold off on a brazed sample was more than doubled by selective removal of the Ticusil braze fillet extending along the ceramic. A scaled test module held 250 kV for 50 ..mu..s, giving confidence that the full module can hold 175 kV per section. The pressure vessel should be received in June 1986. High-voltage testing of a 1 MV column will begin by early 1987.

  15. Progress on the Los Alamos heavy-ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D.C.; Riepe, K.B.; Ballard, E.O.; Meyer, E.A.; Shurter, R.P.; Van Haaften, F.W.; Humphries, S. Jr.

    1986-01-01

    Heavy-ion fusion using an induction linac requires injection of multiple high-current beams from a pulsed electrostatic accelerator at as high a voltage as practical. Los Alamos National Laboratory is developing a 16-beam, 2-MeV, pulsed electrostatic accelerator for Al/sup +/ ions. The ion source will use a pulsed metal vapor arc plasma. A biased grid will control plasma flux into the ion extraction region. This source has achieved a normalized emittance of epsilon/sub n/ < 3.10/sup -7/..pi..-m-rad with Al/sup +/ ions. An 800 kV Marx prototype with a laser fired diverter is being assembled. The ceramic accelerating column sections have been brazed and leak tested. Voltage hold off on a brazed sample was more than doubled by selective removal of the Ticusil braze fillet extending along the ceramic. A scaled test module held 250 kV for 50 ..mu..s, giving confidence that the full module can hold 175 kV per section. The pressure vessel should be received in June 1986. High-voltage testing of a 1 MV column will begin by early 1987.

  16. Design status of heavy ion injector program

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, E.O.; Meyer, E.A.; Rutkowski, H.L.; Shurter, R.P.; Van Haaften, F.W.; Riepe, K.B.

    1985-01-01

    Design and development of a sixteen beam, heavy ion injector is in progress at Los Alamos National Laboratory (LANL) to demonstrate the injector technology for the High Temperature Experiment (HTE) proposed by Lawrence Livermore Laboratory (LBL). The injector design provides for individual ion sources mounted to a support plate defining the sixteen beam array. The beamlets are electrostatically accelerated through a series of electrodes inside an evacuated (10/sup -7/ torr) high voltage (HV) accelerating column.

  17. Heavy quarkonium photoproduction in ultrarelativistic heavy ion collisions

    Science.gov (United States)

    Yu, Gong-Ming; Cai, Yang-Bing; Li, Yun-De; Wang, Jian-Song

    2017-01-01

    Based on the factorization formalism of nonrelativistic quantum chromodynamics (NRQCD), we calculate the production cross section for the charmonium [J /ψ , ψ (2 S ) , χc J, ηc, and hc] and the bottomonium [Υ (n S ) , χb J, ηb, and hb] produced by the hard photoproduction processes and fragmentation processes in relativistic heavy ion collisions. It is shown that the existing experimental data on heavy quarkonium production at the Large Hadron Collider (LHC) can be described in the framework of the NRQCD formalism, and the phenomenological values of matrix elements for color-singlet and color-octet components give the main contribution. The numerical results of photoproduction processes and fragmentation processes for the heavy quarkonium production become prominent in p -p collisions and Pb-Pb collisions at LHC energies.

  18. Exotic hadrons from heavy ion collisions

    Science.gov (United States)

    Cho, Sungtae; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Maeda, Saori; Miyahara, Kenta; Morita, Kenji; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Song, Taesoo; Yasui, Shigehiro; Yazaki, Koichi

    2017-07-01

    High energy heavy ion collisions are excellent ways for producing heavy hadrons and composite particles, including the light (anti)nuclei. With upgraded detectors at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), it has become possible to measure hadrons beyond their ground states. Therefore, heavy ion collisions provide a new method for studying exotic hadrons that are either molecular states made of various hadrons or compact system consisting of multiquarks. Because their structures are related to the fundamental properties of Quantum Chromodynamics (QCD), studying exotic hadrons is currently one of the most active areas of research in hadron physics. Experiments carried out at various accelerator facilities have indicated that some exotic hadrons may have already been produced. The present review is a summary of the current understanding of a selected set of exotic particle candidates that can be potentially measured in heavy ion collisions. It also includes discussions on the production of resonances, exotics and hadronic molecular states in these collisions based on the coalescence model and the statistical model. A more detailed discussion is given on the results from these models, leading to the conclusion that the yield of a hadron that is a compact multiquark state is typically an order of magnitude smaller than if it is an excited hadronic state with normal quark numbers or a loosely bound hadronic molecule. Attention is also given to some of the proposed heavy exotic hadrons that could be produced with sufficient abundance in heavy ion collisions because of the significant numbers of charm and bottom quarks that are produced at RHIC and even larger numbers at LHC, making it possible to study them in these experiments. Further included in the discussion are the general formalism for the coalescence model that involves resonance particles and its implication on the present estimated yield for resonance production. Finally

  19. The quarkonium saga in heavy ion collisions

    CERN Document Server

    Tserruya, Itzhak

    2013-01-01

    J/psi suppression was proposed more than 25 years ago as an unambiguous signature for the formation of the Quark Gluon Plasma in relativistic heavy ion collisions. After intensive efforts, both experimental and theoretical, the quarkonium saga remains exciting, producing surprising results and not fully understood. This talk focuses on recent results on quarkonium production at RHIC and the LHC.

  20. "Super" Cocktails for Heavy Ion Testing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael B; Johnson, Michael B.; McMahan, Margaret A.; Galloway, Michelle; Leitner, Daniela; Morel, James R.; Gimpel, ThomasL.; Ninemire, Brien F.; Siero, Reba; Thatcher, Raymond K.

    2007-07-21

    The 4.5 MeV/nucleon heavy ion cocktail at the 88-Inch Cyclotron has been expanded by incorporating beams from solid material to fill in the linear energy transfer curve. This supercocktail is available by special request and is useful when only normal incidence between the beam and the device under test is possible or desirable.

  1. Relativistic Hydrodynamics for Heavy-Ion Collisions

    Science.gov (United States)

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  2. Heavy-Ion Physics in a Nutshell

    Directory of Open Access Journals (Sweden)

    Hirano Tetsufumi

    2013-05-01

    Full Text Available The physics of quark gluon plasma (QGP and heavy ion collisions at the collider energies is briefly reviewed. We first discuss about the discovery of a nearly perfect fluidity of the QGP. We also highlights recent topics on responses of the QGP to initial deformation and propagation of a jet.

  3. Quarkonium production in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Arnaldi Roberta

    2014-03-01

    Full Text Available The production of quarkonium states plays a crucial role among the probes to investigate the formation of the plasma of quarks and gluons (QGP in heavy-ion collisions. A review of the charmonium and bottomonium production, mainly focussing on the latest results from the LHC experiments, is presented.

  4. RELATIVISTIC HEAVY ION PHYSICS: A THEORETICAL OVERVIEW.

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.

    2004-03-28

    This is a mini-review of recent theoretical work in the field of relativistic heavy ion physics. The following topics are discussed initial conditions and the Color Glass Condensate; approach to thermalization and the hydrodynamic evolution; hard probes and the properties of the Quark-Gluon Plasma. Some of the unsolved problems and potentially promising directions for future research are listed as well.

  5. Ion source development for the Los Alamos heavy ion fusion injector

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, H.L.; Engelhardt, L.S.; Humphries, S.; Meyer, E.A.; Oona, H.; Shurter, R.P.

    1985-10-01

    A multi-beam injector is being designed and built at Los Alamos for the U.S. Heavy Ion Fusion Program. As part of this program, development of an aluminum-spark, pulsed plasma source is being carried out. Faraday cup diagnostics are used to study current emission and to map the current profile. An aluminum oxide scintillator with photographic film is used in conjunction with a pepper-pot to obtain time integrated emittance values.

  6. Ion source development for the Los Alamos heavy ion fusion injector

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, H.L.; Oona, H.; Meyer, E.A.; Shurter, R.P.; Engelhardt, L.S.; Humphries, S. Jr.

    1985-01-01

    A multi-beam injector is being designed and built at Los Alamos for the US Heavy Ion Fusion Program. As part of this program, development of an aluminum-spark, pulsed plasma source is being carried out. Faraday cup diagnostics are used to study current emission and to map the current profile. An aluminum oxide scintillator with photographic film is used in conjunction with a pepper-pot to obtain time integrated emittance values.

  7. Diffraction radiation from relativistic heavy ions

    Science.gov (United States)

    Potylitsyna, N. A.

    2001-01-01

    In recent years, the relativistic heavy ion beams at new accelerator facilities are allowed to obtain some new interesting results (see, for instance, Datz et al., Phys. Rev. Lett. 79 (18) (1997) 3355; Ladyrin et al., Nucl. Instr. and Meth. A 404 (1998) 129). The problem of non-destructive heavy ion beam diagnostics at these accelerators is highly pressing. The authors of the papers (Rule et al., Proceedings of the Seventh Beam Instrumentation Workshop, Argonne IL, AIP Conference Proceedings, Vol. 390, NY, 1997; Castellano, Nucl. Instr. and Meth. A 394 (1997) 275) suggested to use diffraction radiation (DR) appearing when a charge moves close to a conducting surface (Bolotovskii and Voskresenskii, Sov. Phys. Usp. 9 (1966) 73) for non-destructive electron beam diagnostics. The DR characteristics are defined by both Lorentz-factor and the particle charge, and do not depend on its mass. The estimation of feasibility of using DR for relativistic ion beam diagnostics is undoubtedly interesting.

  8. Progress on the Los Alamos heavy-ion injector

    Science.gov (United States)

    Wilson, D. C.; Riepe, K. B.; Ballard, E. O.; Meyer, E. A.; Shurter, R. P.; Van Haaften, F. W.; Humphries, S.

    1986-01-01

    Heavy-ion fusion using an induction linac requires injection of multiple high-current beams from a pulsed electrostatic accelerator at as high a voltage as practical. Los Alamos National Laboratory is developing a 16-beam, 2-MeV, pulsed electrostatic accelerator for Al+ ions. The ion source will use a pulsed metal vapor arc plasma. A biased grid wil control plasma flux into the ion extraction region. This source has achieved a normalized emittance of ɛnlaser fired diverter is being assembled. The ceramic accelerating column sections have been brazed and leak tested. Voltage hold off on a brazed sample was more than doubled by selective removal of the Ticusil braze fillet extending along the ceramic. A scaled test module held 250 kV for 50 μs, giving confidence that the full module can hold 175 kV per section. The pressure vessel should be received in June 1986. High-voltage testing of a 1 MV column will begin by early 1987.

  9. Heavy flavour production at CMS in heavy ion collisions

    CERN Document Server

    Nguyen, Matthew

    2015-01-01

    We review recent results relating to beauty production in heavy-ion collisions, in both the closed and open heavy flavor sectors, from the CMS experiment at the LHC. The sequential suppression of the ° states in PbPb collisions is thought to be evidence of the dissociation of quarkonia bound states in deconfined matter. Data from pPb collisions demonstrate that while cold nuclear effects appear to be subdominant in minimum bias collisions, there exists a non-trivial dependence on collision multiplicity that remains to be understood. The suppression of high p T particles in heavy-ion collisions, relative to the expectation from pp collisions, is typically interpreted in terms of energy loss of hard scattered parton in the dense nuclear medium. The flavor dependence of the energy loss may be accessed via measurements of b hadrons and b-tagged jets. Measurement of B mesons, via non-prompt J = y , at relatively low p T indicate a smaller suppression factor than D meson or inclusive charged hadrons. Data on b jet...

  10. Some properties of the central heavy ion collisions

    CERN Document Server

    Wazir, Z; Khan, E U; Haseeb, Mahnaz Q; Ajaz, M; Khan, K H

    2009-01-01

    Some experimental results are discussed in connection with the properties of the central heavy ion collisions. These experiments indicate the regime changes and saturation at some values of the centrality. This phenomenon is considered to be a signal of the percolation cluster formation in heavy ion collisions at high energies. Keywords: heavy ion collisions, theoretical models, centrality, phase transition.

  11. Open Heavy Flavor Measurements in Heavy Ion Collisions with CMS

    Science.gov (United States)

    Sun, Jian

    2016-12-01

    The measurement of heavy flavor production is a powerful tool to study the properties of the high-density QCD medium created in heavy-ion collisions as heavy quarks are sensitive to the transport properties of the medium and may interact with the matter differently than light quarks. Heavy flavor jets, non-prompt J / ψ (J / ψ from B-hadron decay) and fully reconstructed B mesons have been studied in PbPb collisions at 2.76 TeV and pPb collisions at 5.02 TeV with CMS. Recently, the nuclear modification factor of prompt D0 mesons has been measured in PbPb collisions at 2.76 TeV with CMS as a function of both transverse momentum and collision centrality. These studies show that prompt D0 production is suppressed in semi-central to central PbPb collisions and the suppression is smaller at high pT. A comparison with the RAA of charged particle and non-prompt J / ψ hints a hierarchy of suppression as a function of flavor.

  12. Medium energy heavy ion operations at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Drees, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.M.C.; Blaskiewicz, M.; Brown, K.A.; Brennan, M.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D' Ottavio, T.; Fischer, W.; Fu, W.; Gassner, D.; Harvey, M.; Hayes, T.; Huang, H.; Hulsart, R.; Ingrassia, P.; Kling, N.; Lafky, M.; Laster, J.; Lee, R.C.; Litvinenko, V.; Luo, Y.; MacKay, W.W.; Marr, G.; Mapes. M.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.S.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; van Kuik, B.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n. The medium energy AuAu run covered two beam energies, both above the RHIC injection energy of 9.8 GeV but well below the standard store energy of 100 GeV (see table 1). The low energy and full energy runs with heavy ions in FY10 are summarized in [1] and [2]. Stochastic Cooling ([3]) was only used for 100 GeV beams and not used in the medium energy run. The efficiency of the transition from 100 GeV operation to 31.2 GeV and then to 19.5 GeV was remarkable. Setup took 32 h and 19 h respectively for the two energy settings. The time in store, defined to be the percentage of time RHIC provides beams in physics conditions versus calendar time, was approximately 52% for the entire FY10 heavy ion run. In both medium energy runs it was well above this average, 68% for 31.5 GeV and 82% for 19.5 GeV. For both energies RHIC was filled with 111 bunches with 1.2 10{sup 9} and 1.3 10{sup 9} ions per bunch respectively.

  13. Performance of the ECR ion source of CERN's heavy ion injector

    CERN Document Server

    Bougarel, M P; Haseroth, H; Langbein, K; Tanke, E

    1995-01-01

    In fall 1994 the new heavy ion injector at CERN was brought into operation successfully and a lead beam of 2.9´107 ions per pulse was accelerated in the SPS up to an energy of 157 GeV/u. The ion source, which was supplied by GANIL (France) was in operation almost continuously over a period of about one year and proved to be very reliable. It pro-duces a current of more than 100 µA of Pb27+ (after the first spectrometer) during the afterglow of the pulsed discharge. The current stays within 5% of the maximum value for a time of about 1 ms, which is more than required by the accel-erators. Measurements of the charge state distribution, emittance and energy spread, which were made during this window, are presented together with other operating data.

  14. Working group report: Heavy ion physics

    Indian Academy of Sciences (India)

    Jan-E Alam; K Assamagan; S Chattopadhyay; R Gavai; Sourendu Gupta; B Layek; S Mukherjee; R Ray; Pradip K Roy; A Srivastava

    2004-12-01

    The 8th workshop on high energy physics phenomenology (WHEPP-8) was held at the Indian Institute of Technology, Mumbai, India during January 5–16, 2004. One of the four working groups, group III was dedicated to QCD and heavy ion physics (HIC). The present manuscript gives a summary of the activities of group III during the workshop (see also [1] for completeness). The activities of group III were focused to understand the collective behaviours of the system formed after the collisions of two nuclei at ultra-relativistic energies from the interactions of the elementary degrees of freedom, i.e. quarks and gluons, governed by non-abelian gauge theory, i.e. QCD. This was initiated by two plenary talks on experimental overview of heavy ion collisions and lattice QCD and several working group talks and discussions.

  15. Recent results on relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Munhoz, Marcelo [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Inst. de Fisica

    2013-07-01

    Full text: The study of relativistic heavy ion collisions is a very important tool in order to understand the strong interaction described by QCD. The formation of the Quark-Gluon Plasma and the study of its properties is a very challenging quest. The Large Hadron Collider (LHC) from CERN (European Organization for Nuclear Research) generates ultra-relativistic Pb + Pb collisions at the TeV scale inaugurating a new era for such studies. Three experiments, ATLAS, CMS and ALICE are able to measure the products of such collisions. In special, the ALICE experiment was designed specifically for the study of heavy ion collisions. In this presentation, I'll discuss the latest results that shed light in the QGP understanding. (author)

  16. Bremsstrahlung from relativistic heavy ions in matter

    DEFF Research Database (Denmark)

    Sørensen, Allan Hvidkjær

    2010-01-01

    The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact...... ("ultraperipheral collisions"). Requirement of coherent action of the nucleons in order to keep the penetrating projectile intact limits bremsstrahlung to relatively soft photons. The spectrum shows a resonance structure with peak position near 2γ times the position of the giant dipole resonance, that is, near 25γ....... As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions...

  17. Chiral Magnetic Effect in Heavy Ion Collisions

    CERN Document Server

    Liao, Jinfeng

    2016-01-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.

  18. Dynamical processes in heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Blann, M.; Remington, B.A.

    1988-07-25

    In this report I review the physical assumptions of the Boltzmann Master Equation (BME). Comparisons of the model with experimental neutron spectra gated on evaporation residues for a range of incident projectile energies and masses are presented; next, I compare n spectra gated on projectile-like fragments, followed by comparisons with ungated, inclusive proton spectra. I will then consider secondary effects from the nucleon-nucleon processes involved in the heavy ion relaxation processes, specifically the high energy ..gamma..-rays which have been observed at energies up to 140 MeV in collisions of heavy ions of 20/endash/84 MeV/..mu... Another secondary effect, subthreshold pion production, was covered in the XVII School and will not be repeated. 39 refs., 16 figs.

  19. Optical Faraday Cup for Heavy Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, Frank; Bieniosek, F.M.; Eylon, S.; Roy, P.K.; Yu, S.S.

    2007-06-25

    We have been using alumina scintillators for imaging beams in heavy-ion beam fusion experiments in 2 to 4 transverse dimensions [1]. The scintillator has a limited lifetime under bombardment by the heavy ion beams. As a possible replacement for the scintillator, we are studying the technique of imaging the beam on a gas cloud. A gas cloud for imaging the beam may be created on a solid hole plate placed in the path of the beam, or by a localized gas jet. It is possible to image the beam using certain fast-quenching optical lines that closely follow beam current density and are independent of gas density. We describe this technique and show preliminary experimental data. This approach has promise to be a new fast beam current diagnostic on a nanosecond time scale.

  20. Development of a laser ion source for production of high-intensity heavy-ion beams

    Science.gov (United States)

    Kashiwagi, H.; Yamada, K.; Kurashima, S.

    2017-09-01

    A laser ion source has been developed as a high-intensity source for the ion implanter and the single pulsed beam of the azimuthally varying field cyclotron at TIARA. Highly charged beams of C5+ and C6+ ions and low-charged beams of heavy ions such as C, Al, Ti, Cu, Au, and Pt are required for the single-pulse acceleration in the cyclotron and for the ion implanter, respectively. In the vacuum chamber of the ion source, a target holder on a three-dimensional linear-motion stage provides a fresh surface for each laser shot. A large-sized target with a maximum size of 300 mm × 135 mm is mounted on the holder for long-term operation. The ion current (ion charge flux) in the laser-produced plasma is measured by a Faraday cup and time-of-flight spectra of each charge state are measured using a 90° cylindrical electrostatic analyzer just behind the Faraday cup. Carbon-plasma-generation experiments indicate that the source produces intense high- and low-charged pulsed ion beams. At a laser energy of 483 mJ (2.3 × 1013 W/cm2), average C6+ current of 13 mA and average C5+ current of 23 mA were obtained over the required time duration for single-pulse acceleration in the cyclotron (49 ns for C6+ and 80 ns for C5+). Furthermore, at 45 mJ (2.1 × 1012 W/cm2), an average C2+ current of 1.6 mA over 0.88 μs is obtained.

  1. Femtoscopy in Relativistic Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lisa, M; Pratt, S; Soltz, R A; Wiedemann, U

    2005-07-29

    Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.

  2. Size Effects in Heavy Ions Fragmentation

    CERN Document Server

    Barrañon, A; Dorso, C O

    2003-01-01

    Rise-Plateau Caloric curves for different Heavy Ion collisions have been obtained, in the range of experimental observations. Limit temperature decreases when the residual size is increased, in agreement with recent theoretical analysis of experimental results reported by other Collaborations. Besides, promptly emitted particles influence on temperature plateau is shown. LATINO binary interaction semiclassical model is used to reproduce the inter-nucleonic forces via Pandharipande Potential and fragments are detected with an Early Cluster Recognition Algorithm.

  3. Surface spectroscopy using high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, B.L.; Cocke, C.L.; Gray, T.J.; Justiniano, E.; Peercy, P.S.

    1983-04-01

    Surface atoms ionized by high energy heavy ions have been detected by time-of-flight and quadrupole mass spectroscopic techniques. The experimental arrangements are described and potential applications are suggested. Both techniques are demonstrated to produce significant improvements in the detection of atomic hydrogen, with the TOF method producing a nine order of magnitude increase in the sensitivity of atomic hydrogen compared to standard nuclear analysis methods.

  4. Heavy Ion Physics with the ATLAS Detector

    CERN Multimedia

    Takai, H

    2003-01-01

    I guess the first thing that comes to people's mind is why is an experiment such as ATLAS interested in heavy ion physics. What is heavy ion physics anyway? The term heavy ion physics refers to the study of collisions between large nuclei such as lead, atomic number 208. But why would someone collide something as large and extensive as lead nuclei? When two nuclei collide there is a unique opportunity to study QCD at extreme energy densities. This said why do we think ATLAS is a good detector to study this particular physics? Among many of the simultaneous collisions that takes place when two nuclei encouter, hard scattering takes place. The unique situation now is that before hadronization partons from hard scattering may feel the surrounding media serving as an ideal probe for the matter formed in these collisions. As a consequence of this, jets may be quenched and their properties, e.g. fragmentation function or cone radius, modified when compared to proton-proton collisions. This is precisely where ATL...

  5. Suppression and Two-Particle Correlations of Heavy Mesons in Heavy-Ion Collisions

    Science.gov (United States)

    Cao, Shanshan; Qin, Guang-You; Bass, Steffen A.

    2016-12-01

    We study the medium modification of heavy quarks produced in heavy-ion collisions. The evolution of heavy quarks inside the QGP is described using a modified Langevin framework that simultaneously incorporates their collisional and radiative energy loss. Within this framework, we provide good descriptions of the heavy meson suppression and predictions for the two-particle correlation functions of heavy meson pairs.

  6. Direct drive heavy-ion-beam inertial fusion at high coupling efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Logan, B.G.; Perkins, L.J.; Barnard, J.J.

    2008-05-16

    Issues with coupling efficiency, beam illumination symmetry, and Rayleigh-Taylor instability are discussed for spherical heavy-ion-beam-driven targets with and without hohlraums. Efficient coupling of heavy-ion beams to compress direct-drive inertial fusion targets without hohlraums is found to require ion range increasing several-fold during the drive pulse. One-dimensional implosion calculations using the LASNEX inertial confinement fusion target physics code shows the ion range increasing fourfold during the drive pulse to keep ion energy deposition following closely behind the imploding ablation front, resulting in high coupling efficiencies (shell kinetic energy/incident beam energy of 16% to 18%). Ways to increase beam ion range while mitigating Rayleigh-Taylor instabilities are discussed for future work.

  7. Heavy ion irradiation of crystalline water ice

    CERN Document Server

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

    2015-01-01

    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  8. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    Science.gov (United States)

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  9. Heavy ion facilities and heavy ion research at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-10-01

    Lawrence Berkeley Laboratory has been heavily involved since 1956 in the construction and adaptation of particle accelerators for the acceleration of heavy ions. At the present time it has the most extensive group of accelerators with heavy-ion capability in the United States: The SuperHILAC, the 88-Inch Cyclotron, and the Bevatron/Bevalac. An extensive heavy-ion program in nuclear and particle physics, in nuclear chemistry, and in the study of biological effects of heavy-ion irradiations has been supported in the past; and the Laboratory has a strong interest in expanding both its capabilities for heavy-ion acceleration and its participation in heavy-ion science. The first heavy-ion accelerator at LBL was the HILAC, which began operation in 1957. A vigorous program of research with ion beams of masses 4 through 40 began at that time and continued until the machine was shut down for modifications in February 1971. At that time, a grant of $3 M had been received from the AEC for a total reconstruction of the HILAC, to turn it into an upgraded accelerator, the SuperHILAC. This new machine is designed for the acceleration of all ions through uranium to an energy of 8.5 MeV/u. The SuperHILAC is equipped with two injectors. The lower energy injector, a 750-kV Cockcroft-Walton machine, was put into service in late 1972 for acceleration of ions up through {sup 40}Ar. By spring of 1973, operation of the SuperHILAC with this injector exceeded the performance of the original HILAC. The second injector, a 2.5-MV Dynamitron, was originally designed for the Omnitron project and built with $1 M of Omnitron R and D funds. Commissioning of this injector began in 1973 and proceeded to the point where nanoampere beams of krypton were available for a series of research studies in May and June. The first publishable new results with beams heavier than {sup 40}Ar were obtained at that time. Debugging and injector improvement projects will continue in FY 74.

  10. Resonance propagation in heavy-ion scattering

    Indian Academy of Sciences (India)

    Bijoy Kundu; B K Jain

    2001-06-01

    The formalism developed earlier by us for the propagation of a resonance in the nuclear medium in proton–nucleus collisions has been modified to the case of vector boson production in heavy-ion collisions. The formalism includes coherently the contribution to the observed di-lepton production from the decay of a vector boson inside as well as outside the nuclear medium. The medium modification of the boson is incorporated through an energy dependent optical potential. The calculated invariant mass distributions are presented for the -meson production using optical potentials estimated within the VDM and the resonance model. The shift in the invariant mass distribution is found to be small. To achieve the mass shift (of about 200 MeV towards lower mass) as indicated in the high energy heavy-ion collision experiments, an unusually strong optical potential of about -120 MeV is required. We also observe that, for not so heavy nuclear systems and/or for fast moving resonances, the shape, magnitude and peak position of the invariant mass distribution is substantially different if the contributions from the resonance decay inside and outside are summedup at the amplitude level (coherently) or at the cross section level (incoherently).

  11. Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes

    Science.gov (United States)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2017-07-01

    We present a theoretical study of heavy ion acceleration from ultrathin (20 nm) gold foil irradiated by high-intensity sub-picosecond lasers. Using two-dimensional particle-in-cell simulations, three laser systems are modeled that cover the range between femtosecond and picosecond pulses. By varying the laser pulse duration we observe a transition from radiation pressure acceleration (RPA) to the relativistic induced transparency (RIT) regime for heavy ions akin to light ions. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. A more detailed study involving variation of peak laser intensity I 0 and pulse duration τFWHM revealed that the transition point from RPA to RIT regime depends on the peak laser intensity on target and occurs for pulse duration {τ }{{F}{{W}}{{H}}{{M}}}{{R}{{P}}{{A}}\\to {{R}}{{I}}{{T}}}[{{f}}{{s}}]\\cong 210/\\sqrt{{I}0[{{W}} {{{cm}}}-2]/{10}21}. The most abundant gold ion and charge-to-mass ratio are Au51+ and q/M ≈ 1/4, respectively, half that of light ions. For ultrathin foils, on the order of one skin depth, we established a linear scaling of the maximum energy per nucleon (E/M)max with (q/M)max, which is more favorable than the quadratic one found previously. The numerical simulations predict heavy ion beams with very attractive properties for applications: high directionality (high fluxes (>1011 ions sr-1) and energy (>20 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  12. QCD and Heavy Ions RHIC Overview

    CERN Document Server

    Granier de Cassagnac, Raphael

    2010-01-01

    Nowadays, the most violent heavy ion collisions available to experimental study occur at the Relativistic Heavy Ion Collider (RHIC) of the Brookhaven National Laboratory. There, gold ions collide at psNN = 200 GeV. The early and most striking RHIC results were summarised in 2005 by its four experiments, BRAHMS, PHENIX, PHOBOS and STAR, in their so-called white papers [1, 2, 3, 4] that will be largely referenced thereafter. Beyond and after this, a wealth of data has been collected and analysed, providing additional information about the properties of the matter created at RHIC. It is categorically impossible to give a comprehensive review of these results in a 20 minutes talk or a 7 pages report. Here, I have made a selection of some of the most striking or intriguing signatures: jet quenching in Section 2, quarkonia suppressions in Section 3 and thermal photons in Section 4. A slightly longer and older version of this review can be found in [5]. Some updates are given here, as well as emphasis on new probes ...

  13. Heavy Ion results from RHIC-BNL

    Directory of Open Access Journals (Sweden)

    Esumi Shinlchi

    2013-05-01

    Full Text Available Recent results from heavy ion collision experiments from RHIC at BNL are presented and discussed in terms of Quark Gluon Plasm properties, such as partonic collectivity and partonic energy loss. The experimental results with direct photons and heavy quarks have given important additional insights of the plasma on top of what has been known with light hadrons. Higher order event anisotropies and the related results have provided the geometrical, temporal and dynamical information of the plasma. The beam energy dependence of the various measurements could reveal the structure of QCD phase diagram and possibly the critical point in the diagram, where the properties of phase transition are expected to change drastically.

  14. Identifying multiquark hadrons from heavy ion collisions.

    Science.gov (United States)

    Cho, Sungtae; Furumoto, Takenori; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Yasui, Shigehiro; Yazaki, Koichi

    2011-05-27

    Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.

  15. Development of laser ion source for heavy ion applications

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Shinji, E-mail: shibuya@aec-beam.co.jp [Accelerator Engineering Corporation, 3-8-5 Konakadai, Inage-ku, Chiba 263-0043 (Japan); Hattori, Toshiyuki, E-mail: thattori@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Hayashizaki, Noriyosu, E-mail: nhayashi@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Kashiwagi, Hirotsugu, E-mail: hirotsugu.kashiwagi@jaea.go.jp [Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Maruyama, Toshiyuki, E-mail: t-maruyama@toyama-jp.com [Toyama Co., Ltd., 4-13-16 Hibarigaoka, Zama-shi, Kanagawa 252-0003 (Japan); Mochizuki, Tetsuro, E-mail: Mochizuki@toyama-jp.com [Toyama Co., Ltd., 4-13-16 Hibarigaoka, Zama-shi, Kanagawa 252-0003 (Japan); Momota, Sadao, E-mail: momota.sadao@kochi-tech.ac.jp [Kochi University of Technology, 185 Tosa-yamada-cyo, Kami-shi, Kochi 782-8502 (Japan); Nakagawa, Jun, E-mail: nakagawa@toyama-jp.com [Toyama Co., Ltd., 4-13-16 Hibarigaoka, Zama-shi, Kanagawa 252-0003 (Japan); Takeuchi, Takeshi, E-mail: aec2g@nirs.go.jp [Accelerator Engineering Corporation, 3-8-5 Konakadai, Inage-ku, Chiba 263-0043 (Japan)

    2011-12-15

    We have been developing a high-performance laser ion source (LIS) for practical applications since 2009. Ideally, the LIS should generate a carbon beam with a peak current of 20 mA and a pulse duration of over 1 {mu}s. We selected a Nd:YAG laser with a Gaussian-coupled resonator as the laser source based on our experience of generating high-charge-state ion beams. This laser can produce fundamental pulses with a power of 650 mJ and durations of about 6 ns. The graphite target used is 10 cm high and 10 cm in diameter, as it can be irradiated with up to 10{sup 5} laser shots. The maximum extraction voltage was designed to be 50 kV. We have already finished designing the LIS and we commenced fabrication. We intend to measure the source performance by performing plasma and beam tests up to the end of March 2011.

  16. Direct photons in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baeuchle, Bjoern

    2010-12-13

    Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. In all systems that have been considered -- heavy-ion collisions at E{sub lab}=35 AGeV and 158 AGeV, (s{sub NN}){sup 1/2}=62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. (orig.)

  17. Progress in understanding heavy-ion stopping

    Science.gov (United States)

    Sigmund, P.; Schinner, A.

    2016-09-01

    We report some highlights of our work with heavy-ion stopping in the energy range where Bethe stopping theory breaks down. Main tools are our binary stopping theory (PASS code), the reciprocity principle, and Paul's data base. Comparisons are made between PASS and three alternative theoretical schemes (CasP, HISTOP and SLPA). In addition to equilibrium stopping we discuss frozen-charge stopping, deviations from linear velocity dependence below the Bragg peak, application of the reciprocity principle in low-velocity stopping, modeling of equilibrium charges, and the significance of the so-called effective charge.

  18. Multifragmentation and dynamics in heavy ion collisions

    Indian Academy of Sciences (India)

    R Roy

    2001-07-01

    A midrapidity zone formed in heavy-ion collisions has been investigated through special selections of light particles and intermediate mass fragments detected in the reaction 35Cl on 12C at 43 MeV/nucleon and the reactions 58Ni on 12C, 24Mg, and 197Au at 34.5 MeV/nucleon, and of neutron energy spectra measured in the reaction 35Cl on natTa. Properties of the observables have been examined to characterize the neck-like structure formed between the two reaction partners.

  19. Non abelian hydrodynamics and heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Calzetta, E. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina)

    2014-01-14

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  20. Thermodynamical Aspects in Heavy Ion Reactions

    Science.gov (United States)

    Bruno, M.; Cannata, F.; D'Agostino, M.; de Sanctis, J.; Fabbri, S.; Fuschini, E.; Geraci, E.; Guiot, B.; Vannini, G.; Verondini, E.; Gulminelli, F.; Chomaz, Ph.; Casini, G.; Chiari, M.; Nannini, A.; Barlini, S.; Gramegna, F.; Kravchuk, V.; Lanchais, A.; Vannucci, L.; Moroni, A.; Ordine, A.; Abbondanno, U.; Margagliotti, G. V.

    2005-12-01

    The excited nuclear systems formed in heavy ion collisions can be studied from a thermodynamical point of view. Charged finite systems have different behaviors with respect to infinite ones. After experimental selection of such equilibrated systems the extraction of thermodynamic coordinates is performed. Different signals compatible with a liquid-gas phase transition have been obtained. In particular a bimodal distribution of the asymmetry between the first two heaviest fragments is presented. Abnormally large fluctuations, which in thermodynamic equilibrium are associated to a negative branch of the heat capacity give indications of a first order phase transition. Perspectives for new generation experiments are indicated.

  1. Charmonium physics with heavy ions: experimental results

    CERN Document Server

    Scomparin, E

    2016-01-01

    Thirty years ago, the suppression of charmonium production in heavy-ion collisions was first proposed as an unambiguous signature for the formation of a Quark-Gluon Plasma. Since then, experiments at fixed-target accelerators (SPS) and hadronic colliders (RHIC, LHC) have investigated this observable and discovered a wide range of effects, that have been related to the original proposal but at the same time have also prompted a strong development in the underlying theory concepts. In this contribution, I will review the main achievements of this field, with emphasis on recent results obtained by LHC experiments.

  2. Non abelian hydrodynamics and heavy ion collisions

    CERN Document Server

    Calzetta, Esteban

    2013-01-01

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  3. Helicity separation in Heavy-Ion Collisions

    CERN Document Server

    Baznat, Mircea; Sorin, Alexander; Teryaev, Oleg

    2013-01-01

    We study the P-odd effects related to the vorticity of the medium formed in noncentral heavy ion collisions. Using the kinetic Quark-Gluon Strings Model we perform the numerical simulations of the vorticity and hydrodynamical helicity for the various atomic numbers, energies and centralities. We observed the vortical structures typically occupying the relatively small fraction of the fireball volume. In the course of numerical simulations the noticeable hydrodanamical helicity was observed manifesting the specific mirror behaviour with respect to the reaction plane. The effect is maximal at the NICA and FAIR energy range.

  4. Vorticity in heavy-ion collisions

    Science.gov (United States)

    Deng, Wei-Tian; Huang, Xu-Guang

    2016-06-01

    We study the event-by-event generation of flow vorticity in the BNL Relativistic Heavy Ion Collider Au +Au collisions and CERN Large Hadron Collider Pb +Pb collisions by using the hijing model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  5. Heavy ion recoil spectrometry of barium strontium titanate films

    Science.gov (United States)

    Stannard, W. B.; Johnston, P. N.; Walker, S. R.; Bubb, I. F.; Scott, J. F.; Cohen, D. D.; Dytlewski, N.; Martin, J. W.

    1995-05-01

    Thin films of barium strontium titanate have been analysed using heavy ion recoil spectrometry with 77 and 98 MeV 127I ions at the new heavy ion recoil facility at ANSTO, Lucas Heights. New calibration procedures have been developed for quantitative analysis. Energy spectra for each of the elements present reveal interdiffusion that was not previously known.

  6. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  7. Mutagenic effects of heavy ions in bacteria

    Science.gov (United States)

    Horneck, G.; Krasavin, E. A.; Kozubek, S.

    1994-10-01

    Various mutagenic effects by heavy ions were studied in bacteria, irradiated at accelerators in Dubna, Prague, Berkeley or Darmstadt. Endpoints investigated are histidine reversion (B. subtilis, S. typhimurium), azide resistance (B. subtilis), mutation in the lactose operon (E. coli), SOS chromotest (E. coli) and λ-prophage induction (E. coli). It was found that the cross sections of the different endpoints show a similar dependence on energy. For light ions (Z = 26) it increases with energy up to a maximum or saturation. The increment becomes steeper with increasing Z. This dependence on energy suggests a ``mutagenic belt'' inside the track that is restricted to an area where the density of departed energy is low enough not to kill the cell, but high enough to induce mutations.

  8. Material Removes Heavy Metal Ions From Water

    Science.gov (United States)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  9. Towards the heavy-ion program at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Sako, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Chujo, T. [University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Gunji, T. [Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198 (Japan); Harada, H. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Kaneta, M. [Tohoku University, Sendai, Miyagi 980-8578 (Japan); Kinsho, M. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Liu, Y. [J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Nagamiya, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Nishio, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Ozawa, K. [J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Saha, P.K. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Sakaguchi, T. [Broohaven National Laboratory, Upton, NY 11973-5000 (United States); Sato, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Tamura, J. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan)

    2014-11-15

    A future heavy-ion program at J-PARC has been discussed. The QCD phase structure in high baryon density regime will be explored with heavy ions at the beam momenta of around 10 A GeV/c at the beam rate of 10{sup 10}–10{sup 11} Hz. For this quest, a large acceptance spectrometer is designed to measure electrons and muons, and rare probes such as multi-strangeness and charmed hadrons/nuclei. A heavy-ion acceleration scheme is under study with a new heavy-ion linac and a new booster ring, which accelerate and inject beams into the existing Rapid-Cycling Synchrotron and Main Ring synchrotron. An overview of the heavy-ion program and an accelerator design, as well as physics goals and a conceptual design of the heavy-ion experiment are discussed.

  10. A heavy ion spectrometer system for the measurement of projectile fragmentation of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Engelage, J.; Crawford, H.J.; Greiner, L.; Kuo, C. [and others

    1996-06-01

    The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed.

  11. Multiplicity and theremalization time in heavy-ions collisions

    Science.gov (United States)

    Aref'eva, Irina

    2016-10-01

    We present a concise review of quark-gluon plasma formation in heavy-ions collisions within the holographic approach. In particular, we discuss how to get the total multiplicity in heavy ions collision to fit the recent experimental data. We also discuss theoretical estimations of time formation of QGP in heavy ions collision and show that different observables can give the different times of QGP formation.

  12. Multiplicity and theremalization time in heavy-ions collisions

    Directory of Open Access Journals (Sweden)

    Aref’eva Irina

    2016-01-01

    Full Text Available We present a concise review of quark-gluon plasma formation in heavy-ions collisions within the holographic approach. In particular, we discuss how to get the total multiplicity in heavy ions collision to fit the recent experimental data. We also discuss theoretical estimations of time formation of QGP in heavy ions collision and show that different observables can give the different times of QGP formation.

  13. Ion beam pulse radiolysis system at HIMAC

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, N.; Katsumura, Y.; Domae, M.; Ishigure, K. [Tokyo Univ. (Japan); Murakami, T.

    1997-03-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3}, and KSCN, were irradiated and the absorption signals corresponding to (C{sub 6}H{sub 5}){sub 2}CO{sup -}, CO{sub 3}{sup -}, and (SCN){sub 2}{sup -} respectively were observed. Ghost signals which interfere with the measurement are also discussed. (author)

  14. Heavy Ion Physics at the LHC

    CERN Document Server

    Morsch, Andreas

    2000-01-01

    Proposal of abstract for HEP99, Tampere, Finland, 15-21 July 1999The Large Hadron Collider (LHC) under construction at CERN is also planned as a heavy ion collider with lead ions colliding at an energy of 5.5 TeV. This corresponds to collisions of matter with cosmic rays of the highest energies observed so far promising the study of new and exciting aspects of physics. In addition to the heaviest system (Pb--Pb), collisions of lower mass ions are foreseen as a means to study collisions at different energy density and proton-nucleus (p--A) collisions provide indispensable reference data for the A--A collisions.ALICE (A Large Ion Collider Experiment) is the only detector fully dedicated to the physics of nuclear collisions. It is designed to cover the full richness of hadronic and leptonic signals expected at the LHC allowing to establish and to study the phase transition from hadronic matter to deconfined partonic matter, the quark gluon plasma (QGP). The CMS experiment is optimised for the study of hard proce...

  15. Chamber transport for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Craig L., E-mail: clolson66@msn.com

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted.

  16. Local brain heavy ion irradiation induced Immunosuppression

    Science.gov (United States)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  17. Overview of the Heavy Ion Fusion Program

    CERN Document Server

    Celata, C M

    2000-01-01

    The world Heavy Ion Fusion (HIF) Program for inertial fusion energy is looking toward the development and commissioning of several new experiments. Recent and planned upgrades of the facilities at GSI, in Russia, and in Japan greatly enhance the ability to study energy deposition in hot dense matter. Worldwide target design developments have focused on non-ignition targets for nearterm experiments and designs which, while lowering the energy required for ignition, tighten accelerator requirements. The U.S program is transitioning between scaled beam dynamics experiments and high current experiments with power-plant-driver-scale beams. Current effort is aimed at preparation for the next-step large facility, the Integrated Research Experiment (IRE)-- an induction linac accelerating multiple beams to a few hundred MeV, then focusing to deliver tens of kilojoules to a target. The goal is to study heavy ion energy deposition, and to test all of the components and physics needed for an engineering test of a power p...

  18. Future of the ATLAS heavy ion program

    CERN Document Server

    ATLAS-Collaboration, The; The ATLAS collaboration

    2012-01-01

    The primary goal of the heavy ion program at the LHC is to study the properties of deconfined strongly interacting matter, often referred to as ``quark-gluon plasma'' (QGP), created in ultra-relativistic nuclear collisions. That matter is found to be strongly coupled with a viscosity to entropy ratio near a conjectured quantum lower bound. ATLAS foresees a rich program of studies using jets, Upsilons, measurements of global event properties and measurements in proton-nucleus collisions that will measure fundamental transport properties of the QGP, probe the nature of the interactions between constituents of the QGP, elucidate the origin of the strong coupling, and provide insight on the initial state of nuclear collisions. The heavy ion program through the third long shutdown should provide one inverse nb of 5.5~TeV Pb+Pb data. That data will provide more than an order of magnitude increase in statistics over currently available data for high-pT observables such as gamma-jet and Z-jet pairs. However, potentia...

  19. Induction accelerator development for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE). The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator.

  20. Induction accelerator development for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE).The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development. The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator.

  1. Generation of pulsed ion beams by an inductive storage pulsed power generator

    Science.gov (United States)

    Katsuki, Sunao; Akiyama, Hidenori; Maeda, Sadao

    1990-10-01

    A pulsed power generator by an inductive energy storage system is extremely compact and light in comparison with a conventional pulsed power generator, which consists of a Marx bank and a water pulse forming line. A compact and light pulse power generator is applied to the generation of pulsed ion beams. A thin copper fuse is used an an opening switch, which is necessary in the inductive storage pulsed power generator. A magnetically insulated diode is used for the generation of ion beams. The pulsed ion beams are successfully generated by the inductive storage pulsed power generator for the first time.

  2. Recent progress in molecule modification with heavy ion beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The research into heavy ion beam biology started in the 1960s, and so far it has become an important interdisciplinary study. Heavy ion beam is more suitable for molecule modification than other sorts of radiation, for it has many superiorities such as the energy transfer effect and the mass deposition effect. Molecule modification with heavy ion beam irradiation can be applied to developing new medicines and their precursors, genetic engineering, protein engi neering, outer space radiobiology, etc. Retrospect and prospect of the research and development of molecule modifica tion with heavy ion beam irradiation are given.

  3. Time-of-flight secondary neutral & ion mass spectrometry using swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, L.; Meinerzhagen, F. [Universität Duisburg-Essen, Fakultät für Physik, D-47048 Duisburg (Germany); Bender, M.; Severin, D. [Gesellschaft für Schwerionenforschung GSI, D-64291 Darmstadt (Germany); Wucher, A., E-mail: andreas.wucher@uni-due.de [Universität Duisburg-Essen, Fakultät für Physik, D-47048 Duisburg (Germany)

    2015-12-15

    We report on a new time-of-flight (TOF) spectrometer designed to investigate sputtering phenomena induced by swift heavy ions in the electronic stopping regime. In this experiment, particular emphasis is put on the detection of secondary ions along with their emitted neutral counterparts in order to examine the ionization efficiency of the sputtered material. For the detection of neutral species, the system is equipped with a pulsed VUV laser for post-ionization of sputtered neutral atoms and molecules via single photon ionization at a wavelength of 157 nm (corresponding to 7.9 eV photon energy). For alignment purposes and in order to facilitate comparison to nuclear sputtering conditions, the system also includes a 5 keV Ar{sup +} ion beam directed to the same sample area. The instrument has been added to the M1-branch beam line at the German accelerator facility in Darmstadt (GSI) and was tested with 4.8 MeV/u Au{sup 26+} ions impinging onto various samples including metals, salts and organic films. It is found that secondary ion and neutral spectra obtained under both bombardment conditions can be acquired in an interleaved manner throughout a single accelerator pulse cycle, thus making efficient use of valuable beam time. In addition, the keV ion beam can be intermittently switched to dc mode between subsequent data acquisition windows and accelerator pulses in order to ensure reproducible surface conditions. For the case of a dynamically sputter cleaned metal surface, comparison of secondary ion and neutral signals obtained under otherwise identical instrumental conditions reveals a nearly identical ionization probability of atoms emitted under electronic and nuclear sputtering conditions.

  4. Open heavy-flavor production and suppression in heavy-ion collisions

    CERN Document Server

    Nahrgang, Marlene

    2015-01-01

    Heavy-flavor observables are valuable probes of the quark-gluon plasma, which is expected to be produced in ultrarelativistic heavy-ion collisions. These experiments offer the unique opportunity to study strongly interacting matter at high temperatures and densities in the laboratory. In this overview talk I will summarize the current theoretical status of heavy-flavor production and suppression in heavy-ion collisions and discuss open challenges.

  5. Heavy ion radiobiology for hadrontherapy and space radiation protection.

    Science.gov (United States)

    Durante, Marco

    2004-12-01

    Research in the field of biological effects of heavy charged particles is needed for both heavy-ion therapy (hadrontherapy) and protection from the exposure to galactic cosmic radiation in long-term manned space missions. Although the exposure conditions (e.g. high- vs. low-dose rate) and relevant endpoints (e.g. cell killing vs. neoplastic transformation) are different in the two fields, it is clear that a substantial overlap exists in several research topics. Three such topics are discussed in this short review: individual radiosensitivity, mixed radiation fields, and late stochastic effects of heavy ions. In addition, researchers involved either in experimental studies on space radiation protection or heavy-ion therapy will basically use the same accelerator facilities. It seems to be important that novel accelerator facilities planned (or under construction) for heavy-ion therapy reserve a substantial amount of beamtime to basic studies of heavy-ion radiobiology and its applications in space radiation research.

  6. CERN achievements in relativistic heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Bruno Giuseppe Eugenio

    2015-01-01

    Full Text Available Twenty years after a Letter of Intent by the GSI and LBL groups for the “Study of particle production and target fragmentation in central 20Ne on Pb reactions, at 12 GeV per nucleon energy of the CERN PS external beam" [1], based on the results found by the NA45/CERES, NA49, NA50, and WA97/NA57 experiments at the SPS, CERN announced compelling evidence for the formation of a new state of matter in heavyion collisions at CERN-SPS energies [2]. Some of the experiments were indeed the 2nd or 3rd generation successors of the apparatuses originally proposed by the GSI-LBL collaboration. Actually, the CERN ion program initiated at the SPS with the acceleration of oxygen ions at 60 and 200 GeV/nucleon only in 1986, and continued with sulphur ions at 200 GeV/nucleon up to 1993. The rest is history: lead-ion beams at 160 GeV/nucleon became available at the SPS in 1994; the LHC accelerated and collided lead beams at a center of mass energy per nucleon pair √sNN = 2.76 TeV in 2010. Heavy ion physics is definitely in the future program of CERN: ALICE will operate a major upgrade of its detectors during the second long shutdown of the LHC, in 2018-2019, and the associated physics program will span the third and fourth LHC runs, till late 2020s.

  7. TNSA Heavy Ion Measurements using the Time-Resolved Tandem Faraday Cup

    Science.gov (United States)

    Ginnane, M. K.; Kousar, B.; Slish, J.; Palmisano, K.; Mandanas, S.; Padalino, S. J.; Sangster, T. C.; Regan, S.; Mileham, C.; Stoeckl, C.

    2016-10-01

    The MTW Laser at LLE utilizes an ultra-intense laser to produce high-energy heavy ion pulses through Target Normal Sheath Acceleration (TNSA). Using the Time-Resolved Tandem Faraday Cup (TRTF) the total number of heavy ions produced by TNSA can be determined, which is needed for stellar nuclear reaction cross section measurements. TNSA heavy ions stop within the thin walled front cup, while light ions pass through it and deposit their remaining charge in the back cup. A two channel storage scope measures voltages produced by the beam currents collected in the cups, respectively. The charge state fraction of plasma ions is modified by passing the heavy ions through a charge-exchange foil at the TRTF entrance. While passing through the foil, ions equilibrate to known charge states based on their velocities. Using time of flight, the total heavy ion current can be normalized to the correct charge state fraction. A pair of dipole magnets deflect relativistic TNSA electrons from the cup's entrance. They also prevent secondary electrons from escaping the front and back cups. Funded in part by a LLE contract through the DOE.

  8. Heavy ion induced double strand breaks in bacteria and bacteriophages

    Science.gov (United States)

    Micke, U.; Schäfer, M.; Anton, A.; Horneck, G.; Bücker, H.

    DNA damage induced by heavy ions in bacterial cells and bacteriophages such as Bacillus subtilis, E. coli and Bacteriophage Tl were investigated by analyzing the double strand breaks in the chromosomal DNA. This kind of lesion is considered as one of the main reasons for lethal events. To analyze double strand breaks in long molecules of DNA - up to some Mbp in length - the technique of pulse field agarose gel electrophoresis has been used. This allows the detection of one double strand break per genome. Cell lysis and DNA isolation were performed in small agarose blocks directly. This procedure secured minimum DNA destruction by shearing forces. After running a gel, the DNA was stained with ethidium bromide. The light intensity of ethidium bromide fluorescence for both the outcoming (running) DNA and the remaining intact DNA were measured by scanning. The mean number of double strand breaks was calculated by determining the quotient of these intensities. Strand break induction after heavy ion and X-ray irradiation was compared.

  9. Conceptual design of heavy ion beam compression using a wedge

    Directory of Open Access Journals (Sweden)

    Jonathan C. Wong

    2015-10-01

    Full Text Available Heavy ion beams are a useful tool for conducting high energy density physics (HEDP experiments. Target heating can be enhanced by beam compression, because a shorter pulse diminishes hydrodynamic expansion during irradiation. A conceptual design is introduced to compress ∼100  MeV/u to ∼GeV/u heavy ion beams using a wedge. By deflecting the beam with a time-varying field and placing a tailor-made wedge amid its path downstream, each transverse slice passes through matter of different thickness. The resulting energy loss creates a head-to-tail velocity gradient, and the wedge shape can be designed by using stopping power models to give maximum compression at the target. The compression ratio at the target was found to vary linearly with (head-to-tail centroid offset/spot radius at the wedge. The latter should be approximately 10 to attain tenfold compression. The decline in beam quality due to projectile ionization, energy straggling, fragmentation, and scattering is shown to be acceptable for well-chosen wedge materials. A test experiment is proposed to verify the compression scheme and to study the beam-wedge interaction and its associated beam dynamics, which will facilitate further efforts towards a HEDP facility.

  10. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  11. Heavy-ion induced electronic desorption of gas from metals

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A W; Kollmus, H; Mahner, E; Covo, M K; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Kramer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2006-12-19

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/d/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  12. Collisionless damping of perpendicular magnetosonic pulses in a two-ion-species plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dogen, Daiju; Toida, Mieko; Ohsawa, Yukiharu [Nagoya Univ. (Japan). Dept. of Physics

    1998-08-01

    One dimensional electromagnetic simulation code based on a three-fluid model is used to study evolution of perpendicular magnetosonic pulses in a two-ion-species plasma. A magnetosonic pulse accelerates heavy ions in the direction parallel to the wave front, which results in the excitation of a long-wavelength perturbation behind the original pulse. Thus the original pulse is damped even if the plasma is collisionless and the pulse amplitude is small. The damping rate of a solitary pulse is theoretically obtained. It decreases with increasing amplitude. The theory is in good agreement with the simulation result. Also, it is confirmed that small-amplitude periodic waves are not damped. (author)

  13. Jet Structure in Heavy Ion Collisions

    CERN Document Server

    Blaizot, Jean-Paul

    2015-01-01

    We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter $\\hat q $. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the in-cone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.

  14. Electromagnetic probes in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    van Hees H.

    2015-01-01

    Full Text Available Due to their penetrating nature, electromagnetic probes, i.e., lepton-antilepton pairs (dileptons and photons are unique tools to gain insight into the nature of the hot and dense medium of strongly-interacting particles created in relativistic heavy-ion collisions, including hints to the nature of the restoration of chiral symmetry of QCD. Of particular interest are the spectral properties of the electromagnetic current-correlation function of these particles within the dense and/or hot medium. The related theoretical investigations of the in-medium properties of the involved particles in both the partonic and hadronic part of the QCD phase diagram underline the importance of a proper understanding of the properties of various hadron resonances in the medium.

  15. Dilepton Production in Heavy-Ion Collisions

    CERN Document Server

    Rapp, R

    2013-01-01

    The properties of electromagnetic radiation from hot fireballs as created in ultra-relativistic heavy-ion collisions are reviewed. We first outline how the medium effects in the electromagnetic spectral function, which governs thermal production rates, relate to the (partial) restoration of chiral symmetry. In particular, we show how chiral and QCD sum rules, together with constraints from lattice QCD, can render these relations quantitative. Turning to dilepton data, we elaborate on updates in the space-time evolution and quark-gluon plasma emission rates from lattice-QCD calculations. With a now available excitation function in dilepton spectra from the RHIC beam-energy scan connecting down to SPS energies, we argue that a consistent interpretation of dilepton data emerges. Combining well-constrained space-time evolutions with state-of-the-art emission rates identifies most of the radiation to emanate from around the pseudo-critical temperature, and thus confirms resonance melting as the prevalent mechanism...

  16. System size in relativistic heavy ion collisions

    Institute of Scientific and Technical Information of China (English)

    WANG Yang-Yang; ZHAO Lin-Jie; YUAN Zhong-Sheng; ZHANG Dan-Dan; FANG Wei; XU Ming-Mei

    2011-01-01

    System size is more than a geometrical quantity in relativistic heavy ion collisions; it is closely related to evolution process,i.e.a different system size corresponds to a different evolution process,and whether QGP is produced depends on the system size.We propose that the system size should be under the same level when comparing the measurements from different colliding nuclei.The equivalence of the peripheral collisions of Au-Au and the central collisions of smaller nuclei is studied using the Monte Carlo method.Comparing the transverse overlapping area of the colliding nuclei,the number of participant nucleons and the number of nucleon-nucleon binary collisions in various colliding nuclei,we give an estimate of the correspondence in system size.This is helpful in the experimental comparison of the measurements from different colliding nuclei.

  17. Hadron Production in Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Hans Georg; Xu, Nu

    2009-05-19

    Heavy ion collisions are an ideal tool to explore the QCD phase diagram. The goal is to study the equation of state (EOS) and to search for possible in-medium modifications of hadrons. By varying the collision energy a variety of regimes with their specific physics interest can be studied. At energies of a few GeV per nucleon, the regime where experiments were performed first at the Berkeley Bevalac and later at the Schwer-Ionen-Synchrotron (SIS) at GSI in Darmstadt, we study the equation of state of dense nuclear matter and try to identify in-medium modifications of hadrons. Towards higher energies, the regime of the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL), the Super-Proton Synchrotron (SPS) at CERN, and the Relativistic Heavy Ion Collider (RHIC) at BNL, we expect to produce a new state of matter, the Quark-Gluon Plasma (QGP). The physics goal is to identify the QGP and to study its properties. By varying the energy, different forms of matter are produced. At low energies we study dense nuclear matter, similar to the type of matter neutron stars are made of. As the energy is increased the main constituents of the matter will change. Baryon excitations will become more prevalent (resonance matter). Eventually we produce deconfined partonic matter that is thought to be in the core of neutron stars and that existed in the early universe. At low energies a great variety of collective effects is observed and a rather good understanding of the particle production has been achieved, especially that of the most abundantly produced pions and kaons. Many observations can be interpreted as time-ordered emission of various particle species. It is possible to determine, albeit model dependent, the equation of state of nuclear matter. We also have seen indications, that the kaon mass, especially the mass of the K{sup +}, might be modified by the medium created in heavy ion collisions. At AGS energies and above, emphasis shifts towards

  18. Theory overview of Heavy Ion collisions

    CERN Document Server

    Lappi, T

    2016-01-01

    This presentation discusses some recently active topics in the theoretical interpretation of high energy heavy ion collisions at the LHC and at RHIC. We argue that the standard paradigm for understanding the spacetime evolution of the bulk of the matter produced in the collision is provided by viscous relativistic hydrodynamics, which can be used to systematically extract properties of the QCD medium from experimental results. The initial conditions of this hydrodynamical evolution are increasingly well understood in terms of gluon saturation, and can be quantified using Classical Yang-Mills fields and QCD effective kinetic theory. Hard and electromagnetic probes of the plasma provide additional constraints. A particularly fascinating subject are high multiplicity proton-proton and proton-nucleus collisions, where some of the characteristics previously attributed to only nucleus-nucleus collisions have been observed.

  19. Hydrodynamic Approaches in Relativistic Heavy Ion Reactions

    CERN Document Server

    de Souza, Rafael Derradi; Kodama, Takeshi

    2016-01-01

    We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation with the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to...

  20. Application of hydrodynamics to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Felsberger, Lukas

    2014-12-02

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  1. Production of Charge in Heavy Ion Collisions

    CERN Document Server

    Pratt, Scott; Ratti, Claudia

    2015-01-01

    By analyzing preliminary experimental measurements of charge-balance functions from the STAR Collaboration at the Relativistic-Heavy-Ion Collider (RHIC), it is found that pictures where balancing charges are produced in a single surge, and therefore separated by a single length scale, are inconsistent with data. In contrast, a model that assumes two surges, one associated with the formation of a thermalized quark-gluon plasma and a second associated with hadronization, provides a far superior reproduction of the data. A statistical analysis of the model comparison finds that the two-surge model best reproduces the data if the charge production from the first surge is similar to expectations for equilibrated matter taken from lattice gauge theory. The charges created in the first surge appear to separate by approximately one unit of spatial rapidity before emission, while charges from the second wave appear to have separated by approximately a half unit or less.

  2. Holography, Hydrodynamization and Heavy-Ion Collisions

    CERN Document Server

    Heller, Michal P

    2016-01-01

    In the course of the past several years holography has emerged as an ab initio tool in exploring strongly-time-dependent phenomena in gauge theories. These lecture notes overview recent developments in this area driven by phenomenological questions concerning applicability of hydrodynamics under extreme conditions occurring in ultrarelativistic heavy-ion collisions at RHIC and LHC. The topics include equilibration time scales, holographic collisions and hydrodynamization from the point of view of the asymptotic character of the hydrodynamic gradient expansion. The emphasis is put on concepts rather than calculational techniques and particular attention is devoted to present these developments in the context of the most recent advances and some of the open problems.

  3. Particle Interferometry in Heavy-Ion Collisions

    CERN Document Server

    Heinz, Ulrich W

    1997-01-01

    By measuring hadronic single-particle spectra and two-particle correlations in heavy-ion collisions, the size and dynamical state of the collision fireball at freeze-out can be reconstructed. I discuss the relevant theoretical methods and their limitations. By applying the formalism to recent pion correlation data from Pb+Pb collisions at CERN we demonstrate that the collision zone has undergone strong transverse growth before freeze-out (by a factor 2-3 in each direction), and that it expands both longitudinally and transversally. From the thermal and flow energy density at freeze-out the energy density at the onset of transverse expansion can be estimated from conservation laws. It comfortably exceeds the critical value for the transition to color deconfined matter.

  4. Prompt processes in heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Blann, M.; Remington, B.A.

    1987-12-01

    We test a relaxation model based on two body nucleon-nucleon scattering processes to interpret phenomena observed in heavy ion reactions. We use the Boltzmann Master Equation to accomplish this. By assuming that the projectile nucleons partition the total excitation with equal a-priori probability of all configurations, we are able to reproduce several sets of neutron spectra from /sup 20/Ne and /sup 12/C induced reactions on /sup 165/Ho and from reactions of /sup 40/Ar or /sup 40/Ca. We point out ambiguities in deducing angle-integrated energy spectra from double differential spectra. With no additional free parameters, our model successfully reproduces a large body of high energy ..gamma..-ray spectra by assuming an incoherent n-p-bremsstrahlung mechanism. 45 refs., 13 figs.

  5. Cold fission as heavy ion emission

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Maruhn, J.A.; Greiner, W.; Ivascu, M.; Mazilu, D.; Gherghescu, R.

    1987-11-01

    The last version of the analytical superasymmetric fission model is applied to study cold fission processes. Strong shell effects are present either in one or both fission fragments. A smooth behaviour is observed when the proton or the neutron numbers are changed by four units. Increasing Z and N, in the transuranium region, a sharp transition from asymmetry with a large peak-to-valley ratio to symmetry at Z=100 and/or N=164 is obtained. The transition toward asymmetry at higher Z and N is much smoother. The most probable cold fission light fragments from /sup 234/U, /sup 236/U, /sup 239/Np and /sup 240/Pu are /sup 100/Zr, /sup 104/Mo, /sup 106/Mo and /sup 106/Mo, respectively, in good agreement with experimental data. The unified treatment of alpha decay, heavy ion radioactivities and cold fission is illustrated for /sup 234/U - the first nucleus in which all three groups have been already observed.

  6. Beam loss mechanisms in relativistic heavy-ion colliders

    CERN Document Server

    Bruce, Roderik; Gilardoni, S; Wallén, E

    2009-01-01

    The Large Hadron Collider (LHC), the largest particle accelerator ever built, is presently under commissioning at the European Organization for Nuclear Research (CERN). It will collide beams of protons, and later Pb82+ ions, at ultrarelativistic energies. Because of its unprecedented energy, the operation of the LHC with heavy ions will present beam physics challenges not encountered in previous colliders. Beam loss processes that are harmless in the presently largest operational heavy-ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, risk to cause quenches of superconducting magnets in the LHC. Interactions between colliding beams of ultrarelativistic heavy ions, or between beam ions and collimators, give rise to nuclear fragmentation. The resulting isotopes could have a charge-to-mass ratio different from the main beam and therefore follow dispersive orbits until they are lost. Depending on the machine conditions and the ion species, these losses could occur in loca...

  7. High energy heavy ion tracks in bubble detectors

    CERN Document Server

    Guo, S L; Guo, H Y; Tu, C Q; Wang, Y L; Doke, T; Kato, T; Ozaki, K; Kyan, A; Piao, Y; Murakami, T

    1999-01-01

    Bubble detectors which are commonly used as neutron detectors have been demonstrated through this study to be good detectors for registration of high energy heavy ion tracks. Large size bubble detectors made in China Institute of Atomic Energy were irradiated to heavy ions Ar and C up to 650 MeV/u and 400 MeV/u, respectively. Very clear features of stringy tracks of high energy heavy ions and their fragmentations are manifested and distinguishable. A single track created by a specific high energy heavy ion is composed of a line of bubbles, which is visible by naked eyes and retained for months without reduction in size. The creation of heavy ion tracks in bubble detectors is governed by a threshold whose essence is approximately a critical value of energy loss rate (dE/dX) sub c similar to that of etch track detectors. Ranges of heavy ions in bubble detectors are apparent and predictable by existing formulas. Identification of high energy heavy ions and the applications to heavy ion physics, cosmic rays, exot...

  8. PRISMA - a magnetic spectrometer for heavy ions at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Latina, A.; Stefanini, A.M.; Beghini, S.; Behera, B.R.; Corradi, L.; De Angelis, G.; De Rosa, A.; Fioretto, E.; Gadea, A.; Gulmini, M.; Inglima, G.; La Commara, M.; Maron, G.; Menegazzo, R.; Marginean, N.; Montagnoli, G.; Napoli, D.R.; Pierroutsakou, D.; Pollarolo, G.; Romoli, M.; Sandoli, M.; Scarlassara, F.; Szilner, S.; Toniolo, N.; Trotta, M.; Wu, Y.W

    2004-04-05

    The heavy-ion magnetic spectrometer PRISMA was recently installed at Laboratori Naz. di Legnaro, in order to exploit the heavy-ion beams of the XTU Tandem-ALPI-PIAVE accelerator complex, with masses up to A{approx_equal}200 at energies {approx_equal}5-10 MeV MeV A.

  9. Theoretical Concepts for Ultra-Relativistic Heavy Ion Collisions

    CERN Document Server

    McLerran, Larry

    2009-01-01

    Various forms of matter may be produced in ultra-relativistic heavy ion collisions. These are the Quark Gluon Plasma, the Color Glass Condensate, the Glasma and Quarkyonic Matter. A novel effect that may be associated with topological charge fluctuations is the Chiral Magnetic Effect. I explain these concepts and explain how they may be seen in ultra-relativistic heavy ion collisions.

  10. Quarkonia at finite temperature in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    Saumen Datta

    2015-05-01

    The behaviour of quarkonia in relativistic heavy-ion collisions is reviewed. After a detailed discussion of the current theoretical understanding of quarkonia in a static equilibriated plasma, we discuss quarkonia yield from the fireball created in ultrarelativistic heavy-ion collision experiments. We end with a brief discussion of the experimental results and outlook.

  11. Heavy ion tracks in polycarbonate. Comparison with a heavy ion irradiated model compound (diphenyl carbonate)

    Science.gov (United States)

    Ferain, E.; Legras, R.

    1993-09-01

    The chemical modifications induced by energetic heavy ion irradiation of polycarbonate (PC) film are determined by GPC, HPLC, ESR, TGA, IR and UV spectrophotometry. The main results of the irradiation are creation of radicals, chain scission, cross-linking and appearance of new chemical groups in the main polymer chain. As far as the creation of new groups is concerned, they are determined by means of a model compound of PC: the diphenyl carbonate (DPC). The following compounds are identified after energetic heavy ion irradiation of DPC: salicylic acid, phenol, 4,4'-biphenol, 2,4'-biphenol, 2,2'-biphenol, 4-phenoxyphenol, 2-phenoxyphenol, phenyl ether, phenyl benzoate, phenyl salicylate, 2-phenylphenol and 2-phenoxyphenyl benzoate. A similarity between the heavy ion irradiation and a heat treatment has also been established with DPC. On the basis of these results, we try to give an explanation of the preferential attack along the tracks of the irradiated film. Also, an explanation of the well-known beneficial effect of an UV exposition of the irradiated film on the selectivity of this preferential chemical attack is suggested.

  12. Heavy ion acceleration at parallel shocks

    Directory of Open Access Journals (Sweden)

    V. L. Galinsky

    2010-11-01

    Full Text Available A study of alpha particle acceleration at parallel shock due to an interaction with Alfvén waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model (Galinsky and Shevchenko, 2000, 2007. The model uses conservation laws and resonance conditions to find where waves will be generated or damped and hence where particles will be pitch-angle scattered. It considers the total distribution function (for the bulk plasma and high energy tail, so no standard assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles are required. The heavy ion scattering on hydromagnetic turbulence generated by both protons and ions themselves is considered. The contribution of alpha particles to turbulence generation is important because of their relatively large mass-loading parameter Pα=nαmα/npmp (mp, np and mα, nα are proton and alpha particle mass and density that defines efficiency of wave excitation. The energy spectra of alpha particles are found and compared with those obtained in test particle approximation.

  13. Linear electronics for Si-detectors and its energy calibration for use in heavy ion experiments

    CERN Document Server

    Taccetti, N; Carraresi, L; Bini, M; Casini, G; Ciaranfi, R; Giuntini, L; Maurenzig, P R; Montecchi, M; Olmi, A; Pasquali, G; Piantelli, S; Stefanini, A A

    2003-01-01

    The design and implementation of linear electronics based on small-size, low-power charge preamplifiers and shaping amplifiers, used in connection with Si-detector telescopes employed in heavy ion experiments, are presented. Bench tests and 'under beam' performances are discussed. In particular, the energy calibration and the linearity test of the overall system (Si-detector and linear and digital conversion electronics) has been performed with a procedure which avoids the pulse height defect problems connected with the detection of heavy ions. The procedure, basically, consists of using bursts of MeV protons, releasing up to GeV energies inside the detector, with low ionization density.

  14. Linear electronics for Si-detectors and its energy calibration for use in heavy ion experiments

    Science.gov (United States)

    Taccetti, N.; Poggi, G.; Carraresi, L.; Bini, M.; Casini, G.; Ciaranfi, R.; Giuntini, L.; Maurenzig, P. R.; Montecchi, M.; Olmi, A.; Pasquali, G.; Piantelli, S.; Stefanini, A. A.

    2003-01-01

    The design and implementation of linear electronics based on small-size, low-power charge preamplifiers and shaping amplifiers, used in connection with Si-detector telescopes employed in heavy ion experiments, are presented. Bench tests and "under beam" performances are discussed. In particular, the energy calibration and the linearity test of the overall system (Si-detector and linear and digital conversion electronics) has been performed with a procedure which avoids the pulse height defect problems connected with the detection of heavy ions. The procedure, basically, consists of using bursts of MeV protons, releasing up to GeV energies inside the detector, with low ionization density.

  15. Heavy ion fusion experiments at LBNL and LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Ahle, L

    1998-08-19

    The long-range goal of the US Heavy Ion Fusion (HIF) program is to develop heavy ion accelerators capable of igniting inertial fusion targets to generate fusion energy for electrical power production. Accelerators for heavy ion fusion consist of several subsystems: ion sources, injectors, matching sections, combiners, induction acceleration sections with electric and magnetic focusing, beam compression and bending sections, and a final-focus system to focus the beams onto the target. We are currently assembling or performing experiments to address the physics of all these subsystems. This paper will discuss some of these experiments.

  16. An EBIS-based heavy ion injector for the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Kponou, A.; Alessi, J.; Beebe, E.; Brennan, J.M.; Hershcovitch, A.; Prelec, K.; Raparia, D.

    1994-09-01

    An electron beam ion source (EBIS), followed by a heavy ion RFQ and superconducting linac, can be considered as a heavy ion injector for high energy accelerators, such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. A test EBIS, on long term loan from Sandia National Laboratory, is presently being commissioned at BNL. Experiments on this source will be used in evaluating the parameters for an EBIS-based RHIC injector. Some results of this commissioning, as well as the conceptual designs of the RFQ and linac, are presented.

  17. The SuperHILAC heavy ion intensity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, B.; Brown, I.G.

    1987-03-01

    A high current MEtal Vapor Vacuum Arc (MEVVA) ion source is to be installed in the third injector (Abel) at the SuperHILAC, representing the first accelerator use of this novel ion source. The MEVVA source has produced over 1 A of uranium in all charge states, with more than 100 electrical mA (emA) of U/sup 5 +/. Transport of the space-charge dominated beam through the charge-state analysis dipole will be enhanced by a 100 kV extractor voltage and neutralization by secondary electrons. In addition to the MEVVA source, other improvements already in place include a lower pressure in the Low Energy Beam Transport line (15.8 keV/AMU) to reduce charge exchange for the heavy elements, and the addition of a second 23 MHz buncher upstream of the Wideroe linac and two 70 MHz bunchers between the 23 MHz Wideroe and the 70 MHz Alvarez linacs. The project is expected to result in a fivefold increase in beam delivered to Bevatron experiments, increasing the extracted uranium beam to 5 x 10/sup 7/ ions/pulse.

  18. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  19. The high current transport experiment for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  20. Coulomb driven energy boost of heavy ions for laser plasma acceleration

    CERN Document Server

    Braenzel, J; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2014-01-01

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultra thin gold foils have been irradiated by an ultra short laser pulse at an intensity of $6\\times 10^{19}$ W/cm$^{2}$. Highly charged gold ions with kinetic energies up to $> 200$ MeV and a bandwidth limited energy distribution have been reached by using $1.3$ Joule laser energy on target. $1$D and $2$D Particle in Cell simulations show how a spatial dependence on the ions ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a varying charge density along the target normal and is capable of explaining the energy boost of highly charged ions, leading to a higher efficiency in laser acceleration of heavy ions.

  1. Review on heavy ion radiotherapy facilities and related ion sources (invited)

    NARCIS (Netherlands)

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A. G.

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four

  2. Swift heavy ions for materials engineering and nanostructuring

    CERN Document Server

    Avasthi, Devesh Kumar

    2011-01-01

    Ion beams have been used for decades for characterizing and analyzing materials. Now energetic ion beams are providing ways to modify the materials in unprecedented ways. This book highlights the emergence of high-energy swift heavy ions as a tool for tailoring the properties of materials with nanoscale structures. Swift heavy ions interact with materials by exciting/ionizing electrons without directly moving the atoms. This opens a new horizon towards the 'so-called' soft engineering. The book discusses the ion beam technology emerging from the non-equilibrium conditions and emphasizes the power of controlled irradiation to tailor the properties of various types of materials for specific needs.

  3. Heavy-flavour and quarkonia in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Rossi A.

    2013-11-01

    Full Text Available The comparison of heavy-flavour hadron production in proton-proton, proton-Pb and Pb–Pb collisions at the LHC offers the opportunity to investigate the properties of the high-density colour-deconfined state of strongly-interacting matter (Quark Gluon Plasma, QGP that is expected to be formed in high-energy collisions of heavy nuclei. A review of the main quarkonium and open heavy-flavour results obtained by the ALICE, ATLAS and CMS experiments is presented.

  4. Evolution of clusters in energetic heavy ion bombarded amorphous graphite

    CERN Document Server

    Akhtar, M N; Ahmad, Shoaib

    2016-01-01

    Carbon clusters have been generated by a novel technique of energetic heavy ion bombardment of amorphous graphite. The evolution of clusters and their subsequent fragmentation under continuing ion bombardment is revealed by detecting various clusters in the energy spectra of the direct recoils emitted as a result of collision between ions and the surface constituents.

  5. Ionization of Sodium Cluster by Heavy Ion Impact

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Energetic ions have recently been used as an efficient means to produce highly charged cold clusters~[1]. There are two ways to obtain highly-charged clusters: low-fluence nano-second lasers irradiation and energetic highly charged ions impact. Compared to the low-density laser, heavy ions, e.g. delivered by ECR sources, have the

  6. CHICO, a heavy ion detector for Gammasphere

    CERN Document Server

    Simon, M W; Wu, C Y; Gray, R W; Teng, R; Long, C

    2000-01-01

    A 4 pi position-sensitive heavy-ion detector system, CHICO, has been developed primarily for use in conjunction with the 4 pi gamma-ray facility, Gammasphere. The CHICO detector comprises an array of 20 Parallel Plate Avalanche Counters (PPACs) covering 12 deg.

  7. Strange Particles and Heavy Ion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bassalleck, Bernd [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Fields, Douglas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    2016-04-28

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for this award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.

  8. Reaction mechanisms in heavy ion fusion

    Directory of Open Access Journals (Sweden)

    Lubian J.

    2011-10-01

    Full Text Available We discuss the reaction mechanisms involved in heavy ion fusion. We begin with collisions of tightly bound systems, considering three energy regimes: energies above the Coulomb barrier, energies just below the barrier and deep sub-barrier energies. We show that channel coupling effects may influence the fusion process at above-barrier energies, increasing or reducing the cross section predicted by single barrier penetration model. Below the Coulomb barrier, it enhances the cross section, and this effect increases with the system’s size. It is argued that this behavior can be traced back to the increasing importance of Coulomb coupling with the charge of the collision partners. The sharp drop of the fusion cross section observed at deep sub-barrier energies is addressed and the theoretical approaches to this phenomenon are discussed. We then consider the reaction mechanisms involved in fusion reactions of weakly bound systems, paying particular attention to the calculations of complete and incomplete fusion available in the literature.

  9. Electromagnetic Radiations from Heavy Ion Collision

    Directory of Open Access Journals (Sweden)

    Payal Mohanty

    2013-01-01

    Full Text Available In this review, we have discussed the different sources of photons and dileptons produced in heavy ion collision (HIC. The transverse momentum (pT spectra of photons for different collision energies are analyzed with a view of extracting the thermal properties of the system formed in HIC. We showed the effect of viscosity on pT spectra of produced thermal photons. The dilepton productions from hot hadrons are considered including the spectral change of light vector mesons in the thermal bath. We have analyzed the pT and invariant mass (M spectra of dileptons for different collision energies too. As the individual spectra are constrained by certain unambiguous hydrodynamical inputs, so we evaluated the ratio of photon to dilepton spectra, Rem, to overcome those quantities. We argue that the variation of the radial velocity extracted from Rem with M is indicative of a phase transition from the initially produced partons to hadrons. In the calculations of interferometry involving dilepton pairs, it is argued that the nonmonotonic variation of HBT radii with invariant mass of the lepton pairs signals the formation of quark gluon plasma in HIC. Elliptic flow (v2 of dilepton is also studied at sNN=2.76 TeV for 30–40% centrality using the (2+1d hydrodynamical model.

  10. High Gluon Densities in Heavy Ions Collisions

    CERN Document Server

    Blaizot, Jean-Paul

    2016-01-01

    The early stages of heavy ion collisions are dominated by high density systems of gluons that carry each a small fraction $x$ of the momenta of the colliding nucleons. A distinguishing feature of such systems is the phenomenon of "saturation" which tames the expected growth of the gluon density as the energy of the collision increases. The onset of saturation occurs at a particular transverse momentum scale, the "saturation momentum", that emerges dynamically and that marks the onset of non-linear gluon interactions. At high energy, and for large nuclei, the saturation momentum is large compared to the typical hadronic scale, making high density gluons amenable to a description with weak coupling techniques. This paper reviews some of the challenges faced in the study of such dense systems of small $x$ gluons, and of the progress made in addressing them. The focus is on conceptual issues, and the presentation is both pedagogical, and critical. Examples where high gluon density could play a visible role in hea...

  11. A radial TPC for heavy ions

    CERN Document Server

    Garabatos, C

    2000-01-01

    The CERES experiment at the CERN SPS has been recently upgraded with a TPC with radial drift field, the first one of its sort. Constructed during 1998, it has been successfully operated in commissioning and physics runs, with muon, proton, and heavy-ion beams. A high voltage electrode of about 0.5 m radius is surrounded by sixteen 2 m long readout chambers, placed at a radius of 1.3 m, with chevron-shaped readout pads. The field cage is enclosed by two low-mass voltage degraders at each end of the cylindrical structure. A Ne-CO/sub 2/ [80-20] gas mixture allows for a safe operation and good transport properties under drift fields ranging from 200 to 600 V/cm. A spatial resolution better than 700 microns and 350 microns in r and rdelta (phi), respectively, has been achieved in a highly inhomogeneous magnetic field. Details of its construction as well as results of the operation and performance in a high multiplicity environment are presented. (0 refs).

  12. A short introduction to heavy-ion physics

    CERN Document Server

    Gupta, Sourendu

    2015-01-01

    Heavy-ion collisions provide the only laboratory tests of relativistic quantum field theory at finite temperature. Understanding these is a necessary step in understanding the origins of our universe. These lectures introduce the subject to experimental particle physicists, in the hope that they will be useful to others as well. The phase diagram of QCD is briefly touched upon. Kinematic variables which arise in the collisions of heavy-ions beyond those in the collisions of protons or electrons are introduced. Finally, a few of the signals studied in heavy-ion collisions, and the kind of physics questions which they open up are discussed.

  13. Thermal, chemical and spectral equilibration in heavy-ion collisions

    CERN Document Server

    Almási, Gábor András

    2014-01-01

    We have considered the equilibration in a relativistic heavy ion collision using our transport model. We applied periodic boundary conditions to close the system in a box. We found that the thermal equilibration takes place in the first 20-40 fm/c which time is comparable to the duration of a heavy ion collision. The chemical equilibration is a much slower process and the system does not equilibrate in a heavy ion collision. We have also shown that the mass spectra of broad resonances immediately follows their in-medium spectral functions.

  14. Comparing Tsallis and Boltzmann temperatures from relativistic heavy ion collider and large hadron collider heavy-ion data

    Science.gov (United States)

    Gao, Y.-Q.; Liu, F.-H.

    2016-03-01

    The transverse momentum spectra of charged particles produced in Au + Au collisions at the relativistic heavy ion collider and in Pb + Pb collisions at the large hadron collider with different centrality intervals are described by the multisource thermal model which is based on different statistic distributions for a singular source. Each source in the present work is described by the Tsallis distribution and the Boltzmann distribution, respectively. Then, the interacting system is described by the (two-component) Tsallis distribution and the (two-component) Boltzmann distribution, respectively. The results calculated by the two distributions are in agreement with the experimental data of the Solenoidal Tracker At Relativistic heavy ion collider, Pioneering High Energy Nuclear Interaction eXperiment, and A Large Ion Collider Experiment Collaborations. The effective temperature parameters extracted from the two distributions on the descriptions of heavy-ion data at the relativistic heavy ion collider and large hadron collider are obtained to show a linear correlation.

  15. Swift heavy ion induced nano-dimensional phase separation in liquid immiscible binary Mn-Bi

    Science.gov (United States)

    Srivastava, S. K.; Khan, S. A.; Sudheer Babu, P.; Avasthi, D. K.

    2014-08-01

    Pulsed laser deposited 60 nm thin film of homogeneous Mn0.82Bi0.18 composite has been irradiated by 100 MeV Au ions at fluence 1 × 1013 ions/cm2, and investigated by field emission scanning electron microscopy, X-ray diffraction, magnetic hysteresis, X-ray photoelectron spectroscopy, and nanoindentation measurements. Dispersed nanostructures of soft Bi-rich phase of about 20 nm diameter emerged in a hard Mn-rich matrix on irradiation. Such structures, as synthesized by the present novel swift heavy ion irradiation approach, are usable as self-lubricating thin films.

  16. An Induction Linac Driver For A 0.44 MJ Heavy-Ion Direct Drive Target

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, P.A.; Lee, E.P.; Bangerter, R.O.; Faltens, A.

    2010-02-08

    The conceptual design of a heavy ion fusion driver system is described, including all major components. Particular issues emerging from this exercise are identified and discussed. The most important conclusion of our study is that due to stringent requirements on ion pulse phase space, we are unable to find a credible accelerator design that meets the requirements of the example target. Either the target design must be modified to accept larger ion ranges and larger focal spot sizes, or we must consider other target options.

  17. The integrated beam experiment - A next step experiment for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Celata, C.M.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, D.P. Grote; Molvik, A.W.; Sharp, W.M.; Rose, D.V.; Welch, D.R.; Davidson, R.C.; Kaganovich, Igor D.; Qin, H.; Startsev, Edward A.

    2003-09-01

    The U.S. Heavy Ion Fusion Virtual National Laboratory is proposing as its next experiment the Integrated Beam Experiment (IBX). All experiments in the U.S. Heavy Ion Fusion (HIF) program up to this time have been of modest scale and have studied the physics of selected parts of a heavy ion driver. The mission of the IBX, a proof-of-principle experiment, is to demonstrate in one integrated experiment the transport from source to focus of a single heavy ion beam with driver-relevant parameters--i.e., the production, acceleration, compression, neutralization, and final focus of such a beam. Present preconceptual designs for the IBX envision a 5-10 MeV induction linac accelerating one K{sup +} beam. At injection (1.7 MeV) the beam current is approximately 500 mA, with pulse length of 300 ns. Design flexibility allows for several different acceleration and compression schedules, including the possibility of longitudinal (unneutralized) drift compression by a factor of up to ten in pulse length after acceleration, and neutralized drift compression. Physics requirements for the IBX, and preliminary physics and engineering design work are discussed in this paper.

  18. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Samit Mandal; J Gerl; H Geissel; K Hauschild; M Hellström; Z Janas; I Kojouharov; Y Kopatch; R C Lemmon; P Mayet; Z Podolyak; P H Regan; H Schaffner; C Schlegel; J Simpson; H J Wollersheim

    2001-07-01

    Feasibility of gamma-ray spectroscopy at relativistic energies with exotic heavy-ions and new generation of germanium detectors (segmented Clover) is discussed. An experiment with such detector array and radioactive is discussed.

  19. Heavy ion physics with the ALICE experiment at LHC

    CERN Document Server

    Zampolli, Chiara

    2007-01-01

    ALICE is the experiment at the LHC collider at CERN dedicated to heavy ion physics. In this report, the ALICE detector will be presented, together with its expected performance as far as some selected physics topics are concerned.

  20. Report of the heavy-ion fusion task group

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, G.A.; Booth, L.A.; Henderson, D.B.; Jameson, R.A.; Kindel, J.M.; Knapp, E.A.; Pollock, R.; Talbert, W.L.; Thode, L.E.; Williams, J.M.

    1980-02-01

    An assessment of heavy-ion fusion has been completed. Energetic heavy ions, for example 10-GeV uranium, provided by an rf linac or an induction linac, are used as alternatives to laser light to drive inertial confinement fusion pellets. The assessment has covered accelerator technology, transport of heavy-ion beams, target interaction physics, civilian power issues, and military applications. It is concluded that particle accelerators promise to be efficient pellet drivers, but that there are formidable technical problems to be solved. It is recommended that a moderate level research program on heavy-ion fusion be pursued and that LASL should continue to work on critical issues in accelerator development, beam transport, reactor systems studies, and target physics over the next few years.

  1. Sample Management System for Heavy Ion Irradiation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A robotic sample management device and system for the exposure of biological and material specimens to heavy ion beams of the NASA Space Radiation Laboratory (NSRL)...

  2. Elastic recoil detection analysis on the ANSTO heavy ion microprobe

    Science.gov (United States)

    Siegele, R.; Orlic, I.; Cohen, David D.

    2002-05-01

    The heavy ion microprobe at the Australian Nuclear Science and Technology Organisation is capable of focussing heavy ions with an ME/ q2 of up to 100 amu MeV. This makes the microprobe ideally suited for heavy ion elastic recoil detection analysis (ERDA). However, beam currents on a microprobe are usually very small, which requires a detection system with a large solid angle. We apply microbeam heavy ion ERDA using a large solid angle ΔE- E telescope with a gas ΔE detector to layered structures. We demonstrate the capability to measure oxygen and carbon with a lateral resolution of 20 μm, together with determination of the depth of the contamination in thin deposited layers.

  3. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  4. Status of Chemical Equilibrium in Relativistic Heavy Ion Collisions

    CERN Document Server

    Cleymans, Jean

    2009-01-01

    Recent work on chemical equilibrium in heavy ion collisions is reviewed. The energy dependence of thermal parameters is discussed. The centrality dependence of thermal parameters at SPS energies is presented.

  5. Two alpha, three alpha and multiple heavy-ion radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Ivascu, M. (Institute for Physics and Nuclear Engineering, Bucharest (Romania))

    1985-07-01

    New decay modes by spontaneous emission of two and three ..cap alpha.. particles and two identical or different heavy ions, are predicted. The analytical variant of the superasymmetric fission model is used to estimate the half lives.

  6. Two alpha, three alpha and multiple heavy-ion radioactivities

    OpenAIRE

    Poenaru, D.N.; Ivascu, M.

    1985-01-01

    New decay modes by spontaneous emission of two and three α particles and two identical or different heavy ions, are predicted. The analytical variant of the superasymmetric fission model is used to estimate the half lives.

  7. Silicon Carbide Power Device Performance Under Heavy-Ion Irradiation

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Topper, Alyson; Wilcox, Edward; Phan, Anthony; Ikpe, Stanley; LaBel, Ken

    2015-01-01

    Heavy-ion induced degradation and catastrophic failure data for SiC power MOSFETs and Schottky diodes are examined to provide insight into the challenge of single-event effect hardening of SiC power devices.

  8. Status of chemical equilibrium in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    J Cleymans

    2003-04-01

    Recent work on chemical equilibrium in heavy-ion collisions is reviewed. The energy dependence of thermal parameters is discussed. The centrality dependence of thermal parameters at SPS energies is presented.

  9. Sample Management System for Heavy Ion Irradiation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A robotic sample management device and system for the exposure of biological and material specimens to heavy ion beams of the NASA Space Radiation Laboratory (NSRL)...

  10. Studies in ion source development for application in heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kapica, Jonathan G. [Univ. of California, Berkeley, CA (United States)

    2004-05-01

    The overall purpose of these experiments is to contribute to the development of ion injector technology in order to produce a driver for use in a heavy-ion-fusion (HIF) power generating facility. The overall beam requirements for HIF are quite demanding; a short list of the constraints is the following: (1) Low cost (a large portion of overall cost will come from the beam system); (2) Bright, low emittance beam; (3) Total beam energy 5MJ; (4) Spot size 3mm (radius); (5) Pulse Duration 10ns; (6) Current on target 40kA; (7) Repetition Rate 5Hz; (8) Standoff from target 5m; and (9) Transverse Temp < 1 keV. The reasons for employing ion beams in inertial fusion systems become obvious when the repetition rate required is considered. While laser drivers are useful in producing a proof-of-concept, they will be incapable of application in power generation. Consequently attempts in the U.S. to achieve a power generating system make use of linear ion accelerators. It is apparent that the accelerator system requires the highest quality input as obtainable. Therefore injector design is an essential portion of the entire inertial fusion system. At Lawrence Berkeley and Lawrence Livermore National Laboratories experiments are being conducted using two injector formats. For this project I have conducted a series of studies using both. The next two sections provide a brief description of the sources used for my experiments.

  11. The Relativistic Heavy Ion Collider control system

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, T.S.; Barton, D.S.; Oerter, B.R.

    1997-12-01

    The Relativistic Heavy Ion Collider control system has been used in the commissioning of the AGS to RHIC transfer line and in the first RHIC sextant test. Much of the controls infrastructure for networks and links has been installed throughout the collider. All of the controls hardware modules needed to be built for early RHIC operations have been designed and tested. Many of these VME modules are already being used in normal AGS operations. Over 150 VME based front end computers and device controllers will be installed by the Summer of 1998 in order to be ready for Fall of 1998. A few features are being added to the front end computer core software. The bulk of the Accelerator Device Objects (ADOs) which are instantiated in the FECs, have been written and tested in the early commissioning. A configuration database has been designed. Generic control and display of ADO parameters via a spreadsheet like program on the console level computers was provided early on in the control system development. User interface tools that were developed for the AGS control system have been used in RHIC applications. Some of the basic operations programs, like alarm display and save/restore, that are used in the AGS operations have been or will be expanded to support RHIC operations. A model for application programs which involves a console level manager servicing ADOs have been verified with a few RHIC applications. More applications need to be written for the Fall of 1998 commissioning effort. A sequencer for automatic control of the fill is being written with the expectation that it will be useful in early commissioning.

  12. String theory and relativistic heavy ion collisions

    Science.gov (United States)

    Friess, Joshua J.

    It has long been known that string theory describes not only quantum gravity, but also gauge theories with a high degree of supersymmetry. Said gauge theories also have a large number of colors in a regime with a large effective coupling constant that does not depend on energy scale. Supersymmetry is broken in nature, if it is present at all, however the gauge theory described by string theory shares many common features with QCD at temperatures above the quark deconfinement transition. It is generally though not entirely accepted that collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) produce a thermalized Quark-Gluon Plasma (QGP) at temperatures distinctly above the transition temperature as determined from lattice simulations. Hence, we might hope that a string theoretic description of gauge dynamics can elucidate some otherwise intractable physics of the strongly coupled plasma. Here we use string theory to calculate the outgoing energy flux from a RHIC process called "jet quenching", in which a high-momentum quark or gluon traverses a large distance in the QGP. Our setup is in the context of the highly supersymmetric string dual gauge theory, but we nevertheless find that the gross features of the resulting stress-energy tensor match reasonably well with experimental data. We will furthermore discuss the technology behind computations of the leading-order corrections to gauge theory observables that are uniquely string-induced, and we will describe a potential solution to string theory that could resolve a number of discrepancies between the traditional highly supersymmetric setup and QCD---in particular, a significant reduction in the amount of supersymmetry, and a finite effective coupling that is still greater than unity but does depend on energy scale.

  13. Spiraling Beam Illumination Uniformity on Heavy Ion Fusion Target

    OpenAIRE

    Kurosaki, T; Kawata, S.; Noguchi, K.; Koseki, S; Barada, D.; Ma, Y. Y.; Ogoyski, A. I.; Barnard, J. J.; Logan, B. G.

    2012-01-01

    A few percent wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) by a spiraling beam axis motion in the paper. So far the wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and s...

  14. Experimental results on charge fluctuations in heavy-ion collisions

    CERN Document Server

    Mishra, D K; Netrakanti, P K; Pant, L M; Mohanty, A K

    2016-01-01

    We present a subset of experimental results on charge fluctuation from the heavy-ion collisions to search for phase transition and location of critical point in the QCD phase diagram. Measurements from the heavy-ion experiments at the SPS and RHIC energies observe that total charge fluctuations increase from central to peripheral collisions. The net-charge fluctuations in terms of dynamical fluctuation measure $\

  15. Current experimental situation in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.K.

    1978-06-01

    A detailed survey of the present experimental situation in heavy-ion physics is presented. The discussion begins by considering the simple excitation of discrete states in elastic scattering, transfer, and compound-nucleus reactions; it then turns to more drastic perturbations of the nucleus high in the continuum through fusion, fission, and deeply inelastic scattering, and concludes with the (possibly) limiting asymptotic phenomena of relativistic heavy-ion collisions. 138 figures, 5 tables, 451 references. (RWR)

  16. Classical gluon production amplitude in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Chirilli Giovanni Antonio

    2016-01-01

    Full Text Available The distribution of quarks and gluons produced in the initial stages of nuclear collisions, known as the initial condition of the Quark-Gluon Plasma formation, is the fundamental building block of heavy-ion theory. I will present the scattering amplitude, beyond the leading order, of the classical gluon produced in heavy-ion collisions. The result is obtained in the framework of saturation physics and Wilson lines formalism.

  17. FAIR—Status and relevance for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Spiller, P., E-mail: P.Spiller@gsi.de; Barth, W.

    2014-01-01

    The chosen design concepts and technical approaches as described in the Heavy Ion Driver Ignition Facility (HIDIF) study are compared with the present status of accelerator technologies and the experiences gained in the operation of the heavy ion accelerator facilities at GSI. Novel advanced technologies, as developed e.g. for the FAIR Project, may be used for a more compact and realistic driver layout. Major differences between a single shot and a high repetition rate facility will be discussed.

  18. Heavy ions at the LHC: Physics perspectives and experimental program

    Indian Academy of Sciences (India)

    J Schukraft

    2001-08-01

    Ultrarelativistic heavy ion physics is entering the new era of collider experiments with the start-up of RHIC at BNL and construction for detectors at LHC well under way. At this crossroads, the article will give a summary of the experimental program and our current view of heavy ion physics at the LHC, concentrating in particular on physics topics that are different or unique compared to current facilities.

  19. Heavy ion cocktail beams at the 88 inch Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Daniela; McMahan, Margaret A.; Argento, David; Gimpel, Thomas; Guy, Aran; Morel, James; Siero, Christine; Thatcher, Ray; Lyneis, Claude M.

    2002-09-03

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate ''cocktails'' of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch Cyclotron and has since become a powerful tool in the field of heavy ion radiation effects testing. Several different ''cocktails'' at various energies are available at the 88-Inch cyclotron for radiation effect testing, covering a broad range of linear energy transfer and penetration depth. Two standard heavy ion cocktails at 4.5 MeV/nucleon and 10 MeV/nucleon have been developed over the years containing ions from boron to bismuth. Recently, following requests for higher penetration depths, a 15MeV/nucleon heavy ion cocktail has been developed. Up to nine different metal and gaseous ion beams at low to very high charge states are tuned out of the ion source simultaneously and injected together into the cyclotron. It is therefore crucial to balance the ion source very carefully to provide sufficient intensities throughout the cocktail. The paper describes the set-up and tuning of the ion source for the various heavy ion cocktails.

  20. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeon Ho; Kim, Younghun [Kwangwoon University, Seoul (Korea, Republic of)

    2015-04-15

    Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multicolorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type.

  1. A high energy, heavy ion microprobe for ion beam research on the tandem accelerator at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Siegele, R.; Dytlewski, N.

    1996-04-01

    A comprehensive review is given on the production and use of heavy ion beams with spot sizes of a few {mu}m. The development of a high energy, heavy ion microprobe at ANSTO and its possible applications are discussed. The microprobe is designed to focus a wide range of ion beam types, from light ions such as protons up to ions as heavy as iodine. Details of the ion beam optics, optical calculations and a description of the proposed microbeam design are given. The unique combination of high energy, heavy ions and improved detection systems will provide high sensitivity elemental composition and depth profiling information, allowing surface topography and 3D surface reconstruction to be performed on a broad range of materials. 86 refs., 5 tabs., 15 figs.

  2. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  3. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.

  4. L X-ray emission induced by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Banaś, D., E-mail: d.banas@ujk.edu.pl [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Braziewicz, J.; Majewska, U.; Semaniak, J. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Fijał-Kirejczyk, I. [The Institute of Atomic Energy, 05-400 Otwock-Świerk (Poland); Jaskóła, M.; Czarnacki, W.; Korman, A. [The National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Kretschmer, W. [Physikalisches Institut, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Mukoyama, T. [Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen (Hungary); Trautmann, D. [Institut für Physik, Universität Basel, Basel (Switzerland)

    2015-11-15

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster–Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L{sub 2}-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  5. L X-ray emission induced by heavy ions

    Science.gov (United States)

    Pajek, M.; Banaś, D.; Braziewicz, J.; Majewska, U.; Semaniak, J.; Fijał-Kirejczyk, I.; Jaskóła, M.; Czarnacki, W.; Korman, A.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2015-11-01

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster-Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L2-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  6. Clinical trial of cancer therapy with heavy ions at heavy ion research facility in lanzhou

    Science.gov (United States)

    Zhang, Hong

    With collaborative efforts of scientists from the Institute of Modern Physics (IMP), Chinese Academy of Sciences and hospitals in Gansu, initial clinical trial on cancer therapy with heavy ions has been successfully carried out in China. From November 2006 to December 2007, 51 patients with superficially-placed tumors were treated with carbon ions at Heavy Ion Research Facility in Lanzhou (HIRFL) within four beam time blocks of 6-11 days, collaborating with the General Hospital of Lanzhou Command and the Tumor Hospital of Gansu Province. Patients and Methods: There were 51 patients (31 males and 20 females) with superficially-placed tumors (squamous cell carcinoma of the skin, basal cell carcinoma of the skin, malignant skin melanoma, sarcoma, lymphoma, breast cancer, metastatic lymph nodes of carcinomas and other skin lesions). The tumors were less than 2.1 cm deep to the skin surface. All patients had histological confirmation of their tumors. Karnofsky Performance Scale (KPS) of all patients was more than 70. The majority of patients were with failures or recurrences of conventional therapies. Median age at the time of radiotherapy (RT) was 55.5 years (range 5-85 years). Patients were immobilized with a vacuum cushion or a head mask and irradiated by carbon ion beams with energy 80-100 MeV/u at spread-out Bragg peak field generated from HIRFL, with two and three-dimensional conformal irradiation methods. Target volume was defined by physical palpation [ultrasonography and Computerized tomography (CT), for some cases]. The clinical target volume (CTV) was defined as the gross total volume GTV with a 0.5-1.0cm margin axially. Field placement for radiation treatment planning was done based on the surface markings. RBE of 2.5-3 within the target volume, and 40-75 GyE with a weekly fractionation of 7 × 3-15 GyE/fraction were used in the trial. Patients had follow-up examinations performed 1 month after treatment, in 1 or 2 months for the first 6 months, and 3

  7. Spatial distributions of photons in plastic scintillator detected by multi-anode photomultiplier for heavy-ion position determination

    Energy Technology Data Exchange (ETDEWEB)

    Omika, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Yamaguchi, T., E-mail: yamaguti@phy.saitama-u.ac.jp [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Fukuda, M. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kitagawa, A. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Matsunaga, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Nagae, D. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Nishimura, D. [Department of Physics, Tokyo University of Science, Noda 278-8510 (Japan); Nishimura, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Ozawa, A. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Sato, S. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Sawahata, K. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Suzuki, T.; Takeuchi, Y. [Department of Physics, Saitama University, Saitama 338-8570 (Japan)

    2015-10-11

    The spatial distributions of scintillation photons in a plastic scintillation detector were measured using a multi-anode photomultiplier H7546A coupled with 1-mm-diameter optical fibers. A row of several tens of fibers connected to the scintillator generates one-dimensional spatial distributions of photons induced by the swift passage of heavy ions. The pulse heights from each channel change depending on the beam position. This can be utilized to determine the positions of the heavy ions. To test the performance of the proposed detection method, an experiment using a {sup 84}Kr beam with intermediate energies ranging from 40 to 85 MeV/nucleon was performed at the heavy-ion medical accelerator in Chiba (HIMAC). The photon spatial distributions were successfully observed. By optimizing the photomultiplier bias voltage and threshold in the pulse height analyses, a detection efficiency of 98% and a position resolution of 1.1 mm in σ were achieved simultaneously.

  8. Design and Characterization of a Neutralized-Transport Experiment for Heavy-Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, E; Eylon, S; Roy, P; Yu, S S; Anders, A; Bieniosek, F M; Greenway, W G; Logan, B G; MacGill, R A; Shuman, D B; Vanecek, D L; Waldron, W L; Sharp, W M; Houck, T L; Davidson, R C; Efthimion, P C; Gilson, E P; Sefkow, A B; Welch, D R; Rose, D V; Olson, C L

    2004-05-24

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, a converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present the first results from the experiment.

  9. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Eylon, S.; Roy, P.K.; Yu, S.S.; Anders, A.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; MacGill, R.A.; Shuman, D.B.; Vanecek, D.L.; Waldron, W.L.; Sharp, W.M.; Houck, T.L.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Sefkow, A.B.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2004-03-14

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  10. Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions

    Science.gov (United States)

    2009-12-01

    FINAL REPORT Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions ESTCP Project WP-200212...PROGRAM ELEMENT NUMBER Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions 6. AUTHOR(S) 5d. PROJECT

  11. Anti-biofilm activity of Fe heavy ion irradiated polycarbonate

    Science.gov (United States)

    Joshi, R. P.; Hareesh, K.; Bankar, A.; Sanjeev, Ganesh; Asokan, K.; Kanjilal, D.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.

    2016-10-01

    Polycarbonate (PC) polymers were investigated before and after high energy heavy ion irradiation for anti-bacterial properties. These PC films were irradiated by Fe heavy ions with two energies, viz, 60 and 120 MeV, at different fluences in the range from 1 × 1011 ions/cm2 to 1 × 1013 ions/cm2. UV-Visible spectroscopic results showed optical band gap decreased with increase in ion fluences due to chain scission mainly at carbonyl group of PC which is also corroborated by Fourier transform infrared spectroscopic results. X-ray diffractogram results showed decrease in crystallinity of PC after irradiation which leads to decrease in molecular weight. This is confirmed by rheological studies and also by differential scanning calorimetric results. The irradiated PC samples showed modification in their surfaces prevents biofilm formation of human pathogen, Salmonella typhi.

  12. Beam halo collimation in heavy ion synchrotrons

    Science.gov (United States)

    Strašík, I.; Prokhorov, I.; Boine-Frankenheim, O.

    2015-08-01

    This paper presents a systematic study of the halo collimation of ion beams from proton up to uranium in synchrotrons. The projected Facility for Antiproton and Ion Research synchrotron SIS100 is used as a reference case. The concepts are separated into fully stripped (e.g., 238U92+ ) and partially stripped (e.g., 238U28+ ) ion collimation. An application of the two-stage betatron collimation system, well established for proton accelerators, is intended also for fully stripped ions. The two-stage system consists of a primary collimator (a scattering foil) and secondary collimators (bulky absorbers). Interaction of the particles with the primary collimator (scattering, momentum losses, and nuclear interactions) was simulated by using fluka. Particle-tracking simulations were performed by using mad-x. Finally, the dependence of the collimation efficiency on the primary ion species was determined. The influence of the collimation system adjustment, lattice imperfections, and beam parameters was estimated. The concept for the collimation of partially stripped ions employs a thin stripping foil in order to change their charge state. These ions are subsequently deflected towards a dump location using a beam optical element. The charge state distribution after the stripping foil was obtained from global. The ions were tracked by using mad-x.

  13. Inferring Magnetospheric Heavy Ion Density using EMIC Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Johnson, Jay R.; Kim, Hyomin; Lee, Dong-Hun

    2014-05-01

    We present a method to infer heavy ion concentration ratios from EMIC wave observations that result from ionion hybrid (IIH) resonance. A key feature of the ion-ion hybrid resonance is the concentration of wave energy in a field-aligned resonant mode that exhibits linear polarization. This mode converted wave is localized at the location where the frequency of a compressional wave driver matches the IIH resonance condition, which depends sensitively on the heavy ion concentration. This dependence makes it possible to estimate the heavy ion concentration ratio. In this letter, we evaluate the absorption coefficients at the IIH resonance at Earth's geosynchronous orbit for variable concentrations of He+ and field-aligned wave numbers using a dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentrations, it only occurs for a limited range of field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Using the wave absorption and observed EMIC waves from GOES-12 satellite, we demonstrate how this technique can be used to estimate that the He+ concentration is around 4% near L = 6.6.

  14. Measurement of negative ion density in a pulsed multicusp negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Coonan, B.; Mellon, K.N.; Hopkins, M.B. (Dublin City University, Dublin (Ireland))

    1992-10-05

    The production of negative ion beams for use in neutral beam injection heating has become an important area of research in recent years. This paper discusses the negative ion densities measured in a pulsed multicusp volume ion source using photodetachment diagnostic technique. A pulse modulated negative ion source is being used as an alternative to the tandem source and an increase in negative ion extracted current has previously been observed by Hopkins and Mellon. Work with photodetachment quoted in this paper shows an increase in negative ion density during the post discharge similar to previous results obtained using an accelerator to extract the negative ions.

  15. Morphology of High-Multiplicity Events in Heavy Ion Collisions

    CERN Document Server

    Naselsky, P; Christensen, P R; Damgaard, P H; Frejsel, A; Gaardhøje, J J; Hansen, A; Hansen, M; Kim, J; Verkhodanov, O; Wiedemann, U A

    2012-01-01

    We discuss opportunities that may arise from subjecting high-multiplicity events in relativistic heavy ion collisions to an analysis similar to the one used in cosmology for the study of fluctuations of the Cosmic Microwave Background (CMB). To this end, we discuss examples of how pertinent features of heavy ion collisions including global characteristics, signatures of collective flow and event-wise fluctuations are visually represented in a Mollweide projection commonly used in CMB analysis, and how they are statistically analyzed in an expansion over spherical harmonic functions. If applied to the characterization of purely azimuthal dependent phenomena such as collective flow, the expansion coefficients of spherical harmonics are seen to contain redundancies compared to the set of harmonic flow coefficients commonly used in heavy ion collisions. Our exploratory study indicates, however, that these redundancies may offer novel opportunities for a detailed characterization of those event-wise fluctuations t...

  16. Synthesis and Characteristics of A Novel Heavy Metal Ions Chelator

    Institute of Scientific and Technical Information of China (English)

    LIU Zhuannian; SONG Yejing; HAN Xiaogang

    2012-01-01

    Polyacrylamide-urea-sulfanilamide(PUS) was prepared as a novel heavy metal ions chelator and successfully used to simultaneously remove heavy metals from wastewater effluents.The effects of reaction parameters (sodium hydroxide,material ratio,temprature and contact time) were monitored to specify the best synthesis conditions.PUS was chemically characterized by means of infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis).The simultaneous chelation performance of PUS towards selected heavy metals ions,Ni2+,Cu2+,Pb2+,Zn2+,Cd2+ was discussed,showing that Ni2+,Cu2+,Pb2+,Zn2+ could be better chelated.It is indicated that the synthesized PUS is a potential remediation material when used for the treatment of wastewater containing metal ions.

  17. Ultrarelativistic heavy ion collisions: the first billion seconds

    Science.gov (United States)

    Baym, Gordon

    2016-12-01

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter - the quark-gluon plasma primarily - and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  18. Benchmarking of neutron production of heavy-ion transport codes

    Energy Technology Data Exchange (ETDEWEB)

    Remec, I. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6172 (United States); Ronningen, R. M. [Michigan State Univ., National Superconductiong Cyclotron Laboratory, East Lansing, MI 48824-1321 (United States); Heilbronn, L. [Univ. of Tennessee, 1004 Estabrook Rd., Knoxville, TN 37996-2300 (United States)

    2011-07-01

    Document available in abstract form only, full text of document follows: Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required. (authors)

  19. <span class="hlt">Heavy-Ion</span> Imaging Applied To Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J. I.; Tobias, C. A.; Capp, M. P.; Benton, E. V.; Holley, W. R.; Gray, Joel E.; Hendee, William R.; Haus, Andrew G.; Properzio, William S.

    1980-08-18

    Heavy particle radiography is a newly developed noninvasive low dose imaging procedure with increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high energy ions, primarily carbon and neon, at the BEVALAC accelerator at the Lawrence Berkeley Laboratory. The research program applied to medicine utilizes heavy-ion radiography for low dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures and brain and spinal neoplasms. The presentation will be illustrated with clinical cases under study. Discussion will include the potential of heavy-ion imaging, and particularly reconstruction tomography, as an adjunct to existing diagnostic imaging procedures in medicine, both for the applications to the diagnosis, management and treatment of clinical cancer in man, but also for the early detection of small soft tissue tumors at low radiation dose.

  20. An Experimental Review on Heavy-Flavor v2 in Heavy-Ion Collision

    Directory of Open Access Journals (Sweden)

    Md. Nasim

    2016-01-01

    Full Text Available For over a decade now, the primary purpose of relativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC and the Large Hadron Collider (LHC has been to study the properties of QCD matter under extreme conditions—high temperature and high density. The heavy-ion experiments at both RHIC and LHC have recorded a wealth of data in p+p, p+Pb, d+Au, Cu+Cu, Cu+Au, Au+Au, Pb+Pb, and U+U collisions at energies ranging from sNN=7.7 GeV to 7 TeV. Heavy quarks are considered good probe to study the QCD matter created in relativistic collisions due to their very large mass and other unique properties. A precise measurement of various properties of heavy-flavor hadrons provides an insight into the fundamental properties of the hot and dense medium created in these nucleus-nucleus collisions, such as transport coefficient and thermalization and hadronization mechanisms. The main focus of this paper is to present a review on the measurements of azimuthal anisotropy of heavy-flavor hadrons and to outline the scientific opportunities in this sector due to future detector upgrade. We will mainly discuss the elliptic flow of open charmed meson (D-meson, J/ψ, and leptons from heavy-flavor decay at RHIC and LHC energy.

  1. Charge Transfer and Ionization by Intermediate-Energy Heavy Ions

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L. H. [East Carolina University; McLawhorn, S. L. [East Carolina University; McLawhorn, R. A. [East Carolina University; Evans, N. L. [East Carolina University; Justiniano, E. L. B. [East Carolina University; Shinpaugh, J. L. [East Carolina University; Schultz, David Robert [ORNL; Reinhold, Carlos O [ORNL

    2006-11-01

    The use of heavy ion beams for microbeam studies of mammalian cell response leads to a need to better understand interaction cross sections for collisions of heavy ions with tissue constituents. For ion energies of a few MeV u-1 or less, ions capture electrons from the media in which they travel and undergo subsequent interactions as partially 'dressed' ions. For example, 16 MeV fluorine ions have an equilibrium charge of 7+, 32 MeV sulphur ions have an equilibrium charge of approx. 11+, and as the ion energies decrease the equilibrium charge decreases dramatically. Data for interactions of partially dressed ions are extremely rare, making it difficult to estimate microscopic patterns of energy deposition leading to damage to cellular components. Such estimates, normally obtained by Monte Carlo track structure simulations, require a comprehensive database of differential and total ionisation cross sections as well as charge transfer cross sections. To provide information for track simulation, measurement of total ionisation cross sections have been initiated at East Carolina University using the recoil ion time-of-flight method that also yields cross sections for multiple ionisation processes and charge transfer cross sections; multiple ionisation is prevalent for heavy ion interactions. In addition, measurements of differential ionisation cross sections needed for Monte Carlo simulation of detailed event-by-event particle tracks are under way. Differential, total and multiple ionisation cross sections and electron capture and loss cross sections measured for C+ ions with energies of 100 and 200 keV u-1 are described.

  2. Charge transfer and ionisation by intermediate-energy heavy ions.

    Science.gov (United States)

    Toburen, L H; McLawhorn, S L; McLawhorn, R A; Evans, N L; Justiniano, E L B; Shinpaugh, J L; Schultz, D R; Reinhold, C O

    2006-01-01

    The use of heavy ion beams for microbeam studies of mammalian cell response leads to a need to better understand interaction cross sections for collisions of heavy ions with tissue constituents. For ion energies of a few MeV u(-1) or less, ions capture electrons from the media in which they travel and undergo subsequent interactions as partially 'dressed' ions. For example, 16 MeV fluorine ions have an equilibrium charge of 7(+), 32 MeV sulphur ions have an equilibrium charge of approximately 11(+), and as the ion energies decrease the equilibrium charge decreases dramatically. Data for interactions of partially dressed ions are extremely rare, making it difficult to estimate microscopic patterns of energy deposition leading to damage to cellular components. Such estimates, normally obtained by Monte Carlo track structure simulations, require a comprehensive database of differential and total ionisation cross sections as well as charge transfer cross sections. To provide information for track simulation, measurement of total ionisation cross sections have been initiated at East Carolina University using the recoil ion time-of-flight method that also yields cross sections for multiple ionisation processes and charge transfer cross sections; multiple ionisation is prevalent for heavy ion interactions. In addition, measurements of differential ionisation cross sections needed for Monte Carlo simulation of detailed event-by-event particle tracks are under way. Differential, total and multiple ionisation cross sections and electron capture and loss cross sections measured for C(+) ions with energies of 100 and 200 keV u(-1) are described.

  3. Quantum Electrodynamical Shifts in Multivalent Heavy Ions

    Science.gov (United States)

    Tupitsyn, I. I.; Kozlov, M. G.; Safronova, M. S.; Shabaev, V. M.; Dzuba, V. A.

    2016-12-01

    The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of fundamental physics. We compared the performance of four different QED potentials for various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion properties urgently needed for planning future experiments. We find that all four potentials give consistent and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more accurate than the local potential.

  4. Quantum Electrodynamical Shifts in Multivalent Heavy Ions.

    Science.gov (United States)

    Tupitsyn, I I; Kozlov, M G; Safronova, M S; Shabaev, V M; Dzuba, V A

    2016-12-16

    The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of fundamental physics. We compared the performance of four different QED potentials for various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion properties urgently needed for planning future experiments. We find that all four potentials give consistent and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more accurate than the local potential.

  5. EDITORIAL: Focus on Heavy Ions in Biophysics and Medical Physics FOCUS ON HEAVY IONS IN BIOPHYSICS AND MEDICAL PHYSICS

    Science.gov (United States)

    Durante, Marco

    2008-07-01

    Interest in energetic heavy ions is rapidly increasing in the field of biomedicine. Heavy ions are normally excluded from radiation protection, because they are not normally experienced by humans on Earth. However, knowledge of heavy ion biophysics is necessary in two fields: charged particle cancer therapy (hadrontherapy), and radiation protection in space missions. The possibility to cure tumours using accelerated heavy charged particles was first tested in Berkeley in the sixties, but results were not satisfactory. However, about 15 years ago therapy with carbon ions was resumed first in Japan and then in Europe. Heavy ions are preferable to photons for both physical and biological characteristics: the Bragg peak and limited lateral diffusion ensure a conformal dose distribution, while the high relative biological effectiveness and low oxygen enhancement ration in the Bragg peak region make the beam very effective in treating radioresistant and hypoxic tumours. Recent results coming from the National Institute of Radiological Sciences in Chiba (see the paper by Dr Tsujii and co-workers in this issue) and GSI (Germany) provide strong clinical evidence that heavy ions are indeed an extremely effective weapon in the fight against cancer. However, more research is needed in the field, especially on optimization of the treatment planning and risk of late effects in normal tissue, including secondary cancers. On the other hand, high-energy heavy ions are present in galactic cosmic radiation and, although they are rare as compared to protons, they give a major contribution in terms of equivalent dose to the crews of manned space exploratory-class missions. Exploration of the Solar System is now the main goal of the space program, and the risk caused by exposure to galactic cosmic radiation is considered a serious hindrance toward this goal, because of the high uncertainty on late effects of energetic heavy nuclei, and the lack of effective countermeasures. Risks

  6. Mutagenic effects of heavy ion radiation in plants

    Science.gov (United States)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-01-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high Linear Energy Transfer (LET) heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. Restriction-fragment-length-polymorphism (RFLP) analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  7. Continuous observation of polarization effects in thin SC-CVD diamond detector designed for heavy ion microbeam measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru, E-mail: kada.wataru@gunma-u.ac.jp [Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-machi, Kiryu, Gunma 376-8515 (Japan); Iwamoto, Naoya [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Satoh, Takahiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Onoda, Shinobu [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Grilj, Veljko; Skukan, Natko [Ruđer Bošković Institute, P.O. Box 1016, 10001 Zagreb (Croatia); Koka, Masashi [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Ohshima, Takeshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Jakšić, Milko [Ruđer Bošković Institute, P.O. Box 1016, 10001 Zagreb (Croatia); Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2014-07-15

    Continuous irradiation effects on a thin-film diamond detector were investigated for the utilization of these films as a detector for heavy ion microbeams. Temporal signal degradation in the energy spectrum was frequently observed during the focused heavy ion microbeam irradiation. To measure the temporal response to the each ion incidents, focused heavy ion microbeam with different beam fluence rates were irradiated to a single crystal (SC)-CVD diamond film detector with thickness of 50 μm. The responses to each ion were continuously observed and characterized by ion beam-induced charge (IBIC) measurement system. Heavy ions with short penetration path in diamond generate the large difference in mean path of electrons and holes, which is inverted by changing bias polarity. Signal degradation condition was relied on the bias polarity under the irradiation of heavy ions with short penetration length in the diamond. The continuous observation of IBIC signals revealed that temporal degradation in pulse height of signals, so called polarization effects, seems to be mainly caused by the hole trapping in this diamond crystal.

  8. Reducing hazardous heavy metal ions using mangium bark waste.

    Science.gov (United States)

    Khabibi, Jauhar; Syafii, Wasrin; Sari, Rita Kartika

    2016-08-01

    The objective of this study was to evaluate the characteristics of mangium bark and its biosorbent ability to reduce heavy metal ions in standard solutions and wastewater and to assess changes in bark characteristics after heavy metal absorption. The experiments were conducted to determine heavy metal absorption from solutions of heavy metals alone and in mixtures as well as from wastewater. The results show that mangium bark can absorb heavy metals. Absorption percentages and capacities from single heavy metal solutions showed that Cu(2+) > Ni(2+) > Pb(2+) > Hg(2+), while those from mixture solutions showed that Hg(2+) > Cu(2+) > Pb(2+) > Ni(2+). Wastewater from gold mining only contained Cu, with an absorption percentage and capacity of 42.87 % and 0.75 mg/g, respectively. The highest absorption percentage and capacity of 92.77 % and 5.18 mg/g, respectively, were found for Hg(2+) in a mixture solution and Cu(2+) in single-metal solution. The Cu(2+) absorption process in a single-metal solution changed the biosorbent characteristics of the mangium bark, yielding a decreased crystalline fraction; changed transmittance on hydroxyl, carboxyl, and carbonyl groups; and increased the presence of Cu. In conclusion, mangium bark biosorbent can reduce hazardous heavy metal ions in both standard solutions and wastewater.

  9. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  10. Complexified boost invariance and holographic heavy ion collisions

    CERN Document Server

    Gubser, Steven S

    2015-01-01

    At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. One of the main advantages is an analytic formulation of the stress-energy tensor of the longitudinal dynamics of holographic heavy ion collisions.

  11. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  12. Hydrodynamics in heavy-ion collisions: recent developments

    CERN Document Server

    Jaiswal, Amaresh

    2016-01-01

    Relativistic hydrodynamics has been quite successful in explaining the collective behaviour of the QCD matter produced in high energy heavy-ion collisions at RHIC and LHC. We briefly review the latest developments in the hydrodynamical modeling of relativistic heavy-ion collisions. Essential ingredients of the model such as the hydrodynamic evolution equations, dissipation, initial conditions, equation of state, and freeze-out process are reviewed. We discuss observable quantities such as particle spectra and anisotropic flow as well as the event-by-event fluctuations of these quantities. We also discuss the extraction of transport coefficients of the hot and dense QCD matter from the experimental data of collective flow.

  13. Quark vs Gluon jets in Heavy Ion Collisions

    CERN Document Server

    Drauksas, Simonas

    2017-01-01

    The project concerned quark and gluon jets which are often used as probes of Quantum Chromodynamics(QCD) matter created in nuclear collisions at collider energies. The goal is to look for differences between quark and gluon jets, study their substructure, look for distinguishing features in unquenched (pp collisions) and quenched (heavy ion collisions) jets by using multi-variate analysis which was carried out with the help of ROOT's \\href{https://root.cern.ch/tmva}{TMVA} tool. Mapping out the modification of jets due to medium interactions could give valuable input to constraining the time evolution of the Quark Gluon Plasma created in heavy ion collisions.

  14. Conceptional Design of Heavy Ion Linac Injector for HIRFL-CSRm

    CERN Document Server

    Zhang, Xiaohu; Xia, Jiawen; Yin, Xuejun; Yin, Dayu; Li, Xiaoni; Xie, Xiucui; Du, Heng; Li, zhongshan

    2013-01-01

    A room temperature heavy ion linac has been proposed as a new injector of CSRm (the main Cooler Storage Ring) at HIRFL (Heavy Ion Research Facility in Lanzhou), which is expected to improve the performance of HIRFL. The linac injector can supply heavy ion with maximum mass to charge ratio of 7 and injection kinetic energy of 7.272MeV/u for CSRm, and the pulsed beam intensity is 3emA with the duty factor of 3%. Compared with the present cyclotron injector SFC (Sector Focusing Cyclotron), the beam current from linac can be improved by 10-100 times. As the pre-accelerator of the linac, the 108.48MHz 4-rod RFQ accelerates ion beam from 4keV/u to 300keV/u, which achieves the transmission efficiency of 95.3% with 3.07m long vanes. The phase advance has been taken into account to analysis the error tolerance, and parametric resonance have been carefully avoided by adjusting the structure parameters. KONUS IH-DTLs, which follow the RFQ, accelerate the ions up to the energy of 7.272MeV/u and inject into HIRFL-CSRm. Th...

  15. Grid-controlled extraction of pulsed ion beams

    Science.gov (United States)

    Humphries, S., Jr.; Burkhart, C.; Coffey, S.; Cooper, G.; Len, L. K.; Savage, M.; Woodall, D. M.; Rutkowski, H.; Oona, H.; Shurter, R.

    1986-03-01

    Experimental results are presented on a method for extracting well-focused ion beams from plasma sources with time-varying properties. An electrostatic grid was used to stop the flow of plasma electrons so that only ions entered the extraction gap. In this case, ion flow in the gap was controlled by space-charge effects as it would be with a thermionic ion source. Constant extracted current was observed even with large variations of source flux. An insulator spark source and a metal-vapor vacuum arc were used to generate pulsed ion beams. With a hydrocarbon spark, current densities of 44 mA/cm2 were achieved at 20-kV extractor voltage for an 8-μs pulse. With an aluminum-vapor arc, a current density of 15 mA/cm2 (0.3 A total) was measured for a 50-μs pulse.

  16. Grid-controlled extraction of pulsed ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, S. Jr.; Burkhart, C.; Coffey, S.; Cooper, G.; Len, L.K.; Savage, M.; Woodall, D.M.; Rutkowski, H.; Oona, H.; Shurter, R.

    1986-03-15

    Experimental results are presented on a method for extracting well-focused ion beams from plasma sources with time-varying properties. An electrostatic grid was used to stop the flow of plasma electrons so that only ions entered the extraction gap. In this case, ion flow in the gap was controlled by space-charge effects as it would be with a thermionic ion source. Constant extracted current was observed even with large variations of source flux. An insulator spark source and a metal-vapor vacuum arc were used to generate pulsed ion beams. With a hydrocarbon spark, current densities of 44 mA/cm/sup 2/ were achieved at 20-kV extractor voltage for an 8-..mu..s pulse. With an aluminum-vapor arc, a current density of 15 mA/cm/sup 2/ (0.3 A total) was measured for a 50-..mu..s pulse.

  17. Heavy-ion performance of the LHC and future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Michaela

    2015-04-29

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton-proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term ''heavy-ion collisions'' refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter luminosity lifetimes. As the production cross-sections for various physics processes under study of the experiments are still small at energies reachable with the LHC and because the heavy-ion run time is limited to a few days per year, it is essential to obtain the highest possible collision rate, i.e. maximise the instantaneous luminosity, in order to obtain enough events and therefore low statistical errors. Within this thesis, the past performance of the LHC in lead-lead (Pb-Pb) collisions, at a centre-of-mass energy of 2.76 TeV per colliding nucleon pair, is analysed and potential luminosity limitations are identified. Tools are developed to predict future performance and techniques are presented to further increase the luminosity. Finally, a perspective on the future of high energy heavy-ion colliders is given.

  18. Electron cloud studies for heavy-ion and proton machines

    CERN Document Server

    Petrov, F; Weiland, Th

    2013-01-01

    Electron cloud effects are a known problem in various accelerator facilities around the world. Electron clouds cause instabilities and emittance growth in positron and proton beams as well as in heavy ion beams. Most of the hadron machines experience the build-up of EC due to the multipacting. In LHC and in positron machines production of electrons due to the synchrotron radiation becomes as important as the build-up due to the secondary emission. The main source of seed electrons in heavy ion machines is the residual gas ionization. FAIR facility in Darmstadt will operate with heavy-ion and proton beams. However, the beam parameters are such that the multipacting will start to play a role only for the unconditioned wall with the secondary emission yieldmore than 1.8. In this paperwe study the electron cloud build-up and its effect on the beam stability for FAIR heavy-ion coasting beams. These beams will be used during slow extraction. Electron scattering on the beam ions and its effect on the final neutraliz...

  19. Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment

    Science.gov (United States)

    Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; Friedman, A.; Gilson, E. P.; Grote, D.; Ji, Q.; Kaganovich, I. D.; Persaud, A.; Waldron, W. L.; Schenkel, T.

    2016-05-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted on the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.

  20. Heavy Quarkonium Dissociation Cross Sections in Relativistic Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    C.-Y. Wong; Eric Swanson; Ted Barnes

    2001-12-01

    Many of the hadron-hadron cross sections required for the study of the dynamics of matter produced in relativistic heavy-ion collisions can be calculated using the quark-interchange model. Here we evaluate the low-energy dissociation cross sections of J/{psi}, {psi}', {chi}, {Upsilon}, and {Upsilon}' in collision with {pi}, {rho}, and K, which are important for the interpretation of heavy-quarkonium suppression as a signature for the quark gluon plasma. These comover dissociation processes also contribute to heavy-quarkonium suppression, and must be understood and incorporated in simulations of heavy-ion collisions before QGP formation can be established through this signature.

  1. Dynamics of light, intermediate, heavy and superheavy nuclear systems formed in heavy-ion collisions

    Indian Academy of Sciences (India)

    Manoj K Sharma; Gurvinder Kaur

    2014-05-01

    The dynamical description of light, intermediate, heavy and superheavy nuclei formed in heavy-ion collisions is worked out using the dynamical cluster decay model (DCM), with reference to various effects such as deformation and orientation, temperature, angular momentum etc. Based on the quantum mechanical fragmentation theory (QMFT), DCM has been applied to understand the decay mechanism of a large number of nuclei formed in low-energy heavy-ion reactions. Various features related to the dynamics of competing decay modes of nuclear systems are explored by addressing the experimental data of a number of reactions in light, intermediate, heavy and superheavy mass regions. The DCM, being a non-statistical description for the decay of a compound nucleus, treats light particles (LPs) or equivalently evaporation residues (ERs), intermediate mass fragments (IMFs) and fission fragments on equal footing and hence, provides an alternative to the available statistical model approaches to address fusion–fission and related phenomena.

  2. Long-pulse operation of an intense negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Kaneko, Osamu; Oka, Yoshihide; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi; Kuroda, Tsutomu [National Inst. for Fusion Science, Nagoya (Japan)

    1997-02-01

    In the National Institute for Fusion Science, as the heating system for the Large Helical Device (LHD), the negative ion NBI system of 20 MW incident power has been planned, and the development of a large current, large size negative ion source has been advanced. Based on the results obtained so far, the design of the LHD-NBI system was reconsidered, and the specification of the actual negative ion source was decided as 180 KeV-40A. This time, the grounding electrode with heightened heat removal capacity was made, and the long pulse operation was attempted, therefore, its results are reported. The structure of the external magnetic filter type large negative ion source used for the long pulse experiment is explained. In order to form the negative ion beam of long pulses, it is necessary to form stable are discharge plasma for long time, and variable resistors were attached to the output side of arc power sources of respective filament systems. By adjusting the resistors, uniform are discharge was able to be caused for longer than 10 s stably. The results of the long pulse experiment are reported. The dependence of the characteristics of negative ion beam on plasma electrode temperature was small, and the change of the characteristics of negative ion beam due to beam pulse width was not observed. (K.I.)

  3. Recent results on heavy quark quenching in ultrarelativistic heavy ion collisions

    CERN Document Server

    Gossiaux, Pol Bernard; Bluhm, Marcus; Gousset, Thierry; Nahrgang, Marlene; Vogel, Sascha; Werner, Klaus

    2012-01-01

    In this contribution, we present some predictions for the production of D and B mesons in ultrarelativistic heavy ion collisions at RHIC and LHC energies and confront them with experimental results obtained so far by the STAR, PHENIX, ALICE and CMS collaborations. We next discuss some preliminary results obtained with an improved description of the medium based on EPOS initial conditions, and its possible implications on the nuclear modification factor and on the elliptic flow of heavy quarks.

  4. Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Brihoum, Melisa; Cunge, Gilles; Darnon, Maxime; Joubert, Olivier [Laboratoire des Technologies de la Microelectronique CNRS, Grenoble Cedex 9, Isere 38054 (France); Gahan, David [Impedans Ltd., Dublin 17 (Ireland); Braithwaite, Nicholas St. J. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2013-03-15

    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 {mu}s reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.

  5. The european FAZIA initiative: a high-performance digital telescope array for heavy-ion studies

    CERN Document Server

    Casini, G; Pasquali, G; Pastore, G; Bini, M; Carboni, S; Olmi, A; Piantelli, S; Poggi, G; Stefanini, A; Valdre', S; Bonnet, E; Borderie, B; Bougault, R; Bruno, M; Chbihi, A; Cinausero, M; Degerlier, M; Edelbruck, P; Frankland, J D; Gramegna, F; Gruyer, D; Guerzoni, M; Kordjasz, A; Kozik, T; Neindre, N Le; Lopez, O; Marchi, T; Marini, P; Morelli, L; Ordine, A; Parlog, M; Rivet, M F; Rosato, E; Salomon, F; Spadaccini, G; Twarog, T; Vient, E; Vigilante, M

    2013-01-01

    The european Fazia collaboration aims at building a new modular array for charged product identification to be employed for heavy-ion studies. The elementary module of the array is a Silicon-Silicon-CsI telescope, optimized for ion identification also via pulse shape analysis. The achievement of top performances imposes specific electronics which has been developed by FAZIA and features high quality charge and current preamplifiers, coupled to fully digital front-end. During the initial R&D phase, original and novel solutions have been tested in prototypes, obtaining unprecedented ion identification capabilities. FAZIA is now constructing a demonstrator array consisting of about two hundreds telescopes arranged in a compact and transportable configuration. In this contribution, we mainly summarize some aspects studied by FAZIA to improve the ion identification. Then we will briefly discuss the FAZIA program centered on experiments to be done with the demonstrator. First results on the isospin dynamics obt...

  6. Heavy ion beam transmission in the AGOR cyclotron

    NARCIS (Netherlands)

    Sen, Ayanangsha

    2013-01-01

    In the framework of the TRImP program initiated at the KVI in 2002, the AGOR cyclotron was used to accelerate low energy heavy ion beams up to a beam intensity (>=10^12 particles per second). Typical beam ions are: 206Pb accelerated to 8 MeV/amu and 20Ne accelerated to 25 MeV/amu. In the course of b

  7. Neutron dose equivalent rate for heavy ion bombardment

    Institute of Scientific and Technical Information of China (English)

    LiGui-Sheng; ZhangTian-Mei; 等

    1998-01-01

    The fluence rate distribution of neutrons in the reactionsof 50MeV/u 18O-ion on thick Be,Cu and Au targets have been measured with an activation method of threshold detectors andthe neutron dose equivalent rate distributions at 1m from the tqrgets in intermediate energy heavy ion target area are obtained by using the conversion factors from neutron fluence rate to neutron doseequivalent rate.

  8. Range and etching behaviour of swift heavy ions in polymers

    Science.gov (United States)

    Singh, Lakhwant; Singh, Mohan; Samra, Kawaljeet Singh; Singh, Ravinder

    Aliphatic (CR-39) and aromatic (Lexan polycarbonate) polymers have been irradiated with a variety of heavy ions such as 58Ni, 93Nb, 132Xe, 139La, 197Au, 208Pb, 209Bi, and 238U having energy ranges of 5.60-8.00 MeV/n in order to study the range and etching kinetics of heavy ion tracksE The ion fluence (range ˜104-105 ions/cm2) was kept low to avoid the overlapping of etched tracks. The measured values of maximum etched track length were corrected due to bulk etching and over etching to obtain the actual range. The experimental results of range profiles were compared with those obtained by the most used procedures employed in obtaining range and stopping power. The range values of present ions have been computed using the semiempirical codes (SRIM-98, SRIM-2003.26, and LISE++:0-[Hub90]) in order to check their accuracy. The merits and demerits of the adopted formulations have been highlighted in the present work. It is observed that the range of heavy ions is greater in aromatic polymers (Lexan polycarbonate) as compared to the aliphatic polymers (CR-39) irradiated with similar ions having same incident energies. The SRIM-98 and SRIM2003.26 codes don't show any significant trend in deviations, however, LISE++:0-[Hub90] code provides overall good agreement with the experimental values. The ratio of track etch rate (along projectile trajectory) to the bulk etch rate has also been studied as a function of energy loss of heavy ions in these polymers.

  9. Stopping of relativistic hydrogen- and heliumlike heavy ions

    CERN Document Server

    Soerensen, A H

    2002-01-01

    The stopping power for hydrogen- and heliumlike heavy ions penetrating matter at energies of 100-1000 MeV/u is calculated. For hydrogenlike ions the difference in dE/dx for an extended and a collapsed electron distribution is at the level of 1% and nonperturbative effects easily account for half of the difference. Differences of this magnitude have drastic effects on charge-exchange straggling. The theoretical results lead to good agreement with experimental values when applied in simulations.

  10. Linear electronics for Si-detectors and its energy calibration for use in heavy ion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Taccetti, N.; Poggi, G.; Carraresi, L.; Bini, M.; Casini, G.; Ciaranfi, R.; Giuntini, L.; Maurenzig, P.R.; Montecchi, M.; Olmi, A.; Pasquali, G.; Piantelli, S.; Stefanini, A.A. E-mail: stefanini@fi.infn.it

    2003-01-11

    The design and implementation of linear electronics based on small-size, low-power charge preamplifiers and shaping amplifiers, used in connection with Si-detector telescopes employed in heavy ion experiments, are presented. Bench tests and 'under beam' performances are discussed. In particular, the energy calibration and the linearity test of the overall system (Si-detector and linear and digital conversion electronics) has been performed with a procedure which avoids the pulse height defect problems connected with the detection of heavy ions. The procedure, basically, consists of using bursts of MeV protons, releasing up to GeV energies inside the detector, with low ionization density.

  11. Smart responsive microcapsules capable of recognizing heavy metal ions.

    Science.gov (United States)

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions.

  12. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness.

    Science.gov (United States)

    Blakely, E A; Kronenberg, A

    1998-11-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  13. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  14. Formation of energetic heavy ion tracks in polyimide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deslandes, Alec, E-mail: acd@ansto.gov.au [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC 2234, NSW (Australia); Murugaraj, Pandiyan; Mainwaring, David E. [Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn 3122, VIC (Australia); Ionescu, Mihail; Cohen, David D.; Siegele, Rainer [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC 2234, NSW (Australia)

    2013-11-01

    Highlights: •Ion tracks formed in polyimide via irradiation with high energy heavy ions. •Complementary techniques track the changes in composition of polyimide during irradiation. •Ion beam analysis aids the identification of signals from residual gas analysis. •A multi-step process of polyimide modification is observed and modelled. •The multi-step process is related to ion track density and overlap. -- Abstract: Polyimide thin films have been irradiated with a high energy beam of heavy ions to a fluence of approximately 4 × 10{sup 13} ions/cm{sup 2}. Proton backscattering spectroscopy was used to measure the composition of the films, which showed that oxygen was the element that exhibited the most rapid loss from the film. The gases evolved from the film during polymer modification were monitored using a quadrupole mass spectrometer for residual gas analysis (RGA). The fluence dependence of RGA signals were indicative of multi-step processes of gas release, whereby the passage of an ion through a region of pristine film changes the local molecular structure to one that will more readily form volatile species when subsequent ions pass.

  15. Fission in intermediate energy heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S. (Los Alamos National Lab., NM (USA)); Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L. (Lawrence Livermore National Lab., CA (USA)); Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G. (Lawrence Berkeley Lab., CA (USA)); Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W. (Brookhaven National Lab., Upton, NY (USA)); Dichter, B.; Kaufman, S.; Videbaek, F. (Argonne National Lab. (USA)); Fraenkel, Z.; Mamane, G. (Weizmann Inst. of Science, Rehovoth (Israel)); Cebra, D.; Westfall, G.D. (Michigan State Univ., East Lansing (USA))

    1989-10-09

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.).

  16. Microsecond pulse width, intense, light-ion beam accelerator

    Science.gov (United States)

    Rej, D. J.; Bartsch, R. R.; Davis, H. A.; Faehl, R. J.; Greenly, J. B.; Waganaar, W. J.

    1993-10-01

    A relatively long-pulse width (0.1-1 μs) intense ion beam accelerator has been built for materials processing applications. An applied Br, magnetically insulated extraction ion diode with dielectric flashover ion source is installed directly onto the output of a 1.2 MV, 300-kJ Marx generator. The diode is designed with the aid of multidimensional particle-in-cell simulations. Initial operation of the accelerator at 0.4 MV indicates satisfactory performance without the need for additional pulse shaping. The effect of a plasma opening switch on diode behavior is considered.

  17. Gauge/String Duality, Hot QCD and Heavy Ion Collisions

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Liu, Hong; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim

    2014-06-01

    1. Opening remarks; 2. A heavy ion phenomenology primer; 3. Results from lattice QCD at nonzero temperature; 4. Introducing the gauge/string duality; 5. A duality toolbox; 6. Bulk properties of strongly coupled plasma; 7. From hydrodynamics for far-from-equilibrium dynamics; 8. Probing strongly coupled plasma; 9. Quarkonium mesons in strongly coupled plasma; 10. Concluding remarks and outlook; Appendixes; References; Index.

  18. Subthreshold photons in heavy-ion reactions at intermediate energies

    NARCIS (Netherlands)

    Martinez, G

    1998-01-01

    In the present talk, I discuss about the properties of the energetic photons produced in heavy-ion reactions. I show that they are sensitive to the maximum density reached in the first stage of the nuclear reaction. Then, the existence of a thermal contribution to the photon differential cross-secti

  19. Charm resonance production in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Arnaldi Roberta

    2015-01-01

    Full Text Available The production of charmonium states plays an important role among the probes to investigate the formation of a plasma of quarks and gluons (QGP in heavy-ion collisions. A review of the main J/ψ and ψ(2S results is presented, focussing on the most recent achievements from the LHC experiments.

  20. A detection system for energetic light heavy ions

    NARCIS (Netherlands)

    Engelen, C.P.M. van; Jelmersma, R.; Brink, A. van den; Kamermans, R.

    1984-01-01

    A light heavy ion detection system which consists of a gas-filled ionization chamber (IC) connected to a scattering chamber via a time-of-flight (TOF) system has been constructed. The entrance window of the IC has an area of 14 × 40 cm2, the active depth is 115 cm. Filled with CF4 at a pressure of 3

  1. Connecting QGP-Heavy Ion Physics to the Early Universe

    CERN Document Server

    Rafelski, Johann

    2013-01-01

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  2. Connecting QGP-Heavy Ion Physics to the Early Universe

    Science.gov (United States)

    Rafelski, Johann

    2013-10-01

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  3. Connecting QGP-Heavy Ion Physics to the Early Universe

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann

    2013-10-15

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  4. A short course on relativistic heavy ion collisions

    CERN Document Server

    Chaudhuri, A K

    2012-01-01

    Some ideas/concepts in relativistic heavy ion collisions are discussed. To a large extent, the discussions are non-comprehensive and non-rigorous. It is intended for fresh graduate students of Homi Bhabha National Institute, Kolkata Centre, who are intending to pursue career in theoretical /experimental high energy nuclear physics. Comments and criticisms will be appreciated.

  5. Correlations and fluctuations in high energy heavy ion collision experiments

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dai-Mei; WANG Ya-Ping; WEI Li-Hua; CAI Xu

    2008-01-01

    An overview of research status of soft physics in high energy heavy-ion collision experiments and recent experimental results are presented.The experimental status on fluctuations and correlations has been reviewed and the outlook for research status of soft physics in LHC/ALICE has been introduced in this paper.

  6. Elastic recoil detection (ERD) with extremely heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Forster, J.S. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Currie, P.J. [Royal Tyrrell Museum, Drumheller, Alberta T0J 0Y0 (Canada); Davies, J.A. [Accelerator Laboratory, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Siegele, R. [Accelerator Laboratory, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Wallace, S.G. [Accelerator Laboratory, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Zelenitsky, D. [Department of Geology and Geophysics, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    1996-06-01

    Extremely heavy-ion beams such as {sup 209}Bi in elastic recoil detection (ERD) make ERD a uniquely valuable technique for thin-film analysis of elements with mass {<=}100. We report ERD measurements of compositional analysis of dinosaur eggshells and bones. We also show the capability of the ERD technique on studies of thin-film, high-temperature superconductors. (orig.).

  7. Collective flow in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    R S Bhalerao

    2003-11-01

    A brief introduction is given to the field of collective flow, currently being investigated experimentally at the Relativistic Heavy-Ion Collider, Brookhaven National Laboratory. It is followed by an outline of the work that I have been doing in this field, in collaboration with Nicolas Borghini and Jean-Yves Ollitrault.

  8. Experimental Investigation of DNA Damage Induced by Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    DNA is considered the critical target for radiobiological effects. It is highly important to study DNAdamage induced by ionizing radiation. Especially DNA double strand breaks have been identified as themost initial damage. In this experiment, DNA double strand breaks induced by heavy ions wereinvestigated with atomic force microscopy (AFM).

  9. Theory of heavy ion collision physics in hadron therapy

    CERN Document Server

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.

  10. Erosion yield of metal surface under ion pulsed irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Krivobokov, Valery; Stepanova, Olga, E-mail: omsa@tpu.ru; Yuryeva, Alena

    2013-11-15

    The paper is devoted to the study of erosion processes on a metal surface (Ag, Ni, Cu, W) under argon ion bombardment. The erosion yields including the sputtered and evaporated particles have been calculated for a wide range of the initial ion energy (1–1000 keV). They are revealed to reach the values from units to 10{sup 4} atom/ion under a pulsed ion beam with the power density of 10{sup 2}–10{sup 10} W/cm{sup 2}. The ion beam and target parameters are shown to influence on the erosion intensity.

  11. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    Science.gov (United States)

    Nakagawa, T.

    2014-02-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams.

  12. Ion Optics of the HESR storage ring at FAIR for operation with heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleksandr; Dolinskyy, Oleksiy; Litvinov, Yuri; Stoehlker, Thomas [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2014-07-01

    High Energy Storage Ring (HESR) of the FAIR project is primarily designed for internal target experiments with stored and cooled antiprotons, which is the main objective of the PANDA collaboration. However, the HESR storage ring also appears to have remarkable properties to carry out physics experiments with heavy ions. This paper proposes a new ion optical design allowing for the heavy ion operation mode of the HESR. The main goal was to provide an optics which meets the requirements of the future experiments with heavy ion beams. In connection, issues like closed orbit correction, dynamic aperture as well as other characteristics of beam dynamics of the new ion optical setup are under analysis in this study.

  13. Modification of magnetic anisotropy induced by swift heavy ion irradiation in cobalt ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nongjai, Razia [Department of Applied Physics, Zakir Hussain College of Engineering & Technology, A.M.U., Aligarh 202002 (India); Khan, Shakeel, E-mail: skhanapad@gmail.com [Department of Applied Physics, Zakir Hussain College of Engineering & Technology, A.M.U., Aligarh 202002 (India); Ahmed, Hilal; Khan, Imran [Department of Applied Physics, Zakir Hussain College of Engineering & Technology, A.M.U., Aligarh 202002 (India); Annapoorni, S. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Gautam, Sanjeev [Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Lin, Hong-Ji; Chang, Fan-Hsiu [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China); Hwa Chae, Keun [Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Asokan, K. [Material Science Division, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-11-15

    The present study demonstrates the modification of magnetic anisotropy in cobalt ferrite (CoFe{sub 2}O{sub 4}) thin films induced by swift heavy ion irradiations of 200 MeV Ag-ion beams. The study reveals that both magnetizations and coercive field are sensitive to Ag-ions irradiation and to the fluences. The magnetic anisotropy enhanced at low fluence of Ag-ions due to domain wall pinning at defect sites created by ion bombardment and at high fluence, this magnetic anisotropy ceases and changes to isotropic behavior which is explained based on the significant structural and morphological changes. An X-ray absorption and x-ray magnetic circular dichroism studies confirms the inverse spinel structure of these compounds. - Highlights: • CoFe{sub 2}O{sub 4} thin films have been deposited on Silicon substrate by pulsed laser deposition technique. • Swift heavy ion irradiation of thin films at three different fluences. • Studied the structural and magnetic properties of the samples. • XRD and Raman studies indicate strain in the films. • Observed perpendicular magnetic anisotropy.

  14. Relativistically Induced Transparency Acceleration (RITA) of Protons and Light-ions with Ultrashort Laser Interaction with Heavy-ion Plasma Density Gradient

    CERN Document Server

    Sahai, Aakash A; Tableman, A R; Mori, W B; Katsouleas, T C

    2014-01-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma ...

  15. Response of Alanine Dosemeter to Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    LiWenjian; SuXu; YangYingjie; YuanJianlei; DangBingrong; WangXiao; MaQiufeng; ZhouLibin; HaoJifang; MaoShuhong

    2003-01-01

    The amino acid L-α-alanine has been investigated for use as a radiation detector in low and high LET radiation fields[1]. The radiatioa detector is cheap and easy to handle. The radiation inducing free radicals are stable at normal laboratory conditions for doses below 104 Gy over a long period of time, which makes the detector useful for intercomparison and documentation purposes. The dosimetric features of alanine-based electron spin resonance (ESR) detectors in high energy electron beams used in radiotherapy were considered[2]. The 5 mm long alanine detectors were found to be the most suitable for carrying out in vivo dosimetry on patients undergoing electron beam radiotherapy. However, data concerning dosimetry of the alanine dosemeter to heavy charged particles are lacking, especially in China.

  16. Heavy-ion radiation induced bystander effect in mice

    Science.gov (United States)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  17. Energy loss, hadronization and hadronic interactions of heavy flavors in relativistic heavy-ion collisions

    CERN Document Server

    Cao, Shanshan; Bass, Steffen A

    2015-01-01

    We construct a theoretical framework to describe the evolution of heavy flavors produced in relativistic heavy-ion collisions. The in-medium energy loss of heavy quarks is described using our modified Langevin equation that incorporates both quasi-elastic scatterings and the medium-induced gluon radiation. The space-time profiles of the fireball is described by a (2+1)-dimensional hydrodynamics simulation. A hybrid model of fragmentation and coalescence is utilized for heavy quark hadronization, after which the produced heavy mesons together with the soft hadrons produced from the bulk QGP are fed into the hadron cascade UrQMD model to simulate the subsequent hadronic interactions. We find that the medium-induced gluon radiation contributes significantly to heavy quark energy loss at high $p_\\mathrm{T}$; heavy-light quark coalescence enhances heavy meson production at intermediate $p_\\mathrm{T}$; and scatterings inside the hadron gas further suppress the $D$ meson $R_\\mathrm{AA}$ at large $p_\\mathrm{T}$ and e...

  18. Open charm physics with Heavy Ions: theoretical overview

    CERN Document Server

    Beraudo, Andrea

    2016-01-01

    The peculiar role of heavy-flavour observables in relativistic heavy-ion collisions is discussed. Produced in the early stage, $c$ and $b$ quarks cross the hot medium arising from the collision, interacting strongly with the latter, until they hadronize. Depending on the strength of the interaction heavy quarks may or not approach kinetic equilibrium with the plasma, tending in the first case to follow the collective flow of the expanding fireball. The presence of a hot deconfined medium may also affect heavy-quark hadronization, being possible for them to recombine with the surrounding light thermal partons, so that the final heavy-flavour hadrons inherit part of the flow of the medium. Here we show how it is possible to develop a complete transport setup allowing one to describe heavy-flavour production in high-energy nuclear collisions, displaying some major results one can obtain. Information coming from recent lattice-QCD simulations concerning both the heavy-flavour transport coefficients in the hot QCD...

  19. Heavy-ion performance of the LHC and future colliders

    CERN Document Server

    AUTHOR|(SzGeCERN)696614; Stahl, Achim; Jowett, John M

    2015-10-09

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton–proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term “heavy-ion collisions” refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter l...

  20. Systematics of heavy-ion charge-exchange straggling

    Science.gov (United States)

    Sigmund, P.; Schinner, A.

    2016-10-01

    The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12 , in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.

  1. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  2. Conceptional design of a heavy ion linac injector for HIRFL-CSRm

    Science.gov (United States)

    Zhang, Xiao-Hu; Yuan, You-Jin; Xia, Jia-Wen; Yin, Xue-Jun; Du, Heng; Li, Zhong-Shan

    2014-10-01

    A room temperature heavy ion linac has been proposed as a new injector of the main Cooler Storage Ring (CSRm) at the Heavy Ion Research Facility in Lanzhou (HIRFL), which is expected to improve the performance of HIRFL. The linac injector can supply heavy ions with a maximum mass to charge ratio of 7 and an injection kinetic energy of 7.272 MeV/u for CSRm; the pulsed beam intensity is 3 emA with the duty factor of 3%. Compared with the present cyclotron injector, the Sector Focusing Cyclotron (SFC), the beam current from linac can be improved by 10-100 times. As the pre-accelerator of the linac, the 108.48 MHz 4-rod Radio Frequency Quadrupole (RFQ) accelerates the ion beam from 4 keV/u to 300 keV/u, which achieves the transmission efficiency of 95.3% with a 3.07 m long vane. The phase advance has been taken into account in the analysis of the error tolerance, and parametric resonances have been carefully avoided by adjusting the structure parameters. Kombinierte Null Grad Struktur Interdigital H-mode Drift Tube Linacs (KONUS IH-DTLs), which follow the RFQ, accelerate ions up to the energy of 7.272 MeV/u for CSRm. The resonance frequency is 108.48 MHz for the first two cavities and 216.96 MHz for the last 5 Drift Tube Linacs (DTLs). The maximum accelerating gradient can reach 4.95 MV/m in a DTL section with the length of 17.066 m, and the total pulsed RF power is 2.8 MW. A new strategy, for the determination of resonance frequency, RFQ vane voltage and DTL effective accelerating voltage, is described in detail. The beam dynamics design of the linac will be presented in this paper.

  3. Characterization of swift heavy ion irradiation damage in ceria

    Energy Technology Data Exchange (ETDEWEB)

    Yablinsky, Clarissa; Devanathan, Ram; Pakarinen, Janne; Gan, Jian; Severin, Daniel; Trautmann, Christina; Allen, T. R.

    2015-05-14

    We have examined microstructural evolution in irradiated ceria (CeO2) using swift heavy ion irradiation, electron microscopy, and atomistic simulation. CeO2, a UO2 fuel surrogate, was irradiated with gold ions at an energy of 1 GeV to fluences up to 1x1014 ions/cm2. Transmission electron microscopy accompanied by electron energy loss spectroscopy showed that the ion tracks were of similar size at all fluences, and that there was no chemical change in the ion track core. Classical molecular dynamics simulations of thermal spikes in CeO2 with energy deposition of 12 and 36 keV/nm show damage consisting of isolated point defects at the lower energy and defect clusters at 36 keV/nm, with no amorphization at either energy. Inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.

  4. Development of heavy-ion radiotherapy technology with HIMAC

    Science.gov (United States)

    Noda, Koji

    2016-09-01

    Since 1994, HIMAC has carried out clinical studies and treatments for more than 9000 cancer patients with carbon-ion beams. During the first decade of the HIMAC study, a single beam-wobbling method, adopted as the HIMAC beam-delivery technique, was improved for treatments of moving tumors and for obtaining more conformal dose distribution. During the second decade, a pencil-beam 3D scanning method has been developed toward an “adaptive cancer treatment” for treatments of both static and moving tumors. A new treatment research facility was constructed with HIMAC in order to verify the developed 3D scanning technology through a clinical study that has been successfully conducted since 2011. As the next stage, a compact heavy-ion rotating gantry with a superconducting technology has been developed for the more accurate and shorter-course treatments. The twenty-year development of the heavy-ion radiotherapy technologies including accelerator technologies with HIMAC is reviewed.

  5. Low- to medium-β cavities for heavy ion acceleration

    Science.gov (United States)

    Facco, Alberto

    2017-02-01

    Acceleration of low- and medium-β heavy ions by means of superconducting (SC) linear accelerators (linacs) was made possible by the development, during four decades, of a particular class of cavities characterized by low operation frequency, several different shapes and different electromagnetic modes of operation. Their performance, initially rather poor in operating accelerators, have steadily increased along with the technological progress and nowadays the gap with the high-β, elliptical cavities is close to be filled. Initially confined to a very small number of applications, this family of cavities evolved in many directions becoming one of the most widespread in linacs. Nowadays it is present in the majority of superconducting radio-frequency ion linac projects worldwide. An overview of low- and medium-β SC cavities for heavy ions, focused on their recent evolution and achievements, will be given.

  6. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  7. Heavy ion fusion program. Half-year report, October 1978--March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Research activities in heavy ion fusion from October 1978 to March 1979 are reported. Primary areas covered include: induction linac systems; R.F. linac/storage ring systems; theory; and heavy ion fusion notes. (GHT)

  8. Heavy Ion Collisions at the LHC - Last Call for Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d' Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise

  9. Towards swift ion bunch acceleration by high-power laser pulses at the Centre for Advanced Laser Applications (CALA)

    Science.gov (United States)

    Lindner, F. H.; Haffa, D.; Bin, J. H.; Englbrecht, F.; Gao, Y.; Gebhard, J.; Hartmann, J.; Hilz, P.; Kreuzer, C.; Lehrack, S.; Ostermayr, T. M.; Rösch, T. F.; Speicher, M.; Würl, M.; Parodi, K.; Schreiber, J.; Thirolf, P. G.

    2017-07-01

    Laser-driven acceleration of ions has inspired novel applications, that can benefit from ion bunch properties different from conventionally (non-laser based) accelerated particle beams. Those differences range from extremely short bunch durations, broad energy spectra, large divergence angles and small source sizes to ultra-high ion bunch densities. So far, the main focus of research has been concentrating on the physics of the interaction of intense laser pulses with plasmas and the related mechanisms of ion acceleration. Now, the new Centre for Advanced Laser Applications (CALA) near Munich aims at pushing these ion bunches towards applications, including radiation therapy of tumors and the development of heavy ion bunches with solid-state-like density. These are needed for novel reaction mechanisms ('fission-fusion') to study the origin of heavy elements in the universe and to prepare for related studies at the upcoming EU-funded high-power laser facility ELI - Nuclear Physics in Bucharest.

  10. Comparative study of electrical breakdown properties of deionized water and heavy water under pulsed power conditions

    Energy Technology Data Exchange (ETDEWEB)

    Veda Prakash, G.; Kumar, R.; Saurabh, K.; Nasir,; Anitha, V. P.; Chowdhuri, M. B.; Shyam, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2016-01-15

    A comparative study of electrical breakdown properties of deionized water (H{sub 2}O) and heavy water (D{sub 2}O) is presented with two different electrode materials (stainless steel (SS) and brass) and polarity (positive and negative) combinations. The pulsed (∼a few tens of nanoseconds) discharges are conducted by applying high voltage (∼a few hundred kV) pulse between two hemisphere electrodes of the same material, spaced 3 mm apart, at room temperature (∼26-28 °C) with the help of Tesla based pulse generator. It is observed that breakdown occurred in heavy water at lesser voltage and in short duration compared to deionized water irrespective of the electrode material and applied voltage polarity chosen. SS electrodes are seen to perform better in terms of the voltage withstanding capacity of the liquid dielectric as compared to brass electrodes. Further, discharges with negative polarity are found to give slightly enhanced discharge breakdown voltage when compared with those with positive polarity. The observations corroborate well with conductivity measurements carried out on original and post-treated liquid samples. An interpretation of the observations is attempted using Fourier transform infrared measurements on original and post-treated liquids as well as in situ emission spectra studies. A yet another important observation from the emission spectra has been that even short (nanosecond) duration discharges result in the formation of a considerable amount of ions injected into the liquid from the electrodes in a similar manner as reported for long (microseconds) discharges. The experimental observations show that deionised water is better suited for high voltage applications and also offer a comparison of the discharge behaviour with different electrodes and polarities.

  11. Monte Carlo simulations for heavy ion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Geithner, O.

    2006-07-26

    Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)

  12. Improved ion guide for heavy-ion fusion-evaporation reactions

    NARCIS (Netherlands)

    Dendooven, P; Beraud, R; Chabanat, E; Emsallem, A; Honkanen, A; Huhta, M; Jokinen, A; Lhersonneau, G; Oinonen, M; Penttila, H; Perajarvi, K; Wang, JC; Aysto, J

    1998-01-01

    The ion guide for heavy-ion-induced reactions developed originally for the SARA facility in Grenoble has been implemented at the Jyvaskyla IGISOL facility. For the Cd-116(Ar-40, 6n)Dy-150 reaction an efficiency of 0.5% relative to the number of reaction products entering the stopping chamber was obt

  13. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    Science.gov (United States)

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed.

  14. Heavy ions: Results from the Large Hadron Collider

    Indian Academy of Sciences (India)

    Tapan K Nayak

    2012-10-01

    On November 8, 2010 the Large Hadron Collider (LHC) at CERN collided the first stable beams of heavy ions (Pb on Pb) at the centre-of-mass energy of 2.76 TeV/nucleon. The LHC worked exceedingly well during its one month of operation with heavy ions, delivering about 10 −1 of data, with peak luminosity reaching to $L_{O} = 2 × 10^{25}$ cm-2 s-1 towards the end of the run. Three experiments, ALICE, ATLAS and CMS, recorded their first heavy-ion data, which were analysed in a record time. The results of the multiplicity, flow, fluctuations and Bose–Einstein correlations indicate that the fireball formed in nuclear collisions at the LHC is hotter, lives longer, and expands to a larger size at freeze-out as compared to lower energies. We give an overview of these as well as new results on quarkonia and heavy flavour suppression, and jet energy loss.

  15. Strongly coupled quark-gluon plasma in heavy ion collisions

    Science.gov (United States)

    Shuryak, Edward

    2017-07-01

    A decade ago, a brief summary of the field of the relativistic heavy ion physics could be formulated as the discovery of strongly coupled quark-gluon plasma, sQGP for short, a near-perfect fluid with surprisingly large entropy-density-to-viscosity ratio. Since 2010, the LHC heavy ion program added excellent new data and discoveries. Significant theoretical efforts have been made to understand these phenomena. Now there is a need to consolidate what we have learned and formulate a list of issues to be studied next. Studies of angular correlations of two and more secondaries reveal higher harmonics of flow, identified as the sound waves induced by the initial state perturbations. As in cosmology, detailed measurements and calculations of these correlations helped to make our knowledge of the explosion much more quantitative. In particular, their damping had quantified the viscosity. Other kinetic coefficients—the heavy-quark diffusion constants and the jet quenching parameters—also show enhancements near the critical point T ≈Tc. Since densities of QGP quarks and gluons strongly decrease at this point, these facts indicate large role of nonperturbative mechanisms, e.g., scattering on monopoles. New studies of the p p and p A collisions at high multiplicities reveal collective explosions similar to those in heavy ion A A collisions. These "smallest drops of the sQGP" revived debates about the initial out-of-equilibrium stage of the collisions and mechanisms of subsequent equilibration.

  16. Differential pulse voltammetry and additive differential pulse voltammetry with solvent polymeric membrane ion sensors.

    Science.gov (United States)

    Ortuño, J A; Serna, C; Molina, A; Gil, A

    2006-12-01

    The ion transfer across the water-solvent polymeric membrane interface is investigated by using a new device based on a modification of a commercial ion-selective electrode body that permits the accommodation of a platinum counter electrode inside the inner filling solution compartment and, therefore, use of a four-electrode potentiostat with ohmic drop compensation. This device is used here to apply two different double potential pulse techniques--differential pulse voltammetry and additive differential pulse voltammetry--which are more advantageous than other voltammetric techniques, such as normal pulse voltammetry or cyclic voltammetry, for the determination of the characteristic electrochemical parameters of the system. This is due to the concurrence of two factors in these double potential pulse techniques, the peak-shaped response together with a considerable reduction of undesirable current contributions.

  17. Determination of Some Heavy-metal-ions Using a Sulfur Ion Modified BZ Oscillating System

    Institute of Scientific and Technical Information of China (English)

    Hua CHEN; Wu YANG; Hong Xia DAI; Xiao Xia WEI; Jie QU; Jin Zhang GAO

    2006-01-01

    A highly sensitive method is developed for the determination of trace amounts of some heavy metal ions in aqueous solution based on the classical Belousov-Zhabotinskii (BZ) oscillating chemical system. Introducing of S2- ion makes the new oscillating system Ce(SO4)2 - KBrO3-CH2(COOH)2 - Na2S - H2SO4 have to a high sensitivity for some heavy metal ions such as Ag+,pb2+, Hg2+, Cd2+, Cu2+and Bi3+ with detection limits down to 10-12 mol. L-1.

  18. An Experimental Review on Elliptic Flow of Strange and Multistrange Hadrons in Relativistic Heavy Ion Collisions

    Directory of Open Access Journals (Sweden)

    Shusu Shi

    2016-01-01

    Full Text Available Strange hadrons, especially multistrange hadrons, are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multistrange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC and Large Hadron Collider (LHC.

  19. Track structure and energy deposition distribution of heavy ions in liquid water

    Institute of Scientific and Technical Information of China (English)

    李强; 卫增泉

    1996-01-01

    Progress in theoretical research into track structure and energy deposition distribution of heavy ions in introduced,and some research results are given,such as a Monte Carlo model of heavy ion track structure calculation,frequency distribution of energy deposition inside a electron track and radial dose distribution around a heavy ion path.Moreover,research direction in future is also analysed.

  20. Hydrodynamic analysis of heavy ion collisions at RHIC

    CERN Document Server

    Hirano, Tetsufumi

    2008-01-01

    Current status of dynamical modeling of relativistic heavy ion collisions and hydrodynamic description of the quark gluon plasma is reported. We find the hadronic rescattering effect plays an important role in interpretation of mass splitting pattern in the differential elliptic flow data observed at RHIC. To demonstrate this, we predict the elliptic flow parameter for phi mesons to directly observe the flow just after hadronisation. We also discuss recent applications of outputs from hydrodynamic calculations to J/psi suppression, thermal photon radiation and heavy quark diffusion.

  1. High density QCD and entropy production at heavy ion colliders

    CERN Document Server

    Kinder-Geiger, Klaus

    1994-01-01

    The role of entropy production in the context of probing QCD properties at high densities and finite temperatures in ultra-relativistic collisions of heavy nuclei is inspected. It is argued that the entropy generated in these reactions provides a powerful tool to investigate the space-time evolution and the question whether and how a deconfined plasma of quarks and gluons is formed. I will address the questions how entropy is produced, and how it is measurable. The uncertainties in predicting the different contributions to the total entropy and particle multiplicities during the course of heavy ion collisions are also discussed.

  2. Dynamical dipole mode in heavy-ion fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Parascandolo, C., E-mail: concetta.parascandolo@na.infn.i [Universita degli Studi di Napoli ' Federico II' and INFN, Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Pierroutsakou, D. [INFN - Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Martin, B. [Universita degli Studi di Napoli ' Federico II' and INFN, Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Agodi, C.; Alba, R. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy); Boiano, A. [INFN - Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Coniglione, R. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy); De Filippo, E. [INFN - Sezione di Catania, 95123, Catania (Italy); Del Zoppo, A. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy); Emanuele, U. [INFN, Gruppo Collegato di Messina and Dip. di Fisica, Universita di Messina, Messina (Italy); Farinon, F. [GSI, Planckstrasse 1, D-64291, Darmstadt (Germany); Guglielmetti, A. [Universita degli Studi di Milano and INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Inglima, G.; La Commara, M. [Universita degli Studi di Napoli ' Federico II' and INFN, Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Maiolino, C. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy); Mazzocchi, C. [Universita degli Studi di Milano and INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Mazzocco, M. [Dip. di Fisica and INFN, Universita di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Romoli, M. [INFN - Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Sandoli, M. [Universita degli Studi di Napoli ' Federico II' and INFN, Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Santonocito, D. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy)

    2010-03-01

    The dynamical dipole mode, excited in charge asymmetric heavy-ion collisions, was investigated in the mass region of the {sup 192}Pb compound nucleus, formed by using the {sup 40,48}Ca + {sup 152,144}Sm reactions at approx11 MeV/nucleon. Preliminary results of this measurement, concerning both fusion-evaporation and fission events are presented. As a fast cooling mechanism on the fusion path, the dynamical dipole mode could be useful for the synthesis of super heavy elements through 'hot' fusion reactions.

  3. Heavy-ion-acoustic solitary and shock waves in an adiabatic multi-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M.A.; Rahman, M.M.; Mamun, A.A., E-mail: armanplasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Hossen, M.R. [Department of Natural Sciences, Daffodil International University, Dhanmondi, Dhaka (Bangladesh)

    2015-08-15

    The standard reductive perturbation method has been employed to derive the Korteweg-deVries (K-dV) and Burgers (BG) equations to investigate the basic properties of heavy-ion-acoustic (HIA) waves in a plasma system which is supposed to be composed of nonthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions. The HIA solitary and shock structures are found to exist with either positive or negative potential. It is found that the effects of adiabaticity of inertial heavy ions, nonthermality of electrons, and number densities of plasma components significantly modify the basic properties of the HIA solitary and shock waves. The implications of our results may be helpful in understanding the electrostatic perturbations in various laboratory and astrophysical plasma environments. (author)

  4. Characterization of swift heavy ion irradiation damage in ceria

    Energy Technology Data Exchange (ETDEWEB)

    Yablinsky, Clarissa A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devanathan, Ram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pakarinen, Janne [Inst. for Nuclear Research Center (SCK-CEN), Mol, (Belgium); Gan, Jian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Severin, Daniel [GSI-Darmstadt (Germany); Trautmann, Christina [GSI-Darmstadt (Germany); Allen, Todd R. [Univ. of Wisconsin, Madison, WI (United States). Energy Physics Dept.

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO2), which serves as a UO2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO2 with an energy deposition of 12 and 36 keV/nm show damage consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.

  5. Anti-biofilm activity of Fe heavy ion irradiated polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, R.P. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Hareesh, K., E-mail: appi.2907@gmail.com [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Bankar, A. [Department of Microbiology, Waghire College, Pune 412301 (India); Sanjeev, Ganesh [Microtron Centre, Department of Studies in Physics, Mangalore University, Mangalore 574166 (India); Asokan, K.; Kanjilal, D. [Inter University Accelerator Centre, Arun Asaf Ali Marg, New Delhi 110067 (India); Dahiwale, S.S.; Bhoraskar, V.N. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-10-01

    Highlights: • PC films were irradiated by 60 and 120 MeV Fe ions. • Irradiated PC films showed changes in its physical and chemical properties. • Irradiated PC also showed more anti-biofilm activity compared to pristine PC. - Abstract: Polycarbonate (PC) polymers were investigated before and after high energy heavy ion irradiation for anti-bacterial properties. These PC films were irradiated by Fe heavy ions with two energies, viz, 60 and 120 MeV, at different fluences in the range from 1 × 10{sup 11} ions/cm{sup 2} to 1 × 10{sup 13} ions/cm{sup 2}. UV-Visible spectroscopic results showed optical band gap decreased with increase in ion fluences due to chain scission mainly at carbonyl group of PC which is also corroborated by Fourier transform infrared spectroscopic results. X-ray diffractogram results showed decrease in crystallinity of PC after irradiation which leads to decrease in molecular weight. This is confirmed by rheological studies and also by differential scanning calorimetric results. The irradiated PC samples showed modification in their surfaces prevents biofilm formation of human pathogen, Salmonella typhi.

  6. Validation of Heavy Ion Transport Capabilities in PHITS

    Science.gov (United States)

    Ronningen, Reginald M.

    2007-03-01

    The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown for a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.

  7. Heavy ion storage ring without linear dispersion

    Directory of Open Access Journals (Sweden)

    Masahiro Ikegami

    2004-12-01

    Full Text Available A possible method to realize a dispersion-free storage ring is described. The simultaneous use of a magnetic field B and an electric field E in bending regions, where the two fields are set perpendicular to each other, enables us to control the effect of momentum dispersion. When the relation (1+1/γ_{0}^{2}E(ρ=-v_{0}×B is satisfied for a beam with the velocity v_{0}, the linear dispersion can be completely eliminated all around the ring. It is shown that the acceleration and deceleration induced by the electrostatic deflector counteracts the heating mechanism due to the shearing force from dipole magnets. The dispersion-free system is thus beneficial to producing ultracold beams. It looks probable that the technique will allow one to achieve three-dimensional crystalline beams. At ICR Kyoto University, an ion cooler storage ring S-LSR oriented for various beam physics purposes is now under construction. The application of the present idea to S-LSR is discussed and the actual design of the dispersionless bend is given.

  8. Light and heavy ion beam analysis of thin biological sections

    Science.gov (United States)

    Lee, Joonsup; Siegele, Rainer; Pastuovic, Zeljko; Hackett, Mark J.; Hunt, Nicholas H.; Grau, Georges E.; Cohen, David D.; Lay, Peter A.

    2013-07-01

    The application of ion beam analysis (IBA) techniques to thin biological sections (ThBS) presents unique challenges in sample preparation, data acquisition and analysis. These samples are often the end product of expensive, time-consuming experiments, which involve many steps that require careful attention. Analysis via several techniques can maximise the information that is collected from these samples. Particle-induced X-ray emission (PIXE) and Rutherford backscattering (RBS) spectroscopy are two generally non-destructive IBA techniques that use the same MeV ions and can be performed simultaneously. The use of heavy ion PIXE applied to thick samples has, in the past, resulted in X-ray spectra of a poorer quality when compared to those obtained with proton beams. One of the reasons for this is the shorter probing depth of the heavy ions, which does not affect thin sample analysis. Therefore, we have investigated and compared 3-MeV proton and 36-MeV carbon ion beams on 7-μm thick mouse brain sections at the ANSTO Heavy ion microprobe (HIMP). The application of a 36-MeV C4+ ion beam for PIXE mapping of ThBS on thin Si3N4 substrate windows produced spectra of high quality that displayed close to a nine-times gain in signal yield (Z2/q) when compared to those obtained for 3-MeV protons for P, S, Cl and K but not for Fe, Cu and Zn. Image quality was overall similar; however, some elements showed better contrast and features with protons whilst others showed improved contrast with a carbon ion beam. RBS spectra with high enough counting statistics were easily obtained with 3-MeV proton beams resulting in high resolution carbon maps, however, the count rate for nitrogen and oxygen was too low. The results demonstrate that on thin samples, 36-MeV C4+ will produce good quality PIXE spectra in less time; therefore, carbon ions may be advantageous depending on which element is being studied. However, these advantages may be outweighed by the inherent disadvantages including

  9. Light and heavy ion beam analysis of thin biological sections

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joonsup, E-mail: joonsup.lee@sydney.edu.au [School of Chemistry, The University of Sydney, NSW 2006 (Australia); Siegele, Rainer, E-mail: rainer.siegele@ansto.gov.au [Institute for Environmental Research, ANSTO, NSW 2234 (Australia); Pastuovic, Zeljko, E-mail: zeljko.pastuovic@ansto.gov.au [Institute for Environmental Research, ANSTO, NSW 2234 (Australia); Hackett, Mark J., E-mail: mark.hackett@usask.ca [School of Chemistry, The University of Sydney, NSW 2006 (Australia); Hunt, Nicholas H., E-mail: nhunt@med.usyd.edu.au [Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, NSW 2006 (Australia); Grau, Georges E., E-mail: georges.grau@sydney.edu.au [Vascular Immunology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, NSW 2006 (Australia); Cohen, David D., E-mail: david.cohen@ansto.gov.au [Institute for Environmental Research, ANSTO, NSW 2234 (Australia); Lay, Peter A., E-mail: peter.lay@sydney.edu.au [School of Chemistry, The University of Sydney, NSW 2006 (Australia)

    2013-07-01

    The application of ion beam analysis (IBA) techniques to thin biological sections (ThBS) presents unique challenges in sample preparation, data acquisition and analysis. These samples are often the end product of expensive, time-consuming experiments, which involve many steps that require careful attention. Analysis via several techniques can maximise the information that is collected from these samples. Particle-induced X-ray emission (PIXE) and Rutherford backscattering (RBS) spectroscopy are two generally non-destructive IBA techniques that use the same MeV ions and can be performed simultaneously. The use of heavy ion PIXE applied to thick samples has, in the past, resulted in X-ray spectra of a poorer quality when compared to those obtained with proton beams. One of the reasons for this is the shorter probing depth of the heavy ions, which does not affect thin sample analysis. Therefore, we have investigated and compared 3-MeV proton and 36-MeV carbon ion beams on 7-μm thick mouse brain sections at the ANSTO Heavy ion microprobe (HIMP). The application of a 36-MeV C{sup 4+} ion beam for PIXE mapping of ThBS on thin Si{sub 3}N{sub 4} substrate windows produced spectra of high quality that displayed close to a nine-times gain in signal yield (Z{sup 2}/q) when compared to those obtained for 3-MeV protons for P, S, Cl and K but not for Fe, Cu and Zn. Image quality was overall similar; however, some elements showed better contrast and features with protons whilst others showed improved contrast with a carbon ion beam. RBS spectra with high enough counting statistics were easily obtained with 3-MeV proton beams resulting in high resolution carbon maps, however, the count rate for nitrogen and oxygen was too low. The results demonstrate that on thin samples, 36-MeV C{sup 4+} will produce good quality PIXE spectra in less time; therefore, carbon ions may be advantageous depending on which element is being studied. However, these advantages may be outweighed by the

  10. Formation of energetic heavy ion tracks in polyimide thin films

    Science.gov (United States)

    Deslandes, Alec; Murugaraj, Pandiyan; Mainwaring, David E.; Ionescu, Mihail; Cohen, David D.; Siegele, Rainer

    2013-11-01

    Polyimide thin films have been irradiated with a high energy beam of heavy ions to a fluence of approximately 4 × 1013 ions/cm2. Proton backscattering spectroscopy was used to measure the composition of the films, which showed that oxygen was the element that exhibited the most rapid loss from the film. The gases evolved from the film during polymer modification were monitored using a quadrupole mass spectrometer for residual gas analysis (RGA). The fluence dependence of RGA signals were indicative of multi-step processes of gas release, whereby the passage of an ion through a region of pristine film changes the local molecular structure to one that will more readily form volatile species when subsequent ions pass.

  11. Heavy quark production at an Electron-Ion Collider

    CERN Document Server

    Chudakov, E; Hyde, Ch; Furletov, S; Furletova, Yu; Nguyen, D; Stratmann, M; Strikman, M; Weiss, C

    2016-01-01

    An Electron-Ion Collider (EIC) with center-of-mass energies sqrt(s_{eN}) ~ 20-100 GeV and luminosity L ~ 10^{34} cm^{-2} s^{-1} would offer new opportunities to study heavy quark production in high-energy electron or photon scattering on protons and nuclei. We report about an R&D project exploring the feasibility of direct measurements of nuclear gluon densities at large x (gluonic EMC effect, antishadowing) using open charm production at EIC. We describe the charm production rates and angle-momentum distributions at large x and discuss methods of charm reconstruction using next-generation detector capabilities (pi/K identification, vertex reconstruction). The results can be used also for other physics applications of heavy quark production at EIC (fragmentation functions, jets, heavy quark propagation in nuclei).

  12. Recent studies in heavy ion induced fission reactions

    Science.gov (United States)

    Choudhury, R. K.

    2001-08-01

    Nuclear fission process involves large scale shape changes of the nucleus, while it evolves from a nearly spherical configuration to two separated fission fragments. The dynamics of these shape changes in the nuclear many body system is governed by a strong interplay of the collective and single particle degrees of freedom. With the availability of heavy ion accelerators, there has been an impetus to study the nuclear dynamics through the investigations of nucleus--nucleus collisions involving fusion and fission process. From the various investigations carried out in the past years, it is now well recognized that there is large scale damping of collective modes in heavy ion induced fission reactions, which in other words implies that nuclear motion is highly viscous. In recent years, there have been many experimental observations in heavy ion induced fission reactions at medium bombarding energies, which suggest possible occurrence of various non-equilibrium modes of fission such as quasi-fission, fast fission and pre-equilibrium fission, where some of the internal degrees of freedom of the nucleus is not fully equilibrated. We have carried out extensive investigations on the fission fragment angular distributions at near barrier bombarding energies using heavy fissile targets. The measured fragment anisotropies when compared with the standard saddle point model (SSPM) calculations show that for projectile-target systems having zero or low ground state spins, the angular anisotropy exhibits a peak-like behaviour at the sub barrier energies, which cannot be explained by the SSPM calculations. For projectiles or targets with large ground state spins, the anomalous peaking gets washed out due to smearing of the K-distribution by the intrinsic entrance channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. The fission fragments acquire spin mainly from two sources: (i) due to

  13. Spiraling Beam Illumination Uniformity on Heavy Ion Fusion Target

    CERN Document Server

    Kurosaki, T; Noguchi, K; Koseki, S; Barada, D; Ma, Y Y; Ogoyski, A I; Barnard, J J; Logan, B G

    2012-01-01

    A few percent wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) by a spiraling beam axis motion in the paper. So far the wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs illumination nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100MHz-1GHz. Three-dimensional HIBs illumination computations presented here show that the few percent wobbling HIBs illumination nonuniformity oscillates successfully with the same wobbling HIBs frequency.

  14. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  15. Heavy ion physics : Exhibition Lepton-Photon 2001

    CERN Multimedia

    2001-01-01

    High-energy Heavy Ion Physics studies strongly interacting matter at extreme energy densities.QCD predicts that at such densities hadronic matter turns into a plasma of deconfined quarks and gluons,the Quark Gluon Plasma (QGP).Matter in the Universe must have existed in this state up to about 10 ms after the Big Bang.Today QGP might exist in the c re of neutron stars.The study of the phase diagram of matter is a new approach to investigate QCD at its natural scale,L QCD ,and to address the fundamental questions of confinement and chiral-symmetry breaking.The combined results obtained by the SPS heavy ion experiments,in particular those obtained with the Pb beam,pr vide compelling evidence for the existence of a new state of matter featuring many of the characteristics predicted for the QGP.The ALICE experiment will carry this research into the LHC era.

  16. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  17. Jet studies in heavy ion collisions with the ATLAS detector

    CERN Document Server

    Slovak, Radim; The ATLAS collaboration

    2016-01-01

    In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. ATLAS has provided a quantification of this jet suppression by the jet Raa measurement in run 1 of LHC. A factor of two suppression was seen in central heavy ion collisions with respect to pp collisions. The Raa exhibited only a week, if any, rapidity dependence, and a slow rise with increasing jet momentum. This talk summarizes the run 1 results on the inclusive jet production and the new results on dijet measurements.

  18. Selected Experimental Results from Heavy-Ion Collisions at LHC

    Directory of Open Access Journals (Sweden)

    Ranbir Singh

    2013-01-01

    Full Text Available We review a subset of experimental results from the heavy-ion collisions at the Large Hadron Collider (LHC facility at CERN. Excellent consistency is observed across all the experiments at the LHC (at center of mass energy sNN=2.76 TeV for the measurements such as charged particle multiplicity density, azimuthal anisotropy coefficients, and nuclear modification factor of charged hadrons. Comparison to similar measurements from the Relativistic Heavy Ion Collider (RHIC at lower energy (sNN=200 GeV suggests that the system formed at LHC has a higher energy density and larger system size and lives for a longer time. These measurements are compared to model calculations to obtain physical insights on the properties of matter created at the RHIC and LHC.

  19. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  20. COLLIMATORS AND MATERIALS FOR HIGH INTENSITY HEAVY ION SYNCHROTRONS

    CERN Document Server

    Stadlmann, J; Kollmus, H; Spiller, P; Strasik, I; Tahir, N A; Tomut, M; Trautmann, C

    2012-01-01

    The operation of high power high brightness accelerators requires huge efforts for beam cleaning and machine protection. Within the WP 8 (ColMat) of the EU research framework EuCARD[1] we investigate new materials and methods for beam collimation and machine protection. We present an overview of these activities at the GSI Helmholtzzentrum f¨ur Schwerionenforschung, Darmstadt. Simulations of accidental beam losses in LHC and SIS100 have been performed. Scenarios for halo collimation of heavy ions and protons in SIS100 routine operation have been investigated. A prototype of a cryogenic collimator for charge exchange losses during intermediate charge state heavy ion operation in SIS100 has been build and tested with beam. Several candidates of advanced composite materials for collimation system upgrades of present and future high power accelerators have been irradiated and their properties are being characterized. Most deliverables and milestones of the R&D programme were already reached before the end of...

  1. Probing transverse momentum broadening in heavy ion collisions

    Science.gov (United States)

    Mueller, A. H.; Wu, Bin; Xiao, Bo-Wen; Yuan, Feng

    2016-12-01

    We study the dijet azimuthal de-correlation in relativistic heavy ion collisions as an important probe of the transverse momentum broadening effects of a high energy jet traversing the quark-gluon plasma. We take into account both the soft gluon radiation in vacuum associated with the Sudakov logarithms and the jet PT-broadening effects in the QCD medium. We find that the Sudakov effects are dominant at the LHC, while the medium effects can play an important role at RHIC energies. This explains why the LHC experiments have not yet observed sizable PT-broadening effects in the measurement of dijet azimuthal correlations in heavy ion collisions. Future investigations at RHIC will provide a unique opportunity to study the PT-broadening effects and help to pin down the underlying mechanism for jet energy loss in a hot and dense medium.

  2. Scaled beam merging experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    P. A. Seidl

    2003-09-01

    Full Text Available Transverse beam combining is a cost-saving option employed in many designs for heavy ion fusion drivers. However, the resultant transverse phase space dilution must be minimized so as not to sacrifice focusability at the target. A prototype combining experiment has been completed employing four 3-mA Cs^{+} beams injected at 160 keV. The focusing elements upstream of the merge consist of four quadrupoles and a final combined-function element (quadrupole and dipole. Following the merge, the resultant single beam is transported in a single alternating gradient channel where the subsequent evolution of the distribution function is diagnosed. The results are in fair agreement with particle-in-cell simulations. They indicate that for some heavy ion fusion driver designs, the phase space dilution from merging is acceptable.

  3. RF characteristics of IHQ linac for heavy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T.; Sasa, K.; Hayashizaki, N.; Isokawa, K.; Hattori, T. [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Osvath, E. [Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest (Romania); Schubert, H. [HSI, Tuerkenstrasse 28, 80333 Muenchen (Germany)

    1998-04-01

    At Tokyo institute of technology (TIT), an interdigital-H type quadrupole (IHQ) linac has been constructed for application in high energy heavy ion implantation. The linac can accelerate particles with charge to mass ratio greater than 1/16 from 0.24 MeV up to 1.6 MeV (for {sup 16}O{sup +}). As a result of the low power test, the resonant frequency is 36.26 MHz, the shunt impedance is 252 M{Omega}/m and therefore, the required power to accelerate {sup 16}O{sup +} ion is 39.5 kW. (orig.) 8 refs.

  4. Low power test of IHQ linac for heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Takashi; Sasa, Kimikazu; Hayashizaki, Noriyosu; Isokawa, Katsushi; Hattori, Toshiyuki [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Osvath, E.; Schubert, H.

    1997-12-31

    At Tokyo Institute of Technology (TIT), An Interdigital-H type Quadrupole (IHQ) linac has been constructed for application of high energy heavy ion implantation. The linac can accelerate the particles with charge to mass ratio grater than 1/16 from 0.48 MeV up to 1.6 MeV (for {sup 16}O{sup +}). As a result of the low power test, the resonant frequency is 36.26 MHz and the shunt impedance is 252 M{Omega}/m. Therefore, required power to accelerate {sup 16}O{sup +} ion is 39.5 kW. (author)

  5. RF characteristics of IHQ linac for heavy ion implantation

    Science.gov (United States)

    Ito, Takashi; Osvath, E.; Sasa, Kimikazu; Hayashizaki, Noriyosu; Isokawa, Katsushi; Schubert, H.; Hattori, Toshiyuki

    1998-04-01

    At Tokyo Institute of Technology (TIT), an Interdigital-H type Quadrupole (IHQ) linac has been constructed for application in high energy heavy ion implantation. The linac can accelerate particles with charge to mass ratio greater than 1/16 from 0.24 MeV up to 1.6 MeV (for 16O +). As a result of the low power test, the resonant frequency is 36.26 MHz, the shunt impedance is 252 MΩ/m and therefore, the required power to accelerate 16O + ion is 39.5 kW.

  6. Electrostatic quadrupole accelerator for the heavy ion fusion project

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Yu, S.; Eylon, S.

    1994-07-01

    A full scale (2 MeV, 800 mA, K{sup +}), low emittance injector for the Heavy Ion Fusion Project has been built at LBL It consists of a 750 key diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provide strong (alternating gradient) focusing for the space-charge dominated beam and simultaneously accelerates the ions to 2 MeV. The actual operation of this new machine has exceeded design parameters. Design of the accelerator, report on experiments performed in connection with the evaluation and characterization of the ESQ and corresponding 3D Particle in Cell simulations will be presented.

  7. Simulation of induced radioactivity for Heavy Ion Medical Machine

    CERN Document Server

    Jun-Kui, Xu; Wu-Yuan, Li; Wang, Mao; Jia-Wen, Xia; Xi-Meng, Chen; Wei-Wei, Yan; Chong, Xu

    2013-01-01

    For radiation protection and environmental impact assessment purpose, the radioactivity induced by carbon ion of Heavy Ion Medical Machine (HIMM) was studied. Radionuclides in accelerator component, cooling water and air at target area which are induced from primary beam and secondary particles are simulated by FLUKA Monte Carlo code. It is found that radioactivity in cooling water and air is not very important at the required beam intensity and energy which is needed for treatment, radionuclides in accelerator component may cause some problem for maintenance work, suitable cooling time is needed after the machine are shut down.

  8. Study of multiple scattering effects in heavy ion RBS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1996-12-31

    Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.

  9. Simple estimates of excitation energy sharing between heavy and light fragments in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dasso, C.H.; Lozano, M.; Pollarolo, G.

    1985-12-01

    Qualitative arguments are used to estiamte the ratio of excitation energies between heavy and light fragments for asymmetric heavy-ion collisions. The value of this quantity is linked to the relative role played by inelastic and transfer degrees of freedom and thereby to an approximate function of the total kinetic energy loss. A numerical analysis that confirms the trends anticipated by the simple arguments is performed for the reactions /sup 56/Fe+ /sup 238/U and /sup 86/Kr+ /sup 208/Pb at bombarding energies in the laboratory of 476 and 1565 MeV, respectively.

  10. How (non-) linear is the hydrodynamics of heavy ion collisions?

    CERN Document Server

    Floerchinger, Stefan; Beraudo, Andrea; Del Zanna, Luca; Inghirami, Gabriele; Rolando, Valentina

    2014-01-01

    We provide evidence from full numerical solutions that the hydrodynamical evolution of initial density fluctuations in heavy ion collisions can be understood order-by-order in a perturbative series in deviations from a smooth and azimuthally symmetric background solution. To leading linear order, modes with different azimuthal wave numbers do not mix. Quadratic and higher order corrections are small and can be understood as overtones with corresponding wave numbers.

  11. Heavy-ion Results of the CMS Experiment

    CERN Document Server

    Boimska, B

    2016-01-01

    An overview of selected heavy-ion results of the CMS experiment is presented. Jet quenching, quarkonia suppression and two-particle angular correlation results are discussed. The measurements have been performed for lead–lead, proton–lead and proton–proton data samples recorded for Run 1 of the LHC accelerator. In the correlation analysis, low pile-up proton–proton collisions at an energy of 13 TeV (from Run 2) have been used as well

  12. Aspects of heavy-ion collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Wolschin, G. [Institut für Theoretische Physik der Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany)

    2014-01-14

    Three aspects of relativistic heavy-ion collisions are considered in this article: (1) Stopping and baryon transport in a QCD-based approach, (2) charged-hadron production in a nonequilibrium-statistical relativistic diffusion model (RDM), and (3) quarkonia suppression and in particular, Υ suppression in PbPb at the current LHC energy of √(s{sub NN}) = 2.76TeV.

  13. BRAHMS collaboration results for relativistic heavy ion collisions

    Science.gov (United States)

    Arsene, I.

    2008-12-01

    In this work we review very briefly a few of the most important results obtained by the BRAHMS Collaboration on the properties of the collisions of heavy ions at relativistic energies. The discussion is general and aims to illustrate the most important achievements of our collaboration during the RHIC run period with short discussions and references to articles that treat the subjects in more detail.

  14. Search for Tetraquarks in Relativistic Heavy-Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    MA Zhong-Biao; GAO Chong-Shou

    2006-01-01

    Tetraquarks can be produced in relativistic heavy-ion collision. The yield of this kind of tetraquarks can increase significantly soon as the formation of QGP after the collision. If there is no phase transition after collision, the upper bound of the production of this four-quark states can be estimated from the free hadronic gas model for nuclearmatter. The relative yield ratio of tetraquark cs(s)(s) to Ω is less than 0.0164.

  15. Chimera microscopic approach to heavy ion collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Lukasik, J.; Majka, Z. [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki

    1993-12-01

    A microscopic model based on a molecular dynamics concept is presented. The model simulates some quantum effects and thus enables studies of large fermionic systems. It was devised to investigate the dynamics of heavy ion collision at intermediate energies. The model was applied to study an early phase of the {sup 84}Kr+{sup 159}Tb reaction at 45 MeV/nucleon. (author). 30 refs, 9 figs.

  16. Microscopic descriptions of high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R.

    1977-01-01

    The essentials of the equation-of-motion (EOM) approach are given and some of its significant and interesting results are described. A framework for the theoretical description of high-energy heavy-ion (HE-HI) collisions is presented; specifically included are a critical assessment of various approaches--EOM calculations, Boltzmann equations/cascade calculations, and hydrodynamics--their relationships and their respective domains of applicability, if any, to HE-HI collisions. 11 figures, 3 tables. (RWR)

  17. QED Effects in Heavy Few-Electron Ions

    CERN Document Server

    Shabaev, V M; Artemiev, A N; Baturin, S S; Elizarov, A A; Kozhedub, Y S; Oreshkina, N S; Tupitsyn, I I; Yerokhin, V A; Zherebtsov, O M

    2006-01-01

    Accurate calculations of the binding energies, the hyperfine splitting, the bound-electron g-factor, and the parity nonconservation effects in heavy few-electron ions are considered. The calculations include the relativistic, quantum electrodynamic (QED), electron-correlation, and nuclear effects. The theoretical results are compared with available experimental data. A special attention is focused on tests of QED in a strong Coulomb field.

  18. Transverse Flow of Kaons in Heavy-Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    郑玉明; 储自力; FUCHS Christian; FAESSLER Amand; 肖武; 华大平; 阎玉鹏

    2002-01-01

    The transverse flow of positively charged kaons from heavy-ion collisions at intermediate energy is investigatedwithin the framework of the quantum molecular dynamics model. The calculated results show that the experi-mental data are only consistent with those including the kaon mean-field potential from the chiral Lagrangian.This indicates that the transverse flow pattern of kaons is a useful probe of the kaon potential in a nuclearmedium.

  19. Isotope analysis in central heavy ion collisions at intermediate energies

    Science.gov (United States)

    Geraci, E.; Abbondanno, U.; Bardelli, L.; Barlini, S.; Bini, M.; Bruno, M.; Cannata, F.; Casini, G.; Chiari, M.; D'Agostino, M.; de Sanctis, J.; Giussani, A.; Gramegna, F.; Kravchuk, V. L.; Lanchais, A. L.; Marini, P.; Moroni, A.; Nannini, A.; Olmi, A.; Ordine, A.; Pasquali, G.; Piantelli, S.; Poggi, G.; Vannini, G.; Nucl-Ex Collaboration

    2007-11-01

    Symmetry energy is a key quantity in the study of the equation of state of asymmetric nuclear matter. Heavy ion collisions at low and intermediate energies, performed at Laboratori Nazionali di Legnaro and Laboratori Nazionali del Sud, can be used to extract information on the symmetry energy coefficient Csym, which is currently poorly known but relevant both for astrophysics and for deeper knowledge of the structure of exotic nuclei.

  20. What have we learned from relativistic heavy-ion collider?

    Indian Academy of Sciences (India)

    Larry McLerran

    2003-04-01

    In this talk, I present what I believe we have learned from the recent RHIC heavy ion experiments. The goal of these experiments is to make and study matter at very high energy densities, greater than an order of magnitude larger than that of nuclear matter. Have we made such matter? What have we learned about the properties of this matter? What do we hope and expect to learn in the future?

  1. Scaling of elliptic flow in heavy ion collisions

    CERN Document Server

    Torrieri, Giorgio; Gyulassy, Miklos

    2012-01-01

    The common interpretation of $v_2$ in heavy ion collisions is that it is produced by hydrodynamic flow at low transverse momentum and by parton energy loss at high transverse momentum. In this talk we discuss this interpretation in view of the dependence of $v_2$ with energy, rapidity and system size, and show that it might not be trivial to reconcile these models with the relatively simple scaling found in experiment

  2. An integrated systems model for heavy ion drivers

    Energy Technology Data Exchange (ETDEWEB)

    Bangerter, R O; Faltens, A; Meier, W R

    1998-09-02

    A source-to-target computer model for an induction linac driver for heavy ion fusion has been developed and used to define a reference case driver that meets the requirements of one current target design. Key features of the model are discussed, and the design parameters of the reference case design are described. Examples of the systems analyses leading to the point design are given, and directions for future work are noted.

  3. Coherent rho(0) production in ultraperipheral heavy-ion collisions.

    Science.gov (United States)

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Nystrand, J; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2002-12-30

    The STAR Collaboration reports the first observation of exclusive rho(0) photoproduction, AuAu-->AuAurho(0), and rho(0) production accompanied by mutual nuclear Coulomb excitation, AuAu-->Au*Au*rho(0), in ultraperipheral heavy-ion collisions. The rho(0) have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at sqrt[s(NN)]=130 GeV agree with theoretical predictions treating rho(0) production and Coulomb excitation as independent processes.

  4. Cooler storage ring accomplished at heavy ion facility in Lanzhou

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFLCSR),a flagship facility of basic research in China,passed the acceptance check under auspices of the State Development and Reform Commission on 30 July in Lanzhou,capital of Gansu Province.The event was jointly presided over by the Commission's Vice Minister ZHANG Xiaoqian and CAS Executive Vice President BAI Chunli.

  5. Azimuthal Correlation of Collective Motion in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    HUO Lei; ZHANG Wei-Ning; CHEN Xiang-Jun; TANG Gui-Xin; ZHANG Jing-Bo

    2001-01-01

    The out-of-plane squeeze-out effect in relativistic heavy ion collisions is used to estimate the reaction plane by performing a modified transverse momentum analysis. A technique for investigating the azimuthal correlation between the out-of-plane squeeze-out and directed in-plane flow is described. A clear signature of the azimuthal correlation is evidenced in the 600 A MeV Au + Au reaction from the quantum molecular dynamic model calculations.

  6. Applications of heavy ion microprobe for single event effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Robert A. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States)]. E-mail: robert.reed@vanderbilt.edu; Vizkelethy, Gyorgy [Sandia National Laboratory, Albuquerque, NM 87185 (United States); Pellish, Jonathan A. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States); Sierawski, Brian [Institute for Space and Defense Electronics, Vanderbilt University, Box 351821 Station B, Nashville, TN 37235 (United States); Warren, Kevin M. [Institute for Space and Defense Electronics, Vanderbilt University, Box 351821 Station B, Nashville, TN 37235 (United States); Porter, Mark [Medtronic Microelectronics Center, 2343 W. Medtronic Way, Tempe, AZ 85281 (United States); Wilkinson, Jeff [Medtronic, CRDM Device Technology, 7000 Central Avenue NE, Minneapolis, MN 55432 (United States); Marshall, Paul W. [NASA consultant, Brookneal, VA 24528 (United States); Niu, Guofu [Auburn University, Auburn, AL 36894 (United States); Cressler, John D. [Georgia Institute of Technology, Atlanta, GA 30332 (United States); Schrimpf, Ronald D. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States); Tipton, Alan [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States); Weller, Robert A. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States)

    2007-08-15

    The motion of ionizing-radiation-induced rogue charge carriers in a semiconductor can create unwanted voltage and current conditions within a microelectronic circuit. If sufficient unwanted charge or current occurs on a sensitive node, a variety of single event effects (SEEs) can occur with consequences ranging from trivial to catastrophic. This paper describes the application of heavy ion microprobes to assist with calibration and validation of SEE modeling approaches.

  7. Isotope analysis in central heavy ion collisions at intermediate energies

    CERN Document Server

    Geraci, E; Bardelli, L; Barlini, S; Bini, M; Bruno, M; Cannata, F; Casini, G; Chiari, M; D'Agostino, M; De Sanctis, J; Giussani, A; Gramegna, F; Kravchuk, V L; Lanchais, A L; Marini, P; Moroni, A; Nannini, A; Olmi, A; Ordine, A; Pasquali, G; Piantelli, S; Poggi, G; Vannini, G

    2006-01-01

    Symmetry energy is a key quantity in the study of the equation of state of asymmetric nuclear matter. Heavy ion collisions at low and intermediate energies, performed at Laboratori Nazionali di Legnaro and Laboratori Nazionali del Sud, can be used to extract information on the symmetry energy coefficient Csym, which is currently poorly known but relevant both for astrophysics and for structure of exotic nuclei.

  8. Atomic physics experiments with stored cooled heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Datz, S.

    1986-01-01

    The wide ranging interest in the development of heavy ion synchrotrons with electron beam cooling is evident from the number of projects presently under way. Although much of the initial motivation for these rings stemmed from nuclear and particle physics, a considerable amount of atomic physics experimentation is planned. This paper surveys some of the new opportunities in atomic physics which may be made available with storage ring systems. 25 refs., 3 tabs.

  9. Modular TPCs for relativistic heavy-ion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C. (Brookhaven National Lab., Upton, NY (USA)); Lindenbaum, S.J. (Brookhaven National Lab., Upton, NY (USA) City Coll., New York (USA)); Chan, C.S.; Kramer, M.A. (City Coll., New York (USA)); Hallman, T.J.; Madansky, L. (Johns Hopkins Univ., Baltimore, MD (USA)); Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Corcoran, M.D.; Krishna, N.; Kruk, J.W.; Miettinen, H.E.; Mutchler, G.S.; Nessi-Tedaldi, F.; Nessi, M.; Phillips, G.C.; Roberts, J.B. (Rice Univ., Houston, TX (USA))

    1989-11-10

    A description is given of a TPC system that operates in a relativistic heavy-ion beam and yields good track reconstruction efficiency in very-high-multiplicity events. The mechanical construction of the chamber is discussed. A set of custom hybrid circuits are used to build a very compact, cost-effective electronics system mounted directly on the chamber. Results from running in test beams and from preliminary experimental runs are given. (orig.).

  10. Intense heavy ion beam-induced effects in carbon-based stripper foils

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Katharina

    2016-08-15

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  11. Open heavy flavor and quarkonia measurements in heavy-ion collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Bielcik Jaroslav

    2014-04-01

    Full Text Available The properties of the hot and dense nuclear matter produced at RHIC in heavy-ion collisions can be investigated in multiple ways by heavy flavor production. The STAR and PHENIX experiments have excellent capability to study both open heavy flavor and quarkonia. Heavy quarks are produced in early stage of the collisions and the mechanisms of their interaction with nuclear matter are not yet well understood. The open heavy flavor hadrons can be studied using electrons from their semileptonic decays or via direct reconstruction through their hadronic decay channels. The heavy quarkonia production is expected to be sequentially suppressed depending on the temperature of the produced nuclear matter. However, cold nuclear matter effects play an important role and have to be well understood. In this paper we report recent results from the RHIC heavyion program on non-photonic electrons, direct reconstruction of charm mesons, J/ψ as well as ϒ in p+p, d+Au and Au+Au collisions at √sNN = 200 GeV.

  12. Short intense ion pulses for materials and warm dense matter research

    CERN Document Server

    Seidl, Peter A; Lidia, Steven M; Persaud, Arun; Stettler, Matthew; Takakuwa, Jeffrey H; Waldron, William L; Schenkel, Thomas; Barnard, John J; Friedman, Alex; Grote, David P; Davidson, Ronald C; Gilson, Erik P; Kaganovich, Igor D

    2015-01-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r < 1 mm within 2 ns FWHM and approximately 10^10 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accel...

  13. Short intense ion pulses for materials and warm dense matter research

    Science.gov (United States)

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas

    2015-11-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  14. Short intense ion pulses for materials and warm dense matter research

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Peter A., E-mail: PASeidl@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Persaud, Arun; Waldron, William L. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Barnard, John J. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Davidson, Ronald C. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Friedman, Alex [Lawrence Livermore National Laboratory, Livermore, CA (United States); Gilson, Erik P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Greenway, Wayne G. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Grote, David P. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Kaganovich, Igor D. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2015-11-11

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10{sup 10} ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li{sup +} ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  15. Gauge/String Duality, Hot QCD and Heavy Ion Collisions

    CERN Document Server

    Casalderrey-Solana, Jorge; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim

    2011-01-01

    Over the last decade, both experimental and theoretical advances have brought the need for strong coupling techniques in the analysis of deconfined QCD matter and heavy ion collisions to the forefront. As a consequence, a fruitful interplay has developed between analyses of strongly-coupled non-abelian plasmas via the gauge/string duality (also referred to as the AdS/CFT correspondence) and the phenomenology of heavy ion collisions. We review some of the main insights gained from this interplay to date. To establish a common language, we start with an introduction to heavy ion phenomenology and finite-temperature QCD, and a corresponding introduction to important concepts and techniques in the gauge/string duality. These introductory sections are written for nonspecialists, with the goal of bringing readers ranging from beginning graduate students to experienced practitioners of either QCD or gauge/string duality to the point that they understand enough about both fields that they can then appreciate their in...

  16. Results from the first heavy ion run at the LHC

    CERN Document Server

    Schukraft, J

    2012-01-01

    Early November 2010, the LHC collided for the first time heavy ions, Pb on Pb, at a centre-of-mass energy of 2.76 TeV/nucleon. This date marked both the end of almost 20 years of preparing for nuclear collisions at the LHC, as well as the start of a new era in ultra-relativistic heavy ion physics at energies exceeding previous machines by more than an order of magnitude. This contribution summarizes some of the early results from all three experiments participating in the LHC heavy ion program (ALICE, ATLAS, and CMS), which show that the high density matter created at the LHC, while much hotter and larger, still behaves like the very strongly interacting, almost perfect liquid discovered at RHIC. Some surprising and even puzzling results are seen in particle ratios, jet-quenching, and Quarkonia suppression observables. The overall experimental conditions at the LHC, together with its set of powerful and state-of-the-art detectors, should allow for precision measurements of quark-gluon-plasma parameters like v...

  17. Breit interaction effect on dielectronic recombination of heavy ions

    Science.gov (United States)

    Nakamura, Nobuyuki

    2016-11-01

    Interaction of highly charged heavy ions with electrons is one of the most important atomic processes in high temperature plasmas, including astrophysical plasmas such as solar corona and artificial plasmas such as fusion reactor plasmas. Therefore it has been well studied to date, both theoretically and experimentally, to accumulate the atomic data required for understanding or controlling such plasmas. However, there still remains interesting subjects that receive remarkable attention from the atomic physics point of view. One of them, which is the subject of this review, is substantially large Breit interaction effects on the resonance recombination process called dielectronic recombination. The Breit interaction is a relativistic effect in the electron-electron interaction potential; it is thus generally important for highly charged heavy ions. However, in the calculation of the energy levels for heavy ions, the Breit interaction is still a small perturbation compared with the main Coulomb term. On the other hand for the dielectronic recombination, it was found that the Breit interaction can enhance the cross sections significantly. It was also found that the Breit interaction can play not only an important, but even a dominant role in determining the angular distribution of x-rays emitted in the recombination processes. This topical review introduces the recent experimental and theoretical activities to clarify the essential origin of the strong effects.

  18. Two-Particle Correlations in Heavy-Light Ion Collisions

    CERN Document Server

    Wertepny, Douglas E

    2016-01-01

    We study the initial, high-energy scatterings in heavy ion collisions using the saturation/Color Glass Condensate framework. We focus on two-particle long-range rapidity correlations which are modeled as two-gluon correlations. We calculate the two-gluon production cross section using the saturation framework in the heavy-light ion regime, including all-order saturation effects in the heavy nucleus while considering only two-orders in the light ion. The two-gluon production cross section generates four types of long-range in rapidity correlations: (i) geometric correlations, (ii) Hanbury Brown and Twiss (HBT) like correlations accompanied by a back-to-back maximum, (iii) near-side correlations, and (iv) away-side azimuthal correlations. The geometric correlations (i) are due to the fact that nucleons are correlated by simply being confined within the same nucleus. Correlations (iii) and (iv) have exactly the same amplitudes along with azimuthal and rapidity shapes: one centered around $\\Delta \\phi =0$ and the...

  19. Shutterless ion mobility spectrometer with fast pulsed electron source

    Science.gov (United States)

    Bunert, E.; Heptner, A.; Reinecke, T.; Kirk, A. T.; Zimmermann, S.

    2017-02-01

    Ion mobility spectrometers (IMS) are devices for fast and very sensitive trace gas analysis. The measuring principle is based on an initial ionization process of the target analyte. Most IMS employ radioactive electron sources, such as 63Ni or 3H. These radioactive materials have the disadvantage of legal restrictions and the electron emission has a predetermined intensity and cannot be controlled or disabled. In this work, we replaced the 3H source of our IMS with 100 mm drift tube length with our nonradioactive electron source, which generates comparable spectra to the 3H source. An advantage of our emission current controlled nonradioactive electron source is that it can operate in a fast pulsed mode with high electron intensities. By optimizing the geometric parameters and developing fast control electronics, we can achieve very short electron emission pulses for ionization with high intensities and an adjustable pulse width of down to a few nanoseconds. This results in small ion packets at simultaneously high ion densities, which are subsequently separated in the drift tube. Normally, the required small ion packet is generated by a complex ion shutter mechanism. By omitting the additional reaction chamber, the ion packet can be generated directly at the beginning of the drift tube by our pulsed nonradioactive electron source with only slight reduction in resolving power. Thus, the complex and costly shutter mechanism and its electronics can also be omitted, which leads to a simple low-cost IMS-system with a pulsed nonradioactive electron source and a resolving power of 90.

  20. Ion acceleration by petawatt class laser pulses and pellet compression in a fast ignition scenario

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C. [Dipartimento di Fisica, Universita di Bologna, INFN sezione di Bologna (Italy)], E-mail: benedetti@bo.infn.it; Londrillo, P. [Dipartimento di Astronomia, Universita di Bologna, INAF sezione di Bologna, INFN sezione di Bologna (Italy); Liseykina, T.V. [Institute for Computational Technologies, SD-RAS, Novosibirsk (Russian Federation); Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Macchi, A. [polyLAB, CNR-INFM, Pisa (Italy); Sgattoni, A.; Turchetti, G. [Dipartimento di Fisica, Universita di Bologna, INFN sezione di Bologna (Italy)

    2009-07-11

    Ion drivers based on standard acceleration techniques have faced up to now several difficulties. We consider here a conceptual alternative to more standard schemes, such as HIDIF (Heavy Ion Driven Inertial Fusion), which are still beyond the present state of the art of particle accelerators, even though the requirements on the total beam energy are lowered by fast ignition scenarios. The new generation of petawatt class lasers open new possibilities: acceleration of electrons or protons for the fast ignition and eventually light or heavy ions acceleration for compression. The pulses of chirped pulse amplification (CPA) lasers allow ions acceleration with very high efficiency at reachable intensities (I{approx}10{sup 21}W/cm{sup 2}), if circularly polarized light is used since we enter in the radiation pressure acceleration (RPA) regime. We analyze the possibility of accelerating carbon ion bunches by interaction of a circularly polarized pulses with an ultra-thin target. The advantage would be compactness and modularity, due to identical accelerating units. The laser efficiency required to have an acceptable net gain in the inertial fusion process is still far from the presently achievable values both for CPA short pulses and for long pulses used for direct illumination. Conversely the energy conversion efficiency from the laser pulse to the ion bunch is high and grows with the intensity. As a consequence the energy loss is not the major concern. For a preliminary investigation of the ions bunch production we have used the PIC code ALaDyn developed to analyze the results of the INFN-CNR PLASMONX experiment at Frascati National Laboratories (Rome, Italy) where the 0.3 PW laser FLAME will accelerate electrons and protons. We present the results of some 1D simulations and parametric scan concerning the acceleration of carbon ions that we suppose to be fully ionized. Circularly polarized laser pulses of 50 J and 50-100 fs duration, illuminating a 100{mu}m{sup 2} area

  1. Chitosan removes toxic heavy metal ions from cigarette mainstream smoke

    Science.gov (United States)

    Zhou, Wen; Xu, Ying; Wang, Dongfeng; Zhou, Shilu

    2013-09-01

    This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan. Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages. The mainstream smoke particulate matter was collected by a Cambridge filter pad, digested by a microwave digestor, and then analyzed for contents of heavy metal ions, including As(III/V), Pb(II), Cd(II), Cr(III/VI) and Ni(II), by graphite furnace atomic absorption spectrometry (GFAAS). The results showed that chitosan had a removal effect on Pb(II), Cd(II), Cr(III/VI) and Ni(II). Of these, the percent removal of Ni(II) was elevated with an increasing dosage of chitosan. Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(II), Cr(III/VI) and Ni(II), though with poor efficiency for Pb(II). Except As(III/V), all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight. Nonetheless, the percent removal of Cr(III/VI) peaked with a chitosan molecular weight of 200 kDa, followed by a dramatic decrease with an increasing chitosan molecular weight. Generally, chitosan had different removal effects on four out of five tested metal ions, and the percent removal of Cd(II), Pb(II), Cr(III/VI) and Ni(II) was approximately 55%, 45%, 50%, and 16%, respectively. In a word, chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke, improve cigarette safety, and reduce the harm to smokers.

  2. Chitosan Removes Toxic Heavy Metal Ions from Cigarette Mainstream Smoke

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wen; XU Ying; WANG Dongfeng; ZHOU Shilu

    2013-01-01

    This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan.Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages.The mainstream smoke particulate matter was collected by a Cambridge filter pad,digested by a microwave digestor,and then analyzed for contents of heavy metal ions,including As(Ⅲ/Ⅴ),Pb(Ⅱ),Cd(Ⅱ),Cr(Ⅲ/Ⅵ) and Ni(Ⅱ),by graphite furnace atomic absorption spectrometry (GFAAS).The results showed that chitosan had a removal effect on Pb(Ⅱ),Cd(Ⅱ),Cr(Ⅲ/Ⅵ) and Ni(Ⅱ).Of these,the percent removal of Ni(Ⅱ) was elevated with an increasing dosage of chitosan.Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(Ⅱ),Cr(Ⅲ/Ⅵ) and Ni(Ⅱ),though with poor efficiency for Pb(Ⅱ).Except As(Ⅲ/Ⅴ),all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight.Nonetheless,the percent removal of Cr(Ⅲ/Ⅵ) peaked with a chitosan molecular weight of 200 kDa,followed by a dramatic decrease with an increasing chitosan molecular weight.Generally,chitosan had different removal effects on four out of five tested metal ions,and the percent removal of Cd(Ⅱ),Pb(Ⅱ),Cr(Ⅲ/Ⅵ) and Ni(Ⅱ) was approximately 55%,45%,50%,and 16%,respectively.In a word,chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke,improve cigarette safety,and reduce the harm to smokers.

  3. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Samios, Nicholas P.

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan. (LEW)

  4. Simulation of Heavy-Ion Beam Losses with the SixTrack-FLUKA Active Coupling

    CERN Document Server

    Hermes, Pascal; Cerutti, Francesco; Ferrari, Alfredo; Jowett, John; Lechner, Anton; Mereghetti, Alessio; Mirarchi, Daniele; Ortega, Pablo; Redaelli, Stefano; Salvachua, Belen; Skordis, Eleftherios; Valentino, Gianluca; Vlachoudis, Vasilis

    2016-01-01

    The LHC heavy-ion program aims to further increase the stored ion beam energy, putting high demands on the LHC collimation system. Accurate simulations of the ion collimation efficiency are crucial to validate the feasibility of new proposed configurations and beam parameters. In this paper we present a generalized framework of the SixTrack-FLUKA coupling to simulate the fragmentation of heavy-ions in the collimators and their motion in the LHC lattice. We compare heavy-ion loss maps simulated on the basis of this framework with the loss distributions measured during heavy-ion operation in 2011 and 2015.

  5. Turbulent transport and heating of trace heavy ions in hot, magnetized plasmas

    CERN Document Server

    Barnes, M; Dorland, W

    2012-01-01

    Scaling laws for the transport and heating of trace heavy ions in low-frequency, magnetized plasma turbulence are derived and compared with direct numerical simulations. The predicted dependences of turbulent fluxes and heating on ion charge and mass number are found to agree with numerical results for both stationary and differentially rotating plasmas. Heavy ion momentum transport is found to increase with mass, and heavy ions are found to be preferentially heated, implying a mass-dependent ion temperature for very weakly collisional plasmas and for partially-ionized heavy ions in strongly rotating plasmas.

  6. Biomaterial imaging with MeV-energy heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Toshio, E-mail: seki@sakura.nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan); Wakamatsu, Yoshinobu; Nakagawa, Shunichiro [Department of Nuclear Engineering, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); Aoki, Takaaki [Department of Electronic Science and Engineering, Kyoto Univ., Nishikyo, Kyoto 615-8510 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan); Ishihara, Akihiko [Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto Univ., Sakyo, Kyoto 606-8501 (Japan); Matsuo, Jiro [Quantum Science and Engineering Center, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan)

    2014-08-01

    The spatial distribution of several chemical compounds in biological tissues and cells can be obtained with mass spectrometry imaging (MSI). In conventional secondary ion mass spectrometry (SIMS) with keV-energy ion beams, elastic collisions occur between projectiles and atoms of constituent molecules. The collisions produce fragments, making the acquisition of molecular information difficult. In contrast, ion beams with MeV-energy excite near-surface electrons and enhance the ionization of high-mass molecules; hence, SIMS spectra of fragment-suppressed ionized molecules can be obtained with MeV-SIMS. To compare between MeV and conventional SIMS, we used the two methods based on MeV and Bi{sub 3}-keV ions, respectively, to obtain molecular images of rat cerebellum. Conventional SIMS images of m/z 184 were clearly observed, but with the Bi{sub 3} ion, the distribution of the molecule with m/z 772.5 could be observed with much difficulty. This effect was attributed to the low secondary ion yields and we could not get many signal counts with keV-energy beam. On the other hand, intact molecular ion distributions of lipids were clearly observed with MeV-SIMS, although the mass of all lipid molecules was higher than 500 Da. The peaks of intact molecular ions in MeV-SIMS spectra allowed us to assign the mass. The high secondary ion sensitivity with MeV-energy heavy ions is very useful in biomaterial analysis.

  7. Boosting laser-ion acceleration with multi-picosecond pulses

    Science.gov (United States)

    Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.

    2017-01-01

    Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm−2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines. PMID:28211913

  8. Boosting laser-ion acceleration with multi-picosecond pulses

    Science.gov (United States)

    Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.

    2017-02-01

    Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm‑2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.

  9. Electromagnetic heavy-lepton pair production in relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Senguel, M.Y. [Atakent Mahallesi, 3. Etap, Halkali-Kuecuekcekmece, Istanbul (Turkey); Gueclue, M.C.; Mercan, Oe.; Karakus, N.G. [istanbul Technical University, Faculty of Science and Letters, Istanbul (Turkey)

    2016-08-15

    We calculate the cross sections of electromagnetic productions of muon- and tauon-pair productions from the ultra-relativistic heavy ion collisions. Since the Compton wavelengths of muon and tauon are comparable to the radius of the colliding ions, nuclear form factors play important roles for calculating the cross sections. Recent measurement (Abrahamyan et al., Phys Rev Lett 108:112502, 2012) indicates that the neutrons are differently distributed from the protons; therefore this affects the cross section of the heavy-lepton pair production. In order to see the effects of the neutron distributions in the nucleus, we used analytical expression of the Fourier transforms of the Wood-Saxon distribution. Cross section calculations show that the Wood-Saxon distribution function is more sensitive to the parameter R compared to the parameter a. (orig.)

  10. Transport models for relativistic heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider

    Indian Academy of Sciences (India)

    Subrata Pal

    2015-05-01

    We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of hadron yields at high transverse momentum, provide exciting new information on the properties of the plasma formed.

  11. Review of Heavy-Ion Inertial Fusion Physics

    CERN Document Server

    Kawata1, S; Ogoyski, A I

    2015-01-01

    In this review paper on heavy ion inertial fusion (HIF), the state-of-the-art scientific results are presented and discussed on the HIF physics, including physics of the heavy ion beam (HIB) transport in a fusion reactor, the HIBs-ion illumination on a direct-drive fuel target, the fuel target physics, the uniformity of the HIF target implosion, the smoothing mechanisms of the target implosion non- uniformity and the robust target implosion. The HIB has remarkable preferable features to release the fusion energy in inertial fusion: in particle accelerators HIBs are generated with a high driver efficiency of ~ 30-40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ~50-70 to operate a HIF fusion reactor with the standard energy output of 1GW of electricity. The HIF reactor operation frequency would be ~10~15 Hz or so. Several- MJ HIBs illuminate a fusion fuel target, and the fuel target is imploded to about a...

  12. Late degeneration in rabbit tissues after irradiation by heavy ions

    Science.gov (United States)

    Lett, J. T.; Cox, A. B.; Keng, P. C.; Lee, A. C.; Su, C. M.; Bergtold, D. S.

    1980-01-01

    Results are presented for investigations of the late effects of heavy-ion irradiation on rabbit tissues which were undertaken to assess the hazards associated with the long-term exposure of humans to heavy ions in space during such activities as the construction of solar power stations or voyages to Mars. White rabbits approximately six weeks old were exposed to various doses of collimated beams of 400-MeV/n Ne ions, 570 MeV/n Ar ions and Co-60 gamma rays directed through both eyes, and the responses of the various tissues (hair follicles, skin, cornea, lens, retina, Harderian glands, bone and forebrain) were examined. Proliferating tissues are found to exhibit high damage levels in the early and late periods following irradiation, while terminally differentiating tissues repond to radiation most intensely in the late period, years after irradiation, with no intermediate recovery. The results obtained from rabbits are used to predict the occurrence of late tissue degeneration in the central nervous system, terminally differentiating systems and stem cells of humans one or more decades following exposure to radiation levels anticipated during long-duration space flights. The studies also indicate that tissues may be prematurely aged in the sense that tissue life spans may be shortened without the development of malignancies.

  13. Modeling Chamber Transport for Heavy-Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W M; Niller, D A C; Tabak, M; Yu, S S; Peterson, P F; Welch, D R; Rose, D V; Olson, C L

    2002-08-02

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  14. Modeling chamber transport for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2002-10-01

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  15. Late degeneration in rabbit tissues after irradiation by heavy ions

    Science.gov (United States)

    Lett, J. T.; Cox, A. B.; Keng, P. C.; Lee, A. C.; Su, C. M.; Bergtold, D. S.

    1980-01-01

    Results are presented for investigations of the late effects of heavy-ion irradiation on rabbit tissues which were undertaken to assess the hazards associated with the long-term exposure of humans to heavy ions in space during such activities as the construction of solar power stations or voyages to Mars. White rabbits approximately six weeks old were exposed to various doses of collimated beams of 400-MeV/n Ne ions, 570 MeV/n Ar ions and Co-60 gamma rays directed through both eyes, and the responses of the various tissues (hair follicles, skin, cornea, lens, retina, Harderian glands, bone and forebrain) were examined. Proliferating tissues are found to exhibit high damage levels in the early and late periods following irradiation, while terminally differentiating tissues repond to radiation most intensely in the late period, years after irradiation, with no intermediate recovery. The results obtained from rabbits are used to predict the occurrence of late tissue degeneration in the central nervous system, terminally differentiating systems and stem cells of humans one or more decades following exposure to radiation levels anticipated during long-duration space flights. The studies also indicate that tissues may be prematurely aged in the sense that tissue life spans may be shortened without the development of malignancies.

  16. A Compact High-Brightness Heavy-Ion Injector

    CERN Document Server

    Westenskow, Glen; Grote, D P; Halaxa, Erni; Kwan, Joe W

    2005-01-01

    To provide compact high-brightness heavy-ion beams for Heavy Ion Fusion (HIF) accelerators, we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. In an 80-kV 20-microsecond experiment, the RF plasma source has produced up to 5 mA of Ar+ in a single beamlet. An extraction current density of 100 mA/cm2 was achieved, and the thermal temperature of the ions was below 1 eV. More than 90% of the ions were in the Ar+ state, and the energy spread from charge exchange was found to be small. We have tested at full voltage gradient the first 4 gaps of a 61-beamlet injector design. Einzel lens were used to focus the beamlets while reducing the beamlet to beamlet space charge interaction. We will report on a converging 119 multi-beamlet source. Although the source has the same optics as a full 1.6 MV injector system, the test will be carried out at 400 kV due to the test stand HV limit. We will measure the beam’s emittance after the beamlets are merged and have bee...

  17. Simulation of electron cloud effects to heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Fatih; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2011-07-01

    Electron cloud (EC) driven instability can cause beam loss, emittance growth, trajectory change and wake fields. Mentioned crucial effects of EC motivated researchers to understand the EC build up mechanism and the effects of EC to the beam. This motivation also induced the progress of developing new simulation codes. EC simulations can roughly be divided into two classes such as, softwares whose goals are to simulate the build up of the EC during the passage of a bunch train and the codes which model the interaction of a bunch with an EC. The aim of this study is to simulate the effects of electron cloud (EC) on the dynamics of heavy ion beams which are used in heavy ion synchrotron (SIS-18) at GSI. To do this, a 3-D and self-consistent simulation program based on particle in cell (PIC) method is used. In the PIC cycle, accurate solution of the Maxwell equations is obtained by employing discontinuous Galerkin finite element method. As a model, we assumed a perfectly conducting beam pipe which was uniformly (or randomly) loaded with the electrons. Then as parallel with the realistic cases in SIS-18, a single bunch consisting of U{sup +73} ions was extracted which could propagate in this pipe. Due to EC-ion bunch interaction, electrons gained energy and their displacements were observed. Electric and magnetic field components and EC charge density were calculated, numerically.

  18. Controls for a Pulsed Ion Accelerator Using Apache Cassandra (No-SQL) and ZMQ

    CERN Document Server

    Persaud, A; Stettler, M W; Vytla, V K

    2015-01-01

    We report on updates to the accelerator controls for the Neutral Drift Compression Experiment II, a pulsed accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra (No-SQL) backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as adding ZMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZMQ also allows easy access using other programming languages, such as Python.

  19. Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed

    Directory of Open Access Journals (Sweden)

    T.M. Zewail

    2015-03-01

    Full Text Available Spouted bed contactor is a hybrid of fixed and fluidized bed contactors, which retains the advantages of each with good hydrodynamic conditions. The aim of the present study is to investigate the performance of a batch conical air spouted vessel for heavy metal removal by strong cation exchange resins (AMBERJET 1200 Na. The effect of various parameters such as type of heavy metal ions (Ni+2 and Pb+2, contact time, superficial air velocity and initial heavy metal ion concentration on % heavy metal ion removal has been investigated. It has been found that under optimum conditions 98% and 99% removal of Ni+2 and Pb+2 were achieved respectively. Several kinetic models were used to test the experimental data and to examine the controlling mechanism of the sorption process. The present results of Ni+2 and Pb+2 well fit pseudo second order kinetic model with a high correlation coefficient. Both film diffusion and intra-particle diffusion contribute to the ion exchange process. The present study revealed that spouted bed vessel may provide an effective alternative for conducting ion exchange reactions.

  20. Effects of heavy ions on visual function and electrophysiology of rodents: the ALTEA-MICE project

    Science.gov (United States)

    Sannita, W. G.; Acquaviva, M.; Ball, S. L.; Belli, F.; Bisti, S.; Bidoli, V.; Carozzo, S.; Casolino, M.; Cucinotta, F.; De Pascale, M. P.; Di Fino, L.; Di Marco, S.; Maccarone, R.; Martello, C.; Miller, J.; Narici, L.; Peachey, N. S.; Picozza, P.; Rinaldi, A.; Ruggieri, D.; Saturno, M.; Schardt, D.; Vazquez, M.; Lowenstein, D. (Principal Investigator)

    2004-01-01

    ALTEA-MICE will supplement the ALTEA project on astronauts and provide information on the functional visual impairment possibly induced by heavy ions during prolonged operations in microgravity. Goals of ALTEA-MICE are: (1) to investigate the effects of heavy ions on the visual system of normal and mutant mice with retinal defects; (2) to define reliable experimental conditions for space research; and (3) to develop animal models to study the physiological consequences of space travels on humans. Remotely controlled mouse setup, applied electrophysiological recording methods, remote particle monitoring, and experimental procedures were developed and tested. The project has proved feasible under laboratory-controlled conditions comparable in important aspects to those of astronauts' exposure to particle in space. Experiments are performed at the Brookhaven National Laboratories [BNL] (Upton, NY, USA) and the Gesellschaft fur Schwerionenforschung mbH [GSI]/Biophysik (Darmstadt, FRG) to identify possible electrophysiological changes and/or activation of protective mechanisms in response to pulsed radiation. Offline data analyses are in progress and observations are still anecdotal. Electrophysiological changes after pulsed radiation are within the limits of spontaneous variability under anesthesia, with only indirect evidence of possible retinal/cortical responses. Immunostaining showed changes (e.g. increased expression of FGF2 protein in the outer nuclear layer) suggesting a retinal stress reaction to high-energy particles of potential relevance in space. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  1. Deposition of molecular probes in heavy ion tracks

    CERN Document Server

    Esser, M

    1999-01-01

    By using polarized fluorescence techniques the physical properties of heavy ion tracks such as the dielectric number, molecular alignment and track radius can be traced by molecular fluorescence probes. Foils of poly(ethylene terephthalate) (PET) were used as a matrix for the ion tracks wherein fluorescence probes such as aminostyryl-derivatives can be incorporated using a suitable solvent, e.g. N,N'-dimethylformamide (DMF) as transport medium. The high sensitivity of fluorescence methods allowed the comparison of the probe properties in ion tracks with the virgin material. From the fluorescence Stokes shift the dielectric constants could be calculated, describing the dielectric surroundings of the molecular probes. The lower dielectric constant in the tracks gives clear evidence that there is no higher accommodation of the highly polar solvent DMF in the tracks compared with the virgin material. Otherwise the dielectric constant in the tracks should be higher than in the virgin material. The orientation of t...

  2. Nuclear Fragmentation in Clinical Heavy Ion Beams, Should We Worry?

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Toftegaard, Jakob

    fragmentation of the primary ions. Even if patient treatment with heavy ions has been established, the influence of nuclear fragmentation is yet to be fully quantified. The fragmentation spectrum of ions is relevant for particle therapy in numerous ways: 1. Dose distribution: A distinct tail of secondary...... on the secondary particle spectrum from fragmentation. b. In addition hereto, fluence correction factors can be calculated which take this effect into account, which are directly a result of nuclear fragmentation in the medium. 3. Radiobiology: Physical dose is not sufficient to describe the outcome of a treatment...... the sensitivity on the three fields mentioned above, including: turning off nuclear fragmentation entirely, changing all ineleastic cross sections +/- 20%, changing key parameters in the Fermi-Breakup (FB) model. Results show nuclear effects have their largest impact on the dose distribution. Stopping power...

  3. Multiple-electron losses in uranium ion beams in heavy ion synchrotrons

    Science.gov (United States)

    Bozyk, L.; Chill, F.; Litsarev, M. S.; Tolstikhina, I. Yu.; Shevelko, V. P.

    2016-04-01

    Charge changing processes as the result of collisions with residual gas particles are the main cause of beam loss in high energy medium charge state heavy ion beams. To investigate the magnitude of this effect for heavy ion synchrotrons like the planned SIS100 at GSI, the multiple-electron and the total electron-loss cross sections are calculated for Uq+ ions, q = 10, 28, 40, 73, colliding with typical gas components H2, He, C, N2, O2, and Ar at ion energies E = 1 MeV/u-10 GeV/u. The total electron-capture cross sections for U28+ and U73+ ions interacting with these gases are also calculated. Most of these cross sections are new and presented for the first time. Calculated charge-changing cross sections are used to determine the ion-beam lifetimes τ for U28+ ions which agree well with the recently measured values at SIS18/GSI in the energy range E = 10-200 MeV/u. Using simulations made by the StrahlSim code with the reference ion U28+, it is found that in SIS100 the beam loss caused by single and multiple electron losses has only little impact on the residual gas density due to the high efficiency of the ion catcher system.

  4. Investigation of multi-charged heavy ion production in an electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, R.W.

    1977-12-01

    Measurements of multi-charged heavy ions produced in an Electron Beam Ion Source (EBIS) were carried out with a test model ion source 20 cm in length. This test model utilized an electron gun placed external to the bore of the focusing solenoid in order to achieve electrostatically focussed electron beams and isolation of the vacuum surrounding the electron gun from the vacuum in the ionization region within the solenoid bore. An ultrahigh vacuum system utilizing liquid nitrogen (77/sup 0/K) cryopumping was used to achieve the low pressures needed in the ionization region for the operation of this ion source. Several technical problems limited the operation of this test model and prevented a thorough investigation of the ionization processes in the ion source, but the experimental results have shown qualitative agreement with the theoretical calculations for the operation of this type of ion source. Even with the problems of an insufficient vacuum and electron beam focussing field, measurable currents of C/sup +5/ and A/sup +8/ ions were produced. The present experimental results suggest that the approach taken in this work of using an external electron gun and cryopumping in the EBIS to achieve the large electron beam current density and low vacuum necessary for successful operation is a viable one. Such an ion source can be used to create highly-charged heavy ions for injection into a cyclotron or other type of particle accelerator.

  5. Ion beam induced charge characterisation of a silicon microdosimeter using a heavy ion microprobe

    Science.gov (United States)

    Cornelius, Iwan; Siegele, Rainer; Rosenfeld, Anatoly B.; Cohen, David D.

    2002-05-01

    An ion beam induced charge (IBIC) facility has been added to the existing capabilities of the ANSTO heavy ion microprobe and the results of the first measurements are presented. Silicon on insulator (SOI) diode arrays with microscopic junction sizes have recently been proposed as microdosimeters for hadron therapy. A 20 MeV carbon beam was used to perform IBIC imaging of a 10 μm thick SOI device.

  6. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue

    2014-10-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  7. Effects of Charge in Heavy Ions on Solitary Kinetic Alfvén Waves in Double-Ion Plasmas

    Institute of Scientific and Technical Information of China (English)

    YANG Lei; WU De-Jin

    2006-01-01

    @@ After the charge of heavy ions is considered, a Sagdeev equation is obtained for the solitary kinetic Alfvén waves (SKAWs) in a low-β(me/mp<<β<<1 or mp/me>>α>>1), three-component (electrons, protons, and highly charged heavy ions) plasma. Numerical results show that the charge number q of heavy ions can cause the width of the solitary structure to decrease, but increase for the maximum of electron density nem≤1.2 and the initial abundance of heavy ions Cb0 ≤ 0.1. The parallel phase speed of the waves increases with larger q.

  8. Diagnostics of discharge channels for neutralized chamber transport in heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, C.; Penache, D.; Tauschwitz, A.; Rosmej, F.B.; Neff, S.; Birkner, R.; Constantin, C.; Knobloch, R.; Presura, R.; Yu, S.S.; Sharp, W.M.; Ponce, D.M.; Hoffmann, D.H.H.

    2002-05-01

    The final beam transport in the reactor chamber for heavy ion fusion in preformed plasma channels offers many attractive advantages compared to other transport modes. In the past few years, experiments at the Gesellschaft fuer Schwerionenforschung (GSI) accelerator facility have addressed the creation and investigation of discharge plasmas, designed for the transport of intense ion beams. Stable, self-standing channels of 50 cm length with currents up to 55 kA were initiated in low-pressure ammonia gas by a CO{sub 2}-laser pulse along the channel axis before the discharge is triggered. The channels were characterized by several plasma diagnostics including interferometry and spectroscopy. We also present first experiments on laser-guided intersecting discharges.

  9. Heavy-ion induced genetic changes and evolution processes

    Science.gov (United States)

    Yang, C. H.; Craise, L. M.; Durante, M.; Mei, M.

    1994-01-01

    On Moon and Mars, there will be more galactic cosmic rays and higher radiation doses than on Earth. Our experimental studies showed that heavy ion radiation can effectively cause mutation and chromosome aberrations and that high Linear Energy Transfer (LET) heavy-ion induced mutants can be irreversible. Chromosome translocations and deletions are common in cells irradiated by heavy particles, and ionizing radiations are effective in causing hyperploidy. The importance of the genetic changes in the evolution of life is an interesting question. Through evolution, there is an increase of DNA content in cells from lower forms of life to higher organisms. The DNA content, however, reached a plateau in vertebrates. By increasing DNA content, there can be an increase of information in the cell. For a given DNA content, the quality of information can be changed by rearranging the DNA. Because radiation can cause hyperploidy, an increase of DNA content in cells, and can induce DNA rearrangement, it is likely that the evolution of life on Mars will be effected by its radiation environment. A simple analysis shows that the radiation level on Mars may cause a mutation frequency comparable to that of the spontaneous mutation rate on Earth. To the extent that mutation plays a role in adaptation, radiation alone on Mars may thus provide sufficient mutation for the evolution of life.

  10. Heavy-flavor production in heavy-ion collisions and implications for the properties of hot QCD matter

    CERN Document Server

    Averbeck, R

    2015-01-01

    Hadrons carrying open heavy flavor, i.e. single charm or bottom quarks, are among the key diagnostic tools available today for the hot and dense state of strongly interacting matter which is produced in collisions of heavy atomic nuclei at ultra-relativistic energies. First systematic heavy-flavor measurements in nucleus-nucleus collisions and the reference proton-proton system at Brookhaven National Laboratory's (BNL) Relativistic Heavy Ion Collider (RHIC) have led to tantalizing results. These studies are now continued and extended at RHIC and at CERN's Large Hadron Collider (LHC), where considerably higher collision energies are available. This review focuses on experimental results on open heavy-flavor observables at RHIC and the LHC published until July 2012. Yields of heavy-flavor hadrons and their decay products, their transverse momentum and rapidity distributions, as well as their azimuthal distributions with respect to the reaction plane in heavy-ion collisions are investigated. Various theoretical ...

  11. Short-Pulse, Compressed Ion Beams at the Neutralized Drift Compression Experiment

    CERN Document Server

    Seidl, Peter A; Davidson, Ronald C; Friedman, Alex; Gilson, Erik P; Grote, David; Ji, Qing; Kaganovich, I D; Persaud, Arun; Waldron, William L; Schenkel, Thomas

    2016-01-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted on the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynam...

  12. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms.

  13. Heavy-ion LINAC development for the US RIA project

    Indian Academy of Sciences (India)

    P N Ostroumov

    2002-12-01

    The Nuclear Science Community in the Unites States has unanimously concluded that developments in both nuclear science and its supporting technologies make building a world-leading Rare-Isotope Accelerator (RIA) facility for production of radioactive beams the top priority. The RIA development effort involves several US Laboratories (ANL, JLAB, LBNL, MSU, ORNL). The RIA facility includes a CW 1.4 GeV driver LINAC and a 100 MV post-accelerator both based on superconducting (SC) cavities operating at frequencies from 48 MHz to 805 MHz. An initial acceleration in both LINACs is provided by room temperature RFQs. The driver LINAC is designed for acceleration of any ion species; from protons up to 900 MeV to uranium up to 400 MeV/u. The novel feature of the driver LINAC is an acceleration of multiple charge-state heavy-ion beams in order to achieve 400 kW beam power. Basic design concepts of the driver LINAC are given. Several new conceptual solutions in beam dynamics, room temperature and SC accelerating structures for heavy ion accelerator applications are discussed.

  14. Search for Nuclei in Heavy Ion Collisions at Ultrarelativistic Energies

    CERN Multimedia

    2002-01-01

    We would like to know if nuclei are still present after a collision of two heavy ions at ultrarelativistic energies. If one can detect some of them at large angle ($>$10-15|0) they very likely come from a multifragmentation of the excited target spectators. Such a multifragmentation in several nuclei has been in proton induced reactions at Fermilab and it was interpreted as a gas-liquid phase transition in nuclei matter near the critical point. With heavy ions the energy deposited in the target spectators will be much higher than in the case of protons and a different mechanism should be involved if nuclei are still observed. \\\\ \\\\ We propose to detect nuclei using 1-2 silicon telescopes and a 1-2mg/cm|2 Au target bombarded by an |1|6O or |3|2S beam at 226 GeV/u. The set-up will be installed in a small cube located just before the NA38 experiment and should not perturb it.\\\\ \\\\ Data from |1|6O incident on Au have been taken last year. The experiment is presently taking data with |3|2S ions.

  15. Researches on a reactor core in heavy ion inertial fusion

    CERN Document Server

    Kondo, S; Iinuma, T; Kubo, K; Kato, H; Kawata, S; Ogoyski, A I

    2016-01-01

    In this paper a study on a fusion reactor core is presented in heavy ion inertial fusion (HIF), including the heavy ion beam (HIB) transport in a fusion reactor, a HIB interaction with a background gas, reactor cavity gas dynamics, the reactor gas backflow to the beam lines, and a HIB fusion reactor design. The HIB has remarkable preferable features to release the fusion energy in inertial fusion: in particle accelerators HIBs are generated with a high driver efficiency of ~30-40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ~50 to operate a HIF fusion reactor with a standard energy output of 1GW of electricity. In a fusion reactor the HIB charge neutralization is needed for a ballistic HIB transport. Multiple mechanical shutters would be installed at each HIB port at the reactor wall to stop the blast waves and the chamber gas backflow, so that the accelerator final elements would be protected from the ...

  16. RELATIVISTIC HEAVY ION PHYSICS : RESULTS FROM AGS TO RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    STEINBERG,P.

    2002-06-20

    High-energy collisions of heavy ions provide a means to study QCD in a regime of high parton density, and may provide insight into its phme structure. Results from the four experiments at RHIC (BRAHMS, PHENIX, PHOBOS and STAR) are presented, and placed in context with the lower energy data from the AGS and SPS accelerators. The focus is on the insights these measurements provide into the time history of the collision process. Taken together, the data point to the creation of a deconfined state of matter that forms quickly, expands rapidly and freezes out suddenly. With the new RHIC data, systematic data now exists for heavy ion collisions as a function of {radical}s over several orders of magnitude and as a function of impact parameter. These data test the interplay between hard and soft processes in a large-volume system where nucleons are struck multiple times. The data is consistent with creating a deconfined state (jet quenching) that forms quickly (saturation models), expands rapidly (radial and elliptic flow) and freezes out suddenly (single freezeout and blast wave fits). There are also intriguing connections with particle production in elementary systems, which point to the role of the energy available for particle production on the features of the final state. Many in this field are optimistic that the careful understanding of this experimental data may lead t o the theoretical breakthroughs that will connect these complex systems to the fundamental lattice predict ions.

  17. Two-gluon correlations in heavy-light ion collisions

    Science.gov (United States)

    Wertepny, Douglas E.

    2014-11-01

    We derive the cross-section for two-gluon production in heavy-light ion collisions in the saturation/Color Glass Condensate framework. This calculation includes saturation effects to all orders in one of the nuclei (heavy ion) along with a single saturation correction in the projectile (light ion). The calculation of the correlation function predicts (qualitatively) two identical ridge-like correlations, near- and away-side. This prediction was later supported by experimental findings in p + A collisions at the LHC. Concentrating on the energy and geometry dependence of the correlation functions we find that the correlation function is nearly center-of-mass energy independent. The geometry dependence of the correlation function leads to an enhancement of near- and away-side correlations for the tip-on-tip U + U collisions when compared with side-on-side U + U collisions, an exactly opposite behavior from the correlations generated by the elliptic flow of the quark-gluon plasma.

  18. Glenn T. Seaborg and heavy ion nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W. (Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry Lawrence Berkeley Lab., CA (United States))

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  19. Glenn T. Seaborg and heavy ion nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  20. High resolution charge spectroscopy of heavy ions with FNTD technology

    Science.gov (United States)

    Bartz, J. A.; Kodaira, S.; Kurano, M.; Yasuda, N.; Akselrod, M. S.

    2014-09-01

    This paper is focused on the improvement of the heavy charge particle charge resolution of Fluorescent Nuclear Track Detector (FNTD) technology. Fluorescent intensity of individual heavy charge particle tracks is used to construct the spectrum. Sources of spectroscopic line broadening were investigated and several fluorescent intensity correction procedures were introduced to improve the charge resolution down to δZ = 0.25 c.u. and enable FNTD technology to distinguish between all projectile fragments of 290 MeV carbon ions. The benefits of using FNTD technology for fragmentation study include large dynamic range and wide angular acceptance. While we describe these developments in the context of fragmentation studies, the same techniques are readily extended to FNTD LET spectroscopy in general.

  1. Heavy Inertial Confinement Energy: Interactions Involoving Low charge State Heavy Ion Injection Beams

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Robert D

    2006-04-14

    During the contract period, absolute cross sections for projectile ionization, and in some cases for target ionization, were measured for energetic (MeV/u) low-charge-state heavy ions interacting with gases typically found in high and ultra-high vacuum environments. This information is of interest to high-energy-density research projects as inelastic interactions with background gases can lead to serious detrimental effects when intense ion beams are accelerated to high energies, transported and possibly confined in storage rings. Thus this research impacts research and design parameters associated with projects such as the Heavy Ion Fusion Project, the High Current and Integrated Beam Experiments in the USA and the accelerator upgrade at GSI-Darmstadt, Germany. Via collaborative studies performed at GSI-Darmstadt, at the University of East Carolina, and Texas A&M University, absolute cross sections were measured for a series of collision systems using MeV/u heavy ions possessing most, or nearly all, of their bound electrons, e.g., 1.4 MeV/u Ar{sup +}, Xe{sup 3+}, and U{sup 4,6,10+}. Interactions involving such low-charge-state heavy ions at such high energies had never been previously explored. Using these, and data taken from the literature, an empirical model was developed for extrapolation to much higher energies. In order to extend our measurements to much higher energies, the gas target at the Experimental Storage Ring in GSI-Darmstadt was used. Cross sections were measured between 20 and 50 MeV/u for U{sup 28+}- H{sub 2} and - N{sub 2}, the primary components found in high and ultra-high vacuum systems. Storage lifetime measurements, information inversely proportional to the cross section, were performed up to 180 MeV/u. The lifetime and cross section data test various theoretical approaches used to calculate cross sections for many-electron systems. Various high energy density research projects directly benefit by this information. As a result, the general

  2. High-time resolution measurements of solar wind heavy ions with SOHO/CELIAS/CTOF

    Energy Technology Data Exchange (ETDEWEB)

    Janitzek, N. P., E-mail: janitzek@physik.uni-kiel.de; Taut, A.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F. [Institute of Experimental and Applied Physics, University of Kiel (Germany); Bochsler, P. [University of Bern, Bern (Switzerland); Klecker, B. [Max Planck Institute for Extraterrestrial Physics, Garching (Germany)

    2016-03-25

    The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) is designed to measure the kinetic properties and elemental/ionic composition of solar wind ions heavier than protons, which we refer to as heavy ions. This is achieved by the combined measurements of the energy-per-charge, the time-of-flight and the energy of incident ions. The CTOF instrument combines a remarkable time-of-flight resolution with a large effective area and a high measurement cadence. This allows to determine the Velocity Distribution Functions (VDFs) of a wide range of heavy ions with 5-minute time resolution which ensures that the complete VDF is measured under nearly identical solar wind and magnetic field conditions. For the measurement period between Day Of Year (DOY) 150 and 220 in 1996, which covers a large part of the instrument’s short life time, we analyzed VDFs of solar wind iron Fe{sup 8+}, Fe{sup 9+} and Fe{sup 10+} for differential streaming relative to the solar wind proton speed measured simultaneously with the CELIAS Proton Monitor (PM). We find an increasing differential streaming with increasing solar wind proton speed for all investigated ions up to ion-proton velocity differences of 30 - 50 km s{sup −1} at proton velocities of 500 km s{sup −1}, which is contradictory to an earlier CTOF study by [7]. We believe this difference is because in this study we used raw Pulse Height Analysis (PHA) data with a significantly increased mass and mass-per-charge resolution compared to the earlier used onboard preprocessed data.

  3. Heavy ion upgrade of the Bevatron local injector

    Energy Technology Data Exchange (ETDEWEB)

    Staples, J.; Gough, R.; Abbott, S.; Dwinell, R.; Halliwell, J.; Howard, D.; Richter, R.; Stover, G.; Tanabe, J.; Zajec, E.

    1984-05-01

    A new heavy ion injector system for the Bevatron, consisting of a PIG ion source, an RFQ linac, and two Alvarez linacs, is nearing completion. It will make available to the Bevatron a source of ions up to mass 40 independent of the SuperHILAC, enhancing the operational flexibility of the Bevalac complex. The RFQ accelerator, made operational in mid 1983, accelerates ions with q/A greater than or equal to 0.14 to 200 keV/n. The RFQ is followed by a new 200 MHz Alvarez linac operating in the 2..beta..lambda mode which further accelerates the ions to 800 keV/n. This linac is followed by a foil stripper and a portion of the old injector linac, rebuilt to accelerate beams with q/A greater than or equal to 0.35 to 5 MeV/n in the 2..beta..lambda mode. Details are given of the configuration, equipment modifications, and project status.

  4. The Mesozoic Era of relativistic heavy ion physics and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.W.

    1994-03-01

    In order to understand how matter 15 billion years ago in the form of quarks, gluons and leptons at a temperature of 2 {times} 10{sup 12} {degrees}K evolved to become today`s Universe, the goal of relativistic and ultra-relativistic heavy ion physics is to understand the equation of state of nuclear, hadronic and partonic matter. This quest is of cross-disciplinary interest. The phase transition from partonic matter to hadronic matter tens of micro-seconds after the beginning of the universe is of interest to cosmology. Fluctuations during this phase transition would influence nucleosynthesis and the understanding of baryonic inhomogeneities in the universe. The nuclear matter equation of state, which describes the incompressibility of nuclear matter, governs neutron star stability. It determines the possible existence of strange quark matter stars and the dynamics of supernova expansion in astrophysics. The existence of collective nuclear phenomena in nuclear physics is also determined by the nuclear equation of state. In relativistic heavy ion collisions collective nuclear flow has been observed and is being studied extensively to obtain a better understanding of the incompressibility of nuclear matter. In high energy nuclear and particle physics, production and excitations of hadronic final states have been studied in detail and are important to an overall understanding of the equation of state of nuclear matter at finite temperature. The possibility in ultra-relativistic heavy ion collisions to create and study highly excited hadronic and partonic degrees of freedom provides a unique opportunity for understanding the behavior of nuclear, hadronic and partonic matter. Study of the QCD vacuum, of particular interest in particle physics, would provide a better understanding of symmetry-breaking mechanisms and the origins of the masses of the various quarks and particles.

  5. Note: A pulsed laser ion source for linear induction accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: bamboobbu@hotmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-106, Mianyang 621900 (China); School of Physics, Peking University, Beijing 100871 (China); Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J. [Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-106, Mianyang 621900 (China)

    2015-01-15

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  6. Towards Reconstructing the Final Stage of Heavy Ion Collisions

    CERN Document Server

    Wiedemann, Urs Achim

    1997-01-01

    A Fourier inversion problem lies at the heart of determining spatio-temporal characteristica of the final stage of a heavy ion collision: From the measured two-particle momentum correlations C(p_1,p_2) of identical particles, pions say, a Hanbury-Brown /Twiss (HBT) interferometric analysis aims at extracting as much information as possible about the Wigner phase space density S(x,p) of pion emitting sources in the collision region. Here, we discuss how this analysis allows to separate the effects of temperature and transverse flow which cannot be disentangled completely on the basis of single-particle spectra.

  7. Coupling constant corrections in holographic heavy ion collisions

    CERN Document Server

    Grozdanov, Sašo

    2016-01-01

    We initiate a holographic study of coupling-dependent heavy ion collisions by analysing for the first time the effects of leading-order, inverse coupling constant corrections. In the dual description, this amounts to colliding gravitational shock waves in a theory with curvature-squared terms. We find that at intermediate coupling, nuclei experience less stopping and have more energy deposited near the lightcone. When the decreased coupling results in an 80% larger shear viscosity, the time at which hydrodynamics becomes a good description of the plasma created from high energy collisions increases by 25%. The hydrodynamic phase of the evolution starts with a wider rapidity profile and smaller entropy.

  8. Superconducting focusing quadrupoles for heavy ion fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  9. A new prompt heavy-ion-induced fission mode

    Indian Academy of Sciences (India)

    W Udo Schröder

    2015-08-01

    Fission instabilities induced by mechanical and thermal stresses on intermediate nuclear systems in heavy-ion reactions are poorly understood but should reveal independent evidence for the nuclear equation of state (EoS), notably the tensile strength of finite nuclei. Experimental evidence is presented in support of a new mode of prompt fission of the composite nucleus formed in central 78Kr+40Ca collisions at only a few MeV per nucleon above the interaction barrier. The new process recalls the ‘L-window for fusion’ phenomenon, which was predicted by the early reaction theory and reappears in modern DFT model calculations.

  10. A Search for Quarks Produced in Heavy-Ion Interactions

    CERN Multimedia

    2002-01-01

    We propose to search for free fractional charges produced in 225~GeV/A heavy-ion collisions at the SPS. A tank of mercury placed in the NA38 beam stop will serve both as a production target and as an absorber to stop reaction products. Mercury from the tank will subsequently be distilled.\\\\ \\\\ This process will decrease the amount of mercury that has to be processed by a factor of about 10|5. The concentrate will be searched for quarks using the proven SFSU automated Millikan apparatus.\\\\ \\\\ This experiment will be sensitive to about one quark produced per 2x10|8 beam particles.

  11. Isotropization and hydrodynamization in weakly coupled heavy-ion collisions

    CERN Document Server

    Kurkela, Aleksi

    2015-01-01

    We numerically solve 2+1D effective kinetic theory of weak coupling QCD under longitudinal expansion relevant for early stages of heavy-ion collisions. We find agreement with viscous hydrodynamics and classical Yang-Mills simulations in the regimes where they are applicable. By choosing initial conditions that are motivated by color-glass-condensate framework we find that for Q=2GeV and $\\alpha_s$=0.3 the system is approximately described by viscous hydrodynamics well before $\\tau \\lesssim 1.0$ fm/c.

  12. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.

  13. Workshop on Quark-Gluon Plasma and Relativistic Heavy Ions

    CERN Document Server

    Lombardo, Maria Paola; Nardi, Marzia; GISELDA 2002; QGP 2002

    2002-01-01

    This book offers the unique possibility of tackling the problem of hadronic deconfinement from different perspectives. After general introductions to the physical issues, from both the theoretical and the experimental point of view, the book presents the most recent expertise on field theory approaches to the QCD phase diagram, many-body techniques and applications, the dynamics of phase transitions, and phenomenological analysis of relativistic heavy ion collisions. One of the major goals of this book is to promote interchange among those fields of research, which have traditionally been cult

  14. Particle orbit simulation for high energy heavy ion implanter

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Takashi; Hattori, Toshiyuki; Oguri, Yoshiyuki; Sasa, Kimikazu; Hayashizaki, Noriyosu [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Osvath, E.

    1995-10-01

    We have studied an Interdigital-H type Quadrupole (IHQ) linac structure for application to heavy ion implanter. It is possible to vary the output energy by changing the voltage between gaps only. Operating frequency of this IHQ linac is 30 MHz and the synchronous phase is -30deg{r_brace} with the exception of -90deg{r_brace} at the first gap that works as a bunching section. The calculated results show that the output energy can be varied from 0.48 MeV (30 keV/u) to 1.6 MeV (100 keV/u) for {sup 16}O{sup +}. (author).

  15. Thermalization and isotropization in heavy-ion collisions

    Indian Academy of Sciences (India)

    Michael Strickland

    2015-05-01

    Our current understanding of the processes driving the thermalization and isotropization of the quark gluon plasma (QGP) created in ultrarelativistic heavy-ion collisions (URHICs) is reviewed. Initially, the phenomenological evidence in favour of the creation of a thermal but momentum–space anisotropic QGP in URHICs is discussed. Further, the degree of isotropization using viscous (dissipative) hydrodynamics, weak-coupling approaches to QGP dynamics, and strong-coupling approaches to QGP dynamics are discussed. Finally, recent progress in the area of real-time non-Abelian gauge field simulations and non-Abelian Boltzmann–Vlasov-based hard-loop simulations are reported.

  16. Search for heavy-ion emission in 249Cf decay

    Science.gov (United States)

    Ardisson, G.; Barci, V.; Le Du, J. F.; Trubert, D.; Bonetti, R.; Guglielmetti, A.; Gupta, R. K.

    1999-09-01

    Using phosphate glass detectors PKS-50, we have searched for possible emission of heavy clusters in the decay of 249Cf with the aim of confirming the result obtained from a recent γ ray spectrometry experiment. After a 20-day exposure to a 7.4 MBq activity 249Cf source of 37.5 cm2 PKS-50 glasses covered with polymide foils to stop fission fragments, no ions with 17=7.4×1021 s. According to calculations performed on the basis of the preformed cluster model there seems to be very little chance that such an exotic decay might be detected, at least in the next few years.

  17. Initial operation of the Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1979-01-01

    Initial operation and recent development of the Argonne superconducting heavy-ion linac are discussed. The linac has been developed in order to demonstrate a cost-effective means of extending the performance of electrostatic tandem accelerators. The results of beam acceleration tests which began in June 1978 are described. At present 7 of a planned array of 22 resonators are operating on-line, and the linac system provides an effective accelerating potential of 7.5 MV. Although some technical problems remain, the level of performance and reliability is sufficient that appreciable beam time is becoming available to users.

  18. Studies of multiplicity in relativistic heavy-ion collisions

    CERN Document Server

    Back, B B; Alexa, C; Arnaldi, R; Atayan, M; Baglin, C; Baldit, A; Bedjidian, M; Beolè, S; Boldea, V; Bordalo,a, P; Borenstein, S R; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Cheynis, B; Chiavassa, E; Cical, C; Claudino, T; Comets, M P; Constantinescu, S; Cortese, P; Cruz, J; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino,c, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grigorian, S; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hokobyan, R; Haroutunian, R; Idzik, M; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Macciotta, P; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos,a, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, E; Villatte, L; Willis, N; Wu, T

    2005-01-01

    In this talk I'll review the present status of charged particle multiplicity measurements from heavy-ion collisions. The characteristic features of multiplicity distributions obtained in Au+Au collisions will be discussed in terms of collision centrality and energy and compared to those of p+p collisions. Multiplicity measurements of d+Au collisions at 200 GeV nucleon-nucleon center-of-mass energy will also be discussed. The results will be compared to various theoretical models and simple scaling properties of the data will be identified.

  19. Recent results from the ATLAS heavy ion program

    CERN Document Server

    Slovak, Radim; The ATLAS collaboration

    2017-01-01

    The heavy ion program in the ATLAS experiment at the Large Hadron Collider aims to probe and characterize the hot, dense matter created in relativistic lead-lead collisions, in the context of smaller collision systems involving nuclei and hadrons. This talk presents recent results based on LHC Run 1 and Run 2 data, including measurements of bulk collectivity, electroweak bosons, jet modifications, and quarkonium suppression. Results will also be presented on electromagnetic processes in ultra-peripheral collisions, including forward dilepton production and light-by-light scattering.

  20. Thermophoretic Flow in Relativistic Heavy-Ion Collisions

    CERN Document Server

    Thoma, M H

    2001-01-01

    If a quark-gluon plasma is formed in relativistic heavy-ion collisions, there might be a mixed phase of quarks and gluons and hadronic clusters when the critical temperature is reached in the expansion of the fireball. If there is a temperature gradient in the fireball, the hadronic clusters, embedded in the heat bath of quarks and gluons, are subjected to a thermophoretic force. It is shown that even for small temperature gradients and short lifetimes of the mixed phase thermophoresis leads to a strong flow.

  1. Jet structure modifications in heavy-ion collisions with JEWEL

    CERN Document Server

    Elayavalli, Raghav Kunnawalkam

    2016-01-01

    Key features of jet-medium interactions in heavy-ion collisions are modifications to the jet structure. Recent results from experiments at the LHC and RHIC have motivated several theoretical calculations and monte carlo models towards predicting these observables simultaneously. In this report, the recoil picture in \\textsc{Jewel} is summarized and two independent procedures through which background subtraction can be performed in \\textsc{Jewel} are introduced. Information of the medium recoil in \\textsc{Jewel} significantly improves its description of several jet shape measurements.

  2. Track creation after swift heavy ion irradiation of insulators

    Science.gov (United States)

    Medvedev, N.; Osmani, O.; Rethfeld, B.; Schleberger, M.

    2010-10-01

    The dynamics of structural modifications of insulators irradiated with swift heavy ions were investigated theoretically applying a combination of Monte-Carlo method (MC), used to describe SHI penetration and following excitation and relaxation of the electronic subsystem, with Two Temperature Model (TTM) describing the heating of the lattice. This MC-TTM combination demonstrates that secondary ionizations play a very important role for the track formation process. They lead to an additional term in the heat diffusion equation related to energy stored in the hole subsystem. This storage of energy causes a significant delay of heating and prolongs the timescales up to tens of picoseconds.

  3. Beyond the thermal model in relativistic heavy-ion collisions

    CERN Document Server

    Wolschin, Georg

    2016-01-01

    Deviations from thermal distribution functions of produced particles in relativistic heavy-ion collisions are discussed as indicators for nonequilibrium processes. The focus is on rapidity distributions of produced charged hadrons as functions of collision energy and centrality which are used to infer the fraction of produced particles from a central fireball as compared to the one from the fragmentation sources that are out of equilibrium with the rest of the system. Overall thermal equilibrium would only be reached for large times t -> infinity.

  4. Overview of recent heavy-ion results from CMS

    Science.gov (United States)

    Hong, Byungsik

    2016-12-01

    Most recent CMS data related to the high-density QCD are presented for pp and PbPb collisions at 2.76 TeV and pPb collisions at 5.02 TeV. The PbPb collision is essential to understand collective behavior and the final-state effects for the detailed characteristics of hot, dense partonic matter, whereas the pPb collision provides the critical information on the initial-state effects including the modification of the parton distribution function in cold nuclei. This paper highlights some of recent heavy-ion related results from CMS.

  5. Lattice studies of magnetic phenomena in heavy-ion collisions

    CERN Document Server

    Buividovich, P V; Teryaev, O V

    2012-01-01

    We review some experimental consequences of the presence of superstrong magnetic fields of order of the nuclear scale in noncentral heavy-ion collisions. We present lattice estimates for the strength of the Chiral Magnetic Effect (CME) for different quark flavours and argue that the dependence of the anisotropy of the distribution of emitted hadrons on their flavor content might be used as another experimental evidence of the CME. Another possible effect of superstrong magnetic field might be the observed abnormal enhancement of dilepton yield. We show that the presence of the magnetic field leads to a specific anisotropy of the dilepton emission rate.

  6. Is the Chiral Vortical Effect Vanishing in Heavy Ion Collisions?

    CERN Document Server

    Landsteiner, Karl; Pena-Benitez, Francisco

    2013-01-01

    We study the frequency dependence of all the chiral vortical and magnetic conductivities for a relativistic chiral gas of free fermions and for a strongly coupled CFT with holographic dual in four dimensions. Both systems present gauge and gravitational anomalies and we compute their contribution to the conductivities. The chiral vortical conductivities and the chiral magnetic conductivity in the energy current show an unexpected frequency dependence in the form of a delta centered at zero frequency. We argue that this makes the CVE practically unobservable in heavy ion collisions. In the appendix we discuss why the CME seems to vanish in the consistent current for a particular implementation of the axial chemical potential.

  7. Heavy-ion reactions at the GSI Darmstadt

    Energy Technology Data Exchange (ETDEWEB)

    Metag, V. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Giessen Univ. (Germany). 2. Physikalisches Inst.

    1998-12-01

    In nucleus-nucleus collisions at bombarding energies on the order of 1 AGeV nuclear matter can be compressed to similar densities as encountered in stellar processes, i.e. to 2-3 times normal density. Experimental data providing information on the space-time evolution of these collisions are presented: the properties of hadrons in the hot and compressed nuclear medium in the high-density phase, collective flow phenomena during the expansion phase, and the hadrochemical composition of the collision system in the final stage of the reaction at freeze-out are discussed. Future directions in the heavy-ion reaction program are indicated. (orig.)

  8. New insights from 3D simulations of heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Denicol, Gabriel [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Monnai, Akihiko [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ryu, Sangwook [Department of Physics, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8 (Canada); Schenke, Björn [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-12-15

    Viscous relativistic hydrodynamics in 3+1 dimensions is applied to describe heavy ion collisions at RHIC and LHC. We present calculations of observables that are sensitive to the longitudinal structure of the created system. In particular we present pseudo-rapidity correlations and demonstrate their dependence on both the initial state and short range correlations introduced via a microscopic transport description. We further demonstrate the effect of a varying temperature dependence of the shear viscosity to entropy density ratio on rapidity dependent flow harmonics.

  9. Observing -violation in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    Rajarshi Ray

    2003-05-01

    Under certain situations, partons formed in heavy-ion collision experiments may expand out forming a shell-like structure. The partons in the outer shell subsequently hadronize, leaving a bubble of pure deconfined vacuum for a first-order quark–hadron phase transition. The bubble collapses and may eventually decay into particles which may thermalize to temperatures exceeding the electroweak transition temperature (∼ 100 GeV) at LHC. This will lead to the possibility of unsuppressed electroweak baryon number violating processes.

  10. Heavy ion physics at LHC with the Compact Muon Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Bedjidian, M.; Contardo, D.; Haroutunian, R. [Universite Claude Bernard Lyon 1, Villeurbanne (France)] [and others

    1995-07-15

    The Compact Muon Solenoid (CMS), is one of the two detectors proposed to achieve the primary goal of the LHC: the discovery of the Higgs boson(s). For this purpose, the detector is optimized for the precise measurement of muons, photons, electrons and jets. It is a clear motivation to investigate its ability to measure the hard processes probing the formation of a Quark Gluon Plasma (QGP) in ion collisions. It is the case of the heavy quark bound states, long predicted to be suppressed in a QGP. In CMS they can be detected, via their muonic decay according to the principle adopted for the p-p physics.

  11. Medical applications of nuclear physics and heavy-ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jose R.

    2000-08-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use.

  12. Fragment Produced by Nuclear Reaction of Heavy Ions Interacted with Tissue-equivalent Biological Material

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In heavy ion therapy and radiation biological effects the nuclear fragments from the heavy ion collisions may cause a significant alteration of the radiation field. Nuclear collision between beam particles and tissue nuclei along the penetration path of high-energy ions in tissue or biological-equivalent material causes a loss

  13. Advanced numerical studies of the neutralized drift compression of intense ion beam pulses

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2007-10-01

    Full Text Available Longitudinal bunch compression of intense ion beams for warm dense matter and heavy ion fusion applications occurs by imposing an axial velocity tilt onto an ion beam across the acceleration gap of a linear induction accelerator, and subsequently allowing the beam to drift through plasma in order to neutralize its space-charge and current as the pulse compresses. The detailed physics and implications of acceleration gap effects and focusing aberration on optimum longitudinal compression are quantitatively reviewed using particle-in-cell simulations, showing their dependence on many system parameters. Finite-size gap effects are shown to result in compression reduction, due to an increase in the effective longitudinal temperature imparted to the beam, and a decrease in intended fractional tilt. Sensitivity of the focal plane quality to initial longitudinal beam temperature is explored, where slower particles are shown to experience increased levels of focusing aberration compared to faster particles. A plateau effect in axial compression is shown to occur for larger initial pulse lengths, where the increases in focusing aberration over the longer drift lengths involved dominate the increases in relative compression, indicating a trade-off between current compression and pulse duration. The dependence on intended fractional tilt is also discussed and agrees well with theory. A balance between longer initial pulse lengths and larger tilts is suggested, since both increase the current compression, but have opposite effects on the final pulse length, drift length, and amount of longitudinal focusing aberration. Quantitative examples are outlined that explore the sensitive dependence of compression on the initial kinetic energy and thermal distribution of the beam particles. Simultaneous transverse and longitudinal current density compression can be achieved in the laboratory using a strong final-focus solenoid, and simulations addressing the effects

  14. Power Supply for Magnet of Compact Proton and/or Heavy Ion Synchrotron for Radiotherapy

    CERN Document Server

    Yamanaka, Shinji; Endo, Kuninori; Fang, Zhigao

    2005-01-01

    A resonant type pulse power supply, for an application to a compact proton and/or heavy ion synchrotron with a several Hz repetition rate, is attractive from the view point of attaining an average beam current that is enough for the radiation therapy. Maximum ampere-turn of the dipole magnet is as large as 200 kAT to make the bending radius as small as possible. Pulse current is generated by discharging the stored energy in a capacitor bank through a pulse transformer. Moreover, the auxiliary power supply for the dipole magnets which adds the flat magnetic field (10-20μs) for the multi-turn beam-injection is being developed. The power supply for the quadrupole magnets is the high switching frequency (20 kHz × 5) switching-mode Power Supply for the adjusting tune and the tracking between the quadrupole and the dipole fields.Detailed analyses on these pulse power supplies will be presented.

  15. Morphological study of borosilicate glass surface irradiated by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T. S.; Du, X.; Yuan, W.; Duan, B. H.; D. Zhang, J.; Chen, L.; Peng, H. B.; Yang, D.; Zhang, G. F.; Zhu, Z. H.

    2016-11-01

    Borosilicate glass is a candidate material for radiation waste formation and other optical applications in various fields. To understand the radiation effect of borosilicate glass, heavy ion (Arq+, Krq+ and Xeq+) irradiations were used to simulate the alpha and recoiled nuclei irradiations in this study. The surface morphology of glass has been compared to ion irradiation doses and ion energies. The surface topography evolution of irradiated samples is characterized by optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS). Micro-bumps are observed on the sample surface after irradiationwith 5 MeV Xeq+ over 5 × 1013 ions·cm-2. The size and density of the bumps increaseswith increasing irradiation dose. At a lowdose, bumps are on the nanometer (nm) scale and rather rare.While the dose is higher than 9 × 1015 ions·cm-2, the size of bumps is on the scale of a few microns, and the density is saturated. However, the height of the bumps increases froma fewnmto over 150nmwith further irradiation. The distribution of micro-bumps is nearly homogeneous. The bumps are condensed and swell up, and there is no crystallized structure according to the TEMdiffraction pattern. Elementmigration and concentrations are observedwith SIMS imaging. The arrayed micro-bumps are a new finding, and they might be used to change the surface properties. Bump formation is caused by phase separation, and volume swelling is induced by ion irradiation.

  16. Developing The Physics Desing for NDCS-II, A Unique Pulse-Compressing Ion Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J -; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-09-24

    The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  17. Recent studies in heavy ion induced fission reactions

    Indian Academy of Sciences (India)

    R K Choudhury

    2001-08-01

    Nuclear fission process involves large scale shape changes of the nucleus, while it evolves from a nearly spherical configuration to two separated fission fragments. The dynamics of these shape changes in the nuclear many body system is governed by a strong interplay of the collective and single particle degrees of freedom. With the availability of heavy ion accelerators, there has been an impetus to study the nuclear dynamics through the investigations of nucleus–nucleus collisions involving fusion and fission process. From the various investigations carried out in the past years, it is now well recognized that there is large scale damping of collective modes in heavy ion induced fission reactions, which in other words implies that nuclear motion is highly viscous. In recent years, there have been many experimental observations in heavy ion induced fission reactions at medium bombarding energies, which suggest possible occurrence of various non-equilibrium modes of fission such as quasi-fission, fast fission and pre-equilibrium fission, where some of the internal degrees of freedom of the nucleus is not fully equilibrated. We have carried out extensive investigations on the fission fragment angular distributions at near barrier bombarding energies using heavy fissile targets. The measured fragment anisotropies when compared with the standard saddle point model (SSPM) calculations show that for projectile-target systems having zero or low ground state spins, the angular anisotropy exhibits a peak-like behaviour at the sub barrier energies, which cannot be explained by the SSPM calculations. For projectiles or targets with large ground state spins, the anomalous peaking gets washed out due to smearing of the -distribution by the intrinsic entrance channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. The fission fragments acquire spin mainly from two

  18. Investigation of scintillation detectors for relativistic heavy ion calorimetry

    CERN Document Server

    Lozeva, R; Balabanski, D L; Gerl, J; Górska, M; Kojouharov, I; Kopatch, Y; Mandal, S; Schaffner, H; Wollersheim, H J

    2003-01-01

    The new DELTA E/E detection system, calorimeter telescope (CATE), for charge and mass determination of heavy ions at high energies (>=100 MeV/n) has been designed. CATE, a calorimeter telescope will consist of position sensitive Si detectors for DELTA E determination and scintillators, readout by either PIN diode or PMT, for total-E determination. Different scintillation detectors were tested with sup 1 sup 3 sup 0 Sn, sup 1 sup 8 sup 6 Pb, sup 1 sup 9 sup 7 Au and sup 2 sup 3 sup 8 U beams of (100-300) MeV/n ion energy. By properly selecting the beam species from the FRS and applying position corrections, an energy resolution of approx =0.5% FWHM was observed. The corresponding mass resolution of 1/200 is adequate for employment of CATE in the Fast Beam RISING campaign at GSI.

  19. Modification and Characterisation of Materials by Swift Heavy Ions

    Directory of Open Access Journals (Sweden)

    D. K. Avasthi

    2009-07-01

    Full Text Available Swift heavy ions (SHI available with 15 million Volt Pelletron accelerator at Inter University Accelerator Centre (IUAC Delhi, formerly known as Nuclear Science Centre, (NSC, provide a unique opportunity to researchers for accelerator based materials science research. The major research areas can be broadly categorised as electronic sputtering, interface modifications, synthesis and modification of nanostructures, phase transitions and ion beam-induced epitaxial crystallisation. In, general, SHI irradiation based-materials may not be economically feasible, still it could be of interest for very specific cases in defence and space research. The paper gives a glimpse of the current research activities in materials science with SHIs, at IUAC.Defence Science Journal, 2009, 59(4, pp.401-412, DOI:http://dx.doi.org/10.14429/dsj.59.1540

  20. COMPLIS: COllinear spectroscopy Measurements using a Pulsed Laser Ion Source

    CERN Multimedia

    2002-01-01

    A Pulsed Laser spectroscopy experiment has been installed for the study of hyperfine structure and isotope shift of refractory and daughter elements from ISOLDE beams. It includes decelerated ion-implantation, element-selective laser ionization, magnetic and time-of-flight mass separation. The laser spectroscopy has been performed on the desorbed atoms in a set-up at ISOLDE-3 but later on high resolution laser collinear spectroscopy with the secondary pulsed ion beam is planned for the Booster ISOLDE set-up. During the first operation time of ISOLDE-3 we restricted our experiments to Doppler-limited resonant ionization laser and $\\gamma$-$\\gamma$ nuclear spectroscopy on neutron deficient platinum isotopes of even mass number down to A~=~186 and A~=~179 respectively. These isotopes have been produced by implantation of radioactive Hg and their subsequent $\\beta$-decay.

  1. Effect of a short weak prepulse on laser-triggered front-surface heavy-ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Bochkarev, S. G.; Bychenkov, V. Yu. [P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); Golovin, G. V.; Uryupina, D. S.; Shulyapov, S. A.; Savel' ev, A. B. [M. V. Lomonosov Moscow State University, International Laser Centre and Faculty of Physics, Moscow (Russian Federation); Andriyash, A. V. [The All-Russia Research Institute of Automatics, Moscow (Russian Federation)

    2012-10-15

    A suppression of light-ion acceleration (from surface water contaminants) was observed when a moderate-intensity subpicosecond laser pulse was focused on a thick metal target. Simultaneously, an effective generation of high-energy multicharge ions of the target material (Fe) was experimentally observed. A numerical simulation based on the Boltzmann-Vlasov-Poisson model revealed that this is due to the very specific regime of cleaning contaminants from the target surface by the short weak prepulse preceding the main pulse by more than 10 ns and having an intensity below the surface breakdown threshold. Because this prepulse causes the contaminant layer to boil explosively, a low-density gap forms above the target surface. These conditions are consequently favorable for boosting the energy of heavy ions.

  2. Performance evaluation of multi sampling ionization chamber for heavy ion beams by comparison with GEANT4 simulation

    Science.gov (United States)

    Kanke, Yuki; Himac H093 Collaboration

    2014-09-01

    In high-energy heavy-ion accelerator facilities, multi sampling ionization chambers are often used for the identification of the atomic number Z by detecting the energy deposit in it. In the study at GSI, the picture of the escape of secondary electrons, δ rays, from the ionization chamber explains the experimental data of pulse-height resolution. If this picture is correct, the pulse-height resolution should depend on the effective area of the ionization chamber. The experiment have been performed at NIRS-HIMAC. The pulse-height resolutions of two ionization chambers with different effective area were compared by using a 400-MeV/u Ni beam and their fragments. The difference in the pulse-height resolutions was observed. By comparison with the GEANT4 simulation including the δ-rays emission, the performance of the ionization chamber have been evaluated.

  3. Resistance-driven bunching mode of an accelerated ion pulse

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.P.

    1981-10-16

    Amplification of a longitudinal perturbation of an ion pulse in a linear induction accelerator is calculated. The simplified accelerator model consists only of an applied field (E/sub a/), distributed gap impedance per meter (R) and beam-pipe capacity per meter (C). The beam is treated as a cold, one-dimensional fluid. It is found that normal mode frequencies are nearly real, with only a very small damping rate proportional to R. This result is valid for a general current profile and is not restricted to small R. However, the mode structure exhibits spatial amplification from pulse head to tail by the factor exp(RCLv/sub o//2), where L is pulse length and v/sub 0/ is drift velocity. This factor is very large for typical HIF parameters. An initially small disturbance, when expanded in terms of the normal modes, is found to oscillate with maximum amplitude proportional to the amplification factor.

  4. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    WU Di; GONG Ye; LIU Jin-Yuan; WANG Xiao-Gang; LIU Yue; MA Teng-Cai

    2006-01-01

    @@ Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ion-beam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133 mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.

  5. Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater.

    Science.gov (United States)

    Li, Zhaoling; Chen, Jun; Guo, Hengyu; Fan, Xing; Wen, Zhen; Yeh, Min-Hsin; Yu, Chongwen; Cao, Xia; Wang, Zhong Lin

    2016-04-20

    A fundamentally new working principle into the field of self-powered heavy-metal-ion detection and removal using the triboelectrification effect is introduced. The as-developed tribo-nanosensors can selectively detect common heavy metal ions. The water-driven triboelectric nanogenerator is taken as a sustainable power source for heavy-metal-ion removal by recycling the kinetic energy from flowing wastewater.

  6. Overview of LANL short-pulse ion acceleration activities

    Energy Technology Data Exchange (ETDEWEB)

    Flippo, Kirk A. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Schmitt, Mark J. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Offermann, Dustin [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Cobble, James A. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Gautier, Donald [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Kline, John [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Workman, Jonathan [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Archuleta, Fred [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Gonzales, Raymond [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Hurry, Thomas [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Johnson, Randall [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Letzring, Samuel [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Montgomery, David [Los Alamos National Laboratory; Reid, Sha-Marie [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Shimada, Tsutomu [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Gaillard, Sandrine A. [Univ. of Nevada, Reno, NV (United States); Sentoku, Yasuhiko [Univ. of Nevada, Reno, NV (United States); Bussman, Michael [Forschungszentrum Dresden (Germany); Kluge, Thomas [Forschungszentrum Dresden (Germany); Cowan, Thomas E. [Forschungszentrum Dresden (Germany); Rassuchine, Jenny M. [Forschungszentrum Dresden - Rossendorf (Germany); Lowenstern, Mario E. [Univ. of Michigan, Ann Arbor, MI (United States); Mucino, J. Eduardo [Univ. of Michigan, Ann Arbor, MI (United States); Gall, Brady [Univ. of Missouri, Columbia, MO (United States); Korgan, Grant [Nanolabz, Reno, NV (United States); Malekos, Steven [Nanolabz, Reno, NV (United States); Adams, Jesse [Nanolabz, Reno, NV (United States); Bartal, Teresa [Univ. of California, San Diego, CA (United States); Chawla, Surgreev [Univ. of California, San Diego, CA (United States); Higginson, Drew [Univ. of California, San Diego, CA (United States); Beg, Farhat [Univ. of California, San Diego, CA (United States); Nilson, Phil [Lab. for Laser Energetics, Rochester, NY (United States); Mac Phee, Andrew [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Le Pape, Sebastien [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Hey, Daniel [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mac Kinnon, Andy [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Geissel, Mattias [Sandia National Lab. (SNL), Albuquerque, NM (United States); Schollmeier, Marius [Sandia National Lab. (SNL), Albuquerque, NM (United States); Stephens, Rich [General Atomics, San Diego, CA (United States)

    2009-12-02

    An overview of Los Alamos National Laboratory's activities related to short-pulse ion acceleration is presented. LANL is involved is several projects related to Inertial Confinement Fusion (Fast Ignition) and Laser-Ion Acceleration. LANL has an active high energy X-ray backlighter program for radiographing ICF implosions and other High Energy Density Laboratory Physics experiments. Using the Trident 200TW laser we are currently developing high energy photon (>10 keV) phase contrast imaging techniques to be applied on Omega and the NIF. In addition we are engaged in multiple programs in laser ion acceleration to boost the ion energies and efficiencies for various potential applications including Fast Ignition, active material interrogation, and medical applications. Two basic avenues to increase ion performance are currently under study: one involves ultra-thin targets and the other involves changing the target geometry. We have recently had success in boosting proton energies above 65 MeV into the medical application range. Highlights covered in the presentation include: The Trident Laser System; X-ray Phase Contrast Imaging for ICF and HEDLP; Improving TNSA Ion Acceleration; Scaling Laws; Flat Targets; Thin Targets; Cone Targets; Ion Focusing;Trident; Omega EP; Scaling Comparisons; and, Conclusions.

  7. Simulating Electron Clouds in Heavy-Ion Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R.H.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik,A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J-L.; Stoltz, P.; Veitzer, S.

    2005-04-07

    Contaminating clouds of electrons are a concern for most accelerators of positive-charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly-, weakly-, and un-magnetized. They describe their approach to such self-consistency, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyro period in the magnets. They present tests and applications: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the High-Current Experiment (HCX) at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam and an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-timestep mover to accurately calculate the instability.

  8. Nano sized carbonized waste biomass for heavy metal ion remediation

    Directory of Open Access Journals (Sweden)

    Mahajan Garima

    2014-12-01

    Full Text Available Utilization of agricultural waste material with approach to enhance the heavy metal remediation properties by carbonizing the biomass at nano size particles has been explored in present investigation from aqueous solutions. In this study the lignocellulosic, nitrogenous agricultural waste biomass Delbergia sissoo pods (DSP has been tried for sequestering of Cd (II, Pb (II and Ni (II metal ions from aqueous solutions. Batch experiments were performed for removal of targeted metal ions keeping in consideration the preliminary affecting parameters such as effect of adsorption dose, pH, initial metal ion concentration, stirring speed and contact time. The sorption studies were analyzed by using, Freundlic isotherm and Langmuir isotherm models. The kinetics of the process was evaluated by pseudo pseudo-first order and pseudo second order kinetic models. Studies reveal that the equilibrium was achieved with in 30 min of the contact time at optimized parameters. Analytical studies of biosorbent were done by means of FT-IR, SEM and XRD. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  9. Elastic wave from fast heavy ion irradiation on solids

    Science.gov (United States)

    Kambara, T.; Kageyama, K.; Kanai, Y.; Kojima, T. M.; Nanai, Y.; Yoneda, A.; Yamazaki, Y.

    2002-06-01

    To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al 2O 3), fused silica (SiO 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the wave source was estimated. The result was compared with ion ranges calculated for these materials by TRIM code.

  10. Hadronic and electromagnetic fragmentation of ultrarelativistic heavy ions at LHC

    Directory of Open Access Journals (Sweden)

    H. H. Braun

    2014-02-01

    Full Text Available Reliable predictions of yields of nuclear fragments produced in electromagnetic dissociation and hadronic fragmentation of ion beams are of great practical importance in analyzing beam losses and interactions with the beam environment at the Large Hadron Collider (LHC at CERN as well as for estimating radiation effects of galactic cosmic rays on the spacecraft crew and electronic equipment. The model for predicting the fragmentation of relativistic heavy ions is briefly described, and then applied to problems of relevance for LHC. The results are based on the fluka code, which includes electromagnetic dissociation physics and dpmjet-iii as hadronic event generator. We consider the interaction of fully stripped lead ions with nuclei in the energy range from about one hundred MeV to ultrarelativistic energies. The yields of fragments close in the mass and charge to initial ions are calculated. The approach under discussion provides a good overall description of Pb fragmentation data at 30 and 158A  GeV as well as recent LHC data for sqrt[s_{NN}]=2.76  TeV Pb-Pb interactions. Good agreement with the calculations in the framework of different models is found. This justifies application of the developed simulation technique both at the LHC injection energy of 177A  GeV and at its collision energies of 1.38, 1.58, and 2.75A  TeV, and gives confidence in the results obtained.

  11. Mutation induction in human lymphoid cells by energetic heavy ions

    Science.gov (United States)

    Kronenberg, A.

    1994-10-01

    One of the concerns for extended space flight outside the magnetosphere is exposure to galactic cosmic radiation. In the series of studies presented herein, the mutagenic effectiveness of high energy heavy ions is examined using human B-lymphoblastoid cells across an LET range from 32keV/μm to 190 keV/μm. Mutations were scored for an autosomal locus, thymidine kinase (tk), and for an X-linked locus, hypoxanthine phosphoribosyltransferase (hprt). For each of the radiations studied, the autosomal locus is more sensitive to mutation induction than is the X-linked locus. When mutational yields are expressed in terms of particle fluence, the two loci respond quite differently across the range of LET. The action cross section for mutation induction peaks at 61 keV/μm for the tk locus and then declines for particles of higher LET, including Fe ions. For the hprt locus, the action cross section for mutation is maximal at 95 keV/μm but is relatively constant across the range from 61 keV/μm to 190 keV/gmm. The yields of hprt-deficient mutants obtained after HZE exposure to TK6 lymphoblasts may be compared directly with published data on the induction of hprt-deficient mutants in human neonatal fibroblasts exposed to similar ions. The action cross section for induction of hprt-deficient mutants by energetic Fe ions is more than 10-fold lower for lymphoblastoid cells than for fibroblasts.

  12. Overview of Particle and Heavy Ion Transport Code System PHITS

    Science.gov (United States)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  13. Uniformity of fuel target implosion in Heavy Ion Fusion

    CERN Document Server

    Kawata, S; Suzuki, T; Karino, T; Barada, D; Ogoyski, A I; Ma, Y Y

    2015-01-01

    In inertial confinement fusion the target implosion non-uniformity is introduced by a driver beams' illumination non-uniformity, a fuel target alignment error in a fusion reactor, the target fabrication defect, et al. For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the requirement for the implosion uniformity is first discussed. The implosion uniformity should be less than a few percent. A study on the fuel hotspot dynamics is also presented and shows that the stagnating plasma fluid provides a significant enhancement of vorticity at the final stage of the fuel stagnation. Then non-uniformity mitigation mechanisms of the heavy ion beam (HIB) illumination are also briefly discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF a wobbling he...

  14. Model for hypernucleus production in heavy ion collisions

    CERN Document Server

    Pop, V Topor

    2010-01-01

    We estimate the production cross sections of hypernuclei in projectile like fragment (PLF) in heavy ion collisions. The discussed scenario for the formation cross section of hypernucleus is: (a) Lambda particles are produced in the participant region but have a considerable rapidity spread and (b) Lambda with rapidity close to that of the PLF and total momentum (in the rest system of PLF) up to Fermi motion can then be trapped and produce hypernuclei. The process (a) is considered here within Heavy Ion Jet Interacting Generator HIJING-BBbar model and the process (b) in the canonical thermodynamic model (CTM). We estimate the production cross-sections for light hypernuclei for C + C at 3.7 GeV total nucleon-nucleon center of mass energy and for Ne+Ne and Ar+Ar collisions at 5.0 GeV. By taking into account explicitly the impact parameter dependence of the colliding systems, it is found that the cross section is different from that predicted by the coalescence model and large discrepancy is obtained for 6_He and...

  15. Hot QCD equations of state and relativistic heavy ion collisions

    Science.gov (United States)

    Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.

    2007-11-01

    We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.

  16. Shape analysis applied in heavy ion reactions near Fermi energy

    Science.gov (United States)

    Zhang, S.; Huang, M.; Wada, R.; Liu, X.; Lin, W.; Wang, J.

    2017-03-01

    A new method is proposed to perform shape analyses and to evaluate their validity in heavy ion collisions near the Fermi energy. In order to avoid erroneous values of shape parameters in the calculation, a test particle method is utilized in which each nucleon is represented by n test particles, similar to that used in the Boltzmann–Uehling–Uhlenbeck (BUU) calculations. The method is applied to the events simulated by an antisymmetrized molecular dynamics model. The geometrical shape of fragments is reasonably extracted when n = 100 is used. A significant deformation is observed for all fragments created in the multifragmentation process. The method is also applied to the shape of the momentum distribution for event classification. In the momentum case, the errors in the eigenvalue calculation become much smaller than those of the geometrical shape analysis and the results become similar between those with and without the test particle method, indicating that in intermediate heavy ion collisions the shape analysis of momentum distribution can be used for the event classification without the test particle method.

  17. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    CERN Document Server

    Sun, Yifeng; Li, Feng

    2016-01-01

    Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).

  18. Theory of collective dynamics: flow, fluctuations and correlations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Denicol, Gabriel S. [Physics Department, Brookhaven National Lab, Building 510A, Upton, NY, 11973 (United States); Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)

    2016-12-15

    I review recent developments in the hydrodynamic modeling of ultra-relativistic heavy ion collisions and the extraction of the properties of bulk QCD matter from heavy ion collision measurements. I briefly summarize the current framework used for the theoretical modeling of heavy ion collisions and report the recent progress on the extraction of the temperature dependence of the shear and bulk viscosity coefficients, the development of statistical tools for data-to-model comparison, and anisotropic hydrodynamics. All these recent developments in our field pave the way for more quantitative determination of the transport properties of bulk QCD matter from the experimental heavy ion collision program.

  19. Mutagenic effect of accelerated heavy ions on bacterial cells

    Science.gov (United States)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific

  20. Development of an ion beam analyzing system for the KBSI heavy-ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bahng, Jungbae [Department of Physics, Kyungpook National University, Daegu 41566 (Korea, Republic of); Busan Center, Korea Basic Science Institute, Busan 46241 (Korea, Republic of); Hong, Jonggi; Park, Jin Yong; Kim, Seong Jun; Ok, Jung-Woo; Choi, Seyong; Shin, Chang Seouk; Yoon, Jang-Hee; Won, Mi-Sook; Lee, Byoung-Seob, E-mail: bslee@kbsi.re.kr [Busan Center, Korea Basic Science Institute, Busan 46241 (Korea, Republic of); Kim, Eun-San, E-mail: eskim1@korea.ac.kr [Department of Accelerator Science, Korea University Sejong Campus, Sejong 339-770 (Korea, Republic of)

    2016-02-15

    The Korea Basic Science Institute (KBSI) has been developing a heavy ion accelerator system to accelerate high current, multi-charge state ions produced by a 28 GHz superconducting electron cyclotron ion source. A beam analyzing system as a part of the low energy beam transport apparatus was developed to select charged particles with desirable charge states from the ion beams. The desired species of ion, which is generated and extracted from the ECR ion source including various ion particles, can be selected by 90° dipole electromagnet. Due to the non-symmetrical structure in the coil as well as the non-linear permeability of the yoke material coil, a three dimensional analysis was carried out to confirm the design parameters. In this paper, we present the experimental results obtained as result of an analysis of KBSI accelerator. The effectiveness of beam selection was confirmed during the test of the analyzing system by injecting an ion beam from an ECR ion source.