WorldWideScience

Sample records for pulsed graphite reactor

  1. Characterization of graphite-matrix pulsed reactor fuels

    International Nuclear Information System (INIS)

    Karnes, C.H.; Marion, R.H.

    1976-01-01

    The performance of the Annular Core Pulsed Reactor (ACPR) is being upgraded in order to accommodate higher fluence experiments for fast reactor fuel element transient and safety studies. The increased fluence requires a two-zone core with the inner zone containing fuel having a high enthalpy and the capability of withstanding very high temperatures during both pulsed and steady state operation. Because the fuel is subjected to a temperature risetime of 2 to 5 ms and to a large temperature difference across the diameter, fracture due to thermal stresses is the primary failure mode. One of the fuels considered for the high enthalpy inner region is a graphite-matrix fuel containing a dispersion of uranium--zirconium carbide solid solution particles. A program was initiated to optimize the development of this class of fuel. This summary presents results on formulations of fuel which have been fabricated by the Materials Technology Group of the Los Alamos Scientific Laboratory

  2. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  3. Graphite surveillance in N Reactor

    International Nuclear Information System (INIS)

    Woodruff, E.M.

    1991-09-01

    Graphite dimensional changes in N Reactor during its 24 yr operating history are reviewed. Test irradiation results, block measurements, stack profiles, top of reflector motion monitors, and visual observations of distortion are described. 18 refs., 14 figs., 1 tab

  4. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  5. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  6. Channel uranium-graphite reactor mounting

    International Nuclear Information System (INIS)

    Polushkin, K.K.; Kuznetsov, A.G.; Zheleznyakov, B.N.

    1981-01-01

    According to theoretical principles of general engineering technology the engineering experience of construction-mounting works at the NPP with channel uranium-graphite reactors is systematized. Main parameters and structural features of the 1000 MW channel uranium-graphite reactors are considered. The succession of mounting operations, premounting equipment and pipelines preparation and mounting works technique are described. The most efficient methods of fitting, welding and machining of reactor elements are recommended. Main problems of technical control service are discussed. A typical netted diagram of main equipment of channel uranium-graphite reactors mounting is given

  7. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  8. Graphite for high-temperature reactors

    International Nuclear Information System (INIS)

    Hammer, W.; Leushacke, D.F.; Nickel, H.; Theymann, W.

    1976-01-01

    The different graphites necessary for HTRs are being developed, produced and tested within the Federal German ''Development Programme Nuclear Graphite''. Up to now, batches of the following graphite grades have been manufactured and fully characterized by the SIGRI Company to demonstrate reproducibility: pitch coke graphite AS2-500 for the hexagonal fuel elements and exchangeable reflector blocks; special pitch coke graphite ASI2-500 for reflector blocks of the pebble-bed reactor and as back-up material for the hexagonal fuel elements; graphite for core support columns. The material data obtained fulfill most of the requirements under present specifications. Production of large-size blocks for the permanent side reflector and the core support blocks is under way. The test programme covers all areas important for characterizing and judging HTR-graphites. In-pile testing comprises evaluation of the material for irradiation-induced changes of dimensions, mechanical and thermal properties - including behaviour under temperature cycling and creep behaviour - as well as irradiating fuel element segments and blocks. Testing out-of-pile includes: evaluation of corrosion rates and influence of corrosion on strength; strength measurements; including failure criteria. The test programme has been carried out extensively on the AS2-graphite, and the results obtained show that this graphite is suitable as HTGR fuel element graphite. (author)

  9. Graphite moderated reactor for thermoelectric generation

    International Nuclear Information System (INIS)

    Akazawa, Issei; Yamada, Akira; Mizogami, Yorikata

    1998-01-01

    Fuel rods filled with cladded fuel particles distributed and filled are buried each at a predetermined distance in graphite blocks situated in a reactor core. Perforation channels for helium gas as coolants are formed to the periphery thereof passing through vertically. An alkali metal thermoelectric power generation module is disposed to the upper lid of a reactor container while being supported by a securing receptacle. Helium gas in the coolant channels in the graphite blocks in the reactor core absorbs nuclear reaction heat, to be heated to a high temperature, rises upwardly by the reduction of the specific gravity, and then flows into an upper space above the laminated graphite block layer. Then the gas collides against a ceiling and turns, and flows down in a circular gap around the circumference of the alkali metal thermoelectric generation module. In this case, it transfers heat to the alkali metal thermoelectric generation module. (I.N.)

  10. Pulsed fusion reactors

    International Nuclear Information System (INIS)

    1975-01-01

    This summer school specialized in examining specific fusion center systems. Papers on scientific feasibility are first presented: confinement of high-beta plasma, liners, plasma focus, compression and heating and the use of high power electron beams for thermonuclear reactors. As for technological feasibility, lectures were on the theta-pinch toroidal reactors, toroidal diffuse pinch, electrical engineering problems in pulsed magnetically confined reactors, neutral gas layer for heat removal, the conceptual design of a series of laser fusion power plants with ''Saturn'', implosion experiments and the problem of the targets, the high brightness lasers for plasma generation, and topping and bottoming cycles. Some problems common to pulsed reactors were examined: energy storage and transfer, thermomechanical and erosion effects in the first wall and blanket, the problems of tritium production, radiation damage and neutron activation in blankets, and the magnetic and inertial confinement

  11. Graphite core design in UK reactors

    International Nuclear Information System (INIS)

    Davies, M.W.

    1996-01-01

    The cores in the first power producing Magnox reactors in the UK were designed with only a limited amount of information available regarding the anisotropic dimensional change behaviour of Pile Grade graphite. As more information was gained it was necessary to make modifications to the design, some minor, some major. As the cores being built became larger, and with the switch to the Advanced Gas-cooled Reactor (AGR) with its much higher power density, additional problems had to be overcome such as increased dimensional change and radiolytic oxidation by the carbon dioxide coolant. For the AGRs a more isotropic graphite was required, with a lower initial open pore volume and higher strength. Gilsocarbon graphite was developed and was selected for all the AGRs built in the UK. Methane bearing coolants are used to limit radiolytic oxidation. (author). 5 figs

  12. US graphite reactor D ampersand D experience

    International Nuclear Information System (INIS)

    Garrett, S.M.K.; Williams, N.C.

    1997-02-01

    This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE)

  13. Raw materials for reflector graphite (for reactors)

    International Nuclear Information System (INIS)

    Wilhelmi, G.; Mindermann, D.

    1992-01-01

    The manufacturing concept for the core components of German high temperature reactor (HTR) types of graphite was previously entirely directed to the use of German tar coke (St coke). As the plants for producing this material no longer complied technically with the current environmental protection requirements, one had to assume that they would soon be shut down. To prevent bottlenecks in the erection of future HTR plants, alternative cokes produced by modern processes by Japanese manufacturers were checked for their suitability for the manufacture of reactor graphite. This report describes the investigations carried out on these materials from the safe delayed coking process. The project work, apart from analysis of the main data of the candidate coke considered, included the processing of the raw materials into directly and secondarily extruded graphite rods on the laboratory scale, including characterisation. As the results show, the material data achieved with the previous raw material can be reproduced with Japanese St coke. The tar coke LPC-A from the Nippon Steel Chemical Co., Ltd was decided on as the new standard coke for manufacturing reflector graphite. (orig.) With 15 tabs., 2 figs [de

  14. Pulsed Compression Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roestenberg, T. [University of Twente, Enschede (Netherlands)

    2012-06-07

    The advantages of the Pulsed Compression Reactor (PCR) over the internal combustion engine-type chemical reactors are briefly discussed. Over the last four years a project concerning the fundamentals of the PCR technology has been performed by the University of Twente, Enschede, Netherlands. In order to assess the feasibility of the application of the PCR principle for the conversion methane to syngas, several fundamental questions needed to be answered. Two important questions that relate to the applicability of the PCR for any process are: how large is the heat transfer rate from a rapidly compressed and expanded volume of gas, and how does this heat transfer rate compare to energy contained in the compressed gas? And: can stable operation with a completely free piston as it is intended with the PCR be achieved?.

  15. Determination of Cl-36 in Irradiated Reactor Graphite

    International Nuclear Information System (INIS)

    Beer, H.-F.; Schumann, D.; Stowasser, T.; Hartmann, E.; Kramer, A.

    2016-01-01

    Two of the three research reactors at the Paul Scherrer Institute (PSI), the reactors DIORIT and PROTEUS, contained reactor graphite. Whereas the former research reactor DIORIT has been dismantled completely the PROTEUS is subject to a future decommissioning. In case of the DIORIT the reactor graphite was conditioned applying a procedure developed at PSI. In this case the 36 Cl content had to be determined after the conditioning. The result is reported in this paper. The radionuclide inventory including 36 Cl of the graphite used in PROTEUS was measured and the results are reported in here. It has been proven that the graphite from PROTEUS has a radionuclide inventory near the detection limits. All determined radionuclide activities are far below the Swiss exemptions limits. The graphite from PROTEUS therefore poses no radioactive waste. In contrast, the 36 Cl content of graphite from DIORIT is well above the exemption limits. (author)

  16. A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors

    International Nuclear Information System (INIS)

    Gesh, Christopher J.

    2004-01-01

    The Graphite Isotope Ratio Method (GIRM) is a technique used to estimate the total plutonium production in a graphite-moderated reactor. The cumulative plutonium production in that reactor can be accurately determined by measuring neutron irradiation induced isotopic ratio changes in certain impurity elements within the graphite moderator. The method does not require detailed knowledge of a reactor's operating history, although that knowledge can decrease the uncertainty of the production estimate. The basic premise of the Graphite Isotope Ratio Method is that the fluence in non-fuel core components is directly related to the cumulative plutonium production in the nuclear fuel

  17. Temperature distribution in graphite during annealing in air cooled reactors

    International Nuclear Information System (INIS)

    Oliveira Avila, C.R. de.

    1989-01-01

    A model for the evaluation temperature distributions in graphite during annealing operation in graphite. Moderated an-cooled reactors, is presented. One single channel and one dimension for air and graphite were considered. A numerical method based on finite control volumes was used for partioning the mathematical equations. The problem solution involves the use of unsteady equations of mass, momentum and energy conservation for air, and energy conservation for graphite. The source term was considered as stored energy release during annealing for describing energy conservation in the graphite. The coupling of energy conservation equations in air and graphite is performed by the heat transfer term betwen air and graphite. The results agree with experimental data. A sensitivity analysis shown that the termal conductivity of graphite and the maximum inlet channel temperature have great effect on the maximum temperature reached in graphite during the annealing. (author)

  18. Actinides in irradiated graphite of RBMK-1500 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Plukienė, R., E-mail: rita@ar.fi.lt; Plukis, A.; Barkauskas, V.; Gudelis, A.; Gvozdaitė, R.; Duškesas, G.; Remeikis, V.

    2014-10-01

    Highlights: • Activation of actinides in the graphite of the RBMK-1500 reactor was analyzed. • Numerical modeling using SCALE 6.1 and MCNPX was used for actinide calculation. • Measurements of the irradiated graphite sample were used for model validation. • Results are important for further decommissioning process of the RBMK type reactors. - Abstract: The activation of graphite in the nuclear power plants is the problem of high importance related with later graphite reprocessing or disposal. The activation of actinide impurities in graphite due to their toxicity determines a particular long term risk to waste management. In this work the activation of actinides in the graphite constructions of the RBMK-1500 reactor is determined by nuclear spectrometry measurements of the irradiated graphite sample from the Ignalina NPP Unit I and by means of numerical modeling using two independent codes SCALE 6.1 (using TRITON-VI sequence) and MCNPX (v2.7 with CINDER). Both models take into account the 3D RBMK-1500 reactor core fragment with explicit graphite construction including a stack and a sleeve but with a different simplification level concerning surrounding graphite and construction of control roads. The verification of the model has been performed by comparing calculated and measured isotope ratios of actinides. Also good prediction capabilities of the actinide activation in the irradiated graphite have been found for both calculation approaches. The initial U impurity concentration in the graphite model has been adjusted taking into account the experimental results. The specific activities of actinides in the irradiated RBMK-1500 graphite constructions have been obtained and differences between numerical simulation results, different structural parts (sleeve and stack) as well as comparison with previous results (Ancius et al., 2005) have been discussed. The obtained results are important for further decommissioning process of the Ignalina NPP and other RBMK

  19. Physical model of reactor pulse

    International Nuclear Information System (INIS)

    Petrovic, A.; Ravnik, M.

    2004-01-01

    Pulse experiments have been performed at J. Stefan Institute TRIGA reactor since 1991. In total, more than 130 pulses have been performed. Extensive experimental information on the pulse physical characteristics has been accumulated. Fuchs-Hansen adiabatic model has been used for predicting and analysing the pulse parameters. The model is based on point kinetics equation, neglecting the delayed neutrons and assuming constant inserted reactivity in form of step function. Deficiencies of the Fuchs-Hansen model and systematic experimental errors have been observed and analysed. Recently, the pulse model was improved by including the delayed neutrons and time dependence of inserted reactivity. The results explain the observed non-linearity of the pulse energy for high pulses due to finite time of pulse rod withdrawal and the contribution of the delayed neutrons after the prompt part of the pulse. The results of the improved model are in good agreement with experimental results. (author)

  20. Developments in natural uranium - graphite reactors

    International Nuclear Information System (INIS)

    Bourgeois, J.

    1964-01-01

    The French natural uranium-graphite power-reactor programme has been developing - from EDF 1 to EDF 4 - in the direction of an increase of the unit power of the installations, of the specific and volume powers, and of an improvement in the operational security conditions. The high power of EDF 4 (500 MWe) and the integration of the primary circuit into the reactor vessel, which is itself made of pre-stressed concrete, make it possible to make the most of the annular fuel elements already in use in EDF 1, and to arrive thus at a very satisfactory solution. The use of an internally cooled fuel element (an annular element) has led to a further step forward: it now becomes possible to increase the pressure of the cooling gas without danger of causing creep in the uranium tube. The use of a pre-stressed concrete vessel makes this pressure increase possible, and the integration of the primary circuit avoids the risk of a rapid depressurization which would be in this case a major danger. This report deals with the main problems presented by this new type of nuclear power station, and gives the main lines of research and studies now being carried out in France. - Neutronic and thermal research has made it possible to consider using large size fuel elements (internal diameter = 77 mm, external diameter 95 mm) while still using natural uranium. - The problems connected with the production of these elements and with their in pile behaviour are the subject of a large programme, both out of pile and in power reactors (EDF 2) and test reactors (Pegase). - The increase in the size of the element leads to a large lattice pitch (35 to 40 cm). This makes it possible to consider having one charging aperture per channel or for a small number of channels, whether the charge machine be inside or outside the pressure vessel. In conclusion are given the main characteristics of a project for a 500 MWe power station using such a fuel element. In particular this project is compared to EDF 4

  1. Characterization of Ignalina NPP RBMK Reactors Graphite

    International Nuclear Information System (INIS)

    Hacker, P.J.; Neighbour, G.B.; Levinskas, R.; Milcius, D.

    2001-01-01

    The paper concentrates on the investigations of the initial physical properties of graphite used in production of graphite bricks of Ignalina NPP. These graphite bricks are used as nuclear moderator and major core structural components. Graphite bulk density is calculated by mensuration, pore volumes are measured by investigation of helium gas penetration in graphite pore network, the Young's modulus is determined using an ultrasonic time of flight method, the coefficient of thermal expansion is determined using a Netzsch dilatometer 402C, the fractured and machined graphite surfaces are studied using SEM, impurities are investigated qualitatively by EDAX, the degree of graphitization of the material is tested using X-ray diffraction. (author)

  2. Graphite reactor physics; Physique des piles a graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, P; Cogne, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Noc, B [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The study of graphite-natural uranium power reactor physics, undertaken ten years ago when the Marcoule piles were built, has continued to keep in step with the development of this type of pile. From 1960 onwards the critical facility Marius has been available for a systematic study of the properties of lattices as a function of their pitch, of fuel geometry and of the diameter of cooling channels. This study has covered a very wide field: lattice pitch varying from 19 to 38 cm. uranium rods and tubes of cross-sections from 6 to 35 cm{sup 2}, channels with diameters between 70 and 140 mm. The lattice calculation methods could thus be checked and where necessary adapted. The running of the Marcoule piles and the experiments carried out on them during the last few years have supplied valuable information on the overall evolution of the neutronic properties of the fuel as a function of irradiation. More detailed experiments have also been performed in Marius with plutonium-containing fuels (irradiated or synthetic fuels), and will be undertaken at the beginning of 1965 at high temperature in the critical facility Cesar, which is just being completed at Cadarache. Spent fuel analyses complement these results and help in their interpretation. The thermalization and spectra theories developed in France can thus be verified over the whole valid temperature range. The efficiency of control rods as a function of their dimensions, the materials of which they are made and the lattices surrounding them has been measured in Marius, and the results compared with calculation on the one hand and with the measurements carried out in EDF 1 on the other. Studies on the control proper of graphite piles were concerned essentially with the risks of spatial instability and the means of detecting and controlling them, and with flux distortions caused by the control rods. (authors) [French] Entreprise il y a dix ans a l'occasion de la construction des piles de Marcoule, l'etude de la

  3. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2001-01-01

    In this paper an radioactive waste processing of graphite from graphite moderated nuclear reactors at its decommissioning is discussed. Methods of processing of irradiated graphite are presented. It can be concluded that advanced methods for graphite radioactive waste handling are available nowadays. Implementation of these methods will allow to enhance environmental safety of nuclear power that will benefit its progress in the future

  4. Design of the Graphite Reflectors in Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Haeng; Cho, Yeong Garp; Kim, Tae Kyu; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Graphite is often used as one of reflector materials for research reactors because of its low neutron absorption cross-section, good moderating properties, and relatively low and stable price. In addition, graphite has excellent properties at high temperatures, so it is widely used as a core material in high temperature reactors. However, its material characteristics such as strength, elastic modulus, thermal expansion coefficient, dimensional change, and thermal conductivity sensitively depend on neutron fluence, temperature, and its manufacturing process. In addition, the Wigner energy and the treatment of the graphite waste such as C-14 should also be considered. For the design of the graphite reflectors, it is therefore essential to understand the material characteristics of chosen graphite materials at given conditions. Especially, the dimensional changes and the thermal conductivity are very important factors to design the nuclear components using graphite as a nonstructural material. Hence, in this study, the material characteristics of graphite are investigated via some experiments in literature. Improving design methods for graphite reflectors in research reactors are then suggested to minimize the problems, and the advantages and disadvantages of each method are also discussed

  5. PUSPATI Triga Reactor pulsing parameters

    Energy Technology Data Exchange (ETDEWEB)

    Auu, Gui Ah; Abu, Puad Haji; Yunus, Yaziz [PUSPATI, Selangor (Malaysia)

    1984-06-01

    The pulsing experiment was carried out as part of the commissioning activites of PUSPATI TRIGA Reactor (PTR). Several parameters of PTR were deduced from the experiment. It was found that the maximum temperature of the fuel was far below the safety limit when the maximum allowable positive reactivity of $3.00 was inserted into the core. The peak power achieved was 1354 Mw.

  6. Upgrade of the Annular Core Pulse Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reuscher, J A [Sandia Laboratories, Albuquerque, NM (United States)

    1976-07-01

    The Annular Core Pulse Reactor (ACPR) is a TRIGA type reactor which has been in operation at Sandia Laboratories since 1967. The reactor is utilized in a wide variety of experimental programs which include radiation effects, neutron radiography, activation analysis, and fast reactor safety. During the past two years, the ACPR has become an important experimental facility for the United States Fast Reactor Safety Research Program and questions of interest to the safety of the LMFBR are being addressed. In order to enhance the capabilities of the ACPR for reactor safety experiments, a project to improve the performance of the reactor was initiated. It is anticipated that the pulse fluence can be increased by a factor of 2.0 to 2.5 by utilizing a two-region core concept with high heat capacity fuel elements around the central irradiation cavity. In addition, the steady-state power of the reactor will be increased by about a factor of two. Preliminary studies have identified several potential approaches to the ACPR performance improvement. The most promising approach appears to be the two-region core concept. The inner region, surrounding the irradiation cavity, would consist of a high-heat capacity fuel capable of absorbing the fission energy associated with a large nuclear pulse. The number of fissions occurring near the cavity would be greatly increased which, in turn, would significantly increase the fluence in the cavity. The outer region would consist of a U-ZrH fuel to provide an overall negative temperature coefficient for the two region core. Two candidate high heat capacity fuels [(BeO-UO{sub 2} and UC-ZrC) - graphite] are under consideration. Since this reactor upgrade represents a modification to an existing facility, it can be achieved in a relatively short time. It is anticipated that most of the existing reactor structure can be used for the upgrade. The present core occupies about one-half of the location in the grid plate. The high-heat capacity fuel

  7. Structural performance of a graphite blanket in fusion reactors

    International Nuclear Information System (INIS)

    Wolfer, W.G.; Watson, R.D.

    1978-01-01

    Irradiation of graphite in a fusion reactor causes dimensional changes, enhanced creep, and changes in elastic properties and fracture strength. Temperature and flux gradients through the graphite blanket structure produce differential distortions and stress gradients. An inelastic stress analysis procedure is described which treats these variations of the graphite properties in a consistent manner as dictated by physical models for the radiation effects. Furthermore, the procedure follows the evolution of the stress and fracture strength distributions during the reactor operation as well as for possible shutdowns at any time. The lifetime of the graphite structure can be determined based on the failure criterion that the stress at any location exceeds one-half of the fracture strength. This procedure is applied to the most critical component of the blanket module in the SOLASE design

  8. Fracture toughness testing of a reactor grade graphite

    Energy Technology Data Exchange (ETDEWEB)

    Roeding, M.; Klein, G.; Schiffers, H.; Nickel, H.

    1976-03-15

    Fracture mechanics is a well established tool for the assessment of brittle fracture in metallic structural materials. In this paper an attempt is made to apply fracture mechanics to a reactor-grade graphite. The effect of several test parameters on the stress intensity factor was measured; this was found to lie in the range 25 and 50 N/mm/sup -3/2/. The results are discussed in terms of the well known mechanical characteristics of graphite.

  9. Graphite development for gas-cooled reactors in the USA

    International Nuclear Information System (INIS)

    Burchell, T.D.

    1991-01-01

    This document discusses Modular High-Temperature Gas-Cooled Reactor (MHTGR) graphite activities in the USA which currently include the following research and development tasks: coke examination; effects of irradiation; variability of physical properties (mechanical, thermal-physical, and fracture); fatigue behavior, oxidation behavior; NDE techniques; structural design criteria; and carbon-carbon composite control rod clad materials. These tasks support nuclear grade graphite manufacturing technology including nondestructive examination of billets and components. Moreover, data shall be furnished to support design and licensing of graphite components for the MHTGR

  10. Graphite-water steam-generating reactor in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Dollezhal, N A [AN SSSR, Moscow

    1981-10-01

    One of the types of power reactor used in the USSR is the graphite-water steam-generating reactor RBMK. This produces saturated steam at a pressure of 7MPa. Reactors giving 1GWe each have been installed at the Leningrad, Kursk, Chernobyl and other power stations. Further stations using reactors of this type are being built. A description is given of the fuel element design, and of the layout of the plant. The main characteristics of RBMK reactors using fuel of rated and higher enrichment are listed.

  11. Nonlinear seismic analysis of a graphite reactor core

    International Nuclear Information System (INIS)

    Laframboise, W.L.; Desmond, T.P.

    1988-01-01

    Design and construction of the Department of Energy's N-Reactor located in Richland, Washington was begun in the late 1950s and completed in the early 1960s. Since then, the reactor core's structural integrity has been under review and is considered by some to be a possible safety concern. The reactor core is moderated by graphite. The safety concern stems from the degradation of the graphite due to the effects of long-term irradiation. To assess the safety of the reactor core when subjected to seismic loads, a dynamic time-history structural analysis was performed. The graphite core consists of 89 layers of numerous graphite blocks which are assembled in a 'lincoln-log' lattice. This assembly permits venting of steam in the event of a pressure tube rupture. However, such a design gives rise to a highly nonlinear structure when subjected to earthquake loads. The structural model accounted for the nonlinear interlayer sliding and for the closure and opening of gaps between the graphite blocks. The model was subjected to simulated earthquake loading, and the time-varying response of selected elements critical to safety were monitored. The analytically predicted responses (displacements and strains) were compared to allowable responses to assess margins of safety. (orig.)

  12. PUSPATI Triga Reactor pulsing parameters

    International Nuclear Information System (INIS)

    Gui Ah Auu; Puad Haji Abu; Yaziz Yunus

    1984-01-01

    The pulsing experiment was carried out as part of the commissioning activites of PUSPATI TRIGA Reactor (PTR). Several parameters of PTR were deduced from the experiment. It was found that the maximum temperature of the fuel was far below the safety limit when the maximum allowable positive reactivity of $3.00 was inserted into the core. The peak power achieved was 1354 Mw. (author)

  13. High heat flux experiment on isotropic graphite using pulsed laser beam

    International Nuclear Information System (INIS)

    Kizaki, Hiroshi; Tokunaga, Kazutoshi; Fukuda, Shigehisa; Yoshida, Naoaki; Muroga, Takeo.

    1989-01-01

    In order to examine the plasma-withstanding behavior of isotropic graphite which is the leading favorite material for the first wall of nuclear fusion reactors, the pulsed thermal loading experiment was carried out by using a laser. As the result of analyzing the gas which was emitted during the pulsed thermal loading, together with the formation and release of various hydrocarbon gases, also the formation of carbon clusters due to the sublimation of carbon was observed. The vacuum characteristics and the dependence on thermal loading condition and surface treatment condition of these released gases were determined, and the problems and the way of improvement in its application to nuclear fusion reactors were elucidated. Since the isotropic graphite is of low atomic number, the radiation loss in plasma is small, and the improvement of the plasma parameters can be expected. Besides, the heat resistance and high temperature stability in vacuum are good, and the induced radioactivity is low. On the other hand, the quantity of gas occlusion is much, various hydrocarbon gases are formed at high temperature, and the wear due to sublimation arises by very high thermal loading. The experimental method, the observation of graphite surface by SEM, and the effect of carbon coating due to thermal decomposition are reported. (K.I.)

  14. Assessment of management modes for graphite from reactor decommissioning

    International Nuclear Information System (INIS)

    White, I.F.; Smith, G.M.; Saunders, L.J.; Kaye, C.J.; Martin, T.J.; Clarke, G.H.; Wakerley, M.W.

    1984-01-01

    A technological and radiological assessment has been made of the management options for irradiated graphite wastes from the decommissioning of Magnox and advanced gas-cooled reactors. Detailed radionuclide inventories have been estimated, the main contribution being from activation of the graphite and its stable impurities. Three different packaging methods for graphite have been described; each could be used for either sea or land disposal, is logistically feasible and could be achieved at reasonable cost. Leaching tests have been carried out on small samples of irradiated graphite under a variety of conditions including those of the deep ocean bed; the different conditions had little effect on the observed leach rates of radiologically significant radionuclides. Radiological assessments were made of four generic options for disposal of packaged graphite: on the deep ocean bed, in deep geologic repositories at two different types of site, and by shallow land burial. Incineration of graphite was also considered, though this option presents logistical problems. With appropriate precautions during the lifetime of the Cobalt-60 content of the graphite, any of the options considered could give acceptably low doses to individuals, and all would merit further investigation in site-specific contexts

  15. Carbon-14 in neutron-irradiated graphite for graphite-moderated reactors. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsuo, Hideto [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokyo (Japan)

    2002-12-01

    The graphite moderated gas cooled reactor operated by the Japan Atomic Power Company was stopped its commercial operation on March 1998, and the decommissioning process has been started. Graphite material is often used as the moderator and the reflector materials in the core of the gas cooled reactor. During the operation, a long life nuclide of {sup 14}C is generated in the graphite by several transmutation reactions. Separation of {sup 14}C isotope and the development of the separation method have been recognized to be critical issues for the decommissioning of the reactor core. To understand the current methodologies for the carbon isotope separation, literature on the subject was surveyed. Also, those on the physical and chemical behavior of {sup 14}C were surveyed. This is because the larger part of the nuclides in the graphite is produced from {sup 14}N by (n,p) reaction, and the location of them in the material tends to be different from those of the other carbon atoms. This report summarizes the result of survey on the open literature about the behavior of {sup 14}C and the separation methods, including the list of the literature on these subjects. (author)

  16. Graphite stack corrosion of BUGEY-1 reactor (synthesis)

    International Nuclear Information System (INIS)

    Petit, A.; Brie, M.

    1996-01-01

    The definitive shutdown date for the BUGEY-1 reactor was May 27th, 1994, after 12.18 full power equivalent years and this document briefly describes some of the feedback of experience from operation of this reactor. The radiolytic corrosion of graphite stack is the major problem for BUGEY-1 reactor, despite the inhibition of the reaction by small quantities of CH 4 added to the coolant gas. The mechanical behaviour of the pile is predicted using the ''INCA'' code (stress calculation), which uses the results of graphite weight loss variation determined using the ''USURE'' code. The weight loss of graphite is determined by annually taking core samples from the channel walls. The results of the last test programme undertaken after the definitive shutdown of BUGEY-1 have enabled an experimental graph to be established showing the evolution of the compression resistance (perpendicular and parallel direction to the extrusion axis) as a function of the weight loss. The numerous analyses, made on the samples carried out in the most sensitive regions, have allowed to verify that no brutal degradation of the mechanical properties of graphite happens for the high value of weight loss up to 40% (maximum weight loss reached locally). (author). 10 refs, 3 figs, 4 tabs

  17. From USA operation experience of industrial uranium-graphite reactors

    International Nuclear Information System (INIS)

    Burdakov, N.S.

    1996-01-01

    The review on materials, presented by a group of the USA specialists at the seminar in Moscow on October 9-11, 1995 is considered. The above specialists shared their experience in operation of the Hanford industrial reactors, aimed at plutonium production for atomic bombs. The purpose of the above visit consisted in providing assistance to the Russian specialists by evaluation and modernization of operational conditions safety improvement of the RBMK type reactors. Special attention is paid to the behaviour of the graphite lining and channel tubes with an account of possible channel power interaction with the reactor structural units. The information on the experience of the Hanford reactor operation may be useful for specialists, operating the RBMK type reactors

  18. Project accent: graphite irradiated creep in a materials test reactor

    International Nuclear Information System (INIS)

    Brooking, M.

    2014-01-01

    Atkins manages a pioneering programme of irradiation experiments for EDF Energy. One of these projects is Project ACCENT, designed to obtain evidence of a beneficial physical property of the graphite, which may extend the life of the Advanced Gas-cooled Reactors (AGRs). The project team combines the in-house experience of EDF Energy with two supplier organisations (providing the material test reactors and testing facilities) and supporting consultancies (Atkins and an independent technical expert). This paper describes: - Brief summary of the Project; - Discussion of the challenges faced by the Project; and - Conclusion elaborating on the aims of the Project. These challenging experiments use bespoke technology and both un-irradiated (virgin) and irradiated AGR graphite. The results will help to better understand graphite irradiation-induced creep (or stress modified dimensional change) properties and therefore more accurately determine lifetime and safe operating envelopes of the AGRs. The first round of irradiation has been completed, with a second round about to commence. This is a key step to realising the full lifetime ambition for AGRs, demonstrating the relaxation of stresses within the graphite bricks. (authors)

  19. Sandia Pulse Reactor-IV Project

    International Nuclear Information System (INIS)

    Reuscher, J.A.

    1983-01-01

    Sandia National Laboratories has developed, designed and operated fast burst reactors for over 20 years. These reactors have been used for a variety of radiation effects programs. During this period, programs have required larger irradiation volumes primarily to expose complex electronic systems to postulated threat environments. As experiment volumes increased, a new reactor was built so that these components could be tested. The Sandia Pulse Reactor-IV is a logical evolution of the two decades of fast burst reactor development at Sandia

  20. Graphite and carbonaceous materials in a molten salt nuclear reactor

    International Nuclear Information System (INIS)

    Rousseau, Ginette; Lecocq, Alfred; Hery, Michel.

    1982-09-01

    A project for a molten salt 1000 MWe reactor is studied by EDF-CEA teams. The design provides for a chromesco 3 vessel housing graphite structures in which the salt circulates. The salt (Th, U, Be and Li fluorides) is cooled by direct contact with lead. The graphites and carbonated materials, inert with respect to lead and the fuel salt, are being considered not only as moderators, but as reflectors and in the construction of the sections where the heat exchange takes place. On the basis of the problems raised in the operation of the reactor, a study programme on French experimental materials (Le Carbone Lorraine, SERS, SEP) has been defined. Hence, depending on the function or functions that the material is to ensure in the structure, the criteria of choice which follow will have to be examined: behaviour under irradiation, insertion of a fluid in the material, thermal properties required, mechanical properties required, utilization [fr

  1. Some equipment for graphite research in swimming pool reactors

    International Nuclear Information System (INIS)

    Seguin, M.; Arragon, Ph.; Dupont, G.; Gentil, J.; Tanis, G.

    1964-01-01

    The irradiation devices described are used for research concerning reactors of the natural uranium type, moderated by graphite and cooled by carbon dioxide. The devices are generally designed for use in swimming pool reactors. The following points have been particularly studied: - maximum use of the irradiation volume, - use of the simplest technological solutions, - standardization of certain constituent parts. This standardization calls for precision machining and careful assembling; these requirements are also true when a relatively low irradiation temperature is required and the nuclear heating is pronounced. Finally, the design of these devices is suitable for the irradiation of other fissile or non-fissile materials. (authors) [fr

  2. Irradiated graphite studies prior to decommissioning of G1, G2 and G3 reactors

    International Nuclear Information System (INIS)

    Bonal, J.P.; Vistoli, J.Ph.; Combes, C.

    2005-01-01

    G1 (46 MW th ), G2 (250 MW th ) and G3 (250 MW th ) are the first French plutonium production reactors owned by CEA (Commissariat a l'Energie Atomique). They started to be operated in 1956 (G1), 1959 (G2) and 1960 (G3); their final shutdown occurred in 1968, 1980 and 1984 respectively. Each reactor used about 1200 tons of graphite as moderator, moreover in G2 and G3, a 95 tons graphite wall is used to shield the rear side concrete from neutron irradiation. G1 is an air cooled reactor operated at a graphite temperature ranging from 30 C to 230 C; G2 and G3 are CO 2 cooled reactors and during operation the graphite temperature is higher (140 C to 400 C). These reactors are now partly decommissioned, but the graphite stacks are still inside the reactors. The graphite core radioactivity has decreased enough so that a full decommissioning stage may be considered. Conceming this decommissioning, the studies reported here are: (i) stored energy in graphite, (ii) graphite radioactivity measurements, (iii) leaching of radionuclide ( 14 C, 36 Cl, 63 Ni, 60 Co, 3 H) from graphite, (iv) chlorine diffusion through graphite. (authors)

  3. From reactors to long pulse sources

    International Nuclear Information System (INIS)

    Mezei, F.

    1995-01-01

    We will show, that by using an adapted instrumentation concept, the performance of a continuous source can be emulated by one switch on in long pulses for only about 10% of the total time. This 10 fold gain in neutron economy opens up the way for building reactor like sources with an order of magnitude higher flux than the present technological limits. Linac accelerator driven spallation lends itself favorably for the realization of this kind of long pulse sources, which will be complementary to short pulse spallation sources, the same way continuous reactor sources are

  4. MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR

    Science.gov (United States)

    A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...

  5. Graphites and composites irradiations for gas cooled reactor core structures

    International Nuclear Information System (INIS)

    Van der Laan, J.G.; Vreeling, J.A.; Buckthorpe, D.E.; Reed, J.

    2008-01-01

    Full text of publication follows. Material investigations are undertaken as part of the European Commission 6. Framework Programme for helium-cooled fission reactors under development like HTR, VHTR, GCFR. The work comprises a range of activities, from (pre-)qualification to screening of newly designed materials. The High Flux Reactor at Petten is the main test bed for the irradiation test programmes of the HTRM/M1, RAPHAEL and ExtreMat Integrated Projects. These projects are supported by the European Commission 5. and 6. Framework Programmes. To a large extent they form the European contribution to the Generation-IV International Forum. NRG is also performing a Materials Test Reactor project to support British Energy in preparing extended operation of their Advanced Gas-cooled Reactors (AGR). Irradiations of commercial and developmental graphite grades for HTR core structures are undertaken in the range of 650 to 950 deg C, with a view to get data on physical and mechanical properties that enable engineering design. Various C- and SiC-based composite materials are considered for support structures or specific components like control rods. Irradiation test matrices are chosen to cover commercial materials, and to provide insight on the behaviour of various fibre and matrix types, and the effects of architecture and manufacturing process. The programme is connected with modelling activities to support data trending, and improve understanding of the material behaviour and micro-structural evolution. The irradiation programme involves products from a large variety of industrial and research partners, and there is strong interaction with other high technology areas with extreme environments like space, electronics and fusion. The project on AGR core structures graphite focuses on the effects of high dose neutron irradiation and simultaneous radiolytic oxidation in a range of 350 to 450 deg C. It is aimed to provide data on graphite properties into the parameter space

  6. Management of graphite material: a key issue for High Temperature Gas Reactor system (HTGR)

    International Nuclear Information System (INIS)

    Bourdeloie, C.; Marimbeau, P.; Robin, J.C.; Cellier, F.

    2005-01-01

    Graphite material is used in nuclear High Temperature Gas-cooled Reactors (HTGR, Fig.1) as moderator, thermal absorber and also as structural components of the core (Fig.2). This type of reactor was selected by the Generation IV forum as a potential high temperature provider for supplying hydrogen production plants and is under development in France in the frame of the AREVA ANTARES program. In order to select graphite grades to be used in these future reactors, the requirements for mechanical, thermal, physical-chemical properties must match the internal environment of the nuclear core, especially with regard to irradiation effect. Another important aspect that must be addressed early in design is the waste issue. Indeed, it is necessary to reduce the amount of nuclear waste produced by operation of the reactor during its lifetime. Preliminary assessment of the nuclear waste output for an ANTARES type 280 MWe HTGR over 60 year-lifetime gives an estimated 6000 m 3 of activated graphite waste. Thus, reducing the graphite waste production is an important issue for any HTGR system. First, this paper presents a preliminary inventory of graphite waste fluxes coming from a HTGR, in mass and volume, with magnitudes of radiological activities based on activation calculations of graphite during its stay in the core of the reactor. Normalized data corresponding to an output of 1 GWe.year electricity allows comparison of the waste production with other nuclear reactor systems. Second, possible routes to manage irradiated graphite waste are addressed in both the context of French nuclear waste management rules and by comparison to other national regulations. Routes for graphite waste disposal studied in different countries (concerning existing irradiated graphite waste) will be discussed with regard to new issues of large graphite waste from HTGR. Alternative or complementary solutions aiming at lowering volume of graphite waste to be managed will be presented. For example

  7. Reactor kinetics - pulse and steady state

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B F; Morris, F M [Sandia Laboratories (United States)

    1974-07-01

    An analytical model has been developed which couples the nuclear and thermal characteristics of the Annular Core Pulse Reactor (ACPR) into a solution which describes both the neutron kinetics of the reactor and the temperature behavior of a fuel-moderator element. The model describes both pulse and steady state operations. This paper describes the important aspects of the reactor, the fuel- moderator elements, the neutron kinetic equations of the reactor, and the time-temperature behavior of a fuel-moderator element that is being subjected to the maximum power density in the core. The parameters which are utilized in the equations are divided into two classes, those that can be measured directly and those that are assumed to be known (each is described briefly). Some of the solutions which demonstrate the versatility of the analytical model are described. (author)

  8. Fracture criteria of reactor graphite under multiaxial stresses

    International Nuclear Information System (INIS)

    Sato, S.; Kawamata, K.; Kurumada, A.; Oku, T.

    1987-01-01

    New fracture criteria for graphite under multiaxial stresses are presented for designing core and support materials of a high temperature gas cooled reactor. Different kinds of fracture strength tests are carried out for a near isotropic graphite IG-11. Results show that, under the stress state in which tensile stresses are predominant, the maximum principal stress theory is seen as applicable for brittle fracture. Under the stress state in which compressive stresses are predominant there may be two fracture modes for brittle fracture, namely, slipping fracture and mode II fracture. For the former fracture mode the maximum shear stress criterion is suitable, but for the latter fracture mode a new mode II fracture criterion including a restraint effect for cracks is verified to be applicable. Also a statistical correction for brittle fracture criteria under multiaxial stresses is discussed. By considering the allowable stress values for safe design, the specified minimum ultimate strengths corresponding to a survival probability of 99% at the 95% confidence level are presented. (orig./HP)

  9. Study of graphitic microstructure formation in diamond bulk by pulsed Bessel beam laser writing

    Science.gov (United States)

    Kumar, S.; Sotillo, B.; Chiappini, A.; Ramponi, R.; Di Trapani, P.; Eaton, S. M.; Jedrkiewicz, O.

    2017-11-01

    The advantages of using Bessel beams for the generation of graphitic structures in diamond bulk are presented. We show that by irradiating the sample with a pulsed Bessel beam whose non-diffracting zone is of the same order of the sample thickness, it is possible to produce without any sample translation straight graphitic through-microstructures, whose size depends on the input pulse energy. The microstructure growth is investigated as a function of the number of irradiating pulses, and the femtosecond and picosecond regimes are contrasted.

  10. Pulsed reactors: A dissenting view

    International Nuclear Information System (INIS)

    Ganev, I.Kh.; Orlov, V.V.

    1995-01-01

    The preceding article, by G.A. Ivanov et al., contains interesting estimates of the expanded production of plutonium in thermonuclear explosions initiated by plutonium charges. It must be noted that more than 40 years of efforts, despite some technical successes, have not led to a fast-reactor technology suitable for large-scale power production. This explains the incessant search for a nuclear technology for the future and the renewed interest in accelerator, hybrid, and explosive approaches to plutonium production. The success of such efforts will depend largely on the formulation of goals and the choice of the principal criteria. It is appropriate to discuss these issues here because the adoption of the rate of plutonium production or the plutonium doubling time as the principal criterion sets the stage for the repetition of previous errors. However, as a preliminary, I would like to question some categorical assertions that were made by Ivanov et al. without the presentation of adequate supporting data (the assertions that open-quotes the creation of an power industry on the basis of ordinary breeder reactors is practically impossibleclose quotes and that open-quotes adequate power generation in the 21st centuryclose quotes is impossible). In fact, it is simple to calculate that, given a realistic doubling time for fast reactors of ∼10 years and the plutonium produced by thermal reactors (around 10 12 W), it would be possible, if so desired, to introduce power far exceeding 10 14 W in the 21st century

  11. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2000-01-01

    As a result of decommissioning of water-cooled graphite-moderated reactors, a large amount of rad-waste in the form of graphite stack fragments is generated (on average 1500-2000 tons per reactor). That is why it is essentially important, although complex from the technical point of view, to develop advanced technologies based on up-to-date remotely-controlled systems for unmanned dismantling of the graphite stack containing highly-active long-lived radionuclides and for conditioning of irradiated graphite (IG) for the purposes of transportation and subsequent long term and ecologically safe storage either on NPP sites or in special-purpose geological repositories. The main characteristics critical for radiation and nuclear hazards of the graphite stack are as follows: the graphite stack is contaminated with nuclear fuel that has gotten there as a result of the accidents; the graphite mass is 992 tons, total activity -6?104 Ci (at the time of unit shutdown); the fuel mass in the reactor stack amounts to 100-140 kg, as estimated by IPPE and RDIPE, respectively; γ-radiation dose rate in the stack cells varies from 4 to 4300 R/h, with the prevailing values being in the range from 50 to 100 R/h. In this paper the traditional methods of rad-waste handling as bituminization technology, cementing technology are discussed. In terms of IG handling technology two lines were identified: long-term storage of conditioned IG and IG disposal by means of incineration. The specific cost of graphite immobilization in a radiation-resistant polymeric matrix amounts to -2600 USD per 1 t of graphite, whereas the specific cost of immobilization in slag-stone containers with an inorganic binder (cement) is -1400 USD per 1 t of graphite. On the other hand, volume of conditioned IG rad-waste subject for disposal, if obtained by means of the first technology, is 2-2.5 times less than the volume of rad-waste generated by means of the second technology. It can be concluded from the above that

  12. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  13. Characterization, treatment and conditioning of radioactive graphite from decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    2006-09-01

    Graphite has been used as a moderator and reflector of neutrons in more than 100 nuclear power plants and in many research and plutonium-production reactors. It is used primarily as a neutron reflector or neutron moderator, although graphite is also used for other features of reactor cores, such as fuel sleeves. Many of the graphite-moderated reactors are now quite old, with some already shutdown. Therefore radioactive graphite dismantling and the management of radioactive graphite waste are becoming an increasingly important issue for a number of IAEA Member States. Worldwide, there are more than 230 000 tonnes of radioactive graphite which will eventually need to be managed as radioactive waste. Proper management of radioactive graphite waste requires complex planning and the implementation of several interrelated operations. There are two basic options for graphite waste management: (1) packaging of non-conditioned graphite waste with subsequent direct disposal of the waste packages, and (2) conditioning of graphite waste (principally either by incineration or calcination) with separate disposal of any waste products produced, such as incinerator ash. In both cases, the specific properties of graphite - such as Wigner energy, graphite dust explosibility, and radioactive gases released from waste graphite - have a potential impact on the safety of radioactive graphite waste management and need to be carefully considered. Radioactive graphite waste management is not specifically addressed in IAEA publications. Only general and limited information is available in publications dealing with decommissioning of nuclear reactors. This report provides a comprehensive discussion of radioactive graphite waste characterization, handling, conditioning and disposal throughout the operating and decommissioning life cycle. The first draft report was prepared at a meeting on 23-27 February 1998. A technical meeting (TM) was held in October 1999 in coincidence with the Seminar on

  14. Radionuclide characterization of graphite stacks from plutonium production reactors of the Siberian group of chemical enterprises

    International Nuclear Information System (INIS)

    Bushuev, A.V.; Verzilov, Yu.M.; Zubarev, V.N.

    2001-01-01

    The residual radionuclide concentrations and distributions in graphite from moderator stack of plutonium production reactors at Tomsk-7 have been investigated. It was found that the dominant activity of graphite is 14 C. To gain information on surface and volume contamination of graphite blocks from the moderator stack, the special sets of samples were collected and assayed. The schemes are proposed for evaluation of individual radionuclide inventories together with results of the evaluations performed. (author)

  15. Graphite

    Science.gov (United States)

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  16. Developments in natural uranium - graphite reactors; Developpement des reacteurs a graphite et uranium naturel

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Saitcevsky, B [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The French natural uranium-graphite power-reactor programme has been developing - from EDF 1 to EDF 4 - in the direction of an increase of the unit power of the installations, of the specific and volume powers, and of an improvement in the operational security conditions. The high power of EDF 4 (500 MWe) and the integration of the primary circuit into the reactor vessel, which is itself made of pre-stressed concrete, make it possible to make the most of the annular fuel elements already in use in EDF 1, and to arrive thus at a very satisfactory solution. The use of an internally cooled fuel element (an annular element) has led to a further step forward: it now becomes possible to increase the pressure of the cooling gas without danger of causing creep in the uranium tube. The use of a pre-stressed concrete vessel makes this pressure increase possible, and the integration of the primary circuit avoids the risk of a rapid depressurization which would be in this case a major danger. This report deals with the main problems presented by this new type of nuclear power station, and gives the main lines of research and studies now being carried out in France. - Neutronic and thermal research has made it possible to consider using large size fuel elements (internal diameter = 77 mm, external diameter 95 mm) while still using natural uranium. - The problems connected with the production of these elements and with their in pile behaviour are the subject of a large programme, both out of pile and in power reactors (EDF 2) and test reactors (Pegase). - The increase in the size of the element leads to a large lattice pitch (35 to 40 cm). This makes it possible to consider having one charging aperture per channel or for a small number of channels, whether the charge machine be inside or outside the pressure vessel. In conclusion are given the main characteristics of a project for a 500 MWe power station using such a fuel element. In particular this project is compared to EDF 4

  17. Developments in natural uranium - graphite reactors; Developpement des reacteurs a graphite et uranium naturel

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Saitcevsky, B. [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The French natural uranium-graphite power-reactor programme has been developing - from EDF 1 to EDF 4 - in the direction of an increase of the unit power of the installations, of the specific and volume powers, and of an improvement in the operational security conditions. The high power of EDF 4 (500 MWe) and the integration of the primary circuit into the reactor vessel, which is itself made of pre-stressed concrete, make it possible to make the most of the annular fuel elements already in use in EDF 1, and to arrive thus at a very satisfactory solution. The use of an internally cooled fuel element (an annular element) has led to a further step forward: it now becomes possible to increase the pressure of the cooling gas without danger of causing creep in the uranium tube. The use of a pre-stressed concrete vessel makes this pressure increase possible, and the integration of the primary circuit avoids the risk of a rapid depressurization which would be in this case a major danger. This report deals with the main problems presented by this new type of nuclear power station, and gives the main lines of research and studies now being carried out in France. - Neutronic and thermal research has made it possible to consider using large size fuel elements (internal diameter = 77 mm, external diameter 95 mm) while still using natural uranium. - The problems connected with the production of these elements and with their in pile behaviour are the subject of a large programme, both out of pile and in power reactors (EDF 2) and test reactors (Pegase). - The increase in the size of the element leads to a large lattice pitch (35 to 40 cm). This makes it possible to consider having one charging aperture per channel or for a small number of channels, whether the charge machine be inside or outside the pressure vessel. In conclusion are given the main characteristics of a project for a 500 MWe power station using such a fuel element. In particular this project is compared to EDF 4

  18. Calculation of the Thermal State of the Graphite Moderator of the RBMK Reactor

    Directory of Open Access Journals (Sweden)

    Vorobiev Alexander V.

    2017-01-01

    Full Text Available This work is devoted to study the temperature field of the graphite stack of the RBMK reactor. In work was analyzed the influence of contact pressure between the components of the masonry on the temperature of the graphite moderator.

  19. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE.

    Science.gov (United States)

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  20. Temperature control of the graphite stack of the reactor RBMK-1500

    International Nuclear Information System (INIS)

    Lesnoj, S.

    1998-01-01

    The paper includes general information about RBMK-1500 reactor, construction features and main technical data; graphite moderator stack, temperature channel, thermocouple TXA-1379, its basic technical and metrologic parameters as well as its advantages and disadvantages

  1. Design considerations for epithermal pulse reactors

    International Nuclear Information System (INIS)

    Ostensen, R.W.

    1978-01-01

    Simplified design criteria were developed for scoping analyses of epithermal pulse reactors for use in LMFBR safety testing. By using these criteria, materials and designs were investigated to determine performance limits of moderately sized reactor cores. Several designs are suggested for further study. These are a gas-cooled core fueled with a heterogeneous mixture of Fe-UO 2 cermet and BeO-UO 2 ceramic fuels, and a heavy-water-cooled core fueled with an Fe-UO 2 cermet

  2. Structural characteristics of a graphite moderated critical assembly for a Zero Power reactor at IEA (Brazil)

    International Nuclear Information System (INIS)

    Almeida Ferreira, A.C. de; Hukai, R.Y.

    1975-01-01

    The structural characteristics of a graphite moderated core of a critical assembly to be installed in the Zero Power Reactor of IEA have been defined. These characteristics are the graphite block dimensions, the number and dimensions of the holes in the graphite, the pitch, the dimensions of the sticks of fuel and graphite to be inserted in the holes, and the mechanical reproducibility of the system. The composition of the fuel and moderator sticks were also defined. The main boundary conditions were the range of the relation C/U and C/TH used in commercial HTGR and the neutronics homogeneity

  3. A safety assessment of the use of graphite in nuclear reactors licensed by the US NRC

    International Nuclear Information System (INIS)

    Schweitzer, D.G.; Gurinsky, D.H.; Kaplan, E.; Sastre, C.

    1987-09-01

    This report reviews existing literature and knowledge on graphite burning and on stored energy accumulation and releases in order to assess what role, if any, a stored energy release can have in initiating or contributing to hypothetical graphite burning scenarios in research reactors. It also addresses the question of graphite ignition and self-sustained combustion in the event of a loss-of-coolant accident (LOCA). The conditions necessary to initiate and maintain graphite burning are summarized and discussed. From analyses of existing information it is concluded that only stored energy accumulations and releases below the burning temperature (650 0 C) are pertinent. After reviewing the existing knowledge on stored energy it is possible to show that stored energy releases do not occur spontaneously, and that the maximum stored energy that can be released from any reactor containing graphite is a very small fraction of the energy produced during the first few minutes of a burning incident. The conclusions from these analyses are that the potential to initiate or maintain a graphite burning incident is essentially independent of the stored energy in the graphite, and depends on other factors that are unique for these reactors, research reactors, and for Fort St. Vrain. In order to have self-sustained rapid graphite oxidation in any of these reactors, certain necessary conditions of geometry, temperature, oxygen supply, reaction product removal, and a favorable heat balance must be maintained. There is no new evidence associated with either the Windscale Accident or the Chernobyl Accident that indicates a credible potential for a graphite burning accident in any of the reactors considered in this review

  4. Assessment of different mechanisms of C-14 production in irradiated graphite of RBMK-1500 reactors

    International Nuclear Information System (INIS)

    Narkunas, Ernestas; Smaizys, Arturas; Poskas, Povilas; Kilda, Raimondas

    2010-01-01

    Two RBMK-1500 water-cooled graphite-moderated channel-type power reactors at the Ignalina Nuclear Power Plant (INPP) are under decommissioning now. The total mass of irradiated graphite in the cores of both units is more than 3600 tons. The main source of uncertainty in the numerical assessment of graphite activity is the uncertainty of the initial impurities content in graphite. Nitrogen is one of the most important impurities, having a large neutron capture cross-section. This impurity may become the dominant source of C-14 production. RBMK reactors graphite stacks operate in the cooling mixture of helium-nitrogen gases and this may additionally increase the quantity of the nitrogen impurity. In this paper the results of the numerical modelling of graphite activation for the INPP Unit I reactor are presented. In order to evaluate the C-14 activity dependence on the nitrogen impurity content, several cases with different nitrogen content were modelled taking into account initial nitrogen impurity quantities in the graphite matrix and possible nitrogen quantities entrapped in the graphite pores from cooling gases. (orig.)

  5. Ageing Management of Beryllium and Graphite Blocks in Research Reactor MARIA

    Energy Technology Data Exchange (ETDEWEB)

    Golab, A. [National Centre for Nuclear Research, Warsaw (Poland)

    2013-07-01

    In the paper the phenomenon of beryllium moderator poisoning by thermal neutron absorption and the method and results of this phenomenon control is presented. Also the phenomenon of graphite blocks damage due to fast neutrons accumulation and the methods and results of this process supervising is described. These methods refer especially to: visual inspection of their state and radiography of graphite blocks. Special attention is paid to permanent estimate of fast neutron fluency accumulated in blocks and methods of their shuffling in the reactor core. The shuffling makes possible to increase the lifetime of beryllium and graphite blocks and decrease the cost of reactor operation.

  6. Studies on the behavior of graphite structures irradiated in the Dragon Reactor. Dragon Project report

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. R.; Graham, L. W.; Ridealgh, F.

    1971-11-15

    Design data for the physical and mechanical property changes which occur in graphite structural and fuel body components irradiated in an HTR are largely obtained from small specimens tested in the laboratory and in materials test reactors. A brief data summary is given. This graphite physics data can be used to predict dimensional changes, internal stress generation and strength changes in the graphite materials of HTR fuel elements irradiated in the Dragon Reactor. In this paper, the results which have been obtained from post-irradiation examination of a number of fuel pins, are compared with prediction.

  7. Conditioning for definitive storage of radioactive graphite bricks from reactor decommissioning

    International Nuclear Information System (INIS)

    Costes, J.R.; Koch, C.; Tassigny, C. de; Vidal, H.; Raymond, A.

    1990-01-01

    The decommissioning of gas-graphite reactors in the EC (e.g. French UNGGs, British Magnox reactors and AGRs, and reactors in Spain and in Italy) will produce large amounts of graphite bricks. This graphite cannot be accepted without particular conditioning by the existing shallow land disposal sites. The aim of the study is to examine the behaviour of graphite waste and to develop a conditioning technique which makes this waste acceptable for shallow land disposal sites. 18 kg of graphite core samples with an outside diameter of 74 mm were removed from the G2 gas-cooled reactor at Marcoule. Their radioactivity is highly dependent on the position of the graphite bricks inside the reactor. Measured results indicate an activity range of 100-400 MBq/kg with 90% Tritium, 5% 14 C, 3% 60 Co, 1.5% 63 Ni. Repeated porosity analyses showed that open porosity ranging from 0 to 100 μm exceeded 23 vol% in the graphite. Water penetration kinetics were investigated in unimpregnated graphite and resulted in impregnation by water of 50-90% of the open porosity. Preliminary lixiviation tests on the crude samples showed quick lixidegree of Cs (several per cent) and of 60 Co, and 133 Ba at a lesser degree. The proposed conditioning technique does not involve a simple coating but true impregnation by a tar-epoxy mixture. The bricks recovered intact from the core by robot services will be placed one by one inside a cylindrical metallic container. But this container may corrode and the bricks may become fragmented in the future, the normally porous graphite will be unaffected by leaching since it is proved that all pores larger than 0.1 μm will be filled with the tar-epoxy mixture. This is a true long-term waste packaging concept. The very simple technology required for industrial implementation is discussed

  8. Time resolved optical emission spectroscopy of cross-beam pulsed laser ablation on graphite targets

    International Nuclear Information System (INIS)

    Sangines, R.; Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    Cross-beam pulsed laser ablation with two delayed lasers is performed on two perpendicular graphite targets. The time delay between lasers is varied by up to 5 μs, and physical changes on the second plasma, due to the interaction with the first generated one, are determined by time resolved optical emission spectroscopy

  9. Draft of standard for graphite core components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Sawa, Kazuhiro; Eto, Motokuni; Kunimoto, Eiji; Shiozawa, Shusaku; Oku, Tatsuo; Maruyama, Tadashi

    2010-01-01

    For the design of the graphite components in the High Temperature Engineering Test Reactor (HTTR), the graphite structural design code for the HTTR etc. were applied. However, general standard systems for the High Temperature Gas-cooled Reactor (HTGR) have not been established yet. The authors had studied on the technical issues which is necessary for the establishment of a general standard system for the graphite components in the HTGR. The results of the study were documented and discussed at a 'Special committee on research on preparation for codes for graphite components in HTGR' at Atomic Energy Society of Japan (AESJ). As a result, 'Draft of Standard for Graphite Core Components in High Temperature Gas-cooled Reactor.' was established. In the draft standard, the graphite components are classified three categories (A, B and C) in the standpoints of safety functions and possibility of replacement. For the components in the each class, design standard, material and product standards, and in-service inspection and maintenance standard are determined. As an appendix of the design standard, the graphical expressions of material property data of 1G-110 graphite as a function of fast neutron fluence are expressed. The graphical expressions were determined through the interpolation and extrapolation of the irradiated data. (author)

  10. Experience of on-site disposal of production uranium-graphite nuclear reactor.

    Science.gov (United States)

    Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G

    2018-04-01

    The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Calculation of radiation heat generation on a graphite reflector side of IAN-R1 Reactor

    International Nuclear Information System (INIS)

    Duque O, J.; Velez A, L.H.

    1987-01-01

    Calculation methods for radiation heat generation in nuclear reactor, based on the point kernel approach are revisited and applied to the graphite reflector of IAN-R1 reactor. A Fortran computer program was written for the determination of total heat generation in the reflector, taking 1155 point in it

  12. Mechanical, chemical and radiological characterization of the graphite of the UNGG reactors type

    International Nuclear Information System (INIS)

    Bresard, I.; Bonal, J.P.

    2000-01-01

    In the framework of UNGG reactors type dismantling procedures, the characterization of the graphite, used as moderator, has to be realized. This paper presents the mechanical, chemical and radiological characterizations, the properties measured and gives some results in the case of the Bugey 1 reactor. (A.L.B.)

  13. Modelling of pulsed electron beam induced graphite ablation: Sublimation versus melting

    Science.gov (United States)

    Ali, Muddassir; Henda, Redhouane

    2017-12-01

    Pulsed electron beam ablation (PEBA) has recently emerged as a very promising technique for the deposition of thin films with superior properties. Interaction of the pulsed electron beam with the target material is a complex process, which consists of heating, phase transition, and erosion of a small portion from the target surface. Ablation can be significantly affected by the nature of thermal phenomena taking place at the target surface, with subsequent bearing on the properties, stoichiometry and structure of deposited thin films. A two stage, one-dimensional heat conduction model is presented to describe two different thermal phenomena accounting for interaction of a graphite target with a polyenergetic electron beam. In the first instance, the thermal phenomena are comprised of heating, melting and vaporization of the target surface, while in the second instance the thermal phenomena are described in terms of heating and sublimation of the graphite surface. In this work, the electron beam delivers intense electron pulses of ∼100 ns with energies up to 16 keV and an electric current of ∼400 A to a graphite target. The temperature distribution, surface recession velocity, ablated mass per unit area, and ablation depth for the graphite target are numerically simulated by the finite element method for each case. Based on calculation findings and available experimental data, ablation appears to occur mainly in the regime of melting and vaporization from the surface.

  14. Desorption of H atoms from graphite (0001) using XUV free electron laser pulses

    DEFF Research Database (Denmark)

    Siemer, B.; Olsen, Thomas; Hoger, T.

    2010-01-01

    The desorption of neutral H atoms from graphite with femtosecond XUV pulses is reported. The velocity distribution of the atoms peaks at extremely low kinetic energies. A DFT-based electron scattering calculation traces this distribution to desorption out of specific adsorption sites on graphite......, and identifies the highest vibrational state in the adsorbate potential as a major source for the slow atoms. It is evident that multiple electron scattering processes are required for this desorption. A direct electronic excitation of a repulsive hydrogen-carbon bond seems not to be important....

  15. A reverse method for the determination of the radiological inventory of irradiated graphite at reactor scale

    Energy Technology Data Exchange (ETDEWEB)

    Nicaise, Gregory [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-roses (France); Poncet, Bernard [EDF-DP2D, Lyon (France)

    2016-11-15

    Irradiated graphite waste will be produced from the decommissioning of the six gas-cooled nuclear reactors operated by Electricite De France (EDF). Determining the radionuclide content of this waste is an important legal commitment for both safety reasons and in order to determine the best suited management strategy. As evidenced by numerous studies nuclear graphite is a very pure material, however, it cannot be considered from an analytical viewpoint as a usual homogeneous material. Because of graphite high purity, radionuclide measurements in irradiated graphite exhibit very high discrepancies especially when corresponding to precursors at trace level. Therefore the assessment of a radionuclide inventory only based on few number of radiochemical measurements leads in most of cases to a gross over or under-estimation that can be detrimental to graphite waste management. A reverse method using an identification calculation-measurement process is proposed in order to assess the radionuclide inventory as precisely as possible.

  16. The use of graphite for the reduction of void reactivity in CANDU reactors

    International Nuclear Information System (INIS)

    Min, B.J.; Kim, B.G.; Sim, K-S.

    1995-01-01

    Coolant void reactivity can be reduced by using burnable poison in CANDU reactors. The use of graphite in the fuel bundle is introduced to reduce coolant void reactivity by adding an appropriate amount of burnable poison in the central rod. This study shows that sufficiently low void reactivity which in controllable by Reactor Regulating System (RRS) can be achieved by using graphite used fuel with slightly enriched uranium. Zero void reactivity can be also obtained by using graphite used fuel with a large central rod. A new fuel bundle with graphite rods can substantially reduce the void reactivity with less burnup penalty compared to previously proposed low void reactivity fuel with depleted uranium. (author)

  17. Pulsed Laser Deposition of Tungsten Thin Films on Graphite

    International Nuclear Information System (INIS)

    Kassem, W.; Tabbal, M.; Roumie, M.

    2011-01-01

    Thin coatings of Tungsten were deposited on substrates fabricated by pre-depositing graphite thin layers on Si(100) wafers. We ablate pure W target using a 20 ns KrF excimer laser (248 nm) in an Ar ambient. The effect of background gas pressure, substrate temperature, and laser fluence, on the properties of the deposited W layers is studied using several techniques including X-Ray Diffraction, Atomic Force Microscopy, surface profilometry, and Rutherford Back-Scattering spectrometry. Our results indicate that the deposited layers consist of the well-crystallized body-centered-cubic α-W phase with bulk-like properties, particularly for films deposited at a substrate temperature of 450 0 C, laser fluence greater than 400mJ, and pressure of about 10mTorr. (author)

  18. Calculation of reactivity of control rods in graphite moderated reactors

    International Nuclear Information System (INIS)

    Nakata, H.

    1978-01-01

    A study about the method of calculation for the reactivity of control rods in graphite-moderated critical assemblies, is presented. The result of theoretical calculation, developed by super celles and Nordheim-Scalettar methods are compared with experimental results for the critical Assembly of General Atomic. The two methods are then applicable to reactivity calculation of the control rods of graphite moderated critical assemblies [pt

  19. Thermodynamic Simulation of Equilibrium Composition of Reaction Products at Dehydration of a Technological Channel in a Uranium-Graphite Reactor

    Science.gov (United States)

    Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.

    2018-01-01

    The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.

  20. Study of graphite reactivity worth on well-defined cores assembled on LR-0 reactor

    International Nuclear Information System (INIS)

    Košťál, Michal; Rypar, Vojtěch; Milčák, Ján; Juříček, Vlastimil; Losa, Evžen; Forget, Benoit; Harper, Sterling

    2016-01-01

    Highlights: • A light water critical facility for graphite reactivity worth measurements. • Comparison of calculated and measured k eff . • Effect of graphite description on k eff . - Abstract: Graphite is an often-used moderating material on the basis of its good moderating power and very low absorption cross section. This small absorption cross section permits the use of natural or low-enriched uranium in graphite moderated reactors. Graphite is now being considered as the moderator for Fluoride-salt-cooled High Temperature Reactors (FHR). The critical moderator level was measured for various graphite block configurations in an experimental dry assembly of the LR-0 reactor. Comparisons with experiments were performed between Monte Carlo simulation tools for which satisfactory agreement was obtained with the exception of some systematic discrepancies. The larger discrepancies were observed when using the ENDF/B-VII.0 library. To decrease the uncertainties, based on conservative assumptions, relative comparisons were done. The results provided by the different nuclear data libraries are within 3 sigma interval of experimental uncertainties. It has been determined that differences between the results of calculations are caused by variations in the (n,n), (n,n′), (n,g) reactions and also by various angular distributions, while the (n,g) cross section variations play only a minor role for these configurations.

  1. Erosion of CFC, pyrolytic and boronated graphite under short pulsed laser irradiation

    International Nuclear Information System (INIS)

    Kraaij, G.J.; Bakker, J.; Stad, R.C.L. van der

    1992-07-01

    The effect of short pulsed laser irradiation of '0/3' ms and up to 10 MJ/m 2 on different types of carbon base materials is described. These materials are investigated as candidate protection materials for the Plasma Facing Components of NET/ITER. These materials are: carbon fibre composite graphite, pyrolytic graphite and boronated graphite. The volume of the laser induced craters was measured with an optical topographic scanner, and these data are evaluated with a simple model for the erosion. As a results, the enthalpy of ablation is estimated as 30±3 MJ/kg. A comparison is made with finite element numerical calculations, and the effect of lateral heat transfer is estimated using an analytical model. (author). 8 refs., 23 figs., 4 tabs

  2. Fuel elements for high temperature reactors having special suitability for reuse of the structural graphite

    International Nuclear Information System (INIS)

    Huschka, H.; Herrmann, F.J.

    1976-01-01

    There are prepared fuel elements for high temperature reactors from which the fuel zone can be removed from the structural graphite after the burnup of the fissile material has taken place so that the fuel element can be filled with new fuel and again placed in the reactor by having the strength of the matrix in the fuel zone sufficient for binding the embedded coated fuel particles but substantially less than the strength of the structural graphite whereby by the action of force it can be easily split up without destroying the particles

  3. Graphite-moderated and heavy water-moderated spectral shift controlled reactors; Reactores de moderador solido controlados por desplazamiento espectral

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F

    1984-07-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs.

  4. An evaluation on environment radiation impact of pulsed reactor

    International Nuclear Information System (INIS)

    Gao Yingwei; Pu Gongxu; Li Jian

    1991-01-01

    The dose regulation, assessment scope and assessment method adopted by the environment impact evaluation for the pulsed reactor are discussed. The compute model, the compute programme and the compute result of the dose adopted for the model pulsed reactor are introduced. The probable environment radiation impact under normal status and accident status are also appraised

  5. Graphite-moderated and heavy water-moderated spectral shift controlled reactors

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1984-01-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs

  6. Pulse Star inertial confinement fusion reactor

    International Nuclear Information System (INIS)

    Blink, J.A.; Hogan, W.J.

    1985-01-01

    Pulse Star is a pool-type ICF reactor that emphasizes low cost and high safety levels. The reactor consists of a vacuum chamber (belljar) submerged in a compact liquid metal (Li 17 Pb 83 or lithium) pool which also contains the heat exchangers and liquid metal pumps. The shielding efficiency of the liquid metal pool is high enough to allow hands-on maintenance of (removed) pumps and heat exchangers. Liquid metal is allowed to spray through the 5.5 m radius belljar at a controlled rate, but is prohibited from the target region by a 4 m radius mesh first wall. The wetted first wall absorbs the fusion x-rays and debris while the spray region absorbs the fusion neutrons. The mesh allows vaporized liquid metal to blow through to the spray region where it can quickly cool and condense. Preliminary calculations show that a 2 m thick first wall could handle the mechanical (support, buckling, and x-ray-induced hoop) loads. Wetting and gas flow issues are in an initial investigation stage

  7. Tests for removal of Co-60 and Eu-154 from irradiated graphite in the TRIGA Reactor

    International Nuclear Information System (INIS)

    Arsene, Carmen

    2009-01-01

    The irradiated graphite in Romania is mainly generated in the thermal columns of TRIGA and WWER-S research reactors (about 9 tones). It was found that the radionuclide content of the graphite irradiated in the TRIGA research reactor is mainly due to C-14 (103 Bq/g), Eu-152 (600-700 Bq/g) and Co-60 (130-150 Bq/g) and low amounts of Eu-154 and Cs-137, depending on location in the thermal column and on irradiation history. In order to minimize the waste inventory and volume in view of their final disposal, in the present paper we show the results of experiments performed for developing and optimizing methods for the chemical decontamination of the irradiated graphite. These procedures are based on strong alkaline solutions for Eu-152 and strong acid solutions for Co-60. The influence of the process parameters on the decontamination factor is investigated. (authors)

  8. Sandia Pulsed Reactor Facility (SPRF) calculator-assisted pulse analysis and display system

    International Nuclear Information System (INIS)

    Estes, B.F.; Berry, D.T.

    1980-02-01

    Two solid-metal fast burst type reactors (SPR II and SPR III) are operated at the Sandia Pulsed Reactor Facility. Since startup of the reactors, oscilloscope traces have been used to record (by camera) the pulse (power) shape while log N systems have measured initial reactor period. Virtually no other pulse information is available. A decision was made to build a system that could collect the basic input data available from the reactor - fission chambers, photodiodes, and thermocouples - condition the signals and output the various parameters such as power, energy, temperature, period and lifetime on hard copy that would provide a record for operations personnel as well as the experimenter. Because the reactors operate in short time frames - pulse operation - it is convenient to utilize the classical Nordheim-Fuchs approximation of the diffusion equation to describe reactor behavior. This report describes the work performed to date in developing the calculator system and analytical models for computing the desired parameters

  9. Some equipment for graphite research in swimming pool reactors; Quelques dispositifs d'etude du graphite dans les piles piscines

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, M; Arragon, Ph; Dupont, G; Gentil, J; Tanis, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    The irradiation devices described are used for research concerning reactors of the natural uranium type, moderated by graphite and cooled by carbon dioxide. The devices are generally designed for use in swimming pool reactors. The following points have been particularly studied: - maximum use of the irradiation volume, - use of the simplest technological solutions, - standardization of certain constituent parts. This standardization calls for precision machining and careful assembling; these requirements are also true when a relatively low irradiation temperature is required and the nuclear heating is pronounced. Finally, the design of these devices is suitable for the irradiation of other fissile or non-fissile materials. (authors) [French] Les dispositifs d'irradiation decrits servent aux etudes relatives a la filiere des reacteurs a uranium naturel, moderes au graphite et refroidis par le gaz carbonique. Ils sont generalement concus pour etre utilises dans des piles piscines. L'accent a ete mis sur: - l'utilisation au maximum du volume d'irradiation, - le recours aux solutions technologiques les plus simples, - la standardisation de certaines parties constitutives. Cette standardisation impose un usinage precis et un montage soigne, lesquels sont egalement necessaires lorsqu'on doit obtenir une temperature d'irradiation relativement basse alors que l'echauffement nucleaire est important. Enfin, la conception de ces dispositifs est valable pour irradier d'autres materiaux non fissiles ou fissiles. (auteurs)

  10. Nuclear graphite development, operational problems, and resolution of these problems at the Hanford production reactors

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1996-01-01

    This paper chronicles the history of the Hanford Production Reactor, from the initial design considerations for B, D, and F Reactors through the selection of the agreed method for safe disposal of the decommissioned reactors. The operational problems that challenged the operations and support staff of each new generation of production reactors, the engineering actions an operational changes that alleviated or resolved the immediate problems, the changes in reactor design and design-bases for the next generation of production reactors, and the changes in manufacturing variables that resulted in new ''improved'' grades of nuclear graphites for use in the moderators of the Hanford Production Reactors are reviewed in the context of the existing knowledge-base and the mission-driven priorities on the time. 14 refs, 6 figs, 3 tabs

  11. Neutron energy spectrum in graphite blankets of fusion reactors

    International Nuclear Information System (INIS)

    Tsechanski, A.

    1981-09-01

    Neutron flux measurements were performed in a graphite stack and compared with calculations made with a two dimensional transport computer code. In the present work it is observed that the calculated spectrum in the elastic and inelastic scattering ranges (the first collision range in both cases), is sensitive to details of the angular distribution of these neutrons. Regarding the discrepancies in the elastic scattering range it is concluded that the microscopic cross section library ENDF/B-IV overestimates the large angle scattering (back scattering) as can be seen from comparison of measured and calculated spectra. The two most important conclusions of the present work are: 1. Inelastic scattering interaction of D-T neutrons in graphite cannot be calculated without a proper account of energy-angle correlation. 2. An experimental setup supplying monoenergetic collimated D-T neutrons constitutes a sensitive although indirect means for measuring angular distributions in inelastic and elastic scattering

  12. Pulsed TRIGA reactor as substitute for long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1999-01-01

    TRIGA reactor cores have been used to demonstrate various pulsing applications. The TRIGA reactor fuel (U-ZrH x ) is very robust especially in pulsing applications. The features required to produce 50 pulses per second have been successfully demonstrated individually, including pulse tests with small diameter fuel rods. A partially optimized core has been evaluated for pulses at 50 Hz with peak pulsed power up to 100 MW and an average power up to 10 MW. Depending on the design, the full width at half power of the individual pulses can range between 2000 μsec to 3000 μsec. Until recently, the relatively long pulses (2000 μsec to 3000 μsec) from a pulsed thermal reactor or a long pulse spallation source (LPSS) have been considered unsuitable for time-of-flight measurements of neutron scattering. More recently considerable attention has been devoted to evaluating the performance of long pulse (1000 to 4000 μs) spallation sources for the same type of neutron measurements originally performed only with short pulses from spallation sources (SPSS). Adequate information is available to permit meaningful comparisons between CW, SPSS, and LPSS neutron sources. Except where extremely high resolution is required (fraction of a percent), which does require short pulses, it is demonstrated that the LPSS source with a 1000 msec or longer pulse length and a repetition rate of 50 to 60 Hz gives results comparable to those from the 60 MW ILL (CW) source. For many of these applications the shorter pulse is not necessarily a disadvantage, but it is not an advantage over the long pulse system. In one study, the conclusion is that a 5 MW 2000 μsec LPSS source improves the capability for structural biology studies of macromolecules by at least a factor of 5 over that achievable with a high flux reactor. Recent studies have identified the advantages and usefulness of long pulse neutron sources. It is evident that the multiple pulse TRIGA reactor can produce pulses comparable to

  13. Irradiation test plan of oxidation-resistant graphite in WWR-K Research Reactor

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Sakaba, Nariaki; Osaki, Hirotaka; Kato, Hideki; Fujitsuka, Kunihiro; Muto, Takenori; Gizatulin, Shamil; Shaimerdenov, Asset; Dyussambayev, Daulet; Chakrov, Petr

    2014-01-01

    Graphite materials are used for the in-core components of High Temperature Gas-cooled Reactor (HTGR) which is a graphite-moderated and helium gas-cooled reactor. In the case of air ingress accident in HTGR, SiO_2 protective layer is formed on the surface of SiC layer in TRISO CFP and oxidation of SiC does not proceed and fission products are retained inside the fuel particle. A new safety concept for the HTGR, called Naturally Safe HTGR, has been recently proposed. To enhance the safety of Naturally Safe HTGR ultimately, it is expected that oxidation-resistant graphite is used for graphite components to prevent the TRISO CFPs and fuel compacts from failure. SiC coating is one of candidate methods for oxidation-resistant graphite. JAEA and four graphite companies launched R&Ds to develop the oxidation-resistant graphite and the International Science and Technology Center (ISTC) partner project with JAEA and INP was launched to investigate the irradiation effects on the oxidation-resistant graphite. To determine grades of the oxidation-resistant graphite which will be adopted as irradiation test, a preliminary oxidation test was carried out. This paper described the results of the preliminary oxidation test, the plan of out-of-pile test, irradiation test and post-irradiation test (PIE) of the oxidation-resistant graphite. The results of the preliminary oxidation test showed that the integrity of the oxidation resistant graphite was confirmed and that all of grades used in the preliminary test can be adopted as the irradiation test. Target irradiation temperature was determined to be 1473 (K) and neutron fluence was determined to be from 0.54 × 10"2"5through 1.4 × 10"2"5 (/m"2, E>0.18MeV). Weight change, oxidation rate, activation energy, surface condition, etc. will be evaluated in out-of-pile test and weight change, irradiation effect on oxidation rate and activation energy, surface condition, etc. will be evaluated in PIE. (author)

  14. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  15. Studies on design principles and criteria of fuels and graphites for experimental multi-purpose very high temperature reactor

    International Nuclear Information System (INIS)

    Arai, Taketoshi; Sato, Sadao; Tani, Yutaro

    1977-12-01

    Design principles and criteria of fuels and graphites have been studied to determine the main design parameters of a reference core MARK-III of the Experimental Multi-purpose Very High Temperature Reactor. The present status of research and development for HTGR fuels and graphites is reviewed from a standpoint of their integrity and safety aspects, and is compared to the specific design requirements for the VHTR fuels and graphites. Consequently, reasonable materials specifications, safety criteria and design analysis methods are presented for coated fuel particle, fuel compact, graphite sleeve, core support graphite and neutron absorber material. These design principles and criteria will be refined by further experimental investigations. (auth.)

  16. Analysis of Wigner energy release process in graphite stack of shut-down uranium-graphite reactor

    OpenAIRE

    Bespala, E. V.; Pavliuk, A. O.; Kotlyarevskiy, S. G.

    2015-01-01

    Data, which finding during thermal differential analysis of sampled irradiated graphite are presented. Results of computational modeling of Winger energy release process from irradiated graphite staking are demonstrated. It's shown, that spontaneous combustion of graphite possible only in adiabatic case.

  17. Modeling of beam-target interaction during pulsed electron beam ablation of graphite: Case of melting

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Muddassir, E-mail: mx1_ali@laurentian.ca; Henda, Redhouane

    2017-02-28

    Highlights: • Modeling of ablation stage induced during pulsed electron beam ablation (PEBA). • Thermal model to describe heating, melting and vaporization of a graphite target. • Model results show good accordance with reported data in the literature. - Abstract: A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm{sup 2}, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.

  18. Development and testing of nuclear graphite for the German pebble-bed high temperature reactor

    International Nuclear Information System (INIS)

    Haag, G.; Delle, W.; Nickel, H.; Theymann, W.; Wilhelmi, G.

    1987-01-01

    Several types of high temperature reactors have been developed in the Federal Republic of Germany. They are all based on spherical fuel elements being surrounded by graphite as reflector material. As an example, HTR-500 developed by the Hochtemperatur Reaktorbau GmbH is shown. The core consists of the top reflector, the side reflector with inner and outer parts, the bottom reflector and the core support columns. The most serious problem with respect to fast neutron radiation damage had to be solved for the materials of those parts near the pebble bed. Regarding the temperature profile in the core, the top reflector is at 300 deg C, and as cooling gas flows from the top downward, the temperature of the inner side reflector rises to about 700 deg C at the bottom. Fortunately, the highest fast neutron load accumulated during the life time of a reactor corresponds to the lowest temperature. This makes graphite components easier to survive neutron exposure without being mechanically damaged, although the maximum fast neutron fluence is as high as 4 x 10 22 /cm 2 at about 400 deg C. HTR graphite components are divided into four classes according to loading. The raw materials for nuclear graphite, the development of pitch coke nuclear graphite, the irradiation behavior of ATR-2E and ASR-IRS and others are reported. (Kako, I.)

  19. Study on efficient methods for removal and treatment of graphite blocks in a gas cooled reactor

    International Nuclear Information System (INIS)

    Fujii, S.; Shirakawa, M.; Murakami, T.

    2001-01-01

    Tokai Power Station (GCR, 166 MWe) started its commercial operation on July 1966 and ceased activities at the end of March 1998 after 32 years of operation. The decommissioning plans are being developed, to prepare for near future dismantling. In the study, the methods for removal of the graphite blocks of about 1,600 ton have been developed to carrying it out safely and in a short period of time, and the methods of treatment of graphite have also been developed. All technological items have been identified for which R and D work will be required for removal from the core and treatment for disposal. (1) In order to reduce the programme required for the dismantling of reactor internals, an efficient method for removal of the graphite blocks is necessary. For this purpose the design of a dismantling machine has been investigated which can extract several blocks at a time. The conceptual design has being developed and the model has been manufactured and tested in a mock-up facility. (2) In order to reduce disposal costs, it will be necessary to segment the graphite blocks, maximising the packing density available in the disposal containers. Some of the graphite blocks will be cut into pieces longitudinally by a remote machine. Relevant technical matters have been identified, such as graphite cutting methods, the nature of fine particles arising from the cutting operation, the treatment of fine particles for disposal, and the method of mortar filling inside the waste container. (author)

  20. Graphite materials testing in the ATR for lifetime management of Magnox reactors

    International Nuclear Information System (INIS)

    Grover, S.B.; Metcalfe, M.P.

    2002-01-01

    A major feature of the Magnox gas cooled reactor design is the graphite core, which acts as the moderator but also provides the physical structure for fuel, control rods, instrumentation and coolant gas channels. The lifetime of a graphite core is dependent upon two principal aging processes: irradiation damage and radiolytic oxidation. Irradiation damage from fast neutrons creates lattice defects leading to changes in physical and mechanical properties and the accumulation of stresses. Radiolytic oxidation is caused by the reaction of oxidizing species from the carbon dioxide coolant gas with the graphite, these species being produced by gamma radiation. Radiolytic oxidation reduces the density and hence the moderating capability of the graphite, but also reduces strength affecting the integrity of core components. In order to manage continued operation over the planned lifetimes of their power stations, BNFL needed to extend their database of the effects of these two phenomena on their graphite cores through an irradiation experiment. This paper will discuss the background, purpose, and the processes taken and planned (i.e. post irradiation examination) to ensure meaningful data on the graphite core material is obtained from the irradiation experiment. (author)

  1. Graphite Materials Testing in the ATR for Lifetime Management of Magnox Reactors

    International Nuclear Information System (INIS)

    Grover, S.B.; Metcalfe, M.P.

    2002-01-01

    A major feature of the Magnox gas cooled reactor design is the graphite core, which acts as the moderator but also provides the physical structure for fuel, control rods, instrumentation and coolant gas channels. The lifetime of a graphite core is dependent upon two principal aging processes: irradiation damage and radiolytic oxidation. Irradiation damage from fast neutrons creates lattice defects leading to changes in physical and mechanical properties and the accumulation of stresses. Radiolytic oxidation is caused by the reaction of oxidizing species from the carbon dioxide coolant gas with the graphite, these species being produced by gamma radiation. Radiolytic oxidation reduces the density and hence the moderating capability of the graphite, but also reduces strength affecting the integrity of core components. In order to manage continued operation over the planned lifetimes of their power stations, BNFL needed to extend their database of the effects of these two phenomena on the ir graphite cores through an irradiation experiment. This paper will discuss the background, purpose, and the processes taken and planned (i.e. post irradiation examination) to ensure meaningful data on the graphite core material is obtained from the irradiation experiment

  2. Design and research of fuel element for pulsed reactor

    International Nuclear Information System (INIS)

    Tian Sheng

    1994-05-01

    The fuel element is the key component for pulsed reactor and its design is one of kernel techniques for pulsed reactor. Following the GA Company of US the NPIC (Nuclear Power Institute of China) has mastered this technique. Up to now, the first pulsed reactor in China (PRC-1) has been safely operated for about 3 years. The design and research of fuel element undertaken by NPIC is summarized. The verification and evaluation of this design has been carried out by using the results of measured parameters during operation and test of PRC-1 as well as comparing the design parameters published by others

  3. An automatic regulating control system for a graphite moderated reactor using digital techniques

    International Nuclear Information System (INIS)

    Carvalho Goncalves Junior, J. de.

    1989-01-01

    The work propose an automatic regulating control system for a graphite moderated reactor using digital techniques. The system uses a microcomputer to monitor the power and the period, to run the control algorithm, and to generate electronic signals to excite the motor, which moves vertically the control rod banks. A nuclear reactor simulator was developed to test the control system. The simulator consists of a software based on the point kinetic equations and implanted in an analogical computer. The results show that this control system has a good performance and versatility. In addition, the simulator is capable of reproducing with accuracy the behavior of a nuclear reactor. (author)

  4. Pulsed irradiation of enriched UO{sub 2} in the Annular Core Pulse Reactor (ACPR)

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T R; Lucoff, D M; Reil, K O; Croucher, D W [Sandia Laboratories (United States)

    1974-07-01

    A series of experiments have been conducted in the Annular Core Pulse Reactor (ACPR) to determine the energy deposition and behavior of enriched UO{sub 2} under pulse conditions. In the experiment single unirradiated pellets with enrichments up to 25 percent were pulse heated to melt temperatures. Temperature and fission product inventory measurements were made and compared with neutron transport calculations. (author)

  5. Irradiation creep in reactor graphites for HTR applications. [Neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Veringa, H J; Blackstone, R [Stichting Reactor Centrum Nederland, Petten

    1976-01-01

    A series of restrained shrinkage experiments on a number of graphites in the temperature range 400 to 1400/sup 0/C is described. A description is given of the experimental method and method of data evaluation. The results are compared with data from other sources. Analysis of data confirms that the creep coefficient, which is defined as the radiation induced creep strain per unit stress per unit neutron fluence, is inversely proportional to the pre-irradiation value of the Young's modulus of the material. The radiation creep coefficient increases with temperature in the range 400 to 1400/sup 0/C. It can be represented by the sum of two temperature dependent functions, one of which is inversely proportional to the neutron flux density, the other independent of the neutron flux density. When the data are analysed in this way it is found that the graphites investigated in the present work, although made from widely different starting materials and by different processes, show the same dependence of the irradiation creep coefficient on the temperature and the neutron flux density.

  6. The irradiation creep in reactor graphites for HTR applications

    International Nuclear Information System (INIS)

    Veringa, H.J.; Blackstone, R.

    1976-01-01

    A series of restrained shrinkage experiments on a number of graphites in the temperature range 400 to 1400 0 C is described. A description is given of the experimental method and method of data evaluation. The results are compared with data from other sources. Analysis of data confirms that the creep coefficient, which is defined as the radiation induced creep strain per unit stress per unit neutron fluence, is inversely proportional to the pre-irradiation value of the Young's modulus of the material. The radiation creep coefficient increases with temperature in the range 400 to 1400 0 C. It can be represented by the sum of two temperature dependent functions, one of which is inversely proportional to the neutron flux density, the other independent of the neutron flux density. When the data are analysed in this way it is found that the graphites investigated in the present work, although made from widely different starting materials and by different processes, show the same dependence of the irradiation creep coefficient on the temperature and the neutron flux density. (author)

  7. Deuterium migration in nuclear graphite: consequences for the behavior of tritium in Gas Cooled Reactors and for the decontamination of irradiated graphite waste

    International Nuclear Information System (INIS)

    Le-Guillou, Mael

    2014-01-01

    In France, 23 000 t of irradiated graphite that will be generated by the decommissioning of the first generation Uranium Naturel-Graphite-Gaz (UNGG) nuclear reactors are waiting for a long term management solution. This work focuses on the behavior of tritium, which is one of the main contributors to the radiological inventory of graphite waste after reactor shutdown. In order to anticipate tritium release during dismantling or waste management, it is mandatory to collect data on its migration, location and inventory. Our study is based on the simulation of tritium by implantation of approximately 3 at. % of deuterium up to around 3 μm in a virgin nuclear graphite. This material was then annealed up to 300 h and 1300 C in inert atmosphere, UNGG coolant gas and humid gas, aiming to reproduce thermal conditions close to those encountered in reactor and during waste management operations. The deuterium profiles and spatial distribution were analyzed using the nuclear reaction 2 H( 3 He,p) 4 He. The main results evidence a thermal release of implanted deuterium occurring essentially through three regimes controlled by the detrapping of atomic deuterium located in superficial or interstitial sites. The extrapolation of our data to tritium suggests that its purely thermal release during reactor operations may have been lower than 30 % and would be located close to the graphite free surfaces. Consequently, most of the tritium inventory after reactor shutdown could be trapped deeply within the irradiated graphite structure. Decontamination of graphite waste should then require temperatures higher than 1300 C, and would be more efficient in dry inert gas than in humid gas. (author)

  8. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    International Nuclear Information System (INIS)

    Mohanty, Subhasish; Majumdar, Saurindranath; Srinivasan, Makuteswara

    2013-01-01

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite

  9. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Majumdar, Saurindranath [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

    2013-07-15

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite.

  10. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    Locke, B

    1998-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  11. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    LOCKE, B

    1999-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  12. The investigation of enviromental radioactivity background around a pulsed reactor

    International Nuclear Information System (INIS)

    Xiao Tenghui; Zhao Zhongli

    1990-01-01

    The radioactivity background level of enviromental medium around a pulsed reactor for 5 km and external penetrating radioactivity dose level for 10 km are given. mediums measured include air, water, soil, organisms, fallout, etc

  13. The investigation of enviromental radioactivity background around a pulsed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tenghui, Xiao; Zhongli, Zhao [Southwest Inst. of Nuclear Reactor Engineering, Sichuan, SC (China)

    1990-06-01

    The radioactivity background level of enviromental medium around a pulsed reactor for 5 km and external penetrating radioactivity dose level for 10 km are given. mediums measured include air, water, soil, organisms, fallout, etc.

  14. Distribution of the thermal neutron field around the graphite reflector of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Thermal neutron flux distributions around the graphite reflector of the Dalat Nuclear Research Reactor are determined by the method for neutron activating Cu foils. The major results are as follows: a/The axial distributions at the inner and outer margins of the graphite reflector have unsymmetrical shapes, similar to axial distributions in the core. There is a dissimilarity between the distribution curves at the inner margin and those at the outer margin of the reflector. b/ The radial distribution on the upper surface of the graphite reflector is measured and is described by the two-group neutron diffusion theory. The maximal value of the curve lies at the position of R{sub m}ax = 22.5 cm. c/ The distribution in the twenty water irradiation holes around the rotary specimen rack is obtained. (author). 3 refs., 5 figs., 1 tab.

  15. Radioactive Contamination Near Natural Uranium - Graphite - Gas Reactors

    International Nuclear Information System (INIS)

    Chassany, J.; Pouthier, J.

    1967-01-01

    The authors give the results of numerous assessments of contamination in connection with reactors in operation during maintenance; reactors shut down during overhaul and repair work (coolants, exchangers, interior of the tank, etc.) ; and accidents in the cooling circuit and ruptured cladding. They show that, except in special cases, it is mainly activation products that predominate. Moreover, after eight years of operation the points where contamination likely to give considerable dose rates accumulates remain very localized, and there has been no need to reinforce personnel protection measures. (author) [fr

  16. Evaluation of plasma disruption simulating short pulse laser irradiation experiments on boronated graphites and CFCs [carbon fibre composites

    International Nuclear Information System (INIS)

    Stad, R.C.L. van der; Klippel, H.T.; Kraaij, G.J.

    1992-12-01

    New experimental and numerical results from disruption heat flux simulations in the millisecond range with laser beams are discussed. For a number of graphites, boronated graphites and carbon fibre composites, the effective enthalpy of ablation is determined as 30 ± 3 MJ/kg, using laser pulses of about -.3 ms. The numerical results predict the experimental results rather well. No effect of boron doping on the ablation enthalpy is found. (author). 9 refs., 4 figs., 1 tab

  17. High temperature graphite irradiation creep experiment in the Dragon Reactor. Dragon Project report

    Energy Technology Data Exchange (ETDEWEB)

    Manzel, R.; Everett, M. R.; Graham, L. W.

    1971-05-15

    The irradiation induced creep of pressed Gilsocarbon graphite under constant tensile stress has been investigated in an experiment carried out in FE 317 of the OECD High Temperature Gass Cooled Reactor ''Dragon'' at Winfrith (England). The experiment covered a temperature range of 850 dec C to 1240 deg C and reached a maximum fast neutron dose of 1.19 x 1021 n cm-2 NDE (Nickel Dose DIDO Equivalent). Irradiation induced dimensional changes of a string of unrestrained graphite specimens are compared with the dimensional changes of three strings of restrained graphite specimens stressed to 40%, 58%, and 70% of the initial ultimate tensile strength of pressed Gilsocarbon graphite. Total creep strains ranging from 0.18% to 1.25% have been measured and a linear dependence of creep strain on applied stress was observed. Mechanical property measurements carried out before and after irradiation demonstrate that Gilsocarbon graphite can accommodate significant creep strains without failure or structural deterioration. Total creep strains are in excellent agreement with other data, however the results indicate a relatively large temperature dependent primary creep component which at 1200 deg C approaches a value which is three times larger than the normally assumed initial elastic strain. Secondary creep constants derived from the experiment show a temperature dependence and are in fair agreement with data reported elsewhere. A possible determination of the results is given.

  18. Kinetic studies on a repetitively pulsed fast reactor

    International Nuclear Information System (INIS)

    Das, S.

    1982-01-01

    Neutronic analysis of an earlier proposed periodically pulsed fast reactor at Kalpakkam (KPFR) has been carried out numerically under equilibrium and transient conditions using the one-point model of reactor kinetics and the experimentally measured total worth of reactivity modulator, the parabolic coefficient of reactivity of the movable reflector and the mean prompt neutron lifetime. Results of steady-state calculations - treated on the basis of delayed neutron precursor and energy balances during a period of operation - have been compared with the analytical formulae of Larrimore for a parabolic reactivity input. Empirical relations for half-width of the fast neutron pulse, the peak pulse power and the power at first crossing of prompt criticality have been obtained and shown to be accurate enough for predicting steady-state power pulse characteristics of a periodically pulsed fast reactor. The concept of a subprompt-critical reactor has been used to calculate the fictitious delayed neutron fraction, β of the KPFR through a numerical experiment. Relative pulse height stability and pulse shape sensitivity to changes of maximum reactivity is discussed. With the aid of new safety concepts, the Power Amplification Factor (PAF) and the Pulse Growth Factor (Rsub(p)), the dynamics KPFR under accidental conditions has been studied for step and ramp reactivity perturbations. All the analysis has been done without taking account of reactivity feedback. (orig.)

  19. Pulsed lower-hybrid wave penetration in reactor plasmas

    International Nuclear Information System (INIS)

    Cohen, R.H.; Bonoli, P.T.; Porkolab, M.; Rognlien, T.D.

    1989-01-01

    Providing lower-hybrid power in short, intense (GW) pulses allows enhanced wave penetration in reactor-grade plasmas. We examine nonlinear absorption, ray propagation, and parametric instability of the intense pulses. We find that simultaneously achieving good penetration while avoiding parametric instabilities is possible, but imposes restrictions on the peak power density, pulse duration, and/or r.f. spot shape. In particular, power launched in narrow strips, elongated along the field direction, is desired

  20. Graphite moderator annealing of the experimental reactor for irradiation (0.5 MW)

    International Nuclear Information System (INIS)

    Oliveira Avila, Carlos Alberto de; Pires, Luis Fernando Goncalves

    1995-01-01

    This work describes an operational procedure for the annealing of the graphite moderator in the 0,5 MW Experimental Reactor for Irradiation. A theoretical methodology has been developed for calculating the temperature field during the annealing process. The equations for mass, momentum, and energy conservation for the coolant as well as for the energy conservation in the moderator are solved numerically. The energy stored in the graphite and released in the annealing is accounted for by the use of a modified source term in the energy conservation equation for the moderator. A good agreement has been found for comparisons of the calculations with annealing data from the BEPO reactor. The major parameters affecting annealing have also been determined. (author). 8 refs, 11 figs

  1. A solution to level 3 dismantling of gas-cooled reactors: Graphite incineration

    International Nuclear Information System (INIS)

    Dubourg, M.

    1993-01-01

    This paper presents an approach developed to solve the specific decommissioning problems of the G2 and G3 gas cooled reactors at Marcoule and the strategy applied with emphasis in incinerating the graphite core components, using a fluidized-bed incinerator developed jointly between the CEA and FRAMATOME. The incineration option was selected over subsurface storage for technical and economic reasons. Studies have shown that gaseous incineration releases are environmentally acceptable

  2. The status of graphite development for gas cooled reactors

    International Nuclear Information System (INIS)

    1993-02-01

    The meeting was convened by the IAEA on the recommendation of the International Working Group on Gas Cooled Reactors. It was attended by 61 participants from 6 countries. The meeting covered the following subjects: overview of national programs; design criteria, fracture mechanisms and component test; materials development and properties; non-destructive examination, inspection and surveillance. The participants presented 33 papers on behalf of their countries. A separate abstract was prepared for each of these papers. Refs, figs, tabs, photos and diagrams

  3. Disintegration of graphite matrix from the simulative high temperature gas-cooled reactor fuel element by electrochemical method

    International Nuclear Information System (INIS)

    Tian Lifang; Wen Mingfen; Li Linyan; Chen Jing

    2009-01-01

    Electrochemical method with salt as electrolyte has been studied to disintegrate the graphite matrix from the simulative high temperature gas-cooled reactor fuel elements. Ammonium nitrate was experimentally chosen as the appropriate electrolyte. The volume average diameter of disintegrated graphite fragments is about 100 μm and the maximal value is less than 900 μm. After disintegration, the weight of graphite is found to increase by about 20% without the release of a large amount of CO 2 probably owing to the partial oxidation to graphite in electrochemical process. The present work indicates that the improved electrochemical method has the potential to reduce the secondary nuclear waste and is a promising option to disintegrate graphite matrix from high temperature gas-cooled reactor spent fuel elements in the head-end of reprocessing.

  4. Recuperation of the energy released in the G-1, an air-cooled graphite reactor core

    International Nuclear Information System (INIS)

    Chambadal, P.; Pascal, M.

    1955-01-01

    The CEA (in his five-year setting plan) has objective among others, the realization of the two first french reactors moderated with graphite. The construction of the G-1 reactor in Marcoule, first french plutonic core, is achieved so that it will diverge in the beginning of 1956 and reach its full power in the beginning of the second semester of the same year. In this report we will detail the specificities of the reactor and in particular its cooling and energy recuperation system. The G-1 reactor being essentially intended to allow the french technicians to study the behavior of an energy installation supply taking its heat in a nuclear source as early as possible. (M.B.) [fr

  5. Study of new structures adapted to gas-graphite and gas-heavy water reactors

    International Nuclear Information System (INIS)

    Martin, R.; Roche, R.

    1964-01-01

    The experience acquired as a result of the operation of the Marcoule reactors and of the construction and start-up of the E.D.F. reactors on the one hand, and the conclusions of research and tests carried out out-of-pile on the other hand, lead to a considerable change in the general design of reactors of the gas-graphite type. The main modifications envisaged are analysed in the paper. The adoption of an annular fuel element and of a down-current cooling will make it possible to increase considerably the specific power and the power output of each channel; as a result there will be a considerable reduction in the number of the channels and a corresponding increase in the size of the unit cell. The graphite stack will have to be adapted to there new conditions. For security reasons, the use of prestressed concrete for the construction of the reactor vessel is becoming more widespread; they could lead to the exchangers and the fuel-handling apparatus becoming integrated inside the vessel (the so-called 'attic' device). A full-size mode) of this attic has been built at Saclay with the participation of EURATOM; the operational results obtained are presented as well as a new original design for the control rods. As for as the gas-heavy-water system is concerned, the research is carried out on two points of design; the first, which retains the use of horizontal pressure tubes, takes into account the experience acquired during the construction of the EL 4 reactor of which it will constitute an extrapolation; the second, arising from the research carried out on the gas-graphite system, will use a pre-stressed concrete vessel for holding the pressure, the moderator being almost at the same pressure as the cooling fluid and the fuel being placed in vertical channels. The relative merits of these two variants are analysed in the present paper. (authors) [fr

  6. Method to Assess the Radionuclide Inventory of Irradiated Graphite from Gas-Cooled Reactors - 13072

    Energy Technology Data Exchange (ETDEWEB)

    Poncet, Bernard [EDF-CIDEN, 154 Avenue Thiers, CS 60018, F-69458 LYON cedex 06 (France)

    2013-07-01

    About 17,000 t of irradiated graphite waste will be produced from the decommissioning of the six French gas-cooled nuclear reactors. Determining the radionuclide (RN) content of this waste is of relevant importance for safety reasons and in order to determine the best way to manage them. For many reasons the impurity content that gave rise to the RNs in irradiated graphite by neutron activation during operation is not always well known and sometimes actually unknown. So, assessing the RN content by the use of traditional calculation activation, starting from assumed impurity content, leads to a false assessment. Moreover, radiochemical measurements exhibit very wide discrepancies especially on RN corresponding to precursor at the trace level such as natural chlorine corresponding to chlorine 36. This wide discrepancy is unavoidable and is due to very simple reasons. The level of impurity is very low because the uranium fuel used at that very moment was not enriched, so it was a necessity to have very pure nuclear grade graphite and the very low size of radiochemical sample is a simple technical constraint because device size used to get mineralization product for measurement purpose is limited. The assessment of a radionuclide inventory only based on few number of radiochemical measurements lead in most cases, to a gross over or under-estimation that is detrimental for graphite waste management. A method using an identification calculation-measurement process is proposed in order to assess a radiological inventory for disposal sizing purpose as precise as possible while guaranteeing its upper character. This method present a closer approach to the reality of the main phenomenon at the origin of RNs in a reactor, while also incorporating the secondary effects that can alter this result such as RN (or its precursor) release during reactor operation. (authors)

  7. Experimental study on air ingress during a primary pipe rupture accident with a graphite reactor core simulator

    International Nuclear Information System (INIS)

    Takeda, Tetsuaki; Hishida, Makoto; Baba, Shinichi

    1991-11-01

    When a primary coolant pipe of a High Temperature Gas Cooled Reactor (HTGR) ruptures, helium gas in the reactor core blows out into the container, and the primary cooling system reduces the pressure. After the pressures are balanced between the reactor and the container, air is expected to enter into the reactor core from the breach. It seems to be probable that the graphite structures is oxidized by air. Hence, it is necessary to investigate the air ingress process and the behavior of the generating gases by the oxidation reactions. The previous experimental study is performed on the molecular diffusion and natural convection of the two component gas mixtures using a test model simulating simply the reactor. Objective of the study was to investigate the air ingress process during the early stage of the primary pipe rupture accident. However, since the model did not have any kind of graphite components, the reaction between graphite and oxygen was not simulated. The present model includes the reactor core and the high temperature plenum simulators made of graphite. The major results obtained in the present study are summarized in the followings: (1) The air ingress process with graphite oxidation reaction is similar to that without the reaction qualitatively. (2) When the reactor core simulator is maintained at low temperatures (lower than 450degC), the initiation time of the natural circulation of air is almost equal to that of the natural circulation of nitrogen. On the other hand, when the temperature of the reactor core simulator is high (more than 500degC), the initiation time of the natural circulation of air is earlier than that of nitrogen. (3) When the temperature of the reactor core simulator is higher than 600degC, oxygen is almost dissipated by the graphite structures. When the temperature of the reactor core simulator is below 700degC, carbon dioxide mainly is generated by the oxidation reactions. (author)

  8. Study of startup conditions of a pulsed annular reactor

    International Nuclear Information System (INIS)

    Silva, Mario Augusto Bezerra da

    2003-10-01

    A new concept of reactor, which combines features of pulsed and stationary reactors, was proposed so as to produce intense neutronic fluxes. Such a reactor, known as VICHFPR (Very Intense Continuous High Flux Pulsed Reactor), consists of a subcritical core with an annular geometry and pulsed by a rotating reflector which acts as a reactivity modulator as it produces a short pulse (approximately equal to 1 ms) of high intensity, guiding the region near the pulser to super-prompt critical state. This dissertation intends to analyze the startup conditions of a Pulsed Annular Reactor. The evolution of the neutron pulse intensity is analyzed when the reactivity modulator is brought upwards according to a helicoidal path from its initial position (far away from the core), when the multiplication factor has a subcritical value, up to the final position (near the core), in which a super-prompt critical state is reached. Part of the analysis is based on the variation of neutron reflection, which is a uniform function of the exit and reflection angles between the core and the modulator. It must be emphasized that this work is an approximation of the real situation. As the initial and final reactor parameters are known, a programming code in Fortran is worked out to provide the multiplication factor and the flux intensity evolution. According to the results obtained with this code, the conditions under which the modulator must be lifted up during the startup are established. Basically, these conditions are related to the analysis of the rising and the rotation velocities, the reflector saving and the initial distance between the reactor and the modulator. The Pulsed Annular Reactor startup was divided into three stages. Because of its negative reactivity in the first two stages, the neutron multiplication is not large, while the last one, having a positive reactivity, shows an intense multiplication as is usually expected when handling pulsed systems. This last stage is quite

  9. Change in physical properties of high density isotropic graphites irradiated in the ?JOYO? fast reactor

    Science.gov (United States)

    Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.

    1995-08-01

    Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor "JOYO" to fluences from 2.11 to 2.86 × 10 26 n/m 2 ( E > 0.1 MeV) at temperatures from 549 to 597°C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens.

  10. Change in physical properties of high density isotropic graphites irradiated in the ''JOYO'' fast reactor

    International Nuclear Information System (INIS)

    Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.

    1995-01-01

    Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor ''JOYO'' to fluences from 2.11 to 2.86x10 26 n/m 2 (E>0.1 MeV) at temperatures from 549 to 597 C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens. (orig.)

  11. Optimization of temperature coefficient and breeding ratio for a graphite-moderated molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zou, C.Y.; Cai, X.Z.; Jiang, D.Z.; Yu, C.G.; Li, X.X.; Ma, Y.W.; Han, J.L. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, J.G., E-mail: chenjg@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-01-15

    Highlights: • The temperature feedback coefficient with different moderation ratios for TMSR in thermal neutron region is optimized. • The breeding ratio and doubling time of a thermal TMSR with three different reprocessing schemes are analyzed. • The smaller hexagon size and larger salt fraction with more negative feedback coefficient can better satisfy the safety demands. • A shorter reprocessing time can achieve a better breeding ratio in a thermal TMSR. • The graphite moderator lifespan is compared with other MSRs and discussed. - Abstract: Molten salt reactor (MSR) has fascinating features: inherent safety, no fuel fabrication, online fuel reprocessing, etc. However, the graphite moderated MSR may present positive feedback coefficient which has severe implications for the transient behavior during operation. In this paper, the feedback coefficient and the breeding ratio are optimized based on the fuel-to-graphite ratio variation for a thorium based MSR (TMSR). A certain thermal core with negative feedback coefficient and relative high initial breeding ratio is chosen for the reprocessing scheme analysis. The breeding performances for the TMSR under different online fuel reprocessing efficiencies and frequencies are evaluated and compared with other MSR concepts. The results indicate that the thermal TMSR can get a breeding ratio greater than 1.0 with appropriate reprocessing scheme. The low fissile inventory in thermal TMSR leads to a short doubling time and low transuranic (TRU) inventory. The lifetime of graphite used for the TMSR is also discussed.

  12. Analytical and numerical study of graphite IG110 parts in advanced reactor under high temperature and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jinling, E-mail: Jinling_Gao@yeah.net; Yao, Wenjuan, E-mail: wj_yao@yeah.net; Ma, Yudong

    2016-08-15

    Graphical abstract: An analytical model and a numerical procedure are developed to study the mechanical response of IG-110 graphite bricks in HTGR subjected to high temperature and irradiation. The calculation results show great accordance with each other. Rational suggestions on the calculation and design of the IG-110 graphite structure are proposed based on the sensitivity analyses including temperature, irradiation dimensional change, creep and Poisson’s ratio. - Highlights: • Analytical solution of stress and displacement of IG-110 graphite components in HTGR. • Finite element procedure developed for stress analysis of HTGR graphite component. • Parameters analysis of mechanical response of graphite components during the whole life of the reflector. - Abstract: Structural design of nuclear power plant project is an important sub-discipline of civil engineering. Especially after appearance of the fourth generation advanced high temperature gas cooled reactor, structural mechanics in reactor technology becomes a popular subject in structural engineering. As basic ingredients of reflector in reactor, graphite bricks are subjected to high temperature and irradiation and the stress field of graphite structures determines integrity of reflector and makes a great difference to safety of whole structure. In this paper, based on assumptions of elasticity, side reflector is regarded approximately as a straight cylinder structure and primary creep strain is ignored. An analytical study on stress of IG110 graphite parts is present. Meanwhile, a finite element procedure for calculating stresses in the IG110 graphite structure exposed in the high temperature and irradiation is developed. Subsequently, numerical solution of stress in IG110 graphite structure is obtained. Analytical solution agrees well with numerical solution, which indicates that analytical derivation is accurate. Finally, influence of temperature, irradiation dimensional change, creep and Poisson

  13. Physics design of an ultra-long pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Ogawa, Y.; Inoue, N.; Wang, J.; Yamamoto, T.; Okano, K.

    1993-01-01

    A pulsed tokamak reactor driven only by inductive current drive has recently revived, because the non-inductive current drive efficiency seems to be too low to realize a steady-state tokamak reactor with sufficiently high energy gain Q. Essential problems in pulsed operation mode is considered to be material fatigue due to cyclic operation and expensive energy storage system to keep continuous electric output during a dwell time. To overcome these problems, we have proposed an ultra-long pulsed tokamak reactor called IDLT (abbr. Inductively operated Day-Long Tokamak), which has the major and minor radii of 10 m and 1.87 m, respectively, sufficiently to ensure the burning period of about ten hours. Here we discuss physical features of inductively operated tokamak plasmas, employing the similar constraints with ITER CDA design for engineering issues. (author) 9 refs., 2 figs., 1 tab

  14. Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask

    International Nuclear Information System (INIS)

    Romano, T.

    1997-01-01

    This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required

  15. Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask

    Energy Technology Data Exchange (ETDEWEB)

    Romano, T.

    1997-09-29

    This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

  16. Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO{sub 2}-cooled reactors and for the decontamination of irradiated graphite waste

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, M. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Agence nationale pour la gestion des déchets radioactifs, DRD/CM – 1-7, rue Jean Monnet, Parc de la Croix-Blanche, F-92298 Châtenay-Malabry cedex (France); Toulhoat, N., E-mail: nelly.toulhoat@univ-lyon1.fr [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); CEA/DEN – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Pipon, Y. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Institut Universitaire Technologique, Université Claude Bernard Lyon 1, Université de Lyon – 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne cedex (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Khodja, H. [Laboratoire d’Etude des Eléments Légers, CEA/DSM/IRAMIS/NIMBE, UMR 3299 SIS2M – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France)

    2015-06-15

    In this paper, we aim at understanding tritium behavior in the graphite moderator of French CO{sub 2}-cooled nuclear fission reactors (called UNGG for “Uranium Naturel-Graphite-Gaz”) to get information on its distribution and inventory in the irradiated graphite waste after their dismantling. These findings should be useful both to improve waste treatment processes and to foresee tritium behavior during reactor decommissioning and waste disposal operations. The purpose of the present work is to elucidate the effects of temperature on the behavior of tritium during reactor operation. Furthermore, it aims at exploring options of thermal decontamination. For both purposes, annealing experiments were carried out in inert atmosphere as well as in thermal conditions as close as possible to those encountered in UNGG reactors and in view of a potential decontamination in humid gas. D{sup +} ions were implanted into virgin nuclear graphite in order to simulate tritium displaced from its original structural site through recoil during reactor operation. The effect of thermal treatments on the mobility of the implanted deuterium was then investigated at temperatures ranging from 200 to 1200 °C, in inert atmosphere (vacuum or argon), in a gas simulating the UNGG coolant gas (mainly CO{sub 2}) or in humid nitrogen. Deuterium was analyzed by Nuclear Reaction Analysis (NRA) both at millimetric and micrometric scales. We have identified three main stages for the deuterium release. The first one corresponds to deuterium permeation through graphite open pores. The second and third ones are controlled by the progressive detrapping of deuterium located at different trapping sites and its successive migration through the crystallites and along crystallites and coke grains edges. Extrapolating the thermal behavior of deuterium to tritium, the results show that the release becomes significant above the maximum UNGG reactor temperature of 500 °C and should be lower than 30% of the

  17. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  18. Examination of Surface Deposits on Oldbury Reactor Core Graphite to Determine the Concentration and Distribution of 14C.

    Directory of Open Access Journals (Sweden)

    Liam Payne

    Full Text Available Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study, a slowly releasable fraction (removed early at 600°C in this study, and an unreleasable fraction (removed later at 600°C in this study.

  19. Effects of pulse-to-pulse residual species on discharges in repetitively pulsed discharges through packed bed reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for conversion of toxic and waste gases, and CO2 removal. These discharges are repetitively pulsed having varying flow rates and internal geometries, which results in species from the prior pulse still being in the discharge zone at the time the following discharge pulse occurs. A non-negligible residual plasma density remains, which effectively acts as preionization. This residual charge changes the discharge properties of subsequent pulses, and may impact important PBR properties such as chemical selectivity. Similarly, the residual neutral reactive species produced during earlier pulses will impact the reaction rates on subsequent pulses. We report on results of a computational investigation of a 2D PBR using the plasma hydrodynamics simulator nonPDPSIM. Results will be discussed for air flowing though an array of dielectric rods at atmospheric pressure. The effects of inter-pulse residual species on PBR discharges will be quantified. Means of controlling the presence of residual species in the reactor through gas flow rate, pulse repetition, pulse width and geometry will be described. Comparisons will be made to experiments. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  20. A remote maintenance robot system for a pulsed nuclear reactor

    International Nuclear Information System (INIS)

    Thunborg, S.

    1987-01-01

    This paper presents a remote maintenance robot system for use in a hazardous environment. The system consists of turntable, robot and hoist subsystems which operate under the control of a supervisory computer to perform coordinated programmed maintenance operations on a pulsed nuclear reactor. The system is operational

  1. Magnet design approach for pulsed tokamak reactors

    International Nuclear Information System (INIS)

    Kim, S.H.; Evans, K. Jr.; Ehst, D.A.

    1983-12-01

    A choice of various operating modes of a tokamak reactor will have considerable impact on the fatigue lives and cost of ohmic heating (OH), equilibrium field (EF), and toroidal field (TF) coils. OH AND EF coil requirements and their costs, as well as the effects of the fringing fields of the EF coils on the TF coils, have been studied under cyclic operation in the range of N = 10 2 to 10 6 cycles, spanning the range from a noninductively driven reactor (STARFIRE) to a conventional ohmically driven reactor. For a reference design of TF coils the design of the central OH solenoid has been studied as a function of its maximum field, B/sup OH/. Increasing requirements for structural support lead to only negligible increases in volt-seconds for B/sup OH/ greater than or equal to 10.0 T. Fatigue failure of the OH coil is not a concern for N less than or equal to 10 5 ; for N approx. 10 6 fatigue limits the strain to small values, resulting in small increases in structural requirements and modest decreases in volt-seconds. Should noninductive current drive be achievable we note that this not only eliminates the OH coil, but it also permits EF coil placement in the inboard region, which facilitates the creation of highly shaped plasma cross sections (large triangularity, or bean-shaped equilibria). We have computed the stored energy, coil configuration and fringing fields for a number of EF coil design options

  2. Exploitation questions regarding channel type reactors: water graphite channel reactors (operation, reconstruction, advantages and disadvantages)

    International Nuclear Information System (INIS)

    Chichindaev, D.A.

    2001-01-01

    An overview of up-grade of the RBMK-type reactors is given. I this paper the core design and core monitoring, pressure boundary integrity, RBMK basic design and safety improvements emergency core cooling system (ECCS) as well as reactor cavity overpressure protection system (RCOPS) are discussed

  3. Characterization of un-irradiated and irradiated reactor graphite; Karakterizacija neozracenog i ozracenog reaktorskog grafita

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This report contains three parts: characterization of Yugoslav nuclear graphite development of methods and obtained results, characterization of un-irradiated and irradiated domestic nuclear graphite; calculation of electrical conductivity changes due to vacancies in the graphite crystal lattice.

  4. Transient behaviour study program of research reactors fuel elements at the Hydra Pulse Reactor

    International Nuclear Information System (INIS)

    Khvostionov, V.E.; Egorenkov, P.M.; Malankin, P.V.

    2004-01-01

    Program on behavior study of research reactor Fuel Elements (FE) under transient regimes initiated by excessive reactivity insertion is being presented. Program would be realized at HYDRA pulse reactor at Russian Research Center 'Kurchatov Institute' (RRC 'K1'). HYDRA uses aqueous solution of uranyl sulfate (UO 2 SO 4 ) as a fuel. Up to 30 MJ of energy can be released inside the core during the single pulse, effective power pulse width varying from 2 to 10 ms. Reactor facility allows to investigate behaviour of FE consisting of different types of fuel composition, being developed according to Russian RERTR. First part of program is aimed at transient behaviour studying of FE MR, IRT-3M, WWR-M5 types containing meats based on dioxide uranium in aluminum matrix. Mentioned FEs use 90% and 36% enriched uranium. (author)

  5. Direct nn-Scattering Measurement With the Pulsed Reactor YAGUAR.

    Science.gov (United States)

    Mitchell, G E; Furman, W I; Lychagin, E V; Muzichka, A Yu; Nekhaev, G V; Strelkov, A V; Sharapov, E I; Shvetsov, V N; Chernuhin, Yu I; Levakov, B G; Litvin, V I; Lyzhin, A E; Magda, E P; Crawford, B E; Stephenson, S L; Howell, C R; Tornow, W

    2005-01-01

    Although crucial for resolving the issue of charge symmetry in the nuclear force, direct measurement of nn-scattering by colliding free neutrons has never been performed. At present the Russian pulsed reactor YAGUAR is the best neutron source for performing such a measurement. It has a through channel where the neutron moderator is installed. The neutrons are counted by a neutron detector located 12 m from the reactor. In preliminary experiments an instantaneous value of 1.1 × 10(18)/cm(2)s was obtained for the thermal neutron flux density. The experiment will be performed by the DIANNA Collaboration as International Science & Technology Center (ISTC) project No. 2286.

  6. Temperature and radiolytic corrosion effects on the chlorine behaviour in nuclear graphite: consequences for the disposable of irradiated graphite from UNGG reactors

    International Nuclear Information System (INIS)

    Vaudey, C.E.

    2010-10-01

    This work concerns the dismantling of the UNGG reactor which have produced around 23 000 t of graphite wastes that ave to be disposed of according to the French law of June 206. These wastes contain two long-lived radionuclides ( 14 C and 36 Cl) which are the main long term dose contributors. In order to get information about their inventory and their long term behaviour in case of water ingress into the repository, it is necessary to determine their location and speciation in the irradiated graphite after the reactor shutdown. This work concerns the study of 36 Cl. The main objective is to reproduce its behaviour during reactor operation. For that purpose, we have studied the effects of temperature and radiolytic corrosion independently. Our results show a rapid release of around 20% 36 Cl during the first hours of reactor operation whereas a much slower release occurs afterwards. We have put in evidence two types of chlorine corresponding to two different chemical forms (of different thermal stabilities) or to two locations (of different accessibilities). We have also shown that the radiolytic corrosion seems to enhance chlorine release, whatever the irradiation dose. Moreover, the major chemical form of chlorine is inorganic. (author)

  7. Study on disposal method of graphite blocks and storage of spent fuel for modular gas-cooled reactor. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Sawa, Kazuhiro; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchie, Yasuo; Urakami, Masao [Japan Atomic Power Co., Tokyo (Japan)

    2003-02-01

    This report describes the result of study on disposal method of graphite blocks in future block-type reactor. Present study was carried out within a framework of joint research, ''Research of Modular High Temperature Gas-cooled Reactors (No. 3)'', between Japan Atomic Energy Research Institute (JAERI) and the Japan Atomic Power Company (JAPCO), in 2000. In this study, activities in fuel and reflector graphite blocks were evaluated and were compared with the disposal limits defined as low-level of radioactive waste. As a result, it was found that the activity for only C-14 was higher than disposal limits for the low-level of radioactive waste and that the amount of air in the graphite is important to evaluate precisely of C-14 activity. In addition, spent fuels can be stored in air-cooled condition at least after two years cooling in the storage pool. (author)

  8. THE WHITE SANDS MISSILE RANGE PULSED REACTOR FACILITY, MAY 1963

    Energy Technology Data Exchange (ETDEWEB)

    Long, Robert L.; Boor, R. A.; Cole, W. M.; Elder, G. E.

    1963-05-15

    A brief statement of the mission of the White Sands Missile Range Nuclear Effects Laboratory is given. The new Nuclear Effects Laboratory Facility is described. This facility consists of two buildings-a laboratory and a reactor building. The White Sands Missile Range bare critical assembly, designated as the MoLLY-G, is described. The MoLLY-G, an unreflected, unmoderated right circular cylinder of uranium-molybdenum alloy designed for pulsed operation, will have a maximum burst capability of approximately 2 x 10/sup 17/ fissions with a burst width of 50 microseconds. The reactor construction and operating procedures are described. As designed, the MoLLY-G will provide an intense source of pulsed neutron and gamma radiation for a great variety of experimental and test arrangements. (auth)

  9. Experiences in the emptying of waste silos containing solid nuclear waste from graphite- moderated reactors

    International Nuclear Information System (INIS)

    Wall, S.; Schwarz, T.

    2003-01-01

    Before reactor sites can be handed over for ultimate decommissioning, at some sites silos containing waste from operations need to be emptied. The form and physical condition of the waste demands sophisticated retrieval technologies taking into account the onsite situation in terms of infrastructure and silo geometry. Furthermore, in the case of graphite moderated reactors, this waste usually includes several tonnes of graphite waste requiring special HVAC and dust handling measures. RWE NUKEM Group has already performed several contracts dealing with such emptying tasks. Of particular interest for the upcoming decommissioning projects in France might be the activities at Vandellos, Spain and Trawsfynnyd, UK. Retrieval System for Vandellos NPP is discussed. Following an international competitive tender exercise, RWE NUKEM won the contract to provide a turn-key retrieval system. This involved the design, manufacture and installation of a system built around the modules of a 200 kg capacity version of the ARTISAN manipulator system. The ARTISAN 200 manipulator, with remote slave arm detach facility, was deployed on a telescopic mast inserted into the silos through the roof penetrations. The manipulator deployed a range of tools to gather the waste and load it into a transfer basket, deployed through an adjacent penetration. After commissioning, the system cleared the vaults in less than the scheduled period with no failures. At the Trawsfynnyd Magnox plants two types of intermediate level waste (ILW) accumulated on site; namely Miscellaneous Activated Components (MAC) and Fuel Element Debris (FED). MAC is predominantly components that have been activated by the reactor core and then discharged. FED mainly consists of fuel cladding produced when fuel elements were prepared for dispatch to the reprocessing facility. RWE NUKEM Ltd. was awarded a contract to design, supply, commission and operate equipment to retrieve, pack and immobilize the two waste streams. Major

  10. Performance improvement of the Annular Core Pulse Reactor for reactor safety experiments

    International Nuclear Information System (INIS)

    Reuscher, J.A.; Pickard, P.S.

    1976-01-01

    The Annular Core Pulse Reactor (ACPR) is a TRIGA type reactor which has been in operation at Sandia Laboratories since 1967. The reactor is utilized in a wide variety of experimental programs which include radiation effects, neutron radiography, activation analysis, and fast reactor safety. During the past several years, the ACPR has become an important experimental facility for the United States Fast Reactor Safety Research Program and questions of interest to the safety of the LMFBR are being addressed. In order to enhance the capabilities of the ACPR for reactor safety experiments, a project to improve the performance of the reactor was initiated. It is anticipated that the pulse fluence can be increased by a factor of 2.0 to 2.5 utilizing a two-region core concept with high heat capacity fuel elements around the central irradiation cavity. In addition, the steady-state power of the reactor will be increased by about a factor of two. The new features of the improvements are described

  11. Spatial flux instabilities, and their control in the graphite gas power reactors; Les instabilites spatiales du flux et leur controle dans les reacteurs de puissance graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Cailly, J L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Radial-azimuthal and axial spatial flux instabilities in graphite-gas reactors are studied by means of an analytical approach. Results are checked with those which are given by two dimensional (r, z and r, {theta}) kinetic models programmed for an IBM 7094 computer. At least, conclusions on the control of instabilities obtained from these models are reported. (author) [French] Les instabilites spatiales du flux dans les reacteurs graphite-gaz, radiales et azimutales d'une part, axiales d'autre part, sont etudiees au moyen d'une formulation analytique. Les resultats sont confrontes avec ceux que fournissent des modeles cinetiques a deux dimensions (r, z et r, {theta}) programmes sur IBM 7094. On donne enfin les conclusions relatives au controle de ces instabilites que ces modeles ont permis de degager. (auteur)

  12. Pre-conceptual Development and characterization of an extruded graphite composite fuel for the TREAT Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik; Rooyen, Isabella van; Leckie, Rafael; Papin, Pallas; Nelson, Andrew; Hunter, James

    2015-03-01

    In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabrication must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.

  13. Circuit designs for measuring reactor period, peak power, and pulse fluence on TRIGA and other pulse reactor

    International Nuclear Information System (INIS)

    Meyer, R.D.; Thome, F.V.; Williams, R.L.

    1976-01-01

    Inexpensive circuits for use in evaluating reactor pulse prompt period, peak power, and pulse fluence (NVT) are presented. In addition to low cost, these circuits are easily assembled and calibrated and operate with a high degree of accuracy. The positive period measuring system has been used in evaluating reactivity additions as small as 5 cents (with an accuracy of ±0.1 cents) and as large as $4.50 (accuracy ±2 cents). Reactor peak power is measured digitally with a system accuracy of ±0.04% of a 10 Volt input (±4 mV). The NVT circuit measures over a 2-1/2 decade range, has 3 place resolution and an accuracy of better than 1%. (author)

  14. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydın; Kazimi, Mujid S.

    2013-01-01

    The study evaluates the possible use of graphite foam as the bonding material between U–Pu–Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U–15Pu–6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600–660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors

  15. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydın, E-mail: karahan@alum.mit.edu; Kazimi, Mujid S.

    2013-10-15

    The study evaluates the possible use of graphite foam as the bonding material between U–Pu–Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U–15Pu–6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600–660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.

  16. Treatment and Disposal of the Radioactive Graphite Waste of High-Temperature Gas-Cooled Reactor Spent Fuel

    International Nuclear Information System (INIS)

    Li Junfeng

    2016-01-01

    High-temperature gas-cooled reactors (HTGRs) represent one of the Gen IV reactors in the future market, with efficient generation of energy and the supply of process heat at high temperature utilised in many industrial processes. HTGR development has been carried out within China’s National High Technology Research and Development Program. The first industrial demonstration HTGR of 200 MWe is under construction in Shandong Province China. HTGRs use ceramic-coated fuel particles that are strong and highly resistant to irradiation. Graphite is used as moderator and helium is used as coolant. The fuel particles and the graphite block in which they are imbedded can withstand very high temperature (up to ~1600℃). Graphite waste presents as the fuel element components of HTGR with up to 95% of the whole element beside the graphite blocks in the core. For example, a 200 MWe reactor could discharge about 90,000 fuel elements with 17 tonnes irradiated graphite included each year. The core of the HTGR in China consists of a pebble bed with spherical fuel elements. The UO 2 fuel kernel particles (0.5mm diameter) (triple-coated isotropic fuel particles) are coated by several layers including inner buffer layer with less dense pyrocarbon, dense pyro-carbon, SiC layer and outer layer of dense pyro-carbon, which can prevent the leaking of fission products (Fig. 1). Spherical fuel elements (60mm diameter) consist of a 50mm diameter inner zone and 5mm thick shell of fuel free zone [3]. The inner zone contains about 8300 triple-coated isotropic fuel particles of 0.92mm in diameter dispersed in the graphite matrix

  17. Study of the strength of the internal can for internally and externally cooled fuel elements intended for gas graphite reactors

    International Nuclear Information System (INIS)

    Boudouresque, B.; Courcon, P.; Lestiboubois, G.

    1964-01-01

    The cartridge of an internally and externally cooled annular fuel element used in gas-graphite reactors is made up of an uranium fuel tube, an external can and an internal can made of magnesium alloy. For the thermal exchange between the internal can and the fuel to be satisfactory, it is necessary for the can to stay in contact with the uranium under all temperature conditions. This report, based on a theoretical study, shows how the internal can fuel gap varies during the processes of canning, charging into the reactor and thermal cycling. The following parameters are considered: tube diameter, pressure of the heat carrying gas, gas entry temperature, plasticity of the can alloy. It is shown that for all operating conditions the internal can of a 77 x 95 element, planned for a gas-graphite reactor with a 40 kg/cm 2 gas pressure, should remain in contact with the fuel. (authors) [fr

  18. A preliminary definition of the parameters of an experimental natural - uranium, graphite - moderated, helium - cooled power reactor

    International Nuclear Information System (INIS)

    Baltazar, O.

    1978-01-01

    A preliminary study of the technical characteristic of an experiment at 32 MWe power with a natural uconium, graphite-moderated, helium cooled reactor is described. The national participation and the use of reactor as an instrument for the technological development of future high temperature gas cooled reactor is considered in the choice of the reactor type. Considerations about nuclear power plants components based in extensive bibliography about similar english GCR reactor is presented. The main thermal, neutronic an static characteristic and in core management of the nuclear fuel is stablished. A simplified scheme of the secondary system and its thermodynamic performance is determined. A scheme of parameters calculation of the reactor type is defined based in the present capacity of calculation developed by Coordenadoria de Engenharia Nuclear and Centro de Processamento de Dados, IEA, Brazil [pt

  19. Efficient modeling for pulsed activation in inertial fusion energy reactors

    International Nuclear Information System (INIS)

    Sanz, J.; Yuste, P.; Reyes, S.; Latkowski, J.F.

    2000-01-01

    First structural wall material (FSW) materials in inertial fusion energy (IFE) power reactors will be irradiated under typical repetition rates of 1-10 Hz, for an operation time as long as the total reactor lifetime. The main objective of the present work is to determine whether a continuous-pulsed (CP) approach can be an efficient method in modeling the pulsed activation process for operating conditions of FSW materials. The accuracy and practicability of this method was investigated both analytically and (for reaction/decay chains of two and three nuclides) by computational simulation. It was found that CP modeling is an accurate and practical method for calculating the neutron-activation of FSW materials. Its use is recommended instead of the equivalent steady-state method or the exact pulsed modeling. Moreover, the applicability of this method to components of an IFE power plant subject to repetition rates lower than those of the FSW is still being studied. The analytical investigation was performed for 0.05 Hz, which could be typical for the coolant. Conclusions seem to be similar to those obtained for the FSW. However, further future work is needed for a final answer

  20. Effect of electrical pulse treatment on the thermal fatigue resistance of bionic compacted graphite cast iron processed in water

    International Nuclear Information System (INIS)

    Liu, Yan; Zhou, Hong; Su, Hang; Yang, Chunyan; Cheng, Jingyan; Zhang, Peng; Ren, Luquan

    2012-01-01

    Highlights: ► Electrical pulse treatment can reduce cracks on bionic units before thermal fatigue tests. ► Electrical pulse treatment can reduce crack sources during thermal fatigue tests. ► Thermal fatigue resistance of bionic units processed in water is enhanced. ► Thermal fatigue resistance of bionic CGI processed in water is improved. -- Abstract: In order to further enhance the thermal fatigue resistance of bionic compacted graphite cast iron (CGI) which is processed by laser in water, the electrical pulse treatment is applied to improve the thermal fatigue resistance of bionic units. The results show that the electrical pulse treatment causes the supersaturated carbon atoms located in the lattice of austenite to react with the iron atoms to form the Fe 3 C. The microstructures of the bionic units processed in water are refined by the electrical pulse treatment. The cracks on the bionic units are reduced by the electrical pulse treatment before the thermal fatigue tests; and during the tests, the thermal fatigue resistance of bionic units is therefore enhanced by reducing the crack sources. By this way, the thermal fatigue resistance of bionic CGI processed in water is improved.

  1. Development of in-service inspection system for core support graphite structures in the high temperature engineering test reactor (HTTR)

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Hanawa, Satoshi; Kikuchi, Takayuki; Ishihara, Masahiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-03-01

    Visual inspection of core support graphite structures using TV camera as in-service inspection and measurement of material characteristics using surveillance test specimens are planned in the High Temperature Engineering Test Reactor (HTTR) to confirm structural integrity of the core support graphite structures. For the visual inspection, in-service inspection system developed from September 1996 to June 1998, and pre-service inspection using the system was carried out. As the result of the pre-service inspection, it was validated that high quality of visual inspection with TV camera can be carried out, and also structural integrity of the core support graphite structures at the initial stage of the HTTR operation was confirmed. (author)

  2. Organic free radicals and micropores in solid graphitic carbonaceous matter at the Oklo natural fission reactors, Gabon

    International Nuclear Information System (INIS)

    Rigali, M.J.; Nagy, B.

    1997-01-01

    The presence, concentration, and distribution of organic free radicals as well as their association with specific surface areas and microporosities help characterize the evolution and behavior of the Oklo carbonaceous matter. Such information is necessary in order to evaluate uranium mineralization, liquid bitumen solidification, and radio nuclide containment at Oklo. In the Oklo ore deposits and natural fission reactors carbonaceous matter is often referred to as solid graphitic bitumen. The carbonaceous parts of the natural reactors may contain as much as 65.9% organic C by weight in heterogeneous distribution within the clay-rich matrix. The solid carbonaceous matter immobilized small uraninite crystals and some fission products enclosed in this uraninite and thereby facilitated radio nuclide containment in the reactors. Hence, the Oklo natural fission reactors are currently the subjects of detailed studies because they may be useful analogues to support performance assessment of radio nuclide containment at anthropogenic radioactive waste repository sites. Seven carbonaceous matter rich samples from the 1968 ± 50 Ma old natural fission reactors and the associated Oklo uranium ore deposit were studied by electron spin resonance (ESR) spectroscopy and by measurements of specific surface areas (BET method). Humic acid, fulvic acid, and fully crystalline graphite standards were also examined by ESR spectroscopy for comparison with the Oklo solid graphitic bitumens. With one exception, the ancient Oklo bitumens have higher organic free radical concentrations than the modem humic and fulvic acid samples. The presence of carbon free radicals in the graphite standard could not be determined due to the conductivity of this material. 72 refs., 7 figs., 1 tab

  3. Expected value of finite fission chain lengths of pulse reactors

    International Nuclear Information System (INIS)

    Liu Jianjun; Zhou Zhigao; Zhang Ben'ai

    2007-01-01

    The average neutron population necessary for sponsoring a persistent fission chain in a multiplying system, is discussed. In the point reactor model, the probability function θ(n, t 0 , t) of a source neutron at time t 0 leading to n neutrons at time t is dealt with. The non-linear partial differential equation for the probability generating function G(z; t 0 , t) is derived. By solving the equation, we have obtained an approximate analytic solution for a slightly prompt supercritical system. For the pulse reactor Godiva-II, the mean value of finite fission chain lengths is estimated in this work and shows that the estimated value is reasonable for the experimental analysis. (authors)

  4. AIREK-PUL, Periodic Kinetics Problems of Pulsed Reactors

    International Nuclear Information System (INIS)

    Inzaghi, A.; Misenta, R.

    1984-01-01

    1 - Nature of physical problem solved: Solves periodic problems about the kinetics of pulsed reactors or problems where the reactivity has rapid variations. The program uses two constant steps for the integration of the system of differential equations, the first step during the first half-period and the second step during the second half-period. Available for either single or double precision. 2 - Method of solution: The differential equations are integrated using the fourth-order Runge-Kutta method as modified by E.R. Cohen (Geneva Conference, 1958). 3 - Restrictions on the complexity of the problem: The maximum number of differential equations that can be solved simultaneously is 50

  5. MHD stability regimes for steady state and pulsed reactors

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Pomphrey, N.

    1994-02-01

    A tokamak reactor will operate at the maximum value of β≡2μ 0 /B 2 that is compatible with MHD stability. This value depends upon the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near one, I bs /I p ∼ 1, which constrains the product of the inverse aspect ratio and the plasma poloidal beta to be near unity, ε β p ∼ 1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during the ARIES I, II/IV, and III and the PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements on the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies is also discussed

  6. Magnetohydrodynamic stability regimes for steady state and pulsed reactors

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Pomphrey, N.

    1994-01-01

    A tokamak reactor will operate at the maximum value of β≡2μ 0 left angle p right angle /B 2 that is compatible with magnetohydrodynamic (MHD) stability. This value depends on the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near unity, I BS /I P ∼1, which constrains the product of the inverse aspect ratio and the plasma poloidal β to be near unity, arepsilonβ P ∼1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during ARIES I, II/IV, and III and PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements in the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies, is also discussed. ((orig.))

  7. Some economic aspects of natural uranium graphite gas reactor types. Present status and trends of costs in France

    International Nuclear Information System (INIS)

    Gaussens, J.; Tanguy, P.

    1964-01-01

    The first part of this report defines the economic advantages of natural uranium fuels, which are as follows: the restricted number and relatively simple fabrication processes of the fuel elements, the low cost per kWh of the finished product and the reasonable capital investments involved in this type of fuel cycle as compared to that of enriched uranium. All these factors combine to reduce the arbitrary nature of cost estimates, which is particularly marked in the case of enriched uranium due to the complexity of its cycle and the uncertainties of plutonium prices). Finally, the wide availability of yellowcake, as opposed to the present day virtual monopoly of isotope separation, and the low cost of natural uranium stockpiling, offer appreciable guarantees in the way of security of supply and economic and political independence as compared with the use of enriched uranium. As far as overall capital investments are concerned, it is shown that, although graphite-gas reactor costs are higher than those of light water reactors in certain capacity ranges, the situation becomes far less clear when we start taking into account, in the interest of national independence, the cost of nuclear fuel production equipment in the case of each of these types of reactor. Finally, the marginal cost of the power capacity of a graphite-gas reactor is low and its technological limitations have receded (owing particularly to the use of prestressed concrete). It is a well known fact that the trend is now towards larger power station units, which means that the rentability of natural uranium graphite reactors as compared to other types of reactors will become more and more pronounced. The second section aims at presenting a realistic short and medium term view of the fuel, running, and investment costs of French natural uranium graphite gas, reactors. Finally, the economic goals which this type of reactor can reach in the very near future are given. It is thus shown that considerable

  8. Basic data for surveillance test on core support graphite structures for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Kikuchi, Takayuki; Iyoku, Tatsuo; Fujimoto, Nozomu; Ishihara, Masahiro; Sawa, Kazuhiro

    2007-02-01

    Both of the visual inspection by a TV camera and the measurement of material properties by surveillance test on core support graphite structures are planned for the High Temperature Engineering Test Reactor (HTTR) to confirm their structural integrity and characteristics. The surveillance test is aimed to investigate the change of material properties by aging effects such as fast neutron irradiation and oxidation. The obtained data will be used not only for evaluating the structural integrity of the core support graphite structures of the HTTR but also for design of advanced Very High Temperature Reactor (VHTR) discussed at generation IV international forum. This report describes the initial material properties of surveillance specimens before installation and installed position of surveillance specimens in the HTTR. (author)

  9. Measurement of the enthalpy and specific heat of a Be2C-graphite-UC2 reactor fuel material to 19800K

    International Nuclear Information System (INIS)

    Roth, E.P.

    1980-01-01

    The enthalpy and specific heat of a Be 2 C-graphite-UC 2 composite nuclear fuel material were measured over the temperature range 300 to 1980 0 K using differential scanning calorimetry and liquid argon vaporization calorimetry. The fuel material measured was developed at Sandia National Laboratories for use in pulsed test reactors. The material is a hot-pressed composite consisting of 40 vol % Be 2 C, 49.5 vol % graphite, 3.5 vol % UC 2 and 7.0 vol % void. The specific heat was measured with the differential scanning calorimeter over the temperature range 300 to 950 0 K while the enthalpy was measured over the range 1185 to 1980 0 K with the liquid argon vaporization calorimeter. The normal spectral emittance at a wavelength of 6.5 x 10 -5 cm was measured over the experimental temperature range. The combined experimental enthalpy data were fit using a spline routine and differentiated to give the specific heat. Comparison of the measured specific heat of the composite to the specific heat calculated by summing the contributions of the individual components indicates that the specific heat of the Be 2 C component differs significantly from literature values and is approximately 0.6 cal/g-K (2.5 x 10 3 J/Kg-K) for temperatures above 1000 0 K

  10. Condensation nuclear power plants with water-cooled graphite-moderated channel type reactors and advances in their development

    International Nuclear Information System (INIS)

    Boldyrev, V.M.; Mikhaj, V.I.

    1985-01-01

    Consideration is being given to results of technical and economical investigations of advisability of increasing unit power by elevating steam generating capacity as a result of inserting numerous of stereotype sectional structural elements of the reactor with similar thermodynamic parameters. It is concluded that construction of power units of condensation nuclear power plants with water-cooled graphite-moderated channel type reactors of 2400-3200 MWe and higher unit power capacity represents the real method for sharp growth of efficiency and labour productivity in power industry. It can also provide the required increase of the rate of putting electrogenerating powers into operation

  11. Deployment of Smart 3D Subsurface Contaminant Characterization at the Brookhaven Graphite Research Reactor

    International Nuclear Information System (INIS)

    Sullivan, T.; Heiser, J.; Kalb, P.; Milian, L.; Newson, C.; Lilimpakas, M.; Daniels, T.

    2002-01-01

    The Brookhaven Graphite Research Reactor (BGRR) Historical Site Assessment (BNL 1999) identified contamination inside the Below Grade Ducts (BGD) resulting from the deposition of fission and activation products from the pile on the inner carbon steel liner during reactor operations. Due to partial flooding of the BGD since shutdown, some of this contamination may have leaked out of the ducts into the surrounding soils. The baseline remediation plan for cleanup of contaminated soils beneath the BGD involves complete removal of the ducts, followed by surveying the underlying and surrounding soils, then removing soil that has been contaminated above cleanup goals. Alternatively, if soil contamination around and beneath the BGD is either non-existent/minimal (below cleanup goals) or is very localized and can be ''surgically removed'' at a reasonable cost, the BGD can be decontaminated and left in place. The focus of this Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project was to determine the extent (location, type, and level) of soil contamination surrounding the BGD and to present this data to the stakeholders as part of the Engineering Evaluation/Cost Analysis (EE/CA) process. A suite of innovative characterization tools was used to complete the characterization of the soil surrounding the BGD in a cost-effective and timely fashion and in a manner acceptable to the stakeholders. The tools consisted of a tracer gas leak detection system that was used to define the gaseous leak paths out of the BGD and guide soil characterization studies, a small-footprint Geoprobe to reach areas surrounding the BGD that were difficult to access, two novel, field-deployed, radiological analysis systems (ISOCS and BetaScint) and a three-dimensional (3D) visualization system to facilitate data analysis/interpretation. All of the technologies performed as well or better than expected and the characterization could not have been completed in the same time or at

  12. Interactions of D-T neutrons in graphite and lithium blankets of fusion reactors

    International Nuclear Information System (INIS)

    Ofek, R.

    1986-05-01

    The present study deals with integral experiment and calculation of neutron energy spectra in bulks of graphite which is used as a reflector in blankets of fusion reactors, and lithium, the material of the blanket on which lithium is bred due to neutron interactions. The collimated beam configuration enables - due to the almost monoenergeticity and unidirectionality of the neutrons impinging on the target - to identify fine details in the measured spectra, and also facilitates the absolute normalization of the spectra. The measured and calculated spectra are generally in a good agreement and in a very good agreement at mesh points close to the system axis. A few conclusions may be drawn: a) the collimated beam source configuration is a sensitive tool for measuring neutron energy spectra with a high resolution, b) the method of unfolding proton-recoil spectra measured with a NE-213 scintillator should be improved, c) MCNP and DOT 4.2 may be used as complementary codes for neutron transport calculations of fusion blankets and deep-penetration problems, d) the updating of the cross-section libraries and checking by integral experiments is highly important for the design of fusion blankets. The present study may be regarded as an important course in the research and development of tools for the design of fusion blankets

  13. Nondestructive testing on graphite structures for high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Kambe, Mamoru; Tsuji, Nobumasa.

    1994-01-01

    The application of ultrasonic (for internal defects) and eddy current testing (for surface defects) were investigated on the structures of nuclear-grade IG-110 and PGX graphite for the HTTR. The equipment were developed in order to detect the specific configuration of graphite blocks and the testing conditions were defined as the practical testing methods. The established testing methods are being used for the acceptance tests of graphite structures in the HTTR. (author)

  14. Research on Lessening of Bonding Effects Between the Metallic and Non-Metallic Surfaces Through the Graphite Films Deposited with Pulsed Electrical Discharges Process

    Science.gov (United States)

    Marin, L.; Topala, P.

    2017-06-01

    The paper presents the results of experimental research on the physics of natural graphite film formation, the establishment of chemical composition and functional properties of the graphite films, formed on metal surfaces, as a result of the action of plasma in the air environment, at a normal pressure, under the electrical discharge in impulse conditions (EDI). The researchings were performed in the frame of doctoral thesis “Research on lessening of the bonding effects between the metallic and nonmetallic surfaces through the graphite films” and aimed to identify the phenomena that occur at the interface metal/ film of graphite, and to identify also the technological applications that it may have the surface treatment for submitting the films of graphite on metallic surfaces achieved through an innovative process of electrical pulsed discharges. After the research works from the PhD theme above mentioned, a number of interesting properties of graphite pellicle have been identified ie reducing of metal surface polarity. This led to drastic decreases for the values of adhesion when bonding of metal surfaces was performed using a structural polyurethane adhesive designed by ICECHIM. Following the thermo-gravimetric analysis, performed of the graphite film obtained by process of electrical pulsed discharges, have been also discovered other interesting properties for this, ie reversible mass additions at specific values of the working temperature Chemical and scanning electron microscopy analysis have revealed that on the metallic surface subjected to electrical pulsed discharges process, outside the graphite film, it is also obtained a series of spatial formation composed of carbon atoms fullerenes type which are responsible for the phenomenon of addition of mass.

  15. A pulsed fast reactor; Un reacteur pulse a neutrons rapides; Impul'snyj reaktor na bystrykh nejtronakh; Reactor rapido pulsado

    Energy Technology Data Exchange (ETDEWEB)

    Blokhin, G. E.; Blokhintsev, D. I.; Blyumkina, Yu. A.; Bondarenko, I. I.; Deryagin, B. N.; Zajmovskij, A. S.; Zinov' ev, V. P.; Kazachkovskij, O. D.; Krasnoyarov, N. V.; Lejpunskij, A. I.; Malykh, V. A.; Nazarov, P. M.; Nikolaev, S. K.; Stavisskij, Yu. Ya.; Ukraintsev, F. I.; Frank, I. M.; Shapiro, F. Ji.; Yazvitskij, Yu. S. [Akademiya Nauk, Moscow, SSSR (Russian Federation)

    1962-03-15

    A pulsed fast reactor (IBR) has been operating at rated capacity since December 1960 in the Joint Institute for Nuclear Research. This reactor is used as a pulsed neutron source for physical experiments carried out by the time-of-flight method. It is used for total cross-section and intermediate neutron capture cross- section measurements, for studying the interaction between slow neutrons and solids and liquids, and for measuring neutron spectra produced in various media. The paper describes the basic structural features of the reactor and the results of the experiments for which it has been used. The reactor's operating system is based on recurrent pulses. Power pulses are produced when the mobile part of the reactor core moves swiftly through the stationary part of the core. The mobile part of the core is fastened to a rotating disc and travels at a speed of 230 m/s. The frequency of power pulses can be altered by means of an auxiliary mobile zone which has a range of 2.3-88 pulses per second. The mean power of the reactor is 1 kW, and the half-width of the power pulse in 36 {mu}s. The reactor is provided with a control and safety system which ensures automatic maintenance of mean power and swift shutdown in the event of any operational irregularity. It is fitted with a system of evacuated-neutron-flight tubes used in time-of-flight experiments. The main tube is 1000 m in length. In the start-up process and during physical experiments carried out on the reactor, the influence on reactivity of displacing the controls and the mobile parts of the core was studied ; the length of the pulse was measured under various operating conditions, and power pulse amplitude fluctuations were studied. Further measurements were made to establish the lifetime of prompt neutrons, the effective fraction of delayed neutrons, and coefficients of reactivity. (author) [French] L'Institut unifie de recherches nucleaires dispose d'un reacteur puise a neutrons rapides (IBR), qui

  16. Start-up simulations of the PULSAR pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.

    1993-01-01

    Start-up conditions are examined for a pulsed tokamak reactor that uses only inductively driven plasma current (and bootstrap current). A zero-dimensional (profile-averaged) model containing plasma power and particle balance equations is used to study several aspects of plasma start-up, including: (1) optimization of the start-up pathway; (2) tradeoffs of auxiliary start-up heating power versus start-up time; (3) volt-second consumption; (4) thermal stability of the operating point; (5) estimates of the diverter heat flux and temperature during the start-up transient; (6) the sensitivity of the available operating space to allowed values of the H confinement factor; and (7) partial-power operations

  17. CEDM Controller for a Linear Pulse Motor by using Pulse Width Modulation Method in Integral Reactor

    International Nuclear Information System (INIS)

    Lee, Joon-Koo; Keum, Jong-Yong; Park, Heui-Youn

    2007-01-01

    Integral Reactor SMART is under development at KAERI. The design characteristics of SMART are radically different from those employed in currently operating loop type PWR in Korea. The reliability and accuracy of Control Rod Drive Mechanism are very important to the reactor safety and the design of the Plant Protection System. The SMART CEDM designed for fine-step movement consists of a linear pulse motor, reed switch type sensor with top and bottom limit switches which also act as Control Element Assembly(CEA) Position indicator, The linear pulse motor is a four phase synchronous DC electric machine with inner stator and output stator in coolant medium inside a strong housing. The objective of this paper is to introduce and to explain the CEDM controller CEDM Controller is being developed with a new design concept and digital technology to reduce the Operating Error and improve the systems' reliability and availability. And Switched Mode Power Supply is also being developed with digital hardware technology. This paper involves the test details and result

  18. Mesocarbon microbead based graphite for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yajuan, E-mail: yajuan.zhong@gmail.com [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Zhang, Junpeng [CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lin, Jun, E-mail: linjun@sinap.ac.cn [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Xu, Liujun [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Guo, Quangui [CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2017-07-15

    Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10{sup −6} K{sup −1} (α{sub ∥}) and 6.15 × 10{sup −6} K{sup −1} (α{sub ⊥}) at the temperature range of 25–700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.

  19. Mesocarbon microbead based graphite for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor

    International Nuclear Information System (INIS)

    Zhong, Yajuan; Zhang, Junpeng; Lin, Jun; Xu, Liujun; Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong; Guo, Quangui

    2017-01-01

    Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10 −6 K −1 (α ∥ ) and 6.15 × 10 −6 K −1 (α ⊥ ) at the temperature range of 25–700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.

  20. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L., E-mail: mabs500@gmail.com, E-mail: narain@ufpe.br, E-mail: jairbezerra@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociências. Departamento de Energia Nuclear

    2017-07-01

    Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

  1. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

    International Nuclear Information System (INIS)

    Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L.

    2017-01-01

    Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

  2. Report of the Panel on Kinetics and Applications of Pulsed Research Reactors

    International Nuclear Information System (INIS)

    1966-03-01

    The question of the dynamic behaviour of a reactor subjected to a highly supercritical condition has had special interest for reactor physicists because of the reactor safety implications involved. The large amount of experimental and theoretical work done during the past dozen years or sc to understand fast transient behaviour and the inherent safety characteristics of reactors has not only helped to ease the concern of reactor designers about the consequences of a prompt critical excursion, but, by demonstrating the feasibility of operating certain types of reactors in a pulsed fashion has led to the development of an extremely useful research tool. Pulsed research reactors of a number of different kinds are in operation, while newer, higher performance systems are presently being designed and constructed. Such devices are being used more and more for research in physics, chemistry and reactor engineering, and with the advent of the newer machines, new research areas will become accessible. Because of the rapidly growing interest in the utilization of pulsed reactors for research, the IAEA convened a panel of experts in this field to review recent progress in the design and application of pulsed reactors to consider the problems of converting an existing pool type research reactor to a pulsing types and to consider future potentialities. The panel met in Vienna from 17 to 21 May 1965. This report of the panel summarizes the discussions

  3. Development of pulsed plate columns for fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Jenkins, J.A.; Logsdail, D.H.; Lyall, E.; Myers, P.E.; Partridge, B.A.

    1987-01-01

    The UK Atomic Energy Authority has undertaken a development programme on solvent extraction equipment for reprocessing fast reactor fuels. As part of this programme a solvent extraction pilot plant has been built at Harwell in which a variety of flowsheet conditions can be simulated using the system uranyl nitrate/nitric acid (UN/HNO 3 ) - 20% tri-n-butyl phosphate in odourless kerosene (TBP/OK). The main purpose of present pilot plant operations is to study the performance of pulsed plate columns, with the following specific objectives: to measure the volumetric throughput capacity of the columns, - to study the effect of scale-up of column diameter on U mass transfer performance, - to provide hydraulic and mass transfer data for a dynamic simulation model of pulsed column operation, - to develop and test instruments and ancillary equipment. This poster describes the pilot plant and is illustrated by experimental data, with particular reference to an external settler for controlling the removal of aqueous phase from columns operated with the aqueous phase dispersed

  4. Nuclear piston engine and pulsed gaseous core reactor power systems

    International Nuclear Information System (INIS)

    Dugan, E.T.

    1976-01-01

    The investigated nuclear piston engines consist of a pulsed, gaseous core reactor enclosed by a moderating-reflecting cylinder and piston assembly and operate on a thermodynamic cycle similar to the internal combustion engine. The primary working fluid is a mixture of uranium hexafluoride, UF 6 , and helium, He, gases. Highly enriched UF 6 gas is the reactor fuel. The helium is added to enhance the thermodynamic and heat transfer characteristics of the primary working fluid and also to provide a neutron flux flattening effect in the cylindrical core. Two and four-stroke engines have been studied in which a neutron source is the counterpart of the sparkplug in the internal combustion engine. The piston motions which have been investigated include pure simple harmonic, simple harmonic with dwell periods, and simple harmonic in combination with non-simple harmonic motion. The results of the conducted investigations indicate good performance potential for the nuclear piston engine with overall efficiencies of as high as 50 percent for nuclear piston engine power generating units of from 10 to 50 Mw(e) capacity. Larger plants can be conceptually designed by increasing the number of pistons, with the mechanical complexity and physical size as the probable limiting factors. The primary uses for such power systems would be for small mobile and fixed ground-based power generation (especially for peaking units for electrical utilities) and also for nautical propulsion and ship power

  5. Measurement of Diffusion Parameters and of Anisotropy of Graphite with a Pulsed Source of Neutrons

    International Nuclear Information System (INIS)

    Sagot, M.; Tellier, H.

    1963-01-01

    The diffusion coefficient, cooling coefficient, and anisotropy of graphite were determined to be (2.19 ± 0.03) x 10 5 cm 2 sec -1 , (37.9 ± 4) x 10 5 cm 4 sec -1 , and 1.017 ± 0.008, respectively. The range of geometrical buckling was from 7 to 155 m -2 . The values obtained are compared with published values. (authors) [fr

  6. Preparation of pyrolytic carbon coating on graphite for inhibiting liquid fluoride salt and Xe135 penetration for molten salt breeder reactor

    International Nuclear Information System (INIS)

    Song, Jinliang; Zhao, Yanling; He, Xiujie; Zhang, Baoliang; Xu, Li; He, Zhoutong; Zhang, DongSheng; Gao, Lina; Xia, Huihao; Zhou, Xingtai; Huai, Ping; Bai, Shuo

    2015-01-01

    Highlights: • Rough laminar pyrolytic carbon coating (RLPyC) is prepared by a fixed-bed method. • The salt-infiltration into IG-110 is 13.5%, less than 0.01% of RLPyC under 1.5 atm. • The helium diffusion coefficient of RLPyC coated graphite is 2.16 × 10 −8 cm 2 /s. • The coated graphite can inhibit the liquid fluoride salt and Xe 135 penetration. - Abstract: A fixed-bed deposition method was used to prepare rough laminar pyrolytic carbon coating (RLPyC) on graphite for inhibiting liquid fluoride salt and Xe 135 penetration during use in molten salt breeder reactor. The RLPyC coating possessed a graphitization degree of 44% and had good contact with graphite substrate. A high-pressure reactor was constructed to evaluate the molten salt infiltration in the isostatic graphite (IG-110, TOYO TANSO CO., LTD.) and RLPyC coated graphite under 1.01, 1.52, 3.04, 5.07 and 10.13 × 10 5 Pa for 12 h. Mercury injection and molten-salt infiltration experiments indicated the porosity and the salt-infiltration amount of 18.4% and 13.5 wt% under 1.52 × 10 5 Pa of IG-110, which was much less than 1.2% and 0.06 wt% under 10.13 × 10 5 Pa of the RLPyC, respectively. A vacuum device was constructed to evaluate the Xe 135 penetration in the graphite. The helium diffusion coefficient of RLPyC coated graphite was 2.16 × 10 −12 m 2 /s, much less than 1.21 × 10 −6 m 2 /s of the graphite. Thermal cycle experiment indicated the coatings possessed excellent thermal stability. The coated graphite could effectively inhibit the liquid fluoride salt and Xe 135 penetration

  7. Melting of contaminated steel scrap from the dismantling of the CO2 systems of gas cooled, graphite moderated nuclear reactors

    International Nuclear Information System (INIS)

    Feaugas, J.; Jeanjacques, M.; Peulve, J.

    1994-01-01

    G2 and G3 are the natural Uranium cooled reactors Graphite/Gas. The two reactors were designed for both plutonium and electricity production (45 MWe). The dismantling of the reactors at stage 2 has produced more than 4 000 tonnes of contaminated scrap. Because of their large mass and low residual contamination level, the French Atomic Energy Commission (CEA) considered various possibilities for the processing of these metallic products in order to reduce the volume of waste going to be stored. After different studies and tests of several processes and the evaluation of their results, the choice to melt the dismantled pipeworks was taken. It was decided to build the Nuclear Steel Melting Facility known as INFANTE, in cooperation with a steelmaker (AHL). The realization time schedule for the INFANTE lasted 20 months. It included studies, construction and the licensing procedure. (authors). 2 tabs., 3 figs

  8. Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kalupka, C., E-mail: christian.kalupka@llt.rwth-aachen.de; Finger, J. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Reininghaus, M. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Fraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, Aachen 52074 (Germany)

    2016-04-21

    We report on the in-situ analysis of the ablation dynamics of the, so-called, laser induced non-thermal ablation process of graphite. A highly oriented pyrolytic graphite is excited by femtosecond laser pulses with fluences below the classic thermal ablation threshold. The ablation dynamics are investigated by axial pump-probe reflection measurements, transversal pump-probe shadowgraphy, and time-resolved transversal emission photography. The combination of the applied analysis methods allows for a continuous and detailed time-resolved observation of the non-thermal ablation dynamics from several picoseconds up to 180 ns. Formation of large, μm-sized particles takes place within the first 3.5 ns after irradiation. The following propagation of ablation products and the shock wave front are tracked by transversal shadowgraphy up to 16 ns. The comparison of ablation dynamics of different fluences by emission photography reveals thermal ablation products even for non-thermal fluences.

  9. Specific features of direct formation of graphite-like microstructures in polycarbonate samples by single femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ganin, D V; Lapshin, K E; Obidin, A Z; Vartapetov, S K [Physics Instrumentation Center, A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Troitsk, Moscow Region (Russian Federation)

    2015-11-30

    We present the result of the experiments on producing graphite-like cylindrical microstructures by focusing single femtosecond laser pulses into the bulk of a transparent polymer (polycarbonate). The microstructures are embedded in a cladding with a modified refractive index, possessing waveguide properties. In the experiments with nontransparent screens and diaphragms, placed in the laser beam in front of the entrance pupil of the objective with a large numerical aperture, we have found that the paraxial rays are blocked by the peripheral ones, which reduces the length of the destruction region in the pre-focal zone. In the experiments with transparent screens and diaphragms, introducing optical delays τ{sub d} between the paraxial and peripheral rays, the quantitative dependence of the destruction region length in the pre-focal zone on the value of τ{sub d} is determined. (interaction of laser radiation with matter. laser plasma)

  10. Impact of radiolysis and radiolytic corrosion on the release of {sup 13}C and {sup 37}Cl implanted into nuclear graphite: Consequences for the behaviour of {sup 14}C and {sup 36}Cl in gas cooled graphite moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moncoffre, N., E-mail: nathalie.moncoffre@ipnl.in2p3.fr [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Toulhoat, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); CEA/DEN, Centre de Saclay (France); Bérerd, N.; Pipon, Y. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Université de Lyon, Université Lyon, IUT Lyon-1 département chimie (France); Silbermann, G. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); Blondel, A. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Andra, Châtenay-Malabry (France); Galy, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); and others

    2016-04-15

    Graphite finds widespread use in many areas of nuclear technology based on its excellent moderator and reflector qualities as well as its strength and high temperature stability. Thus, it has been used as moderator or reflector in CO{sub 2} cooled nuclear reactors such as UNGG, MAGNOX, and AGR. However, neutron irradiation of graphite results in the production of {sup 14}C (dose determining radionuclide) and {sup 36}Cl (long lived radionuclide), these radionuclides being a key issue regarding the management of the irradiated waste. Whatever the management option (purification, storage, and geological disposal), a previous assessment of the radioactive inventory and the radionuclide's location and speciation has to be made. During reactor operation, the effects of radiolysis are likely to promote the radionuclide release especially at the gas/graphite interface. Radiolysis of the coolant is mainly initiated through γ irradiation as well as through Compton electrons in the graphite pores. Radiolysis can be simulated in laboratory using γ irradiation or ion irradiation. In this paper, {sup 13}C, {sup 37}Cl and {sup 14}N are implanted into virgin nuclear graphite in order to simulate respectively the presence of {sup 14}C, {sup 36}Cl and nitrogen, a {sup 14}C precursor. Different irradiation experiments were carried out using different irradiation devices on implanted graphite brought into contact with a gas simulating the coolant. The aim was to assess the effects of gas radiolysis and radiolytic corrosion induced by γ or He{sup 2+} irradiation at the gas/graphite interface in order to evaluate their role on the radionuclide release. Our results allow inferring that radiolytic corrosion has clearly promoted the release of {sup 14}C, {sup 36}Cl and {sup 14}N located at the graphite brick/gas interfaces and open pores.

  11. Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    2002-01-01

    The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [∼1000 Mw(e)] with passive safety systems to provide the potential for improved economics

  12. Failure Predictions for Graphite Reflector Bricks in the Very High Temperature Reactor with the Prismatic Core Design

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gyanender, E-mail: sing0550@umn.edu [Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States); Fok, Alex [Minnesota Dental Research in Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, 515, Delaware St. SE, Minneapolis, MN 55455 (United States); Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States); Mantell, Susan [Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States)

    2017-06-15

    Highlights: • Failure probability of VHTR reflector bricks predicted though crack modeling. • Criterion chosen for defining failure strongly affects the predictions. • Breaching of the CRC could be significantly delayed through crack arrest. • Capability to predict crack initiation and propagation demonstrated. - Abstract: Graphite is used in nuclear reactor cores as a neutron moderator, reflector and structural material. The dimensions and physical properties of graphite change when it is exposed to neutron irradiation. The non-uniform changes in the dimensions and physical properties lead to the build-up of stresses over the course of time in the core components. When the stresses reach the critical limit, i.e. the strength of the material, cracking occurs and ultimately the components fail. In this paper, an explicit crack modeling approach to predict the probability of failure of a VHTR prismatic reactor core reflector brick is presented. Firstly, a constitutive model for graphite is constructed and used to predict the stress distribution in the reflector brick under in-reactor conditions of high temperature and irradiation. Fracture simulations are performed as part of a Monte Carlo analysis to predict the probability of failure. Failure probability is determined based on two different criteria for defining failure time: A) crack initiation and B) crack extension to near control rod channel. A significant difference is found between the failure probabilities based on the two criteria. It is predicted that the reflector bricks will start cracking during the time range of 5–9 years, while breaching of the control rod channels will occur during the period of 11–16 years. The results show that, due to crack arrest, there is a significantly delay between crack initiation and breaching of the control rod channel.

  13. Tables of formulae for calculating the mechanics of stacks in gas-graphite reactors

    International Nuclear Information System (INIS)

    1968-01-01

    This collection of formulae only gives, for nuclear graphite stacks. The mechanical effects due to the strains, thermal or not, of steel structures supporting or surrounding graphite blocks. Equations have been established by mean of experiments made at Chinon with large pile models. Thus, it is possible to calculate displacement, strain and stress in the EDF type stacks of horizontal triangular block lattice. (authors) [fr

  14. Design of a graphite-moderated {sup 241}Am-Li neutron field to simulate reactor spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, N., E-mail: tsujimura.norio@jaea.go.j [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Yoshida, T. [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33, Tokai-mura, Ibaraki-ken, 319-1194 (Japan)

    2010-12-15

    A neutron calibration field using {sup 241}Am-Li sources and a moderator was designed to simulate the neutron fields found outside a reactor. The moderating assembly selected for the design calculation consists of a cube of graphite blocks with dimensions of 50 cm by 50 cm by 50 cm, in which the {sup 241}Am-Li sources are placed. Monte Carlo calculations revealed the optimal depth of the source to be 15 cm. This moderated neutron source can be used to provide a test field that has a large number of intermediate energy neutrons with a small portion of MeV component.

  15. Nuclear graphite ageing and turnaround

    International Nuclear Information System (INIS)

    Marsden, B.J.; Hall, G.N.; Smart, J.

    2001-01-01

    Graphite moderated reactors are being operated in many countries including, the UK, Russia, Lithuania, Ukraine and Japan. Many of these reactors will operate well into the next century. New designs of High Temperature Graphite Moderated Reactors (HTRS) are being built in China and Japan. The design life of these graphite-moderated reactors is governed by the ageing of the graphite core due to fast neutron damage, and also, in the case of carbon dioxide cooled reactors by the rate of oxidation of the graphite. Nuclear graphites are polycrystalline in nature and it is the irradiation-induced damage to the individual graphite crystals that determines the material property changes with age. The life of a graphite component in a nuclear reactor can be related to the graphite irradiation induced dimensional changes. Graphites typically shrink with age, until a point is reached where the shrinkage stops and the graphite starts to swell. This change from shrinkage to swelling is known as ''turnaround''. It is well known that pre-oxidising graphite specimens caused ''turnaround'' to be delayed, thus extending the life of the graphite, and hence the life of the reactor. However, there was no satisfactory explanation of this behaviour. This paper presents a numerical crystal based model of dimensional change in graphite, which explains the delay in ''turnaround'' in the pre-oxidised specimens irradiated in a fast neutron flux, in terms of crystal accommodation and orientation and change in compliance due to radiolytic oxidation. (author)

  16. Comparison of SANS instruments at reactors and pulsed sources

    International Nuclear Information System (INIS)

    Thiyagarajan, P.; Epperson, J.E.; Crawford, R.K.; Carpenter, J.M.; Hjelm, R.P. Jr.

    1992-01-01

    Small angle neutron scattering is a general purpose technique to study long range fluctuations and hence has been applied in almost every field of science for material characterization. SANS instruments can be built at steady state reactors and at the pulsed neutron sources where time-of-flight (TOF) techniques are used. The steady state instruments usually give data over small q ranges and in order to cover a large q range these instruments have to be reconfigured several times and SANS measurements have to be made. These instruments have provided better resolution and higher data rates within their restricted q ranges until now, but the TOF instruments are now developing to comparable performance. The TOF-SANS instruments, by using a wide band of wavelengths, can cover a wide dynamic q range in a single measurement. This is a big advantage for studying systems that are changing and those which cannot be exactly reproduced. This paper compares the design concepts and performances of these two types of instruments

  17. Computational prediction of dust production in graphite moderated pebble bed reactors

    Science.gov (United States)

    Rostamian, Maziar

    The scope of the work reported here, which is the computational study of graphite wear behavior, supports the Nuclear Engineering University Programs project "Experimental Study and Computational Simulations of Key Pebble Bed Thermomechanics Issues for Design and Safety" funded by the US Department of Energy. In this work, modeling and simulating the contact mechanics, as anticipated in a PBR configuration, is carried out for the purpose of assessing the amount of dust generated during a full power operation year of a PBR. A methodology that encompasses finite element analysis (FEA) and micromechanics of wear is developed to address the issue of dust production and its quantification. Particularly, the phenomenon of wear and change of its rate with sliding length is the main focus of this dissertation. This work studies the wear properties of graphite by simulating pebble motion and interactions of a specific type of nuclear grade graphite, IG-11. This study consists of two perspectives: macroscale stress analysis and microscale analysis of wear mechanisms. The first is a set of FEA simulations considering pebble-pebble frictional contact. In these simulations, the mass of generated graphite particulates due to frictional contact is calculated by incorporating FEA results into Archard's equation, which is a linear correlation between wear mass and wear length. However, the experimental data by Johnson, University of Idaho, revealed that the wear rate of graphite decreases with sliding length. This is because the surfaces of the graphite pebbles become smoother over time, which results in a gradual decrease in wear rate. In order to address the change in wear rate, a more detailed analysis of wear mechanisms at room temperature is presented. In this microscale study, the wear behavior of graphite at the asperity level is studied by simulating the contact between asperities of facing surfaces. By introducing the effect of asperity removal on wear rate, a nonlinear

  18. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  19. Nature and characteristics of pulsing flow in trickle-bed reactors

    NARCIS (Netherlands)

    Boelhouwer, J.G.; Piepers, H.W.; Drinkenburg, A.A.H.

    2002-01-01

    Pulsing flow is well known for its advantages in terms of an increase in mass and heat transfer rates, complete catalyst wetting and a decrease in axial dispersion compared to trickle flow. The operation of a trickle-bed reactor in the pulsing flow regime is favorable in terms of a capacity increase

  20. Enlargement of the pulsing flow regime by periodic operation of a trickle-bed reactor.

    NARCIS (Netherlands)

    Boelhouwer, J.G.; Piepers, H.W.; Drinkenburg, A.A.H.

    1999-01-01

    Potential advantages of pulsing flow in trickle-bed reactors include capacity increase and elimination of hot spots through the enhanced mass and heat transfer rates. A disadvantage of naturally occurring pulsing flow is the necessity of relatively high gas and liquid flow rates, especially at

  1. Test and application of thermal neutron radiography facility at Xi'an pulsed reactor

    CERN Document Server

    Yang Jun; Zhao Xiang Feng; Wang Dao Hua

    2002-01-01

    A thermal neutron radiography facility at Xi'an Pulsed Reactor is described as well as its characteristics and application. The experiment results show the inherent unsharpness of BAS ND is 0.15 mm. The efficient thermal neutron n/gamma ratio is lower in not only steady state configuration but also pulsing state configuration and it is improved using Pb filter

  2. Brazing graphite to graphite

    International Nuclear Information System (INIS)

    Peterson, G.R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of graphite

  3. On the controllability and run-away possibility of a totally free piston, pulsed compression reactor

    NARCIS (Netherlands)

    Roestenberg, T.; Glouchenkov, Maxim Joerjevisj; glushenkov, M.J.; Kronberg, Alexandre E.; van der Meer, Theodorus H.

    2010-01-01

    The pulsed compression reactor promises to be a compact, economical and energy efficient alternative to conventional chemical reactors. While its design and operation is similar to that of a free piston internal combustion engine, it does not benefit from any controllability through the load.

  4. About a fuel for burnup reactor of periodical pulsed nuclear pumped laser

    International Nuclear Information System (INIS)

    Volkov, A.I.; Lukin, A.V.; Magda, L.E.; Magda, E.P.; Pogrebov, I.S.; Putnikov, I.S.; Khmelnitsky, D.V.; Scherbakov, A.P.

    1998-01-01

    A physical scheme of burnup reactor for a Periodic Pulsed Nuclear Pumped Laser was supposed. Calculations of its neutron physical parameters were made. The general layout and construction of basic elements of the reactor are discussed. The requirements for the fuel and fuel elements are established. (author)

  5. A review of the behaviour of graphite under the conditions appropriate for protection of the first wall of a fusion reactor

    International Nuclear Information System (INIS)

    Birch, M.; Brocklehurst, J.E.

    1987-12-01

    The material used as a first wall protection in fusion reactor systems will be exposed to 14 MeV neutrons from the fusion reaction and suffer surface bombardment by other energetic particles in the plasma. Graphite is a potential candidate for the first wall material. Calculations are performed of the damaging power of 14 MeV neutrons so that existing graphite irradiation data can be utilised. Such data at high irradiation temperatures are reviewed for a wide range of graphite types, characterised by specific examples, and the application of the data to design calculations is discussed. The erosion/corrosion effect of the plasma at the graphite surface is also considered. Limitations in the state of knowledge are identified, and particular areas of further work are recommended. (author)

  6. Simulation of emulsion copolymerization reactions in a continuous pulsed sieve-plate column reactor

    OpenAIRE

    C. Sayer; R. Giudici

    2004-01-01

    This work addressed the viability of using a pulsed sieve-plate column reactor to carry out continuous vinyl acetate/butyl acrylate emulsion copolymerization reactions. A rigorous mathematical model of emulsion copolymerization reactions in a tubular reactor with axial dispersion was used for this purpose. Operational conditions were defined to attain high monomer conversions at the reactor outlet in a relatively short residence time and, at the same time, produce a copolymer with a more homo...

  7. Simulation of emulsion copolymerization reactions in a continuous pulsed sieve-plate column reactor

    Directory of Open Access Journals (Sweden)

    Sayer C.

    2004-01-01

    Full Text Available This work addressed the viability of using a pulsed sieve-plate column reactor to carry out continuous vinyl acetate/butyl acrylate emulsion copolymerization reactions. A rigorous mathematical model of emulsion copolymerization reactions in a tubular reactor with axial dispersion was used for this purpose. Operational conditions were defined to attain high monomer conversions at the reactor outlet in a relatively short residence time and, at the same time, produce a copolymer with a more homogeneous composition.

  8. Unique differences in applying safety analyses for a graphite moderated, channel reactor

    International Nuclear Information System (INIS)

    Moffitt, R.L.

    1993-06-01

    Unlike its predecessors, the N Reactor at the Hanford Site in Washington State was designed to produce electricity for civilian energy use as well as weapons-grade plutonium. This paper describes the major problems associated with applying safety analysis methodologies developed for commercial light water reactors (LWR) to a unique reactor like the N Reactor. The focus of the discussion is on non-applicable LWR safety standards and computer modeling/analytical variances of standards. The approaches used to resolve these problems to develop safety standards and limits for the N Reactor are described

  9. Graphitic carbon nanospheres: A Raman spectroscopic investigation of thermal conductivity and morphological evolution by pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Radhe; Sahoo, Satyaprakash, E-mail: satya504@gmail.com, E-mail: rkatiyar@hpcf.upr.edu; Chitturi, Venkateswara Rao; Katiyar, Ram S., E-mail: satya504@gmail.com, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 00936-8377 (United States)

    2015-12-07

    Graphitic carbon nanospheres (GCNSs) were prepared by a unique acidic treatment of multi-walled nanotubes. Spherical morphology with a narrow size distribution was confirmed by transmission electron microscopy studies. The room temperature Raman spectra showed a clear signature of D- and G-peaks at around 1350 and 1591 cm{sup −1}, respectively. Temperature dependent Raman scattering measurements were performed to understand the phonon dynamics and first order temperature coefficients related to the D- and G-peaks. The temperature dependent Raman spectra in a range of 83–473 K were analysed, where the D-peak was observed to show a red-shift with increasing temperature. The relative intensity ratio of D- to G-peaks also showed a significant rise with increasing temperature. Such a temperature dependent behaviour can be attributed to lengthening of the C-C bond due to thermal expansion in material. The estimated value of the thermal conductivity of GCNSs ∼0.97 W m{sup −1} K{sup −1} was calculated using Raman spectroscopy. In addition, the effect of pulsed laser treatment on the GCNSs was demonstrated by analyzing the Raman spectra of post irradiated samples.

  10. A system dynamics model for tritium cycle of pulsed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zuolong; Nie, Baojie [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Chen, Dehong, E-mail: dehong.chen@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-05-15

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  11. A system dynamics model for tritium cycle of pulsed fusion reactor

    International Nuclear Information System (INIS)

    Zhu, Zuolong; Nie, Baojie; Chen, Dehong

    2017-01-01

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  12. Measurements of anomalous neutron transport in bulk graphite

    International Nuclear Information System (INIS)

    Bowman, C.D.; Smith, G.A.; Vogelaar, B.; Howell, C.R.; Bilpuch, E.G.; Tornow, W.

    2003-01-01

    The neutron absorption of bulk granular graphite has been measured in a classical exponential diffusion experiment. Our first measurements of April 2002 implementing both exponential decay and pulsed die-away experiments and using the TUNL pulsed accelerator at Duke University as a neutron source indicated a capture cross section for graphite a striking factor of three lower than the measured value for carbon of 3.4 millibarns. Therefore a new exponential experiment with an improved geometry enabling greater accuracy has been performed giving an apparent cross section for carbon in the form of bulk granular graphite of less than 0.5 millibarns. This result confirms our first result and is also consistent with less than one part per million of boron in our graphite. The bulk density of the graphite is 1.02 compared with the actual particle density of 1.60 indicating a packing fraction of 0.64 or a void fraction of 0.36. We suspect that the apparent suppression of absorption in bulk graphite may be associated with the strong coherent diffraction of neutrons that dominates neutron transport in graphite. Coherent diffraction has never been taken into account in graphite reactor design and no neutron transport code including general use codes such as MCNP incorporate diffraction effects even though diffraction dominates many practical thermal neutron transport problems. (orig.)

  13. Measurements of anomalous neutron transport in bulk graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, C.D.; Smith, G.A. [ADNA Corp., Los Alamos, NM (United States); Vogelaar, B. [Virginia Tech., Blacksburg, VA (United States); Howell, C.R.; Bilpuch, E.G.; Tornow, W. [Triangle Univ. Nuclear Lab., Duke Univ., Durham, NC (United States)

    2003-07-01

    The neutron absorption of bulk granular graphite has been measured in a classical exponential diffusion experiment. Our first measurements of April 2002 implementing both exponential decay and pulsed die-away experiments and using the TUNL pulsed accelerator at Duke University as a neutron source indicated a capture cross section for graphite a striking factor of three lower than the measured value for carbon of 3.4 millibarns. Therefore a new exponential experiment with an improved geometry enabling greater accuracy has been performed giving an apparent cross section for carbon in the form of bulk granular graphite of less than 0.5 millibarns. This result confirms our first result and is also consistent with less than one part per million of boron in our graphite. The bulk density of the graphite is 1.02 compared with the actual particle density of 1.60 indicating a packing fraction of 0.64 or a void fraction of 0.36. We suspect that the apparent suppression of absorption in bulk graphite may be associated with the strong coherent diffraction of neutrons that dominates neutron transport in graphite. Coherent diffraction has never been taken into account in graphite reactor design and no neutron transport code including general use codes such as MCNP incorporate diffraction effects even though diffraction dominates many practical thermal neutron transport problems. (orig.)

  14. Special graphites; Graphites speciaux

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [French] Ameliorer les proprietes du graphite nucleaire pour empilements et ouvrir de nouveaux domaines d'application au graphite constituent une part importante de l'effort entrepris en commun par le Commissariat a l'Energie Atomique (CEA) et la compagnie PECHINEY. Des procedes nouveaux de fabrication de carbones et graphites speciaux ont ete mis au point: graphite forge, pyrocarbone, graphite de haute densite, agglomeration de poudres de graphite par craquage de gaz naturel, graphites impermeables. Les proprietes physiques de ces produits ainsi que leur reaction avec differents gaz oxydants sont decrites. Les premiers resultats d'irradiation sont aussi donnes. (auteurs)

  15. Preparation of pyrolytic carbon coating on graphite for inhibiting liquid fluoride salt and Xe{sup 135} penetration for molten salt breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jinliang [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhao, Yanling, E-mail: jlsong1982@yeah.net [School of Materials Science and Engineering, University of Jinan, Jinan 250022 (China); He, Xiujie; Zhang, Baoliang [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Xu, Li [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); He, Zhoutong; Zhang, DongSheng; Gao, Lina; Xia, Huihao; Zhou, Xingtai; Huai, Ping [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Bai, Shuo [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-01-15

    Highlights: • Rough laminar pyrolytic carbon coating (RLPyC) is prepared by a fixed-bed method. • The salt-infiltration into IG-110 is 13.5%, less than 0.01% of RLPyC under 1.5 atm. • The helium diffusion coefficient of RLPyC coated graphite is 2.16 × 10{sup −8} cm{sup 2}/s. • The coated graphite can inhibit the liquid fluoride salt and Xe{sup 135} penetration. - Abstract: A fixed-bed deposition method was used to prepare rough laminar pyrolytic carbon coating (RLPyC) on graphite for inhibiting liquid fluoride salt and Xe{sup 135} penetration during use in molten salt breeder reactor. The RLPyC coating possessed a graphitization degree of 44% and had good contact with graphite substrate. A high-pressure reactor was constructed to evaluate the molten salt infiltration in the isostatic graphite (IG-110, TOYO TANSO CO., LTD.) and RLPyC coated graphite under 1.01, 1.52, 3.04, 5.07 and 10.13 × 10{sup 5} Pa for 12 h. Mercury injection and molten-salt infiltration experiments indicated the porosity and the salt-infiltration amount of 18.4% and 13.5 wt% under 1.52 × 10{sup 5} Pa of IG-110, which was much less than 1.2% and 0.06 wt% under 10.13 × 10{sup 5} Pa of the RLPyC, respectively. A vacuum device was constructed to evaluate the Xe{sup 135} penetration in the graphite. The helium diffusion coefficient of RLPyC coated graphite was 2.16 × 10{sup −12} m{sup 2}/s, much less than 1.21 × 10{sup −6} m{sup 2}/s of the graphite. Thermal cycle experiment indicated the coatings possessed excellent thermal stability. The coated graphite could effectively inhibit the liquid fluoride salt and Xe{sup 135} penetration.

  16. Calculation of anti-seismic design for Xi'an pulsed reactor

    International Nuclear Information System (INIS)

    Li Shuian

    2002-01-01

    The author describes the reactor safety rule, safety regulation and design code that must be observed to anti-seismic design in Xi'an pulsed reactor. It includes the classification of reactor installation, determination of seismic loads, calculate contents, program, method, results and synthetically evaluation. According to the different anti-seismic structure character of reactor installation, an appropriate method was selected to calculate the seismic response. The results were evaluated synthetically using the design code and design requirement. The evaluate results showed that the anti-seismic design function of reactor installation of Xi'an pules reactor is well, and the structure integrality and normal property of reactor installation can be protect under the designed classification of the earthquake

  17. Pulsed-laser ablation of co-deposits on JT-60 graphite tile

    International Nuclear Information System (INIS)

    Sakawa, Youichi; Watanabe, Daisuke; Shibahara, Takahiro; Sugiyama, Kazuyoshi; Tanabe, Tetsuo

    2007-01-01

    Pulsed laser ablation of the co-deposits on a JT-60 open-divertor tile using the fourth harmonic of a 20 ps-Nd: YAG laser has been investigated. With increasing the laser intensity, three regions, non-ablation region (NAR), weak-ablation region (WAR), and strong-ablation region (SAR) were distinguished. Transition from NAR to WAR and WAR to SAR occurred at the threshold laser intensity for laser ablation and that for strong ionization of carbon atoms, respectively. The ablation accompanied desorption of H 2 and C 2 H 2 , with minor contribution of other hydrocarbons, while production of H 2 O was small. In NAR and WAR the number of the hydrogen desorbed by the laser irradiation was less than that of hydrogen retained in the ablated volume, while in SAR it was much larger, owing to thermal desorption of hydrogen gas from the region surrounding the ablated volume. For the ablative removal of hydrogen isotopes, SAR is more desirable because of higher removal efficiency and less production of hydrocarbons

  18. Pulsed-laser ablation of co-deposits on JT-60 graphite tile

    Energy Technology Data Exchange (ETDEWEB)

    Sakawa, Youichi [Institute of Laser Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan)]. E-mail: sakawa-y@ile.osaka-u.ac.jp; Watanabe, Daisuke [Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Shibahara, Takahiro [Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Sugiyama, Kazuyoshi [Interdisciplinary School of Engineering Science, Kyushu University, Fukuoka, Fukuoka 812-8581 (Japan); Tanabe, Tetsuo [Interdisciplinary School of Engineering Science, Kyushu University, Fukuoka, Fukuoka 812-8581 (Japan)

    2007-08-01

    Pulsed laser ablation of the co-deposits on a JT-60 open-divertor tile using the fourth harmonic of a 20 ps-Nd: YAG laser has been investigated. With increasing the laser intensity, three regions, non-ablation region (NAR), weak-ablation region (WAR), and strong-ablation region (SAR) were distinguished. Transition from NAR to WAR and WAR to SAR occurred at the threshold laser intensity for laser ablation and that for strong ionization of carbon atoms, respectively. The ablation accompanied desorption of H{sub 2} and C{sub 2}H{sub 2}, with minor contribution of other hydrocarbons, while production of H{sub 2}O was small. In NAR and WAR the number of the hydrogen desorbed by the laser irradiation was less than that of hydrogen retained in the ablated volume, while in SAR it was much larger, owing to thermal desorption of hydrogen gas from the region surrounding the ablated volume. For the ablative removal of hydrogen isotopes, SAR is more desirable because of higher removal efficiency and less production of hydrocarbons.

  19. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core–shell nanospheres for catalytic reduction of nitrobenzene to aniline

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu-jin; Ma, Rory; Reddy, D. Amaranatha; Kim, Tae Kyu, E-mail: tkkim@pusan.ac.kr

    2015-12-01

    Graphical abstract: - Highlights: • Graphitized carbon-encapsulated palladium core–shell nanospheres fabricated by laser ablation. • Physical characterizations of synthesized Pd@C nanospheres. • Assessments of catalytic performance of Pd@C nanospheres for the reduction of nitrobenzene to aniline. • Significant improvement of the catalytic activity due to the graphitized carbon-layered structure and the high specific surface area. - Abstract: Graphitized carbon-encapsulated palladium (Pd) core–shell nanospheres were produced via pulsed laser ablation of a solid Pd foil target submerged in acetonitrile. The microstructural features and optical properties of these nanospheres were characterized via high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Microstructural analysis indicated that the core–shell nanostructures consisted of single-crystalline cubic metallic Pd spheres that serve as the core material, over which graphitized carbon was anchored as a heterogeneous shell. The absorbance spectrum of the synthesized nanostructures exhibited a broad (absorption) band at ∼264 nm; this band corresponded to the typical inter-band transition of a metallic system and resulted possibly from the absorbance of the ionic Pd{sup 2+}. The catalytic properties of the Pd and Pd@C core–shell nanostructures were investigated using the reduction of nitrobenzene to aniline by an excess amount of NaBH{sub 4} in an aqueous solution at room temperature, as a model reaction. Owing to the graphitized carbon-layered structure and the high specific surface area, the resulting Pd@C nanostructures exhibited higher conversion efficiencies than their bare Pd counterparts. In fact, the layered structure provided access to the surface of the Pd nanostructures for the hydrogenation reaction, owing to the synergistic effect between graphitized carbon and the nanostructures. Their

  20. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core–shell nanospheres for catalytic reduction of nitrobenzene to aniline

    International Nuclear Information System (INIS)

    Kim, Yu-jin; Ma, Rory; Reddy, D. Amaranatha; Kim, Tae Kyu

    2015-01-01

    Graphical abstract: - Highlights: • Graphitized carbon-encapsulated palladium core–shell nanospheres fabricated by laser ablation. • Physical characterizations of synthesized Pd@C nanospheres. • Assessments of catalytic performance of Pd@C nanospheres for the reduction of nitrobenzene to aniline. • Significant improvement of the catalytic activity due to the graphitized carbon-layered structure and the high specific surface area. - Abstract: Graphitized carbon-encapsulated palladium (Pd) core–shell nanospheres were produced via pulsed laser ablation of a solid Pd foil target submerged in acetonitrile. The microstructural features and optical properties of these nanospheres were characterized via high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Microstructural analysis indicated that the core–shell nanostructures consisted of single-crystalline cubic metallic Pd spheres that serve as the core material, over which graphitized carbon was anchored as a heterogeneous shell. The absorbance spectrum of the synthesized nanostructures exhibited a broad (absorption) band at ∼264 nm; this band corresponded to the typical inter-band transition of a metallic system and resulted possibly from the absorbance of the ionic Pd 2+ . The catalytic properties of the Pd and Pd@C core–shell nanostructures were investigated using the reduction of nitrobenzene to aniline by an excess amount of NaBH 4 in an aqueous solution at room temperature, as a model reaction. Owing to the graphitized carbon-layered structure and the high specific surface area, the resulting Pd@C nanostructures exhibited higher conversion efficiencies than their bare Pd counterparts. In fact, the layered structure provided access to the surface of the Pd nanostructures for the hydrogenation reaction, owing to the synergistic effect between graphitized carbon and the nanostructures. Their unique

  1. Immobilization of carbon-14 from reactor graphite waste by use of self-sustaining reaction in the C-Al-TiO2 system

    International Nuclear Information System (INIS)

    Karlina, O.K.; Klimov, V.L.; Ojovan, M.I.; Pavlova, G.Yu.; Dmitriev, S.A.; Yurchenko, A.Yu.

    2005-01-01

    As a result of long-term neutron irradiation, the long-lived 14 C is produced in the reactor graphite. The exothermic self-sustaining reaction 3C(graphite) + 4Al + 3TiO 2 = 3TiC + 2Al 2 O 3 was proposed for processing of such waste. In doing so, the carbon, including the 14 C, is chemically bound in the stable TiC. The reaction products in the C-Al-TiO 2 system were investigated both by thermodynamic simulation and experimentally in the course of this work

  2. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core-shell nanospheres for catalytic reduction of nitrobenzene to aniline

    Science.gov (United States)

    Kim, Yu-jin; Ma, Rory; Reddy, D. Amaranatha; Kim, Tae Kyu

    2015-12-01

    Graphitized carbon-encapsulated palladium (Pd) core-shell nanospheres were produced via pulsed laser ablation of a solid Pd foil target submerged in acetonitrile. The microstructural features and optical properties of these nanospheres were characterized via high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Microstructural analysis indicated that the core-shell nanostructures consisted of single-crystalline cubic metallic Pd spheres that serve as the core material, over which graphitized carbon was anchored as a heterogeneous shell. The absorbance spectrum of the synthesized nanostructures exhibited a broad (absorption) band at ∼264 nm; this band corresponded to the typical inter-band transition of a metallic system and resulted possibly from the absorbance of the ionic Pd2+. The catalytic properties of the Pd and Pd@C core-shell nanostructures were investigated using the reduction of nitrobenzene to aniline by an excess amount of NaBH4 in an aqueous solution at room temperature, as a model reaction. Owing to the graphitized carbon-layered structure and the high specific surface area, the resulting Pd@C nanostructures exhibited higher conversion efficiencies than their bare Pd counterparts. In fact, the layered structure provided access to the surface of the Pd nanostructures for the hydrogenation reaction, owing to the synergistic effect between graphitized carbon and the nanostructures. Their unique structure and excellent catalytic performance render Pd@C core-shell nanostructures highly promising candidates for catalysis applications.

  3. Chapter 10: Calculation of the temperature coefficient of reactivity of a graphite-moderated reactor

    International Nuclear Information System (INIS)

    Brown, G.; Richmond, R.; Stace, R.H.W.

    1963-01-01

    The temperature coefficients of reactivity of the BEPO, Windscale and Calder reactors are calculated, using the revised methods given by Lockey et al. (1956) and by Campbell and Symonds (1962). The results are compared with experimental values. (author)

  4. High thermal conductivity of graphite fiber silicon carbide composites for fusion reactor application

    International Nuclear Information System (INIS)

    Snead, L.L.; Balden, M.; Causey, R.A.; Atsumi, H.

    2002-01-01

    The benefits of using CVI SiC/graphite fiber composites as low tritium retaining, high thermal conductivity composites for fusion applications are presented. Three-dimensional woven composites have been chemically vapor infiltrated with SiC and their thermophysical properties measured. One material used an intermediate grade graphite fiber in all directions (Amoco P55) while a second material used very high thermal conductive fiber (Amoco K-1100) in the high fiber density direction. The overall void was less than 20%. Strength as measured by four-point bending was comparable to those of SiC/SiC composite. The room temperature thermal conductivity in the high conductivity direction was impressive for both materials, with values >70 W/m K for the P-55 and >420 W/m K for the K-1100 variant. The thermal conductivity was measured as a function of temperature and exceeds the highest thermal conductivity of CVD SiC currently available at fusion relevant temperatures (>600 deg. C). Limited data on the irradiation-induced degradation in thermal conductivity is consistent with carbon fiber composite literature

  5. Description of the french graphite reactor and of the experiments performed in 1956

    International Nuclear Information System (INIS)

    Bussac, J.; Leduc, C.; Zaleski, C.P.

    1957-01-01

    This paper is an introduction to the experiments performed on the G1 reactor, experiments fully described in the papers following (670 'B to P'). The main results are given together with some comments. The neutronic parameters of the core, a description of the most important structures, and a few words of the tests leading to normal operation of the reactor under load complete our survey. (author) [fr

  6. Status of the design concepts for a high fluence fast pulse reactor (HFFPR)

    International Nuclear Information System (INIS)

    Philbin, J.S.; Nelson, W.E.; Rosenstroch, B.

    1978-10-01

    The report describes progress that has been made on the design of a High Fluence Fast Pulse Reactor (HFFPR) through the end of calendar year 1977. The purpose of this study is to present design concepts for a test reactor capable of accommodating large scale reactor safety tests. These concepts for reactor safety tests are adaptations of reactor concepts developed earlier for DOE/OMA for the conduct of weapon effects tests. The preferred driver core uses fuel similar to that developed for Sandia's ACPR upgrade. It is a BeO/UO 2 fuel that is gas cooled and has a high volumetric heat capacity. The present version of the design can drive large (217) pin bundles of prototypically enriched mixed oxide fuel well beyond the fuel's boiling point. Applicability to specific reactor safety accident scenarios and subsequent design improvements will be presented in future reports on this subject

  7. Recent operational history of the new Sandia Pulsed Reactor III (SPR III)

    International Nuclear Information System (INIS)

    Schmidt, T.R.; Estes, B.F.; Reuscher, J.A.

    1977-01-01

    The Sandia Pulsed Reactor III (SPR III) is a fast-pulse research reactor which was designed and built at Sandia Laboratories and achieved criticality in August 1975. The reactor is now characterized and is in an operational configuration. The core consists of 18 fuel plates (258 kg fuel mass) of fully enriched uranium alloyed with 10 wt.% molybdenum. It is arranged in an annular configuration with an inside diameter of 17.78 cm, an outside diameter of 29.72 cm, and a height of 35.9 cm. The reactor core uses reflectors of copper and aluminum for control and an external bolting arrangement to secure the fuel plates. SPR III and SPR II are operated on an interchangeable basis using the same facility and control system. As of June 1977, SPR III has had over 240 operations with core temperatures up to 541 0 C

  8. A seismic analysis of the driving system for the pulsed reactor

    International Nuclear Information System (INIS)

    Hu Yongtao; Fu Shixiang; Zeng Jianhua; Hong Jingfeng

    1991-01-01

    The driving system of the pulsed reactor contains control rods, pulsing o rod and sample rack. They are slender, and their drive function is required more strictly. First, a complete model which contains all driving system and reactor bridge is used. Then the substructure models are adopted. The results of calculation are compared with the experimental results. It shows that the analysis results are reliable and the substructure method is simple, available and utility. The seismic safety is evaluated by the results from response spectra method

  9. Comparative study of pulsed and steady-state tokamak reactor burn cycles

    International Nuclear Information System (INIS)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K.; Hassanein, A.M.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1984-05-01

    Four distinct operating modes have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue in pulsed poloidal field coils; out-of-plant fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics and engineering which will help achieve these goals for different burn cycles

  10. Performance of commercial off-the-shelf microelectromechanical systems sensors in a pulsed reactor environment

    Energy Technology Data Exchange (ETDEWEB)

    Hobert, Keith Edwin [Los Alamos National Laboratory; Heger, Arlen S [Los Alamos National Laboratory; Mccready, Steven S [Los Alamos National Laboratory

    2010-07-15

    Prompted by the unexpected failure of piezoresistive sensors in both an elevated gamma-ray environment and reactor core pulse tests, we initiated radiation testing of several MEMS piezoresistive accelerometers and pressure transducers to ascertain their radiation hardness. Some commercial off-the-shelf sensors are found to be viable options for use in a high-energy pulsed reactor, but others suffer severe degradation and even catastrophic failure. Although researchers are promoting the use of MEMS devices in radiation-harsh environment, we nevertheless find assurance testing necessary.

  11. Recuperation of the energy released in the G-1, an air-cooled graphite reactor core; Recuperation de l'energie degagee dans G 1 pile a graphite refroidie a l'air

    Energy Technology Data Exchange (ETDEWEB)

    Chambadal, P [Electricite de France (EDF), 75 - Paris (France); Pascal, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The CEA (in his five-year setting plan) has objective among others, the realization of the two first french reactors moderated with graphite. The construction of the G-1 reactor in Marcoule, first french plutonic core, is achieved so that it will diverge in the beginning of 1956 and reach its full power in the beginning of the second semester of the same year. In this report we will detail the specificities of the reactor and in particular its cooling and energy recuperation system. The G-1 reactor being essentially intended to allow the french technicians to study the behavior of an energy installation supply taking its heat in a nuclear source as early as possible. (M.B.) [French] Le Commissariat a l'Energie Atomique (dans le cadre du plan quinquennal) a entre autres objectifs, la realisation des deux premiers reacteurs francais moderes au graphite. La construction du reacteur G-1 a Marcoule, premiere pile plutonigene francaise, est realise afin qu'il puisse diverger au debut de 1956 et atteindre sa pleine puissance au debut du second semestre de la meme annee. Dans ce rapport nous detaillerons les specificites du reacteur et en particulier son systeme de refroidissement et de recuperation d'energie. Le reacteur G-1 etant essentielement destine a permettre aux techniciens francais d'etudier le plus tot possible le comportement d'une installation productrice d'energie empruntant sa chaleur a une source nucleaire. (M.B.)

  12. Condensed matter and materials research using neutron diffraction and spectroscopy: reactor and pulsed neutron sources

    International Nuclear Information System (INIS)

    Bisanti, Paola; Lovesey, S.W.

    1987-05-01

    The paper provides a short, and partial view of the neutron scattering technique applied to condensed matter and materials research. Reactor and accelerator-based neutron spectrometers are discussed, together with examples of research projects that illustrate the puissance and modern applications of neutron scattering. Some examples are chosen to show the range of facilities available at the medium flux reactor operated by Casaccia ENEA, Roma and the advanced, pulsed spallation neutron source at the Rutherford Appleton Laboratory, Oxfordshire. (author)

  13. Mechanical strength parameters of cast iron with lamellar graphite and their significance for the design of pressure-carrying reactor components

    International Nuclear Information System (INIS)

    Janakiev, N.

    1977-01-01

    The tensile strength of thick-walled components in cast iron with lamellar graphite is lower by about 50 to 65% than that stated in DIN 1691. The usable compressive strength of this material under uni-axial load is about twice as high as its tensile strength. The graphite lamellae are not bonded into the metallic matrix. The width of the gaps between the graphite lamellae and the matrix increases with increasing wall thickness of the casting. In stress calculations for design purposes it is advisable to rely only on the permissible tensile stresses. It is shown that cast iron can be used as structural material for shieldings but is unsuitable for thick-walled reactor components carrying compressive and tensile stresses because its mechanical strength parameters decrease rapidly with increasing wall thickness. (orig.) [de

  14. Measurement of the stored energy in the NRX reactor reflector graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hilton, H. B.; Larson, E. A.G.

    1959-07-15

    With the co-operation of workers at Windscale and Harwell, whose assistance is hereby gratefully acknowledged, the stored energy content of the inner reflector graphite of NRX has been measured. Measurements made at three different elevations and at different positions through the reflector show that there is, at present, no danger to NRX from an accidental release of the energy. The energy stored in the reflector in 1958 is less by a factor five to ten than the stored energy as measured in 1953. It appears that there has been a continual release of stored energy since 1954 when, after the rehabilitation, the maximum power was raised to 40 MW. Additional thermocouples have been installed in the inner reflector, and future stored energy measurements are being scheduled. (author)

  15. FSV experience in support of the GT-MHR reactor physics, fuel performance, and graphite

    International Nuclear Information System (INIS)

    Baxter, A.M.; McEachern, D.; Hanson, D.L.; Vollman, R.E.

    1994-11-01

    The Fort St. Vrain (FSV) power plant was the most recent operating graphite-moderated, helium-cooled nuclear power plant in the United States. Many similarities exist between the FSV design and the current design of the GT-MHR. Both designs use graphite as the basic building blocks of the core, as structural material, in the reflectors, and as a neutron moderator. Both designs use hexagonal fuel elements containing cylindrical fuel rods with coated fuel particles. Helium is the coolant and the power densities vary by less than 5%. Since material and geometric properties of the GT-MHR core am very similar to the FSV core, it is logical to draw upon the FSV experience in support of the GT-MHR design. In the Physics area, testing at FSV during the first three cycles of operation has confirmed that the calculational models used for the core design were very successful in predicting the core nuclear performance from initial cold criticality through power operation and refueling. There was excellent agreement between predicted and measured initial core criticality and control rod positions during startup. Measured axial flux distributions were within 5% of the predicted value at the peak. The isothermal temperature coefficient at zero power was in agreement within 3%, and even the calculated temperature defect over the whole operating range for cycle 3 was within 8% of the measured defect. In the Fuel Performance area, fuel particle coating performance, and fission gas release predictions and an overall plateout analysis were performed for decommissioning purposes. A comparison between predicted and measured fission gas release histories of Kr-85m and Xe-138 and a similar comparison with specific circulator plateout data indicated good agreement between prediction and measured data. Only I-131 plateout data was overpredicted, while Cs-137 data was underpredicted

  16. Radio-active pollution near natural uranium-graphite-gas reactors

    International Nuclear Information System (INIS)

    Chassany, J.; Pouthier, J.; Delmar, J.

    1967-01-01

    The results of numerous evaluations of the contamination are given: - Reactors in operation during maintenance operations. - Reactors shut-down during typical repair operations (coolants, exchangers, interior of the vessel, etc. ) - Following incidents on the cooling circuit and can-rupture. They show that, except in particular cases, it is the activation products which dominate. Furthermore, after ten years operation, the points at which contamination liable to emit strong doses accumulates are very localized and the individual protective equipment has not had to be reinforced. (authors) [fr

  17. Papers about coated particles, graphitic and metallic materials for progressive high-temperature reactors at the Reactor Meeting 1978

    International Nuclear Information System (INIS)

    Rottmann, J.

    1978-09-01

    In the contributions, questions on the development, the radiation and the high-temperature behaviour and the characterization of fuel element particles are treated. Furthermore the resistance and radiation behaviour of graphitic materials are discussed. Finally, questions on the choice of high-temperature alloys for nuclear process heat facilities are discussed and the testing-equipment of the Nuclear Research Centre as well as first results of the long-time experiments are presented. The work was performed within the frame of the projects 'HTR-Fuel Element Cycle' and 'Prototype Nuclear Process Heat', which are sponsored by the Federal Ministry of Research and Technology of the Federal Republic of Germany and of the state of North-Rhine-Westfalia. Partner firms, who participate in the two projects are Gelsenberg AG, Gesellschaft fuer Hochtemperaturreaktor-Technik mbH, Hochtemperaturreaktor-Brennelement GmbH, Hochtemperatur-Reaktorbau GmbH, Kernforschungsanlage Juelich GmbH, NUKEM GmbH, SIGRI Elektrographit GmbH/Ringsdorff-Werke GmbH, Bergbauforschung GmbH und Rheinische Braunkohlenwerke AG. (orig./UA) [de

  18. Estimation of power feedback parameters of pulse reactor IBR-2M on transients

    International Nuclear Information System (INIS)

    Pepyolyshev, Yu.N.; Popov, A.K.

    2013-01-01

    Parameters of the IBR-2M reactor power feedback (PFB) on a model of the reactor dynamics by mathematical treatment of two registered transients are estimated. Frequency characteristics and the pulse transient characteristics corresponding to these PFB parameters are calculated. PFB parameters received thus can be considered as their express tentative estimation as real measurements in this case occupy no more than 30 minutes. Total PFB is negative at 1 and 2 MW. At the received estimations of PFB parameters in a self-regulation mode it is possible to consider the stability margins of the IBR-2M reactor satisfactory

  19. Improvement of pulsing operation performance in the Nuclear Safety Research Reactor (NSRR)

    International Nuclear Information System (INIS)

    Kobayasi, S.; Ishijima, K.; Tanzawa, S.; Fujishiro, T.; Horiki, O.

    1990-01-01

    The Nuclear Safety Research Reactor (NSRR) is one of the TRIGA-type research reactors widely used in the world, and has mainly been used for studying reactor fuel behaviour during postulated reactivity-initiated accidents (RIAs). Its limited pulsing operation capability, however, could produce only a power burst from low power level simulating an RIA event from essentially zero power level. A computerized automatic reactor control system was developed and installed in the NSRR to simulate a wide range of abnormal events in nuclear power plants. This digitalized reactor control system requires no manipulation of the control rods by reactor operators during the course of the pulsing operation. Using this fully automated operation system, a variety of power transients such as power ramping, power bursts from high power level, and so on were made possible with excellent stability and safety. The present modification work in the NSRR and its fruitful results indicate new possibilities in the utilization of the TRIGA type research reactor

  20. Safety problems of nuclear power plants with channel-type graphite boiling water reactors

    International Nuclear Information System (INIS)

    Emel'yanov, I.Ya.; Vasilevskij, V.P.; Volkov, V.P.; Gavrilov, P.A.; Kramerov, A.Ya.; Kuznetsov, S.P.; Kunegin, E.P.; Rybakov, N.Z.

    1977-01-01

    Construction of nuclear power plants in a highly populated region near large industrial centres necessitates to pay a special attention to their nuclear and radiation safety. Safety problems of nuclear reactor operation are discussed, in particular, they are: reliable stoppage of fission chain reaction at any emergency cases; reliable core cooling with failure of various equipment; emergency core cooling with breached pipes of a circulating circuit; and prevention of radioactive coolant release outside the nuclear power plant in amount exceeding the values adopted. Channel-type water boiling reactors incorporate specific features requiring a new approach to safety operation of a reactor and a nuclear power plant. These include primarily a rather large steam volume in the coolant circuit, large amount of accumulated heat, void reactivity coefficient. Channel-type reactors characterized by fair neutron balance and flexible fuel cycle, have a series of advantages alleviating the problem of ensuring their safety. The possibility of reliable control over the state of each channel allows to replace failed fuel elements by the new ones, when operating on-load, to increase the number of circulating loops and reduce the diameter of main pipelines, simplifies significantly the problem of channel emergency cooling and localization of a radioactive coolant release from a breached circuit. The concept of channel-type reactors is based on the solution of three main problems. First, plant safety should be assured in emergency switch off of separate units and, if possible, energy conditions should be maintained, this is of particular importance considering the increase in unit power. Second, the system of safety and emergency cooling should eliminate a great many failures of fuel elements in case of potential breaches of any tube in the circulating circuit. Finally, rugged boxes and localizing devices should be provided to exclude damage of structural elements of the nuclear power

  1. First physical start-up for the first pulsed reactor in China

    International Nuclear Information System (INIS)

    Huang Wenlou; Tan Rilin; Xie Yuqi; Chai Songshan; Li Yingfa; He Qianming; Zhou Bin

    1993-01-01

    The characteristics and the test results of initial loading fuel and first physical start-up for the first pulsed reactor in China (PRC-1) are described. Safe measure to ensure safety of first physical start-up are also described. The experiments show that performances of PRC-1 are in accord with design requirements

  2. Recent Development of Radioanalytical Methods at the IBR-2 Pulsed Fast Reactor

    International Nuclear Information System (INIS)

    Nazarov, V.M.; Peresedov, V.F.

    1994-01-01

    Experience in the application of radioanalytical methods, including NAA, at the IBR-2 pulsed fast reactor is reviewed. Details of the instruments dedicated to neutron activation analysis and radiography studies are reported. Applications of resonance neutrons to environmental monitoring and to the investigation of high-purity materials, are examplified. 15 refs. 9 figs., 9 tabs

  3. An electrical pulse hydride injector (EPHI) for reactor fueling and tritium handling applications

    International Nuclear Information System (INIS)

    Azizov, E.A.; Kareev, Yu.A.; Savotkin, A.N.; Frunze, V.V.; Penzhorn, R.D.; Glugla, M.

    1995-01-01

    An electrical pulse hydride injector (EPHI) has been developed for reactor fuelling as well as for handling of hydrogen isotopes in facilities operating with tritium. Salient features of the EPHI are the accuracy with which the fuelling rate can be controlled and the avoidance of a pressurized ballast. The generator is simple and allows for safe operation with tritium. (orig.)

  4. Small-angle neutron scattering at pulsed sources compared to reactor sources

    International Nuclear Information System (INIS)

    Hjelm, R.P. Jr.; Seeger, P.A.; Thiyagarajan, P.

    1990-01-01

    Detailed comparisons of measurements made on small-angle neutron scattering instruments at pulsed spallation and reactor sources show that the results from the two types of instruments are comparable. It is further demonstrated that spallation instruments are preferable for measurements in the mid-momentum transfer domain or when a large domain is needed. 8 refs., 2 figs

  5. Capability Study For Using the Impulse Graphite Reactor For Activation Analysis of Geological Materials

    International Nuclear Information System (INIS)

    Azarov, V.A.; Silaev, M.E.

    1998-01-01

    The IGR reactor facility available in the Institute of Atomic Energy NNC RK is mainly used for testing the going and newly developed fuel compositions and reactor materials. In connection with a decrease of the demand in investigations like that there was considered the capability to use the reactor for solving another research and, particularly, applied problems. A mineral exploration is one of the urgent objectives in the Republic of Kazakstan, and in Semipalatinsk region in particular. To perform the exploration like that it's required, in addition to rough field investigations, the methods of analysis for element composition of geological materials, the difference of which is in their effectiveness, quality and low first cost. Activation methods of analysis allow to provide with a high analysis quality and effectiveness. Therefore, there was proposed to study the capability to use the IGR reactor for the activation analysis of geological materials. To solve this goal the following activity in three basic trends is required: 1. To create the needed theoretical and, on its basis, the methodical base for performing the analytical activity; 2. To create the experimental and technical and organizational infrastructure for the investigations, providing with a high productivity and low prime cost of work; 3. To conduct works on marketing and to use the going methodical and technical base on the market of services. Major objectives for the creation of the theoretical and methodical base for analysis are: a) the study of neutron and physical IGR reactor characteristics under various operation modes; b) the study of the radiation effect on the results of activation analysis; c) the simulation of the temperature mode for irradiation of samples in the reactor and experimental model survey; d) the study of the capability to use non-traditional elements and materials as neutron reactor flux monitors; e) the development of the technique for the experimental and computational

  6. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  7. Reprocessing of gas-cooled reactor particulate graphite fuel in a multi-strata transmutation system

    International Nuclear Information System (INIS)

    Laidler, J.J.

    2001-01-01

    Spent nuclear fuel discharged for light water reactors (LWRs) contains significant quantities of plutonium and other transuranic elements. Recent practice in Europe and Japan has been to recover the plutonium from spent fuel and recycle it to LWRs in the form of mixed uranium-plutonium oxide (MOX) fuel. Irradiation of the recycle fuel results in the generation of further plutonium and an increase in the isotopic concentration of the higher isotopes of plutonium, those having much lover fission cross sections than 239 Pu. This restricts plutonium recycle to one or two cycles, after which use of the plutonium becomes economically unfavorable. Recycle of the highly-transmuted plutonium in fast spectrum reactors can be an efficient method of fissioning this plutonium as well as other minor transuranics such as neptunium, americium and perhaps even curium. Those minor transuranics that are not conveniently burned in a fast reactor can be sent to an accelerator driven subcritical transmutation device for ultimate destruction. The preceding describes what has become known as a 'dual strata' or 'multi-strata' system. It is driven by the incentives to realize the maximum amount of energy from nuclear fuel and to eliminate the discharge of radio-toxic transuranic elements to the environment. Its implementation will be dependent in the long run upon the economic viability of the system and on the value placed by society on the elimination of radio-toxic materials that can conceivably be used in the manufacture of weapons of mass destruction. (author)

  8. Thermal-hydraulic instabilities in pressure tube graphite-moderated boiling water reactors

    International Nuclear Information System (INIS)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling charmers in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement

  9. Pulsed power supply and coaxial reactor applied to E. coli elimination in water by pulsed dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Quiroz V, V. E.; Lopez C, R.; Rodriguez M, B. G.; Pena E, R.; Mercado C, A.; Valencia A, R.; Hernandez A, A. N.; Barocio, S. R.; Munoz C, A. E. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); De la Piedad B, A., E-mail: regulo.lopez@inin.gob.mx [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico)

    2013-07-01

    The design and instrumentation intended for ATTC8739 Escherichia coli (E. coli) bacteria elimination in water, based on non thermal plasma generation at room pressure have been carried out by means of dielectric pulsed discharges. The latter have been produced by a power supply capable of providing voltages up to the order of 45 kV, 1-500 {mu}s pulse widths and variable frequencies between 100 Hz to 2000 Hz. This supply feeds a coaxial discharge reactor of the simple dielectric barrier type. The adequate operation of the system has been tested with the elimination of E. coli at 10{sup 4} and 10{sup 6} bacteria/ml concentrations, leading to reductions up to 85.3% and 95.1%, respectively, during the first 30 min of treatment. (Author)

  10. Effects of core models and neutron energy group structures on xenon oscillation in large graphite-moderated reactors

    International Nuclear Information System (INIS)

    Yamasita, Kiyonobu; Harada, Hiroo; Murata, Isao; Shindo, Ryuichi; Tsuruoka, Takuya.

    1993-01-01

    Xenon oscillations of large graphite-moderated reactors have been analyzed by a multi-group diffusion code with two- and three-dimensional core models to study the effects of the geometric core models and the neutron energy group structures on the evaluation of the Xe oscillation behavior. The study clarified the following. It is important for accurate Xe oscillation simulations to use the neutron energy group structure that describes well the large change in the absorption cross section of Xe in the thermal energy range of 0.1∼0.65 eV, because the energy structure in this energy range has significant influences on the amplitude and the period of oscillations in power distributions. Two-dimensional R-Z models can be used instead of three-dimensional R-θ-Z models for evaluation of the threshold power of Xe oscillation, but two-dimensional R-θ models cannot be used for evaluation of the threshold power. Although the threshold power evaluated with the R-θ-Z models coincides with that of the R-Z models, it does not coincide with that of the R-θ models. (author)

  11. Conversion of methane to hydrogen by a pulsed plasma reactor

    International Nuclear Information System (INIS)

    Ghorbanzadeh, A. M.; Matin, N.; Parandvar, M. R.; Rasouli, C.; Mazouchi, A. M.

    2003-01-01

    A pulsed atmospheric glow discharge, employing corona as a preionization, was used to convert methane to hydrogen and higher hydrocarbons. The experimental results showed that the overall conversion and specific energy, defined as energy needed to dissociate one mole methane, was mainly dependent on E/P, banking capacitance, repetition rate and flow rate. The dependence on E/P, especially, is more pronounced. The minimum specific energy was less than 1 MJ and it is expected that it could be further lowered by choosing higher E/P, lower banking capacitance and introducing an oxidizer to enhance the conversion efficiency

  12. Comparison of fast neutron spectra in graphite and FLINA salt inserted in well-defined core assembled in LR-0 reactor

    International Nuclear Information System (INIS)

    Košťál, Michal; Veškrna, Martin; Cvachovec, František; Jánský, Bohumil; Novák, Evžen; Rypar, Vojtěch; Milčák, Ján; Losa, Evžen; Mravec, Filip; Matěj, Zdeněk; Rejchrt, Jiří; Forget, Benoit; Harper, Sterling

    2015-01-01

    Highlights: • Neutron spectra measured in graphite and LiF + NaF. • Comparison of calculated and measured neutron spectra. • Effect of 19F on variation between various library calculated spectra. - Abstract: The present paper aims to compare the calculated and measured spectra after insertion of candidate materials for the Molten salt reactor/Fluoride cooled high temperature reactor system concept into the LR-0 reactor. The calculation is realized with MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, JENDL-4, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Additionally, comparisons between the slowing down power of each media were performed. The slowing down properties are important parameters affecting the thickness of moderator media in a reactor

  13. Simulation of pulsed accidental energy release in a reactor core

    International Nuclear Information System (INIS)

    Ryshanskii, V.A.; Ivanov, A.G.; Uskov, A.A.

    1995-01-01

    At the present time the strength of the load-bearing members of VVER and fast reactors during a hypothetical accident is ordinarily investigated in model experiments [1]. A power burst during an accident is simulated by a nonnuclear exothermal reaction in water, which simulates the coolant and fills the model. The problem is to make the correct choice of the simulator of the accidental energy burst as an effective (i.e., sufficiently high working capacity) source of dangerous loads, corresponding to the conditions of an accident. What factors and parameters determine the energy release? The answers to these questions are contradictory

  14. Study of new structures adapted to gas-graphite and gas-heavy water reactors; Etude de structures nouvelles adaptees aux reacteurs graphite-gaz et eau lourde-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R; Roche, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The experience acquired as a result of the operation of the Marcoule reactors and of the construction and start-up of the E.D.F. reactors on the one hand, and the conclusions of research and tests carried out out-of-pile on the other hand, lead to a considerable change in the general design of reactors of the gas-graphite type. The main modifications envisaged are analysed in the paper. The adoption of an annular fuel element and of a down-current cooling will make it possible to increase considerably the specific power and the power output of each channel; as a result there will be a considerable reduction in the number of the channels and a corresponding increase in the size of the unit cell. The graphite stack will have to be adapted to there new conditions. For security reasons, the use of prestressed concrete for the construction of the reactor vessel is becoming more widespread; they could lead to the exchangers and the fuel-handling apparatus becoming integrated inside the vessel (the so-called 'attic' device). A full-size mode) of this attic has been built at Saclay with the participation of EURATOM; the operational results obtained are presented as well as a new original design for the control rods. As for as the gas-heavy-water system is concerned, the research is carried out on two points of design; the first, which retains the use of horizontal pressure tubes, takes into account the experience acquired during the construction of the EL 4 reactor of which it will constitute an extrapolation; the second, arising from the research carried out on the gas-graphite system, will use a pre-stressed concrete vessel for holding the pressure, the moderator being almost at the same pressure as the cooling fluid and the fuel being placed in vertical channels. The relative merits of these two variants are analysed in the present paper. (authors) [French] L'experience acquise par l'exploitation des reacteurs de MARCOULE, la construction et le demarrage des reacteurs d

  15. Liner of a thermonuclear pulse THETA-pinch reactor

    International Nuclear Information System (INIS)

    Baranov, G.A.; Izotov, E.N.; Karasev, B.G.; Komin, A.V.; Krivosheev, M.V.; Levashov, A.D.

    1975-01-01

    Some possible constructive solutions to the problem of fabrication of the theta-pinch reactor liner by the method of centrifugal casting in a casting mould are considered. A scheme for liner manufacturing is presented, which includes the following elements: 1) a casting mould of dielectric material presenting a hollow cylinder of 4 m in diam., 3 m in length and 12 t in weight, which rotates at 8 rps in the reactor chamber; 2) a system for heat protection of the casting mould; the volume heat of the mould is suggested to remove by gaseous helium flowing under pressure along axial cooling channels of 5 mm in diam.; the channels are evenly distributed throughout the thickness of the mould shell; 3) a system for preparation and supply of a liquid metal to the casting mould, the metal is being supplied into the casting mould from its both ends at a rate of 1.7 t of the melt per second; 4) a system for rotation of the mould, which comprises two gas turbines mounted on both ends of the mould and two main stop-radial slip supports with gas lubrication

  16. Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power

    International Nuclear Information System (INIS)

    Hu Jian; Jiang Nan; Li Jie; Shang Kefeng; Lu Na; Wu Yan; Mizuno Akira

    2016-01-01

    The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. (paper)

  17. Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power

    Science.gov (United States)

    Hu, Jian; Jiang, Nan; Li, Jie; Shang, Kefeng; Lu, Na; Wu, Yan; Mizuno, Akira

    2016-03-01

    The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. supported by National Natural Science Foundation of China (No. 51177007), the Joint Funds of National Natural Science Foundation of China (No. U1462105), and Dalian University of Technology Fundamental Research Fund of China (No. DUT15RC(3)030)

  18. Tables of formulae for calculating the mechanics of stacks in gas-graphite reactors; Formulaire pour le calcul de la mecanique des empilements des reacteurs graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-07-01

    This collection of formulae only gives, for nuclear graphite stacks. The mechanical effects due to the strains, thermal or not, of steel structures supporting or surrounding graphite blocks. Equations have been established by mean of experiments made at Chinon with large pile models. Thus, it is possible to calculate displacement, strain and stress in the EDF type stacks of horizontal triangular block lattice. (authors) [French] Le domaine de ce formulaire est strictement limite aux effets mecaniques, pour les empilements, des deformations, thermiques ou autres, des structures metalliques de soutien (aire - support et corset). On propose un ensemble de relations qui ont ete etablies a la suite des essais de CHINON sur des maquettes de grande taille. Ces relations permettent le calcul des mouvements, des deformations et des contraintes dans les empilements du type EDF, a reseau horizontal triangulaire regulier. (auteurs)

  19. Operational characteristics of the CALIBAN fast pulse reactor

    International Nuclear Information System (INIS)

    Cortella, J.; Reberol, R.; Vanel, M.

    1976-01-01

    CALIBAN is a FPR operated at CEA-Valduc Center since 1971. It has been designed as a fast neutron irradiation source and its environment is specific for this utilization. To date, it delivered more than 400 bursts and the fuel integrated about 5.10 19 fissions. The main characteristics are: - cylindirical core 113 kg U 235 - Mo 10% alloy - integrated dose in a burst in the central 2.5cm diam cavity:3.10 14 n.cm -2 - integrated dose in a burst outside of the core:5.10 13 n.cm -2 - pulse width:50μs A special effort was made in measuring the spectrometric and dosimetric neutron and gamma characteristics. Some results will be presented here. (auth.)

  20. Investigation of the Pulsed Annular Gas Jet for Chemical Reactor Cleaning

    Directory of Open Access Journals (Sweden)

    Zvegintsev Valery Ivanovich

    2012-01-01

    Full Text Available The most economical technology for production of titanium dioxide pigment is plasma-chemical syntheses with the heating of the oxygen. The highlight of the given reaction is formation of a solid phase as a result of interactions between two gases, thus brings the formation of particle deposits on the reactor walls, and to disturbing the normal operation of the technological process. For the solving of the task of reactor internal walls cleaning the pulsed gaseous system was suggested and investigated, which throws circular oxygen jet along surfaces through regular intervals. Study of aerodynamic efficiency of the impulse system was carried by numerical modeling and experimentally with the help of a specially created experimental facility. The distribution of the pulsed flow velocity at the exit of cylindrical reactor was measured. The experimental results have shown that used impulse device creates a pulsed jet with high value of the specified flow rate. It allows to get high velocities that are sufficient for the particle deposits destruction and their removal away. Designed pulsed peelings system has shown high efficiency and reliability in functioning that allows us to recommend it for wide spreading in chemical industry.

  1. Some economic aspects of natural uranium graphite gas reactor types. Present status and trends of costs in France; Quelques aspects economiques de la filiere uranium naturel - Graphite - gaz. Etat actuel et tendance des couts en France

    Energy Technology Data Exchange (ETDEWEB)

    Gaussens, J; Tanguy, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Leo, B [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The first part of this report defines the economic advantages of natural uranium fuels, which are as follows: the restricted number and relatively simple fabrication processes of the fuel elements, the low cost per kWh of the finished product and the reasonable capital investments involved in this type of fuel cycle as compared to that of enriched uranium. All these factors combine to reduce the arbitrary nature of cost estimates, which is particularly marked in the case of enriched uranium due to the complexity of its cycle and the uncertainties of plutonium prices). Finally, the wide availability of yellowcake, as opposed to the present day virtual monopoly of isotope separation, and the low cost of natural uranium stockpiling, offer appreciable guarantees in the way of security of supply and economic and political independence as compared with the use of enriched uranium. As far as overall capital investments are concerned, it is shown that, although graphite-gas reactor costs are higher than those of light water reactors in certain capacity ranges, the situation becomes far less clear when we start taking into account, in the interest of national independence, the cost of nuclear fuel production equipment in the case of each of these types of reactor. Finally, the marginal cost of the power capacity of a graphite-gas reactor is low and its technological limitations have receded (owing particularly to the use of prestressed concrete). It is a well known fact that the trend is now towards larger power station units, which means that the rentability of natural uranium graphite reactors as compared to other types of reactors will become more and more pronounced. The second section aims at presenting a realistic short and medium term view of the fuel, running, and investment costs of French natural uranium graphite gas, reactors. Finally, the economic goals which this type of reactor can reach in the very near future are given. It is thus shown that considerable

  2. A multichannel pulse acquisition system for reactor dosimetry data

    International Nuclear Information System (INIS)

    Talpalariu, C.; Talpalariu, J.; Matei, C.

    1999-01-01

    Simultaneous measurements of many dosimetry parameters require a complex instrumentation equipment, computers and interfaces. For a very large frequency range (10 -3 to 10 6 Hz) scale and mode selection (period or frequency), a big problem in multichannel pulse measurement is that of dead time, precision and response time. The dead time for normal scale selection and for data reading or writing for every channel can be as long as the active measuring time and response time for very large frequency variation can be very long, too. To solve this problem we have designed for a simultaneous 40 channel measurement, a pulse counter sampling system and an expert operating system. Based on a 486 PC and a 10 channel Timer/Counter Card, the hardware performance of the system was improved by an expert program for early rate change detection and rate prediction. The rate value was determined from optimizing between current value, medium and long time values and shorter response time for transient signals. Significant features and advantages of the system are the following: a marked reduction in panel complexity, as many of the indicators and controls can be replaced by an interactive CRT keyboard, a reduction in the instrumentation complexity, failure detection and diagnosis, system performance monitoring, intelligent alarm handling. The system was designed from high accuracy measurements on 40 simultaneous channels fed from field radiation detectors like ionizing chambers, fission chambers and photomultipliers.. The operating system is using an auto-organizing data memory for both computing the current value and for long-term management of data, so that only the status and significant values of the input are recorded. Consequently, the algorithms of decision, search and data processing are simplified and limited to the necessary memory, although enough memory is preserved for accurate representation of the dosimetry curves. The utilization of an inferential algorithm for the

  3. Energy balance and efficiency of power stations with a pulsed Tokamak reactor

    International Nuclear Information System (INIS)

    Davenport, P.A.; Mitchell, J.T.D.; Darvas, J.; Foerster, S.; Sack, B.

    1976-06-01

    The energy balance of a fusion power station based on the TOKAMAK concept is examined with the aid of a model comprising three distinct elements: the reactor, the energy converter and the reactor operation equipment. The efficiency of each element is expressed in terms of the various energy flows and the product of these efficiencies gives the net station efficiency. The analysis takes account of pulsed operation and has general applicability. Numerical values for the net station efficiency are derived from detailed estimates of the energy flows for a TOKAMAK reactor and its auxiliary equipment operating with advanced energy converters. The derivation of these estimates is given in eleven appendices. The calculated station efficiencies span ranges similar to those quoted for the current generation of fission reactors, though lower than those predicted for HTGR and LMFBR stations. Credible parameter domains for pulsed TOKAMAK operation are firmly delineated and factors inimical to improved performance are indicated. It is concluded that the net thermal efficiency of a TOKAMAK reactor power station based on present designs and using advanced thermal converters will be approximately 0.3 and is unlikely to exceed 0.33. (orig.) [de

  4. Development of source range measurement instrument in Xi'an pulsed reactor

    CERN Document Server

    Wang Li

    2002-01-01

    Source range measurement instrument in Xi'an pulsed reactor is key equipment of low-side measuring in source range. At the same time, it is also weighty component of out-of-pile neutron-flux level observation system. The authors have done some researching and renovating based on the similar type devices used in nuclear reactor to improve the meter sensitivity, measuring range, noise proof features, reliability in running and maintainability which belong to the main performance index of the instrument. The design ideas, configurations, working principle, performance indexes, technique features and effect in utilizing are introduced briefly

  5. Measurement of graphite and aluminium absorption cross sections via reactor period by danger coefficient method; Merenje apsorpcionih preseka grafita i aluminijuma preko periode reaktora metodom koeficijenta opasnosti

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Markovic, V; Velickovic, Lj [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1963-07-01

    Full text: This activity is a logical continuation of the experiment at the RA reactor during 1962 which was based on compensating the effect by means of control rod. Since results are given with significant errors, new method for measuring the absorption cross sections via reactor period. Experiment was done at the RB reactor which was particularly prepared for this type of experiments. Reactor power was from 50 mW to 2 W. Absorption cross sections were measured for two types of material: domestic graphite No.3 and French graphite 'Pachiney', and two types of aluminium. Total errors in applying this method are {+-} 5%, where the source of major part of error comes from uncertainty of the standard absorption power (previous method gave {+-} 10 do 55% ). Comparison of French graphite absorption cross section obtained via reactor period and via control rod showed approximate agreement with discrepancy of 5.4% which is considered within the precision of this method. Considering the accuracy of measurement results and reactor economy it is concluded that measuring absorption cross sections of samples via period of RB reactor is more favourable than measurements by control rod at the RA reactor. Pun tekst: Ovaj rad predstavlja logican nastavak eksperimenta na reaktoru RA u toku 1962. godine, koji je bazirao na kompenzaciji efekta pomocu kontrolne sipke. Kako su rezultati dati sa velikim greskama, to se prislo novom nacinu merenja apsorpsionih preseka preko periode reaktora. Eksperiment je radjen na reaktoru RB koji je specijalno pripremljen za ovu vrstu eksperimenta. Snaga reaktora se kretala od 50 mW do 2 W. Preko periode reaktora RB odredjeni su apsorpcioni preseci za dve vrste materijala i to: domaci grafit No.3 i francuski 'Pachiney', i dve vrste aluminijuma. Ukupne greske pri ovom nacimu merenja iznose oko {+-} 5%, gde glavni deo greske nosi neodredjenost apsorpcione moci standarda (ranija metoda je dala {+-} 10 do 55% ). Poredjenjem vrednosti apsorpcionih preseka

  6. Nuclear graphite waste management. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-05-01

    The purpose of the seminar was to bring together the specialists dealing with various aspects of radioactive graphite waste management to exchange and review information on the decommissioning, characterisation, processing and disposal of irradiated graphite from reactor cores and other graphite waste associated with reactor operation. The seminar covered radioactive graphite characterisation, the effect of irradiation on graphite components, Wigner energy, radioactive graphite waste treatment, conditioning, interim storage and long term disposal options. Individual papers presented at the seminar were indexed separately

  7. An optimization study of peak thermal neutron flux in moderators of advanced repetitive pulse reactors

    International Nuclear Information System (INIS)

    Asaoka, Takumi; Watanabe, N.

    1976-01-01

    In achieving a high peak thermal neutron flux in hydrogenous moderators installed in repetitive pulse reactors, the core-moderator arrangement can play as much an important role as the moderator design itself. However, the effect of the former has not been adequately emphasized to date, while a rather extensive study has been made on the latter. The present study concerns with a core-moderator system parameter optimization for a repetitive accelerator pulsed fast reactor. The results have shown that small differences in the arrangement resulting from the optimizations of various parameters are significant and the effects can be summed up to give an increase in the peak thermal flux by a factor of about two. (auth.)

  8. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  9. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    International Nuclear Information System (INIS)

    Li Gang; Zhang Zhongshuai; Chi Qian; Liu Linmao

    2012-01-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 × 10 8 n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 μs. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  10. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    Energy Technology Data Exchange (ETDEWEB)

    Li Gang; Zhang Zhongshuai [Northeast Normal University, Changchun 130024 (China); Chi Qian [Guang Hua College of Chang Chun University, Changchun 130117 (China); Liu Linmao, E-mail: ll888@nenu.edu.cn [Northeast Normal University, Changchun 130024 (China)

    2012-11-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 Multiplication-Sign 10{sup 8} n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 {mu}s. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  11. Model study of an automatic controller of the IBR-2 pulsed reactor

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Popov, A.K.

    2007-01-01

    For calculation of power transients in the IBR-2 reactor a special mathematical model of dynamics taking into account the discontinuous jump of reactivity by an automatic controller with the step motor is created. In the model the nonlinear dependence of the energy of power pulse on the reactivity and the influence of warming up of the reactor on the reactivity by means of introduction of a nonlinear feedback 'power-pulse energy - reactivity' are taken into account. With the help of the model the transients of relative deviation of power-pulse energy are calculated at various (random, mixed and regular) reactivity disturbances at the reactor mean power 1.475 MW. It is shown that to improve the quality of processes the choice of such regular values of parameters of the automatic controller is expedient, at which the least effect of smoothing of a signal acting on an automatic controller and the least speed of an automatic controller are provided, and the reduction of efficiency of one step of the automatic controller and introduction of a five-percent dead space are also expedient

  12. Design and initial performance of the Sandia Pulsed Reactor-III

    International Nuclear Information System (INIS)

    Reuscher, J.A.; Estes, B.F.

    1976-01-01

    The Sandia Pulsed Reactor-III (SPR-III) is a new fast pulsed reactor which has recently undergone initial testing at Sandia Laboratories. SPR-III is a uranium-10 weight percent molybdenum fuel assembly with a 17.78 cm irradiation cavity similar in design to SPR-II which has been in operation since 1967. The basic SPR-III design utilizes the same split-core configuration which has been proven with SPR-II; however, SPR-III uses external reflectors for control and external bolts to hold the fuel plates together. The core consists of sixteen fuel plates with an inside diameter of 17.78 cm, an outside diameter of 29.72 cm, and a core height of 31.9 cm. The fuel mass is about 227 kg of fully enriched uranium-10 weight percent molybdenum alloy. SPR III has completed the initial series of startup tests which included the critical experiment, zero and low-power tests, and pulse testing. The reactor design and results from the initial testing program are described in this paper. A portion of the startup experiments with SPR-III have been completed and this paper discusses the more important aspects of the initial testing program

  13. Application of the pulsed magnetic welding process to nuclear breeder reactor fuel pin end closures

    International Nuclear Information System (INIS)

    Brown, W.F.

    1984-01-01

    The pulsed magnetic welding process is a solid state welding process in which metallurgical bonding is effected by impacting metal or alloy parts against each other at high velocity by use of controlled high frequency, high intensity pulsed magnetic fields. This process is similar to the explosive welding process except that magnetic energy is used for impacting the parts together instead of using explosive energy. The pulsed magnetic welding (PMW) process is readily applied to the welding of cylindrical plugs to small diameter tubes. Although breeder reactor fuel pin design may vary in size, the application described here consisted of cladding tubes approximately 6.4 mm in diameter by 244 cm long with a wall thickness of 0.38 mm. After the cladding tubes are filled with fuel pellets and associated metal hardware, tapered end plugs are inserted into the end of the tubes and welded. A typical setup for PMW is described

  14. Limitations of power conversion systems under transient loads and impact on the pulsed tokamak power reactor

    International Nuclear Information System (INIS)

    Sager, G.T.; Wong, C.P.C.; Kapich, D.D.; McDonald, C.F.; Schleicher, R.W.

    1993-11-01

    The impact of cyclic loading of the power conversion system of a helium-cooled, pulsed tokamak power plant is assessed. Design limits of key components of heat transport systems employing Rankie and Brayton thermodynamic cycles are quantified based on experience in gas-cooled fission reactor design and operation. Cyclic loads due to pulsed tokamak operation are estimated. Expected performance of the steam generator is shown to be incompatible with pulsed tokamak operation without load leveling thermal energy storage. The close cycle gas turbine is evaluated qualitatively based on performance of existing industrial and aeroderivative gas turbines. Advances in key technologies which significantly improve prospects for operation with tokamak fusion plants are reviewed

  15. Gamma compensated pulsed ionization chamber wide range neutron/reactor power measurement system

    International Nuclear Information System (INIS)

    Ellis, W.H.

    1975-01-01

    An improved method and system of pulsed mode operation of ionization chambers is described in which a single sensor system with gamma compensation is provided by sampling, squaring, automatic gate selector, and differential amplifier circuit means, employed in relation to chambers sensitized to neutron plus gamma and gamma only to subtract out the gamma component, wherein squaring functions circuits, a supplemental high performance pulse rate system, and operational and display mode selection and sampling gate circuits are utilized to provide automatic wide range linear measurement capability for neutron flux and reactor power. Neon is employed as an additive in the ionization chambers to provide independence of ionized gas kinetics temperature effects, and the pulsed mode of operation provide independence of high temperature insulator leakage effects. (auth)

  16. Treatment of Dye Wastewater by Using a Hybrid Gas/Liquid Pulsed Discharge Plasma Reactor

    International Nuclear Information System (INIS)

    Lu Na; Li Jie; Wu Yan; Masayuki, Sato

    2012-01-01

    A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO 2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing O 2 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO 2 could be induced by the pulsed discharge plasma and addition of TiO 2 aided the decoloration of Acid Orange II.

  17. Rapid response and wide range neutronic power measuring systems for fast pulsed reactors

    International Nuclear Information System (INIS)

    Sumita, Kenji; Iida, Toshiyuki; Wakayama, Naoaki.

    1976-01-01

    This paper summarizes our investigation on design principles of the rapid, stable and wide range neutronic power measuring system for fast pulsed reactors. The picoammeter, the logarithmic amplifier, the reactivity meter and the neutron current chamber are the items of investigation. In order to get a rapid response, the method of compensation for the stray capacitance of the feedback circuits and the capacitance of signal cables is applied to the picoammeter, the logarithmic amplifier and the reactivity meter with consideration for the stability margin of a whole detecting system. The response of an ionization current chamber and the method for compensating the ion component of the chamber output to get optimum responses high pass filters are investigated. Statistical fluctuations of the current chamber output are also considered in those works. The optimum thickness of the surrounding moderator of the neutron detector is also discussed from the viewpoint of the pulse shape deformation and the neutron sensitivity increase. The experimental results are reported, which were observed in the pulse operations of the one shot fast pulsed reactor ''YAYOI'' and the one shot TRIGA ''NSRR'' with the measuring systems using those principles. (auth.)

  18. Management of UKAEA graphite liabilities

    International Nuclear Information System (INIS)

    Wise, M.

    2001-01-01

    The UK Atomic Energy Authority (UKAEA) is responsible for managing its liabilities for redundant research reactors and other active facilities concerned with the development of the UK nuclear technology programme since 1947. These liabilities include irradiated graphite from a variety of different sources including low irradiation temperature reactor graphite (the Windscale Piles 1 and 2, British Energy Pile O and Graphite Low Energy Experimental Pile at Harwell and the Material Testing Reactors at Harwell and Dounreay), advanced gas-cooled reactor graphite (from the Windscale Advanced Gas-cooled Reactor) and graphite from fast reactor systems (neutron shield graphite from the Dounreay Prototype Fast Reactor and Dounreay Fast Reactor). The decommissioning and dismantling of these facilities will give rise to over 6,000 tonnes of graphite requiring disposal. The first graphite will be retrieved from the dismantling of Windscale Pile 1 and the Windscale Advanced Gas-cooled Reactor during the next five years. UKAEA has undertaken extensive studies to consider the best practicable options for disposing of these graphite liabilities in a manner that is safe whilst minimising the associated costs and technical risks. These options include (but are not limited to), disposal as Low Level Waste, incineration, or encapsulation and disposal as Intermediate Level Waste. There are a number of technical issues associated with each of these proposed disposal options; these include Wigner energy, radionuclide inventory determination, encapsulation of graphite dust, galvanic coupling interactions enhancing the corrosion of mild steel and public acceptability. UKAEA is currently developing packaging concepts and designing packaging plants for processing these graphite wastes in consultation with other holders of graphite wastes throughout Europe. 'Letters of Comfort' have been sought from both the Low Level Waste and the Intermediate Level Waste disposal organisations to support the

  19. Neutron study of fast neutron reactor systems by exponential experiments on Harmonie - Graphite program HUG-PHUG - Oxide program PHRIXOS - Uranium program UK

    International Nuclear Information System (INIS)

    Desprets, Alain.

    1977-12-01

    Exponential experiments allow to obtain the fundamental characteristics of a lattice (material buckling, reaction rate ratios) more economically than critical experiments. This report describes the experimental techniques and the methods of analysis used for this type of experiments. The results obtained with three programs performed with the source reactor HARMONIE are given: graphite-lattices program (3 U-fueled and 3 Pu-fueled lattices); oxide-fuel program (4 PuO 2 -UO 2 lattices); pure uranium program (one lattice). Some of these lattices were also studied in critical experiments. The coherence of the results obtained by the two types of experiments is established [fr

  20. Responses of the biogas process to pulses of oleate in reactors treating mixtures of cattle and pig manure

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Ahring, Birgitte Kiær

    2006-01-01

    The effect of oleate on the anaerobic digestion process was investigated. Two thermophilic continuously stirred tank reactors (CSTR) were fed with mixtures of cattle and pig manure with different total solid (TS) and volatile solid (VS) content. The reactors were subjected to increasing pulses...

  1. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)

    International Nuclear Information System (INIS)

    Smith, Roger J.

    2008-01-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B pol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T e , n e , and B || along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n e B || product and higher n e and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  2. Special graphites

    International Nuclear Information System (INIS)

    Leveque, P.

    1964-01-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [fr

  3. Heat pulse propagation studies on DIII-D and the Tokamak Fusion Test Reactor

    Science.gov (United States)

    Fredrickson, E. D.; Austin, M. E.; Groebner, R.; Manickam, J.; Rice, B.; Schmidt, G.; Snider, R.

    2000-12-01

    Sawtooth phenomena have been studied on DIII-D and the Tokamak Fusion Test Reactor (TFTR) [D. Meade and the TFTR Group, in Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, pp. 9-24]. In the experiments the sawtooth characteristics were studied with fast electron temperature (ECE) and soft x-ray diagnostics. For the first time, measurements of a strong ballistic electron heat pulse were made in a shaped tokamak (DIII-D) [J. Luxon and DIII-D Group, in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] and the "ballistic effect" was stronger than was previously reported on TFTR. Evidence is presented in this paper that the ballistic effect is related to the fast growth phase of the sawtooth precursor. Fast, 2 ms interval, measurements on DIII-D were made of the ion temperature evolution following sawteeth and partial sawteeth to document the ion heat pulse characteristics. It is found that the ion heat pulse does not exhibit the very fast, "ballistic" behavior seen for the electrons. Further, for the first time it is shown that the electron heat pulses from partial sawtooth crashes (on DIII-D and TFTR) are seen to propagate at speeds close to those expected from the power balance calculations of the thermal diffusivities whereas heat pulses from fishbones propagate at rates more consistent with sawtooth induced heat pulses. These results suggest that the fast propagation of sawtooth-induced heat pulses is not a feature of nonlinear transport models, but that magnetohydrodynamic events can have a strong effect on electron thermal transport.

  4. Kinetics of vinyl acetate emulsion polymerization in a pulsed tubular reactor: comparison between experimental and simulation results

    Directory of Open Access Journals (Sweden)

    Sayer C.

    2002-01-01

    Full Text Available A new reactor, the pulsed sieve plate column (PSPC, was developed to perform continuous emulsion polymerization reactions. This reactor combines the enhanced flexibility of tubular reactors with the mixing behavior provided by sieved plates and by the introduction of pulses that is important to prevent emulsion destabilization. The main objective of this work is to study the kinetics of vinyl acetate (VA emulsion polymerization reactions performed in this PSPC. Therefore, both experimental studies and reaction simulations were performed. Results showed that it is possible to obtain high conversions with rather low residence times in the PSPC.

  5. Description of the french graphite reactor and of the experiments performed in 1956; Presentation du premier reacteur a graphite francais et des experiences effectuees en 1956

    Energy Technology Data Exchange (ETDEWEB)

    Bussac, J; Leduc, C; Zaleski, C P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    This paper is an introduction to the experiments performed on the G1 reactor, experiments fully described in the papers following (670 'B to P'). The main results are given together with some comments. The neutronic parameters of the core, a description of the most important structures, and a few words of the tests leading to normal operation of the reactor under load complete our survey. (author) [French] Ce rapport presente les experiences qui furent faites sur le reacteur G1 et dont la description en detail fait l'objet des rapports suivants (670 'B a P'). Les principaux resultats sont fournis ici et commentes. On trouvera en outre les caracteristiques neutroniques du coeur actif de la pile, une description des principales installations et une mention des essais qui ont conduit au fonctionnement normal du reacteur en puissance. (auteur)

  6. A three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition in graphite components of advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D.O.; Robinson, A.T.; Allen, D.A.; Picton, D.J.; Thornton, D.A. [TCS, Serco, Rutherford House, Olympus Park, Quedgeley, Gloucester, Gloucestershire GL2 4NF (United Kingdom); Shaw, S.E. [EDF Energy, Barnet Way, Barnwood, Gloucester GL4 3RS (United Kingdom)

    2011-07-01

    This paper describes the development of a three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition (or nuclear heating) throughout the graphite cores of the UK's Advanced Gas-cooled Reactors. Advances in the development of the Monte Carlo radiation transport code MCBEND have enabled the efficient production of detailed fully three-dimensional models that utilise three-dimensional source distributions obtained from Core Follow data supplied by the reactor physics code PANTHER. The calculational approach can be simplified to reduce both the requisite number of intensive radiation transport calculations, as well as the quantity of data output. These simplifications have been qualified by comparison with explicit calculations and they have been shown not to introduce significant systematic uncertainties. Simple calculational approaches are described that allow users of the data to address the effects on neutron damage and nuclear energy deposition predictions of the feedback resulting from the mutual dependencies of graphite weight loss and nuclear energy deposition. (authors)

  7. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  8. Combined treatment of SO2 and high resistivity fly ash using a pulse energized electron reactor

    International Nuclear Information System (INIS)

    Mizuno, A.; Clements, J.S.; Davis, R.H.

    1984-01-01

    The combined removal of SO 2 and high resistivity fly ash has been demonstrated in a pulse energized electron reactor (PEER). The PEER system which was originally developed for the removal of SO 2 utilizes a positive pulse streamer corona discharge in a non-uniform field geometry. In performance tests on SO 2 , more than 90% was removed with an advantageously small power requirement. Combined treatment performance was demonstrated by introducing high resistivity fly ash into the test gas and the PEER is significantly more efficient than a conventional electrostatic precipitator operated with a dc voltage. Observations show that the PEER agglomerates the fly ash and further that the SO 2 removal efficiency is improved by the presence of fly ash. The electrode configuration and performance results make retrofit consideration attractive

  9. Pulsed Nd-YAG laser welding of Prototype Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Suresh Varma, P.V.; Gupta, Amit; Amit, K.; Bhatt, R.B.; Afzal, Mohd.; Panakkal, J.P.; Kamath, H.S.

    2009-02-01

    End plug welding of Prototype Fast Breeder Reactor (PFBR) fuel elements involves welding of fully Austenitic Stainless Steel (ASS) of grade D9 clad tube with 316M end plug. Pulsed Gas Tungsten Arc Welding (GTAW) is being used for the production of PFBR fuel elements at Advanced Fuel Fabrication Facility (AFFF). GTAW is an established process for end plug welding and hence adopted by many countries. GTAW has got certain limitations like heat input, arc gap sensitivity and certain sporadic defects like tungsten inclusion. Experiments have been carried out at AFFF to use Laser Beam Welding (LBW) technique as LBW offers a number of advantages over the former process. This report mainly deals with the optimization of laser parameters for welding of PFBR fuel elements. To facilitate pulsed Nd-YAG laser spot welding, parameters like peak power, pulse duration, pulse energy, frequency and defocusing of laser beam on to the work piece have been optimized. On the basis of penetration requirement laser welding parameters have been optimized. (author)

  10. Study of two-zone reactor system using a pulsed neutron technique

    International Nuclear Information System (INIS)

    Shishin, B.P.; Platovskikh, Yu.A.; Didejkin, T.S.

    1977-01-01

    Theoretical and experimental investigations of a neutron flux time dependence after a sport fast neutron pulse in a reactor core - neutron reflector multiplying system have been conducted. A correlation between eigenvalues governing neutron flux decrease at t→infinity for the two-zone system and eigenvalues for each zone has been established in terms of the one-group diffusion approximation. Experiments have been performed in an experimental subcritical assembly comprising a cylindrical uranium core surrounded by a radial water reflector with different boric acid concentrations. The experiments show that the observed neutron flux decrease in the core is governed by an exponent exp(-Λ 1 t), whereas in the reflector by a sum of two exponents exp(-Λ 1 t) and exp(-Λ 2 t). The eigenvalue Λ 1 reflects multiplying properties of the reactor, and Λ 2 is determined by the reflector absorption cross section

  11. Graphite selection for the PBMR reflector

    International Nuclear Information System (INIS)

    Marsden, B.J.; Preston, S.D.

    2000-01-01

    A high temperature, direct cycle gas turbine, graphite moderated, helium cooled, pebble-bed reactor (PBMR) is being designed and constructed in South Africa. One of the major components in the PBMR is the graphite reflector, which must be designed to last thirty-five full power years. Fast neutron irradiation changes the dimensions and material properties of reactor graphite, thus for design purposes a suitable graphite database is required. Data on the effect of irradiation on nuclear graphites has been gathered for many years, at considerable financial cost, but unfortunately these graphites are no longer available due to rationalization of the graphite industry and loss of key graphite coke supplies. However, it is possible, using un-irradiated graphite materials properties and knowledge of the particular graphite microstructure, to determine the probable irradiation behaviour. Three types of nuclear graphites are currently being considered for the PBMR reflector: an isostatically moulded, fine grained, high strength graphite and two extruded medium grained graphites of moderately high strength. Although there is some irradiation data available for these graphites, the data does not cover the temperature and dose range required for the PBMR. The available graphites have been examined to determine their microstructure and some of the key material properties are presented. (authors)

  12. The analysis of neutron physical characteristics of fast reactors by means of pulsed experiments

    International Nuclear Information System (INIS)

    Stumbur, Eh.A.; Milyutina, Z.N.

    1992-01-01

    Possibility is considered for determination of macroscopic cross sections of homogeneous multiplicating media with fast neutrons. It is shown that by means of the critical size, laplaccian and neutron pulse damping decrement measurement results it is possible to obtain values of almost all cross sections of a medium. The method is tested with systems of metal 235 U and BFS-32 assemblies with the composition, typical for fast power reactors. A suitable algorithm is developed for solving nonstationary asymptotic transport problems. Calculation results are compared with experimental ones. 21 refs.; 2 figs.; 3 tabs

  13. A low background pulsed neutron polyenergetic beam at the ET-RR-1 reactor

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Habib, N.; Abu-El-Ela, M.; Wahba, M.; Kilany, M.

    1991-12-01

    A low background pulsed neutron polyenergetic thermal beam at ET-RR-1 is produced by a rotor and rotating collimator suspended in magnetic fields. Each of them is mounted on its mobile platform and whose centres are 66 cm apart, rotating synchronously at speeds up to 16000 rpm. It was found that the neutron burst produced by the rotor with almost 100% transmission passes through the collimator, when the rotation phase between them is 28.8 deg. Moreover the background level achieved at the detector position is low, constant and free from peaks due to gamma rays and fast neutrons accompanying the reactor thermal beam. (author). 12 refs, 3 figs

  14. Study of two-zone reactor system using a pulsed neutron technique

    Energy Technology Data Exchange (ETDEWEB)

    Shishin, B P; Platovskikh, Yu A; Didejkin, T S

    1977-05-01

    Theoretical and experimental investigations of a neutron flux time dependence after a sport fast neutron pulse in a reactor core - neutron reflector multiplying system have been conducted. A correlation between eigenvalues governing neutron flux decrease at t..-->..infinity for the two-zone system and eigenvalues for each zone has been established in terms of the one-group diffusion approximation. Experiments have been performed in an experimental subcritical assembly comprising a cylindrical uranium core surrounded by a radial water reflector with different boric acid concentrations.

  15. Linear pulse motor type control element drive mechanism for the integral reactor

    International Nuclear Information System (INIS)

    Yu, J. Y.; Choi, S.; Kim, J. H.; Huh, H.; Park, K. B.

    2007-01-01

    The integral reactor SMART currently under development at Korea Atomic Energy Research Institute is designed with soluble boron free operation and use of nuclear heating for reactor startup. These design features require the Control Element Drive Mechanism (CEDM) for SMART to have fine-step movement capability as well as high reliability for the fine reactivity control. In this paper, design characteristics of a new concept CEDM driven by the Linear Pulse Motor (LPM) which meets the design requirements of the integral reactor SMART are introduced. The primary dimensions of the linear pulse motor are determined by the electro-magnetic analysis and the results are also presented. In parallel with the electro-magnetic analysis, the conceptual design of the CEDM is visualized and checked for interferences among parts by assembling three dimensional (3D) models on the computer. Prototype of LPM with double air-gaps for the CEDM sub-assemblies to lift 100 kg is designed, analysed, manufactured and tested to confirm the validity of the CEDM design concept. A converter and a test facility are manufactured to verify the dynamic performance of the LPM. The mover of the LPM is welded with ferromagnetic material and non-ferromagnetic material to get the magnetic flux path between inner stator and outer stator. The thrust forces of LPM predicted by analytic model have shown good agreement with experimental results from the prototype LPM. It is found that the LPM type CEDM has high force density and simple drive mechanism to reduce volume and satisfy the reactor operating circumstances with high pressure and temperature

  16. Radio-active pollution near natural uranium-graphite-gas reactors; La pollution radioactive aupres des piles uranium naturel - graphite - gaz

    Energy Technology Data Exchange (ETDEWEB)

    Chassany, J.; Pouthier, J.; Delmar, J. [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1967-07-01

    The results of numerous evaluations of the contamination are given: - Reactors in operation during maintenance operations. - Reactors shut-down during typical repair operations (coolants, exchangers, interior of the vessel, etc. ) - Following incidents on the cooling circuit and can-rupture. They show that, except in particular cases, it is the activation products which dominate. Furthermore, after ten years operation, the points at which contamination liable to emit strong doses accumulates are very localized and the individual protective equipment has not had to be reinforced. (authors) [French] Les resultats de nombreuses evaluations de la contamination sont donnes: - Piles en marche pendant les operations d'entretien - Piles a l'arret au cours des chantiers caracteristiques (refrigerants, echangeurs, interieur du caisson, etc.) - A la suite d'incidents sur le circuit de refroidissement et de rupture de gaine. Ils montrent que, sauf cas particulier, ce sont essentiellement les produits d'activation qui dominent. Par ailleurs apres 10 ans de fonctionnement, les points d'accumulation de la contamination susceptibles de delivrer des debits de dose importants restent tres localises et les moyens de protection individuels utilises n'ont pas du etre renforces. (auteurs)

  17. Radio-active pollution near natural uranium-graphite-gas reactors; La pollution radioactive aupres des piles uranium naturel - graphite - gaz

    Energy Technology Data Exchange (ETDEWEB)

    Chassany, J; Pouthier, J; Delmar, J [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1967-07-01

    The results of numerous evaluations of the contamination are given: - Reactors in operation during maintenance operations. - Reactors shut-down during typical repair operations (coolants, exchangers, interior of the vessel, etc. ) - Following incidents on the cooling circuit and can-rupture. They show that, except in particular cases, it is the activation products which dominate. Furthermore, after ten years operation, the points at which contamination liable to emit strong doses accumulates are very localized and the individual protective equipment has not had to be reinforced. (authors) [French] Les resultats de nombreuses evaluations de la contamination sont donnes: - Piles en marche pendant les operations d'entretien - Piles a l'arret au cours des chantiers caracteristiques (refrigerants, echangeurs, interieur du caisson, etc.) - A la suite d'incidents sur le circuit de refroidissement et de rupture de gaine. Ils montrent que, sauf cas particulier, ce sont essentiellement les produits d'activation qui dominent. Par ailleurs apres 10 ans de fonctionnement, les points d'accumulation de la contamination susceptibles de delivrer des debits de dose importants restent tres localises et les moyens de protection individuels utilises n'ont pas du etre renforces. (auteurs)

  18. Natural uranium-graphite system. Critial experiments on the G1 reactor; Systeme uranium naturel-graphite. Experiences critiques sur le reacteur G1

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, A P; Tanguy, P; Teste du Bailler, A; Zaleski, C P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    A number of experiments have been performed during the start up period of the G1 (1956) and G2 (1958) reactors in Marcoule, both on their lattices and on different lattices (hollow rods, clusters, under moderated lattices). The first chapter gives a thorough description of the two reactors. The second chapter deals with buckling measurements, both absolute (flux plots) and relative by the method of progressive substitution. The experimental results are summarised in Table VI. The third chapter contains a number of other measurements performed on G1. (author)Fren. [French] Le demarrage des reacteurs G1 (1956) et G2 (1958) de Marcoule nous a permis d'effectuer une serie d'experiences tant sur les reseaux de ces piles que sur des reseaux differents (elements tubulaires ou divises, reseaux sous-moderes, etc...). Dans une premiere partie, nous donnons une description detaillee des deux reacteurs. Dans la deuxieme partie, relative aux mesures de laplaciens, nous decrivons d'abord les mesures absolues de laplaciens (cartes de flux), puis les mesures relatives effectuees par la methode originale de remplacement progressif. Les resultats experimentaux sont rassembles dans le tableau VI. Dans la troisieme partie, nous rappelons un certain nombre d'autres mesures effectuees sur G1. (auteur)

  19. Study of startup conditions of a pulsed annular reactor; Estudo das reacoes de partida de um reator anelar pulsado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mario Augusto Bezerra da

    2003-10-15

    A new concept of reactor, which combines features of pulsed and stationary reactors, was proposed so as to produce intense neutronic fluxes. Such a reactor, known as VICHFPR (Very Intense Continuous High Flux Pulsed Reactor), consists of a subcritical core with an annular geometry and pulsed by a rotating reflector which acts as a reactivity modulator as it produces a short pulse (approximately equal to 1 ms) of high intensity, guiding the region near the pulser to super-prompt critical state. This dissertation intends to analyze the startup conditions of a Pulsed Annular Reactor. The evolution of the neutron pulse intensity is analyzed when the reactivity modulator is brought upwards according to a helicoidal path from its initial position (far away from the core), when the multiplication factor has a subcritical value, up to the final position (near the core), in which a super-prompt critical state is reached. Part of the analysis is based on the variation of neutron reflection, which is a uniform function of the exit and reflection angles between the core and the modulator. It must be emphasized that this work is an approximation of the real situation. As the initial and final reactor parameters are known, a programming code in Fortran is worked out to provide the multiplication factor and the flux intensity evolution. According to the results obtained with this code, the conditions under which the modulator must be lifted up during the startup are established. Basically, these conditions are related to the analysis of the rising and the rotation velocities, the reflector saving and the initial distance between the reactor and the modulator. The Pulsed Annular Reactor startup was divided into three stages. Because of its negative reactivity in the first two stages, the neutron multiplication is not large, while the last one, having a positive reactivity, shows an intense multiplication as is usually expected when handling pulsed systems. This last stage is quite

  20. The Impact of Alkaliphilic Biofilm Formation on the Release and Retention of Carbon Isotopes from Nuclear Reactor Graphite.

    Science.gov (United States)

    Rout, S P; Payne, L; Walker, S; Scott, T; Heard, P; Eccles, H; Bond, G; Shah, P; Bills, P; Jackson, B R; Boxall, S A; Laws, A P; Charles, C; Williams, S J; Humphreys, P N

    2018-03-13

    14 C is an important consideration within safety assessments for proposed geological disposal facilities for radioactive wastes, since it is capable of re-entering the biosphere through the generation of 14 C bearing gases. The irradiation of graphite moderators in the UK gas-cooled nuclear power stations has led to the generation of a significant volume of 14 C-containing intermediate level wastes. Some of this 14 C is present as a carbonaceous deposit on channel wall surfaces. Within this study, the potential of biofilm growth upon irradiated and 13 C doped graphite at alkaline pH was investigated. Complex biofilms were established on both active and simulant samples. High throughput sequencing showed the biofilms to be dominated by Alcaligenes sp at pH 9.5 and Dietzia sp at pH 11.0. Surface characterisation revealed that the biofilms were limited to growth upon the graphite surface with no penetration of the deeper porosity. Biofilm formation resulted in the generation of a low porosity surface layer without the removal or modification of the surface deposits or the release of the associated 14 C/ 13 C. Our results indicated that biofilm formation upon irradiated graphite is likely to occur at the pH values studied, without any additional release of the associated 14 C.

  1. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    Science.gov (United States)

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  2. Pulse*Star Inertial Confinement Fusion Reactor: heat transfer loop and balance of plant considerations

    International Nuclear Information System (INIS)

    McDowell, M.W.; Murray, K.A.

    1984-01-01

    A conceptual heat transfer loop and balance of plant design for the Pulse*Star Inertial Confinement Fusion Reactor has been investigated and results are presented. The Pulse*Star reaction vessel, a perforated steel bell jar approximately 11 m in diameter, is immersed in Li 17 Pb 83 coolant which flows through the perforations and forms a 1.5 m thick plenum of droplets around an 8 m diameter inner chamber. The reactor and associated pumps, piping, and steam generators are contained within a 17 m diameter pool of Li 17 Pb 83 coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops with flow rates of 5.5 m 3 /s each are necessary to transfer 3300 MWt of power. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. Power balance calculations based on an improved electrical conversion efficiency revealed a net electrical output of 1260 MWe to the bus bar and a resulting net efficiency of 39%. Suggested balance-of-plant layouts are also presented

  3. Performance Variation of Spent Resin in Mixed Bed From Water Purifying System of Xi'an Pulse Reactor

    International Nuclear Information System (INIS)

    Li Hua; Ma Yan; Xiao Yan; Liu Yueheng; Yang Yongqing

    2010-01-01

    Detailed physical and chemical characteristic analysis was performed on the spent cation and anion resins in the mixed bed from Xi'an Pulse Reactor water purifying system.The exchange performance variations of used resins and the contributions from different factors to the variation were discussed.Based on the obtained information of the impurities in the used resin, the contamination state of the water in the Xi'an Pulse Reactor water pool, the corrosion state of the structural material in the reactor was presented. The spent anion resin almost completely losses its exchange performance,while the remaining exchange capacity in the spent cation resin is still high.The radiation field from the reactor operation contributes little to the degradation of the performance of the resins. The exchange capacity loss of the spent anion resin is due to the exchange of its active groups into abundant carbonate and a certain amount of organics. The impurity amount in the anion and cation exchange resins is low,which suggests(that) the water in the Xi'an Pulse Reactor water pool is little contaminated. A certain extent of corrosion is occurred on the structural material in the swimming pool of the reactor. The results provide important referential data for the operational safety of the water purifying system of similar research reactor. (authors)

  4. Characterisation of Chlorine Behavior in French Graphite

    International Nuclear Information System (INIS)

    Blondel, A.; Moncoffre, N.; Toulhoat, N.; Bererd, N.; Petit, L.; Laurent, G.; Lamouroux, C.

    2016-01-01

    Chlorine 36 is one of the main radionuclides of concern for French graphite waste disposal. In order to help the understanding of its leaching behaviour under disposal conditions, the respective impact of temperature, irradiation and gas radiolysis on chlorine release in reactor has been studied. Chlorine 36 has been simulated through chlorine 37 ion implantation in virgin nuclear graphite samples. Results show that part of chlorine is highly mobile in graphite in the range of French reactors operating temperatures in relation with graphite structural recovering. Ballistic damage generated by irradiation also promotes chlorine release whereas no clear impact of the coolant gas radiolysis was observed in the absence of graphite radiolytic corrosion. (author)

  5. Calculation programme for the accidental transients in reactors of the gas-graphite type; Programme de calcul des transitoires accidentels des piles de la filiere graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Henri, Ch.; Bayard, J.P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The study of the behaviour of the fuel during certain incidents or accidents in reactors is closely connected to the study of the changes in temperature. This document describes in the first part the main physical phenomena governing the kinetics of the accident. The aim is to know the temperatures at all points and at all times during the irregular regime which can follow the initial stable regime. In the second part an explanation is given of the numerical methods used. (authors) [French] L'etude du comportement du combustible lors de certains incidents ou accidents de pile est etroitement liee a l'etude de l'evolution des temperatures. Dans sa premiere partie, ce document decrit les phenomenes physiques principaux intervenant dans la cinetique de l'accident. Le but recherche est la connaissance des temperatures en tout point et a tout instant d'un regime varie, faisant suite a un regime initial stable. Dans la deuxieme partie les methodes numeriques employees sont explicitees. (auteurs)

  6. A novel pulsed corona discharge reactor based on surface streamers for diesel exhaust remediation

    Energy Technology Data Exchange (ETDEWEB)

    Malik, M.A.; Schoenbach, K.H. [Old Dominion Univ., Norfolk, VA (United States). Frank Reidy Research Center for Bioelectrics

    2010-07-01

    Modelling of surface streamers along insulating surfaces to determine the dielectric strength of insulators in high voltage systems has shown that surface streamers consist of a positive streamer head followed by quasi-neutral plasma in the channel behind and surrounded by a layer of positive charges. This paper described a novel pulsed corona discharge reactor which utilized such surface streamers along insulating surfaces. The electrodes were comprised of a stainless steel wire anode of 150 mm in diameter stretched along the surface of a glass sheet and two parallel aluminum strips as cathodes. An eight-stage Marx bank, was used to produce the surface streamers in nitrogen-oxygen mixtures at atmospheric pressure. The paper described the experimental study with particular reference to the schematics of a surface streamer plasma reactor and the dimensions of discharge spaces of three reactors. The purpose of the study was to find the optimum conditions for energy yield and effective destruction of nitrogen oxides from diesel engine exhaust. It was concluded that surface streamers generate a more diffuse plasma. Energy costs for production of ozone or nitrogen dioxide that require reactions with bulk gas molecules were nearly the same in surface streamer discharges as in volume streamer discharges. 12 refs., 1 tab., 7 figs.

  7. Sodium-cooled fast reactor (SFR) fuel assembly design with graphite-moderating rods to reduce the sodium void reactivity coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Hyuck; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr; Park, Hae Min; Jeong, Yong Hoon, E-mail: jeongyh@kaist.ac.kr

    2014-12-15

    Highlights: • The graphite rod-inserted SFR fuel assembly is proposed to achieve low sodium void reactivity. • The neutronics/thermal-hydraulics analyses are performed for the proposed SFR cores. • The sodium void reactivity is improved about 960–1030 pcm compared to reference design. - Abstract: The concept of a graphite-moderating rod-inserted sodium-cooled fast reactor (SFR) fuel assembly is proposed in this study to achieve a low sodium void reactivity coefficient. Using this concept, two types of SFR cores are analyzed; the proposed SFR type 1 core has new SFR fuel assemblies at the inner/mid core regions while the proposed SFR type 2 core has a B{sub 4}C absorber sandwich in the middle of the active core region as well as new SFR fuel assemblies at the inner/mid core regions. For the proposed SFR core designs, neutronics and thermal-hydraulic analyses are performed using the DIF3D, REBUS3, and the MATRA-LMR codes. In the neutronics analysis, the sodium void reactivity coefficient is obtained in various void situations. The two types of proposed core designs reduce the sodium void reactivity coefficient by about 960–1030 pcm compared to the reference design. However, the TRU enrichment for the proposed SFR core designs is increased. In the thermal hydraulic analysis, the temperature distributions are calculated for the two types of proposed core designs and the mass flow rate is optimized to satisfy the design constraints for the highest power generating assembly. The results of this study indicate that the proposed SFR assembly design concept, which adopts graphite-moderating rods which are inserted into the fuel assembly, can feasibly minimize the sodium void reactivity coefficient. Single TRU enrichment and an identical fuel slug diameter throughout the SFR core are also achieved because the radial power peak can be flattened by varying the number of moderating rods in each core region.

  8. Experiments on graphite block gaps connected with leak flow in bottom-core structure of experimental very high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Futakawa, Masatoshi; Takizuka, Takakazu; Kaburaki, Hideo; Sanokawa, Konomo

    1984-01-01

    In order to minimize the leak flow rate of an experimental VHTR (a multi-purpose very high-temperature gas-cooled reactor), the graphite blocks are tightened to reduce the gap distance between blocks by core restrainers surrounded outside of the fixed reflectors of the bottom-core structure and seal elements are placed in the gaps. By using a 1/2.75-scale model of the bottom-core structure, the experiments on the following items have been carried out: a relationship between core restraint force and block gap, a relationship between core restraint force and inclined angle of the model, leak flow characteristics of seal elements etc. The conclusions derived from the experiments are as follows: (1) Core restraint force is significantly effective for decreasing the gap distance between hot plenum blocks, but ineffective for the gap between hot plenum block and fixed reflector. (2) Graphite seal element reduces the leak flow rate from the top surface of hot plenum block into plenum region to one-third. (author)

  9. Principle design and data of graphite components

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Oku, Tatsuo

    2004-01-01

    The High Temperature Engineering Test Reactor (HTTR) constructed by Japan Atomic Energy Research Institute (JAERI) is a graphite-moderated and helium-gas-cooled reactor with prismatic fuel elements of hexagonal blocks. The reactor internal structures of the HTTR are mainly made up of graphite components. As well known, the graphite is a brittle material and there were no available design criteria for brittle materials. Therefore, JAERI had to develop the design criteria taking account of the brittle fracture behavior. In this paper, concept and key specification of the developed graphite design criteria is described, and also an outline of the quality control specified in the design criteria is mentioned

  10. Utilizing the slowing-down-time technique for benchmarking neutron thermalization in graphite

    International Nuclear Information System (INIS)

    Zhou, T.; Hawari, A. I.; Wehring, B. W.

    2007-01-01

    Graphite is the moderator/reflector in the Very High Temperature Reactor (VHTR) concept of Generation IV reactors. As a thermal reactor, the prediction of the thermal neutron spectrum in the VHTR is directly dependent on the accuracy of the thermal neutron scattering libraries of graphite. In recent years, work has been on-going to benchmark and validate neutron thermalization in 'reactor grade' graphite. Monte Carlo simulations using the MCNP5 code were used to design a pulsed neutron slowing-down-time experiment and to investigate neutron slowing down and thermalization in graphite at temperatures relevant to VHTR operation. The unique aspect of this experiment is its ability to observe the behavior of neutrons throughout an energy range extending from the source energy to energies below 0.1 eV. In its current form, the experiment is designed and implemented at the Oak Ridge Electron Linear Accelerator (ORELA). Consequently, ORELA neutron pulses are injected into a 70 cm x 70 cm x 70 cm graphite pile. A furnace system that surrounds the pile and is capable of heating the graphite to a centerline temperature of 1200 K has been designed and built. A system based on U-235 fission chambers and Li-6 scintillation detectors surrounds the pile. This system is coupled to multichannel scaling instrumentation and is designed for the detection of leakage neutrons as a function of the slowing-down-time (i.e., time after the pulse). To ensure the accuracy of the experiment, careful assessment was performed of the impact of background noise (due to room return neutrons) and pulse-to-pulse overlap on the measurement. Therefore, the entire setup is surrounded by borated polyethylene shields and the experiment is performed using a source pulse frequency of nearly 130 Hz. As the basis for the benchmark, the calculated time dependent reaction rates in the detectors (using the MCNP code and its associated ENDF-B/VI thermal neutron scattering libraries) are compared to measured

  11. Hydrogen trapping in and release from tungsten: modeling and comparison with graphite with regard to its use as fusion reactor material

    International Nuclear Information System (INIS)

    Franzen, P.; Garcia-Rosales, C.; Plank, H.; Alimov, V.Kh.

    1997-01-01

    Trapping and release of deuterium implanted in tungsten is investigated by modeling the results of reemission, thermal and isothermal desorption experiments. Rate coefficients and activation energies for diffusion, trapping and detrapping are derived. Hydrogen atoms are able to diffuse deep into tungsten, establishing a solute amount of the same order of magnitude as the trapped one. This 'diffusion zone' exceeds the implantation zone by more than two orders of magnitude, even at room temperature. The solute amount of hydrogen in tungsten depends only slightly on the incident ion energy, but scales with implantation fluence. This high amount of solute hydrogen is the main difference of tungsten compared to graphite where nearly all hydrogen is trapped in the implantation zone, the solute amount being orders of magnitude lower. The resulting unlimited accumulation of hydrogen in tungsten deep in the material down to the backward surface disadvantages tungsten as fusion reactor material with regard to hydrogen recycling properties. (orig.)

  12. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  13. Intensive neutron source based on powerful electron linear accelerator LIA-30 and pulsed nuclear reactor FR-1

    Energy Technology Data Exchange (ETDEWEB)

    Bossamykin, V S; Koshelev, A S; Gerasimov, A I; Gordeev, V S; Grishin, A V; Averchenkov, V Ya; Lazarev, S A; Maslov, G N; Odintsov, Yu M [All-Russian Scientific Research Institute of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    Some results are given of investigations on joint operation modes of the linear induction electron accelerator LIA-30 ({approx} 40 MeV, {approx} 100 kA, {approx} 20 ns) and the pulsed reactor FR-1 with a compact metal core, aimed at achieving high intensity neutron fluxes. The multiplication factor Q for prompt neutrons in the FR-1 booster mode operation increased from 100 to 4500. The total output of prompt neutrons from FR-1 at Q = 2570 was 1.4 x 10{sup 16} 1/pulse with a pulse half width of {approx} 25 {mu}s. (author). 4 figs., 4 refs.

  14. New developments of TOF neutron diffraction at the IBR-2 pulsed reactor

    International Nuclear Information System (INIS)

    Balagurov, Anatoli M.

    2001-01-01

    Development of high-resolution RTOF Fourier technique for powder neutron diffraction studies is being continued at the IBR-2 pulsed reactor in Dubna. Besides some technical improvements in the operating HRFD instrument, a new dedicated instrument, Fourier Strain Diffractometer (FSD), for investigation of residual stresses in bulk materials has been constructed at IBR-2 in 1999. With a new HRFD Fourier chopper smaller than 10 μs TOF contribution in a resolution function was obtained in the experiment with perfect Si single crystal. A series of diffraction experiments with the beams from a new methane cold neutron moderator installed at the IBR-2 in 1999 is discussed. A comparison with the results obtained with the conventional water comb-like moderator shows that for various types of experiments, which are performed at HRFD and DN-2 diffractometers, the methane cold neutron source provides better conditions. (author)

  15. Neutron diffraction potentialities at the IBR-2 pulsed reactor for nondestructive testing of structural materials

    International Nuclear Information System (INIS)

    Balagurov, A.M.; Bokuchava, G.D.; Papushkin, I.V.; Sumin, V.V.; Venter, A.M.

    2010-01-01

    Neutron diffraction is widely used for investigations of residual and applied stresses in bulk materials and components. The most important factor in these investigations is the high penetration depth of neutrons (up to 2 cm for steel). At the IBR-2 pulsed reactor in Dubna the Fourier stress diffractometer (FSD) has been constructed to optimize the internal stress measurements. The FSD design satisfies the requirements of high luminosity, high resolution and specific sample environment. The collimator system guarantees a minimum gauge volume of 2x2x2 mm. A mechanical testing machine allows in-situ tension or compression measurements up to a load of 20 kN and sample temperatures up to 800 deg C. In the paper the current status of FSD is reported and potentialities are demonstrated with several examples of investigations performed

  16. Heat transfer in the lithium-cooled blanket of a pulsed fusion reactor

    International Nuclear Information System (INIS)

    Cort, G.E.; Krakowski, R.A.

    1978-01-01

    The transient temperature distribution in the lithium-cooled blanket of a pulsed fusion reactor has been calculated using a finite-element heat-conduction computer program. An auxiliary program was used to predict the coolant transient velocity in a network of parallel and series flow passages with constant driving pressure and varying magnetic field. The coolant velocity was calculated by a Runge-Kutta numerical integration of the conservation equations. The lithium coolant was part of the finite-element heat-conduction mesh with the velocity terms included in the total matrix. The matrix was solved implicitly at each time step for the nodal point temperatures. Slug flow was assumed in the coolant passages and the Boussinesq analogy was used to calculate turbulent heat transfer when the magnetic field was not present

  17. Development of dynamic simulation code for fuel cycle of fusion reactor. 1. Single pulse operation simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1997-11-01

    A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  18. Intercomparison of graphite irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Hering, H; Perio, P; Seguin, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    While fast neutrons only are effective in damaging graphite, results of irradiations are more or less universally expressed in terms of thermal neutron fluxes. This paper attempts to correlate irradiations made in different reactors, i.e., in fluxes of different spectral compositions. Those attempts are based on comparison of 1) bulk length change and volume expansion, and 2) crystalline properties (e.g., lattice parameter C, magnetic susceptibility, stored energy, etc.). The methods used by various authors for determining the lattice constants of irradiated graphite are discussed. (author)

  19. Pulse Star Inertial Confinement Fusion Reactor: Heat transfer loop and balance-of-plant considerations

    International Nuclear Information System (INIS)

    McDowell, M.W.; Blink, J.A.; Curlander, K.A.

    1983-01-01

    A conceptual heat transfer loop and balance-of-plant design for the Pulse Star Inertial Confinement Fusion Reactor has been investigated and the results are presented. The Pulse Star reaction vessel, a perforated steel bell jar about11 m in diameter, is immersed in Li 17 Pb 83 coolant, which flows through the perforations and forms a 1.5-m-thick plenum of droplets around a 8-m-diameter inner chamber. The bell jar and associated pumps, piping, and steam generators are contained within a 17-m-diameter pool of Li 17 Pb 83 coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops, each with a flow rate of 5.5 m 3 /s, are necessary to transfer 3300 MWt of power. Liquid metal is pumped to the top of the pool, where it flows downward through eight vertical steam generators. Double-walled tubes are used in the steam generators to assure tritium containment without intermediate heat transfer loops. Each pump is a mixed flow type and has a required NPSH of 3.4 m, a speed of 278 rpm, and an impeller diameter of 1.2 m. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. The design minimizes the total cost (heat exchanger area plus pumping) for the plant lifetime. The power required for the pumps is 36 MWe. Each resulting steam generator is 12 m high and 1.6 m in diameter, with 2360 tubes. The steam generators and pumps fit easily in the pool between the reactor chamber and the pool wall

  20. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  1. Transition between trickle flow and pulse flow in a cocurrent gas-liquid trickle-bed reactor at elevated pressures

    NARCIS (Netherlands)

    Wammes, W.J.A.; Mechielsen, S.J.; Westerterp, K.R.

    1992-01-01

    The effect of reactor pressure in the range of 0.2–2.0 MPa on the transition between the trickle-flow and the pulse-flow regime has been investigated for the non-foaming water—nitrogen and aqueous 40% ethyleneglycol—nitrogen systems. Most models and flow charts which are all based on atmospheric

  2. Inactivation of Escherichia coli in water by pulsed dielectric barrier discharge in coaxial reactor.

    Science.gov (United States)

    Hernández-Arias, A N; Rodríguez-Méndez, B G; López-Callejas, R; Alcántara-Díaz, D; Valencia-Alvarado, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Barocio, S R; de la Piedad-Beneitez, A

    2012-09-01

    An experimental study of ATCC (American Type Culture Collection) 8739 Escherichia coli bacteria inactivation in water by means of pulsed dielectric barrier discharge (PDBD) atmospheric pressure plasmas is presented. Plasma is generated by an adjustable power source capable of supplying high voltage 25 kV pulses, ∼30 μs long and at a 500 Hz frequency. The process was conducted in a ∼152 cm(3) cylindrical stainless steel coaxial reactor, endowed with a straight central electrode and a gas inlet. The bacterial concentration in water was varied from 10(3) up to 10(8) E. coli cells per millilitre. The inactivation was achieved without gas flow in the order of 82% at 10(8) colony-forming units per millilitre (CFU mL(-1)) concentrations in 600 s. In addition, oxygen was added to the gas supply in order to increase the ozone content in the process, raising the inactivation percentage to the order of 90% in the same treatment time. In order to reach a higher efficiency however, oxygen injection modulation is applied, leading to inactivation percentages above 99.99%. These results are similarly valid for lower bacterial concentrations.

  3. Small-angle scattering at a pulsed neutron source: comparison with a steady-state reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borso, C S; Carpenter, J M; Williamson, F S; Holmblad, G L; Mueller, M H; Faber, J Jr; Epperson, J E; Danyluk, S S [Argonne National Lab., IL (USA)

    1982-08-01

    A time-of-flight small-angle diffractometer employing seven tapered collimator elements and a two-dimensional gas proportional counter was successfully utilized to collect small-angle scattering data from a solution sample of the lipid salt cetylpyridinium chloride, C/sub 21/H/sub 38/N/sup +/.Cl/sup -/, at the Argonne National Laboratory prototype pulsed spallation neutron source, ZING-P'. Comparison of the small-angle scattering observed from the same compound at the University of Missouri Research Reactor corroborated the ZING-P' results. The results are used to compare the neutron flux available from the ZING-P' source relative to the well characterized University of Missouri source. Calculations based on experimentally determined parameters indicated the time-averaged rate of detected neutrons at the ZING-P' pulsed spallation source to have been at least 33% higher than the steady-state count rate from the same sample. Differences between time-of-flight techniques and conventional steady-state techniques are discussed.

  4. Report of specialists' meeting on 'pulse reactor using the particle accelerators'

    International Nuclear Information System (INIS)

    Inoue, Makoto; Yoshiie, Toshimasa

    1996-06-01

    KUR was decided to be continued to operate at the Reactor Laboratory according to the report on 'How to investigate the reactor for study in the Universities' published by Committee of Science Consideration on July, 1997. However, it is necessary to proceed the next program based on the KUR study results in future. From a viewpoint of the study, on considering of beginning of the next program during using KUR still but not establishing it after wasting the KUR, it is preferable to be an equipment with complemental characters for the KUR. As the pulse neutron source, spallation neutron source using large intensity proton accelerator with about 1 GeV is focused most of interests. Use of the proton beam with large neutron generation in comparison with electron beam can make non-critical collector with relatively large non-critical ratio to a target, and can obtain safety without any change of reactivity by means of mechanical method. Furthermore, this accelerator has some times of the non-critical ratio in comparison with the spallation method using only accelerator and has a feature to be low in its cost. In this report, its program, 11 items of lectures and general discussion on them were described. (G.K.)

  5. AGC-2 Graphite Preirradiation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  6. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  7. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  8. Proposition of a core model for the thorium molten salt reactor (TMSR) minimizing the graphite moderator quantity in core; Proposition d'un modele de coeur pour le RSF thorium minimisant la quantite de moderateur graphite en coeur

    Energy Technology Data Exchange (ETDEWEB)

    Nuttin, A

    2004-07-01

    This work deals with the problem of fast damage of graphite in the core of TMSR. The approach consists to minimize the quantity of graphite used in the core (by an increase of the voluminal power) and then to extract and to reprocess. (O.M.)

  9. Inhibition of oxidation in nuclear graphite

    International Nuclear Information System (INIS)

    Winston, Philip L.; Sterbentz, James W.; Windes, William E.

    2015-01-01

    Graphite is a fundamental material of high-temperature gas-cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off-normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high-temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off-normal design basis event where an oxidising atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high-temperature reactor designs attempt to mitigate any damage caused by a postulated air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B 4 C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900 deg. C. The proposed addition of B 4 C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimise B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed. (authors)

  10. Conceptual design of PF coil system and operation scenario on inductively-operated day-long pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Wang, J.F.; Yamamoto, T.; Ogawa, Y.

    1994-01-01

    It is said that disadvantages of pulsed operation in tokamak fusion reactor are fatigue problem of structural materials and an introduction of energy storage System to compensate the power during the dwell time. To overcome theses disadvantages the authors have designed an inductively-operated ultralong pulsed tokamak called (IDLT) reactor where plasma with a major radius of 10 m are employed so as to provide a magnetic flux necessary to sustain a plasma current inductively during 10 hours or more. This makes it possible to reduce the total cycle number to be around 10 4 during the life of the fusion plant. In pulsed operation reactors the shorter dwell time with a quick start-up and shut down of plasma is very convenient to realize a high availability of the power plant, but it will induce more severe conditions for the hardware design. The authors assumed the dwell time of 5∼10 minutes and analyzed the feasibility of plasma operation scenario for IDLT reactor, especially paying much attention to PF coil system. The stored energy of PF coil system becomes ∼100 GJ, which is comparable with that of toroidal field coil system. When the plasma current of 14 MA is ramped up with a time of 100 seconds, it is found that the maximum capacity of 1 GW is necessary for PF coil power supply. Engineering issues related with AC/hysterisis loss should be carefully examined

  11. Characterization of radioactive graphite and concrete of the reactor ULYSSE/INSTN at CEA/Saclay to be dismantled

    International Nuclear Information System (INIS)

    Van Lauwe, Aymeric; Ridikas, Danas; Damoy, Francois; Blideanu, Valentin; Fajardo, Christophe; Aubert, Marie-Cecile; Foulon, Francois

    2006-01-01

    Decommissioning and dismantling of nuclear installations after their service life are connected with the necessity of the disassembling, handling and disposing of a large amount of radioactive material. In order to optimize the disassembling operations, to reduce the undesirable volume to the minimum and to successfully plan the dismantling and disposal of radioactive materials to storage facilities, the radiological characterisation of the material present in the reactor and around its environment should be accurately evaluated. The present work has been done in the framework of the decommissioning and dismantling of the experimental reactor ULYSSE that is presently operating in INSTN/Saclay and will be closed in the middle of 2006. A methodology, already successfully used for another research reactor, is proposed for determining accurately the long-term induced activity of the materials present in the active reactor core and its surroundings. The comparison of theoretical predictions, based on Monte Carlo technique, with experimental values validated the approach and the methodology used in the present study. The goal is to plan efficiently the disassembling and dismantling of the system and to optimise the mass flow going to different waste repositories. We show that this approach might reduce substantially the total cost of decommissioning. (authors)

  12. Use of the TRIGA reactor for the study of neutron pulses effect on semiconductors

    International Nuclear Information System (INIS)

    Di Giorgio, A.; Gallo, G.

    1972-01-01

    For the analysis of the behavior and the response of Si crystal solid state semiconductor detectors to n-radiations and/or gamma pulsating fluxes, experiments are in progress for a long time, using TRIGA of the LENA Reactor. At first, it had been taken into consideration the possibility to use particle accelerators with which, taking advantage of several types of reactions, neutrons fluxes can be obtained with temporal distribution of remarkable interest in the field of the measures of resolution of the sensitive elements. But the possibility of using the accelerators in the field of n-fluxes radiometry appears to be limited as the flux modulators, the Klystron-Reflex ones, do not allow the operation in stable regime with frequencies of order lower than a 10 Hz limit. That causes a remarkable accumulation of heat in the detectors, at the higher radiation fluxes, than does not allow to determine the response range in a linear operation regime; moreover, it turns out to be difficult to obtain a wide energetic spectrum n-flux. The TRIGA reactor, on the contrary, is able to operate, as acknowledged, both at steady state, with variable powers up to 250 KW, and at pulse mode with variable peak powers up to 250 MW and with impulse width around 30 msec, and it's able to supply: elevated wide energetic spectrum n-fluxes; gamma mounts/impulse up to the values of the Mrad; reproducible single impulses; proportionality between n-fluxes and peak power; possibility to control the sensitivity of the detectors in thermal, epithermal and fast groups of the n-flux. Such performances assure an wide range of experimental research, particularly concerning the spectral analysis of the output signals of the detectors, possibly used as transducers in systems measuring n- and/or gamma-flux

  13. Obtention of nuclear grade graphite

    International Nuclear Information System (INIS)

    Ferreira, M.L.

    1984-01-01

    The impurity level of natural graphite found in some of the most important mines of the State of Minas Gerais - Brasil is determined. It is also concerned with the development and use of natural graphite in nuclear reactors. Standard methods for chemical and instrumentsal analysis such as Spectrografic Determination by Emission, Spectrografic Determination by X-Rays, Spectrografic Determination by Atomic Asorption, Photometric Determination, and also chemical and physical methods for separation of impurities as well standard method for Estimating the Thermal Neutron Absorption Cross Section of graphite were employed. Some aditionals methods of purification to the ordinary treatment such as the use of metanol and halogens are also described. (Author) [pt

  14. Public acceptance of fusion energy and scientific feasibility of a fusion reactor. Design of inductively driven long pulse tokamak reactors: IDLT

    International Nuclear Information System (INIS)

    Ogawa, Yuichi

    1998-01-01

    Based on scientific data based adopted for designing ITER plasmas and on the advancement of fusion nuclear technology from the recent R and D program, the scientific feasibility of inductively-driven tokamak fusion reactors is studied. A low wall-loading DEMO fusion reactor is designed, which utilizes an austenitic stainless steel in conjunction with significant data bases and operating experiences, since we have given high priority to the early and reliable realization of a tokamak fusion plasma over the cost performance. Since the DEMO reactor with the relatively large volume (i.e., major radius of 10 m) is employed, plasma ignition is achievable with a low fusion power of 0.8 GW, and an operation period of 4 - 5 hours is available only with inductive current drive. Disadvantages of pulsed operation in commercial fusion reactors include fatigue in structural materials and the necessity of an energy storage system to compensate the electric power during the dwell time. To overcome these disadvantages, a pulse length is prolonged up to about 10 hours, resulting in the remarkable reduction of the total cycle number to 10 4 during the life of the fusion plant. (author)

  15. Analytical evaluation of neutron diffusion equation for the geometry of very intense continuous high flux pulsed reactor

    International Nuclear Information System (INIS)

    Narain, Rajendra

    1995-01-01

    Using the concept of Very Intense Continuous High Flux Pulsed Reactor to obtain a rotating high flux pulse in an annular core an analytical treatment for the quasi-static solution with a moving reflector is presented. Under quasi-static situation, time averaged values for important parameters like multiplication factor, flux, leakage do not change with time. As a result the instantaneous solution can be considered to be separable in time and space after correcting for the coordinates for the motion of the pulser. The space behaviour of the pulser is considered as exp(-αx 2 ). Movement of delayed neutron precursors is also taken into account. (author). 4 refs

  16. Tokamak burn cycle study: a data base for comparing long pulse and steady-state power reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1983-11-01

    Several distinct operating modes (conventional ohmic, noninductive steady state, internal transformer, etc.) have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics (current drive efficiency) and engineering (superior materials) which will help achieve these goals for different burn cycles

  17. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  18. A pulsed neutron monochromatic beam at the ET-RR-1 reactor

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Eid, Y.; Maayouf, R.M.A.

    1985-01-01

    A pulsed neutron monochromatic beam, at the ET-RR-1 reactor, is produced by two 32 cm diameter rotors suspended in magnetic fields, whose centres are 126 cm apart rotating at speeds up to 16,000 rev/min. Each of the rotors has two slots, which are of constant cross-section in area - 7x10mm 2 , and are curved so that they have a maximum transmission for neutrons whose speed is 8.2 times that of the rotor tip. The jitter of the phase between the rotors at different rotation rates is found not to exceed +-1 μs. It has been found that both the observed time distribution and the TOF distribution of the neutrons at different rotation rates are in good agreement with the calculated ones. The observed intensity of the monochromatic neutrons of wavelength 2.74+-0.09 A, obtained by the rotors rotating at a speed of 10,500 rev/min with 864+-1 μs difference in phase between them, is 66.8 n/s. This value is found to be less than the predicted one by a factor of 5.5. (author)

  19. Upgrade of the ultracold neutron source at the pulsed reactor TRIGA Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Kahlenberg, J.; Ross, K.U.; Beck, M.; Heil, W.; Karch, J.; Kories, F.; Kretschmer, M. [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); Ries, D. [Johannes Gutenberg University, Institute of Nuclear Chemistry, Mainz (Germany); Paul Scherrer Institute (PSI), Laboratory for Particle Physics, Villigen (Switzerland); ETH Zuerich, Institute for Particle Physics, Zuerich (Switzerland); Siemensen, C.; Geppert, C.; Karpuk, S.; Reich, T.; Sobolev, Y.; Trautmann, N. [Johannes Gutenberg University, Institute of Nuclear Chemistry, Mainz (Germany); Hild, N. [Paul Scherrer Institute (PSI), Laboratory for Particle Physics, Villigen (Switzerland); ETH Zuerich, Institute for Particle Physics, Zuerich (Switzerland); Lauss, B. [Paul Scherrer Institute (PSI), Laboratory for Particle Physics, Villigen (Switzerland)

    2017-11-15

    The performance of the upgraded solid deuterium ultracold neutron source at the pulsed reactor TRIGA Mainz is described. The current configuration stage comprises the installation of a He liquefier to run UCN experiments over long-term periods, the use of stainless steel neutron guides with improved transmission as well as sputter-coated non-magnetic {sup 58}NiMo alloy at the inside walls of the thermal bridge and the converter cup. The UCN yield was measured in a ''standard'' UCN storage bottle (stainless steel) with a volume of 32 litres outside the biological shield at the experimental area yielding UCN densities of 8.5/cm{sup 3}; an increase by a factor of 3.5 compared to the former setup. The measured UCN storage curve is in good agreement with the predictions from a Monte Carlo simulation developed to model the source. The growth and formation of the solid deuterium converter during freeze-out are affected by the ortho/para ratio of the H{sub 2} premoderator. (orig.)

  20. Measurement of reactivity worths of burnable poison rods in enriched uranium graphite-moderated core simulated to high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi; Takeuchi, Motoyoshi; Kitadate, Kenji; Yoshifuji, Hisashi; Kaneko, Yoshihiko

    1980-11-01

    As the core design for the Experimental Very High Temperature Gas Cooled Reactor progresses, evaluation of design precision has become increasingly important. For a high precision design, it is required to have adequate group constants based on accurate nuclear data, as well as calculation methods properly describing the physical behavior of neutrons. We, therefore, assembled a simulation core for VHTR, SHE-14, using a graphite-moderated 20%-enriched uranium Semi-Homogeneous Experimental Critical Facility (SHE), and obtained useful experimental data in evaluating the design precision. The VHTR is designed to accommodate burnable poison and control rods for reactivity compensation. Accordingly, the experimental burnable poison rods which are similar to those to be used in the experimental reactor were prepared, and their reactivity values were measured in the SHE-14 core. One to three rods of the above experimental burnable poison rods were inserted into the central column of the SHE-14 core, and the reactivity values were measured by the period and fuel rod substitution method. The results of the measurements have clearly shown that due to the self-shielding effect of B 4 C particles the reactivity value decreases with increasing particle diameter. For the particle diameter, the reactivity value is found to increase linearly with the logarithm of boron content. The measured values and those calculated are found to agree with each other within 5%. These results indicate that the reactivity of the burnable poison rod can be estimated fairly accurately by taking into account the self-shielding effect of B 4 C particles and the heterogeneity of the lattice cell. (author)

  1. Perspectives and possibilities for solid state physcis investigations at thhe pulsed reactor IBR-2 of the JINR Dubna

    International Nuclear Information System (INIS)

    Feldmann, K.; Frauenheim, T.; Lauckner, J.; Weniger, J.; Muehle, E.

    1982-02-01

    Three time-of-flight spectrometers (spectrometer of high resolution NSWR, spectrometer of inverted geometry KDSOG and spectrometer of polarized neutrons SPN-1) are presented, which will be working at the pulsed IBR-2 reactor of the JINR Dubna. Considering the parameters and the special methods of measurement of these spectrometers, the possibilities of their applications for the investigations of structural, magnetic and electronic properties of solids by means of elastic, inelastic and quasielastic neutron scattering are discussed. (author)

  2. Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies

    International Nuclear Information System (INIS)

    Khalifeh, Omid; Mosallanejad, Amin; Taghvaei, Hamed; Rahimpour, Mohammad Reza; Shariati, Alireza

    2016-01-01

    Highlights: • CH 4 conversion into H 2 is investigated in a nanosecond pulsed DBD reactor. • The absence of CO and CO 2 in the product gas is highly favorable. • Effects of external electrode length, applied voltage and frequency are examined. • The maximum efficiency of 7.23% is achieved at the electrode length of 15 cm. • The maximum CH 4 conversion of 87.2% is obtained at discharge power 268.92 W. - Abstract: In this paper, the methane conversion into hydrogen is investigated experimentally in a nanosecond pulsed DBD reactor. In order to achieve pure hydrogen production with minimum power consumption, effects of some operating parameters including external electrode length, applied voltage and pulse repetition frequency have been evaluated. Results show that although higher CH 4 conversion and H 2 concentration can be obtained at longer electrode lengths, higher applied voltages and pulse repetition frequencies, these parameters should be optimized for efficient hydrogen production. Actually, the maximum CH 4 conversion of 87.2% and maximum hydrogen percentage of 80% are obtained at the external electrode length, discharge power, voltage and frequency of 15 cm, 268.92 W, 12 kV and 10 kHz, respectively. However, the maximum efficiency of 7.23% is achieved at the external electrode length of 15 cm, applied voltage of 6 kV, pulse repetition frequency of 0.9 kHz and discharge power of 4 W. Furthermore, at this condition, due to low temperature of discharge zone very little amount of solid carbon was observed on the inner electrode surface of the reactor.

  3. Recent developments concerning French fuel elements used in natural uranium - graphite - CO{sub 2} reactor systems; Developpements recents des elements combustibles francais de la filiere uranium naturel - graphite - CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Salesse, M; Stohr, J A; Jeanpierre, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The policy followed in France for the development of fuel elements for reactors belonging to the Electricite de France has been to benefit as much as possible, for each new pile from the most recent technical progress by developing in each case a fuel element allowing the maximum power per channel. The two latest fuel elements thus studied by the French Atomic Energy Commission are of two different types: a tubular uranium element closed at both ends and cooled externally. (This type of element, chosen for the reactors EDF 2, EDF 3 and EDF 4 makes it possible to attain maximum specific powers of the order of 6 MW/metric ton.); an open tubular uranium element cooled both internally and externally, called an annular element which in being studied as a possibility for EDF 5. Such an element makes it possible to attain specific powers of over 12 MW/metric ton. The two types of element have the following common characteristics: - the can, for external cooling, has herning-bone type fins. This type of profile which has been vastly improved recently thereby increasing its thermal efficiency, has the important advantage of avoiding vibration of the element, but has posed problems of resistance to thermal cycling necessitating much research. - the fuel rods are placed inside graphite jackets, this limiting the vertical forces to which they are subjected and protecting them during charging and discharging. On the other hand, these elements present very different problems as for as the following points are concerned: - the characteristics required of the uranium tubes apart of course from a good dimensional stability during irradiation in the two cases are in the case of the closed tubes a very high resistance to external pressure, and in the case of the annular elements a low neutron absorption. Thus for each of these two cases it has been necessary to develop a suitable type of alloy. - a possible loosening of the can during thermal cycling, which is peculiar to the

  4. Calorimetric measurements of the dose absorbed to graphite in the research reactors Melusine (8MWth) and Siloe (35MWth), and in the power reactor Bugey 1 (1900 MWth)

    International Nuclear Information System (INIS)

    Petitcolas, H.; Bonnin, J.J.; Chenavas, P.

    1975-01-01

    The TM calorimeter (Melusine type) developed in the CEN/Grenoble research reactors allows measurement of dose-rates over the range 10 -3 to 10 W/g. Simple and of small volume, the calorimeter causes minimum perturbation of the radiation field in which the measurement is to be made; it adapts easily to the specific requirements of the irradiation loops for which it is primarily designed. The operation is simple: measurement of temperature difference and time constants at various equilibrium positions. The results compare very favourably with those obtained by other methods, (eg. ionisation chambers) and by other workers. The calorimeter will operate for several years under irradiation and under the severe conditions of pressure, temperature etc., occurring in certain power reactors [fr

  5. Sealing nuclear graphite with pyrolytic carbon

    International Nuclear Information System (INIS)

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-01-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR)

  6. Preliminary design of the cooling system for a gas-cooled, high-fluence fast pulsed reactor (HFFPR)

    International Nuclear Information System (INIS)

    Monteith, H.C.

    1978-10-01

    The High-Fluence Fast Pulsed Reactor (HFFPR) is a research reactor concept currently being evaluated as a source for weapon effects experimentation and advanced reactor safety experiments. One of the designs under consideration is a gas-cooled design for testing large-scale weapon hardware or large bundles of full-length, fast reactor fuel pins. This report describes a conceptual cooling system design for such a reactor. The primary coolant would be helium and the secondary coolant would be water. The size of the helium-to-water heat exchanger and the water-to-water heat exchanger will be on the order of 0.9 metre (3 feet) in diameter and 3 metres (10 feet) in length. Analysis indicates that the entire cooling system will easily fit into the existing Sandia Engineering Reactor Facility (SERF) building. The alloy Incoloy 800H appears to be the best candidate for the tube material in the helium-to-water heat exchanger. Type 316 stainless steel has been recommended for the shell of this heat exchanger. Estimates place the cost of the helium-to-water heat exchanger at approximately $100,000, the water-to-water heat exchanger at approximately $25,000, and the helium pump at approximately $450,000. The overall cost of the cooling system will approach $2 million

  7. Measurement of Diffusion Parameters and of Anisotropy of Graphite with a Pulsed Source of Neutrons; Mesure des parametres de diffusion et de l'anisotropie du graphite a l'aide d'une source pulsee de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Sagot, M; Tellier, H [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1963-07-01

    The diffusion coefficient, cooling coefficient, and anisotropy of graphite were determined to be (2.19 {+-} 0.03) x 10{sup 5} cm{sup 2} sec{sup -1}, (37.9 {+-} 4) x 10{sup 5} cm{sup 4} sec{sup -1}, and 1.017 {+-} 0.008, respectively. The range of geometrical buckling was from 7 to 155 m{sup -2}. The values obtained are compared with published values. (authors) [French] Un programme experimental utilisant la methode de la source pulsee de neutrons a ete realise sur le graphite. La gamme des laplaciens couverte est de 7 m{sup -2} a 155 m{sup -2}. Les resultats en sont presentes dans ce rapport: - coefficient de diffusion D{sub 0} = (2,19 {+-} 0,03) x 10{sup 5} cm{sup 2} s{sup -1} - coefficient de refroidissement C = (37,9 {+-} 4) x 10{sup 5} cm{sup 4} s{sup -1} - anisotropie du graphite (D parall./D perp.) = 1,017 {+-} 0,008. Ils sont compares aux valeurs deja publiees. (auteurs)

  8. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  9. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system.

    Science.gov (United States)

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-20

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  10. The Development of Materials for Application to Control Rod Systems in Graphite moderated Reactors; Mise au Point de Materiaux pour les Dispositifs de Controle a Barres, Utilbes dans les Reacteurs Ralentis au Graphite; Razrabotka materialov , primenyaemykh v sistemakh upravlyayushchikh sterzhnej v reaktorakh s grafitovym zamedlitelem; Perfeccionamiento de Materiales Aplicables a las Barras de Control en los Reactores Moderados por Grafito

    Energy Technology Data Exchange (ETDEWEB)

    Wade, G. E.; Kempf, F. J. [Hanford Atomic Products Operation, General Electric Company, Richland, WA (United States)

    1964-06-15

    Material problems associated with the control- and safety-rod systems for graphite moderated, tube-type reactors can be divided into two categories: control materials and operating-channel liner materials. The control materials, such as boron or gadolinium, can be integral with the rod sheath, as in the boron stainless steel used for safety rods. Another approach is the enclosure of a boron-containing sintered compact, such as B{sub 4}C-graphite or B{sub 4}C-aluminium, in a metallic sheath. Rods of the latter type are adaptable for control purposes because of the increased percentages of boron that can be included. Test and fabrication experience indicate that a wide range of satisfactory rod designs is possible with any of these materials. The rod operating channels in the reactor often require liners to protect the surrounding graphite moderator from rod-insertion impact loads and wear and to help maintain channel alignment. Abrasion- and impact resistant, high-strength, low cross-section materials that will operate uncooled are required for these liners. Pyrolytic graphite, pyrolytic graphite composites, aluminium oxide and silicon carbide have been tested for such applications. Physical and irradiation damage data indicate that some of these materials are suitable for lining rod-operating channels. (author) [French] Les problemes de materiaux lies aux dispositifs de controle a barres de reglage et de securite pour les reacteurs tubulaires ralentis au graphite sont doubles et concernent les materiaux absorbants d'une part et les materiaux de garnissage des canaux d'autre part. Les materiaux absorbants tels que le bore ou le gadolinium peuvent former un tout avec le materiau de gainage comme dans le cas ou les barres de securite sont en acier inoxydable au bore. Une autre technique consiste a enfermer un melange presse et fritte contenant du bore, tel que B4C-graphite ou B4C-aluminium, dans une gaine metallique. Les barres de ce dernier type peuvent etre adaptees

  11. The ISIS operation: Robotics repair work on the CHINON A3 natural uranium, carbon dioxide cooled, graphite moderated reactor

    International Nuclear Information System (INIS)

    Hilmoine, R.M.E.

    1989-01-01

    After describing the upper internal support structures of the CHINON A3 reactor, the problems resulting from their degradation due to corrosion and to the difficulties of the ISIS operation are presented here. The repair method is as follows: all tools and repair parts reach the working area by the feeding-pipes drilled through the 7 m thick concrete vessel surrounding the reactor core; the robots handle into the reactor, the tool heads and the repair parts which are automatically positioned and welded around the corroded structure, thus restoring the support of measurement devices. The parts are either linked together or to the existing structure by means of 2 studs of 12 mm in diameter. The different phases to sort out a problem are: in-core topography, reconforming of the full-scale mock-up with the repair area, learning on this mock-up and in-core repair. The technical specificities of the robots used are the following: they have an 11 meter long, 0.22 meter across telescopic mast with jointed arms reaching a radius of 2.7 m. Then the useful load is 70 daN and the repeatability 0.1 mm. Different tool heads can be handled by the robot: telemeter and laser reconstruction: it allows to locate the in core points and to materialize them on the mock-up by a laser crossed-beams locating technique; scouring: it cleans the corroded parts of the structures before welding; welding: it allows the parts handling and the carried studs welding; screwing; tensile test: carried out when the stud welds are defective. A high level computerized control system is organized around a central unit which calculates the displacements of robots and synchronises the actions of different tools by communicating with several local units. A 100,000 hour designing, a 200,000 hour building and assembling and a 450,000 hour operating on working area were necessary to repair 15 out of the 102 corroded structures by fitting and welding 205 repair parts. 10 figs

  12. Removal of 14C from Irradiated Graphite for Graphite Recycle and Waste Volume Reduction

    International Nuclear Information System (INIS)

    Dunzik-Gougar, Mary Lou; Windes, Will; Marsden, Barry

    2014-01-01

    The aim of the research presented here was to identify the chemical form of 14 C in irradiated graphite. A greater understanding of the chemical form of this longest-lived isotope in irradiated graphite will inform not only management of legacy waste, but also development of next generation gas-cooled reactors. Approximately 250,000 metric tons of irradiated graphite waste exists worldwide, with the largest single quantity originating in the Magnox and AGR reactors of UK. The waste quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation I gas-cooled, graphite moderated reactors. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 14 C, with a half-life of 5730 years.

  13. Control Rod Reactivity Measurements in the Aagesta Reactor with the Pulsed Neutron Method

    Energy Technology Data Exchange (ETDEWEB)

    Bjoereus, K

    1969-07-01

    An extensive series of control rod measurements was made in the Aagesta reactor during the low power experimental period following the first criticality. This report describes the part of these investigations made with the pulsed neutron method, comprising nearly 300 measurements. The main objective was the determination of control rod reactivity worths for different rods and groups of rods, but some supplementary measurements were also made, e.g. a determination of the prompt neutron decay constant for the delayed critical condition and four different cores. The cores consisted of 20, 32, 68, and 140 fuel elements respectively, and measurements were made at room temperature and with the moderator level close to critical for each core, and for the 140-element core also with full moderator height and at the temperatures 140 deg C and 215 deg C. Both fully and partly inserted control rod groups were investigated. The measurements at critical water level give directly the control rod reactivity worths, whereas those with full water height give the shut-down reactivity. A comparison was made between measured reactivity worths for a number of rod groups and those calculated with the HETERO code. The prompt neutron decay constant at delayed criticality {alpha}{sub 0}={beta}/l, for the full core at 215 deg C was found to be 9.60 {+-} 0.30/sec, corresponding to l = 0.76 {+-} 0.02 msec. The shut-down reactivity with 16 coarse control rods in pos. A-D 22, 40-04, 44, 26 is -5% at 25 deg C and -13% at 215 deg C. The relative error is usually around 8% in the reactivity worths, originating mainly from the higher harmonics content in the measured curves.

  14. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    Science.gov (United States)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  15. Separation of Graphitic Line in Debyegram of the Reactor Graphite; Separation de la raie graphitique dans le debyegramme du graphite nucleaire; Otdelenie linii grafita v debaiegramme reaktornogo grafita; Separacion de la linea grafitica en el diagrama de debye del grafito nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Pandic, B. [Institut Rudjer Boskovio, Zagreb, Yugoslavia (Croatia)

    1963-11-15

    The author sets forth a method for the determination of crystallite dimensions L{sub c} in reactor graphite. The method consists of the mathematical correction of the diffraction profile (002) obtained by means of a Philips diffractometer with scintillation counter. During the work CuK{sub {beta}} radiation is used. The convenience of using CuK{sub {beta}} radiation rather than that of a CuK{sub {alpha}} doublet is discussed. All instrumental errors except that of the sample adsorption are eliminated using corresponding slits. Sample adsorption is corrected mathematically. Highly symmetrical lines of graphitic and non-graphitic phase could be analytically separated from such corrected line profiles. Experimental error in the determination of the half-height and half-width of these lines does not exceed 5%. (author) [French] On a elabore une methode pour determiner la hauteur moyenne L{sub c} des cristallites du graphite nucleaire. Il s'agit d'une methode mathematique de correction du profil de la raie de diffraction (002), obtenu par le diffractometre Philips avec un compteur a scintillation. On a discute les avantages des rayons CuK{sub {beta}} par rapport au doublet CuK{sub {alpha}}. Le choix des ouvertures elimine toutes les erreurs, sauf l'erreur d'absorption dans les echantillons, que l 'on ecarte mathematiquement. Les raies de diffraction pures et tres symetriques des phases graphitique et non graphitique peuvent etre separees du profil corrige de cette facon. L'incertitude dans la mesure de la demi-largeur de ces raies n'est pas superieure a 5%. (author) [Spanish] El autor de la memoria expone un metodo para determinar la altura media Lc de las cristalitas del grafito nuclear. Consiste en corregir matematicamente el perfil de la linea de difraccion (002) obtenido con un difractometro Philips y un contador de centelleo. En la memoria se explican las ventajas que la radiacion CuK{sub {beta}} ofrece sobre el doblete CuK{sub {alpha}} Si se elige correctamente la

  16. Rapid analysis of 14C and 3H in graphite and concrete for decommissioning of nuclear reactor

    DEFF Research Database (Denmark)

    Hou, Xiaolin

    2005-01-01

    /g graphite and 0.11 and 0.06Bq/g concrete, respectively. The cross contamination of C-14 and tritium in the preparation of samples is less than 0.2%. The interference of other radionuclides in the determination of C-14 and tritium in graphite is insignificant. The analytical accuracy, investigated...

  17. Acceptance test for graphite components and construction status of HTTR

    International Nuclear Information System (INIS)

    Iyoku, T.; Ishihara, M.; Maruyama, S.; Shiozawa, S.; Tsuji, N.; Miki, T.

    1996-01-01

    In March, 1991, the Japan Atomic Energy Research Institute (JAERI) started to constructed the High Temperature engineering Test Reactor(HTTR) which is a 30-MW(thermal) helium gas-cooled reactor with a core composed of prismatic graphite blocks piled on the core support graphite structures. Two types of graphite materials are used in the HTTR. One is the garde IG-110, isotropic fine grain graphite, another is the grade PGX, medium-to-fine grained molded graphite. These materials were selected on the basis of the appropriate properties required by the HTTR reactor design. Industry-wide standards for an acceptance test of graphite materials used as main components of a nuclear reactor had not been established. The acceptance standard for graphite components of the HTTR, therefore, was drafted by JAERI and reviewed by specialists outside JAERI. The acceptance standard consists of the material testing, non-destructive examination such as the ultrasonic and eddy current testings, dimensional and visual inspections and assembly test. Ultrasonic and eddy current testings are applied to graphite logs to detect an internal flaw and to graphite components to detect a surface flaw, respectively. The assembly test is performed at the works, prior to their installation in the reactor pressure vessel, to examine fabricating precision of each component and alignment of piled-up structures. The graphite components of the HTTR had been tested on the basis of the acceptance standard. It was confirmed that the graphite manufacturing process was well controlled and high quality graphite components were provided to the HTTR. All graphite components except for the fuel graphite blocks are to be installed in the reactor pressure vessel of the HTTR in September 1995. The paper describes the construction status of the HTTR focusing on the graphite components. The acceptance test results are also presented in this paper. (author). Figs

  18. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  19. Influence of irradiation on high-strength graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.; Grebennik, V.N.; Kalyagina, I.P.

    1989-01-01

    To ensure efficiency of the graphite elements of the construction of the masonry of reactors, the graphite must possess high radiation stability, strength, and heat resistance. In this connection, the physical properties of graphites based on uncalcined petroleum coke with a binder - high-temperature hard coal pitch - the amount of which reaches 40% are considered in this paper

  20. Graphite moderated 252Cf source

    International Nuclear Information System (INIS)

    Sajo B, L.; Barros, H.; Greaves, E. D.; Vega C, H. R.

    2014-08-01

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a 252 Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the 252 Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  1. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Kia, Kaveh Kazemi [Department of Electrical and Computer Engineering, Islamic Azad University of Bonab, Bonab (Iran, Islamic Republic of); Bonabi, Fahimeh [Department of Engineering, Islamic Azad University of Bonab, Bonab (Iran, Islamic Republic of)

    2012-12-15

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  2. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design.

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  3. Tests of experimental fuel elements by the method of nuclear-thermal pulse loadings in 'HYDRA' reactor

    International Nuclear Information System (INIS)

    Nastoyashchaya, O.V.; Lebedev, Yu. M.; Chechurov, A.M.; Khvostionov, Ye

    1997-01-01

    The results of tests of experimental fuel elements with uranium dioxide fuel composition embedded in Al and Zr matrix with the enrichment from 90% to 36% in respect to U-235 performed at the pulse 'HYDRA' reactor are presented in this paper. Testing is performed in the frame-work of extensive research program studying the behavior of fuel elements (FE) of research and mini nuclear power systems in case of practically immediate energy release in the fuel taking place during the RIA-type accidents. Duration of the neutron pulse when testing in 'HYDRA' reactor is from 7 to 20 ms. The methods of diagnostics of the state of FE prior to and after testing in the reactor are developed and verified. Mathematical model describing temperature fields inside the FE in the process of testing. and accounting for non-uniformity of fuel composition has been developed in order to summarize experimental results. Experimental data on the limiting values of the energy density leading to deformation and degradation of FE depending on the type of fuel composition have been obtained and the mechanisms for the development of these processes have been determined. The nature of physical-chemical processes taking place in the fuel composition and fuel cladding depending on material composition under different levels of energy deposition is demonstrated. The data on hydrogen generation and radioactive product release out of fuel after failure of FE are presented. (author)

  4. Production of nuclear graphite in France

    International Nuclear Information System (INIS)

    Legendre, P.; Mondet, L.; Arragon, Ph.; Cornuault, P.; Gueron, J.; Hering, H.

    1955-01-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [fr

  5. Development of the loss coefficient correlation for cross flow between graphite fuel blocks in the core of prismatic very high temperature reactor-PMR200

    International Nuclear Information System (INIS)

    Lee, Jeong-Hun; Cho, Hyoung-Kyu; Park, Goon-Cherl

    2016-01-01

    Highlights: • Cross flow experimental data are produced with wedge-shaped and parallel gaps. • The results of a CFD analysis and experimental data are in good agreement. • Pressure loss coefficient for the cross gap between fuel blocks in PMR200 is found. • A new correlation of the cross flow loss coefficient for PMR200 is proposed. - Abstract: The core of the very high temperature reactor (VHTR) PMR200 (a prismatic modular reactor rated at 200 MW of thermal power) consists of hexagonal prismatic fuel blocks and reflector blocks made of graphite. If the core bypass flow ratio increases, the coolant channel flow is decreased and can then lower the heat removal efficiency, resulting in a locally increased fuel block temperature. The coolant channels in the fuel blocks are connected to bypass gaps by the cross gap, complicating flow distribution in the VHTR core. Therefore, reliable estimation of the bypass flow is highly important for the design and safety analysis of the VHTR core. Because of the complexity of the core geometry and gap configuration, it is challenging to predict the flow distribution in the VHTR core. To analyze this flow distribution accurately, it is necessary to determine the cross flow phenomena, and the loss coefficient across the cross gap has to be evaluated to determine the flow distribution in the VHTR core when a lumped parameter code or a flow network analysis code that uses the correlation of the loss coefficient is employed. The purpose of this paper is to develop a loss coefficient correlation applicable to the cross gap in the PMR200 core. The cross flow was evaluated experimentally using the difference between the measured inlet and outlet mass flow rates. Next, the applicability of a commercial computational fluid dynamics (CFD) code, CFX 15, was confirmed by comparing the experimental data and CFD analysis results. To understand the cross flow phenomena, the loss coefficient was evaluated; in the high Reynolds number region

  6. Development of the loss coefficient correlation for cross flow between graphite fuel blocks in the core of prismatic very high temperature reactor-PMR200

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Hun, E-mail: huny12@snu.ac.kr; Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr; Park, Goon-Cherl, E-mail: parkgc@snu.ac.kr

    2016-10-15

    Highlights: • Cross flow experimental data are produced with wedge-shaped and parallel gaps. • The results of a CFD analysis and experimental data are in good agreement. • Pressure loss coefficient for the cross gap between fuel blocks in PMR200 is found. • A new correlation of the cross flow loss coefficient for PMR200 is proposed. - Abstract: The core of the very high temperature reactor (VHTR) PMR200 (a prismatic modular reactor rated at 200 MW of thermal power) consists of hexagonal prismatic fuel blocks and reflector blocks made of graphite. If the core bypass flow ratio increases, the coolant channel flow is decreased and can then lower the heat removal efficiency, resulting in a locally increased fuel block temperature. The coolant channels in the fuel blocks are connected to bypass gaps by the cross gap, complicating flow distribution in the VHTR core. Therefore, reliable estimation of the bypass flow is highly important for the design and safety analysis of the VHTR core. Because of the complexity of the core geometry and gap configuration, it is challenging to predict the flow distribution in the VHTR core. To analyze this flow distribution accurately, it is necessary to determine the cross flow phenomena, and the loss coefficient across the cross gap has to be evaluated to determine the flow distribution in the VHTR core when a lumped parameter code or a flow network analysis code that uses the correlation of the loss coefficient is employed. The purpose of this paper is to develop a loss coefficient correlation applicable to the cross gap in the PMR200 core. The cross flow was evaluated experimentally using the difference between the measured inlet and outlet mass flow rates. Next, the applicability of a commercial computational fluid dynamics (CFD) code, CFX 15, was confirmed by comparing the experimental data and CFD analysis results. To understand the cross flow phenomena, the loss coefficient was evaluated; in the high Reynolds number region

  7. Proposal of a core model for the thorium molten salt reactor minimizing the quantity of graphite moderator in the core; Proposition d'un modele de coeur pour le RSF thorium minimisant la quantite de moderateur graphite en coeur

    Energy Technology Data Exchange (ETDEWEB)

    Nuttin, A

    2004-06-01

    In the present day TMSR design, the average power in the salt is about 200 W/cm{sup 3}, i.e. two times the one of MSBR. The average neutron flux in the core has doubled and the lifetime of graphite is two times lower. There is two approaches to solve this worrying problem: reducing the volume power to 50 W/cm{sup 3} or minimizing the amount of graphite used in the core. A solution should be to increase the volume power in order to reduce the core dimensions and thus the amount of graphite. By acting both on the total power ('economical' minimum of 1000 MWth) and on the average volume power ('physical' maximum of 500 W/cm{sup 3}) it is possible to reduce the core to a single channel or a single cylindrical ring and to concentrate graphite in a place easily accessible for its extraction and reprocessing. (J.S.)

  8. A graphite foam reinforced by graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  9. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  10. DrSPINE - New approach to data reduction and analysis for neutron spin echo experiments from pulsed and reactor sources

    International Nuclear Information System (INIS)

    Zolnierczuk, P.A.; Ohl, M.; Holderer, O.; Monkenbusch, M.

    2015-01-01

    Neutron spin echo (NSE) method at a pulsed neutron source presents new challenges to the data reduction and analysis as compared to the instruments installed at reactor sources. The main advantage of the pulsed source NSE is the ability to resolve the neutron wavelength and collect neutrons over a wider bandwidth. This allows us to more precisely determine the symmetry phase and measure the data for several Q-values at the same time. Based on the experience gained at the SNS NSE - the first, and to date the only one, NSE instrument installed at a pulsed spallation source, we propose a novel and unified approach to the NSE data processing called DrSPINE. The goals of the DrSPINE project are: -) exploit better symmetry phase determination due to the broader bandwidth at a pulsed source; -) take advantage of larger Q coverage for TOF instruments; -) use objective statistical criteria to get the echo fits right; -) provide robust reduction with report generation; -) incorporate absolute instrument calibration; and -) allow for background subtraction. The software must be able to read the data from various instruments, perform data integrity, consistency and compatibility checks and combine the data from compatible sets, partial scans, etc. We chose to provide a console-based interface with the ability to process macros (scripts) for batch evaluation. And last and not the least, a good software package has to provide adequate documentation. DrSPINE software is currently under development

  11. Measurement of the^ 235U(n,n')^235mU Integral Cross Section in a Pulsed Reactor

    Science.gov (United States)

    Vieira, D. J.; Bond, E. M.; Belier, G.; Meot, V.; Becker, J. A.; Macri, R. A.; Authier, N.; Hyneck, D.; Jacquet, X.; Jansen, Y.; Legrendre, J.

    2009-10-01

    We will present the integral measurement of the neutron inelastic cross section of ^235U leading to the 26-minute, E*=76.5 eV isomer state. Small samples (5-20 microgm) of isotope-enriched ^235U were activated in the central cavity of the CALIBAN pulsed reactor at Valduc where a nearly pure fission neutron spectrum is produced with a typical fluence of 3x10^14 n/cm^2. After 30 minutes the samples were removed from the reactor and counted in an electrostatic-deflecting electron spectrometer that was optimized for the detection of ^235mU conversion electrons. From the decay curve analysis of the data, the 26-minute ^235mU component was extracted. Preliminary results will be given and compared to gamma-cascade calculations assuming complete K-mixing or with no K-mixing.

  12. The Application of Best Estimate and Uncertainty Analysis Methodology to Large LOCA Power Pulse in a CANDU 6 Reactor

    International Nuclear Information System (INIS)

    Abdul-Razzak, A.; Zhang, J.; Sills, H.E.; Flatt, L.; Jenkins, D.; Wallace, D.J.; Popov, N.

    2002-01-01

    The paper describes briefly a best estimate plus uncertainty analysis (BE+UA) methodology and presents its proto-typing application to the power pulse phase of a limiting large Loss-of-Coolant Accident (LOCA) for a CANDU 6 reactor fuelled with CANFLEX R fuel. The methodology is consistent with and builds on world practice. The analysis is divided into two phases to focus on the dominant parameters for each phase and to allow for the consideration of all identified highly ranked parameters in the statistical analysis and response surface fits for margin parameters. The objective of this analysis is to quantify improvements in predicted safety margins under best estimate conditions. (authors)

  13. Assessments of the probabilities of aircraft impact with the Sandia Pulsed Reactor and Building 836, Sandia Laboratories, Albuquerque

    International Nuclear Information System (INIS)

    Biringer, B.E.

    1976-11-01

    This report documents a study of the annual probabilities of aircraft impact with the Sandia Pulsed Reactor (SPR) and Bldg. 836 at Sandia Laboratories, Albuquerque. The probability of aircraft impact into each structure was estimated using total yearly operations, effective structure area, structure location relative to air activity, and accident rate per kilometer. The estimated probability for an aircraft impact with SPR is 1.1 x 10 -4 per year; the estimated probability for impact with Bldg. 836 is 1.0 x 10 -3 per year

  14. Miniature fission chambers calibration in pulse mode: interlaboratory comparison at the. SCK·CEN BR1 and CEA CALIBAN reactors

    International Nuclear Information System (INIS)

    Lamirand, V.; Geslot, B.; Gregoire, G.; Garnier, D.; Breaud, S.; Mellier, F.; Di-Salvo, J.; Destouches, C.; Blaise, P.; Wagemans, J.; Borms, L.; Malambu, E.; Casoli, P.; Jacquet, X.; Rousseau, G.; Sauvecane, P.

    2013-06-01

    Miniature fission chambers are suited tools for instrumenting experimental reactors, allowing online and in-core neutron measurements of quantities such as fission rates or reactor power. A new set of such detectors was produced by CEA to be used during the next experimental program at the EOLE facility starting in 2013. Some of these detectors will be employed in pulse mode for absolute measurements, thus requiring calibration. The calibration factor is expressed in mass units and thus called 'effective mass'. A calibration campaign was conducted in December 2012 at the SCK.CEN BR1 facility within the framework of the scientific cooperation VEP (VENUS-EOLE-PROTEUS) between SCK.CEN, CEA and PSI. Two actions were conducted in order to improve the calibration method. First a new characterisation of the thermal flux cavity and the MARK3 neutron flux conversion device performed by SCK.CEN allowed using calculated effective cross sections for determining detectors effective masses. Dosimetry irradiations were performed in situ in order to determine the neutron flux level and provide link to the metrological standard. Secondly two fission chambers were also calibrated at the CEA CALIBAN reactor (fast neutron spectrum), using the same method so that the results can be compared with the results obtained at the SCK.CEN. In this paper the calibration method and recent improvements on uncertainty reduction are presented. The results and uncertainties obtained in the two reactors CALIBAN and BR1 are compared and discussed. (authors)

  15. Dynamic Time-Resolved Chirped-Pulse Rotational Spectroscopy of Vinyl Cyanide Photoproducts in a Room Temperature Flow Reactor

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    Chirped-pulsed (CP) Fourier transform rotational spectroscopy invented by Brooks Pate and coworkers a decade ago is an attractive tool for gas phase chemical dynamics and kinetics studies. A good reactor for such a purpose would have well-defined (and variable) temperature and pressure conditions to be amenable to accurate kinetic modeling. Furthermore, in low pressure samples with large enough number of molecular emitters, reaction dynamics can be observable directly, rather than mediated by supersonic expansion. In the present work, we are evaluating feasibility of in situ time-resolved CP spectroscopy in a room temperature flow tube reactor. Vinyl cyanide (CH_2CHCN), neat or mixed with inert gasses, flows through the reactor at pressures 1-50 μbar (0.76-38 mTorr) where it is photodissociated by a 193 nm laser. Millimeter-wave beam of the CP spectrometer co-propagates with the laser beam along the reactor tube and interacts with nascent photoproducts. Rotational transitions of HCN, HNC, and HCCCN are detected, with ≥10 μs time-steps for 500 ms following photolysis of CH_2CHCN. The post-photolysis evolution of the photoproducts' rotational line intensities is investigated for the effects of rotational and vibrational thermalization of energized photoproducts. Possible contributions from bimolecular and wall-mediated chemistry are evaluated as well.

  16. Change in properties of graphite on stake of Obninsk NPP

    International Nuclear Information System (INIS)

    Virgul'ev, Yu.S.; Gundorov, V.V.; Kalyagina, I.P.; Belinskaya, N.T.; Dolgov, V.V.; Komissarov, O.V.; Stuzhnev, Yu.A.

    1997-01-01

    The results of testing the graphite from the AM-1 reactor masonry at the Obninsk NPP for its operation period are discussed. It is shown that the masonry graphite state after 42 years of the reactor operation remains satisfactory in the most cells inspected. Separate cells requiring a repair resulted from oxidation are characterized by strength decreased by several times. The laws of radiation changes in graphite properties are analyzed. The conclusion on possibility of the further masonry operation is drawn

  17. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  18. OECD high temperature reactor project Dragon

    International Nuclear Information System (INIS)

    1975-01-01

    Information is presented concerning the Dragon reactor support studies and fuel irradiation programs, HTGR and fuel graphite studies, primary circuit materials, reactor safety evaluation, and administration

  19. Laser pulse heating of nuclear fuels for simulation of reactor power

    Indian Academy of Sciences (India)

    Laser applications; nuclear fuel elements; nuclear safety. ... accident (LOCA) and reactivity initiated accident (RIA), a laser pulse heating system is under ... As a prelude to work on irradiated nuclear fuel specimens, pilot studies on unirradiated ...

  20. The use of pulsed power ion/electron beams for studying of units of electronuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S A; Korenev, A S; Puzynin, I V; Samojlov, V N; Sissakyan, A N [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    1997-12-31

    The problems associated with the use of power pulsed ion beams for studying some units of the model electronuclear installation are considered. This makes it possible to analyze the problem of heating loads on the targets, entrance and exit windows for beams of charged particles. The methods of increasing the life-time of these thin foil based windows by surface modification of the materials by high current pulsed ion beams are considered. (author). 4 figs., 5 refs.

  1. The use of pulsed power ion/electron beams for studying of units of electronuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A.; Korenev, A.S.; Puzynin, I.V.; Samoilov, V.N.; Sissakian, A.N. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-09-01

    The questions of using power pulsed ion beams for studying some units of model`s electronuclear installation are considered in this report. It allows to analyze the question of heating loads on the targets, entering and output windows for beams of charge particles. The methods of increasing a life-time of these windows on the basis of thin foils with help of surface modification of materials by high current pulsed ion beams are considered. 5 refs., 4 figs.

  2. The use of pulsed power ion/electron beams for studying of units of electronuclear reactor

    International Nuclear Information System (INIS)

    Korenev, S.A.; Korenev, A.S.; Puzynin, I.V.; Samojlov, V.N.; Sissakyan, A.N.

    1996-01-01

    The problems associated with the use of power pulsed ion beams for studying some units of the model electronuclear installation are considered. This makes it possible to analyze the problem of heating loads on the targets, entrance and exit windows for beams of charged particles. The methods of increasing the life-time of these thin foil based windows by surface modification of the materials by high current pulsed ion beams are considered. (author). 4 figs., 5 refs

  3. The use of pulsed power ion/electron beams for studying of units of electronuclear reactor

    International Nuclear Information System (INIS)

    Korenev, S.A.; Korenev, A.S.; Puzynin, I.V.; Samoilov, V.N.; Sissakian, A.N.

    1997-01-01

    The questions of using power pulsed ion beams for studying some units of model's electronuclear installation are considered in this report. It allows to analyze the question of heating loads on the targets, entering and output windows for beams of charge particles. The methods of increasing a life-time of these windows on the basis of thin foils with help of surface modification of materials by high current pulsed ion beams are considered. 5 refs., 4 figs

  4. Study of the strength of the internal can for internally and externally cooled fuel elements intended for gas graphite reactors; Etude de la tenue de la gaine interne pour-element combustible a refroidissement interne et externe d'un reacteur graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Boudouresque, B; Courcon, P; Lestiboubois, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The cartridge of an internally and externally cooled annular fuel element used in gas-graphite reactors is made up of an uranium fuel tube, an external can and an internal can made of magnesium alloy. For the thermal exchange between the internal can and the fuel to be satisfactory, it is necessary for the can to stay in contact with the uranium under all temperature conditions. This report, based on a theoretical study, shows how the internal can fuel gap varies during the processes of canning, charging into the reactor and thermal cycling. The following parameters are considered: tube diameter, pressure of the heat carrying gas, gas entry temperature, plasticity of the can alloy. It is shown that for all operating conditions the internal can of a 77 x 95 element, planned for a gas-graphite reactor with a 40 kg/cm{sup 2} gas pressure, should remain in contact with the fuel. (authors) [French] La cartouche d'un element combustible annulaire, a refroidissement interne et externe pour reacteur graphite-gaz, est composee d'un tube combustible en uranium, d'une gaine externe et d'une gaine interne en alliage de magnesium. Pour que l'echange thermique entre la gaine interne et le combustible soit bon, il faut que la gaine reste appliquee sur l'uranium quel que soit le regime de temperature. Cette note a pour but de montrer comment, d'apres une etude theorique, le jeu combustible-gaine interne varie au cours des operations de gainage, de chargement dans le reacteur, et des cyclages thermiques. Les parametres suivants sont etudies: diametres de tube, pression du gaz caloporteur, temperature d'entree du gaz, plasticite de l'alliage de gaine. Il est montre que, quel que soit le regime de fonctionnement, la gaine interne d'un element 77 x 95, en projet pour un reacteur graphite-gaz sous pression de 40 kg/cm{sup 2}, doit rester appliquee sur le combustible. (auteurs)

  5. AGC-3 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  6. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  7. Present status and future program of YAYOI as a fast pulse reactor

    International Nuclear Information System (INIS)

    An, S.; Oka, Y.; Saito, I.

    1978-01-01

    Fast neutron source reactor YAYOI was constructed in 1971 and has been operated by the Faculty of Engineering of the University of Tokyo. The reactor is a development of AFSR and HARMONIE and is air cooled, modified to enhance flexibility for research and training, using 93% enriched uranium metal fuel. The YAYOI is principally used for LMFBR development work. The new features of YAYOI include pulsation with or without an electron linac. (author)

  8. Radiolytic graphite oxidation revisited

    International Nuclear Information System (INIS)

    Minshall, P.C.; Sadler, I.A.; Wickham, A.J.

    1996-01-01

    The importance of radiolytic oxidation in graphite-moderated CO 2 -cooled reactors has long been recognised, especially in the Advanced Gas-Cooled Reactors where potential rates are higher because of the higher gas pressure and ratings than the earlier Magnox designs. In all such reactors, the rate of oxidation is partly inhibited by the CO produced in the reaction and, in the AGR, further reduced by the deliberate addition of CH 4 . Significant roles are also played by H 2 and H 2 O. This paper reviews briefly the mechanisms of these processes and the data on which they are based. However, operational experience has demonstrated that these basic principles are unsatisfactory in a number of respects. Gilsocarbon graphites produced by different manufacturers have demonstrated a significant difference in oxidation rate despite a similar specification and apparent equivalence in their pore size and distribution, considered to be the dominant influence on oxidation rate for a given coolant-gas composition. Separately, the inhibiting influence of CH 4 , which for many years had been considered to arise from the formation of a sacrificial deposit on the pore walls, cannot adequately be explained by the actual quantities of such deposits found in monitoring samples which frequently contain far less deposited carbon than do samples from Magnox reactors where the only source of such deposits is the CO. The paper also describes the current status of moderator weight-loss predictions for Magnox and AGR Moderators and the validation of the POGO and DIFFUSE6 codes respectively. 2 refs, 5 figs

  9. Enhanced degradation of p-chlorophenol in a novel pulsed high voltage discharge reactor.

    Science.gov (United States)

    Bian, Wenjuan; Ying, Xiangli; Shi, Junwen

    2009-03-15

    The yields of active specie such as ozone, hydrogen peroxide and hydroxyl radical were all enhanced in a novel discharge reactor. In the reactor, the original formation rate of hydroxyl radical was 2.27 x 10(-7) mol L(-1)s(-1), which was about three times than that in the contrast reactor. Ozone was formed in gas-phase and was transferred into the liquid. The characteristic of mass transfer was better in the novel reactor than that in the contrast reactor, which caused much higher ozone concentration in liquid. The dissociation of hydrogen peroxide was more evident in the former, which promoted the formations of hydroxyl radical. The p-chlorophenol (4-CP) degradation was also enhanced. Most of the ozone transferred into the liquid and hydrogen peroxide generated by discharge could be utilized by the degradation process of 4-CP. About 97% 4-CP was removed in 36 min discharge in the novel reactor. Organic acids such as formic, acetic, oxalic, propanoic and maleic acid were generated and free chloride ions were released in the degradation process. With the formation of organic acid, the pH was decreased and the conductivity was increased.

  10. Enhanced degradation of p-chlorophenol in a novel pulsed high voltage discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bian Wenjuan [School of Chemistry and Chemical Engineering, Soochow University, Suzhou 215123 (China)], E-mail: bwenjuan@suda.edu.cn; Ying Xiangli; Shi Junwen [School of Chemistry and Chemical Engineering, Soochow University, Suzhou 215123 (China)

    2009-03-15

    The yields of active specie such as ozone, hydrogen peroxide and hydroxyl radical were all enhanced in a novel discharge reactor. In the reactor, the original formation rate of hydroxyl radical was 2.27 x 10{sup -7} mol L{sup -1} s{sup -1}, which was about three times than that in the contrast reactor. Ozone was formed in gas-phase and was transferred into the liquid. The characteristic of mass transfer was better in the novel reactor than that in the contrast reactor, which caused much higher ozone concentration in liquid. The dissociation of hydrogen peroxide was more evident in the former, which promoted the formations of hydroxyl radical. The p-chlorophenol (4-CP) degradation was also enhanced. Most of the ozone transferred into the liquid and hydrogen peroxide generated by discharge could be utilized by the degradation process of 4-CP. About 97% 4-CP was removed in 36 min discharge in the novel reactor. Organic acids such as formic, acetic, oxalic, propanoic and maleic acid were generated and free chloride ions were released in the degradation process. With the formation of organic acid, the pH was decreased and the conductivity was increased.

  11. Enhanced degradation of p-chlorophenol in a novel pulsed high voltage discharge reactor

    International Nuclear Information System (INIS)

    Bian Wenjuan; Ying Xiangli; Shi Junwen

    2009-01-01

    The yields of active specie such as ozone, hydrogen peroxide and hydroxyl radical were all enhanced in a novel discharge reactor. In the reactor, the original formation rate of hydroxyl radical was 2.27 x 10 -7 mol L -1 s -1 , which was about three times than that in the contrast reactor. Ozone was formed in gas-phase and was transferred into the liquid. The characteristic of mass transfer was better in the novel reactor than that in the contrast reactor, which caused much higher ozone concentration in liquid. The dissociation of hydrogen peroxide was more evident in the former, which promoted the formations of hydroxyl radical. The p-chlorophenol (4-CP) degradation was also enhanced. Most of the ozone transferred into the liquid and hydrogen peroxide generated by discharge could be utilized by the degradation process of 4-CP. About 97% 4-CP was removed in 36 min discharge in the novel reactor. Organic acids such as formic, acetic, oxalic, propanoic and maleic acid were generated and free chloride ions were released in the degradation process. With the formation of organic acid, the pH was decreased and the conductivity was increased

  12. Synergistic effect of plasmacatalyst and ozone in a pulsed corona discharge reactor on the decomposition of organic pollutants in water

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Muhammad Arif [Applied Chemistry Laboratories, PINSTECH, PO Nilore, Islamabad (Pakistan)

    2003-11-01

    Plasmacatalytic effects of {alpha}-alumina, {gamma}-alumina, and silica gel in a pulsed corona discharge (PCD) reactor on the decomposition of aqueous methylene blue are described. Methylene blue concentration in the effluent was reduced to 23% of the inlet concentration by PCDs in water. Under the same experimental conditions, addition of {alpha}-alumina further reduced it to 8%, {gamma}-alumina to 4%, and silica gel to below the detection limits. PCDs with silica gel were run for >100 h in a continuous flow reactor and methylene blue in the effluent remained below the detection limit. A hybrid system of plasmacatalysis and ozonation is also described. Phenol concentration in the effluent was reduced to 84% of the inlet concentration by PCDs in water. Under the same experimental conditions, addition of either silica gel or ozone further reduced it to around 35%, and simultaneous addition of silica gel and ozone to 14% of inlet concentration. Decolourization of pre-adsorbed methylene blue on silica gel has been demonstrated. Adsorption and stabilization of the chemically active species on silica gel was indicated by experimental evidence. A significant improvement in the rate of decomposition of organic pollutants in water has been realized by hybridizing plasmacatalysis and ozonation in a PCD reactor.

  13. Synergistic effect of plasmacatalyst and ozone in a pulsed corona discharge reactor on the decomposition of organic pollutants in water

    International Nuclear Information System (INIS)

    Malik, Muhammad Arif

    2003-01-01

    Plasmacatalytic effects of α-alumina, γ-alumina, and silica gel in a pulsed corona discharge (PCD) reactor on the decomposition of aqueous methylene blue are described. Methylene blue concentration in the effluent was reduced to 23% of the inlet concentration by PCDs in water. Under the same experimental conditions, addition of α-alumina further reduced it to 8%, γ-alumina to 4%, and silica gel to below the detection limits. PCDs with silica gel were run for >100 h in a continuous flow reactor and methylene blue in the effluent remained below the detection limit. A hybrid system of plasmacatalysis and ozonation is also described. Phenol concentration in the effluent was reduced to 84% of the inlet concentration by PCDs in water. Under the same experimental conditions, addition of either silica gel or ozone further reduced it to around 35%, and simultaneous addition of silica gel and ozone to 14% of inlet concentration. Decolourization of pre-adsorbed methylene blue on silica gel has been demonstrated. Adsorption and stabilization of the chemically active species on silica gel was indicated by experimental evidence. A significant improvement in the rate of decomposition of organic pollutants in water has been realized by hybridizing plasmacatalysis and ozonation in a PCD reactor

  14. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaowei, E-mail: xwluo@tsinghua.edu.cn; Wang, Xiaoxin; Shi, Li; Yu, Xiaoyu; Yu, Suyuan

    2017-04-15

    Highlights: • Graphite dust. • The wear properties of graphite. • Pebble bed. • High Temperature Gas-cooled Reactor. • Fuel element. - Abstract: The issue of the graphite dust has been a research focus for the safety of High Temperature Gas-cooled Reactors (HTGRs), especially for the pebble bed reactors. Most of the graphite dust is produced from the wear of fuel elements during cycling of fuel elements. However, due to the complexity of the motion of the fuel elements in the pebble bed, there is no systematic method developed to predict the amount the graphite dust in a pebble bed reactor. In this paper, the study of the flow of the fuel elements in the pebble bed was carried out. Both theoretical calculation and numerical analysis by Discrete Element Method (DEM) software PFC3D were conducted to obtain the normal forces and sliding distances of the fuel elements in pebble bed. The wearing theory was then integrated with PFC3D to estimate the amount of the graphite dust in a pebble bed reactor, 10 MW High Temperature gas-cooled test Reactor (HTR-10).

  15. Corrosion of graphitic high temperature reactor materials in steam/helium mixtures at total pessures of 3-55 bar and temperatures of 900-1150 C (1173-1423K)

    International Nuclear Information System (INIS)

    Hinssen, H.K.; Loenissen, K.J.; Katscher, W.; Moormann, R.

    1993-03-01

    In course of accident examination for (HTR), experiments on the corrosion behavior of graphitic reactor materials in steam have been performed a total pressures of 3-55bar and temperatures of 900-1150 C (1173-1423K); these experiments and their evaluation are documented here. Reactor materials examined are the structure graphite V483T2 and the fuel element matrices A3-27 and A3-3. In all experiments, the steam partial pressure was 474mbar (inert gas helium). The dependence of reaction rates and density profiles on burn-off, total pressure and temperature has been examined. Experimental reaction rates depending on burn-off are fitted by theoretical curves, a procedure, which allows rate comparison for a well defined burn-off. Comparing rates as a function of total pressure, V483T2 shows a linear dependence on 1√p total , whereas for matrix materials a pressure independent rate was found for p total 4mm for A3-3. (orig.) [de

  16. Development of electrically heated rods with resistive element of graphite or carbon/carbon composites for simulating transients in nuclear reactors

    International Nuclear Information System (INIS)

    Polidoro, H.A.

    1987-01-01

    Thermo-hydraulic problems, in nuclear plants are normally analysed by the use of electrically heated rods. The direct or indirect heater rods are limited in their use because, for high temperatures and high heat flux, the heating element temperature approach its melting point. The use of platinum or tantalum is not economically viable. Graphite and carbon/carbon composites are alternative materials because they are good electrical conductors and have good mechanical properties at high temperatures. Graphite and carbon/carbon composites were used to make heating elements for testing by indirect heating. The swaging process used to reduce the cladding diameter prevented the fabrication of graphite heater rods. Carbon/carbon composite used to make heating elements gave good results up to a heat flux of 100 W/cm 2 . It is easy to verify that this value can be exceeded if the choice of the complementary materials for insulator and cladding improved. (author) [pt

  17. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  18. Process for purifying graphite

    International Nuclear Information System (INIS)

    Clausius, R.A.

    1985-01-01

    A process for purifying graphite comprising: comminuting graphite containing mineral matter to liberate at least a portion of the graphite particles from the mineral matter; mixing the comminuted graphite particles containing mineral matter with water and hydrocarbon oil to form a fluid slurry; separating a water phase containing mineral matter and a hydrocarbon oil phase containing grahite particles; and separating the graphite particles from the hydrocarbon oil to obtain graphite particles reduced in mineral matter. Depending upon the purity of the graphite desired, steps of the process can be repeated one or more times to provide a progressively purer graphite

  19. Radioactivity computation of steady-state and pulsed fusion reactors operation

    International Nuclear Information System (INIS)

    Attaya, H.

    1994-06-01

    Different mathematical methods are used to calculate the nuclear transmutation in steady-state and pulsed neutron irradiation. These methods are the Schuer decomposition, the eigenvector decomposition, and the Pade approximation of the matrix exponential function. In the case of the linear decay chain approximation, a simple algorithm is used to evaluate the transition matrices

  20. Controlling fundamentals in high-energy high-rate pulsed power materials processing of powdered tungsten, titanium aluminides, and copper-graphite composites. Final technical report, 1 Jun 87-31 Aug 90

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Marcus, H.L.; Bourell, D.L.; Eliezer, Z.; Weldon, W.F.

    1990-10-01

    This study was conducted to determine the controlling fundamentals in the high-energy high-rate (1 MJ in 1s) processing of metal powders. This processing utilizes a large electrical current pulse to heat a pressurized powder mass. The current pulse was provided by a homopolar generator. Simple short cylindrical shapes were consolidated so as to minimize tooling costs. Powders were subjected to current densities of 5 kA/cm2 to 25 kA/cm2 under applied pressures ranging from 70 MPa to 500 MPa. Disks with diameters of 25 mm to 70 mm, and thicknesses of 1 mm to 10 mm were consolidated. Densities of 75% to 99% of theoretical values were obtained in powder consolidates of tungsten, titanium aluminides, copper-graphite, and other metal-ceramic composites. Extensive microstructural characterization was performed to follow the changes occuring in the shape and microstructure of the various powders. The processing science has at its foundation the control of the duration of elevated temperature exposure during powder consolidation.

  1. Engineering design of a direct-cycle steam-generating blanket for a long-pulse fusion reactor

    International Nuclear Information System (INIS)

    Cort, G.E.; Hagenson, R.L.; Teasdale, R.W.; Fox, W.E.; Soran, P.D.; Cullingford, H.S.; Bathke, C.G.; Krakowski, R.A.

    1979-01-01

    A comprehensive neutronics, thermohydraulic, and mechanical design of a tritium-breeding blanket for use by a conceptual long-pulse Reversed-Field Pinch Reactor (RFPR) is described. On the basis of constraints imposed by cost and the desire to use existing technology, a direct-cycle steam system and stainless-steel construction were used. For reasons of plasma stability, the RFPR blanket supports a 20-mm-thick copper first wall. Located behind the 1.5-m-radius first wall is a 0.50-m-thick stainless-steel blanket containing a granular bed of Li 2 O through which flows low-pressure helium (0.1 MPa) for tritium extraction. Water/steam tubes radially penetrate this packed bed. The large thermal capacity and low thermal diffusivity of the Li 2 O blanket are sufficient to maintain a nearly constant temperature during the approx. 25-s burn period

  2. Parameters measurement for the thermal neutron beam in the thermal column hole of Xi’an pulse reactor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The distribution of the neutron spectra in the thermal column hole of Xi’an pulse reactor was measured with the time-of-flight method.Compared with the thermal Maxwellian theory neutron spectra,the thermal neutron spectra measured is a little softer,and the average neutron energy of the experimental spectra is about 0.042±0.01 eV.The thermal neutron fluence rate at the front end of thermal column hole,measured with gold foil activation techniques,is about 1.18×105 cm-2 s-1.The standard uncertainty of the measured thermal neutron fluence is about 3%.The spectra-averaged cross section of 197Au(n,γ) determined by the experimental thermal neutron spectra is(92.8±0.93) ×10-24 cm2.

  3. Vapour pressure of caesium over nuclear graphite

    International Nuclear Information System (INIS)

    Faircloth, R.L.; Pummery, F.C.W.

    1976-01-01

    The vapour pressure of caesium over a fine-grained isotropic moulded gilsocarbon nuclear graphite intended for use in the manufacture of fuel tubes for the high temperature reactor has been determined as a function of temperature and concentration by means of the Knudsen effusion technique. The concentration range 0 to 10 μg caesium/g graphite was investigated and it was concluded that a Langmuir adsorption situation exists under these conditions. (author)

  4. Measurement of control rods efficiency at the RB reactor by pulse method; Merenje efikasnosti kontrolnih sipki u reaktoru RB impulsnom metodom

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Markovic, V; Velickovic, Lj [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1963-07-01

    Pulse method was applied for measuring the efficiency of control rods at the RB reactor. This paper describes the theory of experiment, experimental procedure applied and results obtained. Results are considered to be useful for safety analysis. it was found that the influence of delayed neutrons is rather small and could be neglected in estimation of rods efficiency.

  5. Absorption of CO2 and H2S in Aqueous Alkanolamine Solutions using a Fixed-Bed Reactor with Cocurrent Downflow Operation in the Pulsing Flow Regime

    NARCIS (Netherlands)

    Versteeg, G.F.; Swaaij, W.P.M. van

    1988-01-01

    Absorption rates of H2S and CO2 in several aqueous alkanolamines in a cocurrent downflow fixed-bed reactor operated in the pulse flow regime have been measured in order to obtain information on the potential selectivity and on the mass transfer parameters. From these experiments it can be concluded

  6. Possible applications of powerful pulsed CO2-lasers in tokamak reactors

    International Nuclear Information System (INIS)

    Nastoyashchii, A.F.; Morozov, I.N.; Hassanein, A.

    1998-01-01

    Applications of powerful pulsed CO 2 -lasers for injection of fuel tablets or creation of a protective screen from the vapor of light elements to protect against the destruction of plasma-facing components are discussed, and the corresponding laser parameters are determined. The possibility of using CO 2 -lasers in modeling the phenomena of powerful and energetic plasma fluxes interaction with a wall, as in the case of a plasma disruption, is considered

  7. Radioactivity computation of steady-state and pulsed fusion reactors operation

    International Nuclear Information System (INIS)

    Attaya, H.

    1994-11-01

    The International Thermonuclear Report (ITER) is expected to operate in a pulsed operational mode. Accurate radioactivity calculations, that take into account this mode of operation, are required in order to determine precisely the different safety aspects of ITER. The authors previous examined analytically the effect of pulsed operation in ITER and showed how it depends on the burn time, the dwell time, and the half-lives. That analysis showed also that for ITER's low duty factor, using the continuous operation assumption would considerably overestimate the radioactivities, for a wide range of half-lives. At the same time, the large improvements in the quality and the quantity of the decay and the cross-section data libraries has considerably increased the computation times of the radioactivity calculations. For both reasons it is imperative to seek different methods of solution that reduce the computational time and can be easily adopted to the treatment of the pulsed operation. In this work, they have developed algorithms based on several mathematical methods that were chosen based on their generality, reliability, stability, accuracy, and efficiency. These methods are the matrix Schuer decomposition, the eigenvector decomposition, and the Pade approximation for the matrix exponential functions

  8. A 34 MW, 120 MJ pulsed dc supply for the UK tokamak reactor ''DITE''

    International Nuclear Information System (INIS)

    Fry, M.G.J.

    1978-01-01

    A static rectifier set supplying as much as 120 MJ of energy at a peak power of 34 MW to the toroidal magnet coils in the DITE experiment is described in detail. The power supply is designed to meet the stringent requirements concerning the maximum admissible peak reactive power. The rectifier is divided into two series-connected sections, one with diode bridges providing a fixed voltage, the other with thyristors which may work in either the rectifier or line-commutated inverter mode. The rectifier transformers are preceded by mechanical line-voltage regulators of the patented ''Interstep'' types, which comprise dual-voltage 11/33 kV tapped autotransformers and tap selection switches. Four parallel-connected thyristor bridges are used, perfect current sharing being assured by independent control of firing circuits. The firing circuits consist of non-conventional pulse generators and pulse amplifiers. Trains of precisely timed firing pulses are produced by using the phase-lock loop technique and the TTL logic. An extremely high noise immunity is achieved. (J.U.)

  9. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor.

    Science.gov (United States)

    Zhang, Ruobing; Zhang, Chi; Cheng, XingXin; Wang, Liming; Wu, Yan; Guan, Zhicheng

    2007-04-02

    Removal of amaranth, a commercial synthetic azo dye widely used in the dye and food industry, was examined as a possible remediation technology for treating dye-contaminated water. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetition frequency, etc., on decolorization kinetics were investigated. Experimental results show that an aqueous solution of 24 mg/l dye is 81.24% decolorized following 30 min plasma treatment for a 50 kV voltage and 0.75 m(3)/h gas flow rate. Decolorization reaction of amaranth in the plasma reactor is a pseudo first order reaction. Rate constant (k) of decolorization increases quickly with increasing the applied voltage, pulse repetition frequency and the gas flow rate. However, when the applied voltage is beyond 50 kV and increases further, increase rate of k decreases. In addition, k decreases quickly when the solution conductivity increases from 200 to 1481 microS/cm. The decolorization reaction has a high rate constant (k=0.0269 min(-1)) when the solution pH is beyond 10. Rate constant k decreases with the decrease of pH and reaches minimum at a pH of about 5 (k(min)=0.01603 min(-1)), then increases to 0.02105 min(-1) when pH decreases to 3.07. About 15% of the initial TOC can be degraded only in about 120 min non-thermal plasma treatment.

  10. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor

    International Nuclear Information System (INIS)

    Zhang Ruobing; Zhang Chi; Cheng Xingxin; Wang Liming; Wu Yan; Guan Zhicheng

    2007-01-01

    Removal of amaranth, a commercial synthetic azo dye widely used in the dye and food industry, was examined as a possible remediation technology for treating dye-contaminated water. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetition frequency, etc., on decolorization kinetics were investigated. Experimental results show that an aqueous solution of 24 mg/l dye is 81.24% decolorized following 30 min plasma treatment for a 50 kV voltage and 0.75 m 3 /h gas flow rate. Decolorization reaction of amaranth in the plasma reactor is a pseudo first order reaction. Rate constant (k) of decolorization increases quickly with increasing the applied voltage, pulse repetition frequency and the gas flow rate. However, when the applied voltage is beyond 50 kV and increases further, increase rate of k decreases. In addition, k decreases quickly when the solution conductivity increases from 200 to 1481 μS/cm. The decolorization reaction has a high rate constant (k = 0.0269 min -1 ) when the solution pH is beyond 10. Rate constant k decreases with the decrease of pH and reaches minimum at a pH of about 5 (k min = 0.01603 min -1 ), then increases to 0.02105 min -1 when pH decreases to 3.07. About 15% of the initial TOC can be degraded only in about 120 min non-thermal plasma treatment

  11. Results of the initial test program for the Sandia Pulsed Reactor III (SPR III)

    International Nuclear Information System (INIS)

    Estes, B.F.; Reuscher, J.A.

    1976-08-01

    This document presents a detailed discussion of the reactor including the mechanical and nuclear design characteristics. Also presented are the complete results of the Initial Approach to Critical and the Zero-and-Low Power testing programs. Reactivity worth measurements are given for such parameters as control element integral worth, Safety Block integral worth, and various materials (polyethylene, copper, lead, etc) as a function of position relative to the core. Subcritical reactivity measurements made during the approach to critical generally proved to be in reasonably good agreement with design values due to the good source-fuel-detector geometry possible with a reactor of this type. Subsequent dynamic measurements for reactivity worths are shown to be in good agreement with calculated results

  12. Burn cycle requirements comparison of pulsed and steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Ehst, D.A.

    1983-12-01

    Burn cycle parameters and energy transfer system requirements were analyzed for an 8-m commercial tokamak reactor using four types of cycles: conventional, hybrid, internal transformer, and steady state. Not surprisingly, steady state is the best burn mode if it can be achieved. The hybrid cycle is a promising alternative to the conventional. In contrast, the internal transformer cycle does not appear attractive for the size tokamak in question

  13. Neutronic reactor

    International Nuclear Information System (INIS)

    Lewis, W.R.

    1978-01-01

    Disclosed is a graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels

  14. Pulsed Power Production of Ozone in 02/N2 iin a Coaxial Reactor without Dielectric Layer

    OpenAIRE

    Samaranayake, W. J. M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; ミヤハラ, Y.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2001-01-01

    Very short duration pulsed streamer discharges have been used to produce ozone in a gas mixture of nitrogen and oxygen at atmospheric pressure. The ratio of nitrogen to oxygen in the mixture was varied in the range from 2.5/0.5 to 0.5/2.5, while maintaining a total flow rate of 3 l/min. The production of ozone was found to be higher for a specific mixture ratio of N2/O2 than that in oxygen or in dry air. The production of ozone in O2 was higher than that in dry air. The production yield of oz...

  15. Simultaneous determination of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry based on graphite nanofibers-Nafion composite modified bismuth film electrode.

    Science.gov (United States)

    Li, Dongyue; Jia, Jianbo; Wang, Jianguo

    2010-12-15

    A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L(-1) for Cd(II) and 0.02 μg L(-1) for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Recent development of radioanalytical method at IBR-2 pulsed fast reactor of the JINR

    International Nuclear Information System (INIS)

    Nazarov, V.M.; Pavlov, S.S.; Herrera, E.

    1991-01-01

    The experience of the use of radioanalytical methods, including NAA at IBR-2 pilsed fast reactor of the JINR, is discussed. Physical and technical parameters of the experimental installation designed for NAA and radiography are given. The detailed examples of the application of resonance neutrons to the control of the environment in the geology of oil, in multi-element analysis of food products and superpure materials as well as in nuclear physics are reviewed. The works on the application of the neutron isotopes sources for express determination of nitrogen content in original and synthetic materials are introduced. 7 refs.; 8 figs.; 3 tabs

  17. Molten salt reactors: reactor cores

    International Nuclear Information System (INIS)

    1983-01-01

    In this critical analysis of the MSBR I project are examined the problems concerning the reactor core. Advantages of breeding depend essentially upon solutions to technological problems like continuous reprocessing or graphite behavior under neutron irradiation. Graphite deformation, moderator unloading, control rods and core instrumentation require more studies. Neutronics of the core, influence of core geometry and salt composition, fuel evolution, and thermohydraulics are reviewed [fr

  18. Conceptual design of a 20 Tesla pulsed solenoid for a laser solenoid fusion reactor

    International Nuclear Information System (INIS)

    Nolan, J.J.; Averill, R.J.

    1977-01-01

    Design considerations are described for a strip wound solenoid which is pulsed to 20 tesla while immersed in a 20 tesla bias field so as to achieve within the bore of the pulsed solenoid at net field sequence starting at 20 tesla and going first down to zero, then up to 40 tesla, and finally back to 20 tesla in a period of about 5 x 10 -3 seconds. The important parameters of the solenoid, e.g., aperture, build, turns, stored and dissipated energy, field intensity and powering circuit, are given. A numerical example for a specific design is presented. Mechanical stresses in the solenoid and the subsequent choice of materials for coil construction are discussed. Although several possible design difficulties are not discussed in this preliminary report of a conceptual magnet design, such as uniformity of field, long-term stability of insulation under neutron bombardment and choice of structural materials of appropriate tensile strength and elasticity to withstand magnetic forces developed, these questions are addressed in detail in the complete design report and in part in reference one. Furthermore, the authors feel that the problems encountered in this conceptual design are surmountable and are not a hindrance to the construction of such a magnet system

  19. Effect of total pressure on graphite oxidation

    International Nuclear Information System (INIS)

    Burnette, R.D.; Hoot, C.G.

    1983-04-01

    Graphite corrosion in the high-temperature gas-cooled reactor (HTGR) is calculated using two key assumptions: (1) the kinetic, catalysis, and transport characteristics of graphite determined by bench-scale tests apply to large components at reactor conditions and (2) the effects of high pressure and turbulent flow are predictable. To better understand the differences between laboratory tests and reactor conditions, a high-pressure test loop (HPTL) has been constructed and used to perform tests at reactor temperature, pressure, and flow conditions. The HPTL is intended to determine the functional dependence of oxidation rate and characteristics on total pressure and gas velocity and to compare the oxidation results with calculations using models and codes developed for the reactor

  20. Determination of a geometry-dependent parameter and development of a calculation model for describing the fission products transport from spherical fuel elements of graphite moderated gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Weissfloch, R

    1973-07-15

    The fuel elements of high-temperature reactors, coated with pyrolitic carbon and covered with graphite, release fission products like all other fuel elements. Because of safety reasons, the rate of this release has to be kept low and has also to be predictable. Measured values from irradiation tests and from post-irradiation tests about the actual release of different fission products are presented. The physical and chemical mechanism, which determines the release, is extraordinarily complex and in particular not clearly defined. Because of the mentioned reasons, a simplified calculation model was developed, which only considers the release-mechanisms phenomenologically. This calculation model coincides very well in its results with values received in experiments until now. It can be held as an interim state on the way to a complete theory.

  1. Determination of a geometry-dependent parameter and development of a calculation model for describing the fission products transport from spherical fuel elements of graphite moderated gas-cooled reactors

    International Nuclear Information System (INIS)

    Weissfloch, R.

    The fuel elements of High-Temperature Reactors, coated with pyrolitic carbon and covered with graphite, release fission products like all other fuel elements. Because of safety reasons the rate of this release has to be kept low and has also to be predictable. Measured values from irradiation tests and from post-irradiation tests about the actual release of different fission products are present. The physical and chemical mechanism, which determines the release, is extraordinarily complex and in particular not clearly defined. Because of the mentioned reasons a simplified calculation model was developed, which only considers the release-mechanisms phenomenologically. This calculation model coincides very well in its results with values received in experiments until now. It can serve as an interim state on the way to a complete theory. (U.S.)

  2. Use of a pulsed column contactor as a continuous oxalate precipitation reactor

    International Nuclear Information System (INIS)

    Borda, Gilles; Brackx, Emmanuelle; Boisset, Laurence; Duhamet, Jean; Ode, Denis

    2011-01-01

    Research highlights: → A new type of continuous precipitating device was patented by CEA and tested with reaction between a surrogate nitrate cerium(III) or neodymium(III) and oxalate complexing agent. → Precipitate is confined in aqueous phase emulsion in tetrapropylene hydrogen and does not form deposit on the vessel walls. → Measure size of the precipitate ranges from 20 to 40 μm, it meets the process requirements to filter, and the precipitation reaction is complete. → The laboratory design can be extrapolated to an industrial uranium(IV) and minor actinide(III) coprecipitating column. - Abstract: The current objective of coprecipitating uranium, and minor actinides in order to fabricate a new nuclear fuel by direct (co)precipitation for further transmutation, requires to develop specific technology in order to meet the following requirements: nuclear maintenance, criticity, and potentially high flowrates due to global coprecipitation. A new type of device designed and patented by the CEA was then tested in 2007 under inactive conditions and with uranium. The patent is for organic confinement in a pulsed column (PC). Actually, pulsed columns have been working for a long time in a nuclear environment, as they allow high capacity, sub-critical design (annular geometry) and easy high activity maintenance. The precipitation reaction between the oxalate complexing agent and a surrogate nitrate - cerium(III) or neodymium(III) alone, or coprecipitated uranium(IV) and cerium(III) - occurs within an emulsion created in the device by these two phases flowing with a counter-current chemically inert organic phase (for example tetrapropylene hydrogen-TPH) produced by the stirring action of the column pulsator. The precipitate is confined and thus does not form deposits on the vessel walls (which are also water-repellent); it flows downward by gravity and exits the column continuously into a settling tank. The results obtained for precipitation of cerium or

  3. Radiation damage and life-time evaluation of RBMK graphite stack

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, P A; Chugunov, O K; Manevsky, V N; Karpukhin, V I [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation). Reactor Material Div.

    1996-08-01

    At the present time there are 11 NPP units with RBMK reactors in operation in Russia, with the oldest now in operation 22 years. Design life-time of the RBMK-1000 reactor is 30 years. This paper addresses the evaluation of RBMK graphite stack life-time. It is the practice in Russia to evaluate the reliability of the channel reactor graphite stack using at least three criteria: degradation of physical-mechanical properties of graphite, preservation of the graphite brick integrity, and degradation of the graphite stack as a structure. Stack life-time evaluation by different criteria indicates that the most realistic approach may be realized on the basis of the criteria of brick cracking and degradation of the graphite stack as a structure. The RBMK reactor graphite stack life-time depends on its temperature and for different units it may be different. (author). 2 refs, 10 figs.

  4. Progress in radioactive graphite waste management. Additional information

    International Nuclear Information System (INIS)

    2010-06-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  5. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  6. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  7. AGC-2 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  8. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  9. Effect of temperature, hydraulic residence time and elevated PCO2 on acid neutralization within a pulsed limestone bed reactor

    Science.gov (United States)

    Watten, B.J.; Lee, P.C.; Sibrell, P.L.; Timmons, M.B.

    2007-01-01

    Limestone has potential for reducing reagent costs and sludge volume associated with treatment of acid mine drainage, but its use is restricted by slow dissolution rates and the deposition of Fe, Al and Mn-based hydrolysis products on reactive surfaces. We evaluated a pulsed limestone bed (PLB) reactor (15 L/min capacity) that uses a CO2 pretreatment step to accelerate dissolution and hydraulic shearing forces provided by intermittent fluidization to abrade and carry away surface scales. We established the effects of hydraulic residence time (HRT, 5.1-15.9 min), temperature (T, 12-22 ??C) and CO2 tension (PCO2, 34.5-206.8 kPa) on effluent quality when inlet acidity (Acy) was fixed at 440 mg/L (pH=2.48) with H2SO4. The PLB reactor neutralized all H+ acidity (N=80) while concurrently providing unusually high levels of effluent alkalinity (247-1028 mg/L as CaCO3) that allow for side-stream treatment with blending. Alkalinity (Alk) yields rose with increases in PCO2, HRT and settled bed height (BH, cm) and decreased with T following the relationship (R2=0.926; p<0.001): (Alk)non-filtered=-548.726+33.571??(PCO2)0.5+33.671??(HRT)+7.734??(BH)-5.197??(T). Numerical modeling showed CO2 feed requirements for a target Alk yield decrease with increases in HRT, T and the efficiency of off-gas (CO2) recycling. ?? 2007 Elsevier Ltd. All rights reserved.

  10. Electrophoretically applied dielectrics for amorphous metal foils used in pulsed power saturable reactors

    International Nuclear Information System (INIS)

    Sharp, D.J.; Harjes, H.C.; Mann, G.A.

    1989-01-01

    Amorphous metal foil-wound inductors have been tested as ferromagnetic saturable inductive elements for pulsed-power (multi-terawatt) switching modules in the inertial confinement fusion program at Sandia National Laboratories. In simulated capacitor testing premature dielectric breakdown of thin polyethylene terephthalate film insulation in the inductor windings occurs at considerably below 2500 V. This appears to be due to inadvertant dielectric damage from micro-spikes on the amorphous foil surface. Electron micrographs and dielectric breakdown data illustrate that electrophoretically-applied dielectric coatings, deposited from organic aqueous colloid dispersions, can be used to provide insulating coatings on the foil which provide a 240% improvement (6000 V) in the breakdown strength of wound amorphous foil inductors. The theory and operation of a dedicated electrophoretic continuous coating system is described. The machine was constructed and successfully applied for dielectric coating of amorphous metal foil. Additional possible applications exist for practical dielectric coating of metallic films or foils used in various commercial wound-type capacitor structures. 7 refs., 9 figs

  11. Study on graphite samples for nuclear usage

    International Nuclear Information System (INIS)

    Suarez, J.C.M.; Silva Roseira, M. da

    1994-01-01

    Available as short communication only. The graphite, due to its properties (mechanical strength, thermal conductivity, high-temperature stability, machinability etc.) have many industrial applications, and consequently, an important strategic value. In the nuclear area, it has been used as moderator and reflector of neutrons in the fission process of uranium. The graphite can be produced from many types of carbonaceous materials by a variety of process dominated by the manufactures. This is the reason why there are in the world market a lot of graphite types with different physical and mechanical properties. The present investigation studies some physical characteristics of the graphite samples destined to use in a nuclear reactor. (author). 8 refs, 1 fig, 1 tab

  12. Experimental subcritical reactivity determinations employing APSD measurements with pulse mode detectors in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Lee, Seung Min; Diniz, Ricardo; Jerez, Rogerio

    2011-01-01

    This work aims to determine experimentally the subcritical reactivity levels of several configurations of the IPEN/MB-01 reactor in an approach based on the subcritical kinetic model developed by Gandini and Salvatores. The procedure employs the measurements of the APSD (Auto Power Spectral Density) using pulse mode detectors. The proposed approach is based only on measured quantities such as counting rates and the parameters arising from the least square approach of the APSD. Other difficult quantity such as detector efficiencies is not needed in the method. Several measurements of APSD were performed in varying degrees of sub-criticality (up to around -7000 pcm). The APSD data were least-square fitted to get the prompt decay mode (α). Beside the startup source, an external neutron sources of Am-Be was installed near the core in order to improve neutron count statistics. The final experimental results are of very good quality. The experiment shows clearly that the classical one point kinetic theory cannot describe the measured reactivity. MCNP K eff results were compared to the corresponding experimental results. The agreement was fairly good. (author)

  13. Graphite moderated {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Sajo B, L.; Barros, H.; Greaves, E. D. [Universidad Simon Bolivar, Nuclear Physics Laboratory, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a {sup 252}Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the {sup 252}Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  14. Thermal shock test of TiC and graphite

    International Nuclear Information System (INIS)

    Shirakawa, H.; Okamura, J.; Son, P.; Miyake, M.

    1989-01-01

    Thermal shock tests were performed by pulse electron beam heating on chemically vapor deposited coatings of TiC on Poco graphite, bulk TiC, and several kinds of isotropic graphite. The specimens were heated at various power densities (10-45 MW/m 2 ) for various pulse durations (1-2 s) to examine the dependence of thermal failures on heating conditions. The TiC coating on graphite suffered cracking, surface melting and evaporation by the thermal pulse. The surface melting limit, defined as F τ 1/2 , where F is the minimum power density that causes surface melting for a specified pulse duration τ, was approximately 48 MWs 1/2 /m 2 for the TiC coating. The combined-Carbon/Titanium ratio of the coating after electron beam heating decreased with increasing power density and pulse duration. The bulk TiC specimens were so brittle that they fractured at heat load conditions where the coating showed no damage. The graphite specimens showed sublimation as a principal damage mechanism by the thermal pulse, and the sublimation weight loss decreased with increasing the thermal conductivity of the specimen. It was confirmed that the TiC coating on graphite had favorable resistance to thermal shock as compared to the bulk TiC and that graphite with high thermal conductivity is promising material as a high heat flux component. (orig.)

  15. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  16. IFE chamber dry wall materials response to pulsed X-rays and ions at power-plant level fluences

    Energy Technology Data Exchange (ETDEWEB)

    Renk, T.J. E-mail: tjrenk@sandia.gov; Olson, C.L.; Tanaka, T.J.; Ulrickson, M.A.; Rochau, G.A.; Peterson, R.R.; Golovkin, I.E.; Thompson, M.O.; Knowles, T.R.; Raffray, A.R.; Tillack, M.S

    2003-04-01

    We have begun a collaborative investigation of the response of candidate first-wall inertial fusion energy (IFE) reactor chamber drywall materials to X-rays on the Z facility, and to ions on RHEPP-1, both located at Sandia National Laboratories. Dose levels are comparable to those anticipated in future direct-drive reactors. Due to the 5-10 Hz repetition rate expected in such reactors, per-pulse effects such as material removal must be negligible. The primary wall materials investigated here are graphite and tungsten in various forms. After exposure on either RHEPP or Z, materials were analyzed for roughening and/or material removal (ablation) as a function of dose. Graphite is observed to undergo significant ablation/sublimation in response to ion exposure at the 3-4 J/cm{sup 2} level, significantly below doses expected in future dry-wall power plants. Evidence of thermomechanical stresses resulting in material loss occurs for both graphite and tungsten, and is probably related to the pulsed nature of the energy delivery. These effects are not seen in typical magnetic fusion energy (MFE) conditions where these same kinds of materials are used. Results are presented for thresholds below which no roughening or ablation occurs. Use of graphite in a 'velvet' two-dimensional form may mitigate the effects seen with the flat material, and alloying tungsten with rhenium may reduce its roughening due to the increased ductility of the alloy.

  17. Study on uranium-water multiplicative means of the (RESUCO-Subcritical experimental reactor of uranium with oxygen) subcritical assembly by pulsed neutron technique

    International Nuclear Information System (INIS)

    Jesus Barbosa, S. de.

    1987-01-01

    The effective multiplication factor and the nuclear parameters associated with the variation of (RESUCO- Subcritical Experimental Reactor of Uranium with Oxygen) Subcritical Assembly Configuration, using pulsed neutron technique are analysed. BF3 detectors were used to detect the variation of thermal neutrons in the system, positioned parallelly to fuel elements, and a proton recoil detector was used for monitoring the neutron generation. (M.C.K.) [pt

  18. Nondestructive evaluation of nuclear-grade graphite

    Science.gov (United States)

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-01

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  19. Time-Dependent S{sub N} Calculations Describing Pulsed Source Experiments at the FRO Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, A.; Kockum, J.; Soderberg, S. [Research Institute of National Defence, Stockholm (Sweden)

    1968-04-15

    In view of the difficulties in describing pulsed source experiments quantitatively in assemblies consisting of a fast core and a light reflector, a time-dependent S{sub N} code has been applied to this type of assembly. The code, written for the IBM 7090 computer, divides time into short intervals and computes the flux in spherical geometry for each interval using the Carlson S{sub N} scheme. The source term is obtained by extrapolation from two earlier time-intervals. Several problems in connection with the discretization of the time, space and energy dimensions are discussed. For the sub-critical assembly studied the treatment of the lower energy-groups is decisive for the numerical stability. A 22-group cross-section set with a low energy cut-off at 0.04 eV obtained with the SPENG programme has been used. The time intervals are varied continuously and are set proportional to the inverse of the maximum logarithmic time-derivative of the space and energy-dependent flux with the further restriction that they are not allowed to increase above a predetermined value. In a typical case, the intervals vary between 10{sup -9} and 10{sup -8} sec. The memory of the computer is fully exploited when 22 energy groups and 46 radial points are used. The computing time for each time-interval is about 6 sec. The code has been applied to a 3.5% sub-critical assembly consisting of a 20% enriched, spherical uranium metal core with a thick copper reflector and the calculations have been compared to experiments with good agreement. The calculations show that spectral equilibrium below 10 keV is not reached until times long compared to the usual measuring times and that the exponential decay finally reached is entirely determined by reflector properties at almost thermal energies. It is also shown that the simple one- and two-region models are inadequate in this case and that no time-independent prompt neutron life-time can be obtained from the measurements. (author)

  20. Characteristics and uses of a 250 kW TRIGA reactor

    International Nuclear Information System (INIS)

    Dimic, V.

    1985-01-01

    The 250 kW TRIGA Mark II reactor is a light water reactor with solid fuel elements in which the zirconium hydride moderator is homogeneously distributed between enriched uranium. Therefore the reactor has the large prompt negative temperature coefficient of reactivity, the fuel also has very high retention of radioactive fission products. The reactor core is a cylindrical configuration with an annular graphite reflector. The experimental facilities include a rotary specimen rack, a central incore radiation thimble, a pneumatic transfer system, and pulsing capability. Other experimental facilities include two radial and two tangential beam tubes, a graphite thermal column, and a graphite thermalizing column. At the steady state power of 250 kW the peak flux is 1x10 13 n/cm 2 s in the central test position. In addition, pulsing to about 2000 MW is usually provided giving peak fluxes of about 2x10 16 n/cm 2 sec. All TRIGA reactors produce a core-average thermal neutron flux of about 10 7 n.v per watt. Only with very large accelerators could such a high neutron flux be achieved. In order to give an appreciation for the research conducted at research reactors, the types of research could be summarized as follows: thermal neutron scattering, neutron radiography, neutron and nuclear physics, activation analysis, radiochemistry, biology and medicine, and teaching and training. Typical applied research with a 250 kW reactor has been conducted in medicine in biology, archeology, metallurgy and materials science, engineering and criminology. It is well known that research reactors have been used routinely to produce isotopes for industry and medicine. In some instances, reactors are the preferred method of isotope production. We can conclude that the 250 kW TRIGA research reactor is a useful and wide ranging source of radiation for basic and applied research. The operation cost for this instrument is relatively low. (author)

  1. Production of nuclear graphite in France; Production de graphite nucleaire en France

    Energy Technology Data Exchange (ETDEWEB)

    Legendre, P; Mondet, L [Societe Pechiney, 74 - Chedde (France); Arragon, Ph; Cornuault, P; Gueron, J; Hering, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [French] Le graphite destine a la construction des reacteurs est obtenu par le procede usuel: confection d'une pate a partir de coke de petrole et de brai, cuisson de cette pate (au four electrique) puis graphitation du produit cuit, egalement par chauffage electrique. L'usage du transport pneumatique et le controle des conditions cuisson et de graphitation ont permit d'augmenter la production de graphite nucleaire ainsi que de mieux controler ses proprietes physiques et mecaniques et de reduire au minimum les souillures accidentelles. (M.B.)

  2. Phonon scattering in graphite

    International Nuclear Information System (INIS)

    Wagner, P.

    1976-04-01

    Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism

  3. Heat Transfer During Evaporation of Cesium From Graphite Surface in an Argon Environment

    Directory of Open Access Journals (Sweden)

    Bespala Evgeny

    2016-01-01

    Full Text Available The article focuses on discussion of problem of graphite radioactive waste formation and accumulation. It is shown that irradiated nuclear graphite being inalienable part of uranium-graphite reactor may contain fission and activation products. Much attention is given to the process of formation of radioactive cesium on the graphite element surface. It is described a process of plasma decontamination of irradiated graphite in inert argon atmosphere. Quasi-one mathematical model is offered, it describes heat transfer process in graphite-cesium-argon system. Article shows results of calculation of temperature field inside the unit cell. Authors determined the factors which influence on temperature change.

  4. Study on practical of eddy current testing of core and core support graphite components in HTTR

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Iyoku, Tatsuo; Ooka, Norikazu; Shindo, Yoshihisa; Kawae, Hidetoshi; Hayashi, Motomitsu; Kambe, Mamoru; Takahashi, Masaaki; Ide, Akira.

    1994-01-01

    Core and core support graphite components in the HTTR (High Temperature Engineering Test Reactor) are mainly made of nuclear-grade IG-110 and PGX graphites. Nondestructive inspection with Eddy Current Testing (ECT) is planned to be applied to these components. The method of ECT has been already established for metallic components, however, cannot be applied directly to the graphite ones, because the characteristics of graphite are quite different in micro-structure from those of metals. Therefore, ECT method and condition were studied for the application of the ECT to the graphite components. This paper describes the study on practical method and conditions of ECT for above mentioned graphite structures. (author)

  5. Analysis of ultrasound propagation in high-temperature nuclear reactor feedwater to investigate a clamp-on ultrasonic pulse doppler flowmeter

    International Nuclear Information System (INIS)

    Tezuka, Kenichi; Mori, Michitsugu; Wada, Sanehiro; Aritomi, Masanori; Kikura, Hiroshige; Sakai, Yukihiro

    2008-01-01

    The flow rate of nuclear reactor feedwater is an important factor in the operation of a nuclear power reactor. Venturi nozzles are widely used to measure the flow rate. Other types of flowmeters have been proposed to improve measurement accuracy and permit the flow rate and reactor power to be increased. The ultrasonic pulse Doppler system is expected to be a candidate method because it can measure the flow profile across the pipe cross section, which changes with time. For accurate estimation of the flow velocity, the incidence angle of ultrasound entering the fluid should be estimated using Snell's law. However, evaluation of the ultrasound propagation is not straightforward, especially for a high-temperature pipe with a clamp-on ultrasonic Doppler flowmeter. The ultrasound beam path may differ from what is expected from Snell's law due to the temperature gradient in the wedge and variation in the acoustic impedance between interfaces. Recently, simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation, using 3D-FEM simulation code plus the Kirchhoff method, as it relates to flow profile measurement in nuclear reactor feedwater with the ultrasonic pulse Doppler system. (author)

  6. Graphite moderator lifecycle behaviour. Proceedings of a specialists meeting

    International Nuclear Information System (INIS)

    1996-08-01

    The meeting provided the forum for graphite specialists representing operating and research organizations worldwide to exchange information in the following areas: the status of graphite development; operation and safety procedures for existing and future graphite moderated reactors; graphite testing techniques; review of the experiences gained and data acquired on the influence of neutron irradiation and oxidizing conditions on key graphite properties; and to exchange information useful for decommissioning activities. The participants provided twenty-seven papers on behalf of their countries and respective technical organizations. An open discussion followed each of the presentations. A consistently reoccurring theme throughout the specialists meeting was the noticeable reduction in the number of graphite experts remaining the nuclear power industry. Graphite moderated power reactors have provided a significant contribution to the generation of electricity throughout the past forty years and will continue to be a prominent energy source for the future. Yet, many of the renowned experts in the field of nuclear graphites are nearing the end of their careers without apparent replacement. This, coupled with changes in the focus on nuclear power by some industrialized countries, has prompted the IAEA to initiate an evaluation on the feasibility and interest by Member States of establishing a central archive facility for the storage of data on irradiated graphites. Refs, figs, tabs

  7. Graphite moderator lifecycle behaviour. Proceedings of a specialists meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The meeting provided the forum for graphite specialists representing operating and research organizations worldwide to exchange information in the following areas: the status of graphite development; operation and safety procedures for existing and future graphite moderated reactors; graphite testing techniques; review of the experiences gained and data acquired on the influence of neutron irradiation and oxidizing conditions on key graphite properties; and to exchange information useful for decommissioning activities. The participants provided twenty-seven papers on behalf of their countries and respective technical organizations. An open discussion followed each of the presentations. A consistently reoccurring theme throughout the specialists meeting was the noticeable reduction in the number of graphite experts remaining the nuclear power industry. Graphite moderated power reactors have provided a significant contribution to the generation of electricity throughout the past forty years and will continue to be a prominent energy source for the future. Yet, many of the renowned experts in the field of nuclear graphites are nearing the end of their careers without apparent replacement. This, coupled with changes in the focus on nuclear power by some industrialized countries, has prompted the IAEA to initiate an evaluation on the feasibility and interest by Member States of establishing a central archive facility for the storage of data on irradiated graphites. Refs, figs, tabs.

  8. Development and engineering plan for graphite spent fuels conditioning program

    International Nuclear Information System (INIS)

    Bendixsen, C.L.; Fillmore, D.L.; Kirkham, R.J.; Lord, D.L.; Phillips, M.B.; Pinto, A.P.; Staiger, M.D.

    1993-09-01

    Irradiated (or spent) graphite fuel stored at the Idaho Chemical Processing Plant (ICPP) includes Fort St. Vrain (FSV) reactor and Peach Bottom reactor spent fuels. Conditioning and disposal of spent graphite fuels presently includes three broad alternatives: (1) direct disposal with minimum fuel packaging or conditioning, (2) mechanical disassembly of spent fuel into high-level waste and low-level waste portions to minimize geologic repository requirements, and (3) waste-volume reduction via burning of bulk graphite and other spent fuel chemical processing of the spent fuel. A multi-year program for the engineering development and demonstration of conditioning processes is described. Program costs, schedules, and facility requirements are estimated

  9. Evaluation of the significance of inverse oxidation for HTGR graphites

    International Nuclear Information System (INIS)

    Lee, B.S.; Heiser, J. III; Sastre, C.

    1983-01-01

    The inverse oxidation refers to a higher mass loss inside the graphite than the outside. In 1980, Wichner et al reported this phenomenon (referred to as inside/out corrosion) observed in some H451 graphites, and offered an explanation that a catalyst (almost certainly Fe) is activated by the progressively increasing reducing conditions found in the graphite interior. Recently, Morgan and Thomas (1982) investigated this phenomenon is PGX graphites, and agreed on the existing mechanism to explain this pheomenon. They also called for attention to the possibility that this phenomenon may occur under HTGR (High Temperature Gas-Cooled Reactor) operating conditions. The purpose of this paper is to confirm the above mentioned explanation for this phenomenon and to evaluate the significance of this effect for HTGR graphites under realistic reactor conditions

  10. Impermeable Graphite: A New Development for Embedding Radioactive Waste

    International Nuclear Information System (INIS)

    Fachinger, Johannes

    2016-01-01

    Irradiated graphite has to be handled as radioactive waste after the operational period of the reactor. However, the waste management of irradiated graphite e.g. from the Spanish Vandellos reactor shows, that waste management of even low contaminated graphite could be expensive and requires special retrieval, treatment and disposal technologies for safe long term storage as low or medium radioactive waste. FNAG has developed an impermeable graphite matrix (IGM) as nuclear waste embedding material. This IGM provides a long term stable enclosure of radioactive waste and can reuse irradiated graphite as feedstock material. Therefore, no additional disposal volume is required if e.g. concrete waste packages were replaced by IGM waste packages. The variability of IGM as embedding has been summarized in the following paper usable for metal scraps, ion exchange resins or debris from buildings. Furthermore the main physical, chemical and structural properties are described. (author)

  11. Nuclear reactor

    International Nuclear Information System (INIS)

    Schulze, I.; Gutscher, E.

    1980-01-01

    The core contains a critical mass of UN or U 2 N 3 in the form of a noncritical solution with melted Sn being kept below a N atmosphere. The lining of the reactor core consists of graphite. If fission progresses part of the melted metal solution is removed and cleaned from fission products. The reactor temperatures lie in the range of 300 to 2000 0 C. (Examples and tables). (RW) [de

  12. Graphite waste incineration in a fluidized bed

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1996-01-01

    French gas-cooled reactors belonging to the Atomic Energy Commission (CEA), Electricite de France (EDF), Hifrensa (Spain), etc., commissioned between the 1950s and 1970s, have generated large quantities of graphite wastes, mainly in the form of spent fuel sleeves. Furthermore, some of these reactors scheduled for dismantling in the near future (such as the G2 and G3 reactors at Marcoule) have cores consisting of graphite blocks. Consequently, a fraction of the contaminated graphite, amounting to 6000 t in France for example, must be processed in the coming years. For this processing, incineration using a circulating fluidized bed combustor has been selected as a possible solution and validated. However, the first operation to be performed involves recovering this graphite waste, and particularly, first of all, the spent fuel sleeves that were stored in silos during the years of reactor operation. Subsequent to the final shutdown of the Spanish gas-cooled reactor unit, Vandellos 1, the operating utility Hifrensa awarded contracts to a Framatome Iberica SA/ENSA consortium for removing, sorting, and prepackaging of the waste stored in three silos on the Vandellos site, essentially graphite sleeves. On the other hand, a program to validate the Framatome fluidized bed incineration process was carried out using a prototype incinerator installed at Le Creusot, France. The validation program included 22 twelve-hour tests and one 120-hour test. Particular attention was paid to the safety aspects of this project. During the performance of the validation program, a preliminary safety assessment was carried out. An impact assessment was performed with the help of the French Institute for Protection and Nuclear Safety, taking into account the preliminary spectra supplied by the CEA and EDF, and the activities of the radionuclides susceptible of being released into the atmosphere during the incineration. (author). 4 refs, 11 figs, 1 tab

  13. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  14. Pyrolysis and its potential use in nuclear graphite disposal

    International Nuclear Information System (INIS)

    Mason, J.B.; Bradbury, D.

    2001-01-01

    Graphite is used as a moderator material in a number of nuclear reactor designs, such as MAGNOX and AGR gas cooled reactors in the United Kingdom and the RBMK design in Russia. During construction the moderator of the reactor is usually installed as an interlocking structure of graphite bricks. At the end of reactor life the graphite moderator, weighing typically 2,000 tonnes, is a radioactive waste which requires eventual management. Radioactive graphite disposal options conventionally include: In-situ SAFESTORE for extended periods to permit manual disassembly of the graphite moderator through decay of short-lived radionuclides. Robotic or manual disassembly of the reactor core followed by disposal of the graphite blocks. Robotic or manual disassembly of the reactor core followed by incineration of the graphite and release of the resulting carbon dioxide Studsvik, Inc. is a nuclear waste management and waste processing company organised to serve the US nuclear utility and government facilities. Studsvik's management and technical staff have a wealth of experience in processing liquid, slurry and solid low level radioactive waste using (amongst others) pyrolysis and steam reforming techniques. Bradtec is a UK company specialising in decontamination and waste management. This paper describes the use of pyrolysis and steam reforming techniques to gasify graphite leading to a low volume off-gas product. This allows the following options/advantages. Safe release of any stored Wigner energy in the graphite. The process can accept small pieces or a water-slurry of graphite, which enables the graphite to be removed from the reactor core by mechanical machining or water cutting techniques, applied remotely in the reactor fuel channels. In certain situations the process could be used to gasify the reactor moderator in-situ. The low volume of the off-gas product enables non-carbon radioactive impurities to be efficiently separated from the off-gas. The off-gas product can

  15. Graphite Isotope Ratio Method Development Report: Irradiation Test Demonstration of Uranium as a Low Fluence Indicator

    International Nuclear Information System (INIS)

    Reid, B.D.; Gerlach, D.C.; Love, E.F.; McNeece, J.P.; Livingston, J.V.; Greenwood, L.R.; Petersen, S.L.; Morgan, W.C.

    1999-01-01

    This report describes an irradiation test designed to investigate the suitability of uranium as a graphite isotope ratio method (GIRM) low fluence indicator. GIRM is a demonstrated concept that gives a graphite-moderated reactor's lifetime production based on measuring changes in the isotopic ratio of elements known to exist in trace quantities within reactor-grade graphite. Appendix I of this report provides a tutorial on the GIRM concept

  16. On estimating the fracture probability of nuclear graphite components

    International Nuclear Information System (INIS)

    Srinivasan, Makuteswara

    2008-01-01

    The properties of nuclear grade graphites exhibit anisotropy and could vary considerably within a manufactured block. Graphite strength is affected by the direction of alignment of the constituent coke particles, which is dictated by the forming method, coke particle size, and the size, shape, and orientation distribution of pores in the structure. In this paper, a Weibull failure probability analysis for components is presented using the American Society of Testing Materials strength specification for nuclear grade graphites for core components in advanced high-temperature gas-cooled reactors. The risk of rupture (probability of fracture) and survival probability (reliability) of large graphite blocks are calculated for varying and discrete values of service tensile stresses. The limitations in these calculations are discussed from considerations of actual reactor environmental conditions that could potentially degrade the specification properties because of damage due to complex interactions between irradiation, temperature, stress, and variability in reactor operation

  17. Status of Chronic Oxidation Studies of Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert W. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elements needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all

  18. Graphite oxidation and structural strength of graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.

    2009-01-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)

  19. Electrochemical Ultracapacitors Using Graphitic Nanostacks

    Science.gov (United States)

    Marotta, Christopher

    2012-01-01

    Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS

  20. Activation calculations for dismantling - The feedback of a 7 years experience in activation calculations for graphite gas cooled reactors in France

    International Nuclear Information System (INIS)

    Eid, M.; Nimal, J.C.; Gerat, L.M.

    1994-01-01

    This is a revision of the past seven years experience in activation calculations for dismantling. It aims at evaluating the experience and at making better understanding to help in decision making during the following phases. Five gas cooled reactors are shutdown and are waiting for the EDF (Electricite De France) dismantling decision. The sixth (BUGEY1) will be shutdown by 1994 and will be waiting a dismantling decision as well. (authors). 3 figs., 3 tabs

  1. The status of graphite development for gas cooled reactors. Proceedings of a specialists` meeting held in Tokai, Japan, 9-12 September 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    The meeting was convened by the IAEA on the recommendation of the International Working Group on Gas Cooled Reactors. It was attended by 61 participants from 6 countries. The meeting covered the following subjects: overview of national programs; design criteria, fracture mechanisms and component test; materials development and properties; non-destructive examination, inspection and surveillance. The participants presented 33 papers on behalf of their countries. A separate abstract was prepared for each of these papers. Refs, figs, tabs, photos and diagrams.

  2. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  3. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City Univ. (CUNY), NY (United States)

    2017-04-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08 (R-2014). Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  4. Analytical solution of neutron transport equation in an annular reactor with a rotating pulsed source; Resolucao analitica da equacao de transporte de neutrons em um reator anelar com fonte pulsada rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Paulo Cleber Mendonca

    2002-12-01

    In this study, an analytical solution of the neutron transport equation in an annular reactor is presented with a short and rotating neutron source of the type S(x) {delta} (x- Vt), where V is the speed of annular pulsed reactor. The study is an extension of a previous study by Williams [12] carried out with a pulsed source of the type S(x) {delta} (t). In the new concept of annular pulsed reactor designed to produce continuous high flux, the core consists of a subcritical annular geometry pulsed by a rotating modulator, producing local super prompt critical condition, thereby giving origin to a rotating neutron pulse. An analytical solution is obtained by opening up of the annular geometry and applying one energy group transport theory in one dimension using applied mathematical techniques of Laplace transform and Complex Variables. The general solution for the flux consists of a fundamental mode, a finite number of harmonics and a transient integral. A condition which limits the number of harmonics depending upon the circumference of the annular geometry has been obtained. Inverse Laplace transform technique is used to analyse instability condition in annular reactor core. A regenerator parameter in conjunction with perimeter of the ring and nuclear properties is used to obtain stable and unstable harmonics and to verify if these exist. It is found that the solution does not present instability in the conditions stated in the new concept of annular pulsed reactor. (author)

  5. Characterization of graphite dust produced by pneumatic lift

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Kang, Feiyu [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Yang, Xiaoyong; Li, Weihua [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Highlights: • Generation of graphite dust by pneumatic lift. • Determination of morphology and particle size distribution of graphite dust. • The size of graphite dust in this study is compared to AVR and THTR-300 results. • Graphite dust originates from both filler and binder of the matrix graphite. - Abstract: Graphite dust is an important safety concern of high-temperature gas-cooled reactor (HTR). The graphite dust could adsorb fission products, and the radioactive dust is transported by the coolant gas and deposited on the surface of the primary loop. The simulation of coagulation, aggregation, deposition, and resuspension behavior of graphite dust requires parameters such as particle size distribution and particle shape, but currently very limited data on graphite dust is available. The only data we have are from AVR and THTR-300, however, the AVR result is likely to be prejudiced by the oil ingress. In pebble-bed HTR, graphite dust is generally produced by mechanical abrasion, in particular, by the abrasion of graphite pebbles in the lifting pipe of the fuel handling system. Here we demonstrate the generation and characterization of graphite dust that were produced by pneumatic lift. This graphite dust could substitute the real dust in HTR for characterization. The dust, exhibiting a lamellar morphology, showed a number-weighted average particle size of 2.38 μm and a volume-weighted average size of 14.62 μm. These two sizes were larger than the AVR and THTR results. The discrepancy is possibly due to the irradiation effect and prejudice caused by the oil ingress accident. It is also confirmed by the Raman spectrum that both the filler particle and binder contribute to the dust generation.

  6. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  7. A graphite nanoeraser

    DEFF Research Database (Denmark)

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...... by conventional techniques, can be removed by direct mechanical wiping using a graphite nanoeraser, thus drastically reducing the amount of contamination. We discuss potential applications of this cleaning procedure....

  8. Analysis and fabrication of tungsten CERMET materials for ultra-high temperature reactor applications via pulsed electric current sintering

    Science.gov (United States)

    Webb, Jonathan A.

    The optimized development path for the fabrication of ultra-high temperature W-UO2 CERMET fuel elements were explored within this dissertation. A robust literature search was conducted, which concluded that a W-UO 2 fuel element must contain a fine tungsten microstructure and spherical UO2 kernels throughout the entire consolidation process. Combined Monte Carlo and Computational Fluid Dynamics (CFD) analysis were used to determine the effects of rhenium and gadolinia additions on the performance of W-UO 2 fuel elements at refractory temperatures and in dry and water submerged environments. The computational analysis also led to the design of quasi-optimized fuel elements that can meet thermal-hydraulic and neutronic requirements A rigorous set of experiments were conducted to determine if Pulsed Electric Current Sintering (PECS) can fabricate tungsten and W-Ce02 specimens to the required geometries, densities and microstructures required for high temperature fuel elements as well as determine the mechanisms involved within the PECS consolidation process. The CeO2 acts as a surrogate for UO 2 fuel kernels in these experiments. The experiments seemed to confirm that PECS consolidation takes place via diffusional mass transfer methods; however, the densification process is rapidly accelerated due to the effects of current densities within the consolidating specimen. Fortunately the grain growth proceeds at a traditional rate and the PECS process can yield near fully dense W and W-Ce02 specimens with a finer microstructure than other sintering techniques. PECS consolidation techniques were also shown to be capable of producing W-UO2 segments at near-prototypic geometries; however, great care must be taken to coat the fuel particles with tungsten prior to sintering. Also, great care must be taken to ensure that the particles remain spherical in geometry under the influence of a uniaxial stress as applied during PECS, which involves mixing different fuel kernel sizes in

  9. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  10. Contribution to the study of can deformations in the fuel elements of gas-graphite reactors during thermal cycling; Contribution a l'etude des deformations des gaines des elements combustibles de reacteur graphite-gaz au cours du cyclage thermique

    Energy Technology Data Exchange (ETDEWEB)

    Gauthron, M; Boudouresques, B; Delpeyroux, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The cans of fuel cartridges used in reactors of the gas-graphite type have either longitudinal fins of variable thickness, short herring-bone fins, or else a mixture of the two. An important test of the strength of these cartridges is their behaviour during thermal cycling carried out in cells reproducing in-pile conditions. It has been observed during with rapid cooling that there occurs a shortening at the base of the fins which can be accompanied in particular by a compression effect at the fin type, which has a tendency to curl, and by a tractive force acting on the body of the can at the ends of the longitudinal fins; this last phenomenon can result in a fracturing of the welds at the extremities or of the ends of the cartridge. This report presents first of all the way in which the stress diagram can be drawn for a can touching the fuel, and then the effect of the ratchet along a fin fixed to a bar with or without grooves. Finally the importance is shown of the test cycling variables (temperature, heating and cooling rates). (authors) [French] Les gaines des cartouches combustibles des reacteurs de la filiere graphite-gaz comportent soit des ailettes longitudinales plus ou moins epaisses, soit de courtes ailettes a chevrons, soit un ensemble des deux. Un test important de la tenue des cartouches, est la tenue au cyclage thermique en cellule pour reproduire le comportement en pile. On a observe au cours des cyclages a refroidissement rapide, un raccourcissement a la base des ailettes qui peut s'accompagner notamment d'une mise en compression du sommet de l'ailette qui a tendance a friser, et d'une traction exercee sur le corps des gaines au bout des ailettes longitudinales; ce dernier phenomene peut se traduire par des ruptures de soudures d'extremites ou des parties terminales de la cartouche. Ce rapport presente d'abord la maniere dont peut etre trace le diagramme des contraintes dans une gaine liee au combustible, puis l'effet du rochet le long d

  11. Study of the thermal drop at the uranium-can interface for fuel elements in gas-graphite reactors; Etude de la chute thermique au contact uranium-gaine pour des elements combustibles de reacteur de la filiere graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Faussat, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Levenes, G; Michel, M [Societe Industrielle de Combustible Nucleaire (France)

    1964-07-01

    The report reviews the tests now under way at the CEA, for determining the thermal contact resistance at the uranium-can interface for fuel elements used in gas-graphite type reactors. These are laboratory tests carried out with equipment based on the principle of a heat flow across a stack of test pieces having planar contact surfaces. The following points emerge from this work: - for a metallic uranium element canned in magnesium, of the type G-2 or EDF-2, a value of 0.2 deg C/W/cm{sup 2} seems reasonable for can temperatures of 400 deg C and above. - this value is independent of the micro-geometric state of the uranium surface in a range of roughness which easily includes those observed on tubes and rods produced industrially. - for the internal cans of elements cooled internally and externally, the value of the contact resistance for temperatures of under 400 deg C as a function of the stresses in the can has not yet been measured exactly. (authors) [French] Le rapport fait le point des essais actuellement en cours au CEA pour determiner la resistance thermique de contact uranium-gaine pour des reacteurs de la filiere graphite-gaz. Ces essais sont effectues en laboratoire sur des appareils bases sur le principe d'une circulation de flux de chaleur a travers un empilement d'eprouvettes dont les faces en contact sont planes. De l'etude, il ressort essentiellement que: - pour un element a uranium metallique et gaine de magnesium type G-2 ou EdF-2, on peut admettre la valeur de 0,2 deg C/W/cm{sup 2} pour des temperatures de gaines de 400 deg C et plus. - cette valeur ne depend pas de l'etat de surface microgeometrique de l'uranium pour un domaine de rugosites couvrant largement celles que l'on observe sur des tubes et barreaux fabriques en serie. - pour les gaines internes d'elements a refroidissement interne et externe la valeur de la resistance de contact reste a preciser pour les temperatures inferieures a 400 deg C, en fonction des contraintes existant dans les

  12. Irradiation creep performance of graphite relevant for pebble bed HTRs

    International Nuclear Information System (INIS)

    Kleist, G.; O'Connor, M.F.

    1980-01-01

    Irradiation - induced creep in the core reflector component graphite of high temperature reactors is of primary importance to the core designer since it provides a mechanism for the relief of internal stresses arising from differential Wigner shrinkage and thermal expansion. The experimental determination of the extent of this creep for conditions relevant to the reactor is thus imperative

  13. Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit

    International Nuclear Information System (INIS)

    Bernardet, V.; Gomes, S.; Delpeux, S.; Dubois, M.; Guerin, K.; Avignant, D.; Renaudin, G.; Duclaux, L.

    2009-01-01

    Molten salt reactor represents one of the promising future Generation IV nuclear reactors families where the fuel, a liquid molten fluoride salt, is circulating through the graphite reactor core. The interactions between nuclear graphite and fluoride molten salt and also the graphite surface protection were investigated in this paper by powder X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy coupled with X-ray microanalysis. Nuclear graphite discs were covered by two kinds of protection deposit: a glassy carbon coating and a double coating of pyrolitic carbon/glassy carbon. Different behaviours have been highlighted according to the presence and the nature of the coated protection film. Intercalation of molten salt between the graphite layers did not occur. Nevertheless the molten salt adhered more or less to the surface of the graphite disc, filled more or less the graphite surface porosity and perturbed more or less the graphite stacking order at the disc surface. The behaviour of unprotected graphite was far to be satisfactory after two days of immersion of graphite in molten salt at 500 deg. C. The best protection of the graphite disc surface, with the maximum of inertness towards molten salt, has been obtained with the double coating of pyrolitic carbon/glassy carbon

  14. Application of the pulsed neutron technique on the reactors ALIZE - AQUILON (1963); Application de la methode des neutrons pulses sur les piles ALIZE et AQUILON (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemart, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    Different methods of measuring the ratio effective delayed fraction / prompt neutron lifetime, {alpha}{sub c}, are described. According to the classic pulsed neutron technique the negative reactivity due to a localized absorber is given by {rho} / {beta}{sub eff} = {alpha} / {alpha}{sub c} -1 Experiments are reported which show that in this case {alpha}{sub c} can not be considered constant for large reactivities. The absorber element distorts the flux in the system, increasing the importance of the reflector. An application of the pulsed neutron method to the measurement of critical distributed boron concentrations of various absorber elements is described. Less time is required than for the usual super-critical techniques, and the experimental analysis is simplified. It is interesting to note that the results are not influenced by the spectral sensitivity of the control element. A modified pulsed neutron method has been tried out. This procedure was used to determine by measurements at sub-critical the critical water level of uranium-heavy water lattices with a high precision. (author) [French] Differents modes operatoires pour definir la valeur du rapport pourcentage effectif de neutrons retardes / temps de vie, {alpha}{sub c}, sont exposes. La methode classique par neutrons pulses definit l'anti-reactivite d'un element absorbant a partir de la relation: {rho} / {beta}{sub eff} {alpha} / {alpha}{sub c} -1 Les manipulations effectuees montrent qu'on ne peut considerer dans ce cas {alpha}{sub c} constant pour de tres grandes anti-reactivites. L'absorbant introduit dans la pile deforme le flux et augmente l'importance du reflecteur. Une application de la methode des neutrons pulses pour mesurer le titre critique en mg de B/l de divers absorbants est signalee. Les operations sont effectuees en regime sous-critique avec un certain gain de temps et une grande facilite de depouillement. Il est interessant de noter que les resultats ne sont pas

  15. Application of the pulsed neutron technique on the reactors ALIZE - AQUILON (1963); Application de la methode des neutrons pulses sur les piles ALIZE et AQUILON (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemart, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    Different methods of measuring the ratio effective delayed fraction / prompt neutron lifetime, {alpha}{sub c}, are described. According to the classic pulsed neutron technique the negative reactivity due to a localized absorber is given by {rho} / {beta}{sub eff} = {alpha} / {alpha}{sub c} -1 Experiments are reported which show that in this case {alpha}{sub c} can not be considered constant for large reactivities. The absorber element distorts the flux in the system, increasing the importance of the reflector. An application of the pulsed neutron method to the measurement of critical distributed boron concentrations of various absorber elements is described. Less time is required than for the usual super-critical techniques, and the experimental analysis is simplified. It is interesting to note that the results are not influenced by the spectral sensitivity of the control element. A modified pulsed neutron method has been tried out. This procedure was used to determine by measurements at sub-critical the critical water level of uranium-heavy water lattices with a high precision. (author) [French] Differents modes operatoires pour definir la valeur du rapport pourcentage effectif de neutrons retardes / temps de vie, {alpha}{sub c}, sont exposes. La methode classique par neutrons pulses definit l'anti-reactivite d'un element absorbant a partir de la relation: {rho} / {beta}{sub eff} {alpha} / {alpha}{sub c} -1 Les manipulations effectuees montrent qu'on ne peut considerer dans ce cas {alpha}{sub c} constant pour de tres grandes anti-reactivites. L'absorbant introduit dans la pile deforme le flux et augmente l'importance du reflecteur. Une application de la methode des neutrons pulses pour mesurer le titre critique en mg de B/l de divers absorbants est signalee. Les operations sont effectuees en regime sous-critique avec un certain gain de temps et une grande facilite de depouillement. Il est interessant de noter que les resultats ne sont pas affectes par la

  16. Development of integrated waste management options for irradiated graphite

    Directory of Open Access Journals (Sweden)

    Alan Wareing

    2017-08-01

    Full Text Available The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  17. Characteristics of first loaded IG-110 graphite in HTTR core

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Sawa, Kazuhiro; Hanawa, Satoshi; Ishihara, Masahiro

    2006-10-01

    IG-110 graphite is a fine-grained isotropic and nuclear-grade graphite with excellent resistivity on both irradiation and corrosion and with high strength. The IG-110 graphite is used for the graphite components of High Temperature Engineering Test Reactor (HTTR) such as fuel and control rod guide blocks and support posts. In order to design and fabricate the graphite components in the HTTR, the Japan Atomic Energy Research Institute (the Japan Atomic Energy Agency at present) had established the graphite structural design code and design data on the basis of former research results. After the design code establishment, the IG-110 graphite components were fabricated and loaded in the HTTR core. This report summarized the characteristics of the first loaded IG-110 graphite as basic data for surveillance test, measuring material characteristics changed by neutron irradiation and oxidation. By comparing the design data, it was shown that the first loaded IG-110 graphite had excellent strength properties and enough safety margins to the stress limits in the design code. (author)

  18. Development of integrated waste management options for irradiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wareing, Alan; Abrahamsen-Mills, Liam; Fowler, Linda; Jarvis, Richard; Banford, Anthony William [National Nuclear Laboratory, Warrington (United Kingdom); Grave, Michael [Doosan Babcock, Gateshead (United Kingdom); Metcalfe, Martin [National Nuclear Laboratory, Gloucestershire (United Kingdom); Norris, Simon [Radioactive Waste Management Limited, Oxon (United Kingdom)

    2017-08-15

    The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  19. Glassy carbon coated graphite for nuclear applications

    International Nuclear Information System (INIS)

    Delpeux S; Cacciaguerra T; Duclaux L

    2005-01-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF 2 , ThF 4 , and UF 4 ) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin or polyvinyl chloride precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm 3 and closed pores with nano-metric size (∼ 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons, in good agreement with the proposed texture model for glassy carbon. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry of the graphite substrate. The deposit regions where

  20. Glassy carbon coated graphite for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Delpeux, S.; Cacciaguerra, T.; Duclaux, L. [Orleans Univ., CRMD, CNRS, 45 (France)

    2005-07-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF{sub 2}, ThF{sub 4}, and UF{sub 4}) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin [1,2] or polyvinyl chloride [3] precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm{sup 3} and closed pores with nano-metric size ({approx} 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons (Fig 1), in good agreement with the proposed texture model for glassy carbon (Fig 2) [4]. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry

  1. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  2. Chemical vapor deposition of TiB2 on graphite

    International Nuclear Information System (INIS)

    Pierson, H.O.; Randich, E.; Mattox, D.M.

    1978-01-01

    This study is an experimental investigation of the coating of graphite with TiB 2 by chemical vapor deposition (CVD) using the hydrogen reduction of BCl 3 and TiCl 4 at 925 0 C and 1 atm. Reasonable matching of the thermal expansion of TiB 2 and graphite was necessary to eliminate cracking. A suitable graphite was POCO DFP-1. Adhesion was improved by having a slightly rough graphite surface. Heat treatment at 2000 0 C and above resulted in a certain degree of diffusion. No melting or solid phases other than TiB 2 and graphite were detected up to 2400 0 C. The coatings showed no failure when repeatedly submitted to an electron beam pulse of 2 KW/cm 2 for 0.8 sec

  3. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  4. A systematic study of acoustic emission from nuclear graphites

    International Nuclear Information System (INIS)

    Neighbour, G.B.; McEnaney, B.

    1996-01-01

    Acoustic emission (AE) monitoring has been identified as a possible method to determine internal stresses in nuclear graphites using the Kaiser effect, i.e., on stressing a graphite that has been subject to a prior stress, the onset of AE occurs at the previous peak stress. For three nuclear graphites (PGA, IM1-24 and VNEC), AE was monitored during both monotonic and cyclic loading to failure in tensile, compressive and flexural test modes. For unirradiated graphites, the Kaiser effect was not found in cyclic loading, but a Felicity effect was observed, i.e., the onset of AE occurred below the previously applied peak stress. The Felicity effect was attributed to time-dependent relaxation and recovery processes and was characterized using a new parameter, the Recovery ratio. It was shown that AE can be used to monitor creep strain and creep recovery in graphites at zero load. The AE-time responses from these experiments were fitted to equations similar to those used for creep strain-time at elevated temperatures. The number of AE counts from irradiated graphites were greater than those from unirradiated graphites, subject to similar stresses, due to increases in porosity caused by radiolytic oxidation. A Felicity effect was also observed on cyclic loading of irradiated graphites, but no evidence for a Kaiser effect was found for irradiated graphites loaded monotonically to failure. Thus internal stresses in irradiated graphites could not be measured using AE. This was attributed to relaxation and recovery processes that occur between removing the irradiated graphite from the reactor and AE testing. This work indicated that AE monitoring is not a suitable technique for measuring internal stresses in irradiated graphite. (author). 19 refs, 6 figs, 6 tabs

  5. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  6. Electrochemical treatment of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electrochemical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment, ECT of graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones with respect to the treatment rate and purity (ronghness) of the surface. A small quantity of sludge (6-8%) under ECT is in highly alkali electrolytes.

  7. Electrochemical treatment of graphite

    International Nuclear Information System (INIS)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electroche-- mical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment ECT graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones this is treatment rate and purity (ronghness) of the surface. A sMall quantity of sludge (6-8%) under ECT is in highly alkali electrolytes

  8. Fort St. Vrain graphite site mechanical separation concept selection

    International Nuclear Information System (INIS)

    Berry, S.M.

    1993-09-01

    One of the alternatives to the disposal of the Fort St. Vrain (FSV) reactor spent nuclear fuel involves the separation of the fuel rods composed of compacts from the graphite fuel block assembly. After the separation of these two components, the empty graphite fuel blocks would be disposed of as a low level waste (provided the appropriate requirements are met) and the fuel compacts would be treated as high level waste material. This report deals with the mechanical separation aspects concerning physical disassembly of the FSV graphite fuel element into the empty graphite fuel blocks and fuel compacts. This report recommends that a drilling technique is the preferred choice for accessing the, fuel channel holes and that each hole is drilled separately. This report does not cover any techniques or methods to separate the triso fuel particles from the graphite matrix of the fuel compacts

  9. Graphite behaviour in relation to the fuel element design

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. R. [OECD High Temperature Reactor Project Dragon, Winfrith (United Kingdom); Manzel, R. [OECD High Temperature Reactor Project Dragon, Winfrith (United Kingdom); Blackstone, R. [Reactor Centrum, Petten (Netherlands); Delle, W. [Kernforschungsanlage, Juelich (Germany); Lungagnani, V. [Joint Nuclear Research Centre, Euratom, Petten (Netherlands); Krefeld, R. [Joint Nuclear Research Centre, Euratom, Petten (Netherlands)

    1969-09-01

    The first designs of H.T.R. power reactors will probably use a Gilsocarbon based graphite for both the moderator/carrier blocks and for the fuel tubes. The initial physical properties and changes of dimensions, thermal expansion coefficient, Young*s modulus, and thermal conductivity on irradiation of Gilsocarbon graphites to typical reactor dwell-time fast neutron doses of 4 * 1021 cm -2 Ni dose Dido equivalent are given and values for the irradiation creep constant are presented. The influence of these property changes and those of chemical corrosion are considered briefly in relation to the present fuel element designs. The selection of an eventual less costly replacement graphite for Gilsocarbon graphite is discussed in terms of materials properties.

  10. Strategy for Handling and Treatment of INPP RBMK-1500 Irradiated Graphite

    International Nuclear Information System (INIS)

    Oryšaka, A.

    2016-01-01

    There are two RBMK-1500 water-cooled graphite-moderated channel-type power reactors at Ignalina NPP. After the final shutdown of the INPP, radioactive i-graphite dismantling, handling, conditioning, storage and disposal is an important part of the decommissioning activities. The core of the INPP unit 1 and 2 contains about 3600 tons of i-graphite. Formation of activation products strongly depends on the contents of impurities, operational mode and concentration of impurities in the graphite. The case study for INPP envisages the analysis of possibilities of graphite handling and treatment in the context of immediate decommissioning. (author)

  11. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  12. Modified DLC coatings prepared in a large-scale reactor by dual microwave/pulsed-DC plasma-activated chemical vapour deposition

    International Nuclear Information System (INIS)

    Corbella, C.; Bialuch, I.; Kleinschmidt, M.; Bewilogua, K.

    2008-01-01

    Diamond-Like Carbon (DLC) films find abundant applications as hard and protective coatings due to their excellent mechanical and tribological performances. The addition of new elements to the amorphous DLC matrix tunes the properties of this material, leading to an extension of its scope of applications. In order to scale up their production to a large plasma reactor, DLC films modified by silicon and oxygen additions have been grown in an industrial plant of 1m 3 by means of pulsed-DC plasma-activated chemical vapour deposition (PACVD). The use of an additional microwave (MW) source has intensified the glow discharge, partly by electron cyclotron resonance (ECR), accelerating therefore the deposition process. Hence, acetylene, tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO) constituted the respective gas precursors for the deposition of a-C:H (DLC), a-C:H:Si and a-C:H:Si:O films by dual MW/pulsed-DC PACVD. This work presents systematic studies of the deposition rate, hardness, adhesion, abrasive wear and water contact angle aimed to optimize the technological parameters of deposition: gas pressure, relative gas flow of the monomers and input power. This study has been completed with measures of the atomic composition of the samples. Deposition rates around 1 μm/h, typical for standard processes held in the large reactor, were increased about by a factor 10 when the ionization source has been operated in ECR mode

  13. Feasibility study of fusion breeding blanket concept employing graphite reflector

    International Nuclear Information System (INIS)

    Cho, Seungyon; Ahn, Mu-Young; Lee, Cheol Woo; Kim, Eung Seon; Park, Yi-Hyun; Lee, Youngmin; Lee, Dong Won

    2015-01-01

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  14. Feasibility study of fusion breeding blanket concept employing graphite reflector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seungyon, E-mail: sycho@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Woo; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  15. The effective neutron temperature in heated graphite sleeves

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J A; Small, V G [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-08-15

    In a series of oscillator measurements carried out in the reactor NERO the variation of the relative reaction rates of cadmium and boron absorbers has been used to determine the effective neutron temperature inside heated graphite sleeves. This work extends the scope of similar oscillator measurements previously carried out in DIMPLE, in that the bulk moderator is now graphite as opposed to D{sub 2}O in the former case. (author)

  16. Design of a tokamak fusion reactor first wall armor against neutral beam impingement

    International Nuclear Information System (INIS)

    Myers, R.A.

    1977-12-01

    The maximum temperatures and thermal stresses are calculated for various first wall design proposals, using both analytical solutions and the TRUMP and SAP IV Computer Codes. Beam parameters, such as pulse time, cycle time, and beam power, are varied. It is found that uncooled plates should be adequate for near-term devices, while cooled protection will be necessary for fusion power reactors. Graphite and tungsten are selected for analysis because of their desirable characteristics. Graphite allows for higher heat fluxes compared to tungsten for similar pulse times. Anticipated erosion (due to surface effects) and plasma impurity fraction are estimated. Neutron irradiation damage is also discussed. Neutron irradiation damage (rather than erosion, fatigue, or creep) is estimated to be the lifetime-limiting factor on the lifetime of the component in fusion power reactors. It is found that the use of tungsten in fusion power reactors, when directly exposed to the plasma, will cause serious plasma impurity problems; graphite should not present such an impurity problem

  17. Asymptomatic Intracorneal Graphite Deposits following Graphite Pencil Injury

    OpenAIRE

    Philip, Swetha Sara; John, Deepa; John, Sheeja Susan

    2012-01-01

    Reports of graphite pencil lead injuries to the eye are rare. Although graphite is considered to remain inert in the eye, it has been known to cause severe inflammation and damage to ocular structures. We report a case of a 12-year-old girl with intracorneal graphite foreign bodies following a graphite pencil injury.

  18. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

    OpenAIRE

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for c...

  19. Isotropic nuclear graphites; the effect of neutron irradiation

    International Nuclear Information System (INIS)

    Lore, J.; Buscaillon, A.; Mottet, P.; Micaud, G.

    1977-01-01

    Several isotropic graphites have been manufactured using different forming processes and fillers such as needle coke, regular coke, or pitch coke. Their properties are described in this paper. Specimens of these products have been irradiated in the fast reactor Rapsodie between 400 to 1400 0 C, at fluences up to 1,7.10 21 n.cm -2 PHI.FG. The results show an isotropic behavior under neutron irradiation, but the induced dimensional changes are higher than those of isotropic coke graphites although they are lower than those of conventional extruded graphites made with the same coke

  20. New insights into canted spiro carbon interstitial in graphite

    Science.gov (United States)

    EL-Barbary, A. A.

    2017-12-01

    The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.