WorldWideScience

Sample records for pulsed electromagnetic field

  1. Effect of pulsed electromagnetic fields on orthodontic tooth movement.

    Science.gov (United States)

    Stark, T M; Sinclair, P M

    1987-02-01

    The purpose of this study was to determine whether the application of a simple surgically noninvasive, pulsed electromagnetic field could increase both the rate and amount of orthodontic tooth movement observed in guinea pigs. In addition, the objective was to evaluate the electromagnetic field's effects on bony physiology and metabolism and to search for possible systemic side effects. Laterally directed orthodontic force was applied to the maxillary central incisors of a sample of 40 young male, Hartley guinea pigs (20 experimental, 20 control) by means of a standardized intraoral coil spring inserted under constricting pressure into holes drilled in the guinea pigs' two maxillary central incisors. During the experimental period, the guinea pigs were placed in specially constructed, plastic animal holders with their heads positioned in an area of uniform electromagnetic field. Control animals were placed in similar plastic holders that did not carry the electrical apparatus. The application of a pulsed electromagnetic field to the experimental animals significantly increased both the rate and final amount of orthodontic tooth movement observed over the 10-day experimental period. The experimental animals also demonstrated histologic evidence of significantly greater amounts of bone and matrix deposited in the area of tension between the orthodontically moved maxillary incisors. This increase in cellular activity was also reflected by the presence of significantly greater numbers of osteoclasts in the alveolar bone surrounding the maxillary incisors of the experimental animals. After a 10-day exposure to pulsed electromagnetic field, minor changes in serologic parameters relating to protein metabolism and muscle activity were noted. The results of this study suggest that it is possible to increase the rate of orthodontic tooth movement and bone deposition through the application of a noninvasive, pulsed electromagnetic field.

  2. Transcranial pulsed electromagnetic fields for multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Tran, Marie Thi Dao; Skovbjerg, Sine; Arendt-Nielsen, Lars

    2013-01-01

    . The symptoms may have severe impact on patients' lives, but an evidence-based treatment for the condition is nonexisting. The pathophysiology is unclarified, but several indicators point towards abnormal processing of sensory signals in the central nervous system. Pulsed electromagnetic fields (PEMF) offer...

  3. Transcranial pulsed electromagnetic fields for multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Tran, Marie Thi Dao; Skovbjerg, Sine; Arendt-Nielsen, Lars

    2013-01-01

    . The symptoms may have severe impact on patients' lives, but an evidence-based treatment for the condition is nonexisting. The pathophysiology is unclarified, but several indicators point towards abnormal processing of sensory signals in the central nervous system. Pulsed electromagnetic fields (PEMF) offer...

  4. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    Science.gov (United States)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  5. Detachment of Conductive Coatings by Pulsed Electromagnetic Field

    OpenAIRE

    Mironov, V.; Tatarinov, A.; Kolbe, M; Gluschenkov, V.

    2016-01-01

    The paper presents results of studies on the detachment of conductive coatings from the metal substrate by pulsed electromagnetic field (PEMF). It is known that at the boundary of a metal substrate and an electrically conductive coating having different electrical conductivities sharp changes of PEMF strength arise. This effect has been used to remove a copper layer from a steel substrate. Experimental studies were carried out in the Riga Technical University (Latvia), West Sax...

  6. Effects of Pulsed Electromagnetic Fields on Osteoporosis Model

    Science.gov (United States)

    Xiaowei, Yang; Liming, Wang; Guan, Z. C.; Yaou, Zhang; Xiangpeng, Wang

    The purpose of this paper was to investigate the preventive effects and long term effects of extremely low frequency pulsed electromagnetic fields (PEMFs), generated by circular coils and pulsed electromagnetic fields stimulators, on osteoporosis in bilaterally ovariectomized rats. In preventive experiment, thirty three-month old female Sprague-Dawley rats were randomly divided into three different groups: sham (SHAM), ovariectomy (OVX), PEMFs stimulation (PEMFs). All rats were subjected to bilaterally ovariectomy except those in SHAM group. The PEMFs group was exposed to pulsed electromagnetic fields with frequency 15 Hz, peak magnetic induction density 2.2mT and exposure time 2 hours per day. The bone mineral density (BMD) of vertebra and left femur were measured by dual energy X-ray absorptiometry at eighth week, twelfth week and sixteenth week after surgery. In long term effects experiment, forty four rats were randomly divided into sham (14 rats, SHAM), ovariectomy group (10 rats, OVX), 15Hz PEMFs group(10 rats, 15Hz) and 30Hz PEMFs group(10 rats, 30Hz) at twenty-sixth week after surgery. Rats in PEMFs groups were stimulated sixteen weeks. In preventive experiment, the Corrected BMD of vertebra and femur was significantly higher than that of OVX group after 16 weeks (Ptreatment of osteoporosis.

  7. Effects of pulsed electromagnetic fields on benign prostate hyperplasia.

    Science.gov (United States)

    Giannakopoulos, Xenophon K; Giotis, Christos; Karkabounas, Spyridon Ch; Verginadis, Ioannis I; Simos, Yannis V; Peschos, Dimitrios; Evangelou, Angelos M

    2011-12-01

    Benign prostate hyperplasia (BPH) has been treated with various types of electromagnetic radiation methods such as transurethral needle ablation (TUNA), interstitial laser therapy (ILC), holmium laser resection (HoLRP). In the present study, the effects of a noninvasive method based on the exposure of patients with BPH to a pulsative EM Field at radiofrequencies have been investigated. Twenty patients with BPH, aging 68-78 years old (y.o), were enrolled in the study. Patients were randomly divided into two groups: the treatment group (10 patients, 74.0 ± 5.7 y.o) treated with the α-blocker Alfusosin, 10 mg/24 h for at least 4 weeks, and the electromagnetic group (10 patients, 73.7 ± 6.3 y.o) exposed for 2 weeks in a very short wave duration, pulsed electromagnetic field at radiofrequencies generated by an ion magnetic inductor, for 30 min daily, 5 consecutive days per week. Patients of both groups were evaluated before and after drug and EMF treatment by values of total PSA and prostatic PSA fraction, acid phosphate, U/S estimation of prostate volume and urine residue, urodynamic estimation of urine flow rate, and International Prostate Symptom Score (IPSS). There was a statistically significant decrease before and after treatment of IPSS (P < 0.02), U/S prostate volume (P < 0.05), and urine residue (P < 0.05), as well as of mean urine flow rate (P < 0.05) in patients of the electromagnetic group, in contrast to the treatment group who had only improved IPSS (P < 0.05). There was also a significant improvement in clinical symptoms in patients of the electromagnetic group. Follow-up of the patients of this group for one year revealed that results obtained by EMFs treatment are still remaining. Pulsed electromagnetic field at radiofrequencies may benefit patients with benign prostate hyperplasia treated by a non-invasive method.

  8. Clinical update of pulsed electromagnetic fields on osteoporosis

    Institute of Scientific and Technical Information of China (English)

    HUANG Li-qun; HE Hong-chen; HE Cheng-qi; CHEN Jian; YANG Lin

    2008-01-01

    Objective To understand the effects of low-frequency pulsed electromagnetic fields (PEMFs) on chronic bony pain,bone mineral density (BMD), bone strength and biochemical markers of bone metabolism in the patients of osteoporosis.Data sources Using the key words "pulsed electromagnetic fields" and "osteoporosis", we searched the PubMed for related studies published in English from January 1996 to December 2007. We also searched the China National Knowledge Infrastructure (CNKI) for studies published in Chinese from January 1996 to December 2007.Study selection Inclusion criteria: (1) all articles which referred to the effects of low-frequency pulsed magnetic fields on osteoporosis either in primary osteoporosis or secondary osteoporosis; (2) either observational studies or randomized controlled studies. Exclusion criteria: (1) articles on experimental studies about osteoporosis; (2) repetitive studies; (3)case reports; (4) meta analysis.Results Totally 111 related articles were collected, 101 of them were published in Chinese, 10 were in English.Thirty-four were included and the remaining 84 were excluded.Conclusions Low-frequency PEMFs relieves the pain of primary osteoporosis quickly and efficiently, enhances bone formation and increases BMD of secondary osteoporosis. But the effects of PEMFs on bone mineral density of primary osteoporosis and bone resorption were controversial.

  9. Electrochemotherapy by pulsed electromagnetic field treatment (PEMF in mouse melanoma B16F10 in vivo

    Directory of Open Access Journals (Sweden)

    Kranjc Simona

    2016-03-01

    Full Text Available Pulsed electromagnetic field (PEMF induces pulsed electric field, which presumably increases membrane permeabilization of the exposed cells, similar to the conventional electroporation. Thus, contactless PEMF could represent a promising approach for drug delivery.

  10. In vitro exposure of human chondrocytes to pulsed electromagnetic fields

    Directory of Open Access Journals (Sweden)

    V Nicolin

    2009-08-01

    Full Text Available The effect of pulsed electromagnetic fields (PEMFs on the proliferation and survival of matrix-induced autologous chondrocyte implantation (MACI®-derived cells was studied to ascertain the healing potential of PEMFs. MACI-derived cells were taken from cartilage biopsies 6 months after surgery and cultured. No dedifferentiation towards the fibroblastic phenotype occurred, indicating the success of the surgical implantation. The MACI-derived cultured chondrocytes were exposed to 12 h/day (short term or 4 h/day (long term PEMFs exposure (magnetic field intensity, 2 mT; frequency, 75 Hz and proliferation rate determined by flow cytometric analysis. The PEMFs exposure elicited a significant increase of cell number in the SG2M cell cycle phase. Moreover, cells isolated from MACI® scaffolds showed the presence of collagen type II, a typical marker of chondrocyte functionality. The results show that MACI® membranes represent an optimal bioengineering device to support chondrocyte growth and proliferation in surgical implants. The surgical implant of MACI® combined with physiotherapy is suggested as a promising approach for a faster and safer treatment of cartilage traumatic lesions.

  11. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis.

    Science.gov (United States)

    Zhu, Siyi; He, Hongchen; Zhang, Chi; Wang, Haiming; Gao, Chengfei; Yu, Xijie; He, Chengqi

    2017-09-01

    Postmenopausal osteoporosis (PMOP) is considered to be a well-defined subject that has caused high morbidity and mortality. In elderly women diagnosed with PMOP, low bone mass and fragile bone strength have been proven to significantly increase risk of fragility fractures. Currently, various anabolic and anti-resorptive therapies have been employed in an attempt to retain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs), first applied in treating patients with delayed fracture healing and nonunions, may turn out to be another potential and effective therapy for PMOP. PEMFs can enhance osteoblastogenesis and inhibit osteoclastogenesis, thus contributing to an increase in bone mass and strength. However, accurate mechanisms of the positive effects of PEMFs on PMOP remain to be further elucidated. This review attempts to summarize recent advances of PEMFs in treating PMOP based on clinical trials, and animal and cellular studies. Possible mechanisms are also introduced, and the future possibility of application of PEMFs on PMOP are further explored and discussed. Bioelectromagnetics. 38:406-424, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. High-Altitude Electromagnetic Pulse (HEMP) Testing

    Science.gov (United States)

    2015-07-09

    Electromagnetic Pulse Horizontal Electromagnetic Pulse Advanced Fast Electromagnetic Pulse Nuclear Weapons Effect Testing and Environments 16. SECURITY...TOP 01-2-620A 9 July 2015 G-1 APPENDIX G. ABBREVIATIONS. AFEMP Advanced Fast Electromagnetic ... Electromagnetic Pulse A burst of electromagnetic radiation from a nuclear explosion or a suddenly fluctuating magnetic field. The resulting electric and

  13. High Dynamic Range Electric Field Sensor for Electromagnetic Pulse Detection

    CERN Document Server

    Lin, Che-Yun; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T

    2014-01-01

    We design a high dynamic range electric field sensor based on domain inverted electro-optic (E-O) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices. Experimental results demonstrate effective detection of electric field from 16.7V/m to 750KV/m at a frequency of 1GHz, and spurious free measurement range of 70dB.

  14. Low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments affect degeneration of cultured articular cartilage explants

    NARCIS (Netherlands)

    Tan, Lijun; Ren, Yijin; Kooten, van Theo G.; Grijpma, Dirk W.; Kuijer, Roel

    2015-01-01

    Purpose: Articular cartilage has some capacity for self-repair. Clinically used low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments were compared in their potency to prevent degeneration using an explant model of porcine cartilage. Methods: Explants of porcine

  15. An Optimization of Pulsed ElectroMagnetic Fields Study

    Science.gov (United States)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  16. Pulsed electromagnetic field radiation from a narrow slot antenna with a dielectric layer

    NARCIS (Netherlands)

    Štumpf, M.; De Hoop, A.T.; Lager, I.E.

    2010-01-01

    Analytic time domain expressions are derived for the pulsed electromagnetic field radiated by a narrow slot antenna with a dielectric layer in a two‐dimensional model configuration. In any finite time window of observation, exact pulse shapes for the propagated, reflected, and refracted wave constit

  17. Influence of electromagnetic signal of antibiotics excited by low-frequency pulsed electromagnetic fields on growth of Escherichia coli.

    Science.gov (United States)

    Ke, Yin-Lung; Chang, Fu-Yu; Chen, Ming-Kun; Li, Shun-Lai; Jang, Ling-Sheng

    2013-01-01

    Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08%, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.

  18. Transcranial low voltage pulsed electromagnetic fields in patients with treatment-resistant depression

    DEFF Research Database (Denmark)

    Martiny, Klaus Per Juul; Lunde, Marianne; Bech, Per

    2010-01-01

    of a new principle using low-intensity transcranially applied pulsed electromagnetic fields (T-PEMF) in combination with antidepressants in patients with treatment-resistant depression. METHODS: This was a sham-controlled double-blind study comparing 5 weeks of active or sham T-PEMF in patients...

  19. [Effect of pulsed electromagnetic field on orthodontic tooth movement through transmission electromicroscopy].

    Science.gov (United States)

    Chen, Q

    1991-01-01

    This experiment is to observe the effect of pulsed electromagnetic field (PEMF) on orthodontic tooth movement of guinea pigs through transmission electron microscope (TEM). 14-days observations indicate that PEMF could accelerate the rate of orthodontic tooth movement as a result of the increase in quantity of active cell without changing the ultrastructures of cells and have no unfavorable effects on periodontal tissues.

  20. Interactions of Low-Frequency, Pulsed Electromagnetic Fields with Living Tissue: Biochemical Responses and Clinical Results

    DEFF Research Database (Denmark)

    Rahbek, Ulrik L.; Tritsaris, Katerina; Dissing, Steen

    2005-01-01

    In recent years many studies have demonstrated stimulatory effects of pulsed electromagnetic fields (PEMF) on biological tissue. However, controversies have also surrounded the research often due to the lack of knowledge of the different physical consequences of static versus pulsed electromagnetic...... fields. PEMF is widely used for treating fractures and non-unions as well as for treating diseases of the joints. Furthermore, new research has suggested that the technology can be used for nerve regeneration and wound healing although conclusive clinical trials, besides those for fracture healing......, are still lacking. Despite the apparent success of the PEMF technology very little is known regarding the coupling between pulsed electrical fields and biochemical events leading to cellular responses. Insight into this research area is therefore of great importance. In this review we describe the physical...

  1. analysis of large electromagnetic pulse simulators using the electric field integral equation method in time domain

    CERN Document Server

    Jamali, J; Moini, R; Sadeghi, H

    2002-01-01

    A time-domain approach is presented to calculate electromagnetic fields inside a large Electromagnetic Pulse (EMP) simulator. This type of EMP simulator is used for studying the effect of electromagnetic pulses on electrical apparatus in various structures such as vehicles, a reoplanes, etc. The simulator consists of three planar transmission lines. To solve the problem, we first model the metallic structure of the simulator as a grid of conducting wires. The numerical solution of the governing electric field integral equation is then obtained using the method of moments in time domain. To demonstrate the accuracy of the model, we consider a typical EMP simulator. The comparison of our results with those obtained experimentally in the literature validates the model introduced in this paper.

  2. Effects of Pulsed Electromagnetic Field on Differentiation of HUES-17 Human Embryonic Stem Cell Line

    Directory of Open Access Journals (Sweden)

    Yi-Lin Wu

    2014-08-01

    Full Text Available Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP, stage-specific embryonic antigen-3 (SSEA-3, SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.

  3. The effects of samarium-cobalt magnets and pulsed electromagnetic fields on tooth movement.

    Science.gov (United States)

    Darendeliler, M A; Sinclair, P M; Kusy, R P

    1995-06-01

    The purpose of this study was to determine whether the application of either samarium cobalt magnets or pulsed electromagnetic fields could increase the rate and amount of orthodontic tooth movement observed in guinea pigs. In addition, the objective was to evaluate the effect of a magnetic field on bony physiology and metabolism and to monitor for possible systemic side effects. Fifteen grams of laterally directed orthodontic force were applied to move the maxillary central incisors of a sample of 18 young male Hartley guinea pigs divided into three groups: group 1, an orthodontic coil spring was used to move the incisors; group 2, a pair of samarium-cobalt magnets provided the tooth moving force; and group 3, a coil spring was used in combination with a pulsed electromagnetic field. The results showed that both the static magnetic field produced by the samarium-cobalt magnets and the pulsed electromagnetic field used in combination with the coil spring were successful in increasing the rate of tooth movement over that produced by the coil springs alone. The mechanism producing this effect appears to have involved a reduction in the "lag" phase often seen in orthodontic tooth movement. Both magnetically stimulated groups also showed increases in both the organization and amount of new bone deposited in the area of tension between the orthodontically moved maxillary incisors.

  4. Dynamical equations and transport coefficients for the metals at high pulse electromagnetic fields

    CERN Document Server

    Volkov, N B; Yalovets, A P

    2016-01-01

    We offer a metal model suitable for the description of fast electrophysical processes in conductors under influence of powerful electronic and laser radiation of femto- and picosecond duration, and also high-voltage electromagnetic pulses with picosecond front and duration less than 1 ns. The obtained dynamic equations for metal in approximation of one quasineutral liquid are in agreement with the equations received by other authors formerly. New wide-range expressions for the electronic conduction in strong electromagnetic fields are obtained and analyzed.

  5. Dynamical equations and transport coefficients for the metals at high pulse electromagnetic fields

    Science.gov (United States)

    Volkov, N. B.; Chingina, E. A.; Yalovets, A. P.

    2016-11-01

    We offer a metal model suitable for the description of fast electrophysical processes in conductors under influence of powerful electronic and laser radiation of femto- and picosecond duration, and also high-voltage electromagnetic pulses with picosecond front and duration less than 1 ns. The obtained dynamic equations for metal in approximation of one quasineutral liquid are in agreement with the equations received by other authors formerly. New wide-range expressions for the electronic conduction in strong electromagnetic fields are obtained and analyzed.

  6. Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages

    Directory of Open Access Journals (Sweden)

    Ross CL

    2013-03-01

    Full Text Available Christina L Ross,1,2 Benjamin S Harrison2 1Akamai University, Department of Energy Medicine, Hilo, HI, USA; 2Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA Abstract: In the treatment of bacterial infections, antibiotics have proven to be very effective, but the way in which antibiotics are dosed can create a lag time between the administration of the drug and its absorption at the site of insult. The time it takes an antibiotic to reach therapeutic levels can often be significantly increased if the vascular system is compromized. Bacteria can multiply pending the delivery of the drug, therefore, developing treatments that can inhibit the inflammatory response while waiting for antibiotics to take effect could help prevent medical conditions such as septic shock. The aim of this study was to examine the effect of a pulsed electromagnetic field on the production of inflammatory markers tumor necrosis factor (TNF, transcription factor nuclear factor kappa B (NFkB, and the expression of the A20 (tumor necrosis factor-alpha-induced protein 3, in an inflamed-cell model. Lipopolysaccharide-challenged cells were exposed to a pulsed electromagnetic field at various frequencies in order to determine which, if any, frequency would affect the TNF-NFkB-A20 inflammatory response pathway. Our study revealed that cells continuously exposed to a pulsed electromagnetic field at 5 Hz demonstrated significant changes in the downregulation of TNF-α and NFkB and also showed a trend in the down regulation of A20, as compared with controls. This treatment could be beneficial in modulating the immune response, in the presence of infection. Keyword: TNFAIP3, pulsed electromagnetic field, macrophages, TNF, NFkB

  7. Effects of Multipolar Radiofrequency and Pulsed Electromagnetic Field Treatment for Face and Neck Rejuvenation

    Science.gov (United States)

    de Oliveira, Thais Cristina Ferraz; Rocha, Sheyla de Fatima Soares; Ramos, Daniel Gontijo; Ramos, Camila Gontijo; Carvalho, Michelle Vanessa dos Anjos

    2017-01-01

    Skin aging is a gradual process that leads to wrinkle formation, laxity, and overall changes in skin appearance. In recent years, the demands to noninvasive treatments for facial rejuvenation increased, along with a variety of technologies and devices, such as radiofrequency. The present study aimed to evaluate the clinical effects of a multipolar radiofrequency and pulsed electromagnetic field treatment for face and neck rejuvenation. Eleven patients with mild to moderate grades of photoaging underwent eight radiofrequency and pulsed electromagnetic field treatment sessions, once a week. Clinical photographs were taken before and a week after the end of the treatment, and improvement of facial skin parameters was evaluated by two different investigators. Significant improvement in skin laxity was observed in all eleven patients (100%). Improvement in facial contour was noted in 73% and 100% of patients when analyzed by investigators A and B, respectively. The score for overall improvement in skin condition was 3 ± 0.78 for investigator A and 3.6 ± 0.67 for investigator B. All patients were satisfied with the procedure and noted significant improvement in the skin. The combined multipolar radiofrequency and pulsed electromagnetic field device is effective and safe for treatment of aged skin in Brazilian patients. PMID:28373880

  8. Effects of Multipolar Radiofrequency and Pulsed Electromagnetic Field Treatment for Face and Neck Rejuvenation

    Directory of Open Access Journals (Sweden)

    Thais Cristina Ferraz de Oliveira

    2017-01-01

    Full Text Available Skin aging is a gradual process that leads to wrinkle formation, laxity, and overall changes in skin appearance. In recent years, the demands to noninvasive treatments for facial rejuvenation increased, along with a variety of technologies and devices, such as radiofrequency. The present study aimed to evaluate the clinical effects of a multipolar radiofrequency and pulsed electromagnetic field treatment for face and neck rejuvenation. Eleven patients with mild to moderate grades of photoaging underwent eight radiofrequency and pulsed electromagnetic field treatment sessions, once a week. Clinical photographs were taken before and a week after the end of the treatment, and improvement of facial skin parameters was evaluated by two different investigators. Significant improvement in skin laxity was observed in all eleven patients (100%. Improvement in facial contour was noted in 73% and 100% of patients when analyzed by investigators A and B, respectively. The score for overall improvement in skin condition was 3 ± 0.78 for investigator A and 3.6 ± 0.67 for investigator B. All patients were satisfied with the procedure and noted significant improvement in the skin. The combined multipolar radiofrequency and pulsed electromagnetic field device is effective and safe for treatment of aged skin in Brazilian patients.

  9. The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar

    2011-01-01

    Full Text Available INTRODUCTION: Environmental exposure to man-made electromagnetic fields has been steadily increasing with the growing demand for electronic items that are operational at various frequencies. Testicular function is particularly susceptible to radiation emitted by electromagnetic fields. OBJECTIVES: This study aimed to examine the therapeutic effects of a pulsed electromagnetic field (100 Hz on the reproductive systems of male Wistar rats (70 days old. METHODS: The experiments were divided into five groups: microwave sham, microwave exposure (2.45 GHz, pulsed electromagnetic field sham, pulsed electromagnetic field (100 Hz exposure, and microwave/pulsed electromagnetic field exposure. The animals were exposed for 2 hours/day for 60 days. After exposure, the animals were sacrificed, their sperm was used for creatine and caspase assays, and their serum was used for melatonin and testosterone assays. RESULTS: The results showed significant increases in caspase and creatine kinase and significant decreases in testosterone and melatonin in the exposed groups. This finding emphasizes that reactive oxygen species (a potential inducer of cancer are the primary cause of DNA damage. However, pulsed electromagnetic field exposure relieves the effect of microwave exposure by inducing Faraday currents. CONCLUSIONS: Electromagnetic fields are recognized as hazards that affect testicular function by generating reactive oxygen species and reduce the bioavailability of androgen to maturing spermatozoa. Thus, microwave exposure adversely affects male fertility, whereas pulsed electromagnetic field therapy is a non-invasive, simple technique that can be used as a scavenger agent to combat oxidative stress.

  10. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications.

    Science.gov (United States)

    Chalidis, B; Sachinis, N; Assiotis, A; Maccauro, G

    2011-01-01

    Pulsed electromagnetic fields (PEMF) have been used for several years to supplement bone healing. However, the mode of action of this non-invasive method is still debated and quantification of its effect on fracture healing is widely varied. At cellular and molecular level, PEMF has been advocated to promote the synthesis of extracellular matrix proteins and exert a direct effect on the production of proteins that regulate gene transcription. Electromagnetic fields may also affect several membrane receptors and stimulate osteoblasts to secrete several growth factors such as bone morphogenic proteins 2 and 4 and TGF-beta. They could also accelerate intramedullary angiogenesis and improve the load to failure and stiffness of the bone. Although healing rates have been reported in up to 87 % of delayed unions and non-unions, the efficacy of the method is significantly varied while patient or fracture related variables could not be clearly associated with a successful outcome.

  11. Influence of Pulsed Electromagnetic Field on Plant Growth, Nutrient Absorption and Yield of Durum Wheat

    Directory of Open Access Journals (Sweden)

    Nikolaos KATSENIOS

    2015-12-01

    Full Text Available Researchers have adopted the use of magnetic field as a new pre-sowing, environmental friendly technique. Enhancements on plant characteristics with economic impact on producer’s income could be the future of a modern, organic and sustainable agriculture. A field experiment was established at Soil Science Institute of Athens, Lycovrissi, Greece, in the winter of 2014. Two durum wheat cultivars were used. It was a pot experiment with 6 treatments (2 cultivars with 3 magnetic field time exposure. The seeds were treated using a PAPIMI electromagnetic field generator for 0, 30 and 45 minutes one day before planting. The experiment followed a completely randomized design with six treatments and 30 replications. The aim of this study was to evaluate the positive effect of magnetic field pre-sowing treatment in a wide range of plant measurements, including yield. The influence of pulsed electromagnetic field on two varieties of durum wheat seeds showed some statistically significant differences at the 0.05 level in growth measurements, physiological measurements and root growth measurements. Plant tissue analysis showed that magnetic field treatments had higher values than control in total nitrogen, phosphorus, potassium, magnesium, copper (only MF-45, zinc (only MF-30 and boron content, although values showed statistically significant differences only in total nitrogen. The results indicate that this innovative technique can increase the yield of durum wheat, through enhanced absorption of nutrients. Pre-sowing treatment of the seeds leads to vigorous plant growth that are more productive.

  12. In vitro stimulation with a strongly pulsed electromagnetic field on rat basophilic leukemia cells

    Science.gov (United States)

    Choi, J. W.; Shin, S. C.; Kim, S.; Chung, E. R.; Bang, J. H.; Cho, G. I.; Choi, S. D.; Park, Y. S.; Jang, T. S.; Yoo, Y. M.; Lee, S. S.; Hwang, D. G.

    2010-05-01

    In this study, the effects of pulsed electromagnetic field stimulation with a strong magnetic field on rat basophilic leukemia (RBL-2H3) cells were investigated to confirm the efficacy of the magnetic stimulator for biomedical applications. The maximum intensity of the magnetic field generated from the stimulation coil was 0.203 T, and the transition time was 126 μs. The oscillation time and frequency of the pulsed field were almost 0.1 ms and 8 kHz, respectively. The cell count as well as the mRNA expression and DNA sequence of the cytokine genes, such as the tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4), of the stimulated RBL-2H3 cells were analyzed with a hemocytometer and via reverse transcriptase polymerase chain reaction to determine the physiological response under a strong pulse field. After 12 h stimulation, cell death was observed at an increasing scale with the increase in the stimulation time. On the other hand, the cells that were stimulated for 10 min almost doubled as the interval time between the stimulations was extended.

  13. Studies on antioxidant enzymes in mice exposed to pulsed electromagnetic fields.

    Science.gov (United States)

    Eraslan, Gokhan; Bilgili, Ali; Akdogan, Mehmet; Yarsan, Ender; Essiz, Dinc; Altintas, Levent

    2007-02-01

    In this study, 56 female albino mice weighing 30-35 g were used. The animals were divided into a control and an experimental group. The animals in the experimental group were subjected to a pulsed electromagnetic field (PEMF) with a field magnitude of 50 Hz and 2 mT for 8h each day between 0900 and 1700 for 90 days. In both control and experimental groups, blood was sampled at 45, 60, and 90 days in heparinized tubes and erythrocyte malondialdehyde levels, and superoxide dismutase, glutathione peroxidase, catalase, and glucose-6-phosphate dehydrogenase activities were determined. The results revealed that the PEMF applied chronically within the given period and field magnitude does not cause oxidative damage.

  14. The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field

    OpenAIRE

    Sanjay Kumar; Kavindra Kumar Kesari; Jitendra Behari

    2011-01-01

    INTRODUCTION: Environmental exposure to man-made electromagnetic fields has been steadily increasing with the growing demand for electronic items that are operational at various frequencies. Testicular function is particularly susceptible to radiation emitted by electromagnetic fields. OBJECTIVES: This study aimed to examine the therapeutic effects of a pulsed electromagnetic field (100 Hz) on the reproductive systems of male Wistar rats (70 days old). METHODS: The experiments were divided in...

  15. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    Energy Technology Data Exchange (ETDEWEB)

    Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E. [Physics Department, Technion 32000 Haifa (Israel); Hadas, Y. [Department of Applied Physics, Rafael, POBox 2250, Haifa 31021 (Israel); Schamiloglu, E. [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2015-07-15

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  16. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    Science.gov (United States)

    Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.

    2015-07-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  17. Treatment of bone marrow edema of the talus with pulsed electromagnetic fields: outcomes in six patients.

    Science.gov (United States)

    Martinelli, Nicolò; Bianchi, Alberto; Sartorelli, Elena; Dondi, Alessandra; Bonifacini, Carlo; Malerba, Francesco

    2015-01-01

    Bone marrow edema (BME) of the talus is a rare, mostly self-limiting cause of foot and ankle pain. We sought to investigate in patients with idiopathic BME of the talus the effectiveness of pulsed electromagnetic fields and to determine the effect of this therapy on magnetic resonance imaging findings. Six patients with BME of the talus confirmed by magnetic resonance imaging were enrolled. Pain was quantified with a visual analog scale from 0 (no pain) to 10 (the worst pain imaginable). The clinical outcome was assessed using the American Orthopaedic Foot and Ankle Society scoring system. Treatment consisted of pulsed electromagnetic field stimulation 8 h/d for 30 days. The device used generated pulses 1.3 milliseconds in duration, with a frequency of 75 Hz and a mean ± SD induced electric field of 3.5 ± 0.5 mV. The mean American Orthopaedic Foot and Ankle Society score improved from 59.4 (range, 40-66) before treatment to 94 (range, 80-100) at the last follow-up. The visual analog scale score decreased significantly from 5.6 (range, 4-7) before treatment to 1 (range, 0-2) at the last follow-up. Magnetic resonance imaging showed that BME improved after 1 month of treatment and resolved completely within 3 months in 5 patients, with normal signal intensity and no signs of progression to avascular necrosis. A significant reduction in BME area was associated with a significant decrease in pain within 3 months of beginning treatment.

  18. Electrochemotherapy by pulsed electromagnetic field treatment (PEMF) in mouse melanoma B16F10 in vivo

    Science.gov (United States)

    Kranjc, Simona; Kranjc, Matej; Scancar, Janez; Jelenc, Jure; Sersa, Gregor

    2016-01-01

    Introduction Pulsed electromagnetic field (PEMF) induces pulsed electric field, which presumably increases membrane permeabilization of the exposed cells, similar to the conventional electroporation. Thus, contactless PEMF could represent a promising approach for drug delivery. Materials and methods Noninvasive electroporation was performed by magnetic field pulse generator connected to an applicator consisting of round coil. Subcutaneous mouse B16F10 melanoma tumors were treated with intravenously injection of cisplatin (CDDP) (4 mg/kg), PEMF (480 bipolar pulses, at frequency of 80 Hz, pulse duration of 340 μs) or with the combination of both therapies (electrochemotherapy − PEMF + CDDP). Antitumor effectiveness of treatments was evaluated by tumor growth delay assay. In addition, the platinum (Pt) uptake in tumors and serum, as well as Pt bound to the DNA in the cells and Pt in the extracellular fraction were measured by inductively coupled plasma mass spectrometry. Results The antitumor effectiveness of electrochemotherapy with CDDP mediated by PEMF was comparable to the conventional electrochemotherapy with CDDP, with the induction of 2.3 days and 3.0 days tumor growth delay, respectively. The exposure of tumors to PEMF only, had no effect on tumor growth, as well as the injection of CDDP only. The antitumor effect in combined treatment was related to increased drug uptake into the electroporated tumor cells, demonstrated by increased amount of Pt bound to the DNA. Approximately 2-fold increase in cellular uptake of Pt was measured. Conclusions The obtained results in mouse melanoma model in vivo demonstrate the possible use of PEMF induced electroporation for biomedical applications, such as electrochemotherapy. The main advantages of electroporation mediated by PEMF are contactless and painless application, as well as effective electroporation compared to conventional electroporation. PMID:27069448

  19. The effect of long-term pulsing electromagnetic field stimulation on experimental osteoporosis of rats.

    Science.gov (United States)

    Mishima, S

    1988-03-01

    The author performed experiments in order to investigate what biological effect on the bone would be produced by long-term pulsing electromagnetic field (PEMF) systemic stimulation. In some of the mature female rats used as experimental animals, bilateral ovariectomy and right sciatic neurectomy were performed in order to make a model osteoporosis. PEMF stimulation was produced by repetitive pulse burst (RPB) waves at a positive amplitude of 25 mV, negative amplitude of 62.5 mV, burst width of 4.2 ms, pulse width of 230 microseconds and 12 Hz, with the magnetic field strength within a cage being set at 3-10 Gauss. PEMF stimulation over 6 months did not produce any effects on the physiologically aged bones. PEMF stimulation also did not produce any effects on losed cortical bone in osteoporotic hindlegs. On the other hand, an increase of bone volume and bone formation activity was observed in the cancellous bone of osteoporotic hindlegs. These findings suggested that PEMF stimulation exerted a preventive effect against bone loss of osteoporotic hindlegs. Furthermore, an observed increase in bone marrow blood flow seemed to be related with this increase of bone volume and bone formation activity.

  20. Pulsed electromagnetic field at 9.71 GHz increase free radical production in yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Crouzier, D; Perrin, A; Torres, G; Dabouis, V; Debouzy, J-C

    2009-05-01

    Potential human health hazards have been reported after exposure to electromagnetic fields at low power density. Increased oxidative stress has been suggested as a potential mechanism involved in long-term effect of such exposure. In the present work, yeast cultures were exposed for 20 min to a 9.71 GHz pulsed electromagnetic field at specific absorption rates (SAR) from 0.5 W/kg to 16 W/kg. Oxidative perturbations were investigated using ESR spin trapping experiments and their impacts on membrane fluidity were assessed using spin label five nitroxide stearate. The experiments using the water-soluble spin trap alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone and the lipid-soluble N-tert-butyl-alpha-phenylnitrone showed an increase of spin adduct production both in low power density exposure (SAR4 W/kg). The membrane fluidity diminutions after exposure in all the conditions were consistent with lipid peroxidation. The overall results suggest an increase of the free radical production in the intra cellular compartment; however no effect on the yeast vitality was found.

  1. Transcranial low voltage pulsed electromagnetic fields in patients with treatment-resistant depression

    DEFF Research Database (Denmark)

    Martiny, Klaus Per Juul; Lunde, Marianne; Bech, Per

    2010-01-01

    BACKGROUND: Approximately 30% of patients with depression are resistant to antidepressant drugs. Repetitive transcranial magnetic stimulation (rTMS) has been found effective in combination with antidepressants in this patient group. The aim of this study was to evaluate the antidepressant effect...... of a new principle using low-intensity transcranially applied pulsed electromagnetic fields (T-PEMF) in combination with antidepressants in patients with treatment-resistant depression. METHODS: This was a sham-controlled double-blind study comparing 5 weeks of active or sham T-PEMF in patients......-resistant depression. Few side effects were observed. Mechanism of the antidepressant action, in light of the known effects of PEMF stimulation to the brain, is discussed....

  2. Minimizing the Effects of Electromagnetic Pulse (EMP) on Field Medical Equipment

    Science.gov (United States)

    1991-06-07

    Keep wiring short . Unplug unused equipment, Run power cabling and tents in a magnetic North-South direction. Avoid running power cabling in the East...electromagnetic pulse (EMP) is a radiated electromagnetic (EM) wave caused by the detonation of a nuclear weapcn above the earth’s atmosphere. A one megaton...Analyzer Endoscopic Light Source Ophthalmic Diathermy Flame Photometer These wudies demons rated that selected items of otherwise unprotected medical

  3. Clinical Assessment of the RHUMART System Based on the Use of Pulsed Electromagnetic Fields with Low Frequency.

    Science.gov (United States)

    Begue-Simon, A-M.; Drolet, R. A.

    1993-01-01

    Difficulties in using the double-blind method of evaluation with use of Pulsed Electromagnetic Fields led to an open evaluation with 96 patients with musculoskeletal diseases, neurological disorders, circulatory diseases, or gastroenterological diseases. This paper reports the impact of use on dependency, pain, and patient satisfaction. (DB)

  4. Treatment of knee osteoarthritis with pulsed electromagnetic fields: a randomized, double-blind, placebo-controlled study

    DEFF Research Database (Denmark)

    Thamsborg, G; Florescu, A; Oturai, P

    2005-01-01

    OBJECTIVE: The investigation aimed at determining the effectiveness of pulsed electromagnetic fields (PEMF) in the treatment of osteoarthritis (OA) of the knee by conducting a randomized, double-blind, placebo-controlled clinical trial. DESIGN: The trial consisted of 2h daily treatment 5 days per...

  5. Field test and theoretical analysis of electromagnetic pulse propagation velocity on crossbonded cable systems

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Bak, Claus Leth; Gudmundsdottir, Unnur Stella

    2014-01-01

    In this paper, the electromagnetic pulse propagation velocity on a three-phase cable system, consisting of three single core (SC) cables in flat formation with an earth continuity conductor is under study. The propagation velocity is an important parameter for most travelling wave off- and online...

  6. A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, V. (Univ. of California, Irvine (USA))

    1990-07-01

    A randomized double-blind prospective study of pulsed electromagnetic fields for lumbar interbody fusions was performed on 195 subjects. There were 98 subjects in the active group and 97 subjects in the placebo group. A brace containing equipment to induce an electromagnetic field was applied to patients undergoing interbody fusion in the active group, and a sham brace was used in the control group. In the active group there was a 92% success rate, while the control group had a 65% success rate (P greater than 0.005). The effectiveness of bone graft stimulation with the device is thus established.

  7. Effect of intervention initiation timing of pulsed electromagnetic field on ovariectomy-induced osteoporosis in rats.

    Science.gov (United States)

    Zhou, Jun; Liao, Yuan; Zeng, Yahua; Xie, Haitao; Fu, Chengxiao; Li, Neng

    2017-09-01

    The aim of this study is to explore the effect of timing of initiation of pulsed electromagnetic field (PEMF) therapy on bone mass, microarchitecture, and biomechanical properties, and to investigate receptor activator of NF-kB (RANK) expression in ovariectomized (OVX) rats. Sixty female Sprague-Dawley rats were randomly divided into two equal batches of three groups each (10 rats in each group). The first batch comprised of sham-operated (Sham-0 group), ovariectomized (OVX-0 group), and ovariectomized plus treated with PEMF starting from the day of OVX (Early PEMF group). The second batch comprised of sham-operated (Sham-12 group), ovariectomized (OVX-12 group), and ovariectomized plus treated with PEMF starting 12 weeks after OVX (Late PEMF group). Rats (whole body) in the early and late PEMF groups were exposed to PEMF (3.8 mT peak, 8 Hz pulse burst repetition rate). After 12 weeks of PEMF therapy, Early PEMF prevented OVX-induced deterioration in bone mineral density (BMD) and mechanical properties in lumbar vertebral body and femur, and deterioration in bone microarchitecture in lumbar vertebral body and proximal tibia. Late PEMF intervention only inhibited deterioration of BMD, bone microarchitecture, and mechanical properties in lumbar vertebral body. Both early and late PEMF therapy suppressed RANK protein expression in OVX rats without a concomitant effect on RANK mRNA expression. These results demonstrate that timing of initiation of PEMF therapy plays an important role in achieving optimal beneficial effects. The specific PEMF parameters may exert these favorable biological responses, at least partially, via inhibition of protein expression of RANK. Bioelectromagnetics. 38:456-465, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. UTILIZATION OF PULSED ELECTROMAGNETIC FIELD AND TRADITIONAL PHYSIOTHERAPY IN KNEE OSTEOARTHRITIS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Kadrya H. Battecha

    2015-04-01

    Full Text Available Background and Objectives: Pulsed electromagnetic field (PEMF has been suggested as a treatment method for musculoskeletal system disorders. The present study was conducted to determine whether the addition of PEMF to traditional physiotherapy produces better clinical outcomes than traditional physiotherapy alone in the management of moderate knee osteoarthritis (OA. Design: A single-blinded, randomized controlled study Methods: Twenty subjects (5 men and 15 women with unilateral moderate knee OA (Kellgren-Lawrence criteria grade 2. They were randomly allocated in 2 groups to receive: group (A PEMF plus ultrasound plus exercises; or (B ultrasound plus exercises. Both groups received the respective treatments 3 times per week for 4 weeks and underwent the same pretreatment and post treatment evaluation that included active knee range of motion (ROM by universal goniometer, knee pain score by visual analogue scale (VAS and knee functional performance by Western Ontario and McMaster Universities osteoarthritis index (WOMAC. Result: There was an improvement in both groups in active knee flexion ROM, reduced VAS score and improved WOMAC index , however, all outcomes were significantly better in group (A (p <0.05. Moreover, the percentages of outcomes improvement were in favor of group (A. Conclusion: The addition of PEMF to traditional physiotherapy in managing Knee OA produced a greater improvement in pain relief, range of motion and resulted in better functional performance than did traditional physiotherapy alone. The improvement in current study should be limited to short term outcomes of PEMF.

  9. Circadian Rhythm Influences the Promoting Role of Pulsed Electromagnetic Fields on Sciatic Nerve Regeneration in Rats

    Science.gov (United States)

    Zhu, Shu; Ge, Jun; Liu, Zhongyang; Liu, Liang; Jing, Da; Ran, Mingzi; Wang, Meng; Huang, Liangliang; Yang, Yafeng; Huang, Jinghui; Luo, Zhuojing

    2017-01-01

    Circadian rhythm (CR) plays a critical role in the treatment of several diseases. However, the role of CR in the treatment of peripheral nerve defects has not been studied. It is also known that the pulsed electromagnetic fields (PEMF) can provide a beneficial microenvironment to quicken the process of nerve regeneration and to enhance the quality of reconstruction. In this study, we evaluate the impact of CR on the promoting effect of PEMF on peripheral nerve regeneration in rats. We used the self-made “collagen-chitosan” nerve conduits to bridge the 15-mm nerve gaps in Sprague-Dawley rats. Our results show that PEMF stimulation at daytime (DPEMF) has most effective outcome on nerve regeneration and rats with DPEMF treatment achieve quickly functional recovery after 12 weeks. These findings indicate that CR is an important factor that determines the promoting effect of PEMF on peripheral nerve regeneration. PEMF exposure in the daytime enhances the functional recovery of rats. Our study provides a helpful guideline for the effective use of PEMF mediations experimentally and clinically. PMID:28360885

  10. Enhanced skin permeation of naltrexone by pulsed electromagnetic fields in human skin in vitro.

    Science.gov (United States)

    Krishnan, Gayathri; Edwards, Jeffrey; Chen, Yan; Benson, Heather A E

    2010-06-01

    The aim of the present study was to evaluate the skin permeation of naltrexone (NTX) under the influence of a pulsed electromagnetic field (PEMF). The permeation of NTX across human epidermis and a silicone membrane in vitro was monitored during and after application of the PEMF and compared to passive application. Enhancement ratios of NTX human epidermis permeation by PEMF over passive diffusion, calculated based on the AUC of cumulative NTX permeation to the receptor compartment verses time for 0-4 h, 4-8 h, and over the entire experiment (0-8 h) were 6.52, 5.25, and 5.66, respectively. Observation of the curve indicated an initial enhancement of NTX permeation compared to passive delivery whilst the PEMF was active (0-4 h). This was followed by a secondary phase after termination of PEMF energy (4-8 h) in which there was a steady increase in NTX permeation. No significant enhancement of NTX penetration across silicone membrane occurred with PEMF application in comparison to passively applied NTX. In a preliminary experiment PEMF enhanced the penetration of 10 nm gold nanoparticles through the stratum corneum as visualized by multiphoton microscopy. This suggests that the channels through which the nanoparticles move must be larger than the 10 nm diameter of these rigid particles.

  11. Pulsed electromagnetic fields (PEMF) promote early wound healing and myofibroblast proliferation in diabetic rats.

    Science.gov (United States)

    Cheing, Gladys Lai-Ying; Li, Xiaohui; Huang, Lin; Kwan, Rachel Lai-Chu; Cheung, Kwok-Kuen

    2014-04-01

    Reduced collagen deposition possibly leads to slow recovery of tensile strength in the healing process of diabetic cutaneous wounds. Myofibroblasts are transiently present during wound healing and play a key role in wound closure and collagen synthesis. Pulsed electromagnetic fields (PEMF) have been shown to enhance the tensile strength of diabetic wounds. In this study, we examined the effect of PEMF on wound closure and the presence of myofibroblasts in Sprague-Dawley rats after diabetic induction using streptozotocin. A full-thickness square-shaped dermal wound (2 cm × 2 cm) was excised aseptically on the shaved dorsum. The rats were randomly divided into PEMF-treated (5 mT, 25 Hz, 1 h daily) and control groups. The results indicated that there were no significant differences between the groups in blood glucose level and body weight. However, PEMF treatment significantly enhanced wound closure (days 10 and 14 post-wounding) and re-epithelialization (day 10 post-wounding), although these improvements were no longer observed at later stages of the wound healing process. Using immunohistochemistry against α-smooth muscle actin (α-SMA), we demonstrated that significantly more myofibroblasts were detected on days 7 and 10 post-wounding in the PEMF group when compared to the control group. We hypothesized that PEMF would increase the myofibroblast population, contributing to wound closure during diabetic wound healing.

  12. The Effects of Pulsed Electromagnetic Field in the Treatment of Osteoarthritis in Dogs: Clinical Study

    Directory of Open Access Journals (Sweden)

    Stefania Pinna*§, Francesca Landucci§, Anna Maria Tribuiani§, Fabio Carli and Antonio Venturini

    2013-01-01

    Full Text Available In this study the effects of pulsed electromagnetic field (PEMF on pain relief and functional capacity of dogs with osteoarthritis (OA were investigated, and compared with firocoxib. Patients were randomly assigned to two groups: twenty-five client-owned dogs were treated with PEMF once a day for 20 sessions, and fifteen dogs (control group were treated with 5 mg/kg of firocoxib once daily for 20 days. Blinded clinical examination and owner’s assessment were recorded before and after the therapy, as well as 4 and 12 months later. Data collections were statistically compared before and after treatments and between groups. Both groups showed decreased clinical signs of OA during the treatment. Compared with baseline, these improvements were statistically significant (P<0.01 during the therapies. Differences were recorded during observation time spans following the end of treatments. In the PEMF group the effects were sustained until the end of the study, whereas in the control group the progress tended to return to baseline values after the end of therapy. The beneficial effects of PEMF on pain relief and functional capacity make it a potential treatment modality for canine osteoarthritis compared to traditional pharmacological therapy, in absence of adverse effects and in favour of the quality of life.

  13. Neuroprotective Effect of Low Frequency-Pulsed Electromagnetic Fields in Ischemic Stroke.

    Science.gov (United States)

    Urnukhsaikhan, Enerelt; Mishig-Ochir, Tsogbadrakh; Kim, Soo-Chan; Park, Jung-Keug; Seo, Young-Kwon

    2017-04-01

    Low frequency-pulsed electromagnetic fields (LF-PEMFs) affect many biological processes; however, the fundamental mechanisms responsible for these effects remain unclear. Our study aimed to investigate the effect of LF-PEMFs on neuroprotection after ischemic stroke. C57B6 mice were exposed to LF-PEMF (F = 60 Hz, Bm = 10 mT) after photothrombotic occlusion. We measured the BDNF/TrkB/Akt signaling pathway, pro-apoptotic and pro-survival protein and gene expressions, and the expression of inflammatory mediators and performed behavioral tests in both LF-PEMF-treated and untreated ischemic stroke mice. Our results showed that LF-PEMF treatment promotes activation of the BDNF/TrkB/Akt signaling pathway. Subsequently, pro-survival proteins were significantly increased, while pro-apoptotic proteins and inflammatory mediators were decreased in ischemic stroke mice after LF-PEMF treatment. The results demonstrated that LF-PEMF exposure has a neuroprotective effect after ischemic stroke in mice during the recovery process.

  14. In vivo effect of two different pulsed electromagnetic field frequencies on osteoarthritis.

    Science.gov (United States)

    Veronesi, F; Torricelli, P; Giavaresi, G; Sartori, M; Cavani, F; Setti, S; Cadossi, M; Ongaro, A; Fini, M

    2014-05-01

    Osteoarthritis (OA) is a joint pathology characterized by fibrillation, reduced cartilage thickness and subchondral bone sclerosis. There is evidence that pulsed electromagnetic fields (PEMFs) counteract OA progression, but the effect of two different PEMF frequencies has not yet been shown. The aim of this study was to test the effectiveness of PEMFs at two different frequencies (37 and 75 Hz) in a late OA stage in 21-month-old Guinea pigs. After 3 months of 6 h/day PEMF stimulation, histological and histomorphometric analyses of the knees were performed. At both frequencies, PEMFs significantly reduced histological cartilage score, fibrillation index (FI), subchondral bone thickness (SBT) and trabecular number (Tb.N) and increased trabecular thickness (Tb.Th) and separation (Tb.Sp) in comparison to the not treated SHAM group. However, PEMFs at 75 Hz produced significantly more beneficial effects on the histological score and FI than 37 Hz PEMFs. At 75 Hz, PEMFs counteracted cartilage thinning as demonstrated by a significantly higher cartilage thickness values than either those of the SHAM or 37 Hz PEMF-treated groups. Although in severe OA both PEMF frequencies were able to limit its progression, 75 Hz PEMF stimulation achieved the better results.

  15. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture.

    Science.gov (United States)

    Androjna, Caroline; Fort, Brian; Zborowski, Maciej; Midura, Ronald J

    2014-09-01

    Delayed bone healing has been noted in osteoporosis patients and in the ovariectomized (OVX) rat model of estrogen-depletion osteopenia. Pulsed electromagnetic field (PEMF) devices are clinically approved as an adjunct to cervical fusion surgery in patients at high risk for non-fusion and for the treatment of fracture non-unions. These bone growth stimulating devices also accelerate the healing of fresh fracture repair in skeletally mature normal rats but have not been tested for efficacy to accelerate and/or enhance the delayed bone repair process in OVX rats. The current study tested the hypothesis that daily PEMF treatments would improve the fracture healing response in skeletally mature OVX rats. By 6 weeks of healing, PEMF treatments resulted in improved hard callus elastic modulus across fibula fractures normalizing the healing process in OVX rats with respect to this mechanical property. Radiographic evidence showed an improved hard callus bridging across fibula fractures in OVX rats treated with PEMF as compared to sham treatments. These findings provide a scientific rationale for investigating whether PEMF might improve bone-healing responses in at-risk osteoporotic patients.

  16. Pulsed electromagnetic fields on postmenopausal osteoporosis in Southwest China: a randomized, active-controlled clinical trial.

    Science.gov (United States)

    Liu, Hui-Fang; Yang, Lin; He, Hong-Chen; Zhou, Jun; Liu, Ying; Wang, Chun-Yan; Wu, Yuan-Chao; He, Cheng-Qi

    2013-05-01

    A randomized, active-controlled clinical trial was conducted to examine the effect of pulsed electromagnetic fields (PEMFs) on women with postmenopausal osteoporosis (PMO) in southwest China. Forty-four participants were randomly assigned to receive alendronate or one course of PEMFs treatment. The primary endpoint was the mean percentage change in bone mineral density of the lumbar spine (BMDL), and secondary endpoints were the mean percentage changes in left proximal femur bone mineral density (BMDF), serum 25OH vitamin D3 (25(OH)D) concentrations, total lower-extremity manual muscle test (LE MMT) score, and Berg Balance Scale (BBS) score. The BMDL, BMDF, total LE MMT score and BBS score were recorded at baseline, 5, 12, and 24 weeks. Serum concentrations of 25(OH)D were measured at baseline and 5 weeks. Using a mixed linear model, there was no significant treatment difference between the two groups in the BMDL, BMDF, total LE MMT score, and BBS score (P ≥ 0.05). For 25(OH)D concentrations, the effects were also comparable between the two groups (P ≥ 0.05) with the Mann-Whitney's U-test. These results suggested that a course of PEMFs treatment with specific parameters was as effective as alendronate in treating PMO within 24 weeks.

  17. Femoral perfusion after pulsed electromagnetic field stimulation in a steroid-induced osteonecrosis model.

    Science.gov (United States)

    Ikegami, Akira; Ueshima, Keiichiro; Saito, Masazumi; Ikoma, Kazuya; Fujioka, Mikihiro; Hayashi, Shigeki; Ishida, Masashi; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2015-07-01

    This study was designed to evaluate femoral perfusion after pulsed electromagnetic field (PEMF) stimulation in a steroid-induced osteonecrosis rabbit model by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Steroid-induced osteonecrosis was produced by single intramuscular injection of methylprednisolone in 15 rabbits. Eight rabbits underwent PEMF stimulation (PEMF group) and seven did not (control group). DCE-MRI was performed before PEMF stimulation, immediately before steroid administration, and 1, 5, 10, and 14 days after steroid administration. Regions of interest were set in the bilateral proximal femora. Enhancement ratio (ER), initial slope (IS), and area under the curve (AUC) were analyzed. ER, IS, and AUC in the control group significantly decreased after steroid administration compared with before administration (P<0.05). In PEMF group, IS significantly decreased; however, ER and AUC showed no significant differences after steroid administration compared with before. ER and IS in PEMF group were higher than in control group until 10th day, and AUC was higher until 5th day after steroid administration (P<0.05). PEMF stimulation restrains the decrease in blood flow after steroid administration.

  18. Pulsed Electromagnetic Field with Temozolomide Can Elicit an Epigenetic Pro-apoptotic Effect on Glioblastoma T98G Cells.

    Science.gov (United States)

    Pasi, Francesca; Fassina, Lorenzo; Mognaschi, Maria Evelina; Lupo, Giuseppe; Corbella, Franco; Nano, Rosanna; Capelli, Enrica

    2016-11-01

    Treatment with pulsed electromagnetic fields (PEMFs) is emerging as an interesting therapeutic option for patients with cancer. The literature has demonstrated that low-frequency/low-energy electromagnetic fields do not cause predictable effects on DNA; however, they can epigenetically act on gene expression. The aim of the present work was to study a possible epigenetic effect of a PEMF, mediated by miRNAs, on a human glioblastoma cell line (T98G). We tested a PEMF (maximum magnetic induction, 2 mT; frequency, 75 Hz) that has been demonstrated to induce autophagy in glioblastoma cells. In particular, we studied the effect of PEMF on the expression of genes involved in cancer progression and a promising synergistic effect with temozolomide, a frequently used drug to treat glioblastoma multiforme. We found that electromagnetic stimulation in combination with temozolomide can elicit an epigenetic pro-apoptotic effect in the chemo- and radioresistant T98G glioblastoma cell line.

  19. Electromagnetic Fields

    Science.gov (United States)

    ... causes cancer. Some people worry that wireless and cellular phones cause cancer or other health problems. The phones do give off radio-frequency energy (RF), a form of electromagnetic radiation. So far, scientific evidence has not found a ...

  20. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study

    Directory of Open Access Journals (Sweden)

    Jansen Justus HW

    2010-08-01

    Full Text Available Abstract Background Although pulsed electromagnetic field (PEMF stimulation may be clinically beneficial during fracture healing and for a wide range of bone disorders, there is still debate on its working mechanism. Mesenchymal stem cells are likely mediators facilitating the observed clinical effects of PEMF. Here, we performed in vitro experiments to investigate the effect of PEMF stimulation on human bone marrow-derived stromal cell (BMSC metabolism and, specifically, whether PEMF can stimulate their osteogenic differentiation. Methods BMSCs derived from four different donors were cultured in osteogenic medium, with the PEMF treated group being continuously exposed to a 15 Hz, 1 Gauss EM field, consisting of 5-millisecond bursts with 5-microsecond pulses. On culture day 1, 5, 9, and 14, cells were collected for biochemical analysis (DNA amount, alkaline phosphatase activity, calcium deposition, expression of various osteoblast-relevant genes and activation of extracellular signal-regulated kinase (ERK signaling. Differences between treated and control groups were analyzed using the Wilcoxon signed rank test, and considered significant when p Results Biochemical analysis revealed significant, differentiation stage-dependent, PEMF-induced differences: PEMF increased mineralization at day 9 and 14, without altering alkaline phosphatase activity. Cell proliferation, as measured by DNA amounts, was not affected by PEMF until day 14. Here, DNA content stagnated in PEMF treated group, resulting in less DNA compared to control. Quantitative RT-PCR revealed that during early culture, up to day 9, PEMF treatment increased mRNA levels of bone morphogenetic protein 2, transforming growth factor-beta 1, osteoprotegerin, matrix metalloproteinase-1 and -3, osteocalcin, and bone sialoprotein. In contrast, receptor activator of NF-κB ligand expression was primarily stimulated on day 14. ERK1/2 phosphorylation was not affected by PEMF stimulation

  1. Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation

    Institute of Scientific and Technical Information of China (English)

    Hao Kuan-Sheng; Huang Song-Ling; Zhao Wei; Wang Shen

    2011-01-01

    This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT).Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static nagnetic field on the Lorentz force under pulsed voltage excitation are studied.

  2. Pulsed Electromagnetic Field Exposure Reduces Hypoxia and Inflammation Damage in Neuron-Like and Microglial Cells.

    Science.gov (United States)

    Vincenzi, Fabrizio; Ravani, Annalisa; Pasquini, Silvia; Merighi, Stefania; Gessi, Stefania; Setti, Stefania; Cadossi, Ruggero; Borea, Pier Andrea; Varani, Katia

    2017-05-01

    In the present study, the effect of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) has been investigated by using different cell lines derived from neuron-like cells and microglial cells. In particular, the primary aim was to evaluate the effect of PEMF exposure in inflammation- and hypoxia-induced injury in two different neuronal cell models, the human neuroblastoma-derived SH-SY5Y cells and rat pheochromocytoma PC12 cells and in N9 microglial cells. In neuron-like cells, live/dead and apoptosis assays were performed in hypoxia conditions from 2 to 48 h. Interestingly, PEMF exposure counteracted hypoxia damage significantly reducing cell death and apoptosis. In the same cell lines, PEMFs inhibited the activation of the hypoxia-inducible factor 1α (HIF-1α), the master transcriptional regulator of cellular response to hypoxia. The effect of PEMF exposure on reactive oxygen species (ROS) production in both neuron-like and microglial cells was investigated considering their key role in ischemic injury. PEMFs significantly decreased hypoxia-induced ROS generation in PC12, SH-SY5Y, and N9 cells after 24 or 48 h of incubation. Moreover, PEMFs were able to reduce some of the most well-known pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 release in N9 microglial cells stimulated with different concentrations of LPS for 24 or 48 h of incubation time. These results show a protective effect of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells suggesting that PEMFs could represent a potential therapeutic approach in cerebral ischemic conditions. J. Cell. Physiol. 232: 1200-1208, 2017. © 2016 Wiley Periodicals, Inc.

  3. Efficacy of pulsed electromagnetic field therapy in healing of pressure ulcers: A randomized control trial

    Directory of Open Access Journals (Sweden)

    Gupta Anupam

    2009-12-01

    Full Text Available Background : Pressure ulcers are one of the most common complications in health care settings. Still there are no optimal protocols to manage the pressure ulcers. Aim : To assess the effectiveness of pulsed electromagnetic field therapy (PEMF in healing of pressure ulcers in patients with neurological disorders. Design : Randomized double blind control trial. Setting : Neurological rehabilitation department in a university research hospital. Participants : Twelve patients (M:F, 9:3 having neurological disorders, with age between 12-50 years (mean 30.16611.32 yrs and 24 pressure ulcers. Intervention : Six patients with 13 ulcers received PEMF therapy and the remaining 6 patients with 11 ulcers received sham treatment, for 30 sessions (45 minutes each using the equipment ′Pulsatron′. The frequency of PEMF was set at 1 Hz with sine waves and current intensity of 30 mili ampere. Whole body exposure was given in both the groups. Outcome Measures : Bates-Jensen wound assessment tool (BJWAT score was used as main outcome measure and scores at the end of session were compared with initial scores and analyzed. Similarly National Pressure Ulcer Advisory Panel (NPUAP scores were compared and analyzed as secondary outcome measure. Results : Thirteen ulcers were in stage IV and 11 were in stage III at the start of the study. Significant healing of ulcers was noted, BJWAT scores, in both the treatment and sham groups (P < 0.001 and 0.003 respectively at the completion of the study. However, when comparing between the groups, healing was not significant (P = 0.361. Similarly trend was noted with NPUAP scores with no significant difference between the treatment and sham groups (P = 0.649 at the completion of study. Conclusions : No significant difference in pressure ulcer healing was observed between PEMF treatment and sham group in this study.

  4. What Are Electromagnetic Fields?

    Science.gov (United States)

    ... sources of electromagnetic fields Besides natural sources the electromagnetic spectrum also includes fields generated by human-made sources: ... ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic ...

  5. The electromagnetic radiation fields of a relativistic electron avalanche with special attention to the origin of narrow bipolar pulses

    Science.gov (United States)

    Cooray, G. V.; Cooray, G. K.

    2011-12-01

    Gurevich et al. [1] postulated that the source of narrow bipolar pulses, a class of high energy pulses that occur during thunderstorms, could be a runaway electron avalanche driven by the intense electric fields of a thunderstorm. Recently, Watson and Marshall [2] used the modified transmission line model to test the mechanism of the source of narrow bipolar pulses. In a recent paper, Cooray and Cooray [3] demonstrated that the electromagnetic fields of accelerating charges could be used to evaluate the electromagnetic fields from electrical discharges if the temporal and spatial variation of the charges in the discharge is known. In the present study, those equations were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This makes it possible to extract directly the spatial variation of the e-folding length of the avalanche from the measured radiation fields. In the study this model avalanche was used to investigate whether it can be used to describe the measured electromagnetic fields of narrow bipolar pulses. The results obtained are in reasonable agreement with the two station data of Eack [4] for speeds of propagation around (2 - 2.5) x 10^8 m/s and when the propagation effects on the electric fields measured at the distant station is taken into account. [1] Gurevich et al. (2004), Phys. Lett. A., 329, pp. 348 -361. [2] Watson, S. S. and T. C. Marshall (2007), Geophys. Res. Lett., Vol. 34, L04816, doi: 10

  6. Research Internship on Pulse Electromagnetic Fields (PEMF) and Microwave Applications for Deep Space Exploration Medical Use

    Science.gov (United States)

    Hehir, Austin

    2016-01-01

    Throughout my internship, I worked under Dr. Diane Byerly on Pulse Electromagnetic Fields (PEMF) in the Biomedical Engineering for Exploration Space Technology Laboratory (BEEST). I conducted experiments and analyzed the impact coil size, placement, and contour have on flux densities. Using this information, I optimized coil configurations for future patient use. This was achieved by using a fiberglass leg casting and PEMF coils to evaluate the different flux densities produced at different locations on the leg. The fiberglass casting was an improvement on the prior test that used cylindrical tubing to determine the flux densities generated. The cast allowed for the natural bends of the leg to be taken into consideration in the experiment. Also, I investigated the impact that a Helmholtz coil configuration has on the flux densities produced in a leg. This configuration produces a constant magnetic field throughout the targeted area. This information supports the Helmholtz configuration for future medical testing using the PEMF technology being developed at JSC. A preliminary study using test subjects is scheduled for this summer at Methodist Hospital in Sugarland that will incorporate the data obtained from the tests I conducted to ensure accurate results. In addition, I supported the microwave laundry project for sanitizing clothes in space. I worked in the BEEST lab assisting in the preparation of bacterial inoculations and microwave testing to determine the efficacy of radiation on eradicating Staphylococcus aureus bacteria in inoculated fabric specimens. I performed S-band microwave tests to quantify the impact that increased layers of cloth and salt concentration have on both kill rate and temperature. NASA will use the information I obtained throughout my internship to aid in the design of a laundry enclosure system for the International Space Station. I also assisted in protocol development for the use of high frequency microwave energy for a number of

  7. Pulsed electromagnetic fields stimulation prevents steroid-induced osteonecrosis in rats

    Directory of Open Access Journals (Sweden)

    Zhou Jian-Lin

    2011-09-01

    Full Text Available Abstract Background Pulsed electromagnetic fields (PEMF stimulation has been used successfully to treat nonunion fractures and femoral head osteonecrosis, but relatively little is known about its effects on preventing steroid-induced osteonecrosis. The purpose of the study was to investigate the effects of PEMF stimulation on the prevention of steroid-induced osteonecrosis in rats and explore the underlying mechanisms. Methods Seventy-two male adult Wistar rats were divided into three groups and treated as follows. (1 PEMF stimulation group (PEMF group, n = 24: intravenously injected with lipopolysaccharide (LPS, 10 μg/kg on day 0 and intramuscularly injected with methylprednisolone acetate (MPSL, 20 mg/kg on days 1, 2 and 3, then subjected to PEMF stimulation 4 h per day for 1 to 8 weeks. (2 Methylprednisolone-treated group (MPSL group, n = 24: injected the same dose of LPS and MPSL as the PEMF group but without exposure to PEMF. (3 Control group (PS group, n = 24: injected 0.9% saline in the same mode at the same time points. The incidence of osteonecrosis, serum lipid levels and the mRNA and protein expression of transforming growth factor β1 (TGF-β1 in the proximal femur were measured 1, 2, 4 and 8 weeks after the last MPSL (or saline injection. Results The incidence of osteonecrosis in the PEMF group (29% was significantly lower than that observed in the MPSL group (75%, while no osteonecrosis was observed in the PS group. The serum lipid levels were significantly lower in the PEMF and PS groups than in the MPSL group. Compared with the MPSL and PS groups, the mRNA expression of TGF-β1 increased, reaching a peak 1 week after PEMF treatment, and remained high for 4 weeks, then declined at 8 weeks, whereas the protein expression of TGF-β1 increased, reaching a peak at 2 weeks after PEMF treatment, and remained high for 8 weeks. Conclusions PEMF stimulation can prevent steroid-induced osteonecrosis in rats, and the underlying mechanisms

  8. BLANKET REPRESENTATION AND EXPEDIENT OF DISINFECTING WATER USING PULSING ELECTROMAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    Ibragimova Ozoda

    2013-11-01

    Full Text Available ABSTRACT:  The paper deals with comparative analysis of existing expedients and devices of disinfecting water, spots ways of the solution and a new method of  water purification using electromagnetic field applied in a cross wise direction. ABSTRAK: Dalam operasi, analisis perbandingan dijalankan bagi menentukan  kesesuaian yang sedia ada dan alatan untuk menyahjangkit air. Dengan mengaplikasikan medan magnet lintang, penyelesaian masalah dikenal pasti dengan meningkatkan kemagnetan terhadap medan elektromagnet ke atas air.

  9. Transient interaction model of electromagnetic field generated by lightning current pulses and human body

    Science.gov (United States)

    Iváncsy, T.; Kiss, I.; Szücs, L.; Tamus, Z. Á.

    2015-10-01

    The lightning current generates time-varying magnetic field near the down- conductor and the down-conductors are mounted on the wall of the buildings where residential places might be situated. It is well known that the rapidly changing magnetic fields can generate dangerous eddy currents in the human body.The higher duration and gradient of the magnetic field can cause potentially life threatening cardiac stimulation. The coupling mechanism between the electromagnetic field and the human body is based on a well-known physical phenomena (e.g. Faradays law of induction). However, the calculation of the induced current is very complicated because the shape of the organs is complex and the determination of the material properties of living tissues is difficult, as well. Our previous study revealed that the cardiac stimulation is independent of the rising time of the lightning current and only the peak of the current counts. In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near down-conductor and human body. Our previous models are based on the quasi stationer field calculations, the new improved model is a transient model. This is because the magnetic field around the down-conductor and in the human body can be determined more precisely, therefore the dangerous currents in the body can be estimated.

  10. Health effects of electromagnetic field generated by lightning current pulses near down conductors

    Science.gov (United States)

    Tamus, Z. Á.; Novák, B.; Szücs, L.; Kiss, I.

    2011-06-01

    The lightning current generates a time varying magnetic field near down conductors, when lightning strikes the connected Franklin-rod. The down conductors are mounted on the wall of buildings, where residential places can be situated. It is well known that the rapidly changing magnetic fields could generate dangerous eddy currents in the human body. If the duration and the gradient of the magnetic field were high enough, the peripheral nerves are excited. In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near a down conductor with the human body. The interaction model has two parts: estimation of the magnetic fields surrounding the down conductor and evaluation of health effects of rapid changing magnetic fields on the human body.

  11. 脉冲电磁场与软骨代谢%Pulsed electromagnetic fields and cartilage metabolism

    Institute of Scientific and Technical Information of China (English)

    阮佳莉; 田京

    2013-01-01

      背景:目前研究已证实外周脉冲电磁场可以促进软骨代谢,但其分子水平机制仍不甚清楚。目的:探讨脉冲电磁场的物理特性及其在软骨形成方面的作用与机制。  方法:由第一作者应用计算机检索 PubMed、中国期刊全文数据库(CNKI)、维普数据库和万方数据库1997年5月至2012年8月有关脉冲电磁场对软骨代谢影响的文献。在标题、摘要、关键词中以“pulsed electromagnetic field(PEMFs),cartilage,bone marrow mesenchymal stem cel s(BMSCs)”或“脉冲电磁场,软骨代谢,软骨细胞,骨基质,骨髓间充质干细胞”为检索词进行检索。排除重复研究或内容较陈旧的文献。  结果与结论:初检得到145篇文献,排除99篇重复研究或内容较陈旧的文献,保留46篇文献进一步分析。结果显示,脉冲电磁场通过诱导骨髓间充质干细胞分化为软骨细胞,促进软骨特异性基质如Ⅱ型胶原及蛋白多糖的合成,从而发挥软骨诱导作用;脉冲电磁场通过促进转化生长因子β2与其他因子的表达,调节软骨细胞生长分化,使临床上永久性修复软骨组织缺损变为可能。%BACKGROUND:Peripheral pulsed electromagnetic fields have an obvious effect on cartilage metabolism;however, its molecular mechanism is stil unclear. OBJECTIVE:To investigate the physical characteristics of pulsed electromagnetic fields and its mechanism and effect on cartilage formation. METHODS:A computer-based online search of PubMed database, CNKI database, VIP database andWanfang database was performed to search related articles.“Pulsed electromagnetic fields, cartilage, cartilage cel s, matrix, bone marrow mesenchymal stem cel s”were used for word retrieval in the title, abstract, and keywords. Repetitive studies or old literatures were excluded. RESULTS AND CONCLUSION:A total of 145 articles were retrieved in the initial search, and final y 46

  12. Pulse low-intensity electromagnetic field as prophylaxis of heterotopic ossification in patients with traumatic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Đurović Aleksandar

    2009-01-01

    Full Text Available Background/Aim. Heterotopic ossification (HO is an important complication of head and spinal cord injuries (SCI. Pulse low-intensity electromagnetic field (PLIMF therapy increases blood flow to an area of pain or inflammation, bringing more oxygen to that area and helps to remove toxic substances. The aim of this study was to determine the effect of PLIMF as prophylaxis of HO in patients with SCI. Methods. This prospective random control clinical study included 29 patients with traumatic SCI. The patients were randomly divided into experimental (n = 14 and control group (n = 15. The patients in the experimental group, besides exercise and range of motion therapy, were treated by PLIMF of the following characteristics: induction of 10 mT, frequency of 25 Hz and duration of 30 min. Pulse low-intensity electromagnetic field therapy started in the 7th week after the injury and lasted 4 weeks. The presence or absence of HO around the patients hips we checked by a plane radiography and Brookers classification. Functional capabilities and motor impairment were checked by Functional Independent Measure (FIM, Barthel index and American Spinal Injury Association (ASIA impairment class. Statistic analysis included Kolmogorov-Smirnov test, Shapiro-Wilk test, Mann Whitney Exact test, Exact Wilcoxon signed rank test and Fischer Exact test. Statistical significance was set up to p < 0.05. Results. At the end of the treatment no patient from the experimental group had HO. In the control group, five patients (33.3% had HO. At the end of the treatment the majority of the patients from the experimental group (57.14% moved from ASIA-A to ASIA-B class. Conclusion. Pulse low-intensity electromagnetic field therapy could help as prophylaxis of HO in patients with traumatic SCI.

  13. Electromagnetic fields in biological systems

    CERN Document Server

    Lin, James C

    2016-01-01

    As wireless technology becomes more sophisticated and accessible to more users, the interactions of electromagnetic fields with biological systems have captured the interest not only of the scientific community but also the general public. Unintended or deleterious biological effects of electromagnetic fields and radiation may indicate grounds for health and safety precautions in their use. Spanning static fields to terahertz waves, Electromagnetic Fields in Biological Systems explores the range of consequences these fields have on the human body. With contributions by an array of experts, topics discussed include: Essential interactions and field coupling phenomena, highlighting their importance in research on biological effects and in scientific, industrial, and medical applications Electric field interactions in cells, focusing on ultrashort, pulsed high-intensity fields The effect of exposure to naturally occurring and human-made static, low-frequency, and pulsed magnetic fields in biological systems Dosi...

  14. Electromagnetic fields from pulsed electron beam experiments in space - Spacelab-2 results

    Science.gov (United States)

    Bush, R. I.; Reeves, G. D.; Banks, P. M.; Neubert, T.; Williamson, P. R.

    1987-01-01

    During the Spacelab-2 mission a small satellite carrying various plasma diagnostic instruments was released from the Shuttle to coorbit at distances up to 300 m. During a magnetic conjunction of the Shuttle and the satellite an electron beam modulated at 1.22 kHz was emitted from the Shuttle during a 7 min period. The spatial structure of the electromagnetic fields generated by the beam was observed from the satellite out to a distance of 153 m perpendicular to the beam. The magnetic field amplitude of the strongest harmonics were comparable to the amplitude of simultaneously observed whistlers, while the electric field amplitudes were estimated to 1-10 mV/m.

  15. The effect of external magnetic field on the density distributions and electromagnetic fields in the interaction of high-intensity short laser pulse with collisionless underdense plasma

    Science.gov (United States)

    Mahmoodi-Darian, Masoomeh; Ettehadi-Abari, Mehdi; Sedaghat, Mahsa

    2016-03-01

    Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range I{λ^2} ˜eq 10^{14}{-}10^{16}{{W}}{{{cm}}^{-2}} \\upmu{{{m}}2} . The collisionless effect is found to be significant when the incident laser intensity is less than 10^{16}{{W}}{{{cm}}^{-2}}\\upmu{{{m}}2} . In the current work, the propagation of a high-frequency electromagnetic wave, for underdense collisionless plasma in the presence of an external magnetic field is investigated. When a constant magnetic field parallel to the laser pulse propagation direction is applied, the electrons rotate along the magnetic field lines and generate the electromagnetic part in the wake with a nonzero group velocity. Here, by considering the ponderomotive force in attendance of the external magnetic field and assuming the isothermal collisionless plasma, the nonlinear permittivity of the plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. Here, by considering the effect of the ponderomotive force in isothermal collisionless magnetized plasma, it is shown that by increasing the laser pulse intensity, the electrons density profile leads to steepening and the electron bunches of plasma become narrower. Moreover, it is found that the wavelength of electric and magnetic field oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison to the unmagnetized collisionless plasma.

  16. Theory of electromagnetic fields

    CERN Document Server

    Wolski, Andrzej

    2011-01-01

    We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

  17. In vivo setup characterization for pulsed electromagnetic field exposure at 3 GHz

    Science.gov (United States)

    Collin, A.; Perrin, A.; Cretallaz, C.; Pla, S.; Arnaud-Cormos, D.; Debouzy, J. C.; Leveque, P.

    2016-08-01

    An in vivo setup for pulsed electric field exposure at 3 GHz is proposed and characterized in this work. The exposure system allows far field, whole-body exposure of six animals placed in Plexiglas cages with a circular antenna. Chronic exposures under 18 W incident average power (1-4 kW peak power) and acute exposures under 56 W incident average power (4.7 kW peak power) were considered. Numerical and experimental dosimetry of the setup allowed the accurate calculation of specific absorption rate (SAR) distributions under various exposure conditions. From rat model numerical simulations, the whole-body mean SAR values were 1.3 W kg-1 under chronic exposures and 4.1 W kg-1 under acute exposure. The brain-averaged SAR value was 1.8 W kg-1 and 5.7 W kg-1 under chronic and acute exposure, respectively. Under acute exposure conditions, a 10 g specific absorption of 1.8  ±  1.1 mJ · kg-1 value was obtained. With temperature rises below 0.8 °C, as measured or simulated on a gel phantom under typical in vivo exposures, this exposure system provides adequate conditions for in vivo experimental investigations under non-thermal conditions.

  18. Introducing Electromagnetic Field Momentum

    Science.gov (United States)

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  19. Autoradiographic study of the effects of pulsed electromagnetic fields on bone and cartilage growth in juvenile rats.

    Science.gov (United States)

    Wilmot, J J; Chiego, D J; Carlson, D S; Hanks, C T; Moskwa, J J

    1993-01-01

    Application of pulsed electromagnetic fields (PEMF) has been used in growth and repair of non-union bone fractures. The similarities between the fibrocartilage callus in non-union bone fractures and the secondary cartilage in the mandibular condyle, both histologically and functionally, lead naturally to study the effects of PEMFs on growth in the condyle. The purposes of this study were: (1) to describe the effects of PEMFs on the growth of the condyle using autoradiography, [3H]-proline and [3H]-thymidine, and (2) to differentiate between the effects of the magnetic and electrical components of the field. Male pre-adolescent Sprague-Dawley rats (28 days old) were divided into three experimental groups of five animals each: (1) PEMF-magnetic (M), (2) PEMF-electrical (E) and (3) control, and were examined at three different times-3, 7 and 14 days of exposure. Each animal was exposed to the field for 8 h per day. Histological coronal sections were processed for quantitative autoradiography to determine the mitotic activity of the condylar cartilage and the amount of bone deposition. The PEMF (magnetic or electrical) had statistically significant effects only on the thickness of the articular zone, with the thickness in the PEMF-M group being the most reduced. Length of treatment was associated with predictable significant changes in the thickness of the condylar cartilage zones and the amount of bone deposition.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Communication between osteoblasts stimulated by electromagnetic fields

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBao; ZHANG XiaoJun

    2007-01-01

    Pulsed electromagnetic field can affect the proliferation of osteoblasts, but the mechanism is obscure yet. The communication between osteoblasts, isolated from calvaria bone of newborn SD rats and stimulated with the rectangular electromagnetic field of 15 Hz and 4 mT, was studied. Our results showed that the osteoblasts radiated a kind of light after they were stimulated with the electromagnetic field and it is the light that promotes the proliferation of un-stimulated osteoblasts.

  1. Design and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results

    Directory of Open Access Journals (Sweden)

    Haghnegahdar A

    2014-09-01

    Full Text Available Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicate that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coils are devices that generate pulsed electromagnetic fields (PEMF. Objective: In this work, a pair of Helmholtz coils for enhancing the healing process in periodontitis was designed and fabricated. Method: An identical pair of square Helmholtz coils generated the 50 Hz magnetic field. This device was made up of two parallel coaxial circular coils (100 turns in each loop, wound in series which were separated from each other by a distance equal to the radius of one coil (12.5 cm. The windings of our Helmholtz coil was made of standard 0.95mm wire to provide the maximum possible current. The coil was powered by a function generator. Results: The Helmholtz Coils generated a uniform magnetic field between its coils. The magnetic field strength at the center of the space between two coils was 97.6 μT. Preliminary biological studies performed on rats show that exposure of laboratory animals to pulsed electromagnetic fields enhanced the healing of periodontitis. Conclusion: Exposure to PEMFs can lead to stimulatory physiological effects on cells and tissues such as enhanced healing of periodontitis.

  2. Pulsed electromagnetic field therapy for management of osteoarthritis-related pain, stiffness and physical function: clinical experience in the elderly

    Directory of Open Access Journals (Sweden)

    Iannitti T

    2013-09-01

    Full Text Available Tommaso Iannitti,1,2 Gregorio Fistetto,2 Anna Esposito,2 Valentina Rottigni,2,3 Beniamino Palmieri2,3 1Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA; 2Poliambulatorio del Secondo Parere, Modena, Italy; 3Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy Background: Pulsed electromagnetic field (PEMF therapy has shown promising therapeutic effectiveness on bone- and cartilage-related pathologies, being also safe for management of knee osteoarthritis. Aim: The aim of this study was to investigate the clinical efficacy of a PEMF device for management of knee osteoarthritis in elderly patients. Materials and methods: A total of 33 patients were screened, and 28 patients, aged between 60 and 83 and affected by bilateral knee osteoarthritis, were enrolled in this study. They received PEMF therapy on the right leg for a total of three 30-minute sessions per week for a period of 6 weeks, while the left leg did not receive any treatment and served as control. An intravenous drip containing ketoprofen, sodium clodronate, glucosamine sulfate, calcitonin, and ascorbic acid, for a total volume of 500 mL, was administered during PEMF therapy. At baseline and 3 months post-PEMF therapy, Visual Analog Scale (VAS was used to assess knee pain and Western Ontario McMaster Universities Osteoarthritis Index (WOMAC was used to measure knee pain, stiffness and physical function. Results: Changes in VAS and WOMAC scores were calculated for both knees as baseline minus post-treatment. A two sample Student’s t-test, comparing change in knee-related VAS pain for PEMF-treated leg (49.8 ± 2.03 vs control leg (11 ± 1.1, showed a significant difference in favor of PEMF therapy (P < 0.001. A two sample Student’s t-test comparing change in knee-related WOMAC pain, stiffness, and physical function for PEMF-treated leg (8.5 ± 0.4, 3.5 ± 0.2, 38

  3. Pulsed Electromagnetic Fields in the treatment of fresh scaphoid fractures. A multicenter, prospective, double blind, placebo controlled, randomized trial

    Directory of Open Access Journals (Sweden)

    Poeze Martijn

    2011-05-01

    Full Text Available Abstract Background The scaphoid bone is the most commonly fractured of the carpal bones. In the Netherlands 90% of all carpal fractures is a fracture of the scaphoid bone. The scaphoid has an essential role in functionality of the wrist, acting as a pivot. Complications in healing can result in poor functional outcome. The scaphoid fracture is a troublesome fracture and failure of treatment can result in avascular necrosis (up to 40%, non-union (5-21% and early osteo-arthritis (up to 32% which may seriously impair wrist function. Impaired consolidation of scaphoid fractures results in longer immobilization and more days lost at work with significant psychosocial and financial consequences. Initially Pulsed Electromagnetic Fields was used in the treatment of tibial pseudoarthrosis and non-union. More recently there is evidence that physical forces can also be used in the treatment of fresh fractures, showing accelerated healing by 30% and 71% reduction in nonunion within 12 weeks after initiation of therapy. Until now no double blind randomized, placebo controlled trial has been conducted to investigate the effect of this treatment on the healing of fresh fractures of the scaphoid. Methods/Design This is a multi center, prospective, double blind, placebo controlled, randomized trial. Study population consists of all patients with unilateral acute scaphoid fracture. Pregnant women, patients having a life supporting implanted electronic device, patients with additional fractures of wrist, carpal or metacarpal bones and pre-existing impairment in wrist function are excluded. The scaphoid fracture is diagnosed by a combination of physical and radiographic examination (CT-scanning. Proven scaphoid fractures are treated with cast immobilization and a small Pulsed Electromagnetic Fields bone growth stimulating device placed on the cast. Half of the devices will be disabled at random in the factory. Study parameters are clinical consolidation

  4. Pulsed Electromagnetic Fields in the treatment of fresh scaphoid fractures. A multicenter, prospective, double blind, placebo controlled, randomized trial.

    Science.gov (United States)

    Hannemann, Pascal; Göttgens, Kevin W A; van Wely, Bob J; Kolkman, Karel A; Werre, Andries J; Poeze, Martijn; Brink, Peter R G

    2011-05-06

    The scaphoid bone is the most commonly fractured of the carpal bones. In the Netherlands 90% of all carpal fractures is a fracture of the scaphoid bone. The scaphoid has an essential role in functionality of the wrist, acting as a pivot. Complications in healing can result in poor functional outcome. The scaphoid fracture is a troublesome fracture and failure of treatment can result in avascular necrosis (up to 40%), non-union (5-21%) and early osteo-arthritis (up to 32%) which may seriously impair wrist function. Impaired consolidation of scaphoid fractures results in longer immobilization and more days lost at work with significant psychosocial and financial consequences.Initially Pulsed Electromagnetic Fields was used in the treatment of tibial pseudoarthrosis and non-union. More recently there is evidence that physical forces can also be used in the treatment of fresh fractures, showing accelerated healing by 30% and 71% reduction in nonunion within 12 weeks after initiation of therapy. Until now no double blind randomized, placebo controlled trial has been conducted to investigate the effect of this treatment on the healing of fresh fractures of the scaphoid. This is a multi center, prospective, double blind, placebo controlled, randomized trial. Study population consists of all patients with unilateral acute scaphoid fracture. Pregnant women, patients having a life supporting implanted electronic device, patients with additional fractures of wrist, carpal or metacarpal bones and pre-existing impairment in wrist function are excluded. The scaphoid fracture is diagnosed by a combination of physical and radiographic examination (CT-scanning).Proven scaphoid fractures are treated with cast immobilization and a small Pulsed Electromagnetic Fields bone growth stimulating device placed on the cast. Half of the devices will be disabled at random in the factory.Study parameters are clinical consolidation, radiological consolidation evaluated by CT-scanning, functional

  5. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  6. Influence of pulse electromagnetic fields on electronic equipment and systems in smart buildings

    Directory of Open Access Journals (Sweden)

    Jacek Paś

    2016-07-01

    Full Text Available The article presents information about the impact of electromagnetic fields’ impulses on technical infrastructure of electronic equipment and systems in intelligent buildings. The use of modern technical solutions in intelligent building management, i.e., human resources control and automation systems, efficient building space management, requires a large number of integrated electronic systems. Impulse interference, lightning or electricity as natural phenomena are among the most responsible for the occurrence of interference in buses, transmission lines systems, electrical installations, equipment and electronic systems used in intelligent buildings. To a large extent, it is associated with catastrophic damages that may occur in electronic devices or in completed systems such as intelligent building, e.g. ICT, security, etc. under the influence of induced voltages and interfering signals’ currents. Keywords: noise, static electricity, lightning

  7. Birefringence effects of short probe pulses of electromagnetically induced transparency

    Science.gov (United States)

    Parshkov, Oleg M.; Kochetkova, Anastasia E.; Budyak, Victoria V.

    2016-04-01

    The numerical simulation results of radiations evolution in the presence of electromagnetically induced transparency for J=0-->J=1-->J=2 scheme of degenerate quantum transitions are presented. The pulse regime of wave interaction with Doppler broadening spectral lines was investigated. It was indicated that when the control field is linear polarized, the input circular polarized probe pulse breaks up in the medium into pulses with mutually perpendicular linear polarizations. Polarization direction of one of these pulses coincides with the polarization direction of control fields. The distance, which probe pulse passes in the medium to its full separation, decreases, when input probe pulse duration or control field intensity decreases. The input probe pulse intensity variation almost does not influence separation distance and speed of the linear polarized probe pulses in the medium. The effects, described above, may be interpreted as the birefringence effects of electromagnetically induced transparency in the case of short probe pulse.

  8. Pulsed thrust measurements using electromagnetic calibration techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tang Haibin; Shi Chenbo; Zhang Xin' ai; Zhang Zun; Cheng Jiao [School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)

    2011-03-15

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 {mu}N s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measured to give a 310 {mu}N s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 {mu}N s with 95% credibility.

  9. Vertical Electromagnetic Pulse (VEMP) Testing

    Science.gov (United States)

    2009-09-11

    Device Measurement Accuracy Current Current Probes ±5% E-Field D-Dot Probe ±5% H-field B-Dot Probe ±5% Test Setup Digital Camera > 2 Megapixel...electromagnetic environment produced by a nuclear weapon consists of the ionization of the atmosphere and generation of an EMP. The gamma rays, neutrons , beta...Measurements . Measurements of each illumination will be made using an Electric Flux Density per unit time (D-dot) probes, so that the magnitude of

  10. Responses of human normal osteoblast cells and osteoblast-like cell line, MG-63 cells, to pulse electromagnetic field (PEMF

    Directory of Open Access Journals (Sweden)

    Suttatip Kamolmatyakul

    2008-01-01

    Full Text Available The objective of this in vitro study is to investigate the effect of pulsed electromagnetic field (PEMF on cellular proliferation and osteocalcin production of osteoblast-like cell line, MG-63 cells, and human normal osteoblast cells (NHOC obtained from surgical bone specimens. The cells were placed in 24-well culture plates in the amount of 3x104 cell/wells with 2 ml αMEM media supplemented with 10% FBS. The experimental plates were placed between a pair of Helmoltz coils powered by a pulse generator (PEMF, 50 Hz, 1.5 mV/cm in the upper compartment of a dual incubator (Forma. The control plates were placed in the lower compartment of the incubator without Helmotz coils. After three days, the cell proliferation was measured by the method modified from Mossman (J. Immunol Methods 1983; 65: 55-63. Other sets of plates were used for osteocalcin production assessment. Media from these sets were collected after 6 days and assessed for osteocalcin production using ELISA kits. The data were analyzed using a one-way analysis of variance (ANOVA. The results showed that MG-63 cells from the experimental group proliferated significantly more than those from the control group (20% increase, p<0.05. No significant difference in osteocalcin production was detected between the two groups. On the other hand, NHOC from the experimental group produced larger amount of osteocalcin (25% increase, p<0.05 and proliferated significantly more than those from the control group (100% increase, p<0.05. In conclusion, PEMF effect on osteoblasts might depend on their cell type of origin. For osteoblast-like cell line, MG-63 cells, PEMF increased proliferation rate but not osteocalcin production of the cells. However, PEMF stimulation effect on human normal osteoblast cells was most likely associated with enhancement of both osteocalcin production and cell proliferation.

  11. A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 Cells

    Science.gov (United States)

    Li, Xin; Xu, Haoxiang; Lei, Tao; Yang, Yuefan; Jing, Da; Dai, Shuhui; Luo, Peng; Xu, Qiaoling

    2017-01-01

    Glutamate-induced excitotoxicity is common in the pathogenesis of many neurological diseases. A pulsed electromagnetic field (PEMF) exerts therapeutic effects on the nervous system, but its specific mechanism associated with excitotoxicity is still unknown. We investigated the role of PEMF exposure in regulating glutamate-induced excitotoxicity through the endocannabinoid (eCB) system. PEMF exposure improved viability of HT22 cells after excitotoxicity and reduced lactate dehydrogenase release and cell death. An eCB receptor 1 (CB1R) specific inhibitor suppressed the protective effects of PEMF exposure, even though changes in CB1R expression were not observed. Elevation of N-arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) following PEMF exposure indicated that the neuroprotective effects of PEMF were related to modulation of the eCB metabolic system. Furthermore, CB1R/ERK signaling was shown to be an important downstream pathway of PEMF in regulating excitotoxicity. These results suggest that PEMF exposure leads to neuroprotective effects against excitotoxicity by facilitating the eCB/CB1R/ERK signaling pathway. Therefore, PEMF may be a potential physical therapeutic technique for preventing and treating neurological diseases. PMID:28220060

  12. Induction of neuritogenesis in PC12 cells by a pulsed electromagnetic field via MEK-ERK1/2 signaling.

    Science.gov (United States)

    Kudo, Tada-aki; Kanetaka, Hiroyasu; Shimizu, Yoshinaka; Abe, Toshihiko; Mori, Hitoshi; Mori, Kazumi; Suzuki, Eizaburo; Takagi, Toshiyuki; Izumi, Shin-ichi

    2013-01-01

    We examined the regulation of neuritogenesis by a pulsed electromagnetic field (PEMF) in rat PC12 pheochromocytoma cells, which can be induced to differentiate into neuron-like cells with elongated neurites by inducers such as nerve growth factor (NGF). Plated PC12 cells were exposed to a single PEMF (central magnetic flux density, 700 mT; frequency, 0.172 Hz) for up to 12 h per day and were then evaluated for extent of neuritogenesis or acetylcholine esterase (AChE) activity. To analyze the mechanism underlying the effect of the PEMF on the cells, its effects on intracellular signaling were examined using the ERK kinase (MEK) inhibitors PD098059 and U0126 (U0124 was used as a negative control for U0126). The number of neurite-bearing PC12 cells and AChE activity increased after PEMF exposure without the addition of other inducers of neuritogenesis. Additionally, PEMF exposure induced sustained activation of ERK1/2 in PC12 cells, but not in NR8383 rat alveolar macrophages. Furthermore, U0126 strongly inhibited PEMF-dependent ERK1/2 activation and neuritogenesis. The PEMF-dependent neuritogenesis was also suppressed by PD098059, but not U0124. These results suggest that PEMF stimulation independently induced neuritogenesis and that activation of MEK-ERK1/2 signaling was induced by a cell-type-dependent mechanism required for PEMF-dependent neuritogenesis in PC12 cells.

  13. Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells.

    Science.gov (United States)

    de Girolamo, L; Stanco, D; Galliera, E; Viganò, M; Colombini, A; Setti, S; Vianello, E; Corsi Romanelli, M M; Sansone, V

    2013-07-01

    Low frequency pulsed electromagnetic field (PEMF) has proven to be effective in the modulation of bone and cartilage tissue functional responsiveness, but its effect on tendon tissue and tendon cells (TCs) is still underinvestigated. PEMF treatment (1.5 mT, 75 Hz) was assessed on primary TCs, harvested from semitendinosus and gracilis tendons of eight patients, under different experimental conditions (4, 8, 12 h). Quantitative PCR analyses were conducted to identify the possible effect of PEMF on tendon-specific gene transcription (scleraxis, SCX and type I collagen, COL1A1); the release of pro- and anti-inflammatory cytokines and of vascular endothelial growth factor (VEGF) was also assessed. Our findings show that PEMF exposure is not cytotoxic and is able to stimulate TCs' proliferation. The increase of SCX and COL1A1 in PEMF-treated cells was positively correlated to the treatment length. The release of anti-inflammatory cytokines in TCs treated with PEMF for 8 and 12 h was significantly higher in comparison with untreated cells, while the production of pro-inflammatory cytokines was not affected. A dramatically higher increase of VEGF-A mRNA transcription and of its related protein was observed after PEMF exposure. Our data demonstrated that PEMF positively influence, in a dose-dependent manner, the proliferation, tendon-specific marker expression, and release of anti-inflammatory cytokines and angiogenic factor in a healthy human TCs culture model.

  14. Mechanical Stimulation (Pulsed Electromagnetic Fields "PEMF" and Extracorporeal Shock Wave Therapy "ESWT") and Tendon Regeneration: A Possible Alternative.

    Science.gov (United States)

    Rosso, Federica; Bonasia, Davide E; Marmotti, Antonio; Cottino, Umberto; Rossi, Roberto

    2015-01-01

    The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP), growth factors, such as vascular endothelial growth factor (VEGF) and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF) and extracorporeal shock wave therapy (ESWT) increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10). Moreover, ESWT increases the expression of growth factors, such as transforming growth factor β(TGF-β), (VEGF), and insulin-like growth factor 1 (IGF1), as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in vitro TGF-β production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW) and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation.

  15. Pulsed Electromagnetic Field Stimulation Promotes Anti-cell Proliferative Activity in Doxorubicin-treated Mouse Osteosarcoma Cells.

    Science.gov (United States)

    Muramatsu, Yoshitaka; Matsui, Takuya; Deie, Masataka; Sato, Keiji

    2017-01-02

    We aimed to investigate the synergistic effects of pulsed electromagnetic field (PEMF) and doxorubicin therapy in a mouse osteosarcoma cell line (LM8 cells) in vitro. The effects of PEMF (5 mT, 200 Hz) of different durations and doxorubicin on the proliferative activity of LM8 cells were measured by the MTT assay. Apoptotic-related factors such as cell-cycle phase, mitochondrial membrane potential, and caspase 3/7 activity were investigated using 4',6-diamidino-2-phenylindole staining and apoptosis kits. Identification of intracellular signaling molecules induced by the combination was comprehensively explored using a stress and apoptosis-related protein array kit. PEMF enhanced the inhibition of cell proliferation mediated by doxorubicin but did not affect the cell cycle, mitochondrial membrane potential, or doxorubicin-induced G2/M arrest. The combination of PEMF and doxorubicin altered a few signaling molecules. PEMF tended to reduce the doxorubicin-induced decrease of phosphorylated BAD, while reducing the increased expression of total IĸB and phosphorylated-CHK1 induced by doxorubicin. Our results indicate that combination of PEMF and doxorubicin could be a novel chemotherapeutic strategy. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Effects of pulsed electromagnetic fields on peripheral blood circulation in people with diabetes: A randomized controlled trial.

    Science.gov (United States)

    Sun, Jiahui; Kwan, Rachel Lai-Chu; Zheng, Yongping; Cheing, Gladys Lai-Ying

    2016-07-01

    Cutaneous blood flow provides nourishment that plays an essential role in maintaining skin health. We examined the effects of pulsed electromagnetic fields (PEMFs) on cutaneous circulation of dorsal feet. Twenty-two patients with diabetes mellitus (DM) and 21 healthy control subjects were randomly allocated to receive either PEMFs or sham PEMFs (0.5 mT, 12 Hz, 30 min). Blood flow velocity and diameter of the small vein were examined by using ultrasound biomicroscopy; also, microcirculation at skin over the base of the 1st metatarsal bone (Flux1) and distal 1st phalange (Flux2) was measured by laser Doppler flowmetry before and after intervention. Results indicated that PEMFs produced significantly greater changes in blood flow velocity of the smallest observable vein than did sham PEMFs (both P < 0.05) in both types of subjects. However, no significant difference was found in changes of vein diameter, nor in Flux1 and Flux2, between PEMFs and sham PEMFs groups in subjects with or without DM. We hypothesized that PEMFs would increase blood flow velocity of the smallest observable vein in people with or without DM. Bioelectromagnetics. 37:290-297, 2016. © 2016 Wiley Periodicals, Inc.

  17. Effect of pulsed electromagnetic field therapy on experimental pain: A double-blind, randomized study in healthy young adults.

    Science.gov (United States)

    Beaulieu, Karen; Beland, Patricia; Pinard, Marilee; Handfield, Guilène; Handfield, Nicole; Goffaux, Philippe; Corriveau, Hélène; Léonard, Guillaume

    2016-01-01

    Previous studies suggested that pulsed electromagnetic field (PEMF) therapy can decrease pain. To date, however, it remains difficult to determine whether the analgesic effect observed in patients are attributable to a direct effect of PEMF on pain or to an indirect effect of PEMF on inflammation and healing. In the present study, we used an experimental pain paradigm to evaluate the direct effect of PEMF on pain intensity, pain unpleasantness, and temporal summation of pain. Twenty-four healthy subjects (mean age 22 ± 2 years; 9 males) participated in the experiment. Both real and sham PEMF were administered to every participant using a randomized, double-blind, cross-over design. For each visit, PEMF was applied for 10 minutes on the right forearm using a portable device. Experimental pain was evoked before (baseline) and after PEMF with a 9 cm(2) Pelletier-type thermode, applied on the right forearm (120 s stimulation; temperature individually adjusted to produce moderate baseline pain). Pain intensity and unpleasantness were evaluated using a 0-100 numerical pain rating scale. Temporal summation was evaluated by comparing pain intensity ratings obtained at the end of tonic nociceptive stimulation (120 s) with pain intensity ratings obtained after 60 s of stimulation. When compared to baseline, there was no change in pain intensity and unpleasantness following the application of real or sham PEMF. PEMF did not affect temporal summation. The present observations suggest that PEMF does not directly influence heat pain perception in healthy individuals.

  18. Electromagnetic fields and waves

    CERN Document Server

    Rojansky, Vladimir

    2012-01-01

    This comprehensive introduction to classical electromagnetic theory covers the major aspects, including scalar fields, vectors, laws of Ohm, Joule, Coulomb, Faraday, Maxwell's equation, and more. With numerous diagrams and illustrations.

  19. Effect of polarization on the structure of electromagnetic field and spatiotemporal distribution of $e^+e^-$ pairs by colliding laser pulses

    CERN Document Server

    Banerjee, Chitradip

    2016-01-01

    Electron-positron pair production by means of vacuum polarization in the presence of strong electromagnetic (EM) field of two counterpropagating laser pulses is studied. A 3-dimensional model of the focused laser pulses based on the solution of the Maxwell's equations proposed by Narozhny and Fofanov is used to find the structure of EM field of the circularly polarized counterpropagating pulses. Analytical calculations show that the electric and magnetic fields are almost parallel to each other in the focal region when pulses are completely transverse either in electric (e-wave) or magnetic (h-wave) field. On the other hand the electric and magnetic fields are almost orthogonal when the counterpropagating pulses are made up of equal mixture of e- and h- polarized waves. It is found that while the latter configuration of the colliding pulses has much larger threshold for pair production it can provide much shorter electron/positron pulses compared to the former case. The dependence of pair production and its s...

  20. [Effect of ATP and glutaminic acid on carbohydrate-energy and nitrogen metabolism in the rat brain and liver under the effect of pulsed electromagnetic field].

    Science.gov (United States)

    Mishchenko, L I; Kolodub, F A

    1975-01-01

    Oxidative phosphorylation, content of lactate, creatine phosphate, ammonia and glutamine were studied as affected by ATP and glutaminic acid in the brain and liver of rat subjected to the action of the pulsed electromagnetic field of 7 kHz frequency (72 kA/m, 15 seances). ATP (1 mg per 100 g of weight) was found to have a normalizing effect on the processes of nitrogen metabolism in the rat brain, ATP increasing the intenstiy of the oxidative phosphorylation in the tissues of intact rats, has no analogous influence on the irradiated animals. With administration of glutaminic acid (5 mg per 100 g of weight) the processes of oxidative phosphorylation and nitrogen metabolism, disturbed under the effect of the pulsed electromagnetic field are normalized.

  1. Shaping metallic glasses by electromagnetic pulsing

    Science.gov (United States)

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-01-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460

  2. Shaping metallic glasses by electromagnetic pulsing

    Science.gov (United States)

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-02-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals.

  3. Effects of combined treatment with ibandronate and pulsed electromagnetic field on ovariectomy-induced osteoporosis in rats.

    Science.gov (United States)

    Zhou, Jun; Liao, Yuan; Xie, Haitao; Liao, Ying; Zeng, Yahua; Li, Neng; Sun, Guanghua; Wu, Qi; Zhou, Guijuan

    2017-01-01

    Ibandronate (IBN) and pulsed electromagnetic field (PEMF) have each shown positive effects for treating osteoporosis, but no study has evaluated the relative effects of these treatments combined. This study investigated the effects of IBN + PEMF on bone turnover, mineral density, microarchitecture, and biomechanical properties in an ovariectomized (OVX) rat model of osteoporosis. Fifty 3-month-old rats were randomly apportioned to receive a sham-operation (n = 10), or ovariectomy (n = 40). The latter group was equally divided as the model (OVX control) or to receive IBN, PEMF, or IBN + PEMF. Beginning the day after surgery, the IBN and IBN + PEMF groups received weekly subcutaneous IBN; the PEMF and IBN + PEMF groups were given daily PEMF during the same 12 weeks. After 12 weeks of treatments, biochemical parameters, bone mineral density (BMD), microarchitecture parameters, biomechanical properties, and some metabolic modulators that are involved in bone resorption were compared. The L5 lumbar vertebral body BMDs of the IBN, PEMF, and IBN + PEMF groups were 121.6%, 119.5%, and 139.6%; maximum loads were 111.4%, 112.7%, and 121.9%; and energy to failure was 130.8%, 129.2%, and 154.9% of the OVX model, respectively. The IBN + PEMF group had significantly lower levels of serum tartrate-resistant acid phosphatase 5b, and greater improvement in BMD, bone microarchitecture, and strength of the lumbar spine compared with monotherapy groups. Results showed that IBN + PEMF had a more favorable effect on the lumbar spine in this osteoporosis model than did either monotherapy. Bioelectromagnetics. 38:31-40, 2017. © 2016 Wiley Periodicals, Inc.

  4. Pulsed electromagnetic field therapy for management of osteoarthritis-related pain, stiffness and physical function: clinical experience in the elderly.

    Science.gov (United States)

    Iannitti, Tommaso; Fistetto, Gregorio; Esposito, Anna; Rottigni, Valentina; Palmieri, Beniamino

    2013-01-01

    Pulsed electromagnetic field (PEMF) therapy has shown promising therapeutic effectiveness on bone- and cartilage-related pathologies, being also safe for management of knee osteoarthritis. The aim of this study was to investigate the clinical efficacy of a PEMF device for management of knee osteoarthritis in elderly patients. A total of 33 patients were screened, and 28 patients, aged between 60 and 83 and affected by bilateral knee osteoarthritis, were enrolled in this study. They received PEMF therapy on the right leg for a total of three 30-minute sessions per week for a period of 6 weeks, while the left leg did not receive any treatment and served as control. An intravenous drip containing ketoprofen, sodium clodronate, glucosamine sulfate, calcitonin, and ascorbic acid, for a total volume of 500 mL, was administered during PEMF therapy. At baseline and 3 months post-PEMF therapy, Visual Analog Scale (VAS) was used to assess knee pain and Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) was used to measure knee pain, stiffness and physical function. Changes in VAS and WOMAC scores were calculated for both knees as baseline minus post-treatment. A two sample Student's t-test, comparing change in knee-related VAS pain for PEMF-treated leg (49.8 ± 2.03) vs control leg (11 ± 1.1), showed a significant difference in favor of PEMF therapy (P physical function for PEMF-treated leg (8.5 ± 0.4, 3.5 ± 0.2, 38.5 ± 2.08, respectively) vs control leg (2.6 ± 0.2; 1.6 ± 0.1; 4.5 ± 0.5 respectively), also showed a significant difference in favor of PEMF therapy (P therapy were observed. The present study shows that PEMF therapy improves pain, stiffness and physical function in elderly patients affected by knee osteoarthritis.

  5. Comparative study of the efficacy of pulsed electromagnetic field and low level laser therapy on mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Ayman M. El-Makakey

    2017-03-01

    Full Text Available Mitogen-Activated Protein Kinases (MAPKs consist of three major signaling members: extracellular signal-regulated kinase (ERK, p38 and C-JUN N-terminal kinase (JNK. We investigated physiological effects of Pulsed Electromagnetic Field Therapy (PEMFT and Low Level Laser Therapy (LLLT on human body, adopting the expression level of mitogen-activated protein kinases as an indicator via assessment of the activation levels of three major families of MAPKS, ERK, p38 and JNK in the peripheral lymphocytes of patients before and after the therapies. Assessment for the expression levels of MAPKs families' were done, in the peripheral lymphocytes of patients recently have appendectomy, using flow cytometric analysis of multiple signaling pathways, pre and post LLLT and PEMFT application (twice daily for 6 successive days on the appendectomy wound. There were non-significant differences in the expression levels of MAPKs families' pre- therapies application. But there were significant increase in the ERK expression levels post application of LLLT compared to its pre application (p<0.01. Also, there was significant increase in the ERK, p38 and C-Jun N terminal expression level values post application of PEMFT compared to its pre application expression levels (p<0.01 for each. The present study demonstrates that PEMFT has a powerful healing effect more than LLLT as it increase the activation of ERK, P38 and C-Jun-N Terminal while LLLT only increase the activation of ERK. LLLT has more potent pain decreasing effect than PEMFT as it does not activate P38 pathway like PEMFT.

  6. Mechanical stimulation (pulsed electromagnetic fields "PEMF" and extracorporeal shock wave therapy "ESWT" and tendon regeneration: a possible alternative.

    Directory of Open Access Journals (Sweden)

    Federica eRosso

    2015-11-01

    Full Text Available The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP, growth factors, such as vascular endothelial growth factor (VEGF and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF and extracorporeal shock wave therapy (ESWT increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10. Moreover ESWT increases the expression of growth factors, such as transforming growth factor beta (TGF-beta, Vascular Endothelial Growth Factor (VEGF, and insulin-like growth factor 1 (IGF1, as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in-vitro TGF-beta production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation.

  7. [Effect of pulsed electromagnetic fields (PEMF) on human periodontal ligament in vitro. Alterations of intracellular Ca2+].

    Science.gov (United States)

    Satake, T; Yasu, N; Kakai, Y; Kawamura, T; Sato, T; Nakano, T; Amino, S; Ishiwata, Y; Saito, S

    1990-03-01

    The concept of orthodontic tooth movement is based on the hypothesis that teeth move as a result of the biological response of periodontal tissues to the mechanical forces applied. There is a widely held hypothesis that mechanical stress generates an electrical signal which sets in motion the subsequent events, as in bone exposed to mechanical forces electrical currents are produced affect bone growth and remodeling. This implies a transduction mechanism which translates the electrical signal into a biochemical message, recognizable by the cellular machine. This study is aimed at the identification of the message and the investigation of its control. In fact, the effect of Pulsed Electromagnetic Fields (PEMF) on the intracellular second messenger, cytoplasmic Ca2+ in Human Periodontal Ligament Fibroblasts (HPLF) was investigated. The resting intracellular ionized calcium concentration ([Ca+2]i) of HPLF cells was 232.7 +/- 25.0 nM, and with PEMF [Ca2+]i increased from 12 hrs to 499.0 +/- 115.5 nM up to 12 hrs, then reached to a steady level through 24 hrs. The PEMF were also found to decrease the responses towards epidermal growth factor (EGF) and serum, when the degree of response was based on the intracellular Ca2+ transient. These effects of PEMF were mimicked by 12-0-tetradecanoyl phorbol 13-acetate (TPA), a potent activator of protein kinase C. Some reports have suggested that fibroblasts of the periodontal ligament contain high alkaline phosphatase (ALPase) activity as much as osteoblast. Since similar results concerning the [Ca2+]i were obtained in osteoblast (OB)-like cells, this experiment also supports the hypothesis that fibroblasts of periodontal ligament have osteoblastic features.

  8. A study of the effects of flux density and frequency of pulsed electromagnetic field on neurite outgrowth in PC12 cells.

    Science.gov (United States)

    Zhang, Yang; Ding, Jun; Duan, Wei

    2006-01-01

    The aim of this study was to investigate the influence of pulsed electromagnetic fields with various flux densities and frequencies on neurite outgrowth in PC12 rat pheochromocytoma cells. We have studied the percentage of neurite-bearing cells, average length of neurites and directivity of neurite outgrowth in PC12 cells cultured for 96 hours in the presence of nerve growth factor (NGF). PC12 cells were exposed to 50 Hz pulsed electromagnetic fields with a flux density of 1.37 mT, 0.19 mT and 0.016 mT respectively. The field was generated through a Helmholtz coil pair housed in one incubator and the control samples were placed in another identical incubator. It was found that exposure to both a relatively high flux density (1.37 mT) and a medium flux density (0.19 mT) inhibited the percentage of neurite-bearing cells and promoted neurite length significantly. Exposure to high flux density (1.37 mT) also resulted in nearly 20% enhancement of neurite directivity along the field direction. However, exposure to low flux density field (0.016 mT) had no detectable effect on neurite outgrowth. We also studied the effect of frequency at the constant flux density of 1.37 mT. In the range from 1 approximately 100 Hz, only 50 and 70 Hz pulse frequencies had significant effects on neurite outgrowth. Our study has shown that neurite outgrowth in PC12 cells is sensitive to flux density and frequency of pulsed electromagnetic field.

  9. Design and Testing of Coils for Pulsed Electromagnetic Forming

    OpenAIRE

    Golovashchenko, S.; Bessonov, N.; Davies, R

    2006-01-01

    Coil design influences the distribution of electromagnetic forces applied to both the blank and the coil. The required energy of the process is usually defined by deformation of the blank. However, the discharge also results in a significant amount of heat being generated and accumulating in the coil. Therefore, EMF process design involves working with three different problems: 1) propagation of an electromagnetic field through the coil-blank system and generation of pulsed electromagnetic pr...

  10. Electromagnetic fields and interactions

    CERN Document Server

    Becker, Richard

    1982-01-01

    For more than a century, ""Becker"" and its forerunner, ""Abraham-Becker,"" have served as the bible of electromagnetic theory for countless students. This definitive translation of the physics classic features both volumes of the original text.Volume I, on electromagnetic theory, includes an introduction to vector and tensor calculus, the electrostatic field, electric current and the field, and the theory of relativity. The second volume comprises a self-contained introduction to quantum theory that covers the classical principles of electron theory and quantum mechanics, problems involving

  11. In-situ fabrication of particulate reinforced aluminum matrix composites under high-frequency pulsed electromagnetic field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturbance phenomena appear in the melt. Insitu Al2O3 and Al3Zr particulate reinforced aluminum matrix composites have been synthesized by direct melt reaction using Al-Zr(CO3)2 components under a foreign field. The size of reinforced particulates is 2-3 μm. They are well distributed in the matrix.Thermodynamic and kinetic analysis show that high-frequency pulsed magnetic field accelerates heat and mass transfer processes and improves the kinetic condition of in-situ fabrication.

  12. On e(+)e(-) pair production by colliding electromagnetic pulses

    NARCIS (Netherlands)

    Narozhny, NB; Bulanov, SS; Mur, VD; Popov, VS

    2004-01-01

    Electron-positron pair production from vacuum in an electromagnetic field created by two counterpropagating focused laser pulses interacting with each other is analyzed. The dependence of the number of produced pairs on the intensity of a laser pulse and the focusing parameter is studied with a real

  13. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats.

    Science.gov (United States)

    Jing, Da; Cai, Jing; Wu, Yan; Shen, Guanghao; Li, Feijiang; Xu, Qiaoling; Xie, Kangning; Tang, Chi; Liu, Juan; Guo, Wei; Wu, Xiaoming; Jiang, Maogang; Luo, Erping

    2014-10-01

    A large body of evidence indicates that pulsed electromagnetic fields (PEMF), as a safe and noninvasive method, could promote in vivo and in vitro osteogenesis. Thus far, the effects and underlying mechanisms of PEMF on disuse osteopenia and/or osteoporosis remain poorly understood. Herein, the efficiency of PEMF on osteoporotic bone microarchitecture, bone strength, and bone metabolism, together with its associated signaling pathway mechanism, was systematically investigated in hindlimb-unloaded (HU) rats. Thirty young mature (3-month-old), male Sprague-Dawley rats were equally assigned to control, HU, and HU + PEMF groups. The HU + PEMF group was subjected to daily 2-hour PEMF exposure at 15 Hz, 2.4 mT. After 4 weeks, micro-computed tomography (µCT) results showed that PEMF ameliorated the deterioration of trabecular and cortical bone microarchitecture. Three-point bending test showed that PEMF mitigated HU-induced reduction in femoral mechanical properties, including maximum load, stiffness, and elastic modulus. Moreover, PEMF increased serum bone formation markers, including osteocalcin (OC) and N-terminal propeptide of type 1 procollagen (P1NP); nevertheless, PEMF exerted minor inhibitory effects on bone resorption markers, including C-terminal crosslinked telopeptides of type I collagen (CTX-I) and tartrate-resistant acid phosphatase 5b (TRAcP5b). Bone histomorphometric analysis demonstrated that PEMF increased mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone, but PEMF caused no obvious changes on osteoclast numbers. Real-time PCR showed that PEMF promoted tibial gene expressions of Wnt1, LRP5, β-catenin, OPG, and OC, but did not alter RANKL, RANK, or Sost mRNA levels. Moreover, the inhibitory effects of PEMF on disuse-induced osteopenia were further confirmed in 8-month-old mature adult HU rats. Together, these results demonstrate that PEMF alleviated disuse-induced bone loss by promoting skeletal anabolic activities

  14. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  15. Electromagnetic fields and waves

    CERN Document Server

    Iskander, Magdy F

    2013-01-01

    The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...

  16. Electromagnetic Field Penetration Studies

    Science.gov (United States)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  17. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Peer, J. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Kendl, A., E-mail: alexander.kendl@uibk.ac.a [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria)

    2010-06-28

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  18. Childhood Leukemia and Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Alpaslan Türkkan

    2009-12-01

    Full Text Available In this review, the relationship between very low frequency electromagnetic fields, originating from high voltage powerlines, and childhood leukemia was evaluated. Electromagnetic fields have biological effects. Whole populations are effected by different levels of electromagnetic fields but children are more sensible. In urban areas high voltage powerlines are the main sources of electromagnetic fields. The relation of electromagnetic fields due to high voltage powerlines and leukemia with consideration of dose-response and distance is investigated in several studies. There are different opinions on the effects of electromagnetic fields on general health. The relation between electromagnetic fields and childhood leukemia must be considered separately. Although there is no limit value, it is generally accepted that exposure to 0.4 µT and over doubles the risk of leukemia in children 15 years and younger. (Journal of Current Pediatrics 2009; 7: 137-41

  19. Discrete Classical Electromagnetic Fields

    CERN Document Server

    De Souza, M M

    1997-01-01

    The classical electromagnetic field of a spinless point electron is described in a formalism with extended causality by discrete finite transverse point-vector fields with discrete and localized point interactions. These fields are taken as a classical representation of photons, ``classical photons". They are all transversal photons; there are no scalar nor longitudinal photons as these are definitely eliminated by the gauge condition. The angular distribution of emitted photons coincides with the directions of maximum emission in the standard formalism. The Maxwell formalism and its standard field are retrieved by the replacement of these discrete fields by their space-time averages, and in this process scalar and longitudinal photons are necessarily created and added. Divergences and singularities are by-products of this averaging process. This formalism enlighten the meaning and the origin of the non-physical photons, the ones that violate the Lorentz condition in manifestly covariant quantization methods.

  20. Some feature of interpretation of tension single pulsed electromagnetic field of the Earth to create the model parameter fields physical properties

    Directory of Open Access Journals (Sweden)

    Mokritskaya T.P.

    2014-12-01

    Full Text Available Stochastic analysis of the results of different methods of obtaining and processing of information allows us to solve problems on a qualitatively different level. This is important when creating complex earth models and fields of its parameters, particularly the physical properties. Application of remote sensing methods (geophysical investigations with the registration of a single pulse intensity of the electromagnetic field of the Earth (EIEMPZ seismic profiling, is expanding. Interesting results of the joint interpretation of the results of geophysical and laboratory studies of physical soil. Interesting results of the joint interpretation of the results of geophysical and laboratory studies of physical soil. For the first time a methodology for assessing the state of the soil [3] applied for a joint interpretation of materials determine the field strength EMPZ, seismic profiling, and laboratory techniques. This has allowed to characterize the state of the geological environment and to build a model of inhomogeneous density distribution of fractured rocks at depth. In this paper we made a mathematical analysis of the results of research and talus deposits eluvial clay Taurian series, studied at one of the construction sites southern coast at a depth of 12.0 -25.0 m. Methods of statistical analysis, assessment of homogeneity and symmetrically distributed, rank correlation and multiple regression analysis described in [3]. The analysis of the spatial distribution of areas extrem value of EMPZ, heterogeneity of seismic rigidity. Statistical characteristics of indicators of physical properties reflect the genetic characteristics of the formation and the current state of silty-clay sediments of different genesis.It is proved that the regression model can be applied to interpret the state of the array in the construction of geodynamic model. It is established that the creation of forward-looking (dynamic models for the distribution of the physical

  1. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    CERN Document Server

    Peer, J

    2010-01-01

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced potentials are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  2. Effects of pulsed electromagnetic field on osteogenic and osteoclastic metabolism%脉冲电磁场对成骨和破骨代谢的影响

    Institute of Scientific and Technical Information of China (English)

    朱晓璐; 陈鹏; 田京

    2012-01-01

    BACKGROUND: The pulsed electromagnetic field can influence the osteoblast, osteoclast, and the bone matrix synthesis.OBJECTIVE: To explore the mechanism of the pulsed electromagnetic field for treatment of osteoporosis in order to promote its clinical application.METHODS: A computer-based online search of PubMed database, CNKI database, VIP database and Wanfang database from May 1997 to August 2011 was performed to search related articles with the key words of “pulsed electromagnetic fields (PEMFs),bone metabolism, osteoporosis, osteoblast, osteoclast, bone marrow mesenchymal stem cells (BMSCs)” in English and in Chinese by screening titles and abstracts. Articles related to pulsed electromagnetic field were selected. The documents published recently or in authoritative journals in the same field were preferred.RESULTS AND CONCLUSION: A total of 389 literatures were obtained in initial retrieval, and 46 documents of them concerning the analysis and treatment of aseptic loosening of aseptic prosthesis were involved to summarize according to inclusion criteria.PEMFs can promote osteogenic metabolism, inhibit osteoclastic metabolism, regulate transforming growth factor and Interleukin 6, promote bone matrix synthesis, improve the micro -environment for bone growth, as well as facilitate proliferation and differentiation of BMSCs. PEMFs have an important clinical value of treatment for osteoporosis and its complications.%背景:脉冲电磁场对成骨细胞、破骨细胞、骨基质合成均有明显作用.目的:旨在探究脉冲电磁场在成骨和破骨代谢中的作用以及治疗骨质疏松的机制,以促进其临床应用.关键词中以"pulsed electromagnetic field(PEMFs),bone metabolism,osteoporosis,osteoblast,osteoclast,bone marrow mesenchymal stem cells(BMMSCs)"或"脉冲电磁场,骨代谢,骨质疏松,成骨细胞,破骨细胞,骨髓间充质干细胞"为检索词进行检索.选择文章内容与脉冲电磁场有关者,同一领域文献则选

  3. Interaction of ultrashort electromagnetic pulses with matter

    CERN Document Server

    Astapenko, Valeriy

    2013-01-01

    The book is devoted to the theory describing the interaction of  ultra-short electromagnetic pulses (USP) with matter, including both classical and quantum cases. This theme is a hot topic in modern physics because of the great achievements in generating USP. Special attention is given to the peculiarities of UPS-matter interaction. One of the important items of this book is the derivation and applications of a new formula which describes the total photo-process probability under the action of USP in the framework of perturbation theory. Strong field-matter interaction is also considered with the use of the Bloch formalism in a two-level approximation for UPS with variable characteristics.  

  4. Electromagnetic fields and life

    CERN Document Server

    Presman, A S

    1970-01-01

    A broad region of the electromagnetic spectrum long assumed to have no influence on living systems under natural conditions has been critically re-examined over the past decade. This spectral region extends from the superhigh radio frequencies, through de­ creasing frequencies, to and including essentially static electric and magnetic fields. The author of this monograph, A. S. Presman, has reviewed not only the extensive Russian literatur!;"l, but also al­l most equally comprehensively the non-Russian literature, dealing with biological influences of these fields. Treated also is literature shedding some light on possible theoretical foundations for these phenomena. A substantial, rapidly increasing number of studies in many laboratories and countries has now clearly established bio­ logical influences which are independent of the theoretically predictable, simple thermal effects. Indeed many of the effects are produced by field strengths very close to those within the natural environment. The author has,...

  5. Development of the Bactericidal Treatment Room with High Electromagnetic Pulse Field%电磁脉冲高场强杀菌处理室的研制

    Institute of Scientific and Technical Information of China (English)

    解效白; 陈炜峰

    2012-01-01

    The pulsed electric field sterilization (Pulsed Electric Field,PEF) technology is a promising nonthermal sterilization science. The processing chamber which is the key component of the PEF directly influences the bactericidal effect. According to the principle of transmission line characteristic, the paper designed a coaxial processing chamber with impedance of 75 ohms and field strength of 50 kV/cm, and the treatment room was used to do the bactericidal test. The results showed that the processing chamber and the electromagnetic pulse source are well matched, the association of sterilization rate of the pulse peak voltage and irradiation pulse number is large,which can be used in the pilot study of the bactericidal mechanism.%脉冲电场杀菌技术是一项极具前景的食品非热杀菌技术,其处理关键部件——处理室直接影响杀菌效果.根据传输线原理,设计了特性阻抗为75Ω,场强可达到50kV/cm的同轴式处理室,并利用该处理室进行了杀菌试验.结果表明,处理室与电磁脉冲源匹配良好,杀菌率与脉冲峰值电压以及照射脉冲个数的关联度较大,可以用于杀菌机理的试验研究.

  6. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  7. Translation and Rotation of Transformation Media under Electromagnetic Pulse

    CERN Document Server

    Gao, Fei; Lin, Xiao; Xu, Hongyi; Zhang, Baile

    2016-01-01

    It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwells equations, which recently has spawned a booming field called transformation optics. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through.

  8. Translation and Rotation of Transformation Media under Electromagnetic Pulse

    Science.gov (United States)

    Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile

    2016-06-01

    It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwell’s equations, which recently has spawned a booming field called ‘transformation optics’. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through.

  9. Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Pakter, R.; Rizzato, F.B. [Universidade Federal do Rio Grande do Sul, Instituto de Fisica, Rio Grande do Sul (Brazil)

    2004-07-01

    The propagation of intense electromagnetic pulses in plasmas is a subject of current interest particularly for particle acceleration and laser fusion.In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics. We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance in the subject of particle acceleration. Connections between these bifurcated solutions and results of earlier analysis are made. (authors)

  10. Translation and Rotation of Transformation Media under Electromagnetic Pulse

    Science.gov (United States)

    Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile

    2016-01-01

    It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwell’s equations, which recently has spawned a booming field called ‘transformation optics’. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through. PMID:27321246

  11. Electromagnetic field and cosmic censorship

    CERN Document Server

    Düztaş, Koray

    2013-01-01

    We construct a gedanken experiment in which an extremal Kerr black hole interacts with a test electromagnetic field. Using Teukolsky's solutions for electromagnetic perturbations in Kerr spacetime, and the conservation laws imposed by the energy momentum tensor of the electromagnetic field and the Killing vectors of the spacetime, we prove that this interaction cannot convert the black hole into a naked singularity, thus cosmic censorship conjecture is not violated in this case.

  12. Exciting dynamic anapoles with electromagnetic doughnut pulses

    Science.gov (United States)

    Raybould, Tim; Fedotov, Vassili A.; Papasimakis, Nikitas; Youngs, Ian; Zheludev, Nikolay I.

    2017-08-01

    As was predicted in 1995 by Afanasiev and Stepanovsky, a superposition of electric and toroidal dipoles can lead to a non-trivial non-radiating charge current-configuration, the dynamic anapole. The dynamic anapoles were recently observed first in microwave metamaterials and then in dielectric nanodisks. However, spectroscopic studies of toroidal dipole and anapole excitations are challenging owing to their diminishing coupling to transverse electromagnetic waves. Here, we show that anapoles can be excited by electromagnetic Flying Doughnut (FD) pulses. First described by Helwarth and Nouchi in 1996, FD pulses (also known as "Flying Toroids") are space-time inseparable exact solutions to Maxwell's equations that have toroidal topology and propagate in free-space at the speed of light. We argue that FD pulses can be used as a diagnostic and spectroscopic tool for the dynamic anapole excitations in matter.

  13. A follow-up study of the in-practice results of pulsed electromagnetic field therapy in the management of nonunion fractures

    Directory of Open Access Journals (Sweden)

    Murray HB

    2016-12-01

    Full Text Available Hallie B Murray,1 Brian A Pethica1,2 1EBI, LLC (a Zimmer Biomet company, Parsippany, NJ, USA; 2Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA Abstract: During normal fracture repair, healing occurs within a few months. However, for a minority of patients, the processes of bone repair are compromised or interrupted leading to the development of delayed union and nonunion fractures. Noninvasive bone growth stimulators using pulsed electromagnetic field (PEMF technology are currently in widespread use by patients with impaired fracture healing. This article reports the results of a follow-up study of 1,382 patients treated with PEMF stimulation to evaluate success rates and the relationship between average daily use and the clinical outcomes of therapy as reported by their prescribing physicians. The reported overall success rate for the 1,382 patients was 89.6%. The results were analyzed in audited subsets comparing days of treatment time and average daily use of the electrical bone growth stimulator, using several statistical methods. Linear regression analysis indicated a 6-day reduction in time to heal with each additional hour of average daily use. Survival analysis concluded that the median heal time was reduced by 35%–60%, depending on the different fracture characteristics of patients who complied with the recommended daily use of 10 hours per day. A third statistical analysis indicated that patients treated with the PEMF device for 9 hours or more per day had a significant reduction in time to heal, achieving successful fracture repair an average of 76 days earlier than patients treated with the PEMF device for an average of 3 hours or less per day. Overall, these different methods of statistical analysis indicate that PEMF therapy correlates with an acceleration in the healing of nonunion fractures. Keywords: PEMF, pulsed electromagnetic field, dose–response, nonunion, time to heal

  14. International comparison of the properties of NdFeB permanent magnets measured using an electromagnet and a pulsed field magnetometer

    Science.gov (United States)

    Hall, Michael

    2013-08-01

    An IEC TC 68 comparison on the measurement of the magnetic properties of permanent magnets was completed in 2011. Measurements were performed on 6 NdFeB magnets with intrinsic coercivities ranging from 1000 to 2600 kA/m by 8 institutes based in China, Japan, Italy, Belgium, Germany and the UK. Many versions of a Pulsed Field Magnetometer (PFM) that can determine the full BH curve in as little as 100 ms have been developed during the last 2 decades. By comparing measurements made using an internationally accepted electromagnet method and pulsed methods, the influence of the dynamic effects of the latter could be investigated and established. For the quantities remanence, B r , magnetic flux density coercivity, H cB and energy product, BH max the measurements agree within the combined uncertainties. For the intrinsic coercivity, H cJ , the dependence of the measurement of this quantity on the speed at which the magnetic field is reversed was found to be significant with the largest changes in value occurring as a DC measurement condition is approached.

  15. Electromagnetic pulse (EMP): Exposure of missile 56 in EMP simulator sapiens

    Science.gov (United States)

    Dikvall, T.

    1985-06-01

    The effects on the electric field caused by the object (missile) in the SAPIENS electromagnetic pulse simulator were studied. A noticeable effect on the field strength is noted close to the object, due to the characteristics of the field. This effect also appears in real electromagnetic pulse environments. During these tests 200 pulses were distributed with good accuracy of reproduction. The SAPIENS is an outdoor device and tests carried out in winter show that weather has very little influence on results.

  16. Inertial confinement fusion driven by long wavelength electromagnetic pulses

    Institute of Scientific and Technical Information of China (English)

    Baifei; Shen; Xueyan; Zhao; Longqing; Yi; Wei; Yu; Zhizhan; Xu

    2013-01-01

    A method for inertial confinement fusion driven by powerful long wavelength electromagnetic pulses(EMPs), such as CO2 laser pulses or high power microwave pulses, is proposed. Due to the high efficiency of generating such long wavelength electromagnetic pulses, this method is especially important for the future fusion electricity power. Special fuel targets are designed to overcome the shortcomings of the long wavelength electromagnetic pulses.

  17. Transform of Lightning Electromagnetic Pulses Based on Laplace Wavelet

    Directory of Open Access Journals (Sweden)

    Qin Li

    2013-09-01

    Full Text Available In this study, the fine structures of lightning electromagnetic pulse associated with 19 preliminary breakdown pulses, 37 stepped leaders, 8 dart leaders, 73 first and 52 subsequent return strokes were analyzed by using Laplace wavelet. The main characteristics of field waveforms such as, the correlation coefficient, the time of arrival and the dominant frequency of the initial peak field, the energy and the frequency of the power spectrum peak are presented. The instantaneous initial peak field pulse can be precisely located by the value of the correlation coefficient. The dominant frequencies of the initial peak field of PB pulses and leaders range from 100 kHz to 1 MHz, and that of the first and subsequent return strokes below 100 and 50 kHz, respectively. The statistical results show that the Laplace wavelet is an effective tool and can be used to determine time and frequency of the lightning events with greater accuracy.  

  18. Biological effects of electromagnetic fields.

    Science.gov (United States)

    Macrì, M. A.; Di Luzio, Sr.; Di Luzio, S.

    2002-01-01

    Nowadays, concerns about hazards from electromagnetic fields represent an alarming source for human lives in technologically developed countries. We are surrounded by electromagnetic fields everywhere we spend our working hours, rest or recreational activities. The aim of this review is to summarize the biological effects due to these fields arising from power and transmission lines, electrical cable splices, electronic devices inside our homes and work-places, distribution networks and associated devices such as cellular telephones and wireless communication tower, etc. Special care has been reserved to study the biological effects of electromagnetic fields on cell lines of the mammalian immune system about which our research group has been working for several years.

  19. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  20. Pulsed Electromagnetic Acceleration of Plasma: A Review

    Science.gov (United States)

    Thio, Y. C. Francis; Turchi, Peter J.; Markusic, Thomas E.; Cassibry, Jason T.; Sommer, James; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Much have been learned in the acceleration mechanisms involved in accelerating a plasma electromagnetically in the laboratory over the last 40 years since the early review by Winston Bostik of 1963, but the accumulated understanding is very much scattered throughout the literature. This literature extends back at least to the early sixties and includes Rosenbluth's snowplow model, discussions by Ralph Lovberg, Colgate's boundary-layer model of a current sheet, many papers from the activity at Columbia by Robert Gross and his colleagues, and the relevant, 1-D unsteady descriptions developed from the U. of Maryland theta-pinch studies. Recent progress on the understanding of the pulsed penetration of magnetic fields into collisionless or nearly collisionless plasmas are also be reviewed. Somewhat more recently, we have the two-dimensional, unsteady results in the collisional regime associated with so-called wall-instability in large radius pinch discharges and also in coaxial plasma guns (e.g., Plasma Flow Switch). Among other things, for example, we have the phenomenon of a high- density plasma discharge propagating in a cooaxial gun as an apparently straight sheet (vs paraboloid) because mass re-distribution (on a microsecond timescale) compensates for the 1/r- squared variation of magnetic pressure. We will attempt to collate some of this vast material and bring some coherence tc the development of the subject.

  1. The classical electromagnetic field

    CERN Document Server

    Eyges, Leonard

    2010-01-01

    This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.

  2. Electromagnetic field theories for engineering

    CERN Document Server

    Salam, Md Abdus

    2014-01-01

    A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.

  3. Charged particle interaction with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, K.-J.; Goor, van F.A.

    2003-01-01

    It is found that a charged particle can get a net energy gain from the interaction with an electromagnetic chirped pulse. Theoretically, the energy gain increases with the pulse amplitude and with the relative frequency variation in the pulse.

  4. A 16 MJ compact pulsed power system for electromagnetic launch

    Science.gov (United States)

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  5. Photon Propagation in Slowly Varying Electromagnetic Fields

    Science.gov (United States)

    Karbstein, F.

    2017-03-01

    Effective theory of soft photons in slowly varying electromagnetic background fields is studied at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counterpropagating pulsed Gaussian laser beams. Treating the peak field strengths of both laser beams as free parameters, this field configuration can be considered as interpolating between the limiting cases of a purely right- or left-moving laser beam (if one of the peak field strengths is set equal to zero) and the standing-wave type scenario with two counter-propagating beams of equal strength.

  6. Photon propagation in slowly varying electromagnetic fields

    CERN Document Server

    Karbstein, Felix

    2016-01-01

    We study the effective theory of soft photons in slowly varying electromagnetic background fields at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counter-propagating pulsed Gaussian laser beams. As we treat the peak field strengths of both laser beams as free parameters this field configuration can be considered as interpolating between the limiting cases of a purely right- or left-moving laser beam (if one of the peak field strengths is set to zero) and the standing-wave type scenario with two counter-propagating beams of equal strength.

  7. A primer on electromagnetic fields

    CERN Document Server

    Frezza, Fabrizio

    2015-01-01

    This book is a concise introduction to electromagnetics and electromagnetic fields that covers the aspects of most significance for engineering applications by means of a rigorous, analytical treatment. After an introduction to equations and basic theorems, topics of fundamental theoretical and applicative importance, including plane waves, transmission lines, waveguides, and Green's functions, are discussed in a deliberately general way. Care has been taken to ensure that the text is readily accessible and self-consistent, with conservation of the intermediate steps in the analytical derivations. The book offers the reader a clear, succinct course in basic electromagnetic theory. It will also be a useful lookup tool for students and designers.

  8. Moving Manifolds in Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2017-08-01

    Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.

  9. Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/β-catenin signaling-associated mechanism

    Science.gov (United States)

    Jing, Da; Zhai, Mingming; Tong, Shichao; Xu, Fei; Cai, Jing; Shen, Guanghao; Wu, Yan; Li, Xiaokang; Xie, Kangning; Liu, Juan; Xu, Qiaoling; Luo, Erping

    2016-01-01

    Treatment of osseous defects remains a formidable clinical challenge. Porous titanium alloys (pTi) have been emerging as ideal endosseous implants due to the excellent biocompatibility and structural properties, whereas inadequate osseointegration poses risks for unreliable long-term implant stability. Substantial evidence indicates that pulsed electromagnetic fields (PEMF), as a safe noninvasive method, inhibit osteopenia/osteoporosis experimentally and clinically. We herein investigated the efficiency and potential mechanisms of PEMF on osteogenesis and osseointegration of pTi in vitro and in vivo. We demonstrate that PEMF enhanced cellular attachment and proliferation, and induced well-organized cytoskeleton for in vitro osteoblasts seeded in pTi. PEMF promoted gene expressions in Runx2, OSX, COL-1 and Wnt/β-catenin signaling. PEMF-stimulated group exhibited higher Runx2, Wnt1, Lrp6 and β-catenin protein expressions. In vivo results via μCT and histomorphometry show that 6-week and 12-week PEMF promoted osteogenesis, bone ingrowth and bone formation rate of pTi in rabbit femoral bone defect. PEMF promoted femoral gene expressions of Runx2, BMP2, OCN and Wnt/β-catenin signaling. Together, we demonstrate that PEMF improve osteogenesis and osseointegration of pTi by promoting skeletal anabolic activities through a Wnt/β-catenin signaling-associated mechanism. PEMF might become a promising biophysical modality for enhancing the repair efficiency and quality of pTi in bone defect. PMID:27555216

  10. Effect of Pulsed Electromagnetic Field on Bone Formation and Lipid Metabolism of Glucocorticoid-Induced Osteoporosis Rats through Canonical Wnt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2016-01-01

    Full Text Available Pulsed electromagnetic field (PEMF has been suggested as a promising method alternative to drug-based therapies for treating osteoporosis (OP, but the role of PEMF in GIOP animal models still remains unknown. This study was performed to investigate the effect of PEMF on bone formation and lipid metabolism and further explored the several important components and targets of canonical Wnt signaling pathway in GIOP rats. After 12 weeks of intervention, bone mineral density (BMD level of the whole body increased significantly, serum lipid levels decreased significantly, and trabeculae were thicker in GIOP rats of PEMF group. PEMF stimulation upregulated the mRNA and protein expression of Wnt10b, LRP5, β-catenin, OPG, and Runx2 and downregulated Axin2, PPAR-γ, C/EBPα, FABP4, and Dkk-1. The results of this study suggested that PEMF stimulation can prevent bone loss and improve lipid metabolism disorders in GIOP rats. Canonical Wnt signaling pathway plays an important role in bone formation and lipid metabolism during PEMF stimulation.

  11. Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields

    Science.gov (United States)

    Vincenzi, Fabrizio; Ravani, Annalisa; Pasquini, Silvia; Merighi, Stefania; Setti, Stefania; Cadossi, Matteo; Cadossi, Ruggero

    2017-01-01

    Several studies explored the biological effects of low frequency low energy pulsed electromagnetic fields (PEMFs) on human body reporting different functional changes. Much research activity has focused on the mechanisms of interaction between PEMFs and membrane receptors such as the involvement of adenosine receptors (ARs). In particular, PEMF exposure mediates a significant upregulation of A2A and A3ARs expressed in various cells or tissues involving a reduction in most of the proinflammatory cytokines. Of particular interest is the observation that PEMFs, acting as modulators of adenosine, are able to increase the functionality of the endogenous agonist. By reviewing the scientific literature on joint cells, a double role for PEMFs could be hypothesized in vitro by stimulating cell proliferation, colonization of the scaffold, and production of tissue matrix. Another effect could be obtained in vivo after surgical implantation of the construct by favoring the anabolic activities of the implanted cells and surrounding tissues and protecting the construct from the catabolic effects of the inflammatory status. Moreover, a protective involvement of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells have suggested the hypothesis of a positive impact of this noninvasive biophysical stimulus. PMID:28255202

  12. Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Katia Varani

    2017-01-01

    Full Text Available Several studies explored the biological effects of low frequency low energy pulsed electromagnetic fields (PEMFs on human body reporting different functional changes. Much research activity has focused on the mechanisms of interaction between PEMFs and membrane receptors such as the involvement of adenosine receptors (ARs. In particular, PEMF exposure mediates a significant upregulation of A2A and A3ARs expressed in various cells or tissues involving a reduction in most of the proinflammatory cytokines. Of particular interest is the observation that PEMFs, acting as modulators of adenosine, are able to increase the functionality of the endogenous agonist. By reviewing the scientific literature on joint cells, a double role for PEMFs could be hypothesized in vitro by stimulating cell proliferation, colonization of the scaffold, and production of tissue matrix. Another effect could be obtained in vivo after surgical implantation of the construct by favoring the anabolic activities of the implanted cells and surrounding tissues and protecting the construct from the catabolic effects of the inflammatory status. Moreover, a protective involvement of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells have suggested the hypothesis of a positive impact of this noninvasive biophysical stimulus.

  13. Synergistic effect of EMF-BEMER-type pulsed weak electromagnetic field and HPMA-bound doxorubicin on mouse EL4 T-cell lymphoma.

    Science.gov (United States)

    Říhová, Blanka; Etrych, Tomáš; Šírová, Milada; Tomala, Jakub; Ulbrich, Karel; Kovář, Marek

    2011-12-01

    We have investigated the effects of low-frequency pulsed electromagnetic field (LF-EMF) produced by BEMER device on experimental mouse T-cell lymphoma EL4 growing on conventional and/or athymic (nude) mice. Exposure to EMF-BEMER slowed down the growth of tumor mass and prolonged the survival of experimental animals. The effect was more pronounced in immuno-compromised nude mice compared to conventional ones. Acceleration of tumor growth was never observed. No measurable levels of Hsp 70 or increased levels of specific anti-EL4 antibodies were detected in the serum taken from experimental mice before and at different intervals during the experiment, i.e. before solid tumor appeared, at the time of its aggressive growth, and at the terminal stage of the disease. A significant synergizing antitumor effect was seen when EL4 tumor-bearing mice were simultaneously exposed to EMF-BEMER and treated with suboptimal dose of synthetic HPMA copolymer-based doxorubicin, DOX(HYD)-HPMA. Such a combination may be especially useful for heavily treated patients suffering from advanced tumor and requiring additional aggressive chemotherapy which, however, at that time could represent almost life-threatening way of medication.

  14. Effectiveness of an Innovative Pulsed Electromagnetic Fields Stimulation in Healing of Untreatable Skin Ulcers in the Frail Elderly: Two Case Reports

    Directory of Open Access Journals (Sweden)

    Fabio Guerriero

    2015-01-01

    Full Text Available Introduction. Recalcitrant skin ulcers are a major burden in elderly patients. Specifically, chronic wounds result in significant morbidity and mortality and have a profound economic impact. Pulsed electromagnetic fields (PEMFs have proved to be a promising therapy for wound healing. Here we describe the first reported case of an innovative PEMF therapy, Emysimmetric Bilateral Stimulation (EBS, used to successfully treat refractory skin ulcers in two elderly and fragile patients. Case Presentation. Two elderly patients developed multiple chronic skin ulcerations. Despite appropriate treatment, the ulcers showed little improvement and the risk of amputation was high. Both patients underwent daily EBS therapy and standard dressing. After few weeks of treatment, major improvements were observed and all ulcers had healed. Conclusion. In patients with refractory ulceration, EBS therapy may be of real benefit in terms of faster healing. This case supports the supportive role for PEMFs in the treatment of skin ulceration in diabetes and is suggestive of a potential benefit of EBS in this clinical condition.

  15. Effects of magnetic nanoparticle-incorporated human bone marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields on injured rat spinal cord.

    Science.gov (United States)

    Cho, Hyunjin; Choi, Yun-Kyong; Lee, Dong Heon; Park, Hee Jung; Seo, Young-Kwon; Jung, Hyun; Kim, Soo-Chan; Kim, Sung-Min; Park, Jung-Keug

    2013-01-01

    Transplanting mesenchymal stem cells into injured lesions is currently under study as a therapeutic approach for spinal cord injury. In this study, the effects of a pulsed electromagnetic field (PEMF) on injured rat spinal cord were investigated in magnetic nanoparticle (MNP)-incorporated human bone marrow-derived mesenchymal stem cells (hBM-MSCs). A histological analysis revealed significant differences in MNP-incorporated cell distribution near the injured site under the PEMF in comparison with that in the control group. We confirmed that MNP-incorporated cells were widely distributed in the lesions under PEMF. The results suggest that MNP-incorporated hBM-MSCs were guided by the PEMF near the injured site, and that PEMF exposure for 8 H per day over 4 weeks promoted behavioral recovery in spinal cord injured rats. The results show that rats with MNP-incorporated hBM-MSCs under a PEMF were more effective on the Basso, Beattie, and Bresnahan behavioral test and suggest that the PEMF enhanced the action of transplanted cells for recovery of the injured lesion.

  16. The hemorheological safety of pulsed electromagnetic fields in postmenopausal women with osteoporosis in southwest China: a randomized, placebo controlled clinical trial.

    Science.gov (United States)

    Liu, Huifang; Yang, Lin; He, Hongchen; Zhou, Jun; Liu, Ying; Wang, Chunyan; Wu, Yuanchao; He, Chengqi

    2013-01-01

    Apart from medications, pulsed electromagnetic fields (PEMFs) are used to treat osteoporosis nowadays. However studies on hemorheological safety of PEMFs were scarce. This randomized, placebo controlled clinical trial assessed whether PEMFs could lead to significant hemorheological changes. Fifty-five postmenopausal women were randomly assigned to receive placebo or PEMFs. Venous blood samples were collected at baseline and after treatment to measure 14 hemorheological determinants. Independent samples t-test, paired samples t-test and chi-squared tests were performed respectively. Relationships between variables were determined by Pearson correlation analysis. Multiple linear stepwise regression analysis was used to explore predictors of selected determinants. No significant differences existed between the placebo and PEMFs groups for any of the 14 hemorheological determinants (P>0.05) or the percentage of patients with hemorheological determinant within reference range (P>0.05). Hematocrit was found to be correlated with BMI (P=0.007). The most significant predictor of blood reduced viscosity at low shear rate was blood viscosity at low shear rate. And blood reduced viscosity at high shear rate was the most important predictor of plasma viscosity. These results showed, compared with placebo, PEMFs treatment of postmenopausal osteoporosis was not associated with adverse changes in hemorheological determinants, which may contribute to venous thromboembolism.

  17. Combined effect of pulsed electromagnetic field and sound wave on In vitro and In vivo neural differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Choi, Yun-Kyong; Urnukhsaikhan, Enerelt; Yoon, Hee-Hoon; Seo, Young-Kwon; Cho, Hyunjin; Jeong, Jong-Seob; Kim, Soo-Chan; Park, Jung-Keug

    2017-01-01

    Biophysical wave stimulus has been used as an effective tool to promote cellular maturation and differentiation in the construction of engineered tissue. Pulsed electromagnetic fields (PEMFs) and sound waves have been selected as effective stimuli that can promote neural differentiation. The aim of this study was to investigate the synergistic effect of PEMFs and sound waves on the neural differentiation potential in vitro and in vivo using human bone marrow mesenchymal stem cells (hBM-MSCs). In vitro, neural-related genes in hBM-MSCs were accelerated by the combined exposure to both waves more than by individual exposure to PEMFs or sound waves. The combined wave also up-regulated the expression of neural and synaptic-related proteins in a three-dimensional (3-D) culture system through the phosphorylation of extracellular signal-related kinase. In a mouse model of photochemically induced ischemia, exposure to the combined wave reduced the infarction volume and improved post-injury behavioral activity. These results indicate that a combined stimulus of biophysical waves, PEMFs and sound can enhance and possibly affect the differentiation of MSCs into neural cells. Our study is meaningful for highlighting the potential of combined wave for neurogenic effects and providing new therapeutic approaches for neural cell therapy. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:201-211, 2017. © 2016 American Institute of Chemical Engineers.

  18. Gauge Invariant Fractional Electromagnetic Fields

    CERN Document Server

    Lazo, Matheus Jatkoske

    2011-01-01

    Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.

  19. Control over spectral characteristics of electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bolotov, V.N., E-mail: bolotov@ukrpost.u [Karazin National University, Kharkov 61007 (Ukraine); Fedorchenko, V.D.; Gritsenko, V.I.; Muratov, V.I. [Karazin National University, Kharkov 61007 (Ukraine)

    2010-05-01

    A theory was elaborated on transition radiation (TR) from electron bunches that pass through diaphragms of various geometries. At the base of this theory are induced charges and currents in the conductive diaphragms that are generated by electron bunches. An important role of the earth points of diaphragms was proven experimentally and theoretically. A feasibility study was made on controlling the spectra of electromagnetic pulses (EMP) and their directivity patterns. A new configuration for the diaphragms was proposed: twin diaphragms. Calculated and experimentally measured were spectra of such EMPs that were formed by the induced conduction current during the flight of the electron bunch through the twin diaphragms.

  20. Electromagnetic Fields and Bioenergy Phenomenon

    Directory of Open Access Journals (Sweden)

    İlhan Koşalay

    2014-08-01

    Full Text Available Electromagnetic energy is defined in the large frequency range and it shows its existence in different manners for every frequency range. When considering history of mankind, discovery of the electricity and presence of electrical and electronics based equipments is not very old. Human beings are exposed to electromagnetic fields and waves which they aren't used to live with those fields for ages. In this connection, lots of studies were done for the thesis of that these fields can produce harmful effects on people. Although results of the studies which were done in this area point out important subjects, sufficient outputs and judgments haven't been appeared yet in general meaning. This study was done to introduce findings which support that electromagnetic energy in some frequency can have beneficial effects on the living being.

  1. 脉冲电磁场对大鼠破骨细胞功能分子的影响%Effect of pulsed electromagnetic fields on rat osteoclasts

    Institute of Scientific and Technical Information of China (English)

    黄晶晶; 杨福军; 赵吉; 孙元明; 刘晓秋; 沈秀; 赵阿津

    2011-01-01

    Objective To study the effect of pulsed electromagnetic fields (PEMFs) on rat osteoclast rats. Methods Ten-week-old female SD rats were randomly divided into three groups; PEMFs group, CONTROL group, and Sham group. The rats of PEMFs group and CONTROL group were ovariectomized bilaterally. The rats of Sham group were sham-ovariectomized. The rats of PEMFs group were exposed to PEMFs 12 weeks after ovariectomy. However, the rats of the other groups were not treated with PEMFs. Femoral bone marrow of SD rats was collected after PEMFs. The osteoclasts were induced and cultured in vitro. Tartrate-resistant acid phosphatase (TRAP) was measured after 7 days. Immunofluorescence stainings of integrin av33, receptor activator of NF-kB (RANK), and cathepsin K were also measured respectively. Results After exposure to PEMFs, the TRAP measurement showed the morphology of the osteoclast. The immunofluorescence staining showed that positive osteoclasts were significantly reduced. Conclusion PEMFs has inhibitive effect on osteoclasts and can inhibit the bone resorbing activity of the osteoclast in SD rats.%目的 研究脉冲电磁场(puslsed electromagnetic fields,PEMFs)对大鼠破骨细胞的作用.方法 取10w龄雌性SD大鼠随机分为三组:PEMFs组、Control组和Sham组;其中PEMFs组、Control组进行双侧卵巢切除手术,Sham组不切除卵巢.术后12w对PEMFs组大鼠进行PEMFs作用(70Hz,2mT),Control组和Sham组不进行PEMFs作用.作用结束后,取大鼠股骨骨髓,进行体外破骨细胞诱导培养.7天后分别进行破骨细胞的抗酒石酸酸性磷酸酶(Tartrate-resistant acid phosphatase,TRAP)检测和整合素αvβ3、NF-KB受体激活子(receptor activator of NF-KB,RANK)、组织蛋白酶K( cathepsin K)免疫荧光染色检测.结果 经PEMFs作用后,TRAP检测显示破骨细胞形态;免疫荧光染色显示阳性破骨细胞也明显减少.结论 PEMFs对破骨细胞功能分子的表达有抑制作用,提示PEMFs作用可以抑制SD

  2. Simulation of pulsed ELF magnetic fields generated by GSM mobile phone handsets for human electromagnetic bioeffects research.

    Science.gov (United States)

    Perentos, N; Iskra, S; McKenzie, R J; Cosi, I

    2008-09-01

    Human provocation studies that investigate the effects of Global System for Mobiles (GSM) communication systems on the brain have focused on Radio Frequency (RF) exposure. We wish to further extend such study by investigating the effect of both RF and Extremely Low Frequency (ELF) field exposure, the latter generated by the GSM handset's battery switching. The use of a commercial handset as an exposure source for such investigations is problematic for a number of reasons and therefore a simulated exposure source, capable of producing both RF and ELF components of exposure, is desirable. As a first step in developing such a source, we have quantified and characterized the ELF field from several commercial handsets (the RF characteristics being already well understood). Through experimental measurement we deduce that these fields can be sufficiently simulated by a 9 mm radius loop residing 10 mm beneath the front surface of the handset device and carrying enough current to generate peak fields of 25 microT at the surface of the handset.

  3. Effects of weak, low-frequency pulsed electromagnetic fields (BEMER type) on gene expression of human mesenchymal stem cells and chondrocytes: an in vitro study.

    Science.gov (United States)

    Walther, Markus; Mayer, Florian; Kafka, Wolf; Schütze, Norbert

    2007-01-01

    In vitro effects of electromagnetic fields appear to be related to the type of electromagnetic field applied. Previously, we showed that human osteoblasts display effects of BEMER type electromagnetic field (BTEMF) on gene regulation. Here, we analyze effects of BTEMF on gene expression in human mesenchymal stem cells and chondrocytes. Primary mesenchymal stem cells from bone marrow and the chondrocyte cell line C28I2 were stimulated 5 times at 12-h intervals for 8 min each with BTEMF. RNA from treated and control cells was analyzed for gene expression using the affymetrix chip HG-U133A. A limited number of regulated gene products from both cell types mainly affect cell metabolism and cell matrix structure. There was no increased expression of cancer-related genes. RT-PCR analysis of selected transcripts partly confirmed array data. Results indicate that BTEMF in human mesenchymal stem cells and chondrocytes provide the first indications to understanding therapeutic effects achieved with BTEMF stimulation.

  4. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  5. Traditional beliefs and electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Colin A. Ross

    2011-09-01

    Full Text Available The author proposes that a wide range of traditional beliefs and practices may provide clues to real electromagnetic field interactions in the biosphere. For instance, evil eye beliefs may be a cultural elaboration of the sense of being stared at, which in turn may have a basis in real electromagnetic emissions through the eye. Data to support this hypothesis are presented. Other traditional beliefs such as remote sensing of game and the importance of connection to the Earth Mother may also contain a kernel of truth. A series of testable scientific hypotheses concerning traditional beliefs and electromagnetic fields is presented. At this stage, the theory does not have sufficient evidence to be accepted as proven; its purpose is to stimulate thought and research

  6. Pulsed electromagnetic stimulation in nonunion of tibial diaphyseal fractures

    Directory of Open Access Journals (Sweden)

    Gupta Anil

    2009-01-01

    Full Text Available Background: Nonunion of long bones is a difficult clinical problem and challenges the clinical acumen of surgeons. Multiple surgical or nonsurgical modalities have been used to treat nonunions. Noninvasive pulsed electromagnetic stimulation is an entity known to affect the piezoelectric phenomenon of bone forming cells. We conducted a study on 45 long-bone fractures of tibia treated by pulsed electromagnetic stimulation, which are analyzed and reported. Materials and Methods: A total of 45 tibial fractures with established atrophic nonunion were enrolled between 1981 and 1988. All the patients had abnormal mobility and no or minimal gap at fracture site with no evidence of callus formation across the fracture site. The patients′ age ranged between 24 and 68 years; 40 were men and 5 were women. All patients having evidence of infection, implant in situ , and gap nonunions were excluded from study. Pulsed electromagnetic stimulation was given using above-knee plaster of Paris cast (0.008 Weber/m 2 magnetic field was created for 12 h/day. The average duration for pulsed electromagnetic stimulation (PEMS therapy was 8.35 weeks, with the range being 6-12 weeks. The cases were evaluated at 6 weeks and subsequently every 6-weekly interval for clinical and radiological union. The withdrawal of therapy was decided as per clinicoradiological evidence of union. Results: All but three patients showed evidence of union. About 35% (n = 16 cases showed union in 10 weeks, and 85% (n = 38 cases showed union in 4 months. The average duration of therapy using PEMS was 8.35±0.48 weeks, and the average duration of immobilization was 3.02 ± 0.22 months. Three cases that did not show evidence of union were poorly compliant for the apparatus of PEMS. Conclusion: PEMS is a useful noninvasive modality of treatment for difficult nonunion of long bones.

  7. Explanations, Education, and Electromagnetic Fields.

    Science.gov (United States)

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  8. Fast electromagnetic field strength probes

    NARCIS (Netherlands)

    Leferink, Frank; Serra, Ramiro

    2013-01-01

    Diode detectors and thermocouple detectors are conventionally used to measure electromagnetic field strength. Both detectors have some disadvantages for applications where a fast response and a high dynamic range is required. The diode detector is limited in dynamic range. The dynamic range is impor

  9. Biological effects of electromagnetic fields

    African Journals Online (AJOL)

    2012-02-28

    Feb 28, 2012 ... cell level studies have shown that electromagnetic fields do not have a directly .... The ionic flows, which can be formed in case these molecules are affected from ...... Electr Magn Biol Med 1st Orlando FL. 13. Magnusson M ...

  10. Electromagnetic Fields and Cancer

    Science.gov (United States)

    ... magnetic fields and the risk of brain tumors. Neuro-Oncology 2009; 11(3):242-249. [PubMed Abstract] ... Websites POLICIES Accessibility Comment Policy Disclaimer FOIA Privacy & Security Reuse & Copyright Syndication Services Website Linking U.S. Department ...

  11. Pulsed electromagnetic fields improve bone microstructure and strength in ovariectomized rats through a Wnt/Lrp5/β-catenin signaling-associated mechanism.

    Science.gov (United States)

    Jing, Da; Li, Feijiang; Jiang, Maogang; Cai, Jing; Wu, Yan; Xie, Kangning; Wu, Xiaoming; Tang, Chi; Liu, Juan; Guo, Wei; Shen, Guanghao; Luo, Erping

    2013-01-01

    Growing evidence has demonstrated that pulsed electromagnetic field (PEMF), as an alternative noninvasive method, could promote remarkable in vivo and in vitro osteogenesis. However, the exact mechanism of PEMF on osteopenia/osteoporosis is still poorly understood, which further limits the extensive clinical application of PEMF. In the present study, the efficiency of PEMF on osteoporotic bone microarchitecture and bone quality together with its associated signaling pathway mechanisms was systematically investigated in ovariectomized (OVX) rats. Thirty rats were equally assigned to the Control, OVX and OVX+PEMF groups. The OVX+PEMF group was subjected to daily 8-hour PEMF exposure with 15 Hz, 2.4 mT (peak value). After 10 weeks, the OVX+PEMF group exhibited significantly improved bone mass and bone architecture, evidenced by increased BMD, Tb.N, Tb.Th and BV/TV, and suppressed Tb.Sp and SMI levels in the MicroCT analysis. Three-point bending test suggests that PEMF attenuated the biomechanical strength deterioration of the OVX rat femora, evidenced by increased maximum load and elastic modulus. RT-PCR analysis demonstrated that PEMF exposure significantly promoted the overall gene expressions of Wnt1, LRP5 and β-catenin in the canonical Wnt signaling, but did not exhibit obvious impact on either RANKL or RANK gene expressions. Together, our present findings highlight that PEMF attenuated OVX-induced deterioration of bone microarchitecture and strength in rats by promoting the activation of Wnt/LRP5/β-catenin signaling rather than by inhibiting RANKL-RANK signaling. This study enriches our basic knowledge to the osteogenetic activity of PEMF, and may lead to more efficient and scientific clinical application of PEMF in inhibiting osteopenia/osteoporosis.

  12. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature

    Directory of Open Access Journals (Sweden)

    Assiotis Aggelos

    2012-06-01

    Full Text Available Abstract Background Pulsed electromagnetic fields (PEMF stimulation for the treatment of bone nonunion or delayed union have been in use for several years, but on a limited basis. The aim of this study was to assess the overall efficacy of the method in tibial delayed unions and nonunions and identify factors that could affect the final outcome. Methods We prospectively reviewed 44 patients (27 men with a mean age of 49.6 ± 18.4 years that received PEMF therapy due to tibial shaft delayed union or nonunion. In all cases, fracture gap was less than 1 cm and infection or soft tissue defects were absent. Results Fracture union was confirmed in 34 cases (77.3%. No relationship was found between union rate and age (p = 0.819, fracture side (left or right (p = 0.734, fracture type (simple or comminuted, open or closed (p = 0.111, smoking (p = 0.245, diabetes (p = 0.68 and initial treatment method applied (plates, nail, plaster of paris (p = 0.395. The time of treatment onset didn’t affect the incidence of fracture healing (p = 0.841. Although statistical significance was not demonstrated, longer treatment duration showed a trend of increased probability of union (p = 0.081. Conclusion PEMF stimulation is an effective non-invasive method for addressing non-infected tibial union abnormalities. Its success is not associated with specific fracture or patient related variables and it couldn’t be clearly considered a time-dependent phenomenon.

  13. Effects of 50 Hz pulsed electromagnetic fields on the growth and cell cycle arrest of mesenchymal stem cells: an in vitro study.

    Science.gov (United States)

    Li, Xinping; Zhang, Mingsheng; Bai, Liming; Bai, Wenfang; Xu, Weicheng; Zhu, Hongxiang

    2012-12-01

    Mesenchymal stem cells (MSCs) are capable of self-renew and multipotent differatiation which allows them to be sensitive to microenvironment is altered. Pulsed electromagnetic fields (PEMF) can affect cellular physiology of some types of cells. This study was undertaken to investigate the effects of PEMF on the growth and cell cycle arrest of MSCs expanded in vitro. To achieve this, cultured of normal rat MSCs, the treatment groups were respectively irradiated by 50 Hz PEMF at 10 mT of flux densities for 3 or 6 h. The effects of PEMF on cell proliferation, cell cycle arrest, and cell surface antigen phenotype were investigated. Our results showed that exposed MSCs had a significant proliferative capacity (P cell growth was not different (P>0.05) at an earlier phase after PEMF treatment. Exposure to PEMF had a significant increase the percentage of MSCs in G1 phase compare with the control group, with a higher percentage of cells in G1 phase exposed for 6 h then that for 3 h. At the 16th hour after treatment, PEMF had no significant effect on cell proliferation and cell cycle (P>0.05). These results suggested that PEMF enhanced MSCs proliferation with time-independent and increased the percentage of cells at the G1 phase of the cell cycle in a time-dependent manner, and the effect of PEMF on the cell proliferation and cell cycle arrest of MSCs was temporal after PEMF treatment.

  14. Is there a role of pulsed electromagnetic fields in management of patellofemoral pain syndrome? Randomized controlled study at one year follow-up.

    Science.gov (United States)

    Servodio Iammarrone, Clemente; Cadossi, Matteo; Sambri, Andrea; Grosso, Eugenio; Corrado, Bruno; Servodio Iammarrone, Fernanda

    2016-02-01

    Patellofemoral pain syndrome (PFPS) is a common cause of recurrent or chronic knee pain in young adults, generally located in the retropatellar region. Etiology is controversial and includes several factors, such as anatomical defects, muscular imbalance, or joint overuse. Good results have been reported with exercise therapy, including home exercise program (HEP). Joint inflammation with increase of pro-inflammatory cytokines levels in the synovial fluid might be seen especially when chondromalacia becomes evident. Biophysical stimulation with pulsed electromagnetic fields (PEMFs) has shown anti-inflammatory effects and anabolic chondrocyte activity. The purpose of this randomized controlled study was to evaluate if the combination of HEP with PEMFs was more effective than HEP alone in PFPS treatment. Thirty-one PFPS patients were enrolled in this study. All patients were instructed to train with HEP. Patients in the PEMFs group associated HEP with PEMFs. Function and pain were assessed with Victorian Institute of Sport Assessment score (VISA), Visual Analog Scale (VAS), and Feller's Patella Score at baseline at 2, 6, and 12 months of follow-up. Drug assumption was also recorded. Increase in VISA score was significantly higher in PEMFs group compared to controls at 6 and 12 months, as well as the increase in the Feller's Patella Score at 12 months. VAS score became significantly lower in the PEMFs group with respect to control group since 6 month follow-up. Pain reduction obtained with PEMFs enhanced practicing therapeutic exercises leading to a better recovery process; this is extremely important in addressing the expectations of young patients, who wish to return to sporting activities.

  15. Rydberg Wave Packets and Half-Cycle Electromagnetic Pulses

    Science.gov (United States)

    Raman, Chandra S.

    1998-05-01

    This dissertation summarizes an examination of the dynamics of atomic Rydberg wave packets with coherent pulses of THz electromagnetic radiation consisting of less than a single cycle of the electric field. The bulk of the energy is contained in just a half-cycle. Previous work ( R. Jones, D. You, and P. Bucksbaum, ``Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 70, 1993. had shown how these half-cycle pulses can be used to ionize the highly excited states of an atom, and that a classical view of electronic motion in the atom explains the ionization mechanism. To further probe the boundary between classical trajectories and quantum mechanics, in this work I investigate dynamical combinations of Rydberg states, or Rydberg wave packets, and how they ionize under the influence of a half-cycle electromagnetic pulse. With time-domain techniques I am able to extract the dynamics of the wave packet from the ionization rate, and to observe wave packet motion in both the electronic radial ( C. Raman, C. Conover, C. Sukenik, and P. Bucksbaum, ``Ionization of Rydberg wavepackets by sub-picosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 76, 1996.and angular ( C. Raman, T. Weinacht, and P. Bucksbaum, ``Stark wavepackets viewed with half cycle pulses.'' Phys. Rev. A), vol. 55, No. 6, 1997. coordinates. This is the first time a wavepacket technique has been used to view electron motion everywhere on its trajectory, and not just at the nucleus. This is the principal feature of half-cycle pulse ionization. Semiclassical ideas of ionization in conjunction with quantum descriptions of the wave packet, are capable of reproducing the main trends in the data, and in the absence of a rigorous model I rely on these. Experiments of this nature provide examples of the ongoing effort to use the coherent properties of radiation to control electronic motion in an atom, as well as to probe the boundaries between

  16. Design of a randomized controlled trial on the effect on return to work with coaching plus light therapy and pulsed electromagnetic field therapy for workers with work-related chronic stress.

    Science.gov (United States)

    Schoutens, Antonius M C; Frings-Dresen, Monique H W; Sluiter, Judith K

    2016-07-19

    Work-related chronic stress is a common problem among workers. The core complaint is that the employee feels exhausted, which has an effect on the well-being and functioning of the employee, and an impact on the employer and society. The employee's absence is costly due to lost productivity and medical expenses. The usual form of care for work-related chronic stress is coaching, using a cognitive-behavioural approach whose primary aim is to reduce symptoms and improve functioning. Light therapy and pulsed electromagnetic field therapy are used for the treatment of several mental and physical disorders. The objective of this study is to determine whether coaching combined with light therapy plus pulsed electromagnetic field therapy is an effective treatment for reducing absenteeism, fatigue and stress, and improving quality of life compared to coaching alone. The randomized placebo-controlled trial consists of three arms. The population consists of 90 participants with work-related chronic stress complaints. The research groups are: (i) intervention group; (ii) placebo group; and (iii) control group. Participants in the intervention group will be treated with light therapy/pulsed electromagnetic field therapy for 12 weeks, twice a week for 40 min, and coaching (once a fortnight for 50 min). The placebo group receives the same treatment but with the light and pulsed electromagnetic field switched to placebo settings. The control group receives only coaching for 12 weeks, a course of six sessions, once a fortnight for 50 min. The primary outcome is the level of return to work. Secondary outcomes are fatigue, stress and quality of life. Outcomes will be measured at baseline, 6 weeks, 12 and 24 weeks after start of treatment. This study will provide information about the effectiveness of coaching and light therapy plus pulsed electromagnetic field therapy on return to work, and secondly on fatigue, stress and quality of life in people with work-related chronic

  17. Electromagnetic Fields and Public Health: Mobile Phones

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Electromagnetic fields and public health: mobile phones Fact sheet N° ... an estimated 6.9 billion subscriptions globally. The electromagnetic fields produced by mobile phones are classified by the ...

  18. PERCEPTION LEVEL EVALUATION OF RADIO ELECTRONIC MEANS TO A PULSE OF ELECTROMAGNETIC RADIATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The method for evaluating the perception level of electronic means to pulsed electromagnetic radiation is consid- ered in this article. The electromagnetic wave penetration mechanism towards the elements of electronic systems and the impact on them are determined by the intensity of the radiation field on the elements of electronic systems. The impact of electromagnetic radiation pulses to the electronic systems refers to physical and analytical parameters of the relationship between exposure to pulses of electromagnetic radiation and the sample parameters of electronic systems. A physical and mathematical model of evaluating the perception level of electronic means to pulsed electromagnetic radiation is given. The developed model was based on the physics of electronics means failure which represents the description of electro- magnetic, electric and thermal processes that lead to the degradation of the original structure of the apparatus elements. The conditions that lead to the total equation electronic systems functional destruction when exposed to electromagnetic radia- tion pulses are described. The internal characteristics of the component elements that respond to the damaging effects are considered. The ratio for the power failure is determined. A thermal breakdown temperature versus pulse duration of expo- sure at various power levels is obtained. The way of evaluation the reliability of electronic systems when exposed to pulses of electromagnetic radiation as a destructive factor is obtained.

  19. A System for Electromagnetic Field Conversion

    DEFF Research Database (Denmark)

    2003-01-01

    A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...

  20. Approaches to Simulating the Prompt Electromagnetic Pulse

    Science.gov (United States)

    Friedman, Alex; Cohen, Bruce I.; Eng, Chester D.; Farmer, William A.; Grote, David P.; Kruger, Hans W.; Larson, David J.

    2016-10-01

    LLNL is developing a suite of modern tools for simulating the generation and propagation of the prompt (E1) electromagnetic pulse (EMP). These include the 3-D EMPulse code, based on PIC methods with a Cartesian grid in the laboratory frame, and a companion 3-D approach which builds on the methods used in Longmire's fast-running CHAP code. In CHAP, and in our own CHAP-lite, 1-D spherical symmetry is assumed, and the calculation takes advantage of a separation of scales. The independent coordinates are (r, τ) , where r is the distance from the source and τ = t-r/c; the pulse varies slowly with r at fixed τ, so a coarse radial grid can be used. We seek similar efficiencies in 3-D, incorporating non-spherically-symmetric physics via a vector spherical harmonic decomposition. For each (l,m) harmonic, the radial equation is similar to that in CHAP-lite. We describe this approach, along with other aspects of our project. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Direct space-time observation of pulse tunneling in an electromagnetic band gap

    Science.gov (United States)

    Doiron, Serge; Haché, Alain; Winful, Herbert G.

    2007-08-01

    We present space-time-resolved measurements of electromagnetic pulses tunneling through a coaxial electromagnetic band gap structure. The results show that during the tunneling process the field distribution inside the barrier is an exponentially decaying standing wave whose amplitude increases and decreases as it slowly follows the temporal evolution of the input pulse. At no time is a pulse maximum found inside the barrier, and hence the transmitted peak is not the incident peak that has propagated to the exit. The results support the quasistatic interpretation of tunneling dynamics and confirm that the group delay is not the traversal time of the input pulse peak.

  2. Gallilei covariant quantum mechanics in electromagnetic fields

    Directory of Open Access Journals (Sweden)

    H. E. Wilhelm

    1985-01-01

    Full Text Available A formulation of the quantum mechanics of charged particles in time-dependent electromagnetic fields is presented, in which both the Schroedinger equation and wave equations for the electromagnetic potentials are Galilei covariant, it is shown that the Galilean relativity principle leads to the introduction of the electromagnetic substratum in which the matter and electromagnetic waves propagate. The electromagnetic substratum effects are quantitatively significant for quantum mechanics in reference frames, in which the substratum velocity w is in magnitude comparable with the velocity of light c. The electromagnetic substratum velocity w occurs explicitly in the wave equations for the electromagnetic potentials but not in the Schroedinger equation.

  3. Pulse Field Gel Electrophoresis.

    Science.gov (United States)

    Sharma-Kuinkel, Batu K; Rude, Thomas H; Fowler, Vance G

    2016-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments.

  4. Particle Physics in Intense Electromagnetic Fields

    CERN Document Server

    Kurilin, A V

    1999-01-01

    The quantum field theory in the presence of classical background electromagnetic fields is reviewed. We give a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. We also discuss the possibilities of searching new physics through the investigations of quantum phenomena induced by the strong electromagnetic environment.

  5. Wireless Phones Electromagnetic Field Radiation Exposure Assessment

    OpenAIRE

    A. D. Usman; W. F.W. Ahmad; M. Z. A. A. Kadir; M. Mokhtar

    2009-01-01

    Problem statement: Inadequate knowledge of electromagnetic field emitted by mobile phones and increased usage at close proximity, created a lot of skepticism and speculations among end users on its safety or otherwise. Approach: In this study, near field electromagnetic field radiation measurements were conducted on different brand of mobile phones in active mode using a tri-axis isotropic probe and electric field meter. Results: The highest electromagnetic field exposure was recorded when th...

  6. Scattering-induced changes in the degree of polarization of a stochastic electromagnetic plane-wave pulse.

    Science.gov (United States)

    Ding, Chaoliang; Cai, Yangjian; Zhang, Yongtao; Pan, Liuzhan

    2012-06-01

    The scattering of a stochastic electromagnetic plane-wave pulse on a deterministic spherical medium is investigated. An analytical formula for the degree of polarization (DOP) of the scattered field in the far zone is derived. Letting pulse duration T(0) → ∞, our formula can be applied to study the scattering of a stationary stochastic electromagnetic light wave. Numerical results show that the DOP of the far zone field is closely determined by the size of the spherical medium when the incident field is a stochastic electromagnetic plane-wave pulse. This is much different from the case when the incident field is a stationary stochastic electromagnetic light wave, where the DOP of the far zone field is independent of the size of the medium. One may obtain the information of the spherical medium by measuring the scattering-induced changes in the DOP of a stochastic electromagnetic plane-wave pulse.

  7. Electromagnetic pulsed thermography for natural cracks inspection

    Science.gov (United States)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-02-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  8. Electromagnetic pulsed thermography for natural cracks inspection

    Science.gov (United States)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-01-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361

  9. Electromagnetic field anomalies above an isometric depression

    Science.gov (United States)

    Golubtsova, N. S.

    1981-12-01

    The paper examines the three-dimensional simulation of the electromagnetic field above an isometric depression with conducting deposits. The model makes it possible to study the development of electromagnetic anomalies over such a depression and to make qualitative as well as quantitative assessments of the dependence of electromagnetic anomalies on field frequency, the dimensions of geoelectric inhomogeneities, and the specific resistance of the foundation of the depression. The present approach can be used in geoelectric and magnetotelluric studies of electromagnetic anomalies.

  10. Low-frequency pulsed electromagnetic fields for treatment of osteoporosis%低频脉冲电磁场治疗骨质疏松的机制及临床应用

    Institute of Scientific and Technical Information of China (English)

    赵琳

    2016-01-01

    BACKGROUND: The most commonly used physiotherapies for osteoporosis include low-frequency pulsed electromagnetic field, ultrashort wave therapy, and extracorporeal shock wave therapy. Because of the uncertain intensity of extracorporeal shock wave and uncertain efficacy of ultrasound therapy, low-frequency pulsed electromagnetic fields have become the most widely used treatment for osteoporosis in clinic. OBJECTIVE: To review the mechanism and clinical application of low-frequency pulsed electromagnetic fields in the treatment of osteoporosis. METHODS: A computer search by the first author of PubMed and CNKI databases was performed for relevant articles using the keywords of “pulsed electromagnetic fields and osteoporosis” or “osteoblast or osteoclast” in English and “osteoporosis; pulsed pulsed electromagnetic fields; osteoblasts; osteoclasts” in Chinese, respectively. After initial search, there were 169 articles, and according to the inclusion criteria, 29 highly relevant articles that are authentic and have clear views were analyzed. RESULTS AND CONCLUSION: The pulsed electromagnetic field as a non-drug therapy is characterized by no trauma, no infection, simple operation, low cost, long-term use, and good safety. Its efficacy has been increasingly affirmed by researchers and clinicians. Pulsed electromagnetic fields can promote the synthesis of DNA, influence the proliferation and differentiation of osteoblasts, increase the apoptosis of osteoclasts, and have a certain window effect. Pulsed electromagnetic fields can effectively relieve pain and increase bone density level in patients with osteoporosis, which can increase its efficacy in combination with other drugs and have a wide range of clinical applications.%背景:目前常用的骨质疏松症物理治疗方法主要有低频脉冲电磁场疗法、超短波疗法、体外冲击波疗法等,但体外冲击波疗法的强度剂量问题尚未解决,超声疗法

  11. Pulsed electromagnetic energy therapy in third molar surgery.

    Science.gov (United States)

    Hutchinson, D; Witt, S; Fairpo, C G

    1978-12-01

    Pulsed electromagnetic energy is being increasingly employed to reduced symptoms and enhance the healing process following tissue injury. A double-blind placebo-controlled trial has been carried out to assess the value of electromagnetic energy in third molar surgery, but no significant benefit has been found.

  12. Electromagnetic fields, environment and health

    CERN Document Server

    Perrin, Anne

    2013-01-01

    A good number of false ideas are circulating on the effects of non-ionizing radiations on our health, which can lead to an oversimplification of the issue, to potentially dangerous misconceptions or to misleading data analysis. Health effects may be exaggerated, or on the contrary underplayed. The authors of this work (doctors, engineers and researchers) have endeavored to supply validated and easily understandable scientific information on the electromagnetic fields and their biological and health effects. After a general review of the physics of the waves and a presentation of non-ionizing r

  13. Sensing Random Electromagnetic Fields and Applications

    Science.gov (United States)

    2015-06-23

    AFRL-OSR-VA-TR-2015-0172 SENSING RANDOM ELECTROMAGNETIC FIELDS AND APPLICATIONS Aristide Dogariu UNIVERSITY OF CENTRAL FLORIDA Final Report 06/23... Electromagnetic Fields and Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...14. ABSTRACT Random electromagnetic fields (REF) exist in all forms and one common origin is a result of the interaction of coherent fields with

  14. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    Science.gov (United States)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.

  15. Influence of different types of electromagnetic fields on skin reparatory processes in experimental animals.

    Science.gov (United States)

    Matic, Milan; Lazetic, Bogosav; Poljacki, Mirjana; Djuran, Verica; Matic, Aleksandra; Gajinov, Zorica

    2009-05-01

    Wound healing is a very complex process, some phases of which have only recently been explained. Magnetic and electromagnetic fields can modulate this process in a non-thermal way. The aim of this research was to compare the influence of constant and pulsed electromagnetic fields and low-level laser therapy (LLLT) on wound healing in experimental animals. The experiment was conducted on 120 laboratory rats divided into four groups of 30 animals each (constant electromagnetic field, pulsed electromagnetic field, LLLT and control group). It lasted for 21 days. Under the influence of the constant electromagnetic field the healing of the skin defect was accelerated in comparison with the control group. The difference was statistically significant in all the weeks of the experiment at the P electromagnetic field (P electromagnetic fields have a promoting effect on the wound healing process.

  16. Characteristics of Electromagnetic Pulse Coupling into Annular Apertures

    Directory of Open Access Journals (Sweden)

    Yan-Peng Sun

    2013-11-01

    Full Text Available Electromagnetic pulse (EMP coupling into the annular apertures can disturb or damage much electronic equipment. To enhance electronic system’s  capability of anti-electromagnetic interference, the finite difference time domain method (FDTD was employed to study the characteristics of electromagnetic pulse coupling into the cavity enclosures with annular apertures. The coupling characteristics of annular apertures with different shapes (rectangle, square and circle were discussed. It shows that, in the case of the same aperture area, the coupling energy of electromagnetic pulse into the circular annular aperture is smaller than that into the rectangular and the square ones. To the rectangular annular aperture, while the polarization direction of the incident electromagnetic pulse is perpendicular to the long side of the rectangular annular aperture, the coupling energy is larger when the aspect ratio of the rectangular annular aperture is larger. The coupling effect of incident pulse with short pulse width is obviously better than the one with longer pulse width. The resonance phenomenon of the coupled waveform occurs in the cavity.

  17. Quantum processes in short and intensive electromagnetic fields

    CERN Document Server

    Titov, Alexander I; Hosaka, Atsushi; Takabe, Hideaki

    2015-01-01

    This work provides an overview of our recent results in studying two most important and widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g.\\ laser) wave field or generalized Breit-Wheeler process, and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that the probabilities of particle production in both processes are determined by interplay of two dynamical effects, where the first one is related to the shape and duration of the pulse and the second one is non-linear dynamics of the interaction of charged fermions with a strong electromagnetic field. We elaborate suitable expressions for the production probabilities and cross sections, convenient for studying evolution of the plasma in presence of strong electromagnetic fields

  18. Quantum processes in short and intensive electromagnetic fields

    Science.gov (United States)

    Titov, A. I.; Kämpfer, Burkhard; Hosaka, Atsushi; Takabe, Hideaki

    2016-05-01

    This work provides an overview of our recent results in studying two most important and widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g. laser) wave field or generalized Breit-Wheeler process, and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that the probabilities of particle production in both processes are determined by interplay of two dynamical effects, where the first one is related to the shape and duration of the pulse and the second one is non-linear dynamics of the interaction of charged fermions with a strong electromagnetic field. We elaborate suitable expressions for the production probabilities and cross sections, convenient for studying evolution of the plasma in presence of strong electromagnetic fields.

  19. Trapped field properties of a Y–Ba–Cu–O bulk by pulsed field magnetization using a split coil inserted by iron yokes with various geometries and electromagnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K., E-mail: t2216017@iwate-u.ac.jp [Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Ainslie, M.D. [Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Fujishiro, H.; Naito, T. [Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Shi, Y-H.; Cardwell, D.A. [Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2017-05-15

    Highlights: • The trapped field characteristics of a standard Y–Ba–Cu–O bulk magnetized by PFM was investigated using a split coil with three kinds of iron yokes inserted in the bores of coil,both experimentally and numerically. • Numerical results encourage better understanding of the role of yoke, including the typical behavior of the magnetic flux, such as a flux jump during PFM. • A higher saturation magnetic flux density of the yoke material was effective to reduce flux flow in the descending stage of the pulsed field. • A conductivity of the yoke material also acts to reduce the velocity of the flux intruding the bulk because of eddy currents that flow in the yoke that oppose the magnetization, which reduces the temperature rise in the bulk. - Abstract: We have investigated, both experimentally and numerically, the trapped field characteristics of a standard Y–Ba–Cu–O bulk of 30 mm in diameter and 14 mm in thickness magnetized by pulsed field magnetization (PFM) using a split coil, in which three kinds of iron yoke are inserted in the bore of the coil: soft iron with a flat surface, soft iron with a taper, and permendur (50Fe + 50Co alloy) with a flat surface. The highest trapped field, B{sub Tmax}, of 2.93 T was achieved at 40 K in the case of the permendur yoke, which was slightly higher than that obtained for the flat soft iron or the tapered soft iron yokes, and was much higher than 2.20 T in the case without the yoke. The insertion effect of the yoke on the trapped field characteristics was also investigated using numerical simulations. The results suggest that the saturation magnetic flux density, B{sub sat}, of the yoke acts to reduce the flux flow due to its hysteretic magnetization curve and the higher electrical conductivity, σ, of the yoke material also acts to suppress the flux increase rate. A flux jump (or flux leap) can be reproduced in the ascending stage of PFM using numerical simulation, using an assumption of relatively

  20. [Electromagnetic field intolerance: a nonexistent disease?].

    Science.gov (United States)

    Safářová, Sárka

    2014-01-01

    Idiopathic Environmental Intolerance Attributed to Electromagnetic Fields is a relatively new phenomenon, which is not fully understood. Extensive research has been carried out to exclude or confirm out that symptoms reported by sufferers are caused by electromagnetic field. This article describes outcomes of recent experiments and meta-analyses. The article may answer to the question if electromagnetic field does really cause reported symptoms, furthermore, it provides hypothetical explanation of this phenomenon.

  1. Interaction of free charged particles with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; Goor, van F.A.; Boller, K.-J.

    2004-01-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM ch

  2. Three-dimensional electromagnetic breathers in carbon nanotubes with the field inhomogeneity along their axes

    Science.gov (United States)

    Zhukov, Alexander V.; Bouffanais, Roland; Fedorov, Eduard G.; Belonenko, Mikhail B.

    2013-10-01

    We study the propagation of extremely short electromagnetic three-dimensional bipolar pulses in an array of semiconductor carbon nanotubes. The heterogeneity of the pulse field along the axis of the nanotubes is accounted for the first time. The evolution of the electromagnetic field and the charge density of the sample are described by Maxwell's equations supplemented by the continuity equation. Our analysis reveals for the first time the possibility of propagation of three-dimensional electromagnetic breathers in CNTs arrays. Specifically, we found that the propagation of short electromagnetic pulse induces a redistribution of the electron density in the sample.

  3. Electromagnetic fields in stratified media

    CERN Document Server

    Li, Kai

    2009-01-01

    Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.

  4. Quantization of Electromagnetic Fields in Cavities

    Science.gov (United States)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  5. Mitigation of Electromagnetic Pulse (EMP) Effects from Short-Pulse Lasers and Fusion Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Eder, D C; Throop, A; Brown, Jr., C G; Kimbrough, J; Stowell, M L; White, D A; Song, P; Back, N; MacPhee, A; Chen, H; DeHope, W; Ping, Y; Maddox, B; Lister, J; Pratt, G; Ma, T; Tsui, Y; Perkins, M; O' Brien, D; Patel, P

    2009-03-06

    Our research focused on obtaining a fundamental understanding of the source and properties of EMP at the Titan PW(petawatt)-class laser facility. The project was motivated by data loss and damage to components due to EMP, which can limit diagnostic techniques that can be used reliably at short-pulse PW-class laser facilities. Our measurements of the electromagnetic fields, using a variety of probes, provide information on the strength, time duration, and frequency dependence of the EMP. We measure electric field strengths in the 100's of kV/m range, durations up to 100 ns, and very broad frequency response extending out to 5 GHz and possibly beyond. This information is being used to design shielding to mitigate the effects of EMP on components at various laser facilities. We showed the need for well-shielded cables and oscilloscopes to obtain high quality data. Significant work was invested in data analysis techniques to process this data. This work is now being transferred to data analysis procedures for the EMP diagnostics being fielded on the National Ignition Facility (NIF). In addition to electromagnetic field measurements, we measured the spatial and energy distribution of electrons escaping from targets. This information is used as input into the 3D electromagnetic code, EMSolve, which calculates time dependent electromagnetic fields. The simulation results compare reasonably well with data for both the strength and broad frequency bandwidth of the EMP. This modeling work required significant improvements in EMSolve to model the fields in the Titan chamber generated by electrons escaping the target. During dedicated Titan shots, we studied the effects of varying laser energy, target size, and pulse duration on EMP properties. We also studied the effect of surrounding the target with a thick conducting sphere and cube as a potential mitigation approach. System generated EMP (SGEMP) in coaxial cables does not appear to be a significant at Titan. Our

  6. Electromagnetic field and brain development.

    Science.gov (United States)

    Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra

    2016-09-01

    Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system.

  7. Focused electromagnetic doughnut pulses and their interaction with interfaces and nanostructures.

    Science.gov (United States)

    Raybould, Tim; Fedotov, Vassili; Papasimakis, Nikitas; Youngs, Ian; Zheludev, Nikolay

    2016-02-22

    "The "focused doughnut", a single-cycle electromagnetic perturbation of toroidal topology with inseparable time and spatial dependencies propagates at the speed of light in vacuum, as was shown by Hellwarth and Nouchi in 1996. While normal incidence reflection and refraction of conventional electromagnetic pulses in isotropic media do not lead to polarization changes, "focused doughnut" pulses undergo complex field transformations owing to the toroidal field structure and the presence of longitudinal components. We also demonstrate that "focused doughnuts" can interact strongly with structured media exciting dominant dynamic toroidal dipoles in spherical dielectric particles."

  8. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    Science.gov (United States)

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  9. Influence of Turbulent Atmosphere on Polarization Properties of Stochastic Electromagnetic Pulsed Beams

    Institute of Scientific and Technical Information of China (English)

    DING Chao-Liang; ZHAO Zhi-Guo; LI Xiao-Feng; PAN Liu-Zhan; YUAN Xiao

    2011-01-01

    Using the coherence theory of non-stationary fields and the characterization of stochastic electromagnetic pulsed beams, the analytical expression for the spectral degree of polarization of stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beams in turbulent atmosphere is derived and is used to study the polarization properties of stochastic electromagnetic GSMP beams propagating through turbulent atmosphere. The results of numerical calculation are given to illustrate the dependence of spectral degree of polarization on the pulse frequency, refraction index structure constant and spatial correlation length. It is shown that, compared with free-space case, in turbulent atmosphere propagation there are two positions at which the on-axis spectral degree of polarization P is equal to zero. The position change depends on the pulse frequency, refraction index structure constant and spatial correlation length.%@@ Using the coherence theory of non-stationary fields and the characterization of stochastic electromagnetic pulsed beams, the analytical expression for the spectral degree of polarization of stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beams in turbulent atmosphere is derived and is used to study the polarization properties of stochastic electromagnetic GSMP beams propagating through turbulent atmosphere.The results of numerical calculation are given to illustrate the dependence of spectral degree of polarization on the pulse frequency, refraction index structure constant and spatial correlation length.It is shown that, compared with free-space case, in turbulent atmosphere propagation there are two positions at which the on-axis spectral degree of polarization P is equal to zero.The position change depends on the pulse frequency, refraction index structure constant and spatial correlation length.

  10. Oxidative stress is reduced in Wistar rats exposed to smoke from tobacco and treated with specific broad-band pulse electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Bajić V.

    2009-01-01

    Full Text Available There have been a number of attempts to reduce the oxidative radical burden of tobacco. A recently patented technology, pulse electromagnetic technology, has been shown to induce differential action of treated tobacco products versus untreated products on the production of reactive oxygen species (ROS in vivo. In a 90-day respiratory toxicity study, Wistar rats were exposed to cigarette smoke from processed and unprocessed tobacco and biomarkers of oxidative stress were compared with pathohistological analysis of rat lungs. Superoxide dismutase (SOD activity was decreased in a dose-dependent manner to 81% in rats exposed to smoke from normal cigarettes compared to rats exposed to treated smoke or the control group. These results correspond to pathohistological analysis of rat lungs, in which those rats exposed to untreated smoke developed initial signs of emphysema, while rats exposed to treated smoke showed no pathology, as in the control group. The promise of inducing an improved health status in humans exposed to smoke from treated cigarettes merits further investigation.

  11. Medical applications of electromagnetic fields

    Science.gov (United States)

    Lai, Henry C.; Singh, Narendra P.

    2010-04-01

    In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.

  12. Medical applications of electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Henry C; Singh, Narendra P, E-mail: hlai@u.washington.ed [Department of Bioengineering, University of Washington, Seattle, WA 98195-5061 (United States)

    2010-04-15

    In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.

  13. Phase measurement of fast light pulse in electromagnetically induced absorption.

    Science.gov (United States)

    Lee, Yoon-Seok; Lee, Hee Jung; Moon, Han Seb

    2013-09-23

    We report the phase measurement of a fast light pulse in electromagnetically induced absorption (EIA) of the 5S₁/₂ (F = 2)-5P₃/₂ (F' = 3) transition of ⁸⁷Rb atoms. Using a beat-note interferometer method, a stable measurement without phase dithering of the phase of the probe pulse before and after it has passed through the EIA medium was achieved. Comparing the phases of the light pulse in air and that of the fast light pulse though the EIA medium, the phase of the fast light pulse at EIA resonance was not shifted and maintained to be the same as that of the free-space light pulse. The classical fidelity of the fast light pulse according to the advancement of the group velocity by adjusting the atomic density was estimated to be more than 97%.

  14. Solidification of Al alloys under electromagnetic field

    Institute of Scientific and Technical Information of China (English)

    崔建忠

    2003-01-01

    New theories and technology in the electromagnetic field were put forward about DC casting of Al alloys, including the fundamental research works, I.e, effects of the electromagnetic field on solidus and liquidus, macrosegregation of the main alloying elements, microstructures, content of alloying elements in grains and grain size after solidification under electromagnetic field, and also including a new process-DC casting under low frequency electromagnetic field(LFEMC), which can refine microstructure, eliminate macrosegregation, increase the content of alloying elements within grains, decrease the residual stress, avoid cracks and improve surface quality, and another new process-DC casting under low frequency electromagnetic vibration(LFEVC), which is a high effective method for grain refining.

  15. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  16. Composite Vector Particles in External Electromagnetic Fields

    CERN Document Server

    Davoudi, Zohreh

    2015-01-01

    Lattice quantum chromodynamics (QCD) studies of electromagnetic properties of hadrons and light nuclei, such as magnetic moments and polarizabilities, have proven successful with the use of background field methods. With an implementation of nonuniform background electromagnetic fields, properties such as charge radii and higher electromagnetic multipole moments (for states of higher spin) can be additionally obtained. This can be achieved by matching lattice QCD calculations to a corresponding low-energy effective theory that describes the static and quasi-static response of hadrons and nuclei to weak external fields. With particular interest in the case of vector mesons and spin-1 nuclei such as the deuteron, we present an effective field theory of spin-1 particles coupled to external electromagnetic fields. To constrain the charge radius and the electric quadrupole moment of the composite spin-1 field, the single-particle Green's functions in a linearly varying electric field in space are obtained within t...

  17. Interactions between electromagnetic fields and matter

    CERN Document Server

    Steiner, Karl-Heinz

    2013-01-01

    Interactions between Electromagnetic Fields and Matter deals with the principles and methods that can amplify electromagnetic fields from very low levels of signals. This book discusses how electromagnetic fields can be produced, amplified, modulated, or rectified from very low levels to enable these for application in communication systems. This text also describes the properties of matter and some phenomenological considerations to the reactions of matter when an action of external fields results in a polarization of the particle system and changes the bonding forces existing in the matter.

  18. Focused electromagnetic doughnut pulses and their interaction with interfaces and nanostructures

    CERN Document Server

    Raybould, T A; Papasimakis, N; Youngs, I J; Zheludev, N I

    2015-01-01

    We study the propagation properties and light-matter interactions of the focused doughnut pulses, broadband, single-cycle electromagnetic perturbations of toroidal topology first described by Hellwarth and Nouchi in 1996. We show how focused doughnuts are reflected and refracted at planar metallic and vacuum-dielectric interfaces leading to complex distortions of the field structure. We also identify the conditions under which these toroidal pulses excite dominant dynamic toroidal dipoles in spherical dielectric particles.

  19. [Health effects of electromagnetic fields].

    Science.gov (United States)

    Röösli, Martin

    2013-12-01

    Use of electricity causes extremely low frequency magnetic fields (ELF-MF) and wireless communication devices emit radiofrequency electromagnetic fields (RF-EMF). Average ELF-MF exposure is mainly determined by high voltage power lines and transformers at home or at the workplace, whereas RF-EMF exposure is mainly caused by devices operating close to the body (mainly mobile and cordless phones). Health effects of EMF are controversially discussed. The IARC classified ELF-MF and RF-EMF as possible carcinogenic. Most consistent epidemiological evidence was found for an association between ELF-MF and childhood leukaemia. If causal, 1 - 4 percent of all childhood leukaemia cases could be attributed to ELF-MF. Epidemiological research provided some indications for an association between ELF-MF and Alzheimer's diseases as well as amyotrophic lateral sclerosis, although not entirely consistent. Regarding mobile phones and brain tumours, some studies observed an increased risk after heavy or long term use on the one hand. On the other hand, brain tumour incidence was not found to have increased in the last decade in Sweden, England or the US. Acute effects of RF-EMF on non-specific symptoms of ill health seem unlikely according to randomized and double blind provocation studies. However, epidemiological research on long term effects is still limited. Although from the current state of the scientific knowledge a large individual health risk from RF-EMF exposure is unlikely, even a small risk would have substantial public health relevance because of the widespread use of wireless communication technologies.

  20. Cosmological Electromagnetic Fields due to Gravitational Wave Perturbations

    CERN Document Server

    Marklund, M; Brodin, G; Marklund, Mattias; Dunsby, Peter K. S.; Brodin, Gert

    2000-01-01

    We consider the dynamics of electromagnetic fields in an almost-Friedmann-Robertson-Walker universe using the covariant and gauge-invariant approach of Ellis and Bruni. Focusing on the situation where deviations from the background model are generated by tensor perturbations only, we demonstrate that the coupling between gravitational waves and a weak magnetic test field can generate electromagnetic waves. We show that this coupling leads to an initial pulse of electromagnetic waves whose width and amplitude is determined by the wavelengths of the magnetic field and gravitational waves. A number of implications for cosmology are discussed, in particular we calculate an upper bound of the magnitude of this effect using limits on the quadrapole anisotropy of the Cosmic Microwave Background.

  1. 膝骨关节炎应用脉冲电磁场治疗的系统评价%Pulsed electromagnetic field therapy for the treatment of knee osteoarthritis:a systematic review

    Institute of Scientific and Technical Information of China (English)

    曹立颖; 姜明静; 杨声坪; 赵龙; 王建民

    2012-01-01

    目的:系统评价脉冲电磁场治疗膝骨关节炎的临床效果.方法:应用Cochrane系统评价方法计算机检索Cochrane Library(2012年第2期)、PubMed (1966~2012.2)、EMBASE(1974~2012.2)、中国生物医学数据库(CBM,1978~2012.2)、中国期刊全文数据库(CNKI,1979~2012.2)和雏普数据库(VIP,1989~2012.2),同时在Google学术搜索引擎进行检索,并追查纳入研究参考文献,收集以脉冲电磁场治疗膝骨关节炎的所有随机对照试验.根据Cochrane协作网推荐的“风险评估工具”进行偏倚风险评估,用RevMan 5.1软件进行统计学分析.结果:最终纳入5个随机对照试验,共331例患者.研究结果显示:与安慰剂相比,脉冲电磁场治疗膝骨关节炎在缓解疼痛[WMD =0.12,95%CI(-0.46,0.69)]、减少晨僵时间[WMD=0.08,95%CI( -0.05,0.21)]和改善膝关节功能[WMD=-1.16,95%CI(-4.36,2.05)]等方面差异无统计学意义.结论:脉冲电磁场治疗膝骨关节炎的疗效需更多有力的证据.由于纳入研究质量和病例数量的局限,上述结论尚需更多高质量的随机对照试验进一步验证.%Objective:To evaluate the clinical effectiveness of pulsed electromagnetic field therapy in the treatment of knee osteoarthritis. Methods: Based on the principles and methods of Cochrane systematic reviews,the authors searched the Cochrane Library (2012,2 issue),PubMed (1966 to February,2012) ,EMBASE (1974 to February,2012),Chinese Bio-medicine Database (1978 to February, 2012), China Journal Full-lext Database (1979 to February, 2012), VIP database (1989 to February, 2012) ,as well as search engine Google Scholar. Randomized controlled trials (RCTs) of pulsed electromagnetic field therapy to treat knee osteoarthritis were included. The authors assessed the quality of the included trials according to the Cochrane Handbook for Systematic Reviews of Interventions Version. The Cochrane Collaboration's software RevMan 5.1 was used for meta-analysis. Results

  2. Active absorption of electromagnetic pulses in a cavity

    CERN Document Server

    Horsley, S A R; Tyc, T; Philbin, T G

    2014-01-01

    We show that a pulse of electromagnetic radiation launched into a cavity can be completely absorbed into an infinitesimal region of space, provided one has a high degree of control over the current flowing through this region. We work out explicit examples of this effect in a cubic cavity and a cylindrical one, and experimentally demonstrate the effect in the microwave regime.

  3. Effects of electromagnetic pulse on serum element levels in rat.

    Science.gov (United States)

    Li, Kangchu; Ma, Shirong; Ren, Dongqing; Li, Yurong; Ding, Guirong; Liu, Junye; Guo, Yao; Guo, Guozhen

    2014-04-01

    Electromagnetic pulse (EMP) was a potentially harmful factor to the human body, and a biological dosimetry to evaluate effects of EMP is necessary. Little is known about effects of EMP on concentration of macro and trace elements in serum so far. In this study, Sprague-Dawley rats were randomly divided into 50-kV/m EMP-exposed group (n = 10), 100-kV/m EMP-exposed group (n = 10), 200-kV/m EMP-exposed group (n = 40), and the sham-exposed group (n = 20). The macro and trace element concentrations in serum were examined at 6, 12, 24, and 48 h after EMP exposure at different electric field intensities. Compared with the sham-exposed groups, the concentration of sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), zinc (Zn), copper (Cu), iron (Fe), selenium (Se), and manganese (Mn) in rat serum was not changed significantly within 48 h after 200 pulses of EMP exposure at electric field intensity of 50, 100, and 200 kV/m although the K level was decreased and the Ca level was increased with the electric field intensity of EMP increasing. In addition, there was a tendency that the Zn level was decreased with the time going on within 48 h after EMP exposure. Under our experimental conditions, EMP exposure cannot affect the concentration of macro and trace elements in rat serum. There was no time-effect or dose-effect relationship between EMP exposure and serum element levels. The macro and trace elements in serum are not suitable endpoints of biological dosimetry of EMP.

  4. Electromagnetic fields from mobile phone base station - variability analysis.

    Science.gov (United States)

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  5. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content

    OpenAIRE

    Aspasia Efthimiadou; Nikolaos Katsenios; Anestis Karkanis; Panayiota Papastylianou; Vassilios Triantafyllidis; Ilias Travlos; Bilalis, Dimitrios J.

    2014-01-01

    The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing...

  6. Electromagnetic measurements in the near field

    CERN Document Server

    Bienkowski, Pawel

    2012-01-01

    This book is devoted to the specific problems of electromagnetic field (EMF) measurements in the near field and to the analysis of the main factors which impede accuracy in these measurements. It focuses on careful and accurate design of systems to measure in the near field based on a thorough understanding of the fundamental engineering principles and on an analysis of the likely system errors. Beginning with a short introduction to electromagnetic fields with an emphasis on the near field, it them presents methods of EMF measurements in near field conditions. It details the factors limiting

  7. Electromagnetic Field Theory A Collection of Problems

    CERN Document Server

    Mrozynski, Gerd

    2013-01-01

    After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...

  8. Electromagnetic field computation by network methods

    CERN Document Server

    Felsen, Leopold B; Russer, Peter

    2009-01-01

    This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.

  9. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter

    Science.gov (United States)

    Huber, Peter; Jöchle, Knut; Debus, Jürgen

    1998-10-01

    Monitoring the generation of cavitation is of great interest for diagnostic and therapeutic use of ultrasound in medicine, since cavitation is considered to play a major role in nonthermal ultrasound interactions with tissue. Important parameters are the number of cavitation events and the energy released during the bubble collapse. This energy is correlated to the maximum bubble radius which is related to the cavitation lifespan. The aim of this study was therefore to investigate the influence of the acoustic pressure amplitude and the pulse repetition frequency (PRF) in the field of a lithotripter (Lithostar, Siemens) on the number, size and lifespan of transient cavitation bubbles in water. We used scattered laser light recorded by a photodiode and stroboscopic photographs to monitor the cavitation activity. We found that PRF (range 0.5-5 Hz) had no influence on the cavitation bubble lifespan and size, whereas lifespan and size increased with the acoustic pressure amplitude. In contrast, the number of cavitation events strongly increased with PRF, whereas the pressure amplitude had no significant influence on the number of cavitation events. Thus, by varying the pressure amplitude and PRF, it might be possible to deliver a defined relative number of cavitations at a defined relative energy level in a defined volume. This seems to be relevant to further studies that address the biological effects of transient cavitation occurring in the fields of lithotripters.

  10. Fluid/Gravity Correspondence with Scalar Field and Electromagnetic Field

    CERN Document Server

    Chou, Chia-Jui; Yang, Yi; Yuan, Pei-Hung

    2016-01-01

    We consider fluid/gravity correspondence in a general rotating black hole background with scalar and electromagnetic fields. Using the method of Petrov-like boundary condition, we show that the scalar and the electromagnetic fields contribute external forces to the dual Navier-Stokes equation and the rotation of black hole induces the Coriolis force.

  11. Calculating Electromagnetic Fields Of A Loop Antenna

    Science.gov (United States)

    Schieffer, Mitchell B.

    1987-01-01

    Approximate field values computed rapidly. MODEL computer program developed to calculate electromagnetic field values of large loop antenna at all distances to observation point. Antenna assumed to be in x-y plane with center at origin of coordinate system. Calculates field values in both rectangular and spherical components. Also solves for wave impedance. Written in MicroSoft FORTRAN 77.

  12. Program For Displaying Computed Electromagnetic Fields

    Science.gov (United States)

    Hom, Kam W.

    1995-01-01

    EM-ANIMATE computer program specialized visualization displays and animates output data on near fields and surface currents computed by electromagnetic-field program - in particular MOM3D (LAR-15074). Program based on windows and contains user-friendly, graphical interface for setting viewing options, selecting cases, manipulating files, and like. Written in FORTRAN 77. EM-ANIMATE also available as part of package, COS-10048, includes MOM3D, IRIS program computing near-field and surface-current solutions of electromagnetic-field equations.

  13. Numerical simulation of electromagnetic and flow fields of TiAI melt under electric field

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong; Ding Hongsheng; Jiang Sanyong; Chen Ruirun; Guo Jingjie

    2010-01-01

    This article aims at building an electromagnetic and fluid model, based on the Maxwell equations and Navier-Stokes equations, in TiAI melt under two electric fields. FEM (Finite Element Method) and APDL (ANSYS Parametric Design Language) were employed to perform the simulation, model setup, loading and problem solving. The melt in molds of same cross section area with different flakiness ratio (i.e. width/depth) under the load of sinusoidal current or pulse current was analyzed to obtain the distribution of electromagnetic field and flow field. The results show that the induced magnetic field occupies sufficiently the domain of the melt in the mold with a flakiness ratio of 5:1. The melt is driven bipolarly from the center in each electric field. It is also found that the pulse electric field actuates the TiAI melt to flow stronger than what the sinusoidal electric field does.

  14. Electromagnetic currents induced by color fields

    CERN Document Server

    Tanji, Naoto

    2015-01-01

    The quark production in classical color fields is investigated with a focus on the induction of an electromagnetic current by produced quarks. We show that the SU(2) and the SU(3) theories lead significantly different results for the electromagnetic current. In uniform SU(2) color fields, the net electromagnetic current is not generated, while for SU(3) the net current is induced depending on the color direction of background fields. Also the numerical study of the quark production in inhomogeneous color fields is done. Motivated by gauge field configurations provided by the color glass condensate framework, we introduce an ensemble of randomly distributed color electric fluxtubes. The spectrum of photons emitted from the quarks by a classical process is shown.

  15. The electromagnetic field in accelerated frames

    CERN Document Server

    Maluf, J W

    2011-01-01

    We develop a geometrical framework that allows to obtain the electromagnetic field quantities in accelerated frames. The frame of arbitrary accelerated observers in space-time is defined by a suitable set of tetrad fields, whose timelike components are adapted to the worldlines of a field of observers. We consider the Faraday tensor and Maxwell's equations as abstract tensor quantities in space-time, and make use of tetrad fields to project the electromagnetic field quantities in the accelerated frames. As an application, plane and spherical electromagnetic waves are projected in linearly accelerated frames in Minkowski space-time. We show that the amplitude, frequency and the wave vector of the plane wave in the accelerated frame vary with time, while the light speed remains constant. We also obtain the variation of the Poynting vector with time in the accelerated frame.

  16. Effects of Electromagnetic Field and Basic Fibroblast Growth Factor on Osteoblast's Growth

    Institute of Scientific and Technical Information of China (English)

    GUOYong; ZHANGXi-zheng; WANGHao; LIBin; LIRui-xin; WUJin-hui; ZHAOYun-shan; WUJi-min

    2004-01-01

    Osteoblasts of rat cultured in vitro were stimulated with pulsed 50 Hz electromagnetic field and basic fibroblast growth factor(bFGF). The MTT method, flow cytometry and histochemistry staining were used to detect cell proliferation, cell cycle and alkaline phosphatase. The results indicated : after stimulated by 1 mT electromagnetic field, the cells are more abundant,have more S phase percentages, 2 mT electromagnetic field have no evident effect on cells' growth;compared with electromagnetic field, the cells stimulated by bFGF are more abundant and have larger S phase ratios. Electromagnetic field and bFGF have no effect on cells, alkaline phosphatase. Therefore ,we concluded that electromagnetic field can enhance osteoblasts growth like some growth factor such as basic fibroblast growth factor, and the osteoblasts', characteristics was not changed.

  17. Design of the device applying pulsed electromagnetic field in bone cell culture%脉冲电磁场辅助骨细胞培养装置的研制

    Institute of Scientific and Technical Information of China (English)

    谢小波; 庞丽云; 崔红岩; 李小红; 屈承端; 陈先农; 胡勇

    2008-01-01

    Objective A pulsed electromagnetic fields(PEMF) device with adjustable parameters designed for bone cell culture was designed according to the principle of pulsed electromagnetic fields as an effective physical factor to regulate the growth of bone cells. Functions of hardware and software were introduced as well as the design of the stimulating board. Method Based on previous research result, the device was designed to generate electromag- netic pulse with intensity of 4-6 mT and frequency of 8 Hz. The stimulating board was designed according to the size of cell culture plate. Up to six plates are allowed to be placed on the board simultaneously. Magnetic material was in- troduced to assure the uniform magnetic field. Results Functions of the device were tested and designed parameters were proved to be accomplished. The electromagnetic field generated on the surface of the stimulating board was uni- form. Conclusion All parameters designed are accomplished and the magnetic field detected on the surface of the board is uniform and ready be used as a physical factor in the up-coming experiment of bone cell culture.%目的 根据脉冲电磁场对骨细胞的作用机制,设计了能够产生均匀磁场、参数可调的脉冲电磁场发生装置和磁场作用板;叙述了实验装置的硬件构成、软件控制功能以及磁场作用板的设计,并通过试验测试,观察记录了在未加入磁性材料和加入磁性材料后磁场的分布情况.方法 设计了强度为4~6 mT、频率8 Hz的参数可调的脉冲电磁场发生装置和专用的适合细胞培养的磁场作用装置,并对产生的磁场进行了实验测定.结果 实验装置运行时,对各参数检测表明,实验装置满足设计的要求:在加入磁性材料后,磁场作用表面的磁场分布均匀.结论 实验装置满足设计要求,可为进一步进行骨细胞培养提供可靠的实验手段.

  18. Stopping x-ray pulses in a thin-film cavity via electromagnetically induced transparency

    CERN Document Server

    Kong, Xiangjin

    2015-01-01

    Stopping light via an electromagnetically induced transparency setup for x-ray pulses in a thin film planar x-ray cavity is investigated theoretically. The pulse is nearly resonant to the 14.4 keV M\\"ossbauer transition in $^{57}\\mathrm{Fe}$, with one nm-thin layer of the latter embedded in the thin-film x-ray cavity. Via a moderate hyperfine magnetic field which takes over the role of the control field, electromagnetically induced transparency and slowing down of the x-ray pulse occurs in the cavity setup. We show that by switching off the control magnetic field, a narrowband x-ray pulse can be completely stored in the cavity for approx. hundred ns. Coherent storage occurs in this scenario by imprinting the x-ray field onto nuclear coherences in a controllable and robust manner. Additional manipulation of the external magnetic field can lead to both group velocity and phase control of the pulse in the x-ray cavity sample.

  19. Controlling the Electromagnetic Field Confinement with Metamaterials

    Science.gov (United States)

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-11-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained.

  20. Electromagnetic Pulse - A Catastrophic Threat to the Homeland

    Science.gov (United States)

    2011-03-24

    which could be very destructive to the electrical power grid. 3 A high altitude electromagnetic pulse ( HEMP ), caused by the detonation of a...recreate EMP on a large enough scale to draw reliable conclusions. But history has provided us with a few historical events to learn from. In 1962 the...circuit board systems used today are much more sensitive and vulnerable to EMP than the solid state, vacuum tube systems used 50 years ago

  1. Experimental and Theoretical Investigation of Directional Wideband Electromagnetic Pulse Photoemission Generator

    Science.gov (United States)

    Petrov, P. V.; Afonin, V. I.; Zamuraev, D. O.; Zavolokov, E. V.; Kupyrin, N. V.; Lazarev, Yu. N.; Romanov, Yu. O.; Syrtsova, Yu. G.; Sorokin, I. A.; Tischenko, A. S.; Brukhnevich, G. I.; Voronkova, N. P.; Pekarskaya, L. Z.; Belolipetskiy, V. S.

    The effect of electromagnetic wave generation by the electric current pulse propagating at the superluminal velocity along a conducting surface might be promising to create a high-power wideband microwave generator. The system comprising a plane vacuum photodiode with a transparent anode and using laser radiation to initialize electron emission is a variant to realize this scheme of electromagnetic pulse generation. This chapter presents results of experimental researches in characteristics of such radiating element with the cesium-antimonide cathode of Ø50 mm. The performed researches have shown that the generated wideband pulse (f_0 ≈ 3.3 {{GHz}},Δ f/f_0 ˜ 1) propagates in the direction corresponding to specular reflection of the incident laser radiation. Under the voltage of about 50 kV the electric field strength of 44 kV/m at the distance of 1.3 m has been recorded that corresponds to the generator power ˜10 MW.

  2. Composite vector particles in external electromagnetic fields

    Science.gov (United States)

    Davoudi, Zohreh; Detmold, William

    2016-01-01

    Lattice quantum chromodynamics (QCD) studies of electromagnetic properties of hadrons and light nuclei, such as magnetic moments and polarizabilities, have proven successful with the use of background field methods. With an implementation of nonuniform background electromagnetic fields, properties such as charge radii and higher electromagnetic multipole moments (for states of higher spin) can additionally be obtained. This can be achieved by matching lattice QCD calculations to a corresponding low-energy effective theory that describes the static and quasistatic responses of hadrons and nuclei to weak external fields. With particular interest in the case of vector mesons and spin-1 nuclei such as the deuteron, we present an effective field theory of spin-1 particles coupled to external electromagnetic fields. To constrain the charge radius and the electric quadrupole moment of the composite spin-1 field, the single-particle Green's functions in a linearly varying electric field in space are obtained within the effective theory, providing explicit expressions that can be used to match directly onto lattice QCD correlation functions. The viability of an extraction of the charge radius and the electric quadrupole moment of the deuteron from the upcoming lattice QCD calculations of this nucleus is discussed.

  3. Numerical simulation of the early-time high altitude electromagnetic pulse

    Institute of Scientific and Technical Information of China (English)

    孟萃; 陈雨生; 刘顺坤; 谢秦川; 陈向跃; 龚建成

    2003-01-01

    In this paper, the finite difference method is used to develop the Fortran software MCHII. The physical process in which the electromagnetic signal is generated by the interaction of nuclear-explosion-induced Compton currents with the geomagnetic field is numerically simulated. The electromagnetic pulse waveforms below the burst point are investigated.The effects of the height of burst, yield and the time-dependence of ?-rays are calculated by using the MCHII code.The results agree well with those obtained by using the code CHAP.

  4. Combination of Local Transplantation of In Vitro Bone-marrow Stromal Cells and Pulsed Electromagnetic Fields Accelerate Functional Recovery of Transected Sciatic Nerve Regeneration: A Novel Approach in Transected Nerve Repair.

    Science.gov (United States)

    Mohammadi, Rahim; Mahmoodzadeh, Sirvan

    2015-01-01

    Effect of combination of undifferentiated bone marrow stromal cells (BMSCs) and pulsed electromagnetic fields (PEMF) on transected sciatic nerve regeneration was assessed in rats. A 10 mm nerve segment was excised and a vein graft was used to bridge the gap. Twenty microliter undifferentiated BMSCs (2× 107 cells /mL) were administered into the graft inBMSC group with no exposure to PEMF. In BMSC/PEMF group the whole body was exposed to PEMF (0.3 mT, 2Hz) for 4h/day within 1-5 days. In PEMF group the transected nerve was bridged and phosphate buffered saline was administered into the graft. In authograft group (AUTO), the transected nervesegments were reimplanted reversely and the whole body was exposed to PEMF. The regenerated nerve fibers were studied within 12 weeks after surgery. Behavioral, functional, electrophysiological, biomechanical, gastrocnemius muscle mass findings, morphometric indices and immuonohistochemical reactions confirmed faster recovery of regenerated axons in BMSC/PEMF group compared to those in the other groups (Pelectromagnetic fields could be considered as an effective, safe and tolerable treatment for peripheral nerve repair in clinical practice.

  5. Cryosurgery with pulsed electric fields.

    Science.gov (United States)

    Daniels, Charlotte S; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  6. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  7. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  8. 脉冲电磁场对家猪淋巴细胞的细胞遗传学效应%Cytogenetic Effects of Pulsing Electromagnetic Field on Domestic Pig Lymphocytes in Vitro

    Institute of Scientific and Technical Information of China (English)

    邹方东; 徐柳; 王子淑; 王喜忠

    2001-01-01

    以家猪外周血淋巴细胞为材料,研究了脉冲电磁场(pulsing electromagnetic fields,简称PEMFs)对细胞的遗传学效应。实验发现,100和200 kHz的PEMFs对家猪的淋巴细胞照射培养12、24、48 h后,染色体畸变(包括非整倍体、染色体断裂等)频率明显高于对照组(P<0.05)。其中,56%的染色体或染色单体断裂和42%的间隙发生在家猪常见染色体脆性位点部位。同时,经100 kHz和200 kHz的PEMFs照射48 h后,淋巴细胞姐妹染色单体交换(SCE)频率也明显高于对照组(P<0.05)。实验结果表明,PEMFs能诱导DNA损伤和染色体畸变。%The effects of pulsing electromagnetic fields (PEMFs) on cells are very important subjects in the field of bioelectromagnetics. In this experiment,the cytogenetic effects of PEMF on domestic pig lymphocytes were tested in vitro. Pig lymphocytes in RPMI 1640 medium were exposed to PEMFs of 100 kHz and 200 kHz for 12,24 and 48 hours. Chromosomal aberrations (aneuploidy,breaks,gaps,et al.) were significantly increased in exposed cultures,and of these aberrations,56% chromosomal or chromatid breaks and 42% gaps induced by PEMFs were the points of pig chromosomal fragile sites.The baseline frequency of sister-chromatid exchange (SCE) increased after exposing lymphocytes continuously to PEMFs of 100 kHz and 200 kHz for 48 hours. These results suggested that the exposure to PEMFs might induce a type of DNA lesion and chromosomal aberrations.

  9. Electromagnetic field standards and exposure systems

    CERN Document Server

    Grudzinski, Eugeniusz

    2013-01-01

    When measuring electromagnetic fields (EMF), there are multiple factors that affect accuracy. Everything from proper instrument calibration, to external environmental factors, and even the competence and training of the instrument operator can bring precision into question. This book discusses factors that limit accuracy of electromagnetic field standards. These standards are one of the least accurate among the standards of physical magnitudes. They limit the accuracy of the EMF measurements, as well as the accuracy of the standards' use as exposure systems in a wide range of experiments in el

  10. Electromagnetic field representation in inhomogeneous anisotropic media

    Science.gov (United States)

    Mohsen, A.

    1973-01-01

    Some of the basic developments in the theory of electromagnetic field representation in terms of Hertz vectors are reviewed. A solution for the field in an inhomogeneous anisotropic medium is given in terms of the two Hertz vectors. Conditions for presentation of the field in terms of uncoupled transverse electric and transverse magnetic modes, in a general orthogonal coordinate system, are derived when the permeability and permittivity tensors have only diagonal components. These conditions are compared with some known special cases.

  11. Time-Domain Computation Of Electromagnetic Fields In MMICs

    Science.gov (United States)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1995-01-01

    Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.

  12. Photon propagation in slowly varying inhomogeneous electromagnetic fields

    CERN Document Server

    Karbstein, Felix

    2015-01-01

    Starting from the Heisenberg-Euler effective Lagrangian, we determine the photon current and photon polarization tensor in inhomogeneous, slowly varying electromagnetic fields. To this end, we consider background field configurations varying in both space and time, paying special attention to the tensor structure. As a main result, we obtain compact analytical expressions for the photon polarization tensor in realistic Gaussian laser pulses, as generated in the focal spots of high-intensity lasers. These expressions are of utmost importance for the investigation of quantum vacuum nonlinearities in realistic high-intensity laser experiments.

  13. Exact plane gravitational waves and electromagnetic fields

    CERN Document Server

    Montanari, E; Montanari, Enrico; Calura, Mirco

    2000-01-01

    The behaviour of a "test" electromagnetic field in the background of an exactgravitational plane wave is investigated in the framework of Einstein's generalrelativity. We have expressed the general solution to the de Rham equations asa Fourier-like integral. In the general case we have reduced the problem to aset of ordinary differential equations and have explicitly written the solutionin the case of linear polarization of the gravitational wave. We have expressedour results by means of Fermi Normal Coordinates (FNC), which define the properreference frame of the laboratory. Moreover we have provided some "gedankenexperiments", showing that an external gravitational wave induces measurableeffects of non tidal nature via electromagnetic interaction. Consequently it isnot possible to eliminate gravitational effects on electromagnetic field, evenin an arbitrarily small spatial region around an observer freely falling in thefield of a gravitational wave. This is opposite to the case of mechanicalinteraction invo...

  14. Near-field thermal electromagnetic transport

    CERN Document Server

    Edalatpour, Sheila

    2015-01-01

    A general near-field thermal electromagnetic transport formalism that is independent of the size, shape and number of heat sources is derived. The formalism is based on fluctuational electrodynamics, where fluctuating currents due to thermal agitation are added into Maxwell's curl equations, and is thus valid for heat sources in local thermodynamic equilibrium. Using a volume integral formulation, it is shown that the proposed formalism is a generalization of the classical electromagnetic scattering framework in which thermal emission is implicitly assumed to be negligible. The near-field thermal electromagnetic transport formalism is afterwards applied to a problem involving three spheres exchanging thermal radiation, where all multipolar interactions are taken into account. Using the thermal discrete dipole approximation, it is shown that depending on the dielectric function, the presence of a third sphere slightly affects the spatial distribution of power absorbed compared to the two-sphere case. The forma...

  15. America’s Achilles Heel: Defense Against High-altitude Electromagnetic Pulse-policy vs. Practice

    Science.gov (United States)

    2014-12-12

    Energy Regulatory Commission FM Field Manual GRID Act Grid Reliability and Infrastructure Defense Act HEMP High-Altitude Electromagnetic Pulse JP...product to the end user.41 Across the U.S., there are upwards of 40,000 miles of gathering lines from the oil wells, both on and offshore , that feed into...particles are emitted at nearly the speed of light. The emissions can cause disturbances in the solar wind that disrupt satellites and create powerful

  16. Measurement of Ultra-Short Solitary Electromagnetic Pulses

    Directory of Open Access Journals (Sweden)

    Eva Gescheidtova

    2004-01-01

    Full Text Available In connection with the events of the last few years and with the increased number of terrorist activities, the problem of identification and measurement of electromagnetic weapons or other systems impact occurred. Among these are also microwave sources, which can reach extensive peak power of up to Pmax = 100 MW. Solitary, in some cases several times repeated, impulses lasting from tp E <1, 60>ns, cause the destruction of semiconductor junctions. These days we can find scarcely no human activity, where semiconductor structures are not used. The problem of security support of the air traffic, transportation, computer nets, banks, national strategic data canter’s, and other applications crops up. Several types of system protection from the ultra-short electromagnetic pulses present itself, passive and active protection. The analysis of the possible measuring methods, convenient for the identification and measurement of the ultra-short solitary electromagnetic pulses in presented in this paper; some of the methods were chosen and used for practical measurement. This work is part of Research object MSM262200022 "Research of microelectronic systems".

  17. Electromagnetic field reduction; Riduzione del campo magnetico

    Energy Technology Data Exchange (ETDEWEB)

    Conti, R. [Cesi SpA, Milan (Italy)

    2001-12-01

    The consistent reduction of electromagnetic fields requested in according to the italian 36/01 law are difficult to obtain a simple and low cost one. [Italian] Le considerevoli riduzioni dei campi magnetici che potrebbero essere richieste dalla legge 36/01 sono difficilmente ottenibili con metodi semplici e poco costosi.

  18. Electromagnetic Fields Restrictions and Approximation

    CERN Document Server

    Katsenelenbaum, Boris Z

    2003-01-01

    The fields scattered by metallic bodies or radiated by some types of antennas are created by the surfaces currents and therefore they are subject to some restrictions. The book is the first one where the properties of these fields are investigated in details. The properties have the important significance for the antenna synthesis, body shape reconstruction and other diffraction problems. The material of the book lies in the meetingpoint of the antenna theory, highfrequency electrodynamics and inverse scattering problems. The author is an internationally renowned investigator in the field of e

  19. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  20. Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifth-order Duffing model

    Science.gov (United States)

    Maĭmistov, A. I.

    2003-02-01

    We discuss propagation of an ultimately short (single-cycle) pulse of an electromagnetic field in a medium whose dispersion and nonlinear properties can be described by the cubic-quintic Duffing model, i.e., by an oscillator with third-and fifth-order anharmonicity. A system of equations governing the evolution of a unidirectional electromagnetic wave is analyzed without using the approximation of slowly varying envelopes. Three types of solutions of this system describing stationary propagation of a pulse in such a medium are found. When the signs of the anharmonicity constants are different, then the amplitude of a steady-state pulse is limited, but its energy may grow on account of an increase in its duration. The characteristics of such a pulse, referred to as an electromagnetic domain, are discussed.

  1. Contribution of Electromagnetic Field to Atomic Spin

    Institute of Scientific and Technical Information of China (English)

    DU Tao; LIANG Wen-Feng; WU Xiao-Hua

    2011-01-01

    We examine the contribution of electromagnetic field to the atomic spin, by adopting two different, both gauge invariant definitions of the electromagnetic angular momentum: →JI≡ ∫ d3x∈0→γ× (→E × →B) and →JII ≡ ∫ d3x(∈0→E × A→⊥ + ∈0Ei→ γ× ▽A⊥i). Notably, at the classical level, J→II gives an exactly null result while →JI gives a finite value.This suggests that JII leads to a simpler and more reasonable picture of the atomic spin, therefore qualifies as a more appropriate definition of the electromagnetic angular momentum. Our observation gives important hint on the delicate issue of gluon contribution to the nucleon spin.

  2. Polarizable vacuum analysis of electromagnetic fields

    CERN Document Server

    Ye, Xing-Hao

    2009-01-01

    By examining the electric displacement in a dielectric medium and in a vacuum, the polarization property of quantum vacuum is discussed. Both the electric and magnetic fields are analysed in the framework of polarizable vacuum. It is found that the energy and force generated by the electric and magnetic fields can then be understood in a natural way. As an application, the electromagnetic wave is also investigated, which reaches a polarizable vacuum interpretation of the energy and spin of a photon.

  3. Relativistic diffusive motion in random electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Z, E-mail: zhab@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Plac Maxa Borna 9 (Poland)

    2011-08-19

    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Juettner equilibrium at the inverse temperature {beta}{sup -1} = mc{sup 2}. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).

  4. The Electromagnetic Field as a Synchrony Gauge Field

    CERN Document Server

    Bock, Robert D

    2015-01-01

    Building on our previous work, we investigate the identification of the electromagnetic field as a local gauge field of a restricted group of synchrony transformations. We begin by arguing that the inability to measure the one-way speed of light independent of a synchronization scheme necessitates that physical laws must be reformulated without distant simultaneity. As a result, we are forced to introduce a new operational definition of time which leads to a fundamental space-time invariance principle that is related to a subset of the synchrony group. We identify the gauge field associated with this new invariance principle with the electromagnetic field. Consequently, the electromagnetic field acquires a space-time interpretation, as suggested in our previous work. In addition, we investigate the static, spherically symmetric solution of the resulting field equations. Also, we discuss implications of the present work for understanding the tension between classical and quantum theory.

  5. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    Science.gov (United States)

    De Marco, M.; Krása, J.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Margarone, D.; Ahmed, H.; Borghesi, M.; Kar, S.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Limpouch, J.; Korn, G.; Weber, S.; Velardi, L.; Delle Side, D.; Nassisi, V.; Ullschmied, J.

    2016-06-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  6. Visualization of circuit card electromagnetic fields

    Science.gov (United States)

    Zwillinger, Daniel

    1995-01-01

    Circuit boards are used in nearly every electrical appliance. Most board failures cause differing currents in the circuit board traces and components. This causes the circuit board to radiate a differing electromagnetic field. Imaging this radiated field, which is equivalent to measuring the field, could be used for error detection. Using estimates of the fields radiated by a low power digital circuit board, properties of known materials, and available equipment, we determined how well the following technologies could be used to visualize circuit board electromagnetic fields (prioritized by promise): electrooptical techniques, magnetooptical techniques, piezoelectric techniques, thermal techniques, and electrodynamic force technique. We have determined that sensors using the electrooptical effect (Pockels effect) appear to be sufficiently sensitive for use in a circuit board imaging system. Sensors utilizing the magnetooptical effect may also be adequate for this purpose, when using research materials. These sensors appear to be capable of achieving direct broadband measurements. We also reviewed existing electromagnetic field sensors. Only one of the sensors (recently patented) was specifically designed for circuit board measurements.

  7. Numerical simulation of compact intracloud discharge and generated electromagnetic pulse

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2015-06-01

    Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.

  8. Complex Relativity: Gravity and Electromagnetic Fields

    CERN Document Server

    Teisseyre, R; Teisseyre, Roman; Bialecki, Mariusz

    2005-01-01

    We present new aspects of the electromagnetic field by introducting the natural potentials. These natural potentials are suitable for constructing the first order distortions of the metric tensor of Complex Relativity - the theory combining the General Relativity with the electromagnetic equations. A transition from antisymmetric tensors to the symmetric ones helps to define the natural potentials; their form fits a system of the Dirac matrices and this representation leads to distortion of the metric tensor. Our considerations have originated from the recent progresses in the asymmetric continuum theories. One version of such theories assumes an existence of the antisymmetric strain and stress fields; these fields originate due to some kind of internal friction in a continuum medium which have elastic bonds related to rotations of the particles.

  9. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    CERN Document Server

    Palenzuela, Carlos; Yoshida, Shin

    2009-01-01

    In addition to producing loud gravitational waves (GW), the dynamics of a binary black hole system could induce emission of electromagnetic (EM) radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  10. Electromagnetic field of a linear antenna

    Science.gov (United States)

    Derby, Norman; Olbert, Stanislaw

    2008-11-01

    Animated computer simulations of the electric field of a radiating antenna can capture the attention of students in introductory electromagnetism courses and stimulate active discussions. The simulations raise questions not usually addressed in textbooks. In certain cases, some of the field lines appear to move toward the antenna, the speed of the field lines can change as they move, and the field lines exhibit strange behavior (circling or splitting) at certain points. Because their fields can be expressed in terms of elementary functions, animations of point dipole antennas are common, but animations showing the fields of antennas with more realistic lengths are not as common because analytical expressions for these fields are not as well known. We show that it is possible to derive analytical expressions in terms of elementary functions for the electromagnetic field of linear antennas of finite length. We draw attention to an open-source method for displaying the fine details within the field patterns and then give a general discussion of singular points and their motions, derive expressions for their location and phase velocity, and apply these results to some of the phenomena that are visible in visualizations of the fields of various antennas.

  11. Giant elves: Lightning-generated electromagnetic pulses in giant planets.

    Science.gov (United States)

    Luque Estepa, Alejandro; Dubrovin, Daria; José Gordillo-Vázquez, Francisco; Ebert, Ute; Parra-Rojas, Francisco Carlos; Yair, Yoav; Price, Colin

    2015-04-01

    We currently have direct optical observations of atmospheric electricity in the two giant gaseous planets of our Solar System [1-5] as well as radio signatures that are possibly generated by lightning from the two icy planets Uranus and Neptune [6,7]. On Earth, the electrical activity of the troposphere is associated with secondary electrical phenomena called Transient Luminous Events (TLEs) that occur in the mesosphere and lower ionosphere. This led some researchers to ask if similar processes may also exist in other planets, focusing first on the quasi-static coupling mechanism [8], which on Earth is responsible for halos and sprites and then including also the induction field, which is negligible in our planet but dominant in Saturn [9]. However, one can show that, according to the best available estimation for lightning parameters, in giant planets such as Saturn and Jupiter the effect of the electromagnetic pulse (EMP) dominates the effect that a lightning discharge has on the lower ionosphere above it. Using a Finite-Differences, Time-Domain (FDTD) solver for the EMP we found [10] that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial elve. Although these emissions are about 10 times fainter than the emissions coming from the lightning itself, it may be possible to target them for detection by filtering the appropiate wavelengths. [1] Cook, A. F., II, T. C. Duxbury, and G. E. Hunt (1979), First results on Jovian lightning, Nature, 280, 794, doi:10.1038/280794a0. [2] Little, B., C. D. Anger, A. P. Ingersoll, A. R. Vasavada, D. A. Senske, H. H. Breneman, W. J. Borucki, and The Galileo SSI Team (1999), Galileo images of

  12. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  13. Electromagnetic pulses produced by expanding laser-produced Au plasma

    Directory of Open Access Journals (Sweden)

    De Marco Massimo

    2015-06-01

    Full Text Available The interaction of an intense laser pulse with a solid target produces large number of fast free electrons. This emission gives rise to two distinct sources of the electromagnetic pulse (EMP: the pulsed return current through the holder of the target and the outflow of electrons into the vacuum. A relation between the characteristics of laser-produced plasma, the target return current and the EMP emission are presented in the case of a massive Au target irradiated with the intensity of up to 3 × 1016 W/cm2. The emission of the EMP was recorded using a 12 cm diameter Moebius loop antennas, and the target return current was measured using a new type of inductive target probe (T-probe. The simultaneous use of the inductive target probe and the Moebius loop antenna represents a new useful way of diagnosing the laser–matter interaction, which was employed to distinguish between laser-generated ion sources driven by low and high contrast laser pulses.

  14. Time-Machine Solutions of Einstein's Equations with Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    SHEN Ming; SUN Qing-You

    2011-01-01

    In this paper we investigate the time-machine problem in the electromagnetic field.Based on a metric which is a more general form of Ori's, we solve the Einstein's equations with the energy-momentum tensors for electromagnetic field, and construct the time-machine solutions, which solve the time machine problem in electromagnetic field.

  15. Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and lycopene content.

    Science.gov (United States)

    Efthimiadou, Aspasia; Katsenios, Nikolaos; Karkanis, Anestis; Papastylianou, Panayiota; Triantafyllidis, Vassilios; Travlos, Ilias; Bilalis, Dimitrios J

    2014-01-01

    The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing treatment of tomato seeds in a field experiment for two years. Papimi device (amplitude on the order of 12.5 mT) has been used. The use of pulsed electromagnetic field as a presowing treatment was found to enhance plant growth in tomato plants at certain duration of exposure. Magnetic field treatments and especially the exposure of 10 and 15 minutes gave the best results in all measurements, except plant height and lycopene content. Yield per plant was higher in magnetic field treatments, compared to control. MF-15 treatment yield was 80.93% higher than control treatment. Lycopene content was higher in magnetic field treatments, although values showed no statistically significant differences.

  16. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content

    Directory of Open Access Journals (Sweden)

    Aspasia Efthimiadou

    2014-01-01

    Full Text Available The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing treatment of tomato seeds in a field experiment for two years. Papimi device (amplitude on the order of 12.5 mT has been used. The use of pulsed electromagnetic field as a presowing treatment was found to enhance plant growth in tomato plants at certain duration of exposure. Magnetic field treatments and especially the exposure of 10 and 15 minutes gave the best results in all measurements, except plant height and lycopene content. Yield per plant was higher in magnetic field treatments, compared to control. MF-15 treatment yield was 80.93% higher than control treatment. Lycopene content was higher in magnetic field treatments, although values showed no statistically significant differences.

  17. Exact plane gravitational waves and electromagnetic fields

    OpenAIRE

    Enrico MontanariUniversity of Ferrara and INFN sezione di Ferrara, Italy; Mirco Calura(University of Ferrara and INFN sezione di Ferrara, Italy)

    2000-01-01

    The behaviour of a "test" electromagnetic field in the background of an exact gravitational plane wave is investigated in the framework of Einstein's general relativity. We have expressed the general solution to the de Rham equations as a Fourier-like integral. In the general case we have reduced the problem to a set of ordinary differential equations and have explicitly written the solution in the case of linear polarization of the gravitational wave. We have expressed our ...

  18. Charged Scalars in Transient Stellar Electromagnetic Fields

    Institute of Scientific and Technical Information of China (English)

    Marina-Aura Dariescu; Ciprian Dariescu; Ovidiu Buhucianu

    2011-01-01

    We consider a non-rotating strongly magnetized object, whose magnetic induction isof the form Bx = Bo{t)sin kz. In the electromagnetic field generated by only one component of the four-vector potential, we solve the Klein-Gordon equation and discuss the sudden growth of the scalar wave functions for wavenumbers inside computable ranges. In the case of unexcited transversal kinetic degrees, we write down the recurrent differential system for the amplitude functions and compute the respective conserved currents.

  19. Stirring, not shaking: binary black holes' effects on electromagnetic fields

    CERN Document Server

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L; Neilsen, David

    2009-01-01

    In addition to producing gravitational waves (GW), the dynamics of a binary black hole system could induce emission of electromagnetic (EM) radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  20. [Safety and electromagnetic compatibility in sanitary field].

    Science.gov (United States)

    Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L

    2012-01-01

    In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.

  1. Cloaking a metal object from an electromagnetic pulse: A comparison between various cloaking techniques

    CERN Document Server

    Alitalo, Pekka; Tretyakov, Sergei

    2009-01-01

    Electromagnetic cloaks are devices that can be used to reduce the total scattering cross section of various objects. An ideal cloak removes all scattering from an object and thus makes this object "invisible" to the electromagnetic fields that impinge on the object. However, ideal cloaking appears to be possible only at a single frequency. To study cloaking from an electromagnetic pulse we consider propagation of a pulse inside a waveguide with a cloaked metal object inside. There are several ways to achieve cloaking and in this paper we study three such methods, namely, the coordinate-transformation cloak, the transmission-line cloak, and the metal-plate cloak. In the case of the two last cloaks, pulse propagation is studied using experimental data whereas the coordinate-transformation cloak is studied with numerical simulations. The results show that, at least in the studied cases where the cloaked object's diameter is smaller than the wavelength, the cloaks based on transmission-line meshes and metal plate...

  2. Propagation of two short laser pulse trains in a $\\Lambda$-type three-level medium under conditions of electromagnetically induced transparency

    CERN Document Server

    Buica, Gabriela

    2014-01-01

    We investigate the dynamics of a pair of short laser pulse trains propagating in a medium consisting of three-level $\\Lambda$-type atoms by numerically solving the Maxwell-Schr\\"odinger equations for atoms and fields. By performing propagation calculations with different parameters, under conditions of electromagnetically induced transparency, we compare the propagation dynamics by a single pair of probe and coupling laser pulses and by probe and coupling laser pulse trains. We discuss the influence of the coupling pulse area, number of pulses, and detunings on the probe laser propagation and realization of electromagnetically induced transparency conditions, as well on the formation of a dark state.

  3. Solidification of Al Alloys Under Electromagnetic Pulses and Characterization of the 3D Microstructures Using Synchrotron X-ray Tomography

    Science.gov (United States)

    Manuwong, Theerapatt; Zhang, Wei; Kazinczi, Peter Lobo; Bodey, Andrew J.; Rau, Christoph; Mi, Jiawei

    2015-07-01

    A novel programmable electromagnetic pulse device was developed and used to study the solidification of Al-15 pct Cu and Al-35 pct Cu alloys. The pulsed magnetic fluxes and Lorentz forces generated inside the solidifying melts were simulated using finite element methods, and their effects on the solidification microstructures were characterized using electron microscopy and synchrotron X-ray tomography. Using a discharging voltage of 120 V, a pulsed magnetic field with the peak Lorentz force of ~1.6 N was generated inside the solidifying Al-Cu melts which were showed sufficiently enough to disrupt the growth of the primary Al dendrites and the Al2Cu intermetallic phases. The microstructures exhibit a strong correlation to the characteristics of the applied pulse, forming a periodical pattern that resonates the frequency of the applied electromagnetic field.

  4. Effects of Electromagnetic Pulses on a Multilayered System

    Science.gov (United States)

    2014-07-01

    University at Buffalo, 230 Davis Hall, Buffalo, NY 14260 H. L. Moore, P. Haney US Army ARDEC, AMSRD-AAR-MEM, Building 65 S, Picatinny Arsenal, NJ...types of EMPs that are of concern regarding electronics and system infrastructures; they are high-altitude EMP ( HEMP ) generated from nuclear...is for 3-D full-wave electromagnetic field simulation and high frequency and high speed components [2]. The model used was designed and imported

  5. Electromagnetic plane-wave pulse transmission into a Lorentz half-space.

    Science.gov (United States)

    Cartwright, Natalie A

    2011-12-01

    The propagation of an electromagnetic plane-wave signal obliquely incident upon a Lorentz half-space is studied analytically. Time-domain asymptotic expressions that increase in accuracy with propagation distance are derived by application of uniform saddle point methods on the Fourier-Laplace integral representation of the transmitted field. The results are shown to be continuous in time and comparable with numerical calculations of the field. Arrival times and angles of refraction are given for prominent transient pulse features and the steady-state signal.

  6. ResearchAdvances in the Biological Effects of Pulsed Electromagnetic Fields on Osteogenesis%脉冲电磁场成骨生物学效应的研究进展

    Institute of Scientific and Technical Information of China (English)

    卓祥龙(综述); 胡建中(审校)

    2014-01-01

    近年来,脉冲电磁场( PEMFs)在分子、细胞、组织和器官水平对成骨的影响已被广泛研究。PEMFs通过影响细胞分子信号转导、调节相关基因、蛋白合成以及各种细胞因子分泌来调节细胞增殖和分化,抑制骨吸收,促进新骨形成和骨折愈合,并被广泛用于临床上治疗骨折、骨折延迟愈合、骨不连以及脊柱融合。此外,PEMFs还能够提高与组织工程支架联合培养的种子细胞活性。%In recent years,pulsed electromagnetic fields(PEMFs) has been studied extensively in osteo-genic effect at the molecular,cellular,tissue and organ levels.Here is to make a review of the effects of PEMFs on bone formation and bone resorption were reviewed.By regulating cellular,molecular signal transduc-tion,related gene expression,protein synthesis and secretion of various cytokines,PEMFs regulate cell prolifera-tion and differentiation,inhibit bone resorption,promote new bone formation and bone fracture healing ,and is widely used in the clinical treatment for bone fractures ,delayed union,nonunion,and spinal fusion.In addition, PEMFs can also improve the activities of seed cells co -cultured with tissue engineering scaffolds .

  7. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.

    Science.gov (United States)

    Ivić, Z; Lazarides, N; Tsironis, G P

    2016-07-12

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  8. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    Science.gov (United States)

    Ivić, Z.; Lazarides, N.; Tsironis, G. P.

    2016-07-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  9. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    Science.gov (United States)

    Ivić, Z.; Lazarides, N.; Tsironis, G. P.

    2016-01-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing. PMID:27403780

  10. On electromagnetic field problems in inhomogeneous media

    Science.gov (United States)

    Mohsen, A.

    1973-01-01

    Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.

  11. Hamiltonian dynamics of the parametrized electromagnetic field

    CERN Document Server

    G., J Fernando Barbero; Villaseñor, Eduardo J S

    2015-01-01

    We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.

  12. Hamiltonian dynamics of the parametrized electromagnetic field

    Science.gov (United States)

    Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.

    2016-06-01

    We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.

  13. A New Theory of the Electromagnetic Field

    Science.gov (United States)

    Kriske, Richard

    2017-01-01

    This author has previously introduced a new theory of the Electromagnetic Field and its interaction with matter. There was from the start a problem with Einstein's formulation of Invariants and its use in describing The EM field. The photon produced by first varying a stationary Electric field in one observer's reference frame is not the same as a photon produced from varying the a stationary Magnetic Field. The Magnetic field photon is thought of as being ``off the mass shell''. The Quantum information seems to carry with it an ordering of these events. You see this ordering in Wick's theory and in Feynman diagrams. This author is proposing that other fields can vary first in another Observers reference frame, not just the ``Scalar Field'' or the ``Fermion Field'', but many other forms of Energy. If the ``Nuclear Field'' varies first, it results in Quantum information that produces a photon that has the Nuclear Field in it and also the Magnetic Field, this is the strange effect seen in Nuclear Magnetic Resonance. This author proposed that there is a large number of photons with different properties, because of this ordering of events that occurs in Quantum Information. One of these photons is the Neutrino which appears to be a three field photon. This is Kriske's Field Theory.

  14. Model of the motion of a charged particle into a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field; Modelo del movimiento de una particula cargada en un plasma durante la interaccion de un pulso electromagnetico elipticamente polarizado propagandose en la direccion de un campo magnetico estatico y homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F. [UAEM, A.P. 2-139, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    An analytical model for the description of the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized propagating along of a static and homogeneous external magnetic field in a plasma starting from the force equation is presented. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary amplitude and modulated by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radiative effects. (Author)

  15. Motion model for a charged particle in a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field; Modelo del movimiento de una particula cargada en un plasma durante la interaccion de un pulso electromagnetico elipticamente polarizado propagandose en la direccion de un campo magnetico estatico y homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F. [UAEM, Facultad de Ciencias, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    An analytic model is presented for the description of the motion of a charged particle in the interaction of an elliptically electromagnetic pulse polarized propagating along a static and homogeneous external magnetic field in a plasma starting from the force equation. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary and modulated width by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radioactive effects. (Author)

  16. 低频脉冲电磁场治疗骨质疏松症疼痛的临床研究%Low frequency pulse electromagnetic field in the treatment of osteoporosis clinical study of pain

    Institute of Scientific and Technical Information of China (English)

    夏新蜀; 李小宏; 林海丹

    2014-01-01

    目的:观察低频脉冲电磁场(PEMFs)治疗骨质疏松症慢性疼痛的临床疗效。方法:20例志愿受试者均为绝经女性,具有明显骨质疏松症疼痛,4例伴有OP脆性骨折,骨密度降低程度符合WHO的OP诊断标准。采用低频脉冲电磁场,功率≤2000VA;脉冲频率1Hz至100Hz可调;磁感应强度1至50Hz区间:0至100Gs可调,51Hz至100Hz区间:0至75Gs可调。单独采用低频脉冲电磁场治疗,停用其他治疗。将治疗环移至病变部位或疼痛部位,每次治疗30至40分钟,每日一次,20至30次为一疗程。疗程结束后,进行自身前后配对T检验,对VAS、骨密度结果进行统计学处理,判断治疗效果。结果:治疗前后VAS均数为5.85、3.25,标准差1.53、0.79,T值6.50,P<0.001;骨密度治疗前后无显著性差异,T值1.33,P>0.05。结论:低频脉冲电磁场能够明显缓解OP慢性疼痛,是OP的有效物理治疗方法,无不良反应发生。骨密度变化无显著性差异与观察时间短、骨质改变慢等因素有关。%Objective: In order to study the effect of low-frequency pulsed electromagnetic field on the pain in osteoporosis. Methods: 20 postmenopausal women suffering from pain, who were diagnosed as osteoporosis according to the WHO standard, mean age was 65.2 (range 50-79), were included in this trial. These patients suffered from osteoporotic pain at least 6 months, and the mean course of disease was 5.12 years. 4 patients had osteoporotic fracture. All patients only received the low-frequency pulsed electromagnetic field therapy with ZH-21 osteoporosis treatment system ( Power ≤ 2000VA; Pulsed Frequency:1-100Hz;Magnetic Induction: 0-100Gs with pulsed frequency 1-50Hz, 0-75Gs with pulsed frequency 51-100Hz ). A total of 20-30 manage-ments, with 30-40 min at a time and once per day, were given to the patients. The VAS and the bone mineral density were tested in the post-therapy period compared

  17. Bianchi Class B Spacetimes with Electromagnetic Fields

    CERN Document Server

    Yamamoto, Kei

    2011-01-01

    We carry out a thorough analysis on a class of cosmological spacetimes which admit three space-like Killing vectors of Bianchi class B and contain electromagnetic fields. Using dynamical system analysis, we show that a family of vacuum plane-wave solutions of the Einstein-Maxwell equations is the stable attractor for expanding universes. Phase dynamics are investigated in detail for particular symmetric models. We integrate the system exactly for some special cases to confirm the qualitative features. Some of the obtained solutions have not been presented previously to the best of our knowledge. Finally, based on those solutions, we discuss the relation between those homogeneous models and perturbations of open FLRW universes. We argue that the vacuum plane-wave modes correspond to a certain long-wavelength limit of electromagnetic perturbations.

  18. Nonthermal electromagnetic fields: from first messenger to therapeutic applications.

    Science.gov (United States)

    Pilla, Arthur A

    2013-06-01

    Nonthermal pulsed electromagnetic fields, from low frequency to pulse-modulated radio frequency, have been successfully employed as adjunctive therapy for the treatment of delayed and non-union fractures, fresh fractures and chronic wounds. Recent increased understanding of the mechanism of action of electromagnetic fields (EMF) has permitted technologic advances allowing the development of EMF devices which are portable and disposable, can be incorporated into dressings, supports and casts, and can be used over clothing. This broadens the use of non-pharmacological, non-invasive EMF therapy to the treatment of postoperative pain and edema to enhance surgical recovery. EMF therapy is rapidly becoming a standard part of surgical care, and new, more significant, clinical applications for osteoarthritis, brain and cardiac ischemia and traumatic brain injury are in the pipeline. This study reviews recent evidence which suggests that calmodulin (CaM)-dependent nitric oxide signaling is involved in cell and tissue response to weak nonthermal EMF signals. There is abundant evidence that EMF signals can be configured a priori to increase the rate of CaM activation, which, in turn, can modulate the biochemical cascades living cells and tissues employ in response to external insult. Successful applications in pilot clinical trials, coupled with evidence at the cellular and animal levels, provide support that EMF is a first messenger that can modulate the response of challenged biological systems.

  19. Exposure assessment of electromagnetic fields near electrosurgical units.

    Science.gov (United States)

    Wilén, Jonna

    2010-10-01

    Electrosurgical units (ESU) are widely used in medical health services. By applying sinusoidal or pulsed voltage in the frequency range of 0.3-5 MHz to the electrode tip, the desired mixture of coagulation and cutting are achieved. Due to the high voltage and current in the cable, strong electromagnetic fields appear near the ESU. The surgeon and others inside the operating room such as nurses, anesthesiologists, etc., will be highly exposed to these fields. The stray fields surrounding the ESU have previously been measured, but now a deeper analysis has been made of the curve shape of the field and the implication of this when assessing exposure from a commonly used ESU in accordance with the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The result showed that for some of the modes, especially those using high-pulsed voltage with only a few sinusoidal periods, the E-field close to the cable could reach linear spatially averaged values of 20 kV/m compared to the 2.1 kV/m stated in ICNIRP guidelines. Assessing the E- and B-field from ESU is not straightforward since in this frequency range, both induced current density and specific absorption rate are restricted by the ICNIRP guidelines. Nevertheless, work needs to be done to reduce the stray fields from ESU.

  20. Electromagnetic fields, pacemakers and defibrillators; Champs electromagnetiques, cardiostimulateurs et defibrillateurs

    Energy Technology Data Exchange (ETDEWEB)

    Guiguet, J.C. [Agence Nationale des Frequences (ANFR), 94 - Maisons Alfort (France); Dodinot, B.; Sadoul, N.; Blangy, H. [Centre Hospitalier Universitaire Nancy-Brabois, Clinique Cardiologique, 54 - Vandoeuvre Brabois (France); Nadi, M.; Hedjiedj, A.; Schmitt, P. [Universite Henri Poincare-Nancy, Lab. d' Instrumentation Electronique de Nancy, Faculte des Sciences, 54 - Vandoeuvre les Nancy (France); Joly, L.; Dodinot, B.; Aliot, E. [Centre Hospitalier Universitaire Nancy-Brabois, Service de Cardiologie, 54 - Vandoeuvre-les-Nancy (France); Silny, J. [Aachen University (Germany); Franck, R.; Himbert, C.; Hidden-Lucet, F.; Petitot, J.C.; Fontaine, G. [Hopital Pitie-Salpetriere, Institut de Cardiologie, Service de Rythmologie, 75 - Paris (France); Souques, M.; Lambrozo, J. [Electricite de France (EDF-Gaz de France), Service des Etudes Medicales, 75 - Paris (France); Magne, I.; Bailly, J.M. [Electricite de France (EDF-Gaz de France), Div. Recherche Developpement, 77 - Moret sur Loing (France); Trigano, J.A. [Centre Hospitalier Universitaire, Hopital Nord, 13 - Marseille (France); Burais, N. [CEGELY, Ecole Centrale de Lyon, 69 - Ecully (France); Gaspard, J.Y. [Magtech, 69 - Ecully (France); Andrivet, Ph. [Societe Medtronic France, 92 - Boulogne-Billancourt (France)

    2004-07-01

    Presentation of electromagnetic sources constituted by various radio transmitters contributing to different radio communication services in the environment. Results of a measures campaign to assess the electromagnetic field in the close neighbourhood of various stations. Analysis by frequency domains. (author)

  1. Electromagnetic Fields and Waves in Fractional Dimensional Space

    CERN Document Server

    Zubair, Muhammad; Naqvi, Qaisar Abbas

    2012-01-01

    This book presents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves. It provides demonstrates the advantages in studying the behavior of electromagnetic fields and waves in fractal media. The book presents novel fractional space generalization of the differential electromagnetic equations is provided as well as a new form of vector differential operators is formulated in fractional space. Using these modified vector differential operators, the classical Maxwell's electromagnetic equations are worked out. The Laplace's, Poisson's and Helmholtz's

  2. Radiation (absorbing) boundary conditions for electromagnetic fields

    Science.gov (United States)

    Bevensee, R. M.; Pennock, S. T.

    1987-01-01

    An important problem in finite difference or finite element computation of the electromagnetic field obeying the space-time Maxwell equations with self-consistent sources is that of truncating the outer numerical boundaries properly to avoid spurious numerical reflection. Methods for extrapolating properly the fields just beyond a numerical boundary in free space have been treated by a number of workers. This report avoids plane wave assumptions and derives boundary conditions more directly related to the source distribution within the region. The Panofsky-Phillips' relations, which enable one to extrapolate conveniently the vector field components parallel and perpendicular to a radial from the coordinate origin chosen near the center of the charge-current distribution are used to describe the space-time fields.

  3. Spatial bandlimitedness of scattered electromagnetic fields

    CERN Document Server

    Khankhoje, Uday K

    2015-01-01

    In this tutorial paper, we consider the problem of electromagnetic scattering by a bounded dielectric object, and discuss certain interesting properties of the scattered field. Using the electric field integral equation, along with the techniques of Fourier theory and the properties of Bessel functions, we show analytically and numerically, that the scattered fields are spatially bandlimited. Further, we derive an upper bound on the number of incidence angles that are useful as constraints in an inverse problem setting (determining permittivity given measurements of the scattered field). We also show that the above results are independent of the dielectric properties of the scattering object and depend only on geometry. Though these results have previously been derived in the literature using the framework of functional analysis, our approach is conceptually far easier. Implications of these results on the inverse problem are also discussed.

  4. [Biological effects of electromagnetic fields (author's transl)].

    Science.gov (United States)

    Bernhardt, J

    1979-08-01

    This résumé deals with thermal and nonthermal effects of electromagnetic fields on man. In consideration of two aspects a limitation is necessary. Firstly, there will be discussed only direct and immediate influences on biological cells and tissues, secondly, the treatment is limited to such phenomena, for which biophysical aproximations, based on experimental data, could be developed. Hazards for the human being may occur only by thermal effects within the microwave range. Regarding frequencies below approximately 30 kHz, excitation processes cannot be excluded in exceptional cases. Thermal effects are predominant, between 30 kHz and 100 kHz, before excitations can appear. Furthermore, by comparing the electrically and magnetically induced currents with the naturally flowing currents in man caused by the brain's and heart's electrical activity, a "lower boundaryline" was estimated. Regarding electric or magnetic field strengths undercutting this boundary-line, direct effects on the central nervous system may be excluded; other mechanisms should be responsible for demonstrated biological effects. The paper closes referring to some reports--presently discussed--on experimental findings of biological effects, which are observed as a result of the influence of electromagnetic fields of small field strengths.

  5. Electromagnetic fields on a quantum scale. I.

    Science.gov (United States)

    Grimes, Dale M; Grimes, Craig A

    2002-10-01

    This is the first in a series of two articles, the second of which provides an exact electro-magnetic field description of photon emission, absorption, and radiation pattern. Photon energy exchanges are analyzed and shown to be the triggered, regenerative response of a non-local eigenstate electron. This first article presents a model-based, hidden variable analysis of quantum theory that provides the statistical nature of wave functions. The analysis uses the equations of classical electro-magnetism and conservation of energy while modeling an eigenstate electron as a nonlocal entity. Essential to the analysis are physical properties that were discovered and analyzed only after the historical interpretation of quantum mechanics was established: electron non-locality and the standing electro-magnetic energy that accompanies and encompasses an active, electrically small volume. The standing energy produces a driving radiation reaction force that, under certain circumstances, is many orders of magnitude larger than currently accepted values. These properties provide a sufficient basis for the Schrödinger equation as a descriptor of non-relativistic eigenstate electrons in or near equilibrium. The uncertainty principle follows, as does the exclusion principle. The analysis leads to atomic stability and causality in the sense that the status of physical phenomena at any instant specifies the status an instant later.

  6. Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaobin, E-mail: yangxb@lzu.edu.cn; Li, Xiuhong; He, Yafeng; Wang, Xiaojun; Xu, Bo

    2017-04-15

    Highlights: • The differential equation including temperature and magnetic field was derived for a long cylindrical superconductor. • Thermal stress and electromagnetic stress were studied at the same time under pulse field magnetizing. • The distributions of the magnetic field, the temperature and stresses are studied and compared for two pulse fields of the different duration. • The Role thermal stress and electromagnetic stress play in the process of pulse field magnetizing is discussed. - Abstract: A multiphysics model for the numerical computation of stresses, trapped field and temperature distribution of a infinite long superconducting cylinder is proposed, based on which the stresses, including the thermal stresses and mechanical stresses due to Lorentz force, and trapped fields in the superconductor subjected to pulsed magnetic fields are analyzed. By comparing the results under pulsed magnetic fields with different pulse durations, it is found that the both the mechanical stress due to the electromagnetic force and the thermal stress due to temperature gradient contribute to the total stress level in the superconductor. For pulsed magnetic field with short durations, the thermal stress is the dominant contribution to the total stress, because the heat generated by AC-loss builds up significant temperature gradient in such short durations. However, for a pulsed field with a long duration the gradient of temperature and flux, as well as the maximal tensile stress, are much smaller. And the results of this paper is meaningful for the design and manufacture of superconducting permanent magnets.

  7. Degassing of Bioliquids in Low Electromagnetic Fields

    CERN Document Server

    Shatalov, Vladimir; Zinchenko, Alina

    2011-01-01

    A similarity of changes in physical-chemical properties of pure water induced by low electromagnetic fields (EMF) and by degassing treatment brought us to a conclusion that EMF produces some degassing of water. Degassing in turn gives rise to some biological effects by increasing the surface tension and activity of dissolved ions. In such a way the degassing can modify conformations of proteins and others biomolecules in bioliquids. That was confirmed in our observation of changes in the erythrocyte sedimentation rate and the prothrombinase activity in blood clotting processes.

  8. Locating voids beneath pavement using pulsed electromagnetic waves

    Science.gov (United States)

    Steinway, W. J.; Echard, J. D.; Luke, C. M.

    1981-11-01

    The feasibility of using pulsed electromagnetic wave technology for locating and sizing voids beneath reinforced and nonreinforced portland cement concrete pavements is determined. The data processing techniques developed can be implemented to provide information for void depth and sizing to + or - 1/2 in. and spatial location within + or - 6 in. A very short pulse radar directly connected to a microcomputer was chosen as the equipment necessary to obtain measurements. This equipment has the required accuracy and reliability, and is a cost effective solution for the void locating problem. The radar provides a signal return from voids that has unique characteristics that can be examined to provide information regarding the location, depth, and shape of the void. The microcomputer provides a means of real time processing to extract the information from the radar signal return and record the results. Theoretical modeling of signal returns from voids led to suitable techniques for locating and sizing voids beneath the pavement. Analysis and application of these techniques to radar measurements verified the theoretical predictions that radar can be used to determine the location, size, and shape of actual voids.

  9. Electromagnetic Processes in strong Crystalline Fields

    CERN Multimedia

    Uggerhoj, U I; Mikkelsen, F K

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  10. Vacuum birefringence in strong inhomogeneous electromagnetic fields

    CERN Document Server

    Karbstein, Felix; Reuter, Maria; Zepf, Matt

    2015-01-01

    Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of non-linear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generatio...

  11. Near-field radiofrequency electromagnetic exposure assessment.

    Science.gov (United States)

    Rubtsova, Nina; Perov, Sergey; Belaya, Olga; Kuster, Niels; Balzano, Quirino

    2015-09-01

    Personal wireless telecommunication devices, such as radiofrequency (RF) electromagnetic field (EMF) sources operated in vicinity of human body, have possible adverse health effects. Therefore, the correct EMF assessment is necessary in their near field. According to international near-field measurement criteria, the specific absorption rate (SAR) is used for absorbed energy distribution assessment in tissue simulating liquid phantoms. The aim of this investigation is to validate the relationship between the H-field of incident EMF and absorbed energy in phantoms. Three typical wireless telecommunication system frequencies are considered (900, 1800 and 2450 MHz). The EMF source at each frequency is an appropriate half-wave dipole antenna and the absorbing medium is a flat phantom filled with the suitable tissue simulating liquid. Two methods for SAR estimation have been used: standard procedure based on E-field measured in tissue simulating medium and a proposed evaluation by measuring the incident H-field. Compared SAR estimations were performed for various distances between sources and phantom. Also, these research data were compared with simulation results, obtained by using finite-difference time-domain method. The acquired data help to determine the source near-field space characterized by the smallest deviation between SAR estimation methods. So, this region near the RF source is suitable for correct RF energy absorption assessment using the magnetic component of the RF fields.

  12. Pulsed electric field increases reproduction.

    Science.gov (United States)

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  13. Directed cell movement in pulsed electric fields.

    Science.gov (United States)

    Franke, K; Gruler, H

    1994-01-01

    Human granulocytes exposed to pulsed electric guiding fields were investigated. The trajectories were determined from digitized pictures (phase contrast). The basic results are: (i) No directed response was induced by pulsed electric guiding fields having a zero averaged field. (ii) A directed response was induced by pulsed electric guiding fields having a non-zero averaged field. (iii) The directed response was enhanced for pulse sequences having a repetition time of 8 s. (iv) The lag-time between signal recognition and cellular response was 8-10 s. The results are discussed in the framework of a self-ignition model.

  14. Pulsed electromagnetic fields increased the anti-inflammatory effect of A₂A and A₃ adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts.

    Directory of Open Access Journals (Sweden)

    Fabrizio Vincenzi

    Full Text Available Adenosine receptors (ARs have an important role in the regulation of inflammation and their activation is involved in the inhibition of pro-inflammatory cytokine release. The effects of pulsed electromagnetic fields (PEMFs on inflammation have been reported and we have demonstrated that PEMFs increased A2A and A3AR density and functionality in different cell lines. Chondrocytes and osteoblasts are two key cell types in the skeletal system that play important role in cartilage and bone metabolism representing an interesting target to study the effect of PEMFs. The primary aim of the present study was to evaluate if PEMF exposure potentiated the anti-inflammatory effect of A2A and/or A3ARs in T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. Immunofluorescence, mRNA analysis and saturation binding assays revealed that PEMF exposure up-regulated A2A and A3AR expression. A2A and A3ARs were able to modulate cAMP production and cell proliferation. The activation of A2A and A3ARs resulted in the decrease of some of the most relevant pro-inflammatory cytokine release such as interleukin (IL-6 and IL-8, following the treatment with IL-1β as an inflammatory stimuli. In human chondrocyte and osteoblast cell lines, the inhibitory effect of A2A and A3AR stimulation on the release of prostaglandin E2 (PGE2, an important lipid inflammatory mediator, was observed. In addition, in T/C-28a2 cells, the activation of A2A or A3ARs elicited an inhibition of vascular endothelial growth factor (VEGF secretion. In hFOB 1.19 osteoblasts, PEMF exposure determined an increase of osteoprotegerin (OPG production. The effect of the A2A or A3AR agonists in the examined cells was enhanced in the presence of PEMFs and completely blocked by using well-known selective antagonists. These results demonstrated that PEMF exposure significantly increase the anti-inflammatory effect of A2A or A3ARs suggesting their potential therapeutic use in the therapy of inflammatory bone and joint

  15. The efficacy of pulsed electromagnetic field combined with ibandronate on primary osteoporosis%脉冲电磁场联合伊班膦酸钠治疗原发性骨质疏松的疗效分析

    Institute of Scientific and Technical Information of China (English)

    韦葛堇; 杨华; 林舟丹; 唐葆青; 程昌志; 黄育强

    2011-01-01

    目的 观察低频脉冲电磁场(PEMF)联合伊班膦酸钠治疗原发性骨质疏松症的疗效.方法 将164名患者分成两组,对照组(75例)予口服钙尔奇D及静滴伊班膦酸钠,连续2月.治疗组(89例)给予同样钙剂和伊班膦酸钠治疗,同时给予PEMF骨质疏松治疗系统治疗,治疗前、后对患者进行临床症状改善评分及骨密度测量.结果 综合治疗组对疼痛缓解更有效,并且对骨密度的提高也有较显著的效果,治疗后1月提高9.13%,治疗后3月为15.32%,并能够明显改善患者的日常生活活动能力.结论 PEMF联合伊班膦酸钠治疗原发性骨质疏松症是一种疗效显著的方法.%Objective To observe the efficacy of lower frequency pulsed electromagnetic field (PEMF) combined with ibandronate on primary osteoporosis. Methods One hundred and sixty-four patients were divided into two groups. Patients in the control group (75 cases) were administered with oral Caltrate D and intravenous ibandronate and the treatment continued for 2 months. Patients in the treatment group ( 89 cases) received the same calcium and ibandronate therapy, and simultaneously received systematic lower frequency PEMF treatment for osteoporosis. The clinical symptoms scale and bone mineral density (BMD) were determined before and after the treatment. Results Combination therapy in the treatment was more effective on pain release and BMD increase. It could also improve the activity of daily living significantly. Conclusion Combination of PEMF and-ibandronate is a effective treatment for primary osteoporosis.

  16. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  17. Electromagnetic pulse research on electric power systems: Program summary and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. (Oak Ridge National Lab., TN (United States)); Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States)); Vance, E.F. (Vance (E.F.), Fort Worth, TX (United States))

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation's power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation's electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  18. Numerical simulation of electro-magnetic and flow fields of TiAl melt under electric field

    Directory of Open Access Journals (Sweden)

    Zhang Yong

    2010-08-01

    Full Text Available This article aims at building an electromagnetic and fluid model, based on the Maxwell equations and Navier-Stokes equations, in TiAl melt under two electric fields. FEM (Finite Element Method and APDL (ANSYS Parametric Design Language were employed to perform the simulation, model setup, loading and problem solving. The melt in molds of same cross section area with different flakiness ratio (i.e. width/depth under the load of sinusoidal current or pulse current was analyzed to obtain the distribution of electromagnetic field and flow field. The results show that the induced magnetic field occupies sufficiently the domain of the melt in the mold with a flakiness ratio of 5:1. The melt is driven bipolarly from the center in each electric field. It is also found that the pulse electric field actuates the TiAl melt to flow stronger than what the sinusoidal electric field does.

  19. Effect of frequency variation on electromagnetic pulse interaction with charges and plasma

    NARCIS (Netherlands)

    Khachatryan, A.G.; Goor, van F.A.; Verschuur, J.W.J.; Boller, K.-J.

    2005-01-01

    The effect of frequency variation (chirp) in an electromagnetic (EM) pulse on the pulse interaction with a charged particle and plasma is studied. Various types of chirp and pulse envelopes are considered. In vacuum, a charged particle receives a kick in the polarization direction after interaction

  20. Susceptibility of personal computer systems to electromagnetic pulses with double exponential character

    Directory of Open Access Journals (Sweden)

    M. Camp

    2004-01-01

    Full Text Available In this paper the susceptibility of personal computer systems to fast transient electromagnetic pulses with double exponential pulse shapes (EMP, UWB is determined. The influence of the computer generation, RAM-values, different program states and the pulse shape, as well as the destruction thresholds of single PC-components (CPU, RAM, BIOS, Mainboard have been investigated.

  1. Effects of electromagnetic fields on fecundity in the chicken.

    Science.gov (United States)

    Krueger, W F; Giarola, A J; Bradley, J W; Shrekenhamer, A

    1975-02-28

    Egg production was reduced when young laying hens were kept in contact with metal cages while being continuously exposed to the following cw fields: a vhf field at a frequency of 260 MHz, with an incident power that decreased from 100 to 4mW during the experiment; a uhf field at a frequency of 915 MHz, with an incident power of 800 mW during the first 2.5 weeks, zero during the following week, and 200 mW for the remainder of the experiment; a uhf field at 2.435 GHz, with an incident power of 800 mW; an elf electric field at a frequency of 60 Hz, with a calculated value of field strength of 1600 V/m; an elf magnetic field at 60 Hz, with a value of magnetic flux density of 1.4G. With the exception of the hens exposed to the uhf field at 915 MHz, all other treated groups laid significantly less eggs than the controls (p smaller than or equal to 0.01). This reduction (similar 15% less than the controls) began with the first 4-week production period. The egg production curves for the hens exposed to the vhf field at 260 MHz and to the uhf field at 2.435 GHz were approximately the same beginning with the sixth week of production, and they maintained comparable production levels for the remainder of the experiment. An 8% total drop in production also was experienced in the group of birds exposed to the 915-MHz field, which pulsed because of equipment failure. Egg production rate curves for the birds in the elf electric and magnetic fields were substantially different from those exhibited by birds in the other electromagnetic fields. The birds in the E-field regained a production level comparable to the controls after 11 weeks production, whereas those in the B-field dropped to 31% production, which was approximately 40% poorer than the controls by the twelfth week of production. Fertility of cocks and hens was not affected by continuous low-power vhf and uhf near-zone electromagnetic exposure or elf electric or magnetic field treatment. Fertility was exceptionally good

  2. Enhancement of cortical network activity in vitro and promotion of GABAergic neurogenesis by stimulation with an electromagnetic field with a 150 MHz carrier wave pulsed with an alternating 10 and 16 Hz modulation.

    Directory of Open Access Journals (Sweden)

    Alexandra eGramowski-Voss

    2015-07-01

    Full Text Available In recent years, various stimuli were identified capable of enhancing neurogenesis, a process which is dysfunctional in the senescent brain and in neurodegenerative and certain neuropsychiatric diseases. Applications of electromagnetic fields to brain tissue have been shown to affect cellular properties and their importance for therapies in medicine is recognized.In this study, differentiating murine cortical networks on multiwell microelectrode arrays were repeatedly exposed to an extremely low electromagnetic field (ELEMF with alternating 10 and 16 Hz frequencies piggy-backed onto a 150 MHz carrier frequency. The ELEMF exposure stimulated the electrical network activity and intensified the structure of bursts. Further, the exposure with an electromagnetic field within the first 28 days of the differentiation the network activity induced also reorganization within the burst structure. This effect was already most pronounced at 14 days in vitro after 10 days of exposure. Overall, the development of cortical activity under these conditions was accelerated. These functional electrophysiological changes were accompanied by morphological ones. The percentage of neurons in the neuron glia co-culture was increased without affecting the total number of cells, indicating an enhancement of neurogenesis. The ELEMF exposure selectively promoted the proliferation of a particular population of neurons, evidenced by the increased proportion of GABAergic neurons. The results support the initial hypothesis that this kind of ELEMF stimulation is a treatment option for specific indications with promising potential for CNS applications, especially for degenerative diseases such as Alzheimer’s disease and other dementias.

  3. Electromagnetic multipole fields of neutron stars

    Science.gov (United States)

    Roberts, W. J.

    1979-01-01

    A formalism is developed for treating general multipole electromagnetic fields of neutron stars. The electric multipoles induced in a neutron star by its rotation with an arbitrary magnetic multipole at its center are presented. It is shown how to express a family of off-centered multipoles having the same l weight as an infinite array of centered multipoles of increasing l weight referred to the rotational axis. General expressions are given for the linear momentum present in the superposition of arbitrary multipole fields, and the results are combined to compute the radiation rate of linear momentum by an off-centered dipole to zeroth order in the parameter Omega x R/c. The general Deutsch (1955) solution is then rederived in a clear consistent manner, and some minor additions and corrections are provided.

  4. Electromagnetic field patterning or crystal light

    Science.gov (United States)

    Słupski, Piotr; Wymysłowski, Artur; Czarczyński, Wojciech

    2016-12-01

    Using the orbital angular momentum of light for the development of a vortex interferometer, the underlying physics requires microwave/RF models,1 as well as quantum mechanics for light1, 2 and fluid flow for semiconductor devices.3, 4 The combination of the aforementioned physical models yields simulations and results such as optical lattices,1 or an Inverse Farday effect.5 The latter is explained as the absorption of optical angular momentum, generating extremely high instantenous magnetic fields due to radiation friction. An algorithmic reduction across the computational methods used in microwaves, lasers, quantum optics and holography is performed in order to explain electromagnetic field interactions in a single computational framework. This work presents a computational model for photon-electron interactions, being a simplified gauge theory described using differentials or disturbances (photons) instead of integrals or fields. The model is based on treating the Z-axis variables as a Laplace fluid with spatial harmonics, and the XY plane as Maxwell's equations on boundaries. The result is a unified, coherent, graphical computational method of describing the photon qualitatively, quantitatively and with proportion. The model relies on five variables and is described using two equations, which use emitted power, cavity wavelength, input frequency, phase and time. Phase is treated as a rotated physical dimension under gauge theory of Feynmann's QED. In essence, this model allows the electromagnetic field to be treated with it's specific crystallography. The model itself is described in Python programming language. PACS 42.50.Pq, 31.30.J-, 03.70.+k, 11.10.-z, 67.10.Hk

  5. Stable Propagating Waves and Wake Fields in Relativistic Electromagnetic Plasma

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi-Shi; XIE Bai-Song; TIAN Miao; YIN Xin-Tao; ZHANG Xin-Hui

    2008-01-01

    Stable propagating waves and wake fields in relativistic electromagnetic plasma are investigated. The incident electromagnetic field has a finite initial constant amplitude meanwhile the longitudinal momentum of electrons is taken into account in the problem. It is found that in the moving frame with transverse wave group velocity the stable propagating transverse electromagnetic waves and longitudinal plasma wake fields can exist in the appropriate regime of plasma.

  6. Terahertz Solitons in Biomolecular Systems and their Excitation by External Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Bugay А.N.

    2015-01-01

    Full Text Available Nonlinear dynamics of charge and acoustic excitations in cellular microtubules is considered. Different types of nonlinear solitary waves were studied taking account for dissipation. The mechanism of electro-acoustic pulse excitation by external electromagnetic field of terahertz frequency is recognized.

  7. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    Science.gov (United States)

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  8. Numerical simulation of narrow bipolar electromagnetic pulses generated by thunderstorm discharges

    Science.gov (United States)

    Bochkov, E. I.; Babich, L. P.; Kutsyk, I. M.

    2013-07-01

    Using the concept of avalanche relativistic runaway electrons (REs), we perform numerical simulations of compact intracloud discharge (CID) as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-VHF range, called narrow bipolar pulses (NBPs). For several values of the field overvoltage and altitude at which the discharge develops, the numbers of seed electrons initiating the avalanche are evaluated, with which the calculated EMP characteristics are consistent with the measured NBP parameters. We note shortcomings in the hypothesis assuming participation of cosmic ray air showers in avalanche initiation. The discharge capable of generating NBPs produces REs in numbers close to those in the source of terrestrial γ-ray flashes (TGFs), which can be an argument in favor of a unified NBP and TGF source.

  9. Numerical simulation of narrow bipolar electromagnetic pulses generated by thunderstorm discharges

    Energy Technology Data Exchange (ETDEWEB)

    Bochkov, E. I.; Babich, L. P., E-mail: babich@elph.vniief.ru; Kutsyk, I. M. [All-Russia Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation)

    2013-07-15

    Using the concept of avalanche relativistic runaway electrons (REs), we perform numerical simulations of compact intracloud discharge (CID) as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-VHF range, called narrow bipolar pulses (NBPs). For several values of the field overvoltage and altitude at which the discharge develops, the numbers of seed electrons initiating the avalanche are evaluated, with which the calculated EMP characteristics are consistent with the measured NBP parameters. We note shortcomings in the hypothesis assuming participation of cosmic ray air showers in avalanche initiation. The discharge capable of generating NBPs produces REs in numbers close to those in the source of terrestrial {gamma}-ray flashes (TGFs), which can be an argument in favor of a unified NBP and TGF source.

  10. The classical theory of fields electromagnetism

    CERN Document Server

    Helrich, Carl S

    2012-01-01

    The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...

  11. Plant Responses to High Frequency Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Alain Vian

    2016-01-01

    Full Text Available High frequency nonionizing electromagnetic fields (HF-EMF that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc. are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor, and growth reduced (stem elongation and dry weight after low power (i.e., nonthermal HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism.

  12. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps.

    Science.gov (United States)

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  13. Pulse Structure of Hot Electromagnetic Outflows with Embedded Baryons

    CERN Document Server

    Thompson, Christopher

    2014-01-01

    Gamma-ray bursts (GRBs) show a dramatic pulse structure that requires bulk relativistic motion, but whose physical origin has remained murky. We focus on a hot, magnetized jet that is emitted by a black hole and interacts with a confining medium. Strongly relativistic expansion of the magnetic field, as limited by a corrugation instability, may commence only after it forms a thin shell. Then the observed $T_{90}$ burst duration is dominated by the curvature delay, and null periods arise from angular inhomogeneities, not the duty cycle of the engine. We associate the $O(1)$ s timescale observed in the pulse width distribution of long GRBs with the collapse of the central 2.5-3$M_\\odot$ of a massive stellar core. A fraction of the baryons are shown to be embedded in the magnetized outflow by the hyper-Eddington radiation flux; they strongly disturb the magnetic field after the compactness drops below $\\sim 4\\times 10^3(Y_e/0.5)^{-1}$. The high-energy photons so created have a compressed pulse structure. Delayed...

  14. Non-Invasive Electro-Magnetic Field Sensor.

    Science.gov (United States)

    1986-01-01

    69 30 Fiber optic sensor’s response to a pulsed electric field . 74 31 Fiber optic electric field sensor’s response to an oscil- latory field...first test type involved a pulsed electric field . The applied voltage pulse was negative with a peak voltage of approxi- mately -24,000 volts and a

  15. High field rf superconductivity: to pulse or not to pulse

    Energy Technology Data Exchange (ETDEWEB)

    Campisi, I.E.

    1984-10-01

    Experimental data on the behavior of superconductors under the application of rf fields of amplitude comparable to their critical fields are sporadic and not always consistent. In many cases the field level at which breakdown in superconducting rf cavities should be expected has not been clearly established. Tests conducted with very short (approx. 1 ..mu..s) rf pulses indicate that in this mode of operation fields close to the critical values can be consistently reached in superconducting cavities without breakdown. The advantages and disadvantages of the pulsed method are discussed compared to those of the more standard continuous wave (cw) systems. 60 references.

  16. The Effect of Ionospheric Models on Electromagnetic Pulse Locations

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Triplett, Laurie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-01

    Locations of electromagnetic pulses (EMPs) determined by time-of-arrival (TOA) often have outliers with significantly larger errors than expected. In the past, these errors were thought to arise from high order terms in the Appleton-Hartree equation. We simulated 1000 events randomly spread around the Earth into a constellation of 22 GPS satellites. We used four different ionospheres: “simple” where the time delay goes as the inverse of the frequency-squared, “full Appleton-Hartree”, the “BobRD integrals” and a full raytracing code. The simple and full Appleton-Hartree ionospheres do not show outliers whereas the BobRD and raytracing do. This strongly suggests that the cause of the outliers is not additional terms in the Appleton-Hartree equation, but rather is due to the additional path length due to refraction. A method to fix the outliers is suggested based on fitting a time to the delays calculated at the 5 GPS frequencies with BobRD and simple ionospheres. The difference in time is used as a correction to the TOAs.

  17. Electromagnetic fields produced by simulated spacecraft discharges

    Science.gov (United States)

    Nonevicz, J. E.; Adamo, R. C.; Beers, B. L.; Delmer, T. N.

    1980-01-01

    The initial phase of a broader, more complete program for the characterization of electrical breakdowns on spacecraft insulating materials is described which consisted of the development of a discharge simulator and characterization facility and the performance of a limited number of discharge measurements to verify the operation of the laboratory setup and to provide preliminary discharge transient field data. A preliminary model of the electromagnetic characteristics of the discharge was developed. It is based upon the "blow off" current model of discharges, with the underlying assumption of a propagating discharge. The laboratory test facility and discharge characterization instrumentation are discussed and the general results of the "quick look" tests are described on quartz solar reflectors aluminized Kapton and silver coated Teflon are described.

  18. MODELLING OF TRANSIENT ELECTROMAGNETIC FIELD FOR SINGLE-TURN INDUCTOR SYSTEMS

    Directory of Open Access Journals (Sweden)

    D. Vasiukov

    2009-01-01

    Full Text Available The single-turn inductor system for magneto-pulse forming operation of thin metal blank is considered. The basic characteristic of the dynamic electromagnetic field with the application of the finite element method is obtained. The qualitative and quantitative inductor characteristics that allow to calculate the power interaction between the inductor field and the metal blank field are determined. The numerical results are compared with analytical and experimental ones of other authors.

  19. Motion of charged particles in a knotted electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, M; Trueba, J L, E-mail: joseluis.trueba@urjc.e [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)

    2010-06-11

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  20. Inelastic deformation of conductive bodies in electromagnetic fields

    Science.gov (United States)

    Altenbach, Holm; Morachkovsky, Oleg; Naumenko, Konstantin; Lavinsky, Denis

    2016-09-01

    Inelastic deformation of conductive bodies under the action of electromagnetic fields is analyzed. Governing equations for non-stationary electromagnetic field propagation and elastic-plastic deformation are presented. The variational principle of minimum of the total energy is applied to formulate the numerical solution procedure by the finite element method. With the proposed method, distributions of vector characteristics of the electromagnetic field and tensor characteristics of the deformation process are illustrated for the inductor-workpiece system within a realistic electromagnetic forming process.

  1. THE INFLUENCE OF NANOSECOND ELECTROMAGNETIC PULSES TO OBTAIN TIN AND THE PROPERTIES OF ITS ALLOYS

    Directory of Open Access Journals (Sweden)

    V. G. Komkov

    2012-01-01

    Full Text Available Experimentally found that the effect of nanosecond electromagnetic pulses to melt the charge, while the carbon thermal recovery of the tin ore, accelerates the formation of the metallic phase.

  2. Experimental study and mechanism analysis on bioeffects by nanosecond electromagnetic pulses

    Institute of Scientific and Technical Information of China (English)

    王保义; 杨杰斌; 郭庆功; 徐润民; 刘长军; 张弘; 邹方东; 王子淑

    1997-01-01

    The athermal bioeffects caused by nanosecond electromagnetic pulses with body cells was studied by using a broad band transverse EM-wave cell (BTEM CELL). The experimental system and preliminary mechanism analysis were presented.

  3. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value ar

  4. Investigation of the behavior of protection elements against field radiated line coupled UWB-pulses

    Directory of Open Access Journals (Sweden)

    R. Krzikalla

    2006-01-01

    Full Text Available To protect electronic systems against electromagnetic interferences in general nonlinear protection circuits are used. These protection circuits are optimized mostly against special transient interferences such as lightning electromagnetic pulses (LEMP or electromagnetic pulses caused by nuclear explosions (NEMP. Previous investigations have shown that these protection elements could be undermined by so-called ultra wideband (UWB pulses. Thereby a direct charge of the UWB-pulse to the elements has been assumed. This assumption was a worst case approximation because in practice UWB-pulses only get into systems by coupling effects. In this investigation the behavior of typical nonlinear protection elements has been tested with field radiated line coupled UWB-pulses. For that line coupled UWB-pulses have been defined depending on the coupling behavior of typical electronic systems and a possibility of generation of this kind of pulses is presented. After it typical nonlinear protection elements such as spark gaps, varistors and protection diodes have been tested with the previously defined test pulses. Finally the measured behavior of the elements has been compared with the behavior by direct charged UWB-pulses and the protection effect of the elements against field radiated line coupled UWB-pulses is re-evaluated.

  5. Angular Spectrum Simulation of Pulsed Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2009-01-01

    The optimization of non-linear ultrasound imaging should in a first step be based on simulation, as this makes parameter studies considerably easier than making transducer prototypes. Such a simulation program should be capable of simulating non-linear pulsed fields for arbitrary transducer...... geometries for any kind of focusing and apodization. The Angular Spectrum Approach (ASA) is capable of simulating monochromatic non-linear acoustic wave propagation. However, for ultrasound imaging the time response of each specific point in space is required, and a pulsed ASA simulation with multi temporal....... The RMS error of the pulses for all points in the simulated plane is 10.9%. The good agreement between ASA and Field II simulation for the pulsed ultrasound fields obtained in this paper makes it possible to expand Field II to non-linear pulsed fields....

  6. Damage assessment of long-range rocket system by electromagnetic pulse weapon

    Science.gov (United States)

    Cao, Lingyu; Liu, Guoqing; Li, Jinming

    2017-08-01

    This paper analyzes the damage mechanism and characteristics of electromagnetic pulse weapon, establishes the index system of survivability of long-range rocket launcher system, and uses AHP method to establish the combat effectiveness model of long-range rocket missile system. According to the damage mechanism and characteristics of electromagnetic pulse weapon, the damage effect of the remote rocket system is established by using the exponential method to realize the damage efficiency of the remote rocket system.

  7. Magnetization reversal in ultrashort magnetic field pulses

    CERN Document Server

    Bauer, M; Fassbender, J; Hillebrands, B

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization ...

  8. Cosmic Electromagnetic Fields due to Perturbations in the Gravitational Field

    CERN Document Server

    Mongwane, Bishop; Osano, Bob

    2012-01-01

    We use non-linear gauge-invariant perturbation theory to study the interaction of an inflation produced seed magnetic field with density and gravitational wave perturbations in an almost Friedmann-Lema\\^itre-Robertson-Walker (FLRW) spacetime. We compare the effects of this coupling under the assumptions of poor conductivity, infinite conductivity and the case where the electric field is sourced via the coupling of velocity perturbations to the seed field in the ideal magnetohydrodynamic (MHD) regime, thus generalizing, improving on and correcting previous results. We solve our equations for long wavelength limits and numerically integrate the resulting equations to generate power spectra for the electromagnetic field variables, showing where the modes cross the horizon. We find that the rotation of the electric field dominates the power spectrum on small scales, in agreement with previous arguments.

  9. Electromagnetic cascades and the depletion of intense fields

    Science.gov (United States)

    Bulanov, Stepan; Seipt, Daniel; Heinzl, Thomas; Marklund, Mattias; Ji, Qing; Steinke, Sven; Schroeder, Carl; Esarey, Eric; Leemans, Wim P.

    2016-10-01

    The interaction of electrons, positrons, and photons with intense electromagnetic fields gives rise to multi-photon Compton and Breit-Wheeler processes. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution. Moreover the multi-photon nature of Compton and Breit-Wheeler processes implies the absorption of a significant number of photons. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to a significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. The relevance of these results to the proposed BELLA-i beamline at BELLA center at LBNL is discussed. We acknowledge support from the Office of Science of the US DOE under Contract No. DE-AC02-05CH11231.

  10. Electromagnetic field at Finite Temperature: A new view

    CERN Document Server

    Casana, R; Valverde, J S

    2005-01-01

    In this work we study the electromagnetic field at Finite Temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

  11. Electromagnetic field at finite temperature: A first order approach

    Science.gov (United States)

    Casana, R.; Pimentel, B. M.; Valverde, J. S.

    2006-10-01

    In this work we study the electromagnetic field at finite temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

  12. Sensing network for electromagnetic fields generated by seismic activities

    Science.gov (United States)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  13. Assessment of Electromagnetic Fields at NASA Langley Research Center

    Science.gov (United States)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  14. Numerical simulation of the coupling of ultra-wide band electromagnetic pulse into landmine by aperture

    Science.gov (United States)

    Gao, Zhen-Ru; Zhao, Hui-Chang; Yang, Li; Wang, Feng-Shan

    2015-09-01

    The modern landmine’s electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse (UWB-EMP). The finite-difference time-domain (FDTD) method in lossy media with cylindrical coordinates is used to study the interactions of the UWB-EMP with the landmine. First, the coupling of UWB-EMP into the landmine shielding shell through an aperture is numerically simulated. Second, the coupled electromagnetic field of mine shells made of different shielding materials and with apertures of different sizes is plotted. Third, the aperture coupling laws of UWB-EMP into shells are analyzed and categorized. Such an algorithm is capable of effectively preventing ladder similar errors, and consequently improving the calculation precision, and in addition to adopting the message passing interface (MPI) parallel method to divide the total calculating range into more sub-ranges, the overall calculating efficiency is greatly increased. These calculations are surely a constructive reference for modern landmine design against electromagnetic damage. Project supported by the Postdoctoral Science Foundation of China (Grant No. 2014M552610).

  15. Effects of spectral linewidth of ultrashort pulses on the spa-tiotemporal distribution of diffraction fields

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The spatiotemporal characteristics of electromagnetic pulses with ultrabroad spectral bandwidth in the far field are analyzed by using classical scalar diffraction theory. The effects of the ratio of the frequency width to the central frequency on the diffraction spatial distribution are discussed. It is concluded that the diffraction spatial dis-tribution of the pulsed radiation gets narrower than a mono-chromatic wave when the frequency width of the pulse is comparable to or larger than its central frequency.

  16. Electromagnetic activity before initial breakdown pulses of lightning

    Science.gov (United States)

    Marshall, T.; Stolzenburg, M.; Karunarathna, N.; Karunarathne, S.

    2014-11-01

    Lightning flash initiation is studied using electric field change (E-change) measurements made in Florida. An initial E-change (IEC) was found immediately before the first initial breakdown (IB) pulse in both cloud-to-ground (CG) and intracloud (IC) flashes if the E-change sensor was within 80% of the reversal distance of the IEC. For 18 CG flashes, the IECs had an average point dipole moment of 23 C m and an average duration of 0.18 ms; these parameters for 18 IC flashes were -170 C m and 1.53 ms. The IECs of CG flashes began with a change in the slope of the E-change (with respect to time) from zero slope to a positive slope, consistent with downward motion of negative charge and/or upward motion of positive charge. For IECs of IC flashes, the beginning slope change was from zero to negative slope, consistent with upward motion of negative charge and/or downward motion of positive charge. During an IEC, the E-change monotonically increased for CG flashes and monotonically decreased for IC flashes. In 14 of 36 cases, the IEC beginning was coincident with a discrete, impulsive source of VHF radiation; another 13 cases had at least one VHF source during the IEC or the first IB pulse. Before the IECs, there were no preliminary variations detected in the 36 flashes. It is hypothesized that lightning initiation begins with an ionizing event that causes the IEC and that the IEC enhances the ambient electric field to produce the first IB pulse.

  17. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Claudia Consales

    2012-01-01

    Full Text Available Electromagnetic fields (EMFs originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system.

  18. Decomposition of the Total Electromagnetic Momentum in a Linear Dielectric into Field and Matter Components

    CERN Document Server

    Crenshaw, Michael E

    2013-01-01

    The long-standing resolution of the Abraham--Minkowski electromagnetic momentum controversy is predicated on a decomposition of the total momentum of a closed continuum electrodynamic system into separate field and matter components. Using a microscopic model of a simple linear dielectric, we derive Lagrangian equations of motion for the electric dipoles and show that the dielectric can be treated as a collection of stationary simple harmonic oscillators that are driven by the electric field and produce a polarization field in response. The macroscopic energy and momentum are defined in terms of the electric, magnetic, and polarization fields that travel through the dielectric together as a pulse of electromagnetic radiation. We conclude that both the macroscopic energy and the macroscopic momentum are entirely electromagnetic in nature for a simple linear dielectric in the absence of significant reflections.

  19. Electromagnetism

    CERN Multimedia

    Without the electromagnetic force, you would not be solid. The atoms of your body are held together by electromagnetism: negatively charged electrons are held around the positively charged nucleus. Atoms share electrons to form molecules, so building up the structure of matter. As its name suggests, electromagnetism has a double nature: a moving electric charge creates a magnetic field. This intimate connection between electricity and magnetism was described by James Maxwell in 1864. The electromagnetic force can be both positive and negative : opposite charges attract, whereas like charges repel. Electromagnetic radiation, such as radio, microwaves, light and X-rays, is emitted by charges when they are made to move. For example, an oscillating current in a wire emits radio waves. Text for the interactive: Why do the needles move when you switch on the current ?

  20. Resonant two-photon annihilation of an electron-positron pair in a pulsed electromagnetic wave

    Science.gov (United States)

    Voroshilo, A. I.; Roshchupkin, S. P.; Nedoreshta, V. N.

    2016-09-01

    Two-photon annihilation of an electron-positron pair in the field of a plane low-intensity circularly polarized pulsed electromagnetic wave was studied. The conditions for resonance of the process which are related to an intermediate particle that falls within the mass shell are studied. In the resonant approximation the probability of the process was obtained. It is demonstrated that the resonant probability of two-photon annihilation of an electron-positron pair may be several orders of magnitude higher than the probability of this process in the absence of the external field. The obtained results may be experimentally verified by the laser facilities of the international megaprojects, for example, SLAC (National Accelerator Laboratory), FAIR (Facility for Antiproton and Ion Research), and XFEL (European X-Ray Free-Electron Laser).

  1. Pulsed light and pulsed electric field for foods and eggs.

    Science.gov (United States)

    Dunn, J

    1996-09-01

    Two new technologies for use in the food industry are described. The first method discussed uses intense pulse of light. This pulsed light (PureBright) process uses short duration flashes of broad spectrum "white" light to kill all exposed microorganisms, including vegetative bacteria, microbial and fungal spores, viruses, and protozoan oocysts. Each pulse, or flash, of light lasts only a few hundred millionths of a second (i.e., a few hundred microseconds). The intensity of each flash of light is about 20,000 times the intensity of sunlight at the earth's surface. The flashes are typically applied at a rate of about one to tens of flashes per second. For most applications, a few flashes applied in a fraction of a second provide an effective treatment. High microbial kill can be achieved, for example, on the surfaces of packaging materials, on packaging and processing equipment, foods, and medical devices as well as on many other surfaces. In addition, some bulk materials such as water and air that allow penetration of the light can be sterilized. The results of tests to measure the effects of pulsed light on Salmonella enteritiditis on eggs are presented. The second method discussed uses multiple, short duration, high intensity electric field pulses to kill vegetative microorganisms in pumpable products. This pulsed electric field (or CoolPure) process can be applied at modest temperatures at which no appreciable thermal damage occurs and the original taste, color, texture, and functionality of products can be retained.

  2. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  3. Electromagnetic Field Scattering on rf-SQUID Based Metasurfaces

    OpenAIRE

    Сaputo J.G; Gabitov I.R.; Kudyshev Zh.; Kupaev T.; Maimistov A.I.

    2015-01-01

    Electromagnetic field scattering on a 2D array of rf-SQUIDs is considered. We show that the scattering changes for large amplitudes of the incident electromagnetic wave; above a critical amplitude, two different refraction states occur (bistability). In particular, for these two states, the transmitted wave polarization and angle of refraction are different. One could then switch the direction of propagation of the electromagnetic wave and its polarization with a “thin film”, whose thickness ...

  4. Electromagnetic Field Scattering on rf-SQUID Based Metasurfaces

    Science.gov (United States)

    Raputo, J. G.; Gabitov, I. R.; Kudyshev, Zh.; Kupaev, T.; Maimistov, A. I.

    2015-09-01

    Electromagnetic field scattering on a 2D array of rf-SQUIDs is considered. We show that the scattering changes for large amplitudes of the incident electromagnetic wave; above a critical amplitude, two different refraction states occur (bistability). In particular, for these two states, the transmitted wave polarization and angle of refraction are different. One could then switch the direction of propagation of the electromagnetic wave and its polarization with a "thin film", whose thickness is much smaller than the wavelength.

  5. New foundations for applied electromagnetics the spatial structure of fields

    CERN Document Server

    Mikki, Said

    2016-01-01

    This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for todays applications in wireless power transfers, NFC, and metamaterials.

  6. Pulsed field gel electrophoresis a practical guide

    CERN Document Server

    Birren, Bruce

    1993-01-01

    Pulsed Field Gel Electrophoresis: A Practical Guide is the first laboratory manual to describe the theory and practice of this technique. Based on the authors' experience developing pulsed field gel instruments and teaching procedures, this book provides everything a researcher or student needs to know in order to understand and carry out pulsed field gel experiments. Clear, well-tested protocols assume only that users have a basic familiarity with molecular biology. Thorough coverage of useful data, theory, and applications ensures that this book is also a lasting resource for more adv

  7. 7th conference on ultra-wideband, short-pulse electromagnetics

    CERN Document Server

    Schenk, Uwe; Nitsch, Daniel; Sabath, Frank; Ultra-Wideband, Short-Pulse Electromagnetics 7; UWBSP7

    2007-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-Wideband Short-Pulse Electromagnetics 7 presents selected papers of deep technical content and high scientific quality from the UWB-SP7 Conference, including wide-ranging contributions on electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-res...

  8. Electromagnetic field analysis of inductor-robot-work-piece system

    Directory of Open Access Journals (Sweden)

    A. Smalcerz

    2013-04-01

    Full Text Available The paper presents an analysis of the influence of the industrial robot located nearby an induction heater on the electromagnetic field distribution. The experiment consisted of numerical analysis and measurement verification. The analysis of the electromagnetic field distribution was conducted for low frequency (50 Hz heater. Two variants which differed in the presence (or absence of the robot were considered. As a result, the distributions of the electromagnetic field around the heater were obtained. The evaluation of the influence of the industrial robot location on the magnetic field intensity was presented and discussed.

  9. Development of Design Information Template for Nuclear Power Plants for Electromagnetic Pulse (EMP) Effect Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minyi; Ryu, Hosan; Ye, Songhae; Lee, Euijong [KNHP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    An electromagnetic pulse (EMP) is a transient electromagnetic shock wave that has powerful electric and magnetic fields that can destroy electronic equipment. It is generally well-known that EMPs can cause the malfunction and disorder of electronic equipment and serious damages to electric power systems and communication networks. Research is being carried out to protect nuclear power plants (NPPs) from EMP threats. Penetration routes of EMPs can be roughly categorized into two groups, radioactivity and conductivity. The radioactive effect refers to an impact transmitted to the ground from high-altitude electromagnetic pulses (HEMP). Such an impact may affect target equipment through the point of entry (POE) of the concrete structure of an NPP. The conductive effect refers to induced voltage or current coupled to the NPPs cable structure. The induced voltage and current affect the target equipment via connected cables. All these factors must be considered when taking into account EMP effect analysis for NPPs. To examine all factors, it is necessary to fully understand the schemes of NPPs. This paper presents a four type design information template that can be used to analyze the EMP effect in operating nuclear power plants. In order to analyze of the effects of EMPs on operating NPPs, we must consider both the conductive and radioactive effects on the target (system, equipment, structure). For these reasons, not only the equipment information, but also the information about the structure and the external penetration will be required. We are developing a design information template for robust nuclear design information acquisition. We expect to develop a block diagram on the basis of the template.

  10. 78 FR 33654 - Reassessment of Exposure to Radiofrequency Electromagnetic Fields Limits and Policies

    Science.gov (United States)

    2013-06-04

    ... Electromagnetic Fields Limits and Policies AGENCY: Federal Communications Commission. ACTION: Proposed rule... electromagnetic fields. The Commission's further proposals reflect an effort to provide more efficient, practical... RF electromagnetic fields. The Commission underscores that in conducting this review it will...

  11. Flow-cytometric method for observing the effects of pulsed electromagnetic fields on the growth of rat bone marrow mesenchymal stem cells%流式细胞仪观察脉冲电磁场干预骨髓间充质干细胞的生长

    Institute of Scientific and Technical Information of China (English)

    黄钊; 苏伟; 崔向荣; 覃万安

    2011-01-01

    BACKGROUND: Compared with the morphology, DNA electrophoresis and other methods, flow-cytometric method has more advantages on the detection of cell phenotype, proliferation rate and cell cycle of rat bone marrow mesenchymal stem cells (BMSCs). OBJECTIVE: To observe and discuss the effect of specific pulsed electromagnetic fields stimulation on the proliferation and cell cycle of rat BMSCs with the flow-cytometric method (FCM). METHODS: Rat BMSCs were exposed to pulsed electromagnetic fields (frequency for 1 kHz, magnetic flux density for 0.05 mT, power density for 5 mW/cm2). BMSCs without exposure to pulsed electromagnetic fields were used as controls. Expression of CD29, CD31, CD44 CD45, CD105 were detect in the control group. The proliferation rate and cell cycle of passage 3 cells were detected at 3, 6, 9, 12 days. RESULTS AND CONCLUSION: CD29, CD44, CD105 in the 3rd passage non-stimulated BMSCs was positively expressed and the CD31, CD45 was negatively expressed (P < 0.05). The survival rate of passage 3 BMSCs and percentage of S phase following intervention of pulsed electromagnetic fields were greater than those in the control group (P < 0.05). These results indicated that the specific pulsed electromagnetic fields can promote the growth and proliferation of BMSCs to some extent.%背景:应用流式细胞仪检测细胞表型、存活或凋亡细胞计数及细胞周期,较形态学观察、DNA电泳等检测方法更具优势.目的:采用流式细胞仪分选检测特定脉冲电磁场干预对大鼠骨髓间充质干细胞生长周期及其增殖效率的影响.方法:使用振荡频率1 kHz,磁感应强度0.05 mT、功率密度5 mW/cm2的脉冲电磁场照射大鼠骨髓间充质干细胞,以未经磁场干预的细胞为对照.采用流式细胞仪检测未经磁场干预细胞表面抗原CD29、CD31、CD44、CD45和CD105表达率;于传第3代后第3,6,9,12天测定不同干预细胞增殖率及生长周期.结果与结论:未经磁场干预的第3代

  12. 8th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Tyo, J. Scott; Baum, Carl E; Ultra-Wideband Short-Pulse Electromagnetics 8; UWBSP8

    2007-01-01

    The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.

  13. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    Science.gov (United States)

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  14. Design method of electromagnetic field applied to Al-alloy electromagnetic casting

    Institute of Scientific and Technical Information of China (English)

    YANG Jing; DANG Jing-zhi; PENG You-gen; CHENG Jun

    2006-01-01

    The electromagnetic pump imposes the electromagnetic motive force (Lorentz force) on the liquid metal directly and makes it move along the definite direction by using the function of electric current and magnetic field in the conducting fluid.Compared with the traditional die casting, the system of counter-gravity casting can effectively control the speed of fillingto make Al-alloy liquid fill steadily by adjusting controlled-current. So the foundry defects can be decreased or avoided effectively by this system. Based on the theory of electromagnetic pump, the design method of electromagnetic field in electromagnetic pump was investigated emphatically. The rule of magnetic induction intensity B influenced by the divided electromagnet airgap's size was founded. Furthermore, the empirical formula of magnetic induction intensity B in a magnetic airgap for an open magnet in the saturated state was deduced by mathematics regression analysis. Counter-gravity casting applied to the Al-alloy electromagnetic filling was developed with this method. Besides, the electromagnetism filling counter-gravity casting process of the turbo-charge blade wheel was also fixed. The eligibility rate of blade wheel produced by such technique can be increased to 98%. The casts have compact structure and excellent capability.

  15. An eigen theory of static electromagnetic field for anisotropic media

    Institute of Scientific and Technical Information of China (English)

    Shao-hua GUO

    2009-01-01

    Static electromagnetic fields are studied based on standard spaces of the physical presentation,and the modal equations of static electromagnetic fields for anisotropic media are derived. By introducing a new set of first-order potential functions,several novel theoretical results are obtained. It is found that,for isotropic media,electric or magnetic potentials are scalar; while for anisotropic media,they are vectors. Magnitude and direction of the vector potentials are related to the anisotropic subspaces. Based on these results,we discuss the laws of static electromagnetic fields for anisotropic media.

  16. The Potential-Vortex Theory of the Electromagnetic Field

    CERN Document Server

    Tomilin, A K

    2010-01-01

    Maxwell-Lorenz theory describes only vortex electromagnetic processes. Potential component of the magnetic field is usually excluded by the introduction of mathematical terms: Coulomb and Lorenz gauges. Proposed approach to the construction of the four-dimensional electrodynamics based on the total (four-dimensional) field theory takes into account both vortex and potential components of its characteristics. It is shown that potential components of the electromagnetic field have physical content. System of modified (generalized) Maxwell equations is written. With their help contradictions usually appearing while describing the distribution of electromagnetic waves, are eliminated. Works of other authors obtained similar results are presented and analyzed.

  17. The plane wave spectrum representation of electromagnetic fields

    CERN Document Server

    Clemmow, P C

    1966-01-01

    The Plane Wave Spectrum Representation of Electromagnetic Fields presents the theory of the electromagnetic field with emphasis to the plane wave. This book explains how fundamental electromagnetic fields can be represented by the superstition of plane waves traveling in different directions. Organized into two parts encompassing eight chapters, this book starts with an overview of the methods whereby plane wave spectrum representation can be used in attacking different characteristic problems belonging to the theories of radiation, diffraction, and propagation. This book then discusses the co

  18. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; Duan, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  19. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; DUAN, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  20. Research on the ElectromagneticScattering Near the Field

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We calculate and analyze the scattering near the field from some simple and complex targets using the method of picture elements (PEL), based upon the method of high-frequency approximation. It introduces the critical distance of the near field and the far field which is related with the dimension of the target. The problem of the EMS near field from large size objects can be transformed to the problem of the far field by parting it to many very small size elements. By calculating the EMS near fields of some simple and complex targets based on the SCTE (scattering from complex targets and environments) system, the results show that there are much difference between the near field and the far field. And the characteristics of the near field are more complicated. This work has practical engineering value in the area of the electromagnetic compatibility (EMC), electromagnetic interference (EMI) prediction and electromagnetic scattering (EMS).

  1. A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.

  2. A Unified Field Theory of Gravity, Electromagnetism, and theA Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold $S_4$ via the connection, with the generalized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.

  3. Study on the Sensitivity of Landmine Electrical Fuse Circuit Under the Interference of Natural Electromagnetic Pulse

    Science.gov (United States)

    Qin, Dechun

    Landmine electrical fuse circuits on the battlefield will be interfered by natural electromagnetic pulse such as electrostatic discharge and lightning, which will undermine the circuit performance and trigger the early burst or mistaken burst of the landmines. In this paper, numerically simulation analysis is conducted on the electrostatic and lightning effects received by the landmine fuse circuit by means of building simulation model of the fuse circuit and analyzing the electric and magnetic field changes of the observation The mechanism of the influence of electrostatic discharge and lightning on the sensitivity of the fuse circuit is explored. The conclusion is that electrostatic effect cause the mistaken burst of the landmines by enabling the interference voltage to reach the components turn-on threshold and cause the circuit malfunction, and lighting effect by long period accumulation of energy.

  4. Radio pulses from electromagnetic, hadronic and neutrino-induced showers up to EeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muniz, Jaime, E-mail: jaime.alvarezmuniz@gmail.com [Depto. de Fisica de Particulas and Inst. Galego de Fisica de Altas Enerxias, Univ. de Santiago de Compostela, 15782 Santiago (Spain); Carvalho, Washington R.; Zas, Enrique [Depto. de Fisica de Particulas and Inst. Galego de Fisica de Altas Enerxias, Univ. de Santiago de Compostela, 15782 Santiago (Spain); Romero-Wolf, Andres [Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Tueros, Matias [Depto. de Fisica, Facultad de Ciencias Exactas, Univ. Nacional de La Plata (Argentina)

    2012-01-11

    The radio pulses emitted by electromagnetic, hadronic, and neutrino-induced showers are calculated for showers of energies in the EeV range and above in ice and in air. These are obtained in three-dimensional simulations of both the shower and the radio emission. An AIRES-based Monte Carlo code, ZHAIRES, has been developed for this purpose that allows us to predict the radio emission in both the time and frequency domains. The algorithms used, obtained from first principles, predict the radio emission due to all emission mechanisms, including the deflection of charged particles in the Earth's magnetic field. The code which has been extended to calculate in the Fresnel regime can reproduce the full complexity of the relevant shower phenomena.

  5. Accelerating electromagnetic magic field from the C-metric

    CERN Document Server

    Bicak, Jiri; 10.1007/s10714-009-0816-8

    2009-01-01

    Various aspects of the C-metric representing two rotating charged black holes accelerated in opposite directions are summarized and its limits are considered. A particular attention is paid to the special-relativistic limit in which the electromagnetic field becomes the "magic field" of two oppositely accelerated rotating charged relativistic discs. When the acceleration vanishes the usual electromagnetic magic field of the Kerr-Newman black hole with gravitational constant set to zero arises. Properties of the accelerated discs and the fields produced are studied and illustrated graphically. The charges at the rim of the accelerated discs move along spiral trajectories with the speed of light. If the magic field has some deeper connection with the field of the Dirac electron, as is sometimes conjectured because of the same gyromagnetic ratio, the "accelerating magic field" represents the electromagnetic field of a uniformly accelerated spinning electron. It generalizes the classical Born's solution for two u...

  6. The Research on Anti-scaling Based on Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Chunjie Han

    2014-05-01

    Full Text Available Electromagnetic scaling is a kind of physics method of anti-scaling. An Anti-scaling instrument that generates electromagnetic fields to prevent scaling is designed in this study. The two important functions of the instrument are as follows: The output of a single frequency signal and its frequency and voltage can be changed manually; the output of a swept-frequency signal, from 0 to 21 kHz. The instrument is composed of a signal generator and coils in which electromagnetic fields are induced. The production of the signal mainly depends on the chip of CD4046B CMOS Micro power Phase-Locked Loop. According to the principle of electromagnetic induction, the signal from the signal generator flows though coils which induce changed magnetic fields, then the magnetic fields effect the microstructure of water, the aim of anti-scaling is achieved. The experiment shows that the equipment effectively reduces scaling.

  7. Effect of electromagnetic field exposure on spermatogenesis and sexual activity

    Institute of Scientific and Technical Information of China (English)

    Ahmed Shafik

    2005-01-01

    @@ Dear Sir, We read with interest the paper by Lee et al. [1].They reported that continuous exposure to an electromagnetic field with extremely low frequency may induce testicular germ cell apoptosis in mice.

  8. Parametric excitation of electromagnetic fields by two pump waves

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, G.; Lundberg, J.; Stenflo, L. (Umeaa Univ. (Sweden). Dept. of Plasma Physics)

    1991-01-01

    A collisionless plasma in the presence of two monochromatic electric fields is considered. By means of a kinetic analysis, a dispersion relation that governs the excitation of transverse electromagnetic fluctuations is derived and analysed. (orig.).

  9. Influence of storm electromagnetic field on the aircraft crew

    Directory of Open Access Journals (Sweden)

    Э. Г. Азнакаев

    2000-12-01

    Full Text Available Considered is the biophysical influence of alternative electromagnetic fields, caused by electrical discharges in atmosphere. Analyzed are conditions which may provoke inadequate actions and errors of the crew in airplane flight control

  10. 脉冲电磁场对脊髓损伤患者骨量丢失的影响%The effect of pulsed electromagnetic fields on bone loss in spinal cord injured patients

    Institute of Scientific and Technical Information of China (English)

    喻澜; 夏秦

    2013-01-01

    Objective To observe any therapeutic effect of pulsed electromagnetic fields (PEMFs) on bone loss in spinal cord injury (SCI) patients.Methods Fifty-five patients with SCI were divided into two groups randomly.The twenty-six patients in the control group (group B) were given only routine rehabilitation treatment; the twenty-six patients in the treatment group (group A) received PEMF therapy in addition.Results After 12 weeks of treatment,the average bone mineral density (BMD) of the proximal femur (including total,neck,Wards,inter,troch) in group A was significantly higher than in group B.The levels of bone-gamma-carboxyglutamic acid containing protein (BGP) and 1,25 (OH)2D3 in group A increased significantly,while they decreased in group B.Urine-pyridinium/crealinine (U-Pyd/Cr) levels in group A decreased significantly,while in group B they were higher than before.There were statistically significant differences between the two groups.Conclusion PEMF treatment can effectively retard bone loss in SCI patients.It has good preventive and curative effects on osteoporosis after SCI.%目的 探讨脉冲电磁场(PEMFS)治疗对脊髓损伤(SCI)患者骨量丢失的影响.方法 将入选的SCI患者55例按随机数字表法分为治疗组(29例)和对照组(26例),对照组患者给予常规康复治疗;治疗组患者在常规康复治疗的基础上加用PEMFS治疗.2组患者均于治疗前和治疗12周后(治疗后)评定其骨密度和骨代谢生化指标.结果 治疗后,治疗组患者仅转子间的骨密度(0.827 ±0.103) g/cm2与组内治疗前的(0.796±0.092)g/cm2比较,差异无统计学意义(P>0.05),其股骨颈、大转子、Ward's三角区以及总的骨密度值分别为(0.594±0.110) g/cm2、(0.671±0.109) g/cm2、(0.396±0.106) g/cm2、(0.679 ±0.123)g/cm2、较组内治疗前均显著增加(P<0.05),且股骨颈、大转子、转子间、Ward's三角区以及总的骨密度值均明显高于对照组治疗后(P<0.05).治疗后,治疗组

  11. Anisotropic Harmonic Oscillator in a Static Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    LIN Qiong-Gui

    2002-01-01

    A nonrelativistic charged particle moving in an anisotropic harmonic oscillator potential plus a homogeneousstatic electromagnetic field is studied. Several configurations of the electromagnetic field are considered. The Schrodingerequation is solved analytically in most of the cases. The energy levels and wave functions are obtained explicitly. Insome of the cases, the ground state obtained is not a minimum wave packet, though it is of the Gaussian type. Coherentand squeezed states and their time evolution axe discussed in detail.

  12. Multiband sensors for wireless electromagnetic field monitoring system - SEMONT

    OpenAIRE

    Milutinov, Miodrag; id_orcid 0000-0002-1725-3405; Đurić, Nikola; Pekarić-Nađ, Neda; Mišković, Dragiša; Knežević, Dragan

    2012-01-01

    Substantial effort has been made to employ wireless sensor network and Internet technologies for environmental and habitat protection. Several monitoring systems are designed to collect data regarding temperature, humidity, pressure and some other environmental parameters, amongst which recently there is the exposure to electromagnetic field. In this paper, some basic features of the multiband sensors that are incorporated into the Serbian electromagnetic field monitoring network - SEMONT are...

  13. A new dynamical variable for the electromagnetic field

    CERN Document Server

    Rodríguez-Lara, B M

    2008-01-01

    Taking into account the characteristics of a free scalar field in elliptic coordinates, a new dynamical variable is found for the free electromagnetic field. The conservation law associated to this variable cannot be obtained by a direct application of standard Noether theorem since the symmetry generator is of second order. Consequences on the expected mechanical behavior of a particle interacting with electromagnetic waves exhibiting such a symmetry are also discussed.

  14. Effects of Electromagnetic Fields on Fish and Invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

    2010-10-13

    In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

  15. Effects of Electromagnetic Fields on Fish and Invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

    2010-10-13

    In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

  16. Optoelectronics Generation and Detection of Intense Terahertz Electromagnetic Pulses.

    Science.gov (United States)

    2007-11-02

    GaAs p-i-n diodes 19 C. Study of the physical mechanism of THz generation in bulk GaAs 19 D. Observation of Gunn Oscillation by triggering a vertical... Gunn diode with 25 femtosecond optical pulses IV. Tunable narrowband THz radiation 26 A. Chirped pulse beating 27 1. Optical cross-correlation...appropriately biased vertical transferred electron device ( Gunn diode ) with femtosecond optical pulses. " Investigation of the dynamics of photoinjected

  17. The power and beauty of electromagnetic fields

    CERN Document Server

    Morgenthaler, Frederic R

    2011-01-01

    Unique, multi-level textbook is adaptable to introductory, intermediate, and advanced levels This revolutionary textbook takes a unique approach to electromagnetic theory, comparing both conventional and modern theories. It explores both the Maxwell-Poynting representation as well as the Alternate representation, which the author demonstrates is generally simpler and more suitable for analyzing modern electromagnetic environments. Throughout the text, students and researchers have the opportunity to examine both of these theories and discover how each one can be applied to solve problems.

  18. Electromagnetic Pulse Weapons as an Emergent Technology and Their Place on Battlefields of the Future

    Science.gov (United States)

    2010-04-19

    relationship of target’s hardening with respect to the generated electromagnetic pulse strength, electromagnetic atmospherics, and the electronic...Here targeting analysis becomes marked more complex and needs to encompass neighboring population centers which may be codependent on power or water...How is there relationship here at all? At first glance, it may seem absurd to consider an EMP a weapon of mass destruction. If improperly employed

  19. 10th and 11th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Mokole, Eric; UWB SP 10; UWB SP 11

    2014-01-01

    This book presents contributions of deep technical content and high scientific quality in the areas of electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques. Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Like previous books in this series, Ultra-Wideband Short-Pulse Electrom...

  20. The effects of lightning and high altitude electromagnetic pulse on power distribution lines

    Energy Technology Data Exchange (ETDEWEB)

    Uman, M.A.; Rubinstein, M.; Yacoub, Z. [Florida Univ., Gainesville, FL (United States)

    1995-01-01

    We simultaneously recorded the voltages induced by lightning on both ends of an unenergized 448-meter long unenergized electric power line and the lightning vertical electric and horizontal magnetic fields at ground level near the line. The lightning data studied and presented here were due both to cloud lightning and to very close (about 20 m from the line) artificially initiated lightning. For cloud sources, a frequency-domain computer program called EMPLIN was used to calculate induced line voltages as a function of source elevation, angle of incidence, and wave polarization of the radiated cloud discharge pulses in order to compare with the measurements. For very-close lightning, the measured line voltages could be grouped into two categories, those in which multiple, similarly shaped, evenly spaced pulses were observed, which we call oscillatory, and those dominated by a principal pulse with subsidiary oscillations of much smaller amplitude, which we call impulsive. The amplitude of the induced voltage ranged from tens of kilovolts for oscillatory voltages to hundreds of kilovolts for impulsive voltages. A new technique is derived for the calculation of the electromagnetic fields from nearby lightning to ground above an imperfectly conducting ground. This technique was used in conjunction with an existing time domain coupling theory and lightning return stroke model to calculate voltages at either end of the line. The results show fair agreement with the measured oscillatory voltage waveforms if corona is ignored and improved results when corona effects are modeled. The modeling of the impulsive voltage, for which local flashover probably successful. In an attempt to understand better the sources of the line voltages for very close lightning, measurements of the horizontal and vertical electric fields 30 m from triggered lightning were obtained.

  1. Field mapping of ballistic pressure pulse sources

    Directory of Open Access Journals (Sweden)

    Rad Abtin Jamshidi

    2015-09-01

    Full Text Available Ballistic pressure pulse sources are used since late 1990s for the extracorporeal treatment of chronic Enthesitis. Newly indications are found in trigger-point-therapy for the treatment of musculoskeletal disorders. In both applications excellent results without relevant side effects were found in clinical trials. The technical principle of pressure pulse source is based on the same techniques used in air guns. A projectile is accelerated by pressurized air and hits the applicator with high kinetic energy. By this a compression wave travels through the material and induces a fast (4..5μs, almost singular pressure pulse of 2..10 MPa, which is followed by an equally short rarefaction phase of about the same amplitude. It is assumed that the pressure pulse accounts for the biomedical effects of the device. The slower inertial motion of the waveguide is damped by elastic stoppers, but still can be measured several micro seconds after the initial pressure pulse. In order to characterize the pressure pulse devices, field mapping is performed on several radial pressure pulse sources using the fiber optic hydrophone and a polyvinylidenfluorid (PVDF piezoelectric hydrophone. It could be shown that the current standard (IEC 61846 is not appropriate for characterization of ballistic pressure pulse sources.

  2. Electromagnetic fields and potentials generated by massless charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Azzurli, Francesco, E-mail: francesco.azzurli@gmail.com [Scuola Galileiana di Studi Superiori, Università degli Studi di Padova (Italy); Lechner, Kurt, E-mail: lechner@pd.infn.it [Dipartimento di Fisica e Astronomia, Università degli Studi di Padova (Italy); INFN, Sezione di Padova, Via F. Marzolo, 8, 35131 Padova (Italy)

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.

  3. Magnetic Linear Birefringence Measurements Using Pulsed Fields

    CERN Document Server

    Berceau, Paul; Battesti, Remy; Rizzo, Carlo

    2011-01-01

    In this paper we present the accomplishment of the further step towards the vacuum magnetic birefringence measurement based on pulsed fields. After describing our BMV experiment, we report the calibration of our apparatus with nitrogen gas and we discuss the precision of our measurement giving a detailed error budget. Our best present vacuum sensitivity is 2.1x 10^-19 T^-2 per 5 ms magnetic pulse. We finally discuss the perspectives to reach our final goal.

  4. Propagation of an ultrashort electromagnetic pulse in solid-state plasma

    CERN Document Server

    Astapenko, V A

    2013-01-01

    The change of the shape of an ultrashort electromagnetic pulse in its propagation in solid-state plasma was calculated in the linear approximation. A case of solid-state silver plasma and of a "Mexican hat" wavelet pulse was considered. The dielectric permittivity of the medium was calculated in the Drude model. Strong dispersion spreading of a pulse at distances of the order of several microns was shown, and the comparison of evolution of the pulse shape for different center frequencies was carried out.

  5. Transformation media that rotate electromagnetic fields

    CERN Document Server

    Chen, H; Chen, Huanyang

    2007-01-01

    We suggest a way to manipulate electromagnetic wave by introducing a rotation mapping of coordinates that can be realized by a specific transformation of permittivity and permeability of a shell surrounding an enclosed domain. Inside the enclosed domain, the information from outside will appear as if it comes from a different angle. Numerical simulations were performed to illustrate these properties.

  6. Fractional Calculus-Based Modeling of Electromagnetic Field Propagation in Arbitrary Biological Tissue

    Directory of Open Access Journals (Sweden)

    Pietro Bia

    2016-01-01

    Full Text Available The interaction of electromagnetic fields and biological tissues has become a topic of increasing interest for new research activities in bioelectrics, a new interdisciplinary field combining knowledge of electromagnetic theory, modeling, and simulations, physics, material science, cell biology, and medicine. In particular, the feasibility of pulsed electromagnetic fields in RF and mm-wave frequency range has been investigated with the objective to discover new noninvasive techniques in healthcare. The aim of this contribution is to illustrate a novel Finite-Difference Time-Domain (FDTD scheme for simulating electromagnetic pulse propagation in arbitrary dispersive biological media. The proposed method is based on the fractional calculus theory and a general series expansion of the permittivity function. The spatial dispersion effects are taken into account, too. The resulting formulation is explicit, it has a second-order accuracy, and the need for additional storage variables is minimal. The comparison between simulation results and those evaluated by using an analytical method based on the Fourier transformation demonstrates the accuracy and effectiveness of the developed FDTD model. Five numerical examples showing the plane wave propagation in a variety of dispersive media are examined.

  7. Electromagnetic fields and potentials generated by massless charged particles

    CERN Document Server

    Azzurli, Francesco

    2014-01-01

    We provide for the first time the exact solution of Maxwell's equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Lienard-Wiechert field the electromagnetic field acquires singular delta-like contributions whose support and dimensionality depend crucially on whether the motion is a) linear, b) accelerated unbounded, c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a delta-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a re...

  8. Schwinger Pair Production in Pulsed Electric Fields

    CERN Document Server

    Kim, Sang Pyo; Ruffini, Remo

    2012-01-01

    We numerically investigate the temporal behavior and the structure of longitudinal momentum spectrum and the field polarity effect on pair production in pulsed electric fields in scalar quantum electrodynamics (QED). Using the evolution operator expressed in terms of the particle and antiparticle operators, we find the exact quantum states under the influence of electric pulses and measure the number of pairs of the Minkowski particle and antiparticle. The number of pairs, depending on the configuration of electric pulses, exhibits rich structures in the longitudinal momentum spectrum and undergoes diverse dynamical behaviors at the onset of the interaction but always either converges to a momentum-dependent constant or oscillates around a momentum-dependent time average after the completion of fields.

  9. Finding of electromagnetic field by energy-momentum tensor

    CERN Document Server

    Mitrofanova, T G

    2002-01-01

    One of the reverse problems on the electrodynamics consists in reducing the electromagnetic field by the known energy-momentum tensor of this field. The energy-momentum tensor aspect is of essential importance by developing new methods for analytical integration of field equations. Thereby there appears the question, whether the energy-momentum tensor corresponds to any physical system and if so - to which one namely. The formulated reverse problem in this paper is solved as applied to the electromagnetic field in the absence of charges and currents

  10. [The influence of electromagnetic fields on flora and fauna].

    Science.gov (United States)

    Rochalska, Małgorzata

    2009-01-01

    This paper presents the influence of natural and artificial electromagnetic fields (EMF) on fauna and flora. The mechanisms of Earth's magnetic field detection and the use of this skill by migratory animals to faultlessly reach the destination of their travel are discussed, as well as the positive effects of electric and magnetic fields on plants relative to their physiology, yielding and health. EMF influence on social insects and animal organisms, including possible DNA damages and DNA repair systems, is presented. The influence of high frequency electromagnetic fields on birds nesting is also discussed.

  11. Measurement of high-power microwave pulse under intense electromagnetic noise

    Indian Academy of Sciences (India)

    Amitava Roy; S K Singh; R Menon; D Senthil Kumar; R Venkateswaran; M R Kulkarni; P C Saroj; K V Nagesh; K C Mittal; D P Chakravarthy

    2010-01-01

    KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator (VIRCATOR) device. HPM power measurements were carried out using a transmitting–receiving system in the presence of intense high frequency (a few MHz) electromagnetic noise. Initially, the diode detector output signal could not be recorded due to the high noise level persisting in the ambiance. It was found that the HPM pulse can be successfully detected using wide band antenna, RF cable and diode detector set-up in the presence of significant electromagnetic noise. Estimated microwave peak power was ∼ 59.8 dBm (∼ 1 kW) at 7 m distance from the VIRCATOR window. Peak amplitude of the HPM signal varies on shot-to-shot basis. Duration of the HPM pulse (FWHM) also varies from 52 ns to 94 ns for different shots.

  12. Nonlinear Electromagnetic Fields As a Source of Universe Acceleration

    CERN Document Server

    Kruglov, S I

    2016-01-01

    A model of nonlinear electromagnetic fields with a dimensional parameter $\\beta$ is proposed. From PVLAS experiment the bound on the parameter $\\beta$ was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the PLANCK, WMAP, and BICEP2 data.

  13. Electromagnetic interactions

    CERN Document Server

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  14. Electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bosanac, Slobodan Danko [Ruder Boskovic Institute, Zagreb (Croatia). Physical Chemistry

    2016-07-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  15. Electromagnetic Field Scattering on rf-SQUID Based Metasurfaces

    Directory of Open Access Journals (Sweden)

    Сaputo J.G

    2015-01-01

    Full Text Available Electromagnetic field scattering on a 2D array of rf-SQUIDs is considered. We show that the scattering changes for large amplitudes of the incident electromagnetic wave; above a critical amplitude, two different refraction states occur (bistability. In particular, for these two states, the transmitted wave polarization and angle of refraction are different. One could then switch the direction of propagation of the electromagnetic wave and its polarization with a “thin film”, whose thickness is much smaller than the wavelength.

  16. Evaluation of a randomized controlled trial on the effect on return to work with coaching combined with light therapy and pulsed electromagnetic field therapy for workers with work-related chronic stress.

    Science.gov (United States)

    Nieuwenhuijsen, Karen; Schoutens, Antonius M C; Frings-Dresen, Monique H W; Sluiter, Judith K

    2017-10-02

    Chronic work-related stress is quite prevalent in the working population and is in some cases accompanied by long-term sick leave. These stress complaints highly impact employees and are costly due to lost productivity and medical expenses. A new treatment platform with light therapy plus Pulsed Electro Magnetic Fields (PEMF) in combination with coaching was used to assess whether more positive effects on return to work, stress, work-related fatigue, and quality of life could be induced compared to coaching alone. A placebo-controlled trial was executed after inclusion of 96 workers, aged 18-65 with work-related chronic stress complaints and who were on sick leave (either part-time or full-time). Participants were divided into three arms at random. Group 1 (n = 28) received the treatment and coaching (Intervention group), group 2 (n = 28) received the treatment with the device turned off and coaching (Placebo group) and group 3 (n = 28) received coaching only (Control group). The data were collected at baseline, and after 6, 12 and 24 weeks. The primary outcome was % return to work, and secondary outcomes were work-related fatigue (emotional exhaustion and need for recovery after work), stress (distress and hair cortisol), and quality of life (SF-36 dimensions: vitality, emotional role limitation, and social functioning). Eighty-four workers completed all measurements, 28 in each group. All groups improved significantly over time in the level of return to work, as well as on all secondary outcomes. No statistical differences between the three groups were found either on the primary outcome or on any of the secondary outcomes. Light therapy with Pulsed Electro Magnetic Fields PEMF therapy has no additional effect on return to work, stress, fatigue, and quality of live compared to coaching alone. NTR4794 , registration date: 18-sep-2014.

  17. Analysis of electromagnetic pulse (EMP measurements in the National Ignition Facility's target bay and chamber

    Directory of Open Access Journals (Sweden)

    Brown C.G.

    2013-11-01

    Full Text Available From May 2009 to the present we have recorded electromagnetic pulse (EMP strength and spectrum (100 MHz – 5 GHz in the target bay and chamber of the National Ignition Facility (NIF. The dependence of EMP strength and frequency spectrum on target type and laser energy is discussed. The largest EMP measured was for relatively low-energy, short-pulse (100 ps flat targets.

  18. Atomic Interferometry with Detuned Counter-Propagating Electromagnetic Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ming -Yee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-05

    Atomic fountain interferometry uses atoms cooled with optical molasses to 1 μK, which are then launched in a fountain mode. The interferometer relies on the nonlinear Raman interaction of counter-propagating visible light pulses. We present models of these key transitions through a series of Hamiltonians. Our models, which have been verified against special cases with known solutions, allow us to incorporate the effects of non-ideal pulse shapes and realistic laser frequency or wavevector jitter.

  19. Effects of ultrashortwave and low frequency pulsed electromagnetic fields on the expression of vascular endothelial growth factor in fracture healing%超短波及低频脉冲磁疗对骨折愈合中血管内皮生长因子的影响

    Institute of Scientific and Technical Information of China (English)

    王珊珊; 毕然然; 崔宝娟; 代仁涛; 孙强三

    2009-01-01

    Objective To study the effects of uhrashortwave and low frequency pulsed electromagnetic fields on the expression of vascular endothelial growth factor(VEGF) in fracture healing. Methods Fifty-six New Zeal-and rabbits with artificial fractures were randomly divided into 4 groups:a control group,an ultrashortwave group,a low frequency pulsed electromagnetic field group and an ultrashortwave combined with low frequency pulsed electro-magnetic field group(combined group),with 14 in each group.Radiographic evaluation of callus formation and frac-ture healing,pathohistological examination and detection of VEGF expression through immunohistochemical staining were performed at the 1 st,2nd,4th and 6th week after the operation. Results Radiographic examination showed that there was significantly greater callus formation in the combined group than in the other groups throughout the healing process. Pathohistological examination also revealed significantly more cartilage islets and callus formation in the combined group.At the 1 st,2nd and 4th week after the operation,VEGF positive indexes in the combined group were significantly higher than in the other groups. Conclusion Uhrashortwave combined with low frequency pulsed electromagnetic field exposure can up-regulate the expression of VEGF and thus can accelerate fracture healing.%目的 观察超短波及低频脉冲磁疗对骨折愈合过程中血管内皮生长因子(VEGF)表达的影响.方法 选用新西兰大白兔56只,随机分为对照组、超短波治疗组(超短波组)、低频脉冲磁疗组(磁疗组)和超短波+低频脉冲磁疗组(联合组),每组14只.各组分别制备桡骨横断骨折模型.对照组不予干预,其余各组分别给予超短波及低频脉冲磁疗治疗.分别于术后第1,2,4,6周拍摄X线片,评价骨痂以及骨折愈合情况;于术后第1,2,4,6周取材行病理学检查,观察骨折愈合情况,并行免疫组织化学染色检测VEGF蛋白表达水平.结果 X

  20. Preliminary Studies on Pulsed Electric Field Breakdown of Lead Azide

    Science.gov (United States)

    1976-10-01

    1/2 OS CO ton NO. S3L TECHNICAL REPORT 4991 PRELIMINARY SUJDfES ON PULSED ELECTRIC FIELD BREAKDOWN OF LEAD AZIDE L AVRAMI M. BUMS D. DOWNS...Introduction Background A. Contact Effects B. Pulsed Electric Field Measurements Experimental A. Contact Effects B. Pulsed Electric Fields Discussion...B. Pulsed Electric Field Measurements The application of pulsed electric fields to lead azide does not exactly simulate the conditions experienced

  1. 3D modeling of lightning-induced electromagnetic pulses on Venus, Jupiter and Saturn

    Science.gov (United States)

    Pérez-Invernón, Francisco J.; Luque, Alejandro; Gordillo-Vázquez, Francisco J.

    2017-04-01

    Atmospheric electricity is a common phenomenon in some planets of The Solar System. We know that atmospheric discharges exist on Earth and gaseous planets; however, some characteristics of lightning on Saturn and Jupiter as well as their relevance on the effects of lightning in the atmospheres of these planets are still unknown. In the case of Venus, there exist some radio evidences of lightning, but the lack of optical observations suggests exploring indirect methods of detection, such as searching for lightning-induced transient optical emissions from the upper atmosphere. The Akatsuki probe, currently orbiting Venus, is equipped with a camera whose temporal resolution is high enough to detect optical emissions from lightning discharges and to measure nightglow enhancements. In this work, we extend previous models [1,2] to investigate the chemical impact and transient optical emissions produced by possible lightning-emitted electromagnetic pulses (EMP) in Venus, Saturn and Jupiter. Using a 3D FDTD ("Finite Differences Time Domain") model we solve the Maxwell equations coupled with the Langevin equation for electrons [3] and with a kinetic scheme, different for each planetary atmosphere. This method is useful to investigate the temporal and spatial impact of lightning-induced electromagnetic fields in the atmosphere of each planet for different lightning characteristics (e.g. energy released, orientation). This 3D FDTD model allows us to include the saturnian and jovian background magnetic field inclination and magnitude at different latitudes, and to determine the effects of different lightning channel inclinations. Results provide useful information to interpret lightning observations on giant gaseous planets and in the search for indirect optical signals from atmospheric discharge on Venus such as fast nightglow transient enhancements related to lightning as seen on Earth. Furthermore, we underline the observation of electrical discharges characteristics as a

  2. Extremely low frequency electromagnetic field measurements at the Hylaty station and methodology of signal analysis

    Science.gov (United States)

    Kulak, Andrzej; Kubisz, Jerzy; Klucjasz, Slawomir; Michalec, Adam; Mlynarczyk, Janusz; Nieckarz, Zenon; Ostrowski, Michal; Zieba, Stanislaw

    2014-06-01

    We present the Hylaty geophysical station, a high-sensitivity and low-noise facility for extremely low frequency (ELF, 0.03-300 Hz) electromagnetic field measurements, which enables a variety of geophysical and climatological research related to atmospheric, ionospheric, magnetospheric, and space weather physics. The first systematic observations of ELF electromagnetic fields at the Jagiellonian University were undertaken in 1994. At the beginning the measurements were carried out sporadically, during expeditions to sparsely populated areas of the Bieszczady Mountains in the southeast of Poland. In 2004, an automatic Hylaty ELF station was built there, in a very low electromagnetic noise environment, which enabled continuous recording of the magnetic field components of the ELF electromagnetic field in the frequency range below 60 Hz. In 2013, after 8 years of successful operation, the station was upgraded by extending its frequency range up to 300 Hz. In this paper we show the station's technical setup, and how it has changed over the years. We discuss the design of ELF equipment, including antennas, receivers, the time control circuit, and power supply, as well as antenna and receiver calibration. We also discuss the methodology we developed for observations of the Schumann resonance and wideband observations of ELF field pulses. We provide examples of various kinds of signals recorded at the station.

  3. Suppression and control of leakage field in electromagnetic helical microwiggler

    Energy Technology Data Exchange (ETDEWEB)

    Ohigashi, N. [Kansai Univ., Osaka (Japan); Tsunawaki, Y. [Osaka Sangyo Univ. (Japan); Imasaki, K. [Institute for Laser Technology, Osaka (Japan)] [and others

    1995-12-31

    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  4. Electromagnetic field in matter. Surface enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Marian Apostol

    2013-07-01

    Full Text Available The polarization and magnetization degrees of freedom are included in the general treatment of the electromagnetic field in matter, and their governing equations are given. Particular cases of solutions are discussed for polarizable, non-magnetic matter, including quasi-static fields, surface plasmons, propagation, zero-point fluctuations of the eigenmodes, especially for a semi-infinite homogeneous body (half-space. The van der Waals London-Casimir force acting between a neutral nano-particle and a half-space is computed and the response of this electromagnetically coupled system to an external field is given, with relevance for the surface enhanced Raman scattering.

  5. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    1972-01-01

    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  6. Excitation of the classical electromagnetic field in a cavity containing a thin slab with a time-dependent conductivity

    CERN Document Server

    Dodonov, V V

    2016-01-01

    An exact infinite set of coupled ordinary differential equations, describing the evolution of the modes of the classical electromagnetic field inside an ideal cavity, containing a thin slab with the time-dependent conductivity $\\sigma(t)$ and dielectric permittivity $\\varepsilon(t)$, is derived for the dispersion-less media. This problem is analyzed in connection with the attempts to simulate the so called Dynamical Casimir Effect in three-dimensional electromagnetic cavities, containing a thin semiconductor slab, periodically illuminated by strong laser pulses. Therefore it is assumed that functions $\\sigma(t)$ and $\\delta\\varepsilon(t)=\\varepsilon(t)-\\varepsilon(0)$ are different from zero during short time intervals (pulses) only. The main goal is to find the conditions, under which the initial nonzero classical field could be amplified after a single pulse (or a series of pulses). Approximate solutions to the dynamical equations are obtained in the cases of "small" and "big" maximal values of the function...

  7. Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization.

    Science.gov (United States)

    De Ninno, Antonella; Pregnolato, Massimo

    2017-01-01

    The appearance of endogenous electromagnetic fields in biological systems is a widely debated issue in modern science. The electrophysiological fields have very tiny intensities and it can be inferred that they are rapidly decreasing with the distance from the generating structure, vanishing at very short distances. This makes very hard their detection using standard experimental methods. However, the existence of fast-moving charged particles in the macromolecules inside both intracellular and extracellular fluids may envisage the generation of localized electric currents as well as the presence of closed loops, which implies the existence of magnetic fields. Moreover, the whole set of oscillatory frequencies of various substances, enzymes, cell membranes, nucleic acids, bioelectrical phenomena generated by the electrical rhythm of coherent groups of cells, cell-to-cell communication among population of host bacteria, forms the increasingly complex hierarchies of electromagnetic signals of different frequencies which cover the living being and represent a fundamental information network controlling the cell metabolism. From this approach emerges the concept of electromagnetic homeostasis: that is, the capability of the human body to maintain the balance of highly complex electromagnetic interactions within, in spite of the external electromagnetic noisy environment. This concept may have an important impact on the actual definitions of heal and disease.

  8. Observation of Electromagnetically Induced Transparency by a Train of Short Pulses

    Institute of Scientific and Technical Information of China (English)

    YE Cun-Yun

    2004-01-01

    @@ We report the experimental demonstration of electromagnetically induced transparency in hot rubidium (85 Rb)atomic vapour by using an actively mode-locked external cavity diode laser in Littman-Metcalf configuration.We can make opaque resonant transitions transparent to any two optical comb components in the pulse trains which excite atomic coherence in the ground states of 85Rb.

  9. Reasearch and Evaluation of Electromagnetic Fields of Refrigerators

    Directory of Open Access Journals (Sweden)

    Pranas Baltrėnas

    2013-12-01

    Full Text Available The use of refrigerators causes the occurence of electromagnetic fields that are invisible and intangible, which therefore makes difficulties in protecting ourselves from them. A refrigerator is an irreplaceable item in domestic household and thus can be hardly ignored by a modern way of human life. In order to preserve the characteristics of products, the refrigerator must operate continuously (24 hrs a day, regardless of the time of the year. This results in a huge increase in electricity consumption, which leads to energy consumption related pollution of the environment emitting CO2 gas. On these grounds, it is necessary to assess electromagnetic fields created by the refrigerator. Studies on electromagnetic fields produced by refrigerators were conducted in domestic premises where people spent a significant part of the day. For comparison purposes, five different power refrigerators were chosen (1 – 0.20 kW; 2 – 0.25 kW; 3 – 0.30 kW; 4 – 0.35 kW; 5 – 0.40 kW. The obtained results, according to the parameters of their electromagnetic fields, were presented in graphs and charts and showed that the values of electric and magnetic intensity of refrigerators depended on the distance and the power of the refrigerator. The conducted research also disclosed that none of tested refrigerators exceeded the permissible limits of electromagnetic fields.Article in Lithuanian

  10. Pulsed Electric Field treatment of packaged food

    NARCIS (Netherlands)

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal

  11. Generation of powerful ultrashort electromagnetic pulses based on superradiance

    CERN Document Server

    Ginzburg, N S; Novozhilova, Y V; Sergeev, A S; Phelps, A D R; Cross, A W; Wiggins, S M; Ronald, K; Shpak, V G; Yalandin, M I; Shunailov, S A; Ulmaskulov, M R

    2001-01-01

    Experimental results of the observation of superradiation from intense, subnanosecond electron bunches moving through a periodic waveguide and interacting with a backward propagating TM sub 0 sub 1 wave are presented. The ultra-short microwave pulses in Ka, W, and G band were generated with repetition frequencies of up to 25 Hz. Observation of RF breakdown of ambient air, as well as direct measurements by hot-carrier germanium detectors, leads to an estimate of the peak power as high as 60-120 MW for the 300-400 ps pulses at 38 GHz. The initial observation of 75 GHz 10-15 MW radiation pulses with duration less than 150 ps, and of 150 GHz microwave spikes with a risetime of 75ps are also reported. Comparison with simulations is discussed as well.

  12. Theoretical analysis of the electromagnetic field inside an anomalous-dispersion microresonator under synthetical pump

    Science.gov (United States)

    Xin, Xu; Xiaohong, Hu; Ye, Feng; Yuanshan, Liu; Wei, Zhang; Zhi, Yang; Wei, Zhao; Yishan, Wang

    2016-03-01

    We study the spatiotemporal evolution of the electromagnetic field inside a microresonator showing an anomalous dispersion at the pump wavelength by using the normalized Lugiato-Lefever equation. Unlike the traditional single continuous wave (CW) pumping, an additional pump source consisting of periodical pulse train with variable repetition rate is adopted. The influences of the microresonator properties and the pump parameters on the field evolution and the electromagnetic field profile are analyzed. The simulation results indicate that, in the anomalous dispersion regime, both increases of the input pulse amplitude and the repetition frequency can result in the field profiles consisting of multiple peaks. A series of equidistant pulses can also be obtained by increasing the CW pump power. In addition, we find that a large physical detuning between the pump laser carrier and the cavity resonance frequency also causes the splitting of the inside field. Project supported by the National Major Scientific Instrumentation Development Program of China (Grant No. 2011YQ120022), CAS/SAFEA International Partnership Program for Creative Research Teams, China, and the National Natural Science Foundation of China (Grant No. 61275164).

  13. Health Effects of Electromagnetic Fields: A Review of Literature.

    Science.gov (United States)

    White, George L.; And Others

    1995-01-01

    Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…

  14. Pregnancy and electromagnetic fields; Grossesse et champs electromagnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Bisseriex, Ch. [CARSAT Auvergne (France); Laurent, P. [Caisse d' Assurance Retraite et de la Sante au Travail - CARSAT Centre-Ouest (France); Cabaret, Ph. [CARSAT Languedoc-Roussillon (France); Bonnet, C. [CARSAT Centre (France); Marteau, E. [CRAM ile-de-France (France); Le Berre, G. [CARSAT Bretagne (France); Tirlemont, S. [CARSAT Nord-Picardie (France); Castro, H. [CARSAT Midi-Pyrenees (France); Becker, A.; Demaret, Ph.; Donati, M. [INRS Lorraine (France); Ganem, Y.; Moureaux, P. [INRS Paris (France)

    2011-07-15

    This document briefly indicates the status of knowledge regarding the effect of magnetic fields on biological tissues and pregnancy, outlines the lack of data on some frequencies and the weakness of studies on long term effects on child development. It evokes the issue of exposure assessment and that of identification of workstations exposed to electromagnetic fields

  15. Electromagnetic and gravitational fields in a Schwarzschild space-time

    Energy Technology Data Exchange (ETDEWEB)

    Porrill, J.; Stewart, J.M. (Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics)

    1981-05-19

    The propagation of electromagnetic fields and linearized perturbations of the vacuum Einstein equations on a Schwarzchild background space-time are discussed, and relations between the asymptotic form of the fields at null infinity and the data are established. Without suitable restrictions on the data, perturbations of a Schwarzschild space-time need not be weakly asymptotically simple.

  16. Terahertz field enhancement via coherent superposition of the pulse sequences after a single optical-rectification crystal

    Science.gov (United States)

    Sajadi, Mohsen; Wolf, Martin; Kampfrath, Tobias

    2014-03-01

    Terahertz electromagnetic pulses are frequently generated by optical rectification of femtosecond laser pulses. In many cases, the efficiency of this process is known to saturate with increasing intensity of the generation beam because of two-photon absorption. Here, we demonstrate two routes to reduce this effect in ZnTe(110) crystals and enhance efficiency, namely, by (i) recycling the generation pulses and by (ii) splitting each generation pulse into two pulses before pumping the crystal. In both methods, the second pulse arrives ˜1 ns after the first one, sufficiently long for optically generated carriers to relax. Enhancement is achieved by coherently superimposing the two resulting terahertz fields.

  17. Terahertz field enhancement via coherent superposition of the pulse sequences after a single optical-rectification crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi, Mohsen, E-mail: sajadi@fhi-berlin.mpg.de; Wolf, Martin; Kampfrath, Tobias [Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2014-03-03

    Terahertz electromagnetic pulses are frequently generated by optical rectification of femtosecond laser pulses. In many cases, the efficiency of this process is known to saturate with increasing intensity of the generation beam because of two-photon absorption. Here, we demonstrate two routes to reduce this effect in ZnTe(110) crystals and enhance efficiency, namely, by (i) recycling the generation pulses and by (ii) splitting each generation pulse into two pulses before pumping the crystal. In both methods, the second pulse arrives ∼1 ns after the first one, sufficiently long for optically generated carriers to relax. Enhancement is achieved by coherently superimposing the two resulting terahertz fields.

  18. On guided versus deflected fields in controlled-source electromagnetics

    Science.gov (United States)

    Swidinsky, Andrei

    2015-06-01

    The detection of electrically resistive targets in applied geophysics is of interest to the hydrocarbon, mining and geotechnical industries. Elongated thin resistive bodies have been extensively studied in the context of offshore hydrocarbon exploration. Such targets guide electromagnetic fields in a process which superficially resembles seismic refraction. On the other hand, compact resistive bodies deflect current in a process which has more similarities to diffraction and scattering. The response of a real geological structure is a non-trivial combination of these elements-guiding along the target and deflection around its edges. In this note the electromagnetic responses of two end-member models are compared: a resistive layer, which guides the electromagnetic signal, and a resistive cylinder, which deflects the fields. Results show that the response of a finite resistive target tends to saturate at a much lower resistivity than a resistive layer, under identical survey configurations. Furthermore, while the guided electromagnetic fields generated by a buried resistive layer contain both anomalous horizontal and vertical components, the process of electromagnetic deflection from a buried resistive cylinder creates mainly anomalous vertical fields. Finally, the transmitter orientation with respect to the position of a finite body is an important survey parameter: when the distance to the target is much less than the host skin depth, a transmitter pointing towards the resistive cylinder will produce a stronger signal than a transmitter oriented azimuthally with respect to the cylinder surface. The opposite situation is observed when the distance to the target is greater than the host skin depth.

  19. Protection of Medical Equipment against Electromagnetic Pulse (EMP): phase I

    Science.gov (United States)

    1986-06-12

    characteriitic associated with a typical EMP pin threat. This pin threat can be s ecified either as a damped sine wave or a rectangular pulse having a short ...Spectrophotometer, Stasar ............................... 77 7.12 Opthalmic Diathermy , TR 3000 ........................... 80 7.13 Birtcher 771 Micro...Opthalmic Diathermy TR 3000 ............................................. 82 7.12b Opthalmic Diathermy TR 3000 ................................... 83 7.13

  20. Electromagnetic Propulsion System for Spacecraft using Geomagnetic fields and Superconductors

    Science.gov (United States)

    Dadhich, Anang

    This thesis concentrates on developing an innovative method to generate thrust force for spacecraft in localized geomagnetic fields by various electromagnetic systems. The proposed electromagnetic propulsion system is an electromagnet, like normal or superconducting solenoid, having its own magnetic field which interacts with the planet's magnetic field to produce a reaction thrust force. The practicality of the system is checked by performing simulations in order the find the varying radius, velocity, and acceleration changes. The advantages, challenges, various optimization techniques, and viability of such a propulsion system in present day and future are discussed. The propulsion system such developed is comparable to modern MPD Thrusters and electric engines, and has various applications like spacecraft propulsion, orbit transfer and stationkeeping.

  1. Anisotropic Harmonic Oscillator in s Static Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    LINQiong-Gui

    2002-01-01

    A nonrelativistic charged particle moving in an anisotropic harmonic oscillator potential plus a homogeneous static electromagnetic field is studied.Several configurations of the electromagnetic field are considered.The Schoedinger equation is solved analytically in most of the cases.The energy levels and wave functions are obtained explicitly.In some of the cases,the ground state obtained is not a minimum wave packet,though it is of the Gaussian type.Coherent and squeezed states and their time evolution are discussed in detail.

  2. Lightning electromagnetic field generated by grounding electrode considering soil ionization

    Institute of Scientific and Technical Information of China (English)

    ZENG Rong; HE Jinliang; ZHANG Bo; GAO Yanqing

    2006-01-01

    A circuit model with lumped time-variable parameter is proposed to calculate the transient characteristic of grounding electrode under lightning current, which takes into consideration the dynamic and nonlinear effect of soil ionization around the grounding electrode. The ionization phenomena in the soil are simulated by means of time-variable parameters under appropriate conditions. The generated electromagnetic field in the air is analyzed by using electrical dipole theory and image theory when the lightning current flows into the grounding electrode. The influence of soil ionization on the electromagnetic field is investigated.

  3. Calculation of the Electromagnetic Field Around a Microtubule

    Directory of Open Access Journals (Sweden)

    D. Havelka

    2009-01-01

    Full Text Available Microtubules are important structures in the cytoskeleton which organizes the cell. A single microtubule is composed of electrically polar structures, tubulin heterodimers, which have a strong electric dipole moment. Vibrations are expected to be generated in microtubules, thus tubulin heterodimers oscillate as electric dipoles. This gives rise to an electromagnetic field which is detected around the cells. We calculate here the electromagnetic field of microtubules if they are excited at 1 GHz. This paper includes work done for the bachelor thesis of the first author. 

  4. Transmission-line networks cloaking objects from electromagnetic fields

    CERN Document Server

    Alitalo, Pekka; Jylhä, Liisi; Venermo, Jukka; Tretyakov, Sergei

    2007-01-01

    We consider a novel method of cloaking objects from the surrounding electromagnetic fields in the microwave region. The method is based on transmission-line networks that simulate the wave propagation in the medium surrounding the cloaked object. The electromagnetic fields from the surrounding medium are coupled into the transmission-line network that guides the waves through the cloak thus leaving the cloaked object undetected. The cloaked object can be an array or interconnected mesh of small inclusions that fit inside the transmission-line network.

  5. Nonlinear properties of gated graphene in a strong electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am [Yerevan State University, Department of Physics (Armenia); Moulopoulos, K., E-mail: cos@ucy.ac.cy [University of Cyprus, Department of Physics (Cyprus)

    2017-03-15

    We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.

  6. RESEARCH ON INDOOR ELECTROMAGNETIC RADIATION FIELD OF MULTIPLE ANTENNA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Ma Li; Lu Yanhui; Zou Peng; Zhou Xiaoping

    2012-01-01

    The complexity of the indoor environment brings great challenges to predict the electromagnetic radiation field of multiple antenna systems.Based on the Finite Difference Time Domain (FDTD) algorithm,using the mobile phone shielding device as the multiple antenna systems example,the mobile phone shielding device's indoor electromagnetic radiation field is researched by measurment method and simulation method.The effectivity of prediction method is verified by comparing the prediciton results with the measurment results.About 80% of the error can be controlled less than ±4 dB.The quantitative research has certain guiding significance to the prediction of the multiple antenna systems radio wave propagation.

  7. Background Electromagnetic Fields and NRQED Matching: Scalar Case

    CERN Document Server

    Lee, Jong-Wan

    2013-01-01

    The low-energy structure of hadrons can be described systematically using effective field theory, and the parameters of the effective theory can be determined from lattice QCD computations. Recent work, however, points to inconsistencies between the background field method in lattice QCD and effective field theory matching conditions. We show that the background field problem necessitates inclusion of operators related by equations of motion. In the presence of time-dependent electromagnetic fields, for example, such operators modify Green's functions, thereby complicating the isolation of hadronic parameters which enter on-shell scattering amplitudes. The particularly simple case of a scalar hadron coupled to uniform electromagnetic fields is investigated in detail. At the level of the relativistic effective theory, operators related by equations of motion are demonstrated to be innocuous. The same result does not hold in the non-relativistic effective theory, and inconsistencies in matching are resolved by ...

  8. Quantum description of electromagnetic fields in waveguides

    CERN Document Server

    Kitagawa, Akira

    2015-01-01

    Using quantum theory, we study the propagation of an optical field in an inhomogeneous dielectric, and apply this scheme to traveling optical fields in a waveguide. We introduce a field-atom interaction Hamiltonian and derive the refractive index using quantum optics. We show that the transmission and reflection of optical fields at an interface between different materials can be described with normalized Fresnel coefficients and that this representation is related to the beam splitter operator. We then study the propagation properties of the optical fields for two types of slab waveguides: step-index and graded-index. The waveguides are divided into multiple layers to represent the spatial dependence of the optical field. We can evaluate the number of photons in an arbitrary volume in the waveguide using this procedure. Using the present method, the quantum properties of weak optical fields in a waveguide are revealed, while coherent states with higher amplitudes reduces to representation of classical wavegu...

  9. Biofouling prevention with pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Ghazala, A.; Schoenbach, K.H.

    2000-02-01

    Temporary immobilization of aquatic nuisance species through application of short electric pulses has been explored as a method to prevent biofouling in cooling water systems where untreated lake, river, or sea water is used. In laboratory experiments, electrical pulses with amplitudes on the order of kilovolts/centimeter and submicrosecond duration were found to be most effective in stunning time in a temporal range from minutes to hours. The temporary immobilization is assumed to be caused by reversible membrane breakdown. This assumption is supported by results of measurements of the energy required for stunning. Based on the data obtained in laboratory experiments, field experiments in a tidal water environment have been performed. The flow velocity was such that the residence time of the aquatic nuisance species in the system was approximately half a minute. The results showed that the pulsed electric field method provides full protection against biofouling when pulses of 0.77 {micro}s width and 6 kV/cm amplitude are applied to the water at the inlet of such a cooling water system. Even at amplitudes of 1 kV/cm, the protection is still in the 90% range, at an energy expenditure of 1 kWh for the treatment of 60,000 gallons of water.

  10. Optimal control of electromagnetic field using metallic nanoclusters

    Science.gov (United States)

    Grigorenko, Ilya; Haas, Stephan; Balatsky, Alexander; Levi, A. F. J.

    2008-04-01

    The dielectric properties of metallic nanoclusters in the presence of an applied electromagnetic field are investigated using the non-local linear response theory. In the quantum limit we find a nontrivial dependence of the induced field and charge distributions on the spatial separation between the clusters and on the frequency of the driving field. Using a genetic algorithm, these quantum functionalities are exploited to custom-design sub-wavelength lenses with a frequency-controlled switching capability.

  11. Electronic Wave Packet in a Quantized Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    程太旺; 薛艳丽; 李晓峰; 吴令安; 傅盘铭

    2002-01-01

    We study a non-stationary electronic wave packet in a quantized electromagnetic field. Generally, the electron and field become entangled as the electronic wave packet evolves. Here we find that, when the initial photon state is a coherent one, the wavefunction of the system can be factorized if we neglect the transferred photon number. In this case, the quantized-field calculation is equivalent to the semi-classical calculation.

  12. Group delay of electromagnetic pulses through multilayer dielectric mirrors combined with gravitational wave.

    Science.gov (United States)

    Liu, J T; Wu, X; Liu, N H; Li, J; Su, F H

    2013-07-01

    Group delay of electromagnetic pulses through multilayer dielectric mirrors (MDM) combined with gravitational wave (GW) is investigated. Unlike in traditional quantum tunneling, the group delay of a transmitted wave packet irradiated by a GW increases linearly with MDM length. This peculiar tunneling effect can be attributed to electromagnetic wave leakage in a time-dependent photonic bandgap caused by the GW. In particular, we find that the group delay of the tunneling photons is sensitive to GW. Our study provides insight into the nature of the quantum tunnelling as well as a novel process by which to detect the GW.

  13. Coulomb field in a constant electromagnetic background

    CERN Document Server

    Adorno, T C; Shabad, A E

    2016-01-01

    Nonlinear Maxwell equations are written up to the third-power deviations from a constant-field background, valid within any local nonlinear electrodynamics including QED with Euler-Heisenberg effective Lagrangian. Linear electric response to imposed static finite-sized charge is found in the vacuum filled by an arbitrary combination of constant and homogeneous electric and magnetic fields. The modified Coulomb field, corrections to the total charge and to the charge density are given in terms of derivatives of the effective Lagrangian with respect to the field invariants.

  14. Damage effect and mechanism of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    Science.gov (United States)

    Xiao-Wen, Xi; Chang-Chun, Chai; Gang, Zhao; Yin-Tang, Yang; Xin-Hai, Yu; Yang, Liu

    2016-04-01

    The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  15. Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator

    Science.gov (United States)

    Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Savage, M. E.; Rochau, G. A.; Bailey, J. E.; Nash, T. J.; Sceiford, M. E.; Struve, K. W.; Corcoran, P. A.; Whitney, B. A.

    2010-01-01

    A three-dimensional, fully electromagnetic model of the principal pulsed-power components of the 26-MA ZR accelerator [D. H. McDaniel , in Proceedings of the 5th International Conference on Dense Z-Pinches (AIP, New York, 2002), p. 23] has been developed. This large-scale simulation model tracks the evolution of electromagnetic waves through the accelerator’s intermediate-storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, triplate transmission lines, and water convolute to the vacuum insulator stack. The insulator-stack electrodes are coupled to a transmission-line circuit model of the four-level magnetically insulated vacuum-transmission-line section and double-post-hole convolute. The vacuum-section circuit model is terminated by a one-dimensional self-consistent dynamic model of an imploding z-pinch load. The simulation results are compared with electrical measurements made throughout the ZR accelerator, and are in good agreement with the data, especially for times until peak load power. This modeling effort demonstrates that 3D electromagnetic models of large-scale, multiple-module, pulsed-power accelerators are now computationally tractable. This, in turn, presents new opportunities for simulating the operation of existing pulsed-power systems used in a variety of high-energy-density-physics and radiographic applications, as well as even higher-power next-generation accelerators before they are constructed.

  16. Non-linear quantum dynamics in strong and short electromagnetic fields

    CERN Document Server

    Titov, Alexander I; Hosaka, Atsushi; Takabe, Hideaki

    2016-01-01

    In our contribution we give a brief overview of two widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.m.) (e.g.\\ laser) wave field or generalized Breit-Wheeler process and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that at small and moderate laser field intensities the shape and duration of the pulse are very important for the probability of considered processes. However, at high intensities the multi-photon interactions of the fermions with laser field are decisive and completely determined all aspects of subthreshold electron-positron pairs and photon production

  17. A physically motivated quantization of the electromagnetic field

    Science.gov (United States)

    Bennett, Robert; Barlow, Thomas M.; Beige, Almut

    2016-01-01

    The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field.

  18. Ultrarelativistic electron states in a general background electromagnetic field

    CERN Document Server

    Di Piazza, A

    2013-01-01

    The feasibility of obtaining analytical results in the realm of QED in the presence of a background electromagnetic field is almost exclusively limited to a few tractable cases, where the Dirac equation can be solved exactly in the corresponding background field. This circumstance has restricted, in particular, the theoretical analysis of QED processes in intense laser fields to within the plane-wave approximation even at those high intensities, achievable experimentally only by tightly focusing the laser energy in space. Here, we construct analytically quasiclassical one-particle electron states in the presence of a background electromagnetic field of general space-time structure in the realistic assumption that the initial energy of the electron is the largest scale in the problem. The relatively compact expression of these states opens, in particular, the possibility of investigating analytically strong-field QED processes in the presence of spatially focused laser beams, which is of particular relevance i...

  19. Electromagnetic fields and Green functions in elliptical vacuum chambers

    CERN Document Server

    Persichelli, Serena; Migliorati, Mauro; Palumbo, Luigi; Vaccaro, Vittorio; CERN. Geneva. ATS Department

    2017-01-01

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be diffe...

  20. Uniqueness of time-independent electromagnetic fields

    DEFF Research Database (Denmark)

    Karlsson, Per W.

    1974-01-01

    As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics......As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics...

  1. Ion Plasma Responses to External Electromagnetic Fields

    NARCIS (Netherlands)

    Naus, H.W.L.

    2010-01-01

    The response of ion plasmas to external radiation fields is investigated in a quantum mechanical formalism.We focus on the total electric field within the plasma. For general bandpass signals three frequency regions can be distinguished in terms of the plasma frequency. For low frequencies, the exte

  2. High Field Pulse Magnets with New Materials

    Science.gov (United States)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  3. Electromagnetic time reversal focusing of near field waves in metamaterials

    Science.gov (United States)

    Chabalko, Matthew J.; Sample, Alanson P.

    2016-12-01

    Precise control of electromagnetic energy on a deeply subwavelength scale in the near field regime is a fundamentally challenging problem. In this letter we demonstrate the selective focusing of electromagnetic energy via the electromagnetic time reversal in the near field of a metamaterial. Our analysis begins with fundamental mathematics, and then is extended to the experimental realm where focusing in space and time of the magnetic fields in the near field of a 1-Dimensional metamaterial is shown. Under time reversal focusing, peak instantaneous fields at receiver locations are at minimum ˜200% greater than other receivers. We then leverage the strong selective focusing capabilities of the system to show individual and selective powering of light emitting diodes connected to coil receivers placed in the near field of the metamaterial. Our results show the possibility of improving display technologies, near field imaging systems, increasing channel capacity of near field communication systems, and obtaining a greater control of energy delivery in wireless power transfer systems.

  4. Pulsed photoelectric field emission from needle cathodes

    CERN Document Server

    Hernandez-Garcia, C

    2002-01-01

    Experiments have been carried out to measure the current emitted by tungsten needles with 1-mu m tip radius operated up to 50 kV. This corresponds to electric fields in the order of 10 sup 9 to 10 sup 1 sup 0 V/m. The needles were illuminated with 10-ns laser pulses at 532, 355 and 266 nm. The laser intensity was varied from 10 sup 1 sup 0 to 10 sup 1 sup 2 W/m sup 2 , limited by damage to the needle tip. The observed quantum efficiency depends on the wavelength and the electric field, approaching unity at the highest electric fields when illuminated at 266 nm. Peak currents up to 100 mA were observed in nanosecond pulses, corresponding to an estimated brightness of 10 sup 1 sup 6 A/m sup 2 sr. Since the current is controlled by the laser intensity, with only a weak voltage dependence, these cathodes can be used for infrared and ultraviolet tabletop free-electron lasers and other applications that demand short electron-beam pulses with high brightness.

  5. What Message Should Health Educators Give regarding Electromagnetic Fields?

    Science.gov (United States)

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  6. Generation of a Desired Three-Dimensional Electromagnetic Field

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to a method and a system for synthesizing a prescribed three-dimensional electromagnetic field based on generalized phase contrast imaging. Such a method and apparatus may be utilized in advanced optical micro and nano-manipulation, such as by provision of a multiple...

  7. The Mathematics of Charged Particles interacting with Electromagnetic Fields

    DEFF Research Database (Denmark)

    Petersen, Kim

    In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...

  8. Impact of high electromagnetic field levels on childhood leukemia incidence

    NARCIS (Netherlands)

    Teepen, J.C.; Dijck, J.A. van

    2012-01-01

    The increasing exposure to electromagnetic fields (EMFs) has raised concern, as increased exposure may result in an increased risk of childhood leukemia (CL). Besides a short introduction of CL and EMF, our article gives an evaluation of the evidence of a causal relation between EMF and CL by critic

  9. The Mathematics of Charged Particles interacting with Electromagnetic Fields

    DEFF Research Database (Denmark)

    Petersen, Kim

    In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...

  10. Electromagnetic Field in Lyra Manifold: A First Order Approach

    Science.gov (United States)

    Casana, R.; de Melo, C. A. M.; Pimentel, B. M.

    2005-12-01

    We discuss the coupling of the electromagnetic field with a curved and torsioned Lyra manifold using the Duffin-Kemmer-Petiau theory. We will show how to obtain the equations of motion and energy-momentum and spin density tensors by means of the Schwinger Variational Principle.

  11. 78 FR 33633 - Human Exposure to Radiofrequency Electromagnetic Fields

    Science.gov (United States)

    2013-06-04

    ... Electromagnetic Fields), 18 FCC Rcd 13187 (2003). \\3\\ See 5 U.S.C. 604. A. Need for, and Objectives of, the Report... FCC Rcd 2732, 2811-2812, paras. 178-181 (``Paging Second Report and Order''); see also Revision of..., Memorandum Opinion and Order on Reconsideration, 14 FCC Rcd 10030, 10085-10088, paras. 98-107 (1999). \\38...

  12. Electromagnetic Quantum Field Theory on Kerr-Newman Black Holes

    CERN Document Server

    Casals, Marc

    2004-01-01

    We study classical and quantum aspects of electromagnetic perturbations on black hole space-times. We develop an elegant formalism introduced by Wald, which sets up the theory of linear perturbations in a Type-D background in a compact and transparent manner. We derive expressions for the electromagnetic potential in terms of the single Newman-Penrose scalar \\phi_0.This enables the formulation of the quantum theory of the electromagnetic field as that of a complex scalar field. We study the separable field equations obeyed by the various Newman-Penrose scalars in the Kerr-Newman background and find, for various limits, the asymptotic behaviour of the radial and angular solutions. We correct and build on a study by Breuer, Ryan and Waller to find a uniformly valid asymptotic behaviour for large frequency of the angular solutions and the eigenvalues. We follow Candelas, Chrzanowski and Howard (CCH) in their canonical quantization of the electromagnetic potential and field. We perform an asymptotic analysis of t...

  13. Electromagnetic Field in Lyra Manifold: A First Order Approach

    CERN Document Server

    Casana, R; Pimentel, B M

    2016-01-01

    We discuss the coupling of the electromagnetic field with a curved and torsioned Lyra manifold using the Duffin-Kemmer-Petiau theory. We will show how to obtain the equations of motion and energy-momentum and spin density tensors by means of the Schwinger Variational Principle.

  14. Electromagnetic Effects in Superconductors in Gravitational Field

    CERN Document Server

    Ahmedov, B J

    2005-01-01

    The general relativistic modifications to the resistive state in superconductors of second type in the presence of a stationary gravitational field are studied. Some superconducting devices that can measure the gravitational field by its red-shift effect on the frequency of radiation are suggested. It has been shown that by varying the orientation of a superconductor with respect to the earth gravitational field, a corresponding varying contribution to AC Josephson frequency would be added by gravity. A magnetic flux (being proportional to angular velocity of rotation $\\Omega$) through a rotating hollow superconducting cylinder with the radial gradient of temperature $\

  15. THERMAL STRESS FIELD WHEN CRACK ARREST IN AN AXIAL SYMMETRY METAL DIE USING ELECTROMAGNETIC HEATING

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to solve the thermal stress field around crack tip in metal die when crack prevention using electromagnetic heating, a metal die with a half-embedded round crack was selected as the study object. The complex function method was used as a basis for the theoretical model of the space crack prevention in metal dies using electromagnetic heating. The crack arrest was accomplished by a pulse current discharge through the inner and outer. The theoretical analysis results show that the temperature around the crack tip rises instantly above the melting point of the metal. Small welded joints are formed at a small sphere near the crack tip inside the metal die by metal melting as a result of the heat concentration effect when the current pulse discharged. The thermal compressive stress field appears around the crack tip at the moment. The research results show that the crack prevention using electromagnetic heating can decrease the stress concentration and forms a compressive stress area around the crack tip, and also prevents the main crack from propagating further, and the goal of crack preventing can be reached.

  16. First physics pulses in the Barrel Electromagnetic Calorimeter with cosmics

    CERN Multimedia

    Laurent Serin

    2006-01-01

    The electromagnetic barrel calorimeter has been installed in its final position in October 2005. Since then, the calorimeter is being equipped with front-end electronics. Starting in April 2006, electronics calibration runs are taken a few times per week to debug the electronics and to study the performance in the pit (stability, noise). Today, 10 out of the 32 Front End crates are being read out, amounting to about 35000 channels. cool down, few little typos --> After a 6-week cool down, the barrel cryostat was filled with Liquid Argon in May. The presence of a few shorts (~1MΩ) at the edges of the modules was indicating the possibility of conducting dust having entered into the calorimeter with the flowing liquid. In order to try to improve this situation, the calorimeter was emptied and filled again, but this time by condensating the argon instead of flowing it in liquid phase. The new High Voltage tests are not showing any significant improvement but the situation is statisfactory for ATLAS runn...

  17. Investigation into the electromagnetic impulses from long-pulse laser illuminating solid targets inside a laser facility

    Science.gov (United States)

    Yi, Tao; Yang, Jinwen; Yang, Ming; Wang, Chuanke; Yang, Weiming; Li, Tingshuai; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun; Xiao, Shaoqiu

    2016-09-01

    Emission of the electromagnetic pulses (EMP) due to laser-target interaction in laser facility had been evaluated using a cone antenna in this work. The microwave in frequencies ranging from several hundreds of MHz to 2 GHz was recorded when long-pulse lasers with several thousands of joules illuminated the solid targets, meanwhile the voltage signals from 1 V to 4 V were captured as functions of laser energy and backlight laser, where the corresponding electric field strengths were obtained by simulating the cone antenna in combination with conducting a mathematical process (Tiknohov Regularization with L curve). All the typical coupled voltage oscillations displayed multiple peaks and had duration of up to 80 ns before decaying into noise and mechanisms of the EMP generation was schematically interpreted in basis of the practical measuring environments. The resultant data were expected to offer basic know-how to achieve inertial confinement fusion.

  18. Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme

    Science.gov (United States)

    Hamedi, H. R.; Ruseckas, J.; Juzeliūnas, G.

    2017-09-01

    We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N-type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell-Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system.

  19. The electromagnetic field for an open magnetosphere

    Science.gov (United States)

    Heikkila, W. J.

    1984-01-01

    The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions.

  20. Flows and chemical reactions in an electromagnetic field

    CERN Document Server

    Prud'homme, Roger

    2014-01-01

    This book - a sequel of previous publications 'Flows and Chemical Reactions', 'Chemical Reactions Flows in Homogeneous Mixtures' and 'Chemical Reactions and Flows in Heterogeneous Mixtures' - is devoted to flows with chemical reactions in the electromagnetic field. The first part, entitled basic equations, consists of four chapters. The first chapter provides an overview of the equations of electromagnetism in Minkowski spacetime. This presentation is extended to balance equations, first in homogeneous media unpolarized in the second chapter and homogeneous fluid medium polarized in the thir

  1. Electromagnetic Hydrophone with Tomographic System for Absolute Velocity Field Mapping

    CERN Document Server

    Grasland-Mongrain, Pol; Mari, Jean-Martial; Chapelon, Jean-Yves; Lafon, Cyril; 10.1063/1.4726178

    2012-01-01

    The velocity and pressure of an ultrasonic wave can be measured by an electromagnetic hydrophone made of a thin wire and a magnet. The ultrasonic wave vibrates the wire inside a magnetic field, inducing an electrical current. Previous articles reported poor spatial resolution of comparable hydrophones along the axis of the wire. In this study, submillimetric spatial resolution has been achieved by using a tomographic method. Moreover, a physical model is presented for obtaining absolute measurements. A pressure differential of 8% has been found between piezoelectric and electromagnetic hydrophone measurements. These characteristics show this technique as an alternative to standard hydrophones.

  2. The cause of outliers in electromagnetic pulse (EMP) locations

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-02

    We present methods to calculate the location of EMP pulses when observed by 5 or more satellites. Simulations show that, even with a good initial guess and fitting a location to all of the data, there are sometime outlier results whose locations are much worse than most cases. By comparing simulations using different ionospheric transfer functions (ITFs), it appears that the outliers are caused by not including the additional path length due to refraction rather than being caused by not including higher order terms in the Appleton-Hartree equation. We suggest ways that the outliers can be corrected. These correction methods require one to use an electron density profile along the line of sight from the event to the satellite rather than using the total electron content (TEC) to characterize the ionosphere.

  3. Communication: Neutral atom imaging using a pulsed electromagnetic lens

    Science.gov (United States)

    Gardner, Jamie R.; Anciaux, Erik M.; Raizen, Mark G.

    2017-02-01

    We report on progress towards a neutral atom imaging device that will be used for chemically sensitive surface microscopy and nanofabrication. Our novel technique for improving refractive power and correcting chromatic aberration in atom lenses is based on a fundamental paradigm shift from continuous-beam focusing to a pulsed, three-dimensional approach. Simulations of this system suggest that it will pave the way toward the long-sought goal of true atom imaging on the nanoscale. Using a prototype lens with a supersonic beam of metastable neon, we have imaged complex patterns with lower distortion and higher resolution than has been shown in any previous experiment. Comparison with simulations corroborates the underlying theory and encourages further refinement of the process.

  4. Beta decay and other processes in strong electromagnetic fields

    CERN Document Server

    Akhmedov, Evgeny

    2011-01-01

    We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of non-relativistic charged particles. Using nuclear beta-decay as an example, we study the weak and strong field limits, as well as the field-induced beta-decay of nuclei stable in the absence of the external fields, both in the tunneling and multi-photon regimes. We also consider the possibility of accelerating forbidden nuclear beta-decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total beta-...

  5. 金属板及钢板网对雷电电磁脉冲磁场传播特性的影响%The Inlfuence of Metal Plate and Expanded Mesh on Propagation Characteristics of Magnetic Field Caused by Lightning Electromagnetic Pulse

    Institute of Scientific and Technical Information of China (English)

    张琪; 周璧华; 江志东

    2014-01-01

    To analyze the coupling effects of public exposure to magnetic field with multiple bands, the lightning electromagnetic pulse coupling waveforms of 8/20 and 10/350 are selected as the exciting source in this paper. Then the induced magnetic field of different points in space is calculated based on the analysis of excitation energy distribution. Moreover, the influence of metal plate with different materials and expanded metal mesh on the magnetic field propagation characteristics is discussed. The numerical results indicate that the energy of lightning electromagnetic pulse is mainly concentrated below 1MHz. The shielding chamber structure is electrically small compared to its wavelength. The shielding effectiveness of different metal plates is similar to that of expanded metal mesh. According to the public exposure limit, and due to the electrical small structure, it shows that totally enclosed shielding on impact laboratory is not necessary.%为分析公众曝露在多个频段磁场中的耦合效应,选取了8/20和10/350两种雷电电磁脉冲耦合波形作为激励源,在分析了二者能量分布规律的基础上,对空间中不同测点的感应磁场进行了计算,探讨了不同材质金属板及钢板网对磁场传播特性的影响。仿真结果表明,雷电电磁脉冲能量主要集中在1MHz以下,屏蔽室结构相对其波长为电小尺寸;不同材质金属板及其工程结构对磁场屏蔽效能影响较小,且与钢板网的效果类似;根据公众曝露限值,在相对激励源波长为电小尺寸的屏蔽室构建中,全封闭式的电磁屏蔽并不必要。

  6. Pulsed magnetic field versus ultrasound in the treatment of postnatal carpal tunnel syndrome: A randomized controlled trial in the women of an Egyptian population

    Directory of Open Access Journals (Sweden)

    Dalia M. Kamel

    2017-01-01

    Full Text Available The aim of this study was to compare the effects of pulsed electromagnetic field versus pulsed ultrasound in treating patients with postnatal carpal tunnel syndrome. The study was a randomized, double-blinded trial. Forty postnatal female patients with idiopathic carpal tunnel syndrome were divided randomly into two equal groups. One group received pulsed electromagnetic field, with nerve and tendon gliding exercises for the wrist, three times per week for four weeks. The other group received pulsed ultrasound and the same wrist exercises. Pain level, sensory and motor distal latencies and conduction velocities of the median nerve, functional status scale and hand grip strength were assessed pre- and post-treatment. There was a significant decrease (P  0.05. In conclusion, while the symptoms were alleviated in both groups, pulsed electromagnetic field was more effective than pulsed ultrasound in treating postnatal carpal tunnel syndrome.

  7. Analytical solution for the diffusion of a capacitor discharge generated magnetic field pulse in a conductor

    Directory of Open Access Journals (Sweden)

    Ilmārs Grants

    2016-06-01

    Full Text Available Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.

  8. Analytical solution for the diffusion of a capacitor discharge generated magnetic field pulse in a conductor

    Science.gov (United States)

    Grants, Ilmārs; Bojarevičs, Andris; Gerbeth, Gunter

    2016-06-01

    Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.

  9. On Huygens' principle for Dirac operators associated to electromagnetic fields

    Directory of Open Access Journals (Sweden)

    CHALUB FABIO A.C.C.

    2001-01-01

    Full Text Available We study the behavior of massless Dirac particles, i.e., solutions of the Dirac equation with m = 0 in the presence of an electromagnetic field. Our main result (Theorem 1 is that for purely real or imaginary fields any Huygens type (in Hadamard's sense Dirac operators is equivalent to the free Dirac operator, equivalence given by changes of variables and multiplication (right and left by nonzero functions.

  10. Classical Electromagnetic Field Theory in the Presence of Magnetic Sources

    Institute of Scientific and Technical Information of China (English)

    LI Kang(李康); CHEN Wen-Jun(陈文俊); NAON Carlos M.

    2003-01-01

    Using two new well-defined four-dimensional potential vectors, we formulate the classical Maxwell field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources.We set up a consistent Lagrangian for the theory. Then from the action principle we obtain both Maxwell's equation and the equation of motion of a dyon moving in the electromagnetic field.

  11. Electromagnetic Fields Radiated by a Circular Loop with Arbitrary Current

    CERN Document Server

    Salem, Mohamed A

    2014-01-01

    We present a rigorous approach to compute the electromagnetic fields radiated by a thin circular loop with arbitrary current. We employ a polar transmission representation along with a Kontorovich-Lebedev transform to derive integral representations of the field in the interior and exterior regions of a sphere circumscribing the loop. The convergence of the obtained expressions is discussed and comparison with full-wave simulation and other methods are shown.

  12. Neutral Spinning Particles in Electromagnetic Fields and Neutron Interference

    Institute of Scientific and Technical Information of China (English)

    丁秀香; 梁九卿

    1994-01-01

    The dynamics of neutral spinning particles in electromagnetic fields is investigated. The phase interference of unpolarized neutron beams is reasonably interpreted as the observed spin precession in external fields instead of potential effects in the quantum physics; namely, the Aharonov-Bohm and Aharonov-Casher effects. It is also pointed out that the recent experiment claimed to be the verification of Aharonov-Casher phase with neutron interferometry, however, can be considered as a test of new anyon model.

  13. Classical electromagnetic field theory in the presence of magnetic sources

    CERN Document Server

    Chen, W J; Naón, C M; Chen, Wen-Jun; Li, Kang

    2001-01-01

    Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.

  14. Traversal of electromagnetic pulses through dispersive media with negative refractive index

    Science.gov (United States)

    Nanda, L.; Ramakrishna, S. A.

    2017-05-01

    We investigate the traversal of electromagnetic pulses through dispersive media with negative refractive index in such a way that no resonant effects come into play. It has been verified that for evanescent waves, the definitions of the group delay and the reshaping delay times get interchanged in comparison to the propagating waves. We show that for a negative refractive index medium (NRM) with ɛ(ω)=μ(ω), the reshaping delay time identically vanishes for propagating waves. The total delay time in NRM is otherwise contributed by both the group and the reshaping delay times, whereas for the case of broadband pulses in NRM the total delay time is always subluminal.

  15. Alterations in Adenylate Kinase Activity in Human PBMCs after In Vitro Exposure to Electromagnetic Field: Comparison between Extremely Low Frequency Electromagnetic Field (ELF) and Therapeutic Application of a Musically Modulated Electromagnetic Field (TAMMEF)

    OpenAIRE

    Antonietta Albanese; Emilio Battisti; Daniela Vannoni; Emilia Aceto; Gianmichele Galassi; Stefania Giglioni; Valentina Tommassini; Nicola Giordano

    2009-01-01

    This study investigated the effects of electromagnetic fields on enzymes involved in purine metabolism in human peripheral blood mononuclear cells in vitro. Cells were obtained from 20 volunteers. We tested both low-energy, extremely low frequency (ELF; 100-Hz) electromagnetic fields and the Therapeutic Application of Musically Modulated Electromagnetic Fields (TAMMEFs); the latter is characterized by variable frequencies, intensities, and wave shapes. Adenylate kinase activity was increas...

  16. Salmon calcitonin nasal spray in combination with pulse electromagnetic field therapeutic apparatus in the treatment of osteoporotic lumbago curative effect observation%鲑鱼降钙素鼻喷剂结合脉冲电磁场治疗仪治疗骨质疏松性腰痛疗效观察

    Institute of Scientific and Technical Information of China (English)

    张宝; 韩守安; 孙永功; 胡铮

    2014-01-01

    Objective To evaluate the clinical efficacy of salmon calcitonin nasal spray combined with pulsed electromagnetic field therapy device for the treatment of osteoporosis, low back pain.Methods Our hospital in December 2012 - June 2014 osteoporotic patients treated with low back pain during the 78 cases and in accordance with randomly grouped into control group and observation group, 39 cases in each group. The control group with salmon calcitonin nasal spray treatment, observation group of salmon calcitonin nasal spray combined with pulsed electromagnetic field therapy instrument. Two groups of patients were observed before and after treatment pain scores and adverse reactions.Results Pain score before treatment observation group was(6.67±1.02) points to the control group(6.71±1.03) points, the difference was statistically significant(P> 0.05). After treatment, patients pain score was observed (1.47±0.36) points in the control group(3.69±0.53) points, both groups were significant decline, but the observation group than the control group(P<0.05). In addition, the observation group was 2.56% of adverse reactions(1/39) was significantly lower than the control group, 10.26%(4/39)(P<0.05). ConclusionOsteoporotic patients with low back pain salmon calcitonin nasal spray combined with pulsed electromagnetic fields therapeutic equipment, which can effectively relieve pain in patients with fewer side effects, worthy of promotion and application.%目的:探讨鲑鱼降钙素鼻喷剂结合脉冲电磁场治疗仪治疗骨质疏松性腰痛的临床疗效。方法选择2012年12月~2014年6月期间收治的骨质疏松性腰痛患者78例并按照随机数字表法分组为对照组和观察组,每组39例。对照组采用鲑鱼降钙素鼻喷剂治疗,观察组采用鲑鱼降钙素鼻喷剂结合脉冲电磁场治疗仪治疗。观察两组患者治疗前后疼痛评分情况及不良反应。结果治疗前观察组患者疼痛评分为(6.67±1.02

  17. Occupational exposure to electromagnetic fields in physiotherapy departments.

    Science.gov (United States)

    Maccà, I; Scapellato, M L; Carrieri, M; Pasqua di Bisceglie, A; Saia, B; Bartolucci, G B

    2008-01-01

    To assess occupational exposure to electromagnetic fields, 11 microwave (MW), 4 short-wave diathermy and 15 magneto therapy devices were analysed in eight physiotherapy departments. Measurements taken at consoles and environmental mapping showed values above European Directive 2004/40/EC and ACGIH exposure limits at approximately 50 cm from MW applicators (2.45 GHz) and above the Directive magnetic field limit near the diathermy unit (27.12 MHz). Levels in front of MW therapy applicators decreased rapidly with distance and reduction in power; this may not always occur in work environments where nearby metal structures (chairs, couches, etc.) may reflect or perturb electromagnetic fields. Large differences in stray field intensities were found for various MW applicators. Measurements of power density strength around MW electrodes confirmed radiation fields between 30 degrees and 150 degrees , with a peak at 90 degrees , in front of the cylindrical applicator and maximum values between 30 degrees and 150 degrees over the whole range of 180 degrees for the rectangular parabolic applicator. Our results reveal that although most areas show substantially low levels of occupational exposure to electromagnetic fields in physiotherapy units, certain cases of over-occupational exposure limits do exist.

  18. Sterilization of Escherichia coli cells by the application of pulsed magnetic field

    Institute of Scientific and Technical Information of China (English)

    LI Mei; QU Jiu-hui; PENG Yong-zhen

    2004-01-01

    The inactivation of microorganisms by pulsed magnetic field was studied. It was improved that theapplication of electromagnetic pulses evidently causes a lethal effect on E. coli cells suspended in phosphate buffersolution Na2 HPO4 / NaH2 PO4 (0.334/0.867 mmol/L). Experimental results indicated that the survivability( N/N0; whereN0 and N are the number of cells survived per milliliter before and after electromagnetic pulses application,respectively) of E. coli decreased with magnetic field intensity B and treatment time t. It was also found that themedium temperatures, the frequencies of pulse f, and the initial bacterial cell concentrations have determinateinfluences in destruction of E. coli cells by the application of magnetic pulses. The application of an magneticintensity B = 160 mT at pulses frequency f = 62 kHz and treatment time t = 16 h result in a considerable destructionlevels of E. coli cells ( N/N0 = 10-4 ). Possible mechanisms involved in sterilization of the magnetic field treatmentwere discussed. In order to shorten the treatment time, many groups of parallel inductive coil were used. Thepracticability test showed that the treatment time was shortened to 4 h with the application of three groups of parallelcoil when the survivability of E. coli cells was less than 0.01%; and the power consumption was about 0.2 kWh/m3 .

  19. On the HEMP (high-altitude electromagnetic pulse) environment for protective relays

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.E.; Wiggins, C.M.; Salas, T.M. (BDM International, Inc., Albuquerque, NM (USA)); Barnes, P.R. (Oak Ridge National Lab., TN (USA))

    1990-01-01

    An assessment of the transient environment for protective relays produced by high-altitude electromagnetic pulse (HEMP) events is presented in this paper. Several mechanisms for coupling of HEMP to relay terminals are used to develop estimates of possible HEMP threats to relays. These predicted relay responses to HEMP events are compared to measured data on a solid state based relay's impulse strength. 12 refs., 13 figs., 3 tabs.

  20. A Concept for Directly Coupled Pulsed Electromagnetic Acceleration of Plasmas

    Science.gov (United States)

    Thio, Y.C. Francis; Cassibry, Jason T.; Eskridge, Richard; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Plasma jets with high momentum flux density are required for a variety of applications in propulsion research. Methods of producing these plasma jets are being investigated at NASA Marshall Space Flight Center. The experimental goal in the immediate future is to develop plasma accelerators which are capable of producing plasma jets with momentum flux density represented by velocities up to 200 km/s and ion density up to 10(exp 24) per cu m, with sufficient precision and reproducibility in their properties, and with sufficiently high efficiency. The jets must be sufficiently focused to allow them to be transported over several meters. A plasma accelerator concept is presented that might be able to meet these requirements. It is a self-switching, shaped coaxial pulsed plasma thruster, with focusing of the plasma flow by shaping muzzle current distribution as in plasma focus devices, and by mechanical tapering of the gun walls. Some 2-D MHD modeling in support of the conceptual design will be presented.