WorldWideScience

Sample records for pulsed dc magnetron

  1. Pulsed dc self-sustained magnetron sputtering

    International Nuclear Information System (INIS)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-01-01

    The magnetron sputtering has become one of the commonly used techniques for industrial deposition of thin films and coatings due to its simplicity and reliability. At standard magnetron sputtering conditions (argon pressure of ∼0.5 Pa) inert gas particles (necessary to sustain discharge) are often entrapped in the deposited films. Inert gas contamination can be eliminated during the self-sustained magnetron sputtering (SSS) process, where the presence of the inert gas is not a necessary requirement. Moreover the SSS process that is possible due to the high degree of ionization of the sputtered material also gives a unique condition during the transport of sputtered particles to the substrate. So far it has been shown that the self-sustained mode of magnetron operation can be obtained using dc powering (dc-SSS) only. The main disadvantage of the dc-SSS process is its instability related to random arc formation. In such case the discharge has to be temporarily extinguished to prevent damaging both the magnetron source and power supply. The authors postulate that pulsed powering could protect the SSS process against arcs, similarly to reactive pulsed magnetron deposition processes of insulating thin films. To put this concept into practice, (i) the high enough plasma density has to be achieved and (ii) the type of pulsed powering has to be chosen taking plasma dynamics into account. In this article results of pulsed dc self-sustained magnetron sputtering (pulsed dc-SSS) are presented. The planar magnetron equipped with a 50 mm diameter and 6 mm thick copper target was used during the experiments. The maximum target power was about 11 kW, which corresponded to the target power density of ∼560 W/cm 2 . The magnetron operation was investigated as a function of pulse frequency (20-100 kHz) and pulse duty factor (50%-90%). The discharge (argon) extinction pressure level was determined for these conditions. The plasma emission spectra (400-410 nm range) and deposition

  2. Pulsed-DC selfsputtering of copper

    International Nuclear Information System (INIS)

    Wiatrowski, A; Posadowski, W M; Radzimski, Z J

    2008-01-01

    At standard magnetron sputtering conditions (argon pressure ∼0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (∼550W/cm 2 ). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%

  3. Pulsed-DC selfsputtering of copper

    Science.gov (United States)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-03-01

    At standard magnetron sputtering conditions (argon pressure ~0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (~550W/cm2). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%.

  4. Crystalline silicon films grown by pulsed dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Reinig, Peter; Fenske, Frank; Fuhs, Walther; Selle, Burkhardt [Hahn-Meitner-Institut Berlin, Abt. Silizium-Photovoltaik, Kekulestr. 5, D-12489 Berlin (Germany)

    2002-04-01

    Pulsed dc magnetron sputtering is used as a novel method for the deposition of crystalline silicon films on glass substrates. Hydrogen-free polycrystalline Si-films are deposited with high deposition rates at temperatures of 400-450 C and pulse frequencies f in the range 0-250 kHz. Strong preferential (100) orientation of the crystallites is observed with increasing f. High frequency and similarly high negative substrate bias cause an increase of the Ar content and an enhancement of structural disorder. Measurements of the transient floating potential suggest that the observed structural effects are related to bombardment of the growing film by Ar{sup +} ions of high energy.

  5. Aluminum oxide films deposited in low pressure conditions by reactive pulsed dc magnetron sputtering

    CERN Document Server

    Seino, T

    2002-01-01

    The reactive pulsed dc sputtering technique is widely used for the deposition of oxide films. The operating pressure for sputtering is commonly above 0.13 Pa. In this study, however, aluminum oxide (alumina) films were deposited at operating pressures from 0.06 to 0.4 Pa using a sputtering system equipped with a scanning magnetron cathode and a pulsed dc power supply. The pulsed dc power was found to be useful not only to reduce arcing, but also to sustain the discharge at low pressure. The electrical breakdown field, intrinsic stress, O/Al ratio, refractive index, and surface roughness were investigated. Both a low intrinsic stress and an O/Al ratio around the stoichiometry were required to get the film having a high breakdown field. A low operating pressure of 0.1 Pa was found to provide the necessary stress and O/Al ratio targets. A 50-nm-thick alumina film having a maximum breakdown field of 7.4 MV/cm was obtained.

  6. Experimental investigation of plasma dynamics in dc and short-pulse magnetron discharges

    International Nuclear Information System (INIS)

    Seo, Sang-Hun; In, Jung-Hwan; Chang, Hong-Young

    2006-01-01

    The spatiotemporal evolution of the electron energy distribution function (EEDF) and of plasma parameters such as the electron density, the electron temperature and the plasma and floating potentials has been investigated using spatially and temporally resolved single Langmuir probe measurements in dc and mid-frequency, short-pulse magnetron discharges with a repetition frequency of 10 kHz and a duty cycle of 10%. In the pulsed discharge of the short duty cycle, a peak electron temperature higher than 10 eV was observed near the cathode fall region during the early phase of the pulse-on, which is about three times higher than the steady-state value of the electron temperature in the dc discharge. The temporal evolution of the measured EEDFs showed the initial efficient electron heating during the early phase of the pulse-on and the subsequent relaxation of electron energy by the inelastic collisions and the diffusive loss. The high-energy electrons generated during the pulse-on phase diffused the downstream region toward the grounded substrate, resulting in a bi-Maxwellian EEDF consisting of the background low-energy electrons and the high-energy electrons. The results of the spatially and temporally resolved probe measurements will be presented and the enhanced efficiency of the electron heating in the short-pulse discharge will be explained on the basis of the global model of a pulsed discharge

  7. A study of the transient plasma potential in a pulsed bi-polar dc magnetron discharge

    International Nuclear Information System (INIS)

    Bradley, J W; Karkari, S K; Vetushka, A

    2004-01-01

    The temporal evolution of the plasma potential, V p , in a pulsed dc magnetron plasma has been determined using the emissive probe technique. The discharge was operated in the 'asymmetric bi-polar' mode, in which the discharge voltage changes polarity during part of the pulse cycle. The probe measurements, with a time-resolution of 20 ns or better, were made along a line above the racetrack, normal to the plane of the cathode target, for a fixed frequency (100 kHz), duty cycle (50%), argon pressure (0.74 Pa) and discharge power (583 W). At all the measured positions, V p was found to respond to the large and rapid changes in the cathode voltage, V d , during the different phases of the pulse cycle, with V p always more positive than V d . At a typical substrate position (>80 mm from the target), V p remains a few volts above the most positive surface in the discharge at all times. In the 'on' phase of the pulse, the measurements show a significant axial electric field is generated in the plasma, with the plasma potential dropping by a total of about 30 V over a distance of 70 mm, from the bulk plasma to a position close to the beginning of the cathode fall. This is consistent with measurements made in the dc magnetron. During the stable 'reverse' phase of the discharge, for distances greater than 18 mm from the target, the axial electric field is found to collapse, with V p elevated uniformly to about 3 V above V d . Between the target and this field-free region an ion sheath forms, and the current flowing to the target is still an ion current in this 'reverse' period. During the initial 200 ns of the voltage 'overshoot' phase (between 'on' and 'reverse' phases), V d reached a potential of +290 V; however, close to the target, V p was found to attain a much higher value, namely +378 V. Along the line of measurement, the axial electric field reverses in direction in this phase, and an electron current of up to 9 A flows to the target. The spatial and temporal

  8. Microstructural control of TiC/a-C nanocomposite coatings with pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Pei, Y.T.; Chen, C.Q.; Shaha, K.P.; De Hosson, J.Th.M.; Bradley, J.W.; Voronin, S.A.; Cada, M.

    2008-01-01

    In this paper, we report some striking results on the microstructural control of TiC/a-C nanocomposite coatings with pulsed direct current (DC) magnetron sputtering. The interface morphology and microstructure evolution as a function of pulse frequency and duty cycle were scrutinized using atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy techniques. It is shown that, with increasing pulse frequency, the nanocomposite coatings exhibit evolutions in morphology of the growing interface from rough to smooth and in the microstructure from strongly columnar to fully columnar-free. In addition, the smoothly growing interface favors the formation of a tailor-made multilayered nanocomposite structure. The fundamental mechanisms are analyzed with the assistance of plasma diagnostic experiments. Ion mass/energy spectrometry measurements reveal that, depending on the frequency and duty cycle of DC pulses, pulsing of the magnetrons can control the flux and energy distribution of Ar + ions over a very broad range for concurrent impingement on the growing interface of deposited coatings, in comparison with DC sputtering. The significantly enhanced energy flux density is thought to be responsible for the 'adatom transfer' in interface smoothening and thus the restraint of columnar growth

  9. Ga-doped ZnO films deposited with varying sputtering powers and substrate temperatures by pulsed DC magnetron sputtering and their property improvement potentials

    International Nuclear Information System (INIS)

    Lee, Sanghun; Cheon, Dongkeun; Kim, Won-Jeong; Ham, Moon-Ho; Lee, Woong

    2012-01-01

    Ga-doped ZnO (GZO) transparent conductive oxide (TCO) films were deposited on glass substrates by pulsed DC magnetron sputtering with varying sputtering power and substrate temperature while fixing the Ga concentration in the sputtering target. The application of higher sputtering power by pulsed DC magnetrons sputtering at a moderate temperature of 423 K results in increased carrier concentration and mobility which accompanied improved doping efficiency and crystalline quality. Substrate temperature was found to be the more dominant parameter in controlling the electrical properties and crystallinity, while the sputtering power played synergistic auxiliary roles. Electrical and optical properties of the GZO TCO films fulfilled requirements for transparent electrodes, despite relatively low substrate temperature (423 K) and small thickness (100 nm). In an attempt to improve the electrical properties of the GZO films by hydrogen-treatment, it was observed that the substitutional Ga plays the complex role of carrier generator as donor and carrier suppressor deactivating the oxygen vacancy simultaneously, which would complicate the property improvement by increasing doping efficiency.

  10. Room temperature H2S gas sensing property of indium oxide thin films obtained by pulsed D.C. magnetron sputtering

    International Nuclear Information System (INIS)

    Nisha, R.; Madhusoodanan, K.N.; Karthikeyan, Sreejith; Hill, Arthur E.; Pilkington, Richard D.

    2013-01-01

    Indium oxide thin films were prepared by pulsed dc magnetron sputtering technique with no substrate heating. X-ray diffraction was used to investigate the structural properties and AFM was used to study the surface morphology gas sensing performance were conducted using a static gas sensing system. Room temperature gas sensing performance was conducted in range of 17 to 286 ppm. The sensitivity, response and recovery time of the sensor was also determined. (author)

  11. High frequency pulse anodising of magnetron sputtered Al–Zr and Al–Ti Coatings

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Bordo, Kirill; Engberg, Sara

    2016-01-01

    High frequency pulse anodising of Al–Zr and Al–Ti coatings is studied as a surface finishing technique and compared to conventional decorative DC anodising. The Al–Zr and Al–Ti coatings were deposited using DC magnetron sputtering and were heat treated after deposition to generate a multiphase mi...

  12. Bonding structure and morphology of chromium oxide films grown by pulsed-DC reactive magnetron sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gago, R., E-mail: rgago@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Vinnichenko, M. [Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, D-01277 Dresden (Germany); Hübner, R. [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden (Germany); Redondo-Cubero, A. [Departamento de Física Aplicada and Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain)

    2016-07-05

    Chromium oxide (CrO{sub x}) thin films were grown by pulsed-DC reactive magnetron sputter deposition in an Ar/O{sub 2} discharge as a function of the O{sub 2} fraction in the gas mixture (ƒ) and for substrate temperatures, T{sub s}, up to 450 °C. The samples were analysed by Rutherford backscattering spectrometry (RBS), spectroscopic ellipsometry (SE), atomic force microscopy (AFM), scanning (SEM) and transmission (TEM) electron microscopy, X-ray diffraction (XRD), and X-ray absorption near-edge structure (XANES). On unheated substrates, by increasing ƒ the growth rate is higher and the O/Cr ratio (x) rises from ∼2 up to ∼2.5. Inversely, by increasing T{sub s} the atomic incorporation rate drops and x falls to ∼1.8. XRD shows that samples grown on unheated substrates are amorphous and that nanocrystalline Cr{sub 2}O{sub 3} (x = 1.5) is formed by increasing T{sub s}. In amorphous CrO{sub x}, XANES reveals the presence of multiple Cr environments that indicate the growth of mixed-valence oxides, with progressive promotion of hexavalent states with ƒ. XANES data also confirms the formation of single-phase nanocrystalline Cr{sub 2}O{sub 3} at elevated T{sub s}. These structural changes also reflect on the optical and morphological properties of the films. - Highlights: • XANES of CrO{sub x} thin films grown by pulsed-DC reactive magnetron sputtering. • Identification of mixed-valence amorphous CrO{sub x} oxides on unheated substrates. • Promotion of amorphous chromic acid (Cr{sup VI}) by increasing O{sub 2} partial pressure. • Production of single-phase Cr{sub 2}O{sub 3} films by increasing substrate temperature. • Correlation of bonding structure with morphological and optical properties.

  13. The Pulsed Cylindrical Magnetron for Deposition

    Science.gov (United States)

    Korenev, Sergey

    2012-10-01

    The magnetron sputtering deposition of films and coatings broadly uses in microelectronics, material science, environmental applications and etc. The rate of target evaporation and time for deposition of films and coatings depends on magnetic field. These parameters link with efficiency of gas molecules ionization by electrons. The cylindrical magnetrons use for deposition of films and coatings on inside of pipes for different protective films and coatings in oil, chemical, environmental applications. The classical forming of magnetic field by permanent magnets or coils for big and long cylindrical magnetrons is complicated. The new concept of pulsed cylindrical magnetron for high rate deposition of films and coating for big and long pipes is presented in this paper. The proposed cylindrical magnetron has azimuthally pulsed high magnetic field, which allows forming the high ionized plasma and receiving high rate of evaporation material of target (central electrode). The structure of proposed pulsed cylindrical magnetron sputtering system is given. The main requirements to deposition system are presented. The preliminary data for forming of plasma and deposition of Ta films and coatings on the metal pipers are discussed. The comparison of classical and proposed cylindrical magnetrons is given. The analysis of potential applications is considered.

  14. Domino Platform: PVD Coaters for Arc Evaporation and High Current Pulsed Magnetron Sputtering

    International Nuclear Information System (INIS)

    Vetter, J; Müller, J; Erkens, G

    2012-01-01

    AlTiN and CrN coatings were deposited in hybrid DOMINO platforms by magnetron sputtering (DC-MS, DC-MS+HCP-MS, HCP-MS) and vacuum arc evaporation. The ion cleaning was done by the AEGD process. The coating rates and the energy efficiency of both deposition processes were compared. The roughness effects of the different coating types were discussed. Preliminary results of the change of pulse characteristics during simultaneously running of HCP-MS plus vacuum arc evaporation are shown.

  15. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)

    2015-05-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films.

  16. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lisco, F.; Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M.

    2015-01-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films

  17. Highly -oriented growth of polycrystalline silicon films on glass by pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Reinig, P.; Selle, B.; Fenske, F.; Fuhs, W.; Alex, V.; Birkholz, M.

    2002-01-01

    Nominally undoped polycrystalline silicon (poly-Si) thin films were deposited on glass at 450 deg. C at high deposition rate (>100 nm/min) by pulsed dc magnetron sputtering. The pulse frequency was found to have a significant influence on the preferred grain orientation. The x-ray diffraction pattern exhibits a strong enhancement of the (400) reflex with increasing pulse frequency. The quantitative evaluation reveals that over 90% of the grains are oriented. The observed change in preferred grain orientation in poly-Si films at low temperatures is associated with concurrent ion bombardment of the growing film

  18. Electron beam induced coloration and luminescence in layered structure of WO3 thin films grown by pulsed dc magnetron sputtering

    International Nuclear Information System (INIS)

    Karuppasamy, A.; Subrahmanyam, A.

    2007-01-01

    Tungsten oxide thin films have been deposited by pulsed dc magnetron sputtering of tungsten in argon and oxygen atmosphere. The as-deposited WO 3 film is amorphous, highly transparent, and shows a layered structure along the edges. In addition, the optical properties of the as-deposited film show a steplike behavior of extinction coefficient. However, the electron beam irradiation (3.0 keV) of the as-deposited films results in crystallization, coloration (deep blue), and luminescence (intense red emission). The above changes in physical properties are attributed to the extraction of oxygen atoms from the sample and the structural modifications induced by electron bombardment. The present method of coloration and luminescence has a potential for fabricating high-density optical data storage device

  19. Pulsed Power Generators For Two-section Lia Relativistic Magnetron Driver

    CERN Document Server

    Agafonov, A V; Pevchev, V P

    2004-01-01

    Two prototypes of pulsed power generators for a two-sectional LIA - specialized driver of a relativistic magnetron were constructed and tested. The driver for the double-sided powering of a relativistic magnetron consists of two identical sets of induction modules (two sections of LIA) with inner electrodes - vacuum adders connected to both sides of a coaxial magnetron. It provides the symmetric power flowing in a magnetron and a possibility of localising of the electron flow in magnetron interaction region. The first generator designed for a small-scale laboratory installation provides the output pulses of 100 ns in duration with voltage amplitude of 50 kV at repetition rate of 1 pps. The construction of the generator is based on the application of experimental capacitor banks designed as a pulse forming line with the next parameters: charging voltage - 80 kV, impedance - 1,7 Ohm, pulse duration - 80 ns at a matched load. The second generator was designed for 1 MV integrated LIA - magnetron system. It cons...

  20. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films.

  1. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lisco, F.; Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M.

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films

  2. Preparation of Ga-doped ZnO films by pulsed dc magnetron sputtering with cylindrical rotating target for thin film solar cell applications

    International Nuclear Information System (INIS)

    Shin, Beom-Ki; Lee, Tae-Il; Park, Ji-Hyeon; Park, Kang-Il; Ahn, Kyung-Jun; Park, Sung-Kee; Lee, Woong; Myoung, Jae-Min

    2011-01-01

    Applicability of Ga-doped ZnO (GZO) films for thin film solar cells (TFSCs) was investigated by preparing GZO films via pulsed dc magnetron sputtering (PDMS) with rotating target. The GZO films showed improved crystallinity and increasing degree of Ga doping with increasing thickness to a limit of 1000 nm. The films also fulfilled requirements for the transparent electrodes of TFSCs in terms of electrical and optical properties. Moreover, the films exhibited good texturing potential based on etching studies with diluted HCl, which yielded an improved light trapping capability without significant degradation in electrical propreties. It is therefore suggested that the surface-textured GZO films prepared via PDMS and etching are promising candidates for indium-free transparent electrodes for TFSCs.

  3. Preparation of Ga-doped ZnO films by pulsed dc magnetron sputtering with cylindrical rotating target for thin film solar cell applications

    Science.gov (United States)

    Shin, Beom-Ki; Lee, Tae-Il; Park, Ji-Hyeon; Park, Kang-Il; Ahn, Kyung-Jun; Park, Sung-Kee; Lee, Woong; Myoung, Jae-Min

    2011-11-01

    Applicability of Ga-doped ZnO (GZO) films for thin film solar cells (TFSCs) was investigated by preparing GZO films via pulsed dc magnetron sputtering (PDMS) with rotating target. The GZO films showed improved crystallinity and increasing degree of Ga doping with increasing thickness to a limit of 1000 nm. The films also fulfilled requirements for the transparent electrodes of TFSCs in terms of electrical and optical properties. Moreover, the films exhibited good texturing potential based on etching studies with diluted HCl, which yielded an improved light trapping capability without significant degradation in electrical propreties. It is therefore suggested that the surface-textured GZO films prepared via PDMS and etching are promising candidates for indium-free transparent electrodes for TFSCs.

  4. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  5. Recent progress in thin film processing by magnetron sputtering with plasma diagnostics

    International Nuclear Information System (INIS)

    Han, Jeon G

    2009-01-01

    The precise control of the structure and related properties becomes crucial for sophisticated applications of thin films deposited by magnetron sputtering in emerging industries including the flat panel display, digital electronics and nano- and bio-industries. The film structure is closely related to the total energy delivered to the substrate surface for nucleation and growth during all kinds of thin film processes, including magnetron sputtering. Therefore, the energy delivered to the surface for nucleation and growth during magnetron sputtering should be measured and analysed by integrated diagnostics of the plasma parameters which are closely associated with the process parameters and other external process conditions. This paper reviews the background of thin film nucleation and growth, the status of magnetron sputtering technology and the progress of plasma diagnostics for plasma processing. The evolution of the microstructure during magnetron sputtering is then discussed with respect to the change in the process variables in terms of the plasma parameters along with empirical data of the integrated plasma diagnostics for various magnetron sputtering conditions with conventional dc, pulsed dc and high power pulsed dc sputtering modes. Among the major energy terms to be discussed are the temperature change in the top surface region and the energies of ions and neutral species. (topical review)

  6. Study of sterilization-treatment in pure and N- doped carbon thin films synthesized by inductively coupled plasma assisted pulsed-DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Javid, Amjed [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Textile Processing, National Textile University, Faisalabad 37610 (Pakistan); Kumar, Manish, E-mail: manishk@skku.edu [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Han, Jeon Geon, E-mail: hanjg@skku.edu [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2017-01-15

    Highlights: • Pure and N-doped nanocrystallie carbon films are synthesized by ICP assisted pulsed DC plasma process. • ICP power induces the increase in average graphitic crystallite size from 4.86 nm to 6.42 nm. • Beneficial role of ICP source assistance to achieve high sputtering throughput (deposition rate ∼55 nm/min). • Post-sterilization electron-transport study shows N-doped carbon films having promising stability. - Abstract: Electrically-conductive nanocrystalline carbon films, having non-toxic and non-immunogenic characteristics, are promising candidates for reusable medical devices. Here, the pure and N- doped nanocrystalline carbon films are deposited by the assistance of inductively coupled plasma (ICP) in an unbalanced facing target pulsed-DC magnetron sputtering process. Through the optical emission spectroscopy study, the role of ICP assistance and N-doping on the reactive components/radicals during the synthesis is presented. The N-doping enhances the three fold bonding configurations by increasing the ionization and energies of the plasma species. Whereas, the ICP addition increases the plasma density to control the deposition rate and film structure. As a result, sputtering-throughput (deposition rate: 31–55 nm/min), electrical resistivity (4–72 Ωcm) and water contact angle (45.12°–54°) are significantly tailored. Electric transport study across the surface microchannel confirms the superiority of N-doped carbon films for sterilization stability over the undoped carbon films.

  7. A study of the plasma electronegativity in an argon-oxygen pulsed-dc sputter magnetron

    International Nuclear Information System (INIS)

    You, S D; Dodd, R; Edwards, A; Bradley, J W

    2010-01-01

    Using Langmuir probe-assisted laser photodetachment, the temporal evolution of the O - density was determined in the bulk plasma of a unipolar pulsed-dc magnetron. The source was operated in reactive mode, at a fixed nominal on-time power of 100 W, sputtering Ti in argon-oxygen atmospheres at 1.3 Pa pressure, but over a variation of duty cycles from 5% to 50% and oxygen partial pressures of 10% and 50% of the total pressure. In the plasma on-time, for all duty cycles the negative ion density (n - ) rises marginally reaching values typically less than 2 x 10 15 m -3 with negative ion-to-electron density ratios, α - falls by about 20-30% as fast O - species created at the cathode exit the system. This is followed by a rapid rise in n - to values at least 2 or 3 times that in the on-time. The rate of rise of n - and its maximum value both increase with decreasing duty cycle. In the off-time, the electron density falls rapidly (initial decay rates of several tens of μs), and therefore the afterglow plasma becomes highly electronegative, with α reaching 4.6 and 14.4 for 10% and 50% oxygen partial pressure, respectively. The rapid rise in n - in the afterglow (in which the electron temperature falls from about 5 to 0.5 eV) is attributed to the dissociative attachment of highly excited oxygen metastables, which themselves are created in the pulse on-time. At the lowest duty of 5%, the long-term O - decay times are several hundred μs. Langmuir probe characteristics show the clear signature that negative ions dominate over the electrons in the off-time. From the ion and electron saturation current ratios, α has been estimated in some chosen cases and found to agree within a factor between 2 and 10 with those obtained more directly from the photodetachment method.

  8. DEVICE FOR INVESTIGATION OF MAGNETRON AND PULSED-LASER PLASMA

    Directory of Open Access Journals (Sweden)

    A. P. Burmakov

    2012-01-01

    Full Text Available Various modifications of complex pulsed laser and magnetron deposition thin-film structures unit are presented. They include joint and separate variants of layer deposition. Unit realizes the plasma parameters control and enhances the possibility of laser-plasma and magnetron methods of coatings deposition.

  9. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance.

    Science.gov (United States)

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K; Daniels, Stephen; Hopkins, M B

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  10. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie [Dublin City University, Glasnevin, Dublin 9 (Ireland); Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Gahan, David, E-mail: david.gahan@impedans.com; Scullin, Paul; Doyle, James; Lennon, Jj; Hopkins, M. B. [Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Vijayaraghavan, Rajani K.; Daniels, Stephen [Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2016-04-15

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  11. Solid-state pulse modulator for a 1.7-MW X-band magnetron

    International Nuclear Information System (INIS)

    Choi, Jaegu; Shin, Yongmoon; Choi, Youngwook; Kim, Kwanho

    2014-01-01

    Medical linear accelerators (LINAC) for cancer treatment require pulse modulators to generate high-power pulses with a fast rise time, flat top and short duration to drive high-power magnetrons. Solid-state pulse modulators (SSPM) for medical LINACs that use high power semiconductor switches with high repetition rates, high stability and long lifetimes have been introduced to replace conventional linear-type pulse generators that use gaseous discharge switches. In this paper, the performance of a developed SSPM, which mainly consists of a capacitor charger, an insulated-gate bipolar transistor (IGBT) - capacitor stack and a pulse transformer, is evaluated with a dummy load and an X-band magnetron load. A theoretical analysis of the pulse transformer, which is a critical element of the SSPM, is carried out. The output pulse has a fast rise time and low droop, such that the modulator can drive the X-band magnetron.

  12. Two-dimensional spatial survey of the plasma potential and electric field in a pulsed bipolar magnetron discharge

    International Nuclear Information System (INIS)

    Vetushka, A.; Karkari, S.K.; Bradley, J.W.

    2004-01-01

    Emissive and Langmuir probe techniques have been used to obtain two-dimensional (2D) spatial maps of the plasma potential V p , electric field E, and ion trajectories in a pulsed bipolar magnetron discharge. The magnetron was pulsed at a frequency of 100 kHz, with a 50% duty cycle and operated at an argon pressure of 0.74 Pa. The pulse wave form was characterized by three distinct phases: the 'overshoot', 'reverse', and 'on' phases. In the 'on' phase of the pulse, when the cathode voltage is driven to -670 V, the 2D spatial distribution of V p has a similar form to that in dc magnetron, with significant axial and radial electric fields in the bulk plasma, accelerating ions to the sheath edge above the cathode racetrack region. During the 'overshoot' phase (duration 200 ns), V p is raised to values greater than +330 V, more than 100 V above the cathode potential, with E pointing away from the target. In the 'reverse' phase V p has a value of +45 V at all measured positions, 2 V more positive than the target potential. In this phase there is no electric field present in the plasma. In the bulk of the plasma, the results from Langmuir probe and the emissive probe are in good agreement, however, in one particular region of the plasma outside the radius of the cathode, the emissive probe measurements are consistently more positive (up to 45 V in the 'on' time). This discrepancy is discussed in terms of the different frequency response of the probes and their perturbation of the plasma. A simple circuit model of the plasma-probe system has been proposed to explain our results. A brief discussion of the effect of the changing plasma potential distribution on the operation of the magnetron is given

  13. High power pulsed magnetron sputtering of transparent conducting oxides

    International Nuclear Information System (INIS)

    Sittinger, V.; Ruske, F.; Werner, W.; Jacobs, C.; Szyszka, B.; Christie, D.J.

    2008-01-01

    High power pulsed magnetron sputtering (HPPMS) has been used in order to study the deposition of transparent conducting oxides. We summarize the studies carried out on different materials (indium tin oxide-ITO and aluminium-doped zinc oxide-AZO) using rather different technological approaches, namely sputtering of ceramic targets and reactive sputtering. For the deposition of AZO reactive HPPMS for metallic targets has been used. A feedback control loop has been implemented in order to stabilize the discharge at any given setpoint on the hysteresis curve. The hysteresis was also found to have a rather untypical form. Reactive HPPMS was found to be a promising tool for obtaining high quality films of low total thickness. In the case of ITO deposition a ceramic target has been used. The process has been characterized in terms of its plasma emission and increasing indium ionization was found for higher peak power densities. The properties of the deposited films were compared to DC sputtered films. While for DC sputtering the choice of oxygen addition and shieldings is crucial for determining surface morphology and resistivity, in HPPMS sputtering peak power density has been found to be a good parameter for influencing the crystal structure. The morphologies obtained differ strongly from those seen in DC sputtering. At high power densities films with low surface roughness and excellent resistivity could be deposited without the use of shieldings

  14. Life test on indigenous s-band pulsed magnetron

    International Nuclear Information System (INIS)

    Wanmode, Y.D.; Shrivastava, P.; Hannurkar, P.R.

    1999-01-01

    A 2 MW S-band pulsed magnetron has been developed under joint collaboration between CAT and CEERI. In this development effort several lab prototypes were evaluated on 2 MW microwave test facility developed at CAT. One magnetron is subjected to life test. The present paper describes the setup and procedures used for life test. Various observations and corrections made during the life tests are also described. Results of the tests are discussed. (author)

  15. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Ohtani, Yuusuke; Miyata, Toshihiro; Kuboi, Takeshi

    2007-01-01

    A newly developed Al-doped ZnO (AZO) thin-film magnetron-sputtering deposition technique that decreases resistivity, improves resistivity distribution, and produces high-rate depositions has been demonstrated by dc magnetron-sputtering depositions that incorporate rf power (dc+rf-MS), either with or without the introduction of H 2 gas into the deposition chamber. The dc+rf-MS preparations were carried out in a pure Ar or an Ar+H 2 (0%-2%) gas atmosphere at a pressure of 0.4 Pa by adding a rf component (13.56 MHz) to a constant dc power of 80 W. The deposition rate in a dc+rf-MS deposition incorporating a rf power of 150 W was approximately 62 nm/min, an increase from the approximately 35 nm/min observed in dc magnetron sputtering with a dc power of 80 W. A resistivity as low as 3x10 -4 Ω cm and an improved resistivity distribution could be obtained in AZO thin films deposited on substrates at a low temperature of 150 deg. C by dc+rf-MS with the introduction of hydrogen gas with a content of 1.5%. This article describes the effects of adding a rf power component (i.e., dc+rf-MS deposition) as well as introducing H 2 gas into dc magnetron-sputtering preparations of transparent conducting AZO thin films

  16. Reactive dual magnetron sputtering for large area application

    International Nuclear Information System (INIS)

    Struempfel, J.

    2002-01-01

    Production lines for large area coating demand high productivity of reactive magnetron sputtering processes. Increased dynamic deposition rates for oxides and nitrides were already obtained by using of highly powered magnetrons in combination with advanced sputter techniques. However, besides high deposition rates the uniformity of such coatings has to be carefully considered. First the basics of reactive sputtering processes and dual magnetron sputtering are summarized. Different methods for process stabilization and control are commonly used for reactive sputtering. The Plasma Emission Monitor (PE M) offers the prerequisite for fast acting process control derived from the in-situ intensity measurements of a spectral line of the sputtered target material. Combined by multiple Plasma Emission Monitor control loops segmented gas manifolds are able to provide excellent thin film uniformity at high deposition rates. The Dual Magnetron allows a broad range of processing by different power supply modes. Medium frequency, DC and pulsed DC power supplies can be used for high quality layers. Whereas the large area coating of highly isolating layers like TiO 2 or SiO 2 is dominated by MF sputtering best results for coating with transparent conductive oxides are obtained by dual DC powering of the dual magnetron arrangement. (Author)

  17. Superhydrophobic photocatalytic PTFE – Titania coatings deposited by reactive pDC magnetron sputtering from a blended powder target

    Energy Technology Data Exchange (ETDEWEB)

    Ratova, Marina, E-mail: marina_ratova@hotmail.com; Kelly, Peter J.; West, Glen T.

    2017-04-01

    The production of photocatalytic coatings with superhydrophobic properties, as opposed to the conventional hydrophilic properties, is desirable for the prevention of adhesion of contaminants to photocatalytic surfaces with subsequent deterioration of photocatalytic properties. In this work polytetrafluoroethylene (PTFE) – TiO{sub 2} composite thin films were deposited using a novel method of reactive pulsed direct current (pDC) magnetron sputtering of a blended PTFE – titanium oxide powder target. The surface characteristics and photocatalytic properties of the deposited composite coatings were studied. The as-deposited coatings were annealed at 523 K in air and analysed with Raman spectroscopy, optical profilometry and scanning electron microscopy. Hydrophobicity was assessed though measurements of water contact angles, and photocatalytic properties were studied via methylene blue dye degradation under UV irradiation. It was found that variations of gas flow and, hence, process pressures allowed deposition of samples combining superhydrophobicity with stable photocatalytic efficiency under UV light irradiation. Reversible wettability behaviour was observed with the alternation of light-dark cycles. - Highlights: • PTFE-TiO{sub 2} coatings were deposited by pDC reactive magnetron sputtering. • Blended powder target was used for coatings deposition. • Deposited coatings combined superhydrophobic and photocatalytic properties. • Under UV irradiation coatings exhibited reversible wettability.

  18. Discharge Characteristic of VHF-DC Superimposed Magnetron Sputtering System

    Science.gov (United States)

    Toyoda, Hirotaka; Fukuoka, Yushi; Fukui, Takashi; Takada, Noriharu; Sasai, Kensuke

    2014-10-01

    Magnetron plasmas are one of the most important tools for sputter deposition of thin films. However, energetic particles from the sputtered target such as backscattered rare gas atoms or oxygen negative ions from oxide targets sometimes induce physical and chemical damages as well as surface roughening to the deposited film surface during the sputtering processes. To suppress kinetic energy of such particles, superposition of RF or VHF power to the DC power has been investigated. In this study, influence of the VHF power superposition on the DC target voltage, which is important factor to determine kinetic energy of high energy particles, is investigated. In the study, 40 MHz VHF power was superimposed to an ITO target and decrease in the target DC voltage was measured as well as deposited film deposition properties such as deposition rate or electrical conductivity. From systematic measurement of the target voltage, it was revealed that the target voltage can be determined by a very simple parameter, i.e., a ratio of VHF power to the total input power (DC and VHF powers) in spite of the DC discharge current. Part of this work was supported by ASTEP, JST.

  19. CrN thin films prepared by reactive DC magnetron sputtering for symmetric supercapacitors

    KAUST Repository

    Wei, Binbin; Liang, Hanfeng; Zhang, Dongfang; Wu, Zhengtao; Qi, Zhengbing; Wang, Zhoucheng

    2016-01-01

    stability are promising candidates as supercapacitor electrode materials. In this work, we report the fabrication of CrN thin films using reactive DC magnetron sputtering and further their applications for symmetric supercapacitors for the first time. The Cr

  20. Heteroepitaxial Ge-on-Si by DC magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Martin Steglich

    2013-07-01

    Full Text Available The growth of Ge on Si(100 by DC Magnetron Sputtering at various temperatures is studied by Spectroscopic Ellipsometry and Transmission Electron Microscopy. Smooth heteroepitaxial Ge films are prepared at relatively low temperatures of 380°C. Typical Stransky-Krastanov growth is observed at 410°C. At lower temperatures (320°C, films are essentially amorphous with isolated nanocrystallites at the Si-Ge interface. A minor oxygen contamination at the interface, developing after ex-situ oxide removal, is not seen to hinder epitaxy. Compensation of dislocation-induced acceptors in Ge by sputtering from n-doped targets is proposed.

  1. Comparative study of nanocomposites prepared by pulsed and dc sputtering combined with plasma polymerization suitable for photovoltaic device applications

    International Nuclear Information System (INIS)

    Hussain, Amreen A.; Pal, Arup R.; Kar, Rajib; Bailung, Heremba; Chutia, Joyanti; Patil, Dinkar S.

    2014-01-01

    Plasma processing, a single step method for production of large area composite films, is employed to deposit plasma polymerized aniline-Titanium dioxide (PPani-TiO 2 ) nanocomposite thin films. The deposition of PPani-TiO 2 nanocomposite films are made using reactive magnetron sputtering and plasma polymerization combined process. This study focuses on the direct comparison between continuous and pulsed dc magnetron sputtering techniques of titanium in combination with rf plasma polymerization of aniline. The deposited PPani-TiO 2 nanocomposite films are characterized and discussed in terms of structural, morphological and optical properties. A self powered hybrid photodetector has been developed by plasma based process. The proposed method provides a new route where the self-assembly of molecules, that is, the spontaneous association of atomic or molecular building blocks under plasma environment, emerge as a successful strategy to form well-defined structural and morphological units of nanometer dimensions. - Highlights: • PPani-TiO 2 nanocomposite by pulsed and dc sputtering with rf plasma polymerization. • In-situ and Ex-situ H 2 SO 4 doping in PPani-TiO 2 nanocomposite. • PPani-TiO 2 nanocomposite based self-powered-hybrid photodetector

  2. A novel DC Magnetron sputtering facility for space research and synchrotron radiation optics

    DEFF Research Database (Denmark)

    Hussain, A.M.; Christensen, Finn Erland; Pareschi, G.

    1998-01-01

    A new DC magnetron sputtering facility has been build up at the Danish Space Research Institute (DSRI), specially designed to enable uniform coatings of large area curved optics, such as Wolter-I mirror optics used in space telescopes and curved optics used in synchrotron radiation facilities...

  3. Investigation of photocatalytic activity of titanium dioxide deposited on metallic substrates by DC magnetron sputtering

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Canulescu, Stela; Dirscherl, Kai

    2013-01-01

    The photocatalytic properties of titanium dioxide (TiO2) coating in the anatase crystalline structure deposited on aluminium AA1050 alloy and stainless steel S316L substrates were investigated. The coating was prepared by DC magnetron sputtering. The microstructure and surface morphology of the c......The photocatalytic properties of titanium dioxide (TiO2) coating in the anatase crystalline structure deposited on aluminium AA1050 alloy and stainless steel S316L substrates were investigated. The coating was prepared by DC magnetron sputtering. The microstructure and surface morphology...... sweep voltammetry, impedance measurements. The microstructure and surface morphology of the coating were similar irrespective of the nature of the substrate, while the photocatalytic behaviour was found to vary depending on the substrate type. In general the TiO2 coating on stainless steel was shown...

  4. Dependence of plasma characteristics on dc magnetron sputter parameters

    International Nuclear Information System (INIS)

    Wu, S.Z.

    2005-01-01

    Plasma discharge characteristics of a dc magnetron system were measured by a single Langmuir probe at the center axis of the dual-side process chamber. Plasma potential, floating potential, electron and ion densities, and electron temperature were extracted with varying dc power and gas pressure during sputter deposition of a metal target; strong correlations were shown between these plasma parameters and the sputter parameters. The electron density was controlled mostly by secondary electron generation in constant power mode, while plasma potential reflects the confinement space variation due to change of discharge voltage. When discharge pressure was varied, plasma density increases with the increased amount of free stock molecules, while electron temperature inversely decreased, due to energy-loss collision events. In low-pressure discharges, the electron energy distribution function measurements show more distinctive bi-Maxwellian distribution, with the fast electron temperature gradually decreases with increased gas pressure

  5. Comparative study of nanocomposites prepared by pulsed and dc sputtering combined with plasma polymerization suitable for photovoltaic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Amreen A. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Pal, Arup R., E-mail: arpal@iasst.gov.in [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Kar, Rajib [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India); Bailung, Heremba; Chutia, Joyanti [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Patil, Dinkar S. [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India)

    2014-12-15

    Plasma processing, a single step method for production of large area composite films, is employed to deposit plasma polymerized aniline-Titanium dioxide (PPani-TiO{sub 2}) nanocomposite thin films. The deposition of PPani-TiO{sub 2} nanocomposite films are made using reactive magnetron sputtering and plasma polymerization combined process. This study focuses on the direct comparison between continuous and pulsed dc magnetron sputtering techniques of titanium in combination with rf plasma polymerization of aniline. The deposited PPani-TiO{sub 2} nanocomposite films are characterized and discussed in terms of structural, morphological and optical properties. A self powered hybrid photodetector has been developed by plasma based process. The proposed method provides a new route where the self-assembly of molecules, that is, the spontaneous association of atomic or molecular building blocks under plasma environment, emerge as a successful strategy to form well-defined structural and morphological units of nanometer dimensions. - Highlights: • PPani-TiO{sub 2} nanocomposite by pulsed and dc sputtering with rf plasma polymerization. • In-situ and Ex-situ H{sub 2}SO{sub 4} doping in PPani-TiO{sub 2} nanocomposite. • PPani-TiO{sub 2} nanocomposite based self-powered-hybrid photodetector.

  6. Rotating dust ring in an RF discharge coupled with a dc-magnetron sputter source. Experiment and simulation

    International Nuclear Information System (INIS)

    Matyash, K; Froehlich, M; Kersten, H; Thieme, G; Schneider, R; Hannemann, M; Hippler, R

    2004-01-01

    During an experiment involving coating of dust grains trapped in an RF discharge using a sputtering dc-magnetron source, a rotating dust ring was observed and investigated. After the magnetron was switched on, the dust cloud levitating above the RF electrode formed a ring rotating as a rigid body. Langmuir probe diagnostics were used for the measurement of plasma density and potential. It was discovered that the coupling of the dc-magnetron source to the RF discharge causes steep radial gradients in electron density and plasma potential. The rotation of the dust ring is attributed to the azimuthal component of the ion drag force, which appears due to the azimuthal drift of the ions caused by crossed radial electric and axial magnetic fields. In order to get more insight into the mechanism of dust ring rotation, a Particle-in-Cell simulation of a rotating dust cloud was performed. The results of the experiment and simulation are presented and discussed

  7. Rotating dust ring in an RF discharge coupled with a dc-magnetron sputter source. Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Matyash, K [Institut fuer Niedertemperaturplasmaphysik Greifswald, Fr.-L.-Jahn-Strasse 19, 17489 Greifswald (Germany); Froehlich, M [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, Domstrasse 10a, 17487 Greifswald (Germany); Kersten, H [Institut fuer Niedertemperaturplasmaphysik Greifswald, Fr.-L.-Jahn-Strasse 19, 17489 Greifswald (Germany); Thieme, G [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, Domstrasse 10a, 17487 Greifswald (Germany); Schneider, R [Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, 17489 Greifswald (Germany); Hannemann, M [Institut fuer Niedertemperaturplasmaphysik Greifswald, Fr.-L.-Jahn-Strasse 19, 17489 Greifswald (Germany); Hippler, R [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, Domstrasse 10a, 17487 Greifswald (Germany)

    2004-10-07

    During an experiment involving coating of dust grains trapped in an RF discharge using a sputtering dc-magnetron source, a rotating dust ring was observed and investigated. After the magnetron was switched on, the dust cloud levitating above the RF electrode formed a ring rotating as a rigid body. Langmuir probe diagnostics were used for the measurement of plasma density and potential. It was discovered that the coupling of the dc-magnetron source to the RF discharge causes steep radial gradients in electron density and plasma potential. The rotation of the dust ring is attributed to the azimuthal component of the ion drag force, which appears due to the azimuthal drift of the ions caused by crossed radial electric and axial magnetic fields. In order to get more insight into the mechanism of dust ring rotation, a Particle-in-Cell simulation of a rotating dust cloud was performed. The results of the experiment and simulation are presented and discussed.

  8. Resonance hairpin and Langmuir probe-assisted laser photodetachment measurements of the negative ion density in a pulsed dc magnetron discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, James W.; Dodd, Robert; You, S.-D.; Sirse, Nishant; Karkari, Shantanu Kumar [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool (United Kingdom); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland and Institute for Plasma Research, Bhat Gandhinagar, Gujarat (India)

    2011-05-15

    The time-resolved negative oxygen ion density n{sub -} close to the center line in a reactive pulsed dc magnetron discharge (10 kHz and 50% duty cycle) has been determined for the first time using a combination of laser photodetachment and resonance hairpin probing. The discharge was operated at a power of 50 W in 70% argon and 30% oxygen gas mixtures at 1.3 Pa pressure. The results show that the O{sup -} density remains pretty constant during the driven phase of the discharge at values typically below 5x10{sup 14} m{sup -3}; however, in the off-time, the O{sup -} density grows reaching values several times those in the on-time. This leads to the negative ion fraction (or degree of electronegativity) {alpha}=n{sub -}/n{sub e} being higher in the off phase (maximum value {alpha}{approx}1) than in the on phase ({alpha}=0.05-0.3). The authors also see higher values of {alpha} at positions close to the magnetic null than in the more magnetized region of the plasma. This fractional increase in negative ion density during the off-phase is attributed to the enhanced dissociative electron attachment of highly excited oxygen molecules in the cooling plasma. The results show that close to the magnetic null the photodetached electron density decays quickly after the laser pulse, followed by a slow decay over a few microseconds governed by the negative ion temperature. However, in the magnetized regions of the plasma, this decay is more gradual. This is attributed to the different cross-field transport rates for electrons in these two regions. The resonance hairpin probe measurements of the photoelectron densities are compared directly to photoelectron currents obtained using a conventional Langmuir probe. There is good agreement in the general trends, particularly in the off-time.

  9. DC Magnetron sputtering of Y-Ba-Cu-O thin films

    International Nuclear Information System (INIS)

    Larsson, Gunnar.

    1990-01-01

    I have been studying dc magnetron sputtering of thin film YBa 2 Cu 3 O 6+x , one of the recently discovered high- temperatures superconductors. In the introduction a brief review of the subjects sputtering and superconductivity is given. Since partial pressure measurements, especially for oxygen, have been important in the work I include a short description of the operating principles of mass spectroscopy. Experimental results in addition to what is given in the papers concerning plasma are presented in an appendix at the end of the introduction. (au)

  10. Physics and phenomena in pulsed magnetrons: an overview

    International Nuclear Information System (INIS)

    Bradley, J W; Welzel, T

    2009-01-01

    This paper reviews the contribution made to the observation and understanding of the basic physical processes occurring in an important type of magnetized low-pressure plasma discharge, the pulsed magnetron. In industry, these plasma sources are operated typically in reactive mode where a cathode is sputtered in the presence of both chemically reactive and noble gases typically with the power modulated in the mid-frequency (5-350 kHz) range. In this review, we concentrate mostly, however, on physics-based studies carried out on magnetron systems operated in argon. This simplifies the physical-chemical processes occurring and makes interpretation of the observations somewhat easier. Since their first recorded use in 1993 there have been more than 300 peer-reviewed paper publications concerned with pulsed magnetrons, dealing wholly or in part with fundamental observations and basic studies. The fundamentals of these plasmas and the relationship between the plasma parameters and thin film quality regularly have whole sessions at international conferences devoted to them; however, since many different types of magnetron geometries have been used worldwide with different operating parameters the important results are often difficult to tease out. For example, we find the detailed observations of the plasma parameter (particle density and temperature) evolution from experiment to experiment are at best difficult to compare and at worst contradictory. We review in turn five major areas of studies which are addressed in the literature and try to draw out the major results. These areas are: fast electron generation, bulk plasma heating, short and long-term plasma parameter rise and decay rates, plasma potential modulation and transient phenomena. The influence of these phenomena on the ion energy and ion energy flux at the substrate is discussed. This review, although not exhaustive, will serve as a useful guide for more in-depth investigations using the referenced

  11. Effect of deposition angle on the structure and properties of pulsed-DC magnetron sputtered TiAlN thin films

    International Nuclear Information System (INIS)

    Shetty, A.R.; Karimi, A.; Cantoni, M.

    2011-01-01

    This article reports the comparison of structure and properties of titanium aluminum nitride (TiAlN) films deposited onto Si(100) substrates under normal and oblique angle depositions using pulsed-DC magnetron sputtering. The substrate temperature was set at room temperature, 400 o C and 650 o C, and the bias was kept at 0, - 25, - 50, and - 80 V for both deposition angles. The surface and cross-section of the films were observed by scanning electron microscopy. It was found that as the deposition temperature increases, films deposited under normal incidence exhibit distinct faceted crystallites, whereas oblique angle deposited (OAD) films develop a kind of 'tiles of a roof' or 'stepwise structure', with no facetted crystallites. The OAD films showed an inclined columnar structure, with columns tilting in the direction of the incident flux. As the substrate temperature was increased, the tilting of columns nearly approached the substrate normal. Both hardness and Young's modulus decreases when the flux angle was changed from α = 0 o to 45 o as measured by nanoindentation. This was attributed to the voids formed due to the shadowing effect. The crystallographic properties of these coatings were studied by θ-2θ scan and pole figure X-ray diffraction. Films deposited at α = 0 o showed a mixed (111) and (200) out-of-plane orientation with random in-plane alignment. On the other hand, films deposited at α = 45 o revealed an inclined texture with (111) orientation moving towards the incident flux direction and the (200) orientation approaching the substrate normal, showing substantial in-plane alignment.

  12. Comparative study of total power density at a substrate in pulsed DC magnetron and hollow-cathode plasma jet sputtering systems

    Czech Academy of Sciences Publication Activity Database

    Čada, Martin; Virostko, Petr; Kment, Štěpán; Hubička, Zdeněk

    2009-01-01

    Roč. 6, S1 (2009), S247-S252 ISSN 1612-8850. [International Conference on Plasma Surface Engineering /11./. Garmisch Partenkirchen, 15.09.2008-19.09.2008] R&D Projects: GA AV ČR KAN301370701; GA AV ČR KJB100100707; GA AV ČR KJB100100805; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : calorimeter probe * floating substrate * magnetron * plasma jet * pulsed discharge Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.037, year: 2009

  13. Evaluation of the optoelectronic properties and corrosion behavior of Al2O3-doped ZnO films prepared by dc pulsed magnetron sputtering

    Science.gov (United States)

    Zubizarreta, C.; Berasategui, E. G.; Bayón, R.; Escobar Galindo, R.; Barros, R.; Gaspar, D.; Nunes, D.; Calmeiro, T.; Martins, R.; Fortunato, E.; Barriga, J.

    2014-12-01

    The main requirements for transparent conducting oxide (TCO) films acting as electrodes are a high transmission rate in the visible spectral region and low resistivity. However, in many cases, tolerance to temperature and humidity exposure is also an important requirement to be fulfilled by the TCOs to assure proper operation and durability. Besides improving current encapsulation methods, the corrosion resistance of the developed TCOs must also be enhanced to warrant the performance of optoelectronic devices. In this paper the performance of aluminum-doped zinc oxide (AZO) films deposited by pulsed dc magnetron sputtering has been studied. Structure, optical transmittance/reflectance, electrical properties (resistivity, carrier concentration and mobility) and corrosion resistance of the developed coatings have been analyzed as a function of the doping of the target and the coating thickness. Films grown from a 2.0 wt% Al2O3 target with a thickness of approximately 1 µm showed a very low resistivity of 6.54  ×  10-4 Ωcm and a high optical transmittance in the visible range of 84%. Corrosion studies of the developed samples have shown very low corrosion currents (nanoamperes), very high corrosion resistances (in the order of 107 Ω) and very high electrochemical stability, indicating no tendency for electrochemical corrosion degradation.

  14. Blue Diode Laser Absorption Spectroscopy of Pulsed Magnetron Discharge

    Czech Academy of Sciences Publication Activity Database

    Olejníček, Jiří; Do, H.T.; Hubička, Zdeněk; Hippler, R.; Jastrabík, Lubomír

    2006-01-01

    Roč. 45, 10B (2006), s. 8090-8094 ISSN 0021-4922 R&D Projects: GA AV ČR 1QS100100563; GA ČR GA202/05/2242 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : laser absorption spectroscopy * pulsed magnetron * sputtering parameters Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.222, year: 2006

  15. DC motor operation controlled from a DC/DC power converter in pulse mode with low duty cycle

    OpenAIRE

    Stefanov, Goce; Kukuseva, Maja; Citkuseva Dimitrovska, Biljana

    2016-01-01

    In this paper pulse mode of operation of DC motor controlled by DC/DC power converter is analyzed. DC motor operation with time intervals in which the motor operates without output load is of interest. In this mode it is possible the motor to restore energy. Also, in the paper are represented calculations for the amount of the restored energy in the pulse mode operation of the motor for different duty cycles.

  16. Effect of deposition temperature on the properties of Al-doped ZnO films prepared by pulsed DC magnetron sputtering for transparent electrodes in thin-film solar cells

    Science.gov (United States)

    Kim, Doo-Soo; Park, Ji-Hyeon; Shin, Beom-Ki; Moon, Kyeong-Ju; Son, Myoungwoo; Ham, Moon-Ho; Lee, Woong; Myoung, Jae-Min

    2012-10-01

    A simple but scalable approach to the production of surface-textured Al-doped ZnO(AZO) films for low-cost transparent electrode applications in thin-film solar cells is introduced in this study by combining pulsed dc magnetron sputtering (PDMS) with wet etching in sequence. First, structural, electrical, and optical properties of the AZO films prepared by a PDMS were investigated as functions of deposition temperature to obtain transparent electrode films that can be used as indium-free alternative to ITO electrodes. Increase in the deposition temperature to 230 °C accompanied the improvement in crystalline quality and doping efficiency, which enabled the lowest electrical resistivity of 4.16 × 10-4 Ω cm with the carrier concentration of 1.65 × 1021 cm-3 and Hall mobility of 11.3 cm2/V s. The wet etching of the films in a diluted HCl solution resulted in surface roughening via the formation of crater-like structures without significant degradation in the electrical properties, which is responsible for the enhanced light scattering capability required for anti-reflective electrodes in thin film solar cells.

  17. Time-resolved investigation of an asymmetric bipolar pulsed magnetron deposition discharge: Influence of pressure

    NARCIS (Netherlands)

    Dunger, Th.; Welzel, Th.; Welzel, S.; Richter, F.

    2005-01-01

    A bipolar pulsed magnetron deposition discharge has been studied with pulse frequencies of 100 and 150 kHz, respectively. The discharge was operated in an argon/oxygen mixture at different total pressures with a circular magnesium target as cathode. Time-resolved Langmuir double probe measurements

  18. Effect of a Ga-doped ZnO thin film with a ZTO buffer layer fabricated by using pulsed DC magnetron sputter for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sang-Woo; Lee, Kyung-Ju; Roh, Ji-Hyung; Park, On-Jeon; Kim, Hwan-Sun; Moon, Byung-Moo [Korea University, Seoul (Korea, Republic of); Ji, Min-Woo [Yonsei University, Seoul (Korea, Republic of)

    2014-08-15

    The electrical property of a Ga-doped ZnO(GZO) thin film is well known to be similar that of commercialized fluorine-doped tin oxide(FTO). However GZO is limited for use at high process temperatures for solar cells because of its unstable resistivity at temperatures above 300 .deg. C. A GZO thin film compared to zinc tin oxide(ZTO)-GZO multilayer can be used at high process temperatures. A GZO thin film was deposited on glass by using pulsed DC magnetron sputter. Then, a ZTO buffer layer was deposited on the GZO surface. During the deposition, the working pressure was 5 mTorr (Z-1 glass) and 1 mTorr (Z-2 glass). Dye-sensitized solar cells (DSSCs) were fabricated using Z-1, Z-2 and commercialized FTO glasses. Z-2 showed a conversion efficiency of 4.265%, which was enhanced by 0.399% compared to that of the DSSCs using FTO(3.784%). The conversion efficiency for Z-1 (3.889%) was a little higher than that of FTO. Thus, the ZTO-GZO electrode showed better characteristics than those obtained using the FTO electrode, which can be attributed to the reduced charge recombination and series resistance.

  19. Evaluation of the optoelectronic properties and corrosion behavior of Al2O3-doped ZnO films prepared by dc pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Zubizarreta, C; Berasategui, E G; Bayón, R; Barriga, J; Escobar Galindo, R; Barros, R; Gaspar, D; Nunes, D; Calmeiro, T; Martins, R; Fortunato, E

    2014-01-01

    The main requirements for transparent conducting oxide (TCO) films acting as electrodes are a high transmission rate in the visible spectral region and low resistivity. However, in many cases, tolerance to temperature and humidity exposure is also an important requirement to be fulfilled by the TCOs to assure proper operation and durability. Besides improving current encapsulation methods, the corrosion resistance of the developed TCOs must also be enhanced to warrant the performance of optoelectronic devices. In this paper the performance of aluminum-doped zinc oxide (AZO) films deposited by pulsed dc magnetron sputtering has been studied. Structure, optical transmittance/reflectance, electrical properties (resistivity, carrier concentration and mobility) and corrosion resistance of the developed coatings have been analyzed as a function of the doping of the target and the coating thickness. Films grown from a 2.0 wt% Al 2 O 3 target with a thickness of approximately 1 µm showed a very low resistivity of 6.54  ×  10 –4  Ωcm and a high optical transmittance in the visible range of 84%. Corrosion studies of the developed samples have shown very low corrosion currents (nanoamperes), very high corrosion resistances (in the order of 10 7  Ω) and very high electrochemical stability, indicating no tendency for electrochemical corrosion degradation. (paper)

  20. Effect of interelectrode distance on dc magnetron current-pressure characteristics

    Science.gov (United States)

    Mankelevich, Yu A.; Pal, A. F.; Ryabinkin, A. N.; Serov, A. O.

    2018-01-01

    The current-pressure (I-P) non-monotonic characteristic in the magnetron discharge dc in argon at different interelectrode distances was investigated. The ion spatial distribution was obtained with optical emission spectroscopy and the characteristic dimensions of the discharge structure in near cathode region were determined. It is shown that decreasing the distance between electrodes does not affect the shape and position of the nonmonotonic part of I-P characteristic until this distance become comparable with the dimensions of the ionization region near cathode. The existence of non-monotonic part of I-P characteristic is determined by the processes in the near cathode region and is probably unrelated with the cold electron transfer in the rest of the plasma.

  1. Pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2008-01-01

    This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,

  2. Microstructural variation in titanium oxide thin films deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Pandian, Ramanathaswamy; Natarajan, Gomathi; Kamruddin, M.; Tyagi, A.K.

    2013-01-01

    We report on the microstructural evolution of titanium oxide thin films deposited by reactive DC magnetron sputtering using titanium metal target. By varying the ratio of sputter-gas mixture containing argon, oxygen and nitrogen various phases of titanium oxide, almost pure rutile, rutile-rich and anatase-rich nano-crystalline, were deposited on Si substrates at room temperature. Using high-resolution scanning electron microscopy, X-ray diffraction and micro-Raman techniques the microstructure of the films were revealed. The relationship between the microstructure of the films and the oxygen partial pressure during sputtering is discussed

  3. TOPICAL REVIEW: Physics and phenomena in pulsed magnetrons: an overview

    Science.gov (United States)

    Bradley, J. W.; Welzel, T.

    2009-05-01

    This paper reviews the contribution made to the observation and understanding of the basic physical processes occurring in an important type of magnetized low-pressure plasma discharge, the pulsed magnetron. In industry, these plasma sources are operated typically in reactive mode where a cathode is sputtered in the presence of both chemically reactive and noble gases typically with the power modulated in the mid-frequency (5-350 kHz) range. In this review, we concentrate mostly, however, on physics-based studies carried out on magnetron systems operated in argon. This simplifies the physical-chemical processes occurring and makes interpretation of the observations somewhat easier. Since their first recorded use in 1993 there have been more than 300 peer-reviewed paper publications concerned with pulsed magnetrons, dealing wholly or in part with fundamental observations and basic studies. The fundamentals of these plasmas and the relationship between the plasma parameters and thin film quality regularly have whole sessions at international conferences devoted to them; however, since many different types of magnetron geometries have been used worldwide with different operating parameters the important results are often difficult to tease out. For example, we find the detailed observations of the plasma parameter (particle density and temperature) evolution from experiment to experiment are at best difficult to compare and at worst contradictory. We review in turn five major areas of studies which are addressed in the literature and try to draw out the major results. These areas are: fast electron generation, bulk plasma heating, short and long-term plasma parameter rise and decay rates, plasma potential modulation and transient phenomena. The influence of these phenomena on the ion energy and ion energy flux at the substrate is discussed. This review, although not exhaustive, will serve as a useful guide for more in-depth investigations using the referenced

  4. Laboratory manual for pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2015-01-01

    Designed to complement a range of power electronics study resources, this unique lab manual helps students to gain a deep understanding of the operation, modeling, analysis, design, and performance of pulse-width modulated (PWM) DC-DC power converters.  Exercises focus on three essential areas of power electronics: open-loop power stages; small-signal modeling, design of feedback loops and PWM DC-DC converter control schemes; and semiconductor devices such as silicon, silicon carbide and gallium nitride. Meeting the standards required by industrial employers, the lab manual combines program

  5. Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering

    International Nuclear Information System (INIS)

    Rogozin, A.I.; Vinnichenko, M.V.; Kolitsch, A.; Moeller, W.

    2004-01-01

    ITO layers with low resistivity and high visible transmittance were produced by means of middle frequency reactive dual magnetron sputtering. The influence of base pressure, Ar/O 2 ratio and magnetron pulse duration on the film composition, structure, electrical, and optical properties has been investigated. The deposition rate is proportional to the magnetron operation power at changing pulse duration and constant Ar and O 2 flows. At enhanced O 2 flows an onset of the magnetron target oxidation is discussed as a reason for the decrease of the deposition rate. The presence of water vapor in the residual gas is determined to be a reason for deterioration of resistivity and optical transmittance observed for ITO films produced at a base pressures higher than 5·10 -4 Pa. It is demonstrated that spectroscopic ellipsometry can be used as a noncontact tool to monitor the resistivity of ITO films

  6. Deposition and characterization of titania-silica optical multilayers by asymmetric bipolar pulsed dc sputtering of oxide targets

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeo, P R; Shinde, D D; Misal, J S [Optics and Thin Film Laboratory, Autonagar, BARC-Vizag, Visakhapatnam -530012 (India); Kamble, N M; Tokas, R B; Biswas, A; Poswal, A K; Thakur, S; Bhattacharyya, D; Sahoo, N K; Sabharwal, S C, E-mail: nksahoo@barc.gov.i, E-mail: sahoonk@gmail.co [Spectroscopy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2010-02-03

    Titania-silica (TiO{sub 2}/SiO{sub 2}) optical multilayer structures have been conventionally deposited by reactive sputtering of metallic targets. In order to overcome the problems of arcing, target poisoning and low deposition rates encountered there, the application of oxide targets was investigated in this work with asymmetric bipolar pulsed dc magnetron sputtering. In order to evaluate the usefulness of this deposition methodology, an electric field optimized Fabry Perot mirror for He-Cd laser ({lambda} = 441.6 nm) spectroscopy was deposited and characterized. For comparison, this mirror was also deposited by the reactive electron beam (EB) evaporation technique. The mirrors developed by the two complementary techniques were investigated for their microstructural and optical reflection properties invoking atomic force microscopy, ellipsometry, grazing incidence reflectometry and spectrophotometry. From these measurements the layer geometry, optical constants, mass density, topography, surface and interface roughness and disorder parameters were evaluated. The microstructural properties and spectral functional characteristics of the pulsed dc sputtered multilayer mirror were found to be distinctively superior to the EB deposited mirror. The knowledge gathered during this study has been utilized to develop a 21-layer high-pass edge filter for radio photoluminescence dosimetry.

  7. Deposition and characterization of titania-silica optical multilayers by asymmetric bipolar pulsed dc sputtering of oxide targets

    International Nuclear Information System (INIS)

    Sagdeo, P R; Shinde, D D; Misal, J S; Kamble, N M; Tokas, R B; Biswas, A; Poswal, A K; Thakur, S; Bhattacharyya, D; Sahoo, N K; Sabharwal, S C

    2010-01-01

    Titania-silica (TiO 2 /SiO 2 ) optical multilayer structures have been conventionally deposited by reactive sputtering of metallic targets. In order to overcome the problems of arcing, target poisoning and low deposition rates encountered there, the application of oxide targets was investigated in this work with asymmetric bipolar pulsed dc magnetron sputtering. In order to evaluate the usefulness of this deposition methodology, an electric field optimized Fabry Perot mirror for He-Cd laser (λ = 441.6 nm) spectroscopy was deposited and characterized. For comparison, this mirror was also deposited by the reactive electron beam (EB) evaporation technique. The mirrors developed by the two complementary techniques were investigated for their microstructural and optical reflection properties invoking atomic force microscopy, ellipsometry, grazing incidence reflectometry and spectrophotometry. From these measurements the layer geometry, optical constants, mass density, topography, surface and interface roughness and disorder parameters were evaluated. The microstructural properties and spectral functional characteristics of the pulsed dc sputtered multilayer mirror were found to be distinctively superior to the EB deposited mirror. The knowledge gathered during this study has been utilized to develop a 21-layer high-pass edge filter for radio photoluminescence dosimetry.

  8. Control and enhancement of the oxygen storage capacity of ceria films by variation of the deposition gas atmosphere during pulsed DC magnetron sputtering

    Science.gov (United States)

    Eltayeb, Asmaa; Vijayaraghavan, Rajani K.; McCoy, Anthony; Venkatanarayanan, Anita; Yaremchenko, Aleksey A.; Surendran, Rajesh; McGlynn, Enda; Daniels, Stephen

    2015-04-01

    In this study, nanostructured ceria (CeO2) films are deposited on Si(100) and ITO coated glass substrates by pulsed DC magnetron sputtering using a CeO2 target. The influence on the films of using various gas ambients, such as a high purity Ar and a gas mixture of high purity Ar and O2, in the sputtering chamber during deposition are studied. The film compositions are studied using XPS and SIMS. These spectra show a phase transition from cubic CeO2 to hexagonal Ce2O3 due to the sputtering process. This is related to the transformation of Ce4+ to Ce3+ and indicates a chemically reduced state of CeO2 due to the formation of oxygen vacancies. TGA and electrochemical cyclic voltammetry (CV) studies show that films deposited in an Ar atmosphere have a higher oxygen storage capacity (OSC) compared to films deposited in the presence of O2. CV results specifically show a linear variation with scan rate of the anodic peak currents for both films and the double layer capacitance values for films deposited in Ar/O2 mixed and Ar atmosphere are (1.6 ± 0.2) × 10-4 F and (4.3 ± 0.5) × 10-4 F, respectively. Also, TGA data shows that Ar sputtered samples have a tendency to greater oxygen losses upon reduction compared to the films sputtered in an Ar/O2 mixed atmosphere.

  9. Economical hydrogen production by electrolysis using nano pulsed DC

    Energy Technology Data Exchange (ETDEWEB)

    Dharmaraj, C.H. [Tangedco, Tirunelveli, ME Environmental Engineering (India); Adshkumar, S. [Department of Civil Engineering, Anna University of Technology Tirunelveli, Tirunelveli - 627007 (India)

    2012-07-01

    Hydrogen is an alternate renewable eco fuel. The environmental friendly hydrogen production method is electrolysis. The cost of electrical energy input is major role while fixing hydrogen cost in the conventional direct current Electrolysis. Using nano pulse DC input makes the input power less and economical hydrogen production can be established. In this investigation, a lab scale electrolytic cell developed and 0.58 mL/sec hydrogen/oxygen output is obtained using conventional and nano pulsed DC. The result shows that the nano pulsed DC gives 96.8 % energy saving.

  10. RF-superimposed DC and pulsed DC sputtering for deposition of transparent conductive oxides

    International Nuclear Information System (INIS)

    Stowell, Michael; Mueller, Joachim; Ruske, Manfred; Lutz, Mark; Linz, Thomas

    2007-01-01

    Transparent conductive oxide films are widely used materials for electronic applications such as flat panel displays and solar cells. The superposition of DC and pulsed DC power by a certain fraction of RF power was applied to deposit indium tin oxide films. This technique allows an additional tuning of different parameters relevant to film growth, and yields high quality films even under kinetically limited conditions. A long-term stable RF/DC process could be realized by using different combinations of standard power supply components, which includes a fully reliable arc handling system for both the RF and DC generators. The effectiveness of the arc handling system is illustrated by the current and voltage behavior recorded for actual arcing events. The resistivity of indium tin oxide films is strongly influenced by the respective sputtering mode. The best resistivity values of 145-148 μΩ cm were obtained by RF-superimposed pulsed DC sputtering at a pulse frequency between 100 and 200 kHz and a substrate temperature as low as 140 deg. C. In addition, the films were extremely smooth with a surface roughness of 1-2.5 nm

  11. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Hui-Fang Chang

    Full Text Available We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz. The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.

  12. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells.

    Science.gov (United States)

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.

  13. Properties of DLC coatings deposited by dc and dc with superimposed pulsed vacuum arc

    International Nuclear Information System (INIS)

    Zavaleyev, V.; Walkowicz, J.; Aksyonov, D.S.; Luchaninov, A.A.; Reshetnyak, E.N.; Strel'nitskij, V.E.

    2014-01-01

    Comparative studies of the structure, mechanical and tribological properties of DLC coatings deposited in DC and DC with superimposed high current pulse modes of operation vacuum-arc plasma source with the graphite cathode are presented. Imposition the pulses of high current on DC vacuum-arc discharge allows both increase the deposition rate of DLC coating and reduce the residual compressive stress in the coatings what promotes substantial improvement the adhesion to the substrate. Effect of vacuum arc plasma filtration with Venetian blind filter on the deposition rate and tribological characteristics of the coatings analyzed.

  14. Deposition of Al/Cu Multilayer By Double Targets Cylindrical DC Magnetron Sputtering System

    Directory of Open Access Journals (Sweden)

    P. Balashabadi

    2013-12-01

    Full Text Available A cylindrical direct current magnetron sputtering coater with two targets for deposition of multilayer thin films and cermet solar selective surfaces has been constructed. The substrate holder was able to rotate around the target for obtaining the uniform layer and separated multilayer phases. The Al/ Cu multilayer film was deposited on the glass substrate at the following conditions: Working gas = Pure argon, Working pressure = 1 Pa, Cathode current = 8 A and cathode voltage = -600 V .Microstructure of the film was investigated by X-Ray Diffraction and the scanning electron microscopy analyses. The elements profile was determined by glow discharge–optical emission spectroscopy analysis. During deposition, both targets with magnetron configuration were sputtered simultaneously by argon ions. A Plasma column on the targets surface was generated by a 290 G permanent magnet unit. Two DC power supply units with three phases input and maximum output of 12 A/1000V were used to deposit the multilayer thin films. A control phase system was used to adjust output voltage.

  15. Study of general digital DC/pulse neutron generator

    International Nuclear Information System (INIS)

    Li Gang; Liu Zheng; Li Wensheng; Liu Hanlin; Liu Linmao

    2014-01-01

    Preliminary experimental results of digital DC/pulse neutron generator based on a ceramic drive-in target neutron tube for explosives detection are presented. The generator is a portable and on-off neutron source, and it can be controlled by remote PC. The generator can produce DC neutrons, pulse neutrons and multiple pulse neutrons. The maximum neutron yield is about 2 × 10"8 n/s, the minimum pulse width is 10 μs and the maximum pulse frequency is 10 kHz. Neutron yield and time-spectrum is measured in China Academy of Engineering Physics. The generator is suitable for explosive detection with PFTNA technology, and it can be used in other areas such as reactor measurements and on-line industrial test systems. (authors)

  16. Giant Negative Piezoresistive Effect in Diamond-like Carbon and Diamond-like Carbon-Based Nickel Nanocomposite Films Deposited by Reactive Magnetron Sputtering of Ni Target

    DEFF Research Database (Denmark)

    Meškinis, Šaru Nas; Gudaitis, Rimantas; Šlapikas, Kęstutis

    2018-01-01

    deposited by either reactive HIPIMS or dc magnetron sputtering of Ni target was explained by possible clustering of the sp2-bonded carbon and/or formation of areas with the decreased hydrogen content. It was suggested that the tensile stress-induced rearrangements of these conglomerations have resulted......Piezoresistive properties of hydrogenated diamond-like carbon (DLC) and DLC-based nickel nanocomposite (DLC:Ni) films were studied in the range of low concentration of nickel nanoparticles. The films were deposited by reactive high power pulsed magnetron sputtering (HIPIMS) of Ni target, and some...... samples were deposited by direct current (dc) reactive magnetron sputtering for comparison purposes. Raman scattering spectroscopy, energy-dispersive X-ray spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS) were used to study the structure and chemical composition of the films. A four...

  17. High power pulsed magnetron sputtering: A method to increase deposition rate

    International Nuclear Information System (INIS)

    Raman, Priya; McLain, Jake; Ruzic, David N; Shchelkanov, Ivan A.

    2015-01-01

    High power pulsed magnetron sputtering (HPPMS) is a state-of-the-art physical vapor deposition technique with several industrial applications. One of the main disadvantages of this process is its low deposition rate. In this work, the authors report a new magnetic field configuration, which produces deposition rates twice that of conventional magnetron's dipole magnetic field configuration. Three different magnet pack configurations are discussed in this paper, and an optimized magnet pack configuration for HPPMS that leads to a higher deposition rate and nearly full-face target erosion is presented. The discussed magnetic field produced by a specially designed magnet assembly is of the same size as the conventional magnet assembly and requires no external fields. Comparison of deposition rates with different power supplies and the electron trapping efficiency in complex magnetic field arrangements are discussed

  18. Performance analysis of pulse analog control schemes for LLC resonant DC/DC converters suitable in portable applications

    Directory of Open Access Journals (Sweden)

    P. Kowstubha

    2016-12-01

    Full Text Available Performance Analysis of Pulse Analog Control Schemes, predominantly Pulse-Width Modulation (PWM and Pulse-Position Modulation (PPM for LLC resonant DC/DC converter suitable in portable applications is addressed in this paper. The analysis is done for closed loop performance, frequency domain performance, primary and secondary side conduction losses and soft commutation using PSIM 6.0 software and observed that PPM scheme provides better performance at high input voltage with a good selectivity of frequency over a wide range of line and load variations. The performance of LLC resonant DC/DC converter is demonstrated using PPM scheme for a design specifications of 12 V, 5 A output.

  19. Dielectric properties of DC reactive magnetron sputtered Al2O3 thin films

    International Nuclear Information System (INIS)

    Prasanna, S.; Mohan Rao, G.; Jayakumar, S.; Kannan, M.D.; Ganesan, V.

    2012-01-01

    Alumina (Al 2 O 3 ) thin films were sputter deposited over well-cleaned glass and Si substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 °C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al 2 O 3 -Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed. - Highlights: ► Al 2 O 3 thin films were deposited by DC reactive magnetron sputtering. ► The films were found to be amorphous up to annealing temperature of 550 C. ► An increase in rms roughness of the films was observed with annealing. ► Al-Al 2 O 3 -Al thin film capacitors were fabricated and dielectric constant was 7.5. ► The activation energy decreased with increase in frequency.

  20. Electrical Tree Initiation and Growth in Silicone Rubber under Combined DC-Pulse Voltage

    Directory of Open Access Journals (Sweden)

    Tao Han

    2018-03-01

    Full Text Available Electrical tree is a serious threat to silicone rubber (SIR insulation and can even cause breakdown. Electrical trees under alternating current (AC and direct current (DC voltage have been widely researched. While there are pulses in high-voltage direct current (HVDC cables under operating conditions caused by lightning and operating overvoltage in the power system, little research has been reported about trees under combined DC-pulse voltage. Their inception and growth mechanism is still not clear. In this paper, electrical trees are studied under several types of combined DC-pulse voltage. The initiation and growth process was recorded by a digital microscope system. The experimental results indicate that the inception pulse voltage is different under each voltage type and is influenced by the combined DC. The initial tree has two structures, determined by the pulse polarity. With increased DC prestressing time, tree inception pulse voltage with the same polarity is clearly decreased. Moreover, a special initial bubble tree was observed after the prestressing DC.

  1. CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Bagcivan, N.; Bobzin, K.; Ludwig, A.; Grochla, D.; Brugnara, R.H.

    2014-01-01

    Nanolaminate coatings based on transition metal nitrides such as CrN, AlN and TiN deposited via physical vapor deposition (PVD) have shown great advantage as protective coatings on tools and components subject to high loads in tribological applications. By varying the individual layer materials and their thicknesses it is possible to optimize the coating properties, e.g. hardness, Young's modulus and thermal stability. One way for further improvement of coating properties is the use of advanced PVD technologies. High power pulsed magnetron sputtering (HPPMS) is an advancement of pulsed magnetron sputtering (MS). The use of HPPMS allows a better control of the energetic bombardment of the substrate due to the higher ionization degree of metallic species. It provides an opportunity to influence chemical and mechanical properties by varying the process parameters. The present work deals with the development of CrN/AlN nanolaminate coatings in an industrial scale unit by using two different PVD technologies. Therefore, HPPMS and mfMS (middle frequency magnetron sputtering) technologies were used. The bilayer period Λ, i.e. the thickness of a CrN/AlN double layer, was varied between 6.2 nm and 47.8 nm by varying the rotational speed of the substrate holders. In a second step the highest rotational speed was chosen and further HPPMS CrN/AlN coatings were deposited applying different HPPMS pulse lengths (40, 80, 200 μs) at the same mean cathode power and frequency. Thickness, morphology, roughness and phase composition of the coatings were analyzed by means of scanning electron microscopy (SEM), confocal laser microscopy, and X-ray diffraction (XRD), respectively. The chemical composition was determined using glow discharge optical emission spectroscopy (GDOES). Detailed characterization of the nanolaminate was conducted by transmission electron microscopy (TEM). The hardness and the Young's modulus were analyzed by nanoindentation measurements. The residual

  2. Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputtering

    OpenAIRE

    Birkett, Martin; Penlington, Roger

    2016-01-01

    We report on the thickness dependence of electrical resistivity of CuAlMo films grown by dc magnetron sputtering on glass substrates at room temperature. The electrical resistance of the films was monitored in situ during their growth in the thickness range 10–1000 nm. By theoretically modelling the evolution of resistivity during growth we were able to gain an insight into the dominant electrical conduction mechanisms with increasing film thickness. For thicknesses in the range 10–25 nm the ...

  3. Investigation of the time evolution of plasma parameters in a pulsed magnetron discharge

    Czech Academy of Sciences Publication Activity Database

    Straňák, V.; Hubička, Zdeněk; Adámek, P.; Blažek, J.; Tichý, M.; Špatenka, P.; Hippler, R.; Wrehde, S.

    2006-01-01

    Roč. 56, - (2006), s. 1364-1370 ISSN 0011-4626 R&D Projects: GA ČR GA202/05/2242; GA ČR GA202/06/0776 Grant - others:Deutsche Forschungsgemeinschaft(DE) SFB/TR 24 Institutional research plan: CEZ:AV0Z10100522 Keywords : pulsed magnetron * time resolved measurements * Langmuir probe Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  4. Controlling DC-DC converters by chaos-based pulse width modulation to reduce EMI

    International Nuclear Information System (INIS)

    Li Hong; Zhang Bo; Li Zhong; Halang, Wolfgang A.; Chen Guanrong

    2009-01-01

    In this paper, periodic and chaotic behaviors of DC-DC converters under certain parametric conditions are simulated, experimentally verified, and analyzed. Motivated by the work of J.H.B. Deane and D.C. Hamill in 1996, where chaotic phenomena are useful in suppressing electromagnetic interference (EMI) by adjusting the parameters of the DC-DC converter and making it operate in chaos, a chaos-based pulse width modulation (CPWM) is proposed to distribute the harmonics of the DC-DC converters continuously and evenly over a wide frequency range, thereby reducing the EMI. The output waves and spectral properties of the EMI are simulated and analyzed as the carrier frequency or amplitude changes with regard to different chaotic maps. Simulation and experimental results are given to illustrate the effectiveness of the proposed CPWM, which provides a good example of applying chaos theory in engineering practice.

  5. Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Padmalochan; Ramaseshan, R., E-mail: seshan@igcar.gov.in; Dash, S. [Materials Science Group, IGCAR, Kalpakkam, 603102 (India); Krishna, Nanda Gopala [Corrosion Science and Technology Group, IGCAR, Kalpakkam, 603102 (India)

    2016-05-23

    Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N{sub 2} concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (H{sub IT}) of around 28.2 GPa for a nitrogen concentration of 25%.

  6. Effect of deposition temperature on the properties of Al-doped ZnO films prepared by pulsed DC magnetron sputtering for transparent electrodes in thin-film solar cells

    International Nuclear Information System (INIS)

    Kim, Doo-Soo; Park, Ji-Hyeon; Shin, Beom-Ki; Moon, Kyeong-Ju; Son, Myoungwoo; Ham, Moon-Ho; Lee, Woong; Myoung, Jae-Min

    2012-01-01

    Highlights: ► Surface-textured AZO films were achieved by combining PDMS method with wet etching. ► The AZO film deposited at 230 °C by PDMS exhibited the best performance. ► It is due to the higher plasma density supplied from PDMS system. ► Wet etching of the films produces a crater-like rough surface morphology. - Abstract: A simple but scalable approach to the production of surface-textured Al-doped ZnO(AZO) films for low-cost transparent electrode applications in thin-film solar cells is introduced in this study by combining pulsed dc magnetron sputtering (PDMS) with wet etching in sequence. First, structural, electrical, and optical properties of the AZO films prepared by a PDMS were investigated as functions of deposition temperature to obtain transparent electrode films that can be used as indium-free alternative to ITO electrodes. Increase in the deposition temperature to 230 °C accompanied the improvement in crystalline quality and doping efficiency, which enabled the lowest electrical resistivity of 4.16 × 10 −4 Ω cm with the carrier concentration of 1.65 × 10 21 cm −3 and Hall mobility of 11.3 cm 2 /V s. The wet etching of the films in a diluted HCl solution resulted in surface roughening via the formation of crater-like structures without significant degradation in the electrical properties, which is responsible for the enhanced light scattering capability required for anti-reflective electrodes in thin film solar cells.

  7. Operational limit of a planar DC magnetron cluster source due to target erosion

    International Nuclear Information System (INIS)

    Rai, A.; Mutzke, A.; Bandelow, G.; Schneider, R.; Ganeva, M.; Pipa, A.V.; Hippler, R.

    2013-01-01

    The binary collision-based two dimensional SDTrimSP-2D model has been used to simulate the erosion process of a Cu target and its influence on the operational limit of a planar DC magnetron nanocluster source. The density of free metal atoms in the aggregation region influences the cluster formation and cluster intensity during the target lifetime. The density of the free metal atoms in the aggregation region can only be predicted by taking into account (i) the angular distribution of the sputtered flux from the primary target source and (ii) relative downwards shift of the primary source of sputtered atoms during the erosion process. It is shown that the flux of the sputtered atoms smoothly decreases with the target erosion

  8. Hard coatings on magnesium alloys by sputter deposition using a pulsed d.c. bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Reiners, G. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Griepentrog, M. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany)

    1995-12-01

    An increasing use of magnesium-based light-metal alloys for various industrial applications was predicted in different technological studies. Companies in different branches have developed machine parts made of magnesium alloys (e.g. cars, car engines, sewing and knitting machines). Hence, this work was started to evaluate the ability of hard coatings obtained by physical vapour deposition (PVD) in combination with coatings obtained by electrochemical deposition to protect magnesium alloys against wear and corrosion. TiN hard coatings were deposited onto magnesium alloys by unbalanced magnetron sputter deposition. A bipolar pulsed d.c. bias voltage was used to limit substrate temperatures to 180 C during deposition without considerable loss of microhardness and adhesion. Adhesion, hardness and load-carrying capacity of TiN coatings deposited directly onto magnesium alloys are compared with the corresponding values of TiN coatings deposited onto substrates which had been coated electroless with an Ni-P alloy interlayer prior to the PVD. (orig.)

  9. Pulsed energy conversion with a dc superconducting magnet

    International Nuclear Information System (INIS)

    Cowan, M.; Cnare, E.C.; Leisher, W.B.; Tucker, W.K.; Wessenberg, D.L.

    1976-01-01

    A generator system for pulsed power is described which employs a dc superconducting magnet in a magnetic flux compression scheme. Experience with a small-scale generator together with projections of numerical models indicate potential applications to fusion research and commercial power generation. When the system is large enough pulse energy can exceed that stored in the magnet and pulse rise time can range from several microseconds to tens of milliseconds. (author)

  10. DC Magnetron Sputtered IZTO Thin Films for Organic Photovoltaic Application.

    Science.gov (United States)

    Lee, Hye Ji; Noviyana, Imas; Putri, Maryane; Koo, Chang Young; Lee, Jung-A; Kim, Jeong-Joo; Jeong, Youngjun; Lee, Youngu; Lee, Hee Young

    2018-02-01

    IZTO20 (In0.6Zn0.2Sn0.2O1.5) ceramic target was prepared from oxide mixture of In2O3, ZnO, and SnO2 powders. IZTO20 thin films were then deposited onto glass substrate at 400 °C by DC magnetron sputtering. The average optical transmittance determined by ultraviolet-visible spectroscopy was higher than 85% for all films. The minimum resistivity of the annealed IZTO20 thin film was approximately 6.1×10-4 Ω·cm, which tended to increase with decreasing indium content. Substrate heating and annealing were found to be important parameters affecting the electrical and optical properties. An organic photovoltaic (OPV) cell was fabricated using the IZTO20 film deposited under the optimized condition as an anode electrode and the efficiency of up to 80% compared to that of a similar OPV cell using ITO film was observed. Reduction of surface roughness and electrical resistivity through annealing treatment was found to contribute to the improved efficiency of the OPV cell.

  11. Study of the mechanisms of flux enhancement through hairless mouse skin by pulsed DC iontophoresis

    International Nuclear Information System (INIS)

    Pikal, M.J.; Shah, S.

    1991-01-01

    Enhanced iontophoretic transport using pulsed DC is usually explained by citing the observed decrease in skin resistance caused by an increase in AC pulse frequency at very small currents. Alternately, it has been suggested that the on-to-off nature of pulsed DC imparts an impact energy to the fluid, thereby increasing transport. This report provides a test of these mechanisms for enhanced delivery via pulsed iontophoresis. The DC resistance of hairless mouse skin during continuous and pulsed DC iontophoresis is measured as a function of time for selected pulse frequencies and duty cycles using current densities ranging from 0.1 to 1.0 mA/cm2. As a test of the impact energy mechanism, the iontophoretic transport of 14C-glucose measured with pulsed DC is compared with similar data obtained previously using continuous DC. It is suggested that pulsed current can yield lower resistance and enhanced drug delivery provided that (a) the steady-state current during the on phase of the pulse is very small and (b) the frequency is low enough to allow depolarization of the skin during the off phase of the pulse. The glucose transport results suggest that the impact energy concept does not apply to iontophoresis

  12. A comparison of reactive plasma pre-treatments on PET substrates by Cu and Ti pulsed-DC and HIPIMS discharges

    Energy Technology Data Exchange (ETDEWEB)

    Audronis, M., E-mail: m.audronis@yahoo.co.uk [Gencoa Ltd, Physics Road, Speke, Liverpool, L24 9HP (United Kingdom); Hinder, S.J. [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); Mack, P. [ThermoFisher Scientific Ltd, Imberhorne Lane, East Grinstead, Sussex, RH19 1UB (United Kingdom); Bellido-Gonzalez, V. [Gencoa Ltd, Physics Road, Speke, Liverpool, L24 9HP (United Kingdom); Bussey, D.; Matthews, A. [Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom); Baker, M.A. [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom)

    2011-12-30

    PET web samples have been treated by magnetically enhanced glow discharges powered using either medium frequency pulse direct current (p-DC) or low frequency high power pulse (HIPIMS) sources. The plasma pre-treatment processes were carried out in an Ar-O{sub 2} atmosphere using either Cu or Ti sputter targets. XPS, AFM and sessile drop water contact angle measurements have been employed to examine changes in surface chemistry and morphology for different pre-treatment process parameters. Deposition of metal oxide onto the PET surface is observed as a result of the sputter magnetron-based glow discharge web treatment. Using the Cu target, both the p-DC and HIPIMS processes result in the formation of a thin CuO layer (with a thickness between 1 and 11 nm) being deposited onto the PET surface. Employing the Ti target, both p-DC and HIPIMS processes give rise to a much lower concentration of Ti (< 5 at.%), in the form of TiO{sub 2} on the PET treated surface. The TiO{sub 2} is probably distributed as an island-like distribution covering the PET surface. Presence of Cu and Ti oxide constituents on the treated PET is beneficial in aiding the adhesion but alone (i.e. without oxygen plasma activation) is not enough to provide very high levels of hydrophilicity as is clear from sessile drop water contact angle measurements on aged samples. Exposure to the plasma treatments leads to a small amount of roughening of the substrate surface, but the average surface roughness in all cases is below 2.5 nm. The PET structure at the interface with a coating is mostly or wholly preserved. The oxygen plasma treatment, metal oxide deposition and surface roughening resulting from the HIPIMS and p-DC treatments will promote adhesion to any subsequent thin film that is deposited immediately following the plasma treatment.

  13. Efficiency Enhancement in DC Pulsed Gas Discharge Memory Panel

    Science.gov (United States)

    Okamoto, Yukio

    1983-01-01

    Much improvement in the luminous efficiency of a dc pulsed gas discharge memory panel for color TV display was achieved by shortening the sustaining pulse duration. High energy electrons can thus be produced in the pulsed discharge with fast rise times. Calculated optimum value of E/P in a Xe gas discharge is 7-8 V/cm\\cdotTorr.

  14. Heat treatable indium tin oxide films deposited with high power pulse magnetron sputtering

    International Nuclear Information System (INIS)

    Horstmann, F.; Sittinger, V.; Szyszka, B.

    2009-01-01

    In this study, indium tin oxide (ITO) films were prepared by high power pulse magnetron sputtering [D. J. Christie, F. Tomasel, W. D. Sproul, D. C. Carter, J. Vac. Sci. Technol. A, 22 (2004) 1415. ] without substrate heating. The ITO films were deposited from a ceramic target at a deposition rate of approx. 5.5 nm*m/min kW. Afterwards, the ITO films were covered with a siliconoxynitride film sputtered from a silicon alloy target in order to prevent oxidation of the ITO film during annealing at 650 deg. C for 10 min in air. The optical and electrical properties as well as the texture and morphology of these films were investigated before and after annealing. Mechanical durability of the annealed films was evaluated at different test conditions. The results were compared with state-of-the art ITO films which were obtained at optimized direct current magnetron sputtering conditions

  15. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    International Nuclear Information System (INIS)

    Li Gang; Zhang Zhongshuai; Chi Qian; Liu Linmao

    2012-01-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 × 10 8 n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 μs. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  16. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    Energy Technology Data Exchange (ETDEWEB)

    Li Gang; Zhang Zhongshuai [Northeast Normal University, Changchun 130024 (China); Chi Qian [Guang Hua College of Chang Chun University, Changchun 130117 (China); Liu Linmao, E-mail: ll888@nenu.edu.cn [Northeast Normal University, Changchun 130024 (China)

    2012-11-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 Multiplication-Sign 10{sup 8} n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 {mu}s. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  17. Incorporation of N in TiO{sub 2} films grown by DC-reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Serio, S. [CEFITEC, Departamento de Fisica, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Melo Jorge, M.E. [CCMM, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande C8, 1749-016 Lisboa (Portugal); Nunes, Y. [CEFITEC, Departamento de Fisica, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Barradas, N.P. [Instituto Tecnologico e Nuclear and CFNUL, E.N. 10, Sacavem 2686-953 (Portugal); Alves, E., E-mail: ealves@itn.pt [Instituto Tecnologico e Nuclear and CFNUL, E.N. 10, Sacavem 2686-953 (Portugal); Munnik, F. [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2012-02-15

    Photocatalytic properties of TiO{sub 2} are expected to play an important role on emerging technologies based on OH radicals to destroy harmful nonbiodegradable organic and inorganic contaminants in water. The drawback is the wide band gap of TiO{sub 2} (3.2 eV) limiting its use to the UV part of electromagnetic spectrum under sunlight. Therefore, modifications of TiO{sub 2} are needed to tune the gap in order to allow an efficient use of the entire solar spectrum. One possibility is N-doping of TiO{sub 2} to make the photocatalytic activity possible under visible light and more suitable for water treatment. In our study nitrogen-doped TiO{sub 2} (TiO{sub 2-x}N{sub x}) films were deposited by DC-reactive magnetron sputtering using a dual-magnetron co-deposition apparatus on unheated glass and silicon substrates using a pure titanium target. The depth profile of nitrogen was measured with heavy ion elastic recoil detection analysis combined with Rutherford backscattering spectrometry (RBS) and correlated with the optical and structural properties obtained by UV-VIS spectroscopy and X-ray diffraction (XRD).

  18. Very low pressure high power impulse triggered magnetron sputtering

    Science.gov (United States)

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  19. Oxidation and Tribological Behavior of Ti-B-C-N-Si Nanocomposite Films Deposited by Pulsed Unbalanced Magnetron Sputtering.

    Science.gov (United States)

    Jang, Jaeho; Heo, Sungbo; Kim, Wang Ryeol; Kim, Jun-Ho; Nam, Dae-Geun; Kim, Kwang Ho; Park, Ikmin; Park, In-Wook

    2018-03-01

    Quinary Ti-B-C-N-Si nanocomposite films were deposited onto AISI 304 substrates using a pulsed d.c. magnetron sputtering system. The quinary Ti-B-C-N-Si (5 at.%) film showed excellent tribological and wear properties compared with those of the Ti-B-C-N films. The steady friction coefficient of 0.151 and a wear rate of 2 × 10-6 mm3N-1m-1 were measured for the Ti-B-C-N-Si films. The oxidation behavior of Ti-B-C-N-Si nanocomposite films was systematically investigated using X-ray diffraction (XRD), and thermal analyzer with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It is concluded that the addition of Si into the Ti-B-C-N film improved the tribological properties and oxidation resistance of the Ti-B-C-N-Si films. The improvements are due to the formation of an amorphous SiOx phase, which plays a major role in the self-lubricant tribo-layers and oxidation barrier on the film surface or in the grain boundaries, respectively.

  20. Analysis of DC control in double-inlet GM type pulse tube refrigerators for detectors

    Science.gov (United States)

    Du, B. Y.

    2016-10-01

    Pulse tube refrigerators have demonstrated many advantages with respect to temperature stability, vibration, reliability and lifetime among cryo-coolers for detectors. Double-inlet type pulse tube refrigerators are popular in GM type pulse tube refrigerators. The single double-inlet valve may introduce DC flow in refrigerator, which deteriorates the performance of pulse tube refrigerator. One new type of DC control mode is introduced in this paper. Two parallel-placed needle valves with opposite direction named double-valve configuration, instead of single double-inlet valve, are used in our experiment to reduce the DC flow. With two double-inlet operating, the lowest cold end temperature of 18.1K and a coolant of 1.2W@20K have been obtained. It has proved that this method is useful for controlling DC flow of the pulse tube refrigerators, which is very important to understand the characters of pulse tube refrigerators for detectors.

  1. Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system

    Science.gov (United States)

    Lin, Bor-Ren

    2018-04-01

    This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.

  2. Effect of deposition temperature on the properties of Al-doped ZnO films prepared by pulsed DC magnetron sputtering for transparent electrodes in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Doo-Soo; Park, Ji-Hyeon; Shin, Beom-Ki; Moon, Kyeong-Ju [Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Son, Myoungwoo [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Ham, Moon-Ho [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Woong [School of Nano and Advanced Materials Engineering, Changwon National University, 9 Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of); Myoung, Jae-Min, E-mail: jmmyoung@yonsei.ac.kr [Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface-textured AZO films were achieved by combining PDMS method with wet etching. Black-Right-Pointing-Pointer The AZO film deposited at 230 Degree-Sign C by PDMS exhibited the best performance. Black-Right-Pointing-Pointer It is due to the higher plasma density supplied from PDMS system. Black-Right-Pointing-Pointer Wet etching of the films produces a crater-like rough surface morphology. - Abstract: A simple but scalable approach to the production of surface-textured Al-doped ZnO(AZO) films for low-cost transparent electrode applications in thin-film solar cells is introduced in this study by combining pulsed dc magnetron sputtering (PDMS) with wet etching in sequence. First, structural, electrical, and optical properties of the AZO films prepared by a PDMS were investigated as functions of deposition temperature to obtain transparent electrode films that can be used as indium-free alternative to ITO electrodes. Increase in the deposition temperature to 230 Degree-Sign C accompanied the improvement in crystalline quality and doping efficiency, which enabled the lowest electrical resistivity of 4.16 Multiplication-Sign 10{sup -4} {Omega} cm with the carrier concentration of 1.65 Multiplication-Sign 10{sup 21} cm{sup -3} and Hall mobility of 11.3 cm{sup 2}/V s. The wet etching of the films in a diluted HCl solution resulted in surface roughening via the formation of crater-like structures without significant degradation in the electrical properties, which is responsible for the enhanced light scattering capability required for anti-reflective electrodes in thin film solar cells.

  3. Pulse-Width-Modulating Driver for Brushless dc Motor

    Science.gov (United States)

    Salomon, Phil M.

    1991-01-01

    High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.

  4. AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Li Jinlong; Mao Shoudong; Sun Kefei [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Li Xiaomin [Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050 (China); Song Zhenlun [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)], E-mail: songzhenlun@nimte.ac.cn

    2009-11-15

    AlN/Al dual protective coatings were prepared on NdFeB by DC magnetron sputtering in a home-made industrial apparatus. Comparing with Al coating, AlN/Al coatings have a denser structure of an outmost AlN amorphous layer following an inner Al columnar crystal layer. The coatings and NdFeB substrate combine well, and moreover, there is occurrence of metallurgy bonding in the interface layer. Both Al and AlN/Al coatings have a good protective ability to NdFeB. Especially, the corrosion resistance of AlN/Al coated NdFeB is improved largely. AlN/Al and Al protective coatings not only do not deteriorate the magnetic properties of NdFeB, but contribute to their slight increase.

  5. AlN/Al dual protective coatings on NdFeB by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Li Jinlong; Mao Shoudong; Sun Kefei; Li Xiaomin; Song Zhenlun

    2009-01-01

    AlN/Al dual protective coatings were prepared on NdFeB by DC magnetron sputtering in a home-made industrial apparatus. Comparing with Al coating, AlN/Al coatings have a denser structure of an outmost AlN amorphous layer following an inner Al columnar crystal layer. The coatings and NdFeB substrate combine well, and moreover, there is occurrence of metallurgy bonding in the interface layer. Both Al and AlN/Al coatings have a good protective ability to NdFeB. Especially, the corrosion resistance of AlN/Al coated NdFeB is improved largely. AlN/Al and Al protective coatings not only do not deteriorate the magnetic properties of NdFeB, but contribute to their slight increase.

  6. Electrical and optical properties of reactive dc magnetron sputtered silver-doped indium oxide thin films: role of oxygen

    International Nuclear Information System (INIS)

    Subrahmanyam, A.; Barik, U.K.

    2006-01-01

    Silver-doped indium oxide thin films have been prepared on glass and quartz substrates at room temperature (300 K) by a reactive dc magnetron sputtering technique using an alloy target of pure indium and silver (80:20 at. %). During sputtering, the oxygen flow rates are varied in the range 0.00-2.86 sccm keeping the magnetron power constant at 40 W. The resistivity of these films is in the range 10 0 -10 -3 Ωcm and they show a negative temperature coefficient of resistivity. The films exhibit p-type conductivity at an oxygen flow rate of 1.71 sccm. The work function of these silver-indium oxide films has been measured by a Kelvin probe technique. The refractive index of the films (at 632.8 nm) varies in the range 1.13-1.20. Silver doping in indium oxide narrows the band gap of indium oxide (3.75 eV). (orig.)

  7. Electrical and optical properties of reactive dc magnetron sputtered silver-doped indium oxide thin films: role of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, A; Barik, U K [Indian Institute of Technology Madras, Semiconductor Physics Laboratory, Department of Physics, Chennai (India)

    2006-07-15

    Silver-doped indium oxide thin films have been prepared on glass and quartz substrates at room temperature (300 K) by a reactive dc magnetron sputtering technique using an alloy target of pure indium and silver (80:20 at. %). During sputtering, the oxygen flow rates are varied in the range 0.00-2.86 sccm keeping the magnetron power constant at 40 W. The resistivity of these films is in the range 10{sup 0}-10{sup -3} {omega}cm and they show a negative temperature coefficient of resistivity. The films exhibit p-type conductivity at an oxygen flow rate of 1.71 sccm. The work function of these silver-indium oxide films has been measured by a Kelvin probe technique. The refractive index of the films (at 632.8 nm) varies in the range 1.13-1.20. Silver doping in indium oxide narrows the band gap of indium oxide (3.75 eV). (orig.)

  8. Dielectric properties of DC reactive magnetron sputtered Al{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prasanna, S. [Thin Film Center, Department of Physics, PSG College of Technology, Coimbatore, 641 004 (India); Mohan Rao, G. [Department of Instrumentation, Indian Institute of Science (IISc), Bangalore, 560 012 (India); Jayakumar, S., E-mail: s_jayakumar_99@yahoo.com [Thin Film Center, Department of Physics, PSG College of Technology, Coimbatore, 641 004 (India); Kannan, M.D. [Thin Film Center, Department of Physics, PSG College of Technology, Coimbatore, 641 004 (India); Ganesan, V. [Low Temperature Lab, UGC-DAE Consortium for Scientific Research (CSR), Indore, 452 017 (India)

    2012-01-31

    Alumina (Al{sub 2}O{sub 3}) thin films were sputter deposited over well-cleaned glass and Si < 100 > substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 Degree-Sign C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al{sub 2}O{sub 3}-Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed. - Highlights: Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} thin films were deposited by DC reactive magnetron sputtering. Black-Right-Pointing-Pointer The films were found to be amorphous up to annealing temperature of 550 C. Black-Right-Pointing-Pointer An increase in rms roughness of the films was observed with annealing. Black-Right-Pointing-Pointer Al-Al{sub 2}O{sub 3}-Al thin film capacitors were fabricated and dielectric constant was 7.5. Black-Right-Pointing-Pointer The activation energy decreased with increase in frequency.

  9. Photocatalytic activity of bipolar pulsed magnetron sputter deposited TiO{sub 2}/TiWO{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Ko-Wei; Hu, Chung-Hsuan; Hua, Li-Yu; Lee, Chin-Tan [Department of Electronic Engineering, National Quemoy University, 1 Daxue Road, Jinning Township, Kinmen 89250, Taiwan, ROC (China); Zhao, Yu-Xiang [Department of Computer Science and Information Engineering, National Quemoy University, Taiwan, ROC (China); Chang, Julian; Yang, Shu-Yi [Department of Applied English, National Quemoy University, Taiwan, ROC (China); Han, Sheng, E-mail: shenghan@nutc.edu.tw [Center for General Education, National Taichung University of Science and Technology, 129 San-min Road, Section 3, Taichung 40401, Taiwan, ROC (China)

    2016-08-15

    Highlights: • TiO{sub 2}/TiWO{sub x} films were fabricated by a bipolar pulsed magnetron sputtering apparatus. • Titanium oxide being sputtered tungsten enhanced the highly oriented of TiO{sub 2} (1 0 1) plane of the specimen assemblies. • The mechanism WO{sub 3}(h{sup +}, e{sup −})/TiO{sub 2}(h{sup +}, e{sup −}) → WO{sub 3}(e{sup −})/TiO{sub 2}(h{sup +}) shows the higher hydrophilicity and lower contact angle. - Abstract: Titanium oxide films were formed by sputtering and then TiWO{sub x} films were deposited by bipolar pulsed magnetron sputtering with pure titanium and tungsten metal targets. The sputtering of titanium oxide with tungsten enhanced the orientation of the TiO{sub 2} (1 0 1) plane of the specimen assemblies. The main varying parameter was the tungsten pulse power. Titanium oxide sputtered with tungsten using a pulsing power of 50 W exhibited a superior hydrophilic property, and a contact angle of 13.1°. This fabrication conditions maximized the photocatalytic decomposition of methylene blue solution. The mechanism by which the titanium oxide was sputtered with tungsten involves the photogeneration of holes and electron traps, inhibiting the hole–electron recombination, enhancing hydrophilicity and reducing the contact angle.

  10. Effects of Annealing on TiN Thin Film Growth by DC Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Azadeh Jafari

    2014-07-01

    Full Text Available We have reviewed the deposition of titanium nitride (TiN thin films on stainless steel substrates by a DC magnetron sputtering method and annealing at different annealing temperatures of 500, 600, and 700°C for 120 min in nitrogen/argon atmospheres. Effects of annealing temperatures on the structural and the optical properties of TiN films were investigated using X-ray diffraction (XRD, atomic force microscope (AFM, field emission scanning electron microscopy (FESEM, and UV-VIS spectrophotometer. Our experimental studies reveal that the annealing temperature appreciably affected the structures, crystallite sizes, and reflection of the films. By increasing the annealing temperature to 700°C crystallinity and reflection of the film increase. These results suggest that annealed TiN films can be good candidate for tokamak first wall due to their structural and optical properties.

  11. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Aji, A. S., E-mail: aji.ravazes70@gmail.com; Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y. [Quantum Semiconductor and Devices Lab., Physics of Material Electronics Research Division, Department of Physics, Institut Teknologi Bandung (Indonesia)

    2015-04-16

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  12. Study on helium-charged titanium films deposited by DC-magnetron sputtering

    International Nuclear Information System (INIS)

    Shi Liqun; Jin Qinhua; Liu Chaozhuo; Xu Shilin; Zhou Zhuying

    2005-01-01

    Helium trapping in the Ti films deposited by DC magnetron sputtering with a He/Ar mixture was studied. He atoms with a surprisingly high concentration (He/Ti atomic ratio is as high as 56%) incorporate evenly in deposited film. The trapped amount of He can be controlled by the helium partial amount. The introduction of the helium with no extra damage (or very low damage) can be realized by choosing suitable deposition conditions. It was also found that because of the formation of nanophase Ti film a relative high He flux for bubble formation is needed and the amount of the retaining He in sputtering Ti films is much higher than that in the coarse-grain Ti films. The nanophase Ti film can accommodate larger concentration of trapped sites to He, which results in a high density and small size of the He bubbles. With increasing He irradiation flux, the grain size of Ti film decreases and the lattice spacing and width of the X-ray diffraction peak increase due to the He introduction, and the film tends to amorphous phase. (authors)

  13. Synthesis and characterization of DC magnetron sputtered nano structured molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rondiya, S. R.; Rokade, A. V.; Jadhavar, A. A.; Pandharkar, S. M.; Kulkarni, R. R.; Karpe, S. D.; Diwate, K. D. [School of Energy Studies, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, S. R., E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-13

    Molybdenum (Mo) thin films were deposited on corning glass (#7059) substrates using DC magnetron sputtering system. The effect of substrate temperature on the structural, morphology and topological properties have been investigated. Films were characterized by variety of techniques such as low angle x-ray diffraction (low angle XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM). The low angle XRD analysis revealed that the synthesized Mo films are nanocrystalline having cubic crystal structure with (110) preferential orientation. The microstructure of the deposited Mo thin films observed with FE-SEM images indicated that films are homogeneous and uniform with randomly oriented leaf shape morphology. The AFM analysis shows that with increase in substrate temperature the rms roughness of Mo films increases. The obtained results suggest that the synthesized nanostructured Mo thin films have potential application as a back contact material for high efficiency solar cells like CdTe, CIGS, CZTS etc.

  14. Temporal evolution of electron energy distribution function and plasma parameters in the afterglow of drifting magnetron plasma

    International Nuclear Information System (INIS)

    Seo, Sang-Hun; In, Jung-Hwan; Chang, Hong-Young

    2005-01-01

    The temporal behaviour of the electron energy distribution function (EEDF) and the plasma parameters such as electron density, electron temperature and plasma and floating potentials in a mid-frequency pulsed dc magnetron plasma are investigated using time-resolved probe measurements. A negative-voltage dc pulse with an average power of 160 W during the pulse-on period, a repetition frequency of 20 kHz and a duty cycle of 50% is applied to the cathode of a planar unbalanced magnetron discharge with a grounded substrate. The measured electron energy distribution is found to exhibit a bi-Maxwellian distribution, which can be resolved with the low-energy electron group and the high-energy tail part during the pulse-on period, and a Maxwellian distribution only with low-energy electrons as a consequence of initially rapid decay of the high-energy tail part during the pulse-off period. This characteristic evolution of the EEDF is reflected in the decay characteristics of the electron density and temperature in the afterglow. These parameters exhibit twofold decay represented by two characteristic decay times of an initial fast decay time τ 1 , and a subsequent slower decay time τ 2 in the afterglow when approximated with a bi-exponential function. While the initial fast decay times are of the order of 1 μs (τ T1 ∼ 0.99 μs and τ N1 ∼ 1.5 μs), the slower decay times are of the order of a few tens of microseconds (τ T2 ∼ 7 μs and τ N2 ∼ 40 μs). The temporal evolution of the plasma parameters are qualitatively explained by considering the formation mechanism of the bi-Maxwellian electron distribution function and the electron transports of these electron groups in bulk plasma

  15. Inverted relativistic magnetron with a single axial output

    International Nuclear Information System (INIS)

    Ballard, W.P.; Earley, L.M.; Wharton, C.B.

    1986-01-01

    A twelve vane, 1 MV, S-band magnetron has been designed and tested. An inverted design was selected to minimize the parasitic axial electron losses. The stainless steel anode is approximately one wavelength long. One end is partially short-circuited to rf, while the other end has a mode transformer to couple the 3.16 GHz π-mode out into a TM 01 circular waveguide. The magnetron has a loaded output Q of about 100. Operation at 1 MV, 0.31 T, 5 kA routinely produces approx.150 MW peak rms and 100 MW average rms with pulse lengths adjustable from 5 to 70 ns. The microwave power pulse has a rise time of approx.2 ns. The output power is diagnosed using four methods: calorimetry, two circular-waveguide directional couplers installed on the magnetron, two transmitting-receiving systems, and gaseous breakdown. Operation at other voltages and magnetic fields shows that the oscillation frequency is somewhat dependent on the magnetron current. Frequency changes of approx.20 MHz/kA occur as the operating conditions are varied. A series of experiments varying the anode conductivity, the electron emission profile, and the output coupling transformer design showed that none of these significantly increased the output power. Therefore, we have concluded that this magnetron operates in saturation. Because of the anode lifetime and repeatability, this magnetron has the potential to be repetitively pulsed. 36 refs., 16 figs

  16. Method for pulse to pulse dose reproducibility applied to electron linear accelerators

    International Nuclear Information System (INIS)

    Ighigeanu, D.; Martin, D.; Oproiu, C.; Cirstea, E.; Craciun, G.

    2002-01-01

    An original method for obtaining programmed beam single shots and pulse trains with programmed pulse number, pulse repetition frequency, pulse duration and pulse dose is presented. It is particularly useful for automatic control of absorbed dose rate level, irradiation process control as well as in pulse radiolysis studies, single pulse dose measurement or for research experiments where pulse-to-pulse dose reproducibility is required. This method is applied to the electron linear accelerators, ALIN-10 of 6.23 MeV and 82 W and ALID-7, of 5.5 MeV and 670 W, built in NILPRP. In order to implement this method, the accelerator triggering system (ATS) consists of two branches: the gun branch and the magnetron branch. ATS, which synchronizes all the system units, delivers trigger pulses at a programmed repetition rate (up to 250 pulses/s) to the gun (80 kV, 10 A and 4 ms) and magnetron (45 kV, 100 A, and 4 ms).The accelerated electron beam existence is determined by the electron gun and magnetron pulses overlapping. The method consists in controlling the overlapping of pulses in order to deliver the beam in the desired sequence. This control is implemented by a discrete pulse position modulation of gun and/or magnetron pulses. The instabilities of the gun and magnetron transient regimes are avoided by operating the accelerator with no accelerated beam for a certain time. At the operator 'beam start' command, the ATS controls electron gun and magnetron pulses overlapping and the linac beam is generated. The pulse-to-pulse absorbed dose variation is thus considerably reduced. Programmed absorbed dose, irradiation time, beam pulse number or other external events may interrupt the coincidence between the gun and magnetron pulses. Slow absorbed dose variation is compensated by the control of the pulse duration and repetition frequency. Two methods are reported in the electron linear accelerators' development for obtaining the pulse to pulse dose reproducibility: the method

  17. Optical emission and mass spectroscopy of plasma processes in reactive DC pulsed magnetron sputtering of aluminium oxide

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Bulíř, Jiří; Pokorný, Petr; Bočan, Jiří; Fitl, Přemysl; Lančok, Ján; Musil, Jindřich

    2010-01-01

    Roč. 12, č. 3 (2010), 697-700 ISSN 1454-4164 R&D Projects: GA AV ČR IAA100100718; GA AV ČR KAN400100653; GA ČR GP202/09/P324 Institutional research plan: CEZ:AV0Z10100522 Keywords : reactive magnetron sputtering * alumina * plasma spectroscopy * mass spectroscopy * optical emission spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.412, year: 2010

  18. Influence of O2 Flux on Compositions and Properties of ITO Films Deposited at Room Temperature by Direct-Current Pulse Magnetron Sputtering

    International Nuclear Information System (INIS)

    Wang Hua-Lin; Ding Wan-Yu; Liu Chao-Qian; Chai Wei-Ping

    2010-01-01

    Indium tin oxide (ITO) films were deposited on glass substrates at room temperature by dc pulse magnetron sputtering. Varying O 2 flux, ITO films with different properties are obtained. Both x-ray diffractometer and x-ray photoelectron spectrometer are used to study the change of crystalline structures and bonding structures of ITO films, respectively. Electrical properties are measured by four-point probe measurements. The results indicate that the chemical structures and compositions of ITO films strongly depend on the O 2 flux. With increasing O 2 flux, ITO films display better crystallization, which could decrease the resistivity of films. On the contrary, ITO films contain less O vacancies with increasing O 2 flux, which could worsen the conductive properties of films. Without any heat treatment onto the samples, the resistivity of the ITO film could reach 6.0 × 10 −4 Ω ·cm, with the optimal deposition parameter of 0.2 sccm O 2 flux. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Substantial difference in target surface chemistry between reactive dc and high power impulse magnetron sputtering

    Science.gov (United States)

    Greczynski, G.; Mráz, S.; Schneider, J. M.; Hultman, L.

    2018-02-01

    The nitride layer formed in the target race track during the deposition of stoichiometric TiN thin films is a factor 2.5 thicker for high power impulse magnetron sputtering (HIPIMS), compared to conventional dc processing (DCMS). The phenomenon is explained using x-ray photoelectron spectroscopy analysis of the as-operated Ti target surface chemistry supported by sputter depth profiles, dynamic Monte Carlo simulations employing the TRIDYN code, and plasma chemical investigations by ion mass spectrometry. The target chemistry and the thickness of the nitride layer are found to be determined by the implantation of nitrogen ions, predominantly N+ and N2+ for HIPIMS and DCMS, respectively. Knowledge of this method-inherent difference enables robust processing of high quality functional coatings.

  20. DC magnetron sputtering prepared Ag-C thin film anode for thin film lithium ion microbatteries

    International Nuclear Information System (INIS)

    Li, Y.; Tu, J.P.; Shi, D.Q.; Huang, X.H.; Wu, H.M.; Yuan, Y.F.; Zhao, X.B.

    2007-01-01

    An Ag-C thin film was prepared by DC magnetron co-sputtering, using pure silver and graphite as the targets. The microstructure and morphology of the deposited thin film were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Electrochemical performances of the Ag-C thin film anode were investigated by means of discharge/charge and cyclic voltammogram (CV) tests in model cells. The electrochemical impedance spectrum (EIS) characteristics and the chemical diffusion coefficient, D Li of the Ag-C thin film electrode at different discharging states were discussed. It was believed that the excellent cycling performance of the Ag-C electrode was ascribed to the good conductivity of silver and the volume stability of the thin film

  1. Implementation and initial test result of a prototype solid state modulator for pulsed magnetron

    International Nuclear Information System (INIS)

    Dake, Vishal; Mangalvedekar, H.A.; Tillu, Abhijit; Dixit, Kavita P.; Sarukte, Hemant

    2014-01-01

    A solid-state modulator rated for 50 kV, 120A, 4μs and 250 Hz has been designed. The discharging circuit of the modulator is being tested at ∼ 33 kV, 40-80A, at a maximum pulse repetition rate of 30 pps. The paper discusses development and testing of prototype discharging circuit on resistive load and magnetron. The technique used for measurement of pulse transformer leakage inductance, distributed capacitance and stray primary circuit series inductance will also be discussed in detail. It is necessary to have Energy Storage Capacitors with low ESL for these applications (ESL < 40 nH). The method used for evaluating the ESL of locally available metalized polypropylene capacitors will also be presented. (author)

  2. Implementation and initial test result of a prototype solid state modulator for pulsed magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Dake, Vishal; Mangalvedekar, H.A., E-mail: vishaldake90@gmail.com [Veermata Jijabai Technological Institute, Mumbai (India); Tillu, Abhijit; Dixit, Kavita P.; Sarukte, Hemant [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    A solid-state modulator rated for 50 kV, 120A, 4μs and 250 Hz has been designed. The discharging circuit of the modulator is being tested at ∼ 33 kV, 40-80A, at a maximum pulse repetition rate of 30 pps. The paper discusses development and testing of prototype discharging circuit on resistive load and magnetron. The technique used for measurement of pulse transformer leakage inductance, distributed capacitance and stray primary circuit series inductance will also be discussed in detail. It is necessary to have Energy Storage Capacitors with low ESL for these applications (ESL < 40 nH). The method used for evaluating the ESL of locally available metalized polypropylene capacitors will also be presented. (author)

  3. Experimental study on an S-band near-field microwave magnetron power transmission system on hundred-watt level

    Science.gov (United States)

    Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun

    2015-11-01

    A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.

  4. Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kazadevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Neubauer, M. [MUONS Inc., Batavia; Lebedev, V. [Fermilab; Schappert, W. [Fermilab; Yakovlev, V. [Fermilab

    2017-05-01

    Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron transmitters excited by a resonant (injection-locking) phasemodulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the widerange power control required for superconducting accelerators was developed and verified with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADSclass accelerator projects.

  5. CEERI-CAT joint venture for development of accelerator magnetrons

    International Nuclear Information System (INIS)

    Prasad, Sharda; Kaushik, S.C.; Mahesh Kumar; Chaudhary, P.; Shrivastava, Purushottam; Wanmode, Y.; Hannurkar, P.R.

    2003-01-01

    LINAC and Microtron systems for electron acceleration up to few tens of MeV, requires pulsed RF sources such as magnetron and klystron in S-Band frequency range with peak power in the range of few MW. The major emphasis under this program was to develop critical technologies involved in the development of 2 MW magnetron. This paper discusses the development of 2 MW magnetron along with critical technologies involved and test facilities developed by CAT for testing of this magnetron

  6. Bioactivity response of Ta_1_-_xO_x coatings deposited by reactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Almeida Alves, C.F.; Cavaleiro, A.; Carvalho, S.

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft–hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar + O_2 atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates. - Highlights: • Ta_1_-_xO_x coatings were deposited by reactive DC magnetron sputtering. • Amorphous oxide phases were achieved with higher oxygen amounts. • Contact angles progressively diminished, with increasing oxygen content. • Ta oxide surface

  7. Thin Film growth and characterization of Ti doped ZnO by RF/DC magnetron sputtering

    KAUST Repository

    Baseer Haider, M.

    2015-01-01

    Thin film Ti doped ZnO (Ti-ZnO) film were grown on sapphire (0001) substrate by RF and DC magnetron sputtering. Films were grown at a substrate temperature of 250 °C with different Ti/Zn concentration. Surface chemical study of the samples was performed by X-ray photoelectron spectroscopy to determine the stoichiometry and Ti/Zn ratio for all samples. Surface morphology of the samples were studied by atomic force microscopy. X-ray diffraction was carried out to determine the crystallinity of the film. No secondary phases of TixOy was observed. We observed a slight increase in the lattice constant with the increase in Ti concentration in ZnO. No ferromagnetic signal was observed for any of the samples. However, some samples showed super-paramagnetic phase. © 2015 Materials Research Society.

  8. Power quality improvement by using multi-pulse AC-DC converters for DC drives: Modeling, simulation and its digital implementation

    Directory of Open Access Journals (Sweden)

    Mohd Tariq

    2014-12-01

    Full Text Available The paper presents the modeling, simulation and digital implementation of power quality improvement of DC drives by using multi pulse AC–DC converter. As it is a well-known fact that power quality determines the fitness of electrical power to consumer devices, hence an effort has been made to improve power quality in this work. Simulation and digital implementation with the help of MATLAB/Simulink has been done and results obtained are discussed in detail to verify the theoretical results. The multipulse converter was connected with DC drives and was run at no load condition to find out the transient and steady state performances. FFT analysis has been performed and Total Harmonic Distortion (THD results obtained at different pulses are shown here.

  9. Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering

    International Nuclear Information System (INIS)

    Agnarsson, B.; Magnus, F.; Tryggvason, T.K.; Ingason, A.S.; Leosson, K.; Olafsson, S.; Gudmundsson, J.T.

    2013-01-01

    Thin TiO 2 films were grown on Si(001) substrates by reactive dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS) at temperatures ranging from 300 to 700 °C. Optical and structural properties of films were compared both before and after post-annealing using scanning electron microscopy, low angle X-ray reflection (XRR), grazing incidence X-ray diffractometry and spectroscopic ellipsometry. Both dcMS- and HiPIMS-grown films reveal polycrystalline rutile TiO 2 , even prior to post-annealing. The HiPIMS-grown films exhibit significantly larger grains compared to that of dcMC-grown films, approaching 100% of the film thickness for films grown at 700 °C. In addition, the XRR surface roughness of HiPIMS-grown films was significantly lower than that of dcMS-grown films over the whole temperature range 300–700 °C. Dispersion curves could only be obtained for the HiPIMS-grown films, which were shown to have a refractive index in the range of 2.7–2.85 at 500 nm. The results show that thin, rutile TiO 2 films, with high refractive index, can be obtained by HiPIMS at relatively low growth temperatures, without post-annealing. Furthermore, these films are smoother and show better optical characteristics than their dcMS-grown counterparts. - Highlights: • We demonstrate growth of rutile TiO 2 on Si (111) by high power impulse magnetron sputtering. • The films exhibit significantly larger grains than dc magnetron sputtered films • TiO 2 films with high refractive index are obtained without post-growth annealing

  10. Optical transponder DC probe [for pulsed power generator

    CERN Document Server

    Thompson, M C

    1999-01-01

    The Atlas Pulse Power, Marx Bank will produce significant electromagnetic interference potential (EMI) via its 192 spark-gaps and trigger systems (36 more spark gaps). The authors have a need to measure DC charge components to a fair degree of accuracy during charge to ensure a safe and balanced system. Isolation from elevated- deck and/or high EMI environments during DC voltage or current measurement has classically been approached using frequency modulation (FM) of an imposed carrier on an optical fiber coupled system. There are shortcomings in most systems that can generally be compensated for by various means. In their application of remote sensing, the power to run this remote probe was a central issue. As such the authors took another approach to monitor the DC charge record for the Atlas' Marx banks. (0 refs).

  11. Plasma ``anti-assistance'' and ``self-assistance'' to high power impulse magnetron sputtering

    Science.gov (United States)

    Anders, André; Yushkov, Georgy Yu.

    2009-04-01

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contraproductive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  12. Plasma 'anti-assistance' and 'self-assistance' to high power impulse magnetron sputtering

    International Nuclear Information System (INIS)

    Anders, Andre; Yushkov, Georgy Yu.

    2009-01-01

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contraproductive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering

  13. Effect of Oxygen Partial Pressure on the Electrical and Optical Properties of DC Magnetron Sputtered Amorphous TiO2 Films

    OpenAIRE

    Chandra Sekhar, M.; Kondaiah, P.; Radha Krishna, B.; Uthanna, S.

    2013-01-01

    Titanium dioxide (TiO2) thin films were deposited on p-Si (100) and Corning glass substrates held at room temperature by DC magnetron sputtering at different oxygen partial pressures in the range 9 × 10−3–9 × 10−2 Pa. The influence of oxygen partial pressure on the structural, electrical, and optical properties of the deposited films was systematically studied. XPS studies confirmed that the film formed at an oxygen partial pressure of 6×10−2 Pa was nearly stoichiometric. TiO2 films formed at...

  14. Preparation of TiN films by arc ion plating using dc and pulsed biases

    International Nuclear Information System (INIS)

    Huang, M.D.; Lee, Y.P.; Dong, C.; Lin, G.Q.; Sun, C.; Wen, L.S.

    2004-01-01

    TiN hard coatings were prepared by arc ion plating with both direct current (dc) and pulsed biases. An extensive investigation was undertaken to determine the effects of the substrate temperature on the mechanical properties and the microstructures of films. The results show that the substrate temperature is decreased evidently when a pulsed bias instead of a dc one is employed. At the same time, the microstructures and the properties are also improved. A low-temperature arc ion plating can be realized by using pulsed biases

  15. Effect of N_2 flow rate on the properties of N doped TiO_2 films deposited by DC coupled RF magnetron sputtering

    International Nuclear Information System (INIS)

    Peng, Shou; Yang, Yong; Li, Gang; Jiang, Jiwen; Jin, Kewu; Yao, TingTing; Zhang, Kuanxiang; Cao, Xin; Wang, Yun; Xu, Genbao

    2016-01-01

    N doped TiO_2 films were deposited on glass substrates at room temperature using DC coupled RF magnetron sputtering with a TiO_2 ceramic target. The influences of N_2 flow rate on the deposition rate, crystal structure, chemical composition and band gap of the deposited films were investigated by Optical profiler, X-ray diffraction, X-ray photoelectron spectroscope and ultraviolet-visible spectrophotometer. The film growth rate gradually decreased with increasing N_2 flow rate. As N_2 flow rate increased, the crystallization of the films deteriorated, and the films tended to form amorphous structure. XPS analysis revealed that N dopant atoms were added at the substitutional sites into TiO_2 lattice structure. FE-SEM results showed that the grain size of the film decreased and the crystallinity degraded as N_2 flow rate increases. In addition, N doping caused an obvious red shift in the optical absorption edge. - Highlights: • N doped TiO_2 films were deposited by DC coupled RF magnetron reactive sputtering. • As N_2 flow rate increases, the crystallization of the deposited films degrades. • The higher N_2 flow rate is beneficial to form more substituted N in the film. • N doping causes an obvious red shift in the absorption wavelength.

  16. Effect of Ta buffer and NiFe seed layers on pulsed-DC magnetron sputtered Ir{sub 20}Mn{sub 80}/Co{sub 90}Fe{sub 10} exchange bias

    Energy Technology Data Exchange (ETDEWEB)

    Oksuezoglu, Ramis Mustafa, E-mail: rmoksuzoglu@anadolu.edu.t [University of Anadolu, Faculty of Engineering and Architecture, Department of Materials Sciences and Engineering, Iki Eyluel Campus, 26555 Eskisehir (Turkey); Yildirim, Mustafa; Cinar, Hakan [University of Anadolu, Faculty of Engineering and Architecture, Department of Materials Sciences and Engineering, Iki Eyluel Campus, 26555 Eskisehir (Turkey); Hildebrandt, Erwin; Alff, Lambert [Department of Materials Sciences, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt (Germany)

    2011-07-15

    A systematic investigation has been done on the correlation between texture, grain size evolution and magnetic properties in Ta/Ni{sub 81}Fe{sub 19}/Ir{sub 20}Mn{sub 80}/Co{sub 90}Fe{sub 10}/Ta exchange bias in dependence of Ta buffer and NiFe seed layer thickness in the range of 2-10 nm, deposited by pulsed DC magnetron sputtering technique. A strong dependence of <1 1 1> texture on the Ta/NiFe thicknesses was found, where the reducing and increasing texture was correlated with exchange bias field and unidirectional anisotropy energy constant at both NiFe/IrMn and IrMn/CoFe interfaces. However, a direct correlation between average grain size in IrMn and H{sub ex} and H{sub c} was not observed. L1{sub 2} phase IrMn{sub 3} could be formed by thickness optimization of Ta/NiFe layers by deposition at room temperature, for which the maximum exchange coupling parameters were achieved. We conclude finally that the coercivity is mainly influenced by texture induced interfacial effects at NiFe/IrMn/CoFe interfaces developing with Ta/NiFe thicknesses. - Research highlights: We discussed the influence of Ta/NiFe thicknesses on structure and grain size in AF layer and texture. A direct correlation between the <1 1 1> texture and exchange coupling was found. A direct relation between average grain size and H{sub ex} and H{sub c} was not observed. L1{sub 2} phase IrMn{sub 3} was formed by deposition at room temperature for Ta (5-6 nm)/NiFe (6-8 nm). We conclude that the coercivity is influenced by order/disorder at NiFe/IrMn/CoFe interfaces.

  17. Hard nanocrystalline Zr-B-C-N films with high electrical conductivity prepared by pulsed magnetron sputtering

    Czech Academy of Sciences Publication Activity Database

    Vlček, J.; Steidl, P.; Kohout, J.; Čerstvý, R.; Zeman, P.; Prokšová, S.; Peřina, Vratislav

    2013-01-01

    Roč. 215, JAN 25 (2013), s. 186-191 ISSN 0257-8972. [39th International Conference on Metallurgical Coatings and Thin Films (ICMTF). San Diego, California, 23.04.2012-27.04.2012] Institutional support: RVO:61389005 Keywords : Zr-B-C-N films * nanocomposite materials * pulsed magnetron sputtering * hard ness * high electrical conductivity * osidation resistance Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.199, year: 2013 http://www.sciencedirect.com/science/article/pii/S0257897212010584

  18. Corrosion resistance of CrN thin films produced by dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ruden, A. [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales (Colombia); Laboratorio de Recubrimientos Duros y Aplicaciones Industriales–RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Departamento de matemáticas, Universidad Tecnológica de Pereira, Pereira (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales (Colombia); Paladines, A.U.; Sequeda, F. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales–RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia)

    2013-04-01

    In this study, the electrochemical behavior of chromium nitride (CrN) coatings deposited on two steel substrates, AISI 304 and AISI 1440, was investigated. The CrN coatings were prepared using a reactive d.c. magnetron sputtering deposition technique at two different pressures (P1 = 0.4 Pa and P2 = 4 Pa) with a mixture of N{sub 2}–Ar (1.5-10). The microstructure and crystallinity of the CrN coatings were investigated using X-ray diffraction. The aqueous corrosion behavior of the coatings was evaluated using two methods. The polarization resistance (Tafel curves) and electrochemical impedance spectra (EIS) in a saline (3.5% NaCl solution) environment were measured in terms of the open-circuit potentials and polarization resistance (R{sub p}). The results indicated that the CrN coatings present better corrosion resistance and R{sub p} values than do the uncoated steel substrates, especially for the coatings produced on the AISI 304 substrates, which exhibited a strong enhancement in the corrosion resistance. Furthermore, better behavior was observed for the coatings produced at lower pressures (0.4 Pa) than those grown at 4 Pa.

  19. Isolated PDM and PWM DC-AC SICAMs[Pulse Density Modulated; Pulse Width Modulated

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2004-03-15

    In this report a class of isolated PDM and PWM DC-AC SICAMs is described, which introduce the audio reference only in the output stage. AC-DC power supply is implemented in its simplest form: diode rectifier followed by a medium-size charge-storage capacitor. Isolation from the AC mains is achieved using a high frequency (HF) transformer, receiving the HF voltage pulses from the input 'inverter' stage and transferring them to the output 'rectifier+inverter' stage, which can use either PDM or PWM. The latter stage is then interfaced to the load using an output low-pass filter. Each of the dedicated stages is discussed in detail. Measurements on the master/slave PWM DC-AC SICAM prototype are presented to help benchmarking the performance of this class of SICAMs and identify the advantages and drawbacks. (au)

  20. Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Aryanto, Didik, E-mail: didi027@lipi.go.id [Research Center for Physics, Indonesian Institute of Sciences, Serpong 15314, Tangerang Selatan (Indonesia); Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Marwoto, Putut; Sugianto [Physics Department, Faculty of Mathematics and Science, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Sudiro, Toto [Research Center for Physics, Indonesian Institute of Sciences, Serpong 15314, Tangerang Selatan (Indonesia); Birowosuto, Muhammad D. [Research Center for Physics, Indonesian Institute of Sciences, Serpong 15314, Tangerang Selatan (Indonesia); CINTRA UMI CNRS/NTU/THALES 3288 Research Techno Plaza, 50 Nanyang Drive, Border X Block, level 6, 637553 (Singapore); Sulhadi [Physics Department, Faculty of Mathematics and Science, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia)

    2016-04-19

    Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtained at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.

  1. CrN thin films prepared by reactive DC magnetron sputtering for symmetric supercapacitors

    KAUST Repository

    Wei, Binbin

    2016-12-29

    Supercapacitors have been becoming indispensable energy storage devices in micro-electromechanical systems and have been widely studied over the past few decades. Transition metal nitrides with excellent electrical conductivity and superior cycling stability are promising candidates as supercapacitor electrode materials. In this work, we report the fabrication of CrN thin films using reactive DC magnetron sputtering and further their applications for symmetric supercapacitors for the first time. The CrN thin film electrodes fabricated under the deposition pressure of 3.5 Pa show an areal specific capacitance of 12.8 mF cm at 1.0 mA cm and high cycling stability with 92.1% capacitance retention after 20 000 cycles in a 0.5 M HSO electrolyte. Furthermore, our developed CrN//CrN symmetric supercapacitor can deliver a high energy density of 8.2 mW h cm at the power density of 0.7 W cm along with outstanding cycling stability. Thus, the CrN thin films have great potential for application in supercapacitors and other energy storage systems.

  2. A microcontroller based tuning mechanism for the magnetron

    International Nuclear Information System (INIS)

    Khan, A.M.; Mahfooz, M.; Hanumaiah, B.; Ganesh; Siddappa, K.

    2006-01-01

    In this paper we report on a control system developed to tune the magnetron frequency to get the maximum beam pulse in the microtron (electron accelerator facility at Mangalore University). The control system so designed consists of a microcontroller, a phase locked loop (PLL) and a digital to analog converter (DAC) to control the magnetron frequency. The voltage value given by the microcontroller through the DAC decides the reference frequency. The PLL gives the error voltage whenever there is difference between the reference and the magnetron frequencies. The microcontroller unit tracks the error voltage and tunes the magnetron with the help of a tuner mechanism connected through a stepper motor. The microcontroller also monitors the beam current level and accordingly adjusts the reference frequency to successfully tune the magnetron. (author)

  3. Low friction coefficient coatings Ni-Cr by magnetron sputtering, DC

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Hernandez, J.; Mandujano-Ruiz, A.; Torres-Gonzalez, J.; Espinosa-Beltran, F. J.; Herrera-Hernandez, H.

    2015-07-01

    Magnetron Sputter Deposition technique with DC was used for the deposition of Ni-Cr coatings on AISI 316 SS like substrate. The cathode with a nominal composition Ni-22 at% Cr was prepared by Mechanical Alloying (MA) technique, with a maximum milling time of 16 hours and, with a high energy SPEX 8000 mill. The coatings were made under Argon atmosphere at room temperature with a power of 100 W at different times of growth. Chemical composition, microstructure, topography, nano hardness and wear of the coatings were evaluated using the techniques of microanalysis by energy dispersive X-ray analyzer (EDAX), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Nano-indentation and pin-on-Disk, respectively. After milling, was not detected contamination in the mixtures. XRD analysis revealed that the microstructure of the Ni-Cr alloy was maintained in the coatings with respect to MA powders, with some degree of recrystallization. Nano hardness values were in the order of 8.8 GPa with a Youngs modulus of 195 GPa. The adhesion of the films was evaluated according to their resistance to fracture when these were indented at different loads using Vickers microhardness. The wear test results showed a decrease in the friction coefficient with respect to the increase of thickness films, getting a minimum value of 0.08 with a thickness of 1 μm and which correspond with the maximum growing time. (Author)

  4. Preparation and characterization of photocatalytic performance of hierarchical heterogeneous nanostructured ZnO/TiO2 films made by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Le Phuc Quy; Vu Thi Hanh Thu

    2013-01-01

    With the aim to enhance photocatalytic properties and anti-Ecoli bacteria abilities of TiO 2 thin films; hierarchical heterogeneous nanostructured ZnO/TiO 2 (HN s ) films were deposited by DC magnetron sputtering. The obtained results showed that both the photocatalytic performance and anti-Ecoli bacteria ability of HN s films exhibited enhancement in comparison with standard TiO 2 films. This enhancement was explained due to the reduction of the electron - hole recombination and the red shift of absorption edge of the HNs films. (author)

  5. Synthesis and characterization of DC magnetron sputtered ZnO thin films under high working pressures

    International Nuclear Information System (INIS)

    Hezam, M.; Tabet, N.; Mekki, A.

    2010-01-01

    ZnO thin films were deposited on glass substrates using direct current (dc) magnetron sputtering under high working pressures. A pure zinc target was used, and sputtering was carried out in an oxygen atmosphere. The working pressure was varied between 50 and 800 mTorr. XRD characterization showed that for a window of working pressures between 300 and 500 mTorr, the deposited films were polycrystalline, with strong preferential orientation of grains along the c-axis. The film deposited at 400 mTorr had the highest (002) peak with the largest estimated grain size. Outside this window, the crystallinity and c-orientation of grains are lost. The microstructure of the films was investigated by Atomic Force microscopy (AFM). Optical transparency of the films was about 85%. The films produced were highly resistive, which might provide new alternatives for the synthesis of ZnO thin films aimed for SAW devices.

  6. Distribution of Fe atom density in a dc magnetron sputtering plasma source measured by laser-induced fluorescence imaging spectroscopy

    Science.gov (United States)

    Shibagaki, K.; Nafarizal, N.; Sasaki, K.; Toyoda, H.; Iwata, S.; Kato, T.; Tsunashima, S.; Sugai, H.

    2003-10-01

    Magnetron sputtering discharge is widely used as an efficient method for thin film fabrication. In order to achieve the optimized fabrication, understanding of the kinetics in plasmas is essential. In the present work, we measured the density distribution of sputtered Fe atoms using laser-induced fluorescence imaging spectroscopy. A dc magnetron plasma source with a Fe target was used. An area of 20 × 2 mm in front of the target was irradiated by a tunable laser beam having a planar shape. The picture of laser-induced fluorescence on the laser beam was taken using an ICCD camera. In this way, we obtained the two-dimensional image of the Fe atom density. As a result, it has been found that the Fe atom density observed at a distance of several centimeters from the target is higher than that adjacent to the target, when the Ar gas pressure was relatively high. It is suggested from this result that some gas-phase production processes of Fe atoms are available in the plasma. This work has been performed under the 21st Century COE Program by the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  7. Hetero-epitaxial growth of TiC films on MgO(001) at 100 °C by DC reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Braic, M.; Zoita, N.C.; Danila, M.; Grigorescu, C.E.A.; Logofatu, C.

    2015-01-01

    Hetero-epitaxial TiC thin films were deposited at 100 °C on MgO(001) by DC reactive magnetron sputtering in a mixture of Ar and CH 4 . The 62 nm thick films were analyzed for elemental composition and chemical bonding by Auger electron spectroscopy, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. The crystallographic structure investigation by high resolution X-ray diffraction revealed that the films consist of two layers: an interface partially strained epilayer with high crystalline quality, and a relaxed layer, formed by columnar grains, maintaining the epitaxial relationship with the substrate. The films presented smooth surfaces (RMS roughness ~ 0.55 nm), with circular equi-sized grains/crystallites, as observed by atomic force microscopy. The Hall measurements in Van der Pauw geometry revealed relatively high resistivity value ~ 620 μΩ cm, ascribed to electron scattering on interfaces, on grain boundaries and on different defects/dislocations. - Highlights: • Hetero-epitaxial TiC 0.84 thin films were grown on MgO(001) at 100 °C by magnetron sputtering. • 62 nm thick films were synthesized by magnetron sputtering, using Ti, Ar and CH 4 . • The film comprises a partially strained interface epilayer and a relaxed top layer. • Both layers preserve the epitaxial relationship with the substrate. • Low RMS surface roughness ~ 0.55 nm and grains with mean lateral size of ~ 38.5 nm were observed

  8. Hetero-epitaxial growth of TiC films on MgO(001) at 100 °C by DC reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Braic, M. [National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele (Romania); Zoita, N.C., E-mail: cnzoita@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele (Romania); Danila, M. [National Institute for Research and Development in Microtechnology, 126A Erou Iancu Nicolae Blvd., 077190 Bucharest (Romania); Grigorescu, C.E.A. [National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele (Romania); Logofatu, C. [National Institute of Materials Physics, 105 bis Atomistilor St., 077125 Magurele (Romania)

    2015-08-31

    Hetero-epitaxial TiC thin films were deposited at 100 °C on MgO(001) by DC reactive magnetron sputtering in a mixture of Ar and CH{sub 4}. The 62 nm thick films were analyzed for elemental composition and chemical bonding by Auger electron spectroscopy, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. The crystallographic structure investigation by high resolution X-ray diffraction revealed that the films consist of two layers: an interface partially strained epilayer with high crystalline quality, and a relaxed layer, formed by columnar grains, maintaining the epitaxial relationship with the substrate. The films presented smooth surfaces (RMS roughness ~ 0.55 nm), with circular equi-sized grains/crystallites, as observed by atomic force microscopy. The Hall measurements in Van der Pauw geometry revealed relatively high resistivity value ~ 620 μΩ cm, ascribed to electron scattering on interfaces, on grain boundaries and on different defects/dislocations. - Highlights: • Hetero-epitaxial TiC{sub 0.84} thin films were grown on MgO(001) at 100 °C by magnetron sputtering. • 62 nm thick films were synthesized by magnetron sputtering, using Ti, Ar and CH{sub 4}. • The film comprises a partially strained interface epilayer and a relaxed top layer. • Both layers preserve the epitaxial relationship with the substrate. • Low RMS surface roughness ~ 0.55 nm and grains with mean lateral size of ~ 38.5 nm were observed.

  9. Particle-balance models for pulsed sputtering magnetrons

    Science.gov (United States)

    Huo, Chunqing; Lundin, D.; Gudmundsson, J. T.; Raadu, M. A.; Bradley, J. W.; Brenning, N.

    2017-09-01

    The time-dependent plasma discharge ionization region model (IRM) has been under continuous development during the past decade and used in several studies of the ionization region of high-power impulse magnetron sputtering (HiPIMS) discharges. In the present work, a complete description of the most recent version of the IRM is given, which includes improvements, such as allowing for returning of the working gas atoms from the target, a separate treatment of hot secondary electrons, addition of doubly charged metal ions, etc. To show the general applicability of the IRM, two different HiPIMS discharges are investigated. The first set concerns 400 μs long discharge pulses applied to an Al target in an Ar atmosphere at 1.8 Pa. The second set focuses on 100 μs long discharge pulses applied to a Ti target in an Ar atmosphere at 0.54 Pa, and explores the effects of varying the magnetic field strength. The model results show that Al2+ -ions contribute negligibly to the production of secondary electrons, while Ti2+ -ions effectively contribute to the production of secondary electrons. Similarly, the model results show that for an argon discharge with Al target the contribution of Al+-ions to the discharge current at the target surface is over 90% at 800 V. However, at 400 V the Al+-ions and Ar+-ions contribute roughly equally to the discharge current in the initial peak, while in the plateau region Ar+-ions contribute to roughly \\frac{2}{3} of the current. For high currents the discharge with Al target develops almost pure self-sputter recycling, while the discharge with Ti target exhibits close to a 50/50 combination of self-sputter recycling and working gas-recycling. For a Ti target, a self-sputter yield significantly below unity makes working gas-recycling necessary at high currents. For the discharge with Ti target, a decrease in the B-field strength, resulted in a corresponding stepwise increase in the discharge resistivity.

  10. Low friction coefficient coatings Ni-Cr by magnetron sputtering, DC

    Directory of Open Access Journals (Sweden)

    Morales-Hernández, Jorge

    2015-09-01

    Full Text Available Magnetron Sputter Deposition technique with DC was used for the deposition of Ni-Cr coatings on AISI 316 SS like substrate. The cathode with a nominal composition Ni-22 at% Cr was prepared by Mechanical Alloying (MA technique, with a maximum milling time of 16 hours and, with a high energy SPEX 8000 mill. The coatings were made under Argon atmosphere at room temperature with a power of 100 W at different times of growth. Chemical composition, microstructure, topography, nanohardness and wear of the coatings were evaluated using the techniques of microanalysis by energy dispersive X-ray analyzer (EDAX, X-Ray Diffraction (XRD, Atomic Force Microscopy (AFM, Nano-indentation and pin-on-Disk, respectively. After milling, was not detected contamination in the mixtures. XRD analysis revealed that the microstructure of the Ni-Cr alloy was maintained in the coatings with respect to MA powders, with some degree of recrystallization. Nanohardness values were in the order of 8.8 GPa with a Young’s modulus of 195 GPa. The adhesion of the films was evaluated according to their resistance to fracture when these were indented at different loads using Vickers microhardness. The wear test results showed a decrease in the friction coefficient with respect to the increase of thickness’ films, getting a minimum value of 0.08 with a thickness of 1 μm and which correspond with the maximum growing time.La técnica de Deposición por Chisporroteo Magnético (Magnetron Sputtering con el proceso DC, fue usado para la deposición de los recubrimientos de Ni-Cr sobre acero inoxidable AISI 316 como sustrato. El cátodo con una composición nominal Ni-22 at% Cr fue preparado por la técnica de Aleado Mecánico (AM, con un tiempo máximo de molienda de 16 horas y con un molino de alta energía tipo SPEX 8000. Las películas se realizaron bajo una atmósfera de argón a temperatura ambiente con una potencia de 100 W a diferentes tiempos de crecimiento. La composición qu

  11. Electrochromic properties of bipolar pulsed magnetron sputter deposited tungsten–molybdenum oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tai-Nan [Chemical Engineering Division, Institute of Nuclear Energy Research, Taoyuan 325, Taiwan, ROC (China); Lin, Yi Han; Lee, Chin Tan [Department of Electronic Engineering, National Quemoy University, Kinmen 892, Taiwan, ROC (China); Han, Sheng [Center of General Education, National Taichung Institute of Technology, Taichung 404, Taiwan, ROC (China); Weng, Ko-Wei, E-mail: kowei@nqu.edu.tw [Department of Electronic Engineering, National Quemoy University, Kinmen 892, Taiwan, ROC (China)

    2015-06-01

    There are great interests in electrochromic technology for smart windows and displays over past decades. In this study, the WMoO{sub x} thin films were deposited onto indium tin oxide glass and silicon substrates by pulsed magnetron sputter system with W and Mo targets. The films were deposited with fixed W target power while the variant parameter of Mo target power in the range 50, 100, 150 and 200 W was investigated. The working pressure was fixed at 1.33 Pa with a gas mixture of Ar (30 sccm) and O{sub 2} (15 sccm). The film thickness increased with the Mo target power. Higher plasma power resulted in a crystalline structure which would reduce the electrochromic property of the film. The influence of plasma powers applied to Mo target on the structural, optical and electrochromic properties of the WMoO{sub x} thin films has been investigated. WMoO{sub x} films grown at Mo target powers less than 100 W were found to be amorphous. The films deposited at 150 W, which is the optimal fabrication condition, exhibit better electrochromic properties with high optical modulation, high coloration efficiency and less color memory effect at wavelength 400, 550 and 800 nm. The improvement resulted from the effect of doping Mo has been tested. The maximum ΔT (%) values are 36.6% at 400 nm, 65.6% at 550 nm, and 66.6% at 800 nm for pure WO{sub 3} film. The addition of Mo content in the WMoO{sub x} films provides better resistance to the short wavelength light source and can be used in the concerned application. - Highlights: • WMoO{sub x} films are deposited by pulsed magnetron sputter with pure W and Mo targets. • Mo addition in WMoO{sub x} provides better resistance to short wavelength light source. • WMoO{sub x} films exhibit electrochemical stability in the cycling test.

  12. Structural and electrical characteristics of highly textured oxidation-free Ru thin films by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Tian, H.-Y.; Wang Yu; Chan, H.-L-W.; Choy, C.-L.; No, K.-S.

    2005-01-01

    Textured Ru thin films (∼120 nm) were deposited on Si and rolling-assisted biaxially textured Ni substrates by a DC magnetron sputtering technique with a two-step process. The biaxially textured pure Ni substrates with a thickness of 80 μm were fabricated by rolling followed by recrystallization. The alignments and the crystallinity of Ru films were analyzed by pole figures, as well as X-ray diffraction (θ - 2θ) analysis. The highly (0 0 2) oriented Ru films were fabricated on Si substrates, and four-fold symmetric Ru films on Ni(2 0 0) substrates. The resistivities of pure metallic Ru films were 20-80 μΩ cm for Ru on Si and 16-40 μΩ cm on Ni, respectively, which is sufficiently low to be used as a buffer layer in superconductor tapes or electrode materials in capacitor dielectrics

  13. Effect of sputtering power on structure and properties of Bi film deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Liao Guo; He Zhibing; Xu Hua; Li Jun; Chen Taihua; Chen Jiajun

    2012-01-01

    Bi film was fabricated at different sputtering powers by DC magnetron sputtering. The deposition rate of Bi film as the function of sputtering power was studied. The surface topography of Bi film was observed by SEM, and the growth mode of Bi film was investigated. The crystal structure was analyzed by XRD. The grain size and stress of Bi film were calculated. The SEM images show that all the films are columnar growth. The average grain size firstly increases as the sputtering power increases, then decreases at 60 W. The film becomes loose with the increase of sputtering power, while, the film gets compact when the sputtering power becomes from 45 to 60 W. The XRD results show that films are polycrystalline of hexagonal. And the stress transforms from the tensile stress to compressive stress as the sputtering power increases. (authors)

  14. Bioactivity response of Ta{sub 1-x}O{sub x} coatings deposited by reactive DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Alves, C.F., E-mail: cristiana.alves@fisica.uminho.pt [GRF-CFUM, Physics Departament, University of Minho, Campus of Azurem, Guimaraes 4800-058 (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Coimbra 3030-788 (Portugal); Carvalho, S. [GRF-CFUM, Physics Departament, University of Minho, Campus of Azurem, Guimaraes 4800-058 (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Coimbra 3030-788 (Portugal)

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft–hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar + O{sub 2} atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates. - Highlights: • Ta{sub 1-x}O{sub x} coatings were deposited by reactive DC magnetron sputtering. • Amorphous oxide phases were achieved with higher oxygen amounts. • Contact angles progressively diminished, with increasing oxygen content. • Ta

  15. A PLL based automated magnetron tuning mechanism for electron accelerators

    International Nuclear Information System (INIS)

    Khan, A M; Mahfooz, Mohammed; Sanjeev, Ganesh

    2008-01-01

    In this paper we report on a control system developed to tune the magnetron frequency to get the maximum beam pulse in a Microtron (an electron accelerator facility at Mangalore University). The control system so designed consists of a Microcontroller Unit (MCU), a Phase Locked Loop (PLL) and a Digital to Analog Converter (DAC) to track and tune the magnetron frequency. A PLL is used to track the deviation of the magnetron output frequency, and by monitoring the reflected wave voltage level, the microcontroller unit tunes the magnetron with the help of a tuner mechanism connected through a stepper motor.

  16. A PLL based automated magnetron tuning mechanism for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A M; Mahfooz, Mohammed [Dept. of Electronics, Mangalore University, Mangalagangotri, Karnataka State, India - 574 199 (India); Sanjeev, Ganesh [Microtron Centre, Mangalore University, Mangalagangotri, Karnataka State, India - 574 199 (India)], E-mail: mahfooz_81@yahoo.com

    2008-09-15

    In this paper we report on a control system developed to tune the magnetron frequency to get the maximum beam pulse in a Microtron (an electron accelerator facility at Mangalore University). The control system so designed consists of a Microcontroller Unit (MCU), a Phase Locked Loop (PLL) and a Digital to Analog Converter (DAC) to track and tune the magnetron frequency. A PLL is used to track the deviation of the magnetron output frequency, and by monitoring the reflected wave voltage level, the microcontroller unit tunes the magnetron with the help of a tuner mechanism connected through a stepper motor.

  17. Low temperature ITO thin film deposition on PES substrate using pulse magnetron sputtering

    International Nuclear Information System (INIS)

    Lin, Y.C.; Li, J.Y.; Yen, W.T.

    2008-01-01

    Experiments were conducted using pulse magnetron sputtering (PMS) to deposit transparent conducting indium tin oxide (ITO) thin film onto flexible polyethersulfone (PES) plastic substrates. The thin film microstructure, optoelectronic and residual stress were analyzed using the modulating PMS power, work pressure, pulse frequency, duty cycle and cycle time process parameters. The residual stress of the thin film was determined by scanning electron microscopy (SEM) combined with the Sony equation. The experimental results show that PMS has a lower process temperature, higher deposition rate and lower resistivity compared with the radio frequency process at the same output power. The duty cycle increase produces the optimum optoelectronic characteristics. When the pressure, power, duty cycle and sputter time are increased, the thin film stress will also increase, causing flexural distortion in the PES plastic substrate. When the deposition thickness reaches 1.5 μm, ITO thin film will appear with a distinct split. Under 5 mtorr work pressure, 60 W power, 33 μs duty time and 2 μs pulse reverse time at duty cycle 95%, thin film with an optimized electrical 3.0 x 10 -4 Ω-cm, RMS surface roughness of 0.85 nm and visible region optical transmittance will be achieved with acquisition of over 85%

  18. Time resolved 2-D optical imaging of a pulsed unbalanced magnetron plasma

    International Nuclear Information System (INIS)

    Bradley, J W; Clarke, G C B; Braithwaite, N St J; Bryant, P M; Kelly, P J

    2006-01-01

    Using wavelength filtered two dimensional (2-D) optical imaging, the temporal and spatial evolution of selected excited species in a pulsed magnetron discharge has been studied. A titanium target was sputtered at a pulse frequency of 100 kHz, in an argon atmosphere, at an operating pressure of 0.27 Pa. The radial information of the emissivity was determined using the Abel inversion technique. The results show strong excitation of the observed species above the racetrack in the on-time, and the possible development of an ion-acoustic wave, initiated after the off-on transition. The on-off transition is accompanied by a burst of light from the plasma bulk consistent with the transient plasma potential reaching about +200 V. During this phase, we argue that there is a release of secondary electrons from the grounded substrate and walls due to ion bombardment, as well as an increased confinement of energetic plasma electrons. The characteristic decay times of the selected transitions at 750.4, 751.5, 810.4 and 811.5 nm (ArI), present within the bandpass width of our filters, is briefly discussed in terms of the production of fast electrons in the system

  19. Response of larval sea lampreys (Petromyzon marinus) to pulsed DC electrical stimuli in laboratory experiments

    Science.gov (United States)

    Bowen, Anjanette K.; Weisser, John W.; Bergstedt, Roger A.; Famoye, Felix

    2003-01-01

    Four electrical factors that are used in pulsed DC electrofishing for larval sea lampreys (Petromyzon marinus) were evaluated in two laboratory studies to determine the optimal values to induce larval emergence over a range of water temperatures and conductivities. Burrowed larvae were exposed to combinations of pulsed DC electrical factors including five pulse frequencies, three pulse patterns, and two levels of duty cycle over a range of seven voltage gradients in two separate studies conducted at water temperatures of 10, 15, and 20°C and water conductivities of 25, 200, and 900 μS/cm. A four-way analysis of variance was used to determine significant (α = 0.05) influences of each electrical factor on larval emergence. Multiple comparison tests with Bonferroni adjustments were used to determine which values of each factor resulted in significantly higher emergence at each temperature and conductivity. Voltage gradient and pulse frequency significantly affected emergence according to the ANOVA model at each temperature and conductivity tested. Duty cycle and pulse pattern generally did not significantly influence the model. Findings suggest that a setting of 2.0 V/cm, 3 pulses/sec, 10% duty, and 2:2 pulse pattern seems the most promising in waters of medium conductivity and across a variety of temperatures. This information provides a basis for understanding larval response to pulsed DC electrofishing gear factors and identifies electrofisher settings that show promise to increase the efficiency of the gear during assessments for burrowed sea lamprey larvae.

  20. Properties of Ce-doped ITO films deposited on polymer substrate by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Kang, Y.M.; Kwon, S.H.; Choi, J.H.; Cho, Y.J.; Song, P.K.

    2010-01-01

    Ce-doped indium tin oxide (ITO:Ce) films were deposited on flexible polyimide substrates by DC magnetron sputtering using ITO targets containing various CeO 2 contents (CeO 2 : 0, 0.5, 3.0, 4.0, 6.0 wt.%) at room temperature and post-annealed at 200 o C. The crystallinity of the ITO films decreased with increasing Ce content, and it led to a decrease in surface roughness. In addition, a relatively small change in resistance in dynamic stress mode was obtained for ITO:Ce films even after the annealing at high temperature (200 o C). The minimum resistivity of the amorphous ITO:Ce films was 3.96 x 10 -4 Ωcm, which was deposited using a 3.0 wt.% CeO 2 doped ITO target. The amorphous ITO:Ce films not only have comparable electrical properties to the polycrystalline films but also have a crystallization temperature > 200 o C. In addition, the amorphous ITO:Ce film showed stable mechanical properties in the bended state.

  1. Structural and optical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B. Rajesh, E-mail: rajphyind@gmail.com [Department of Physics, GITAM Institute of Technology, GITAM University, Visakhapatnam - 530 045, A.P. (India); Rao, T. Subba, E-mail: thotasubbarao6@gmail.com [Department of Physics, Sri Krishnadevaraya University, Anantapuramu - 515 003, A.P. (India)

    2014-10-15

    Highly transparent conductive Zinc Aluminum Oxide (ZAO) thin films have been deposited on glass substrates using DC reactive magnetron sputtering method. The thin films were deposited at 200 °C and post-deposition annealing from 15 to 90 min. XRD patterns of ZAO films exhibit only (0 0 2) diffraction peak, indicating that they have c-axis preferred orientation perpendicular to the substrate. Scanning electron microscopy (SEM) is used to study the surface morphology of the films. The grain size obtained from SEM images of ZAO thin films are found to be in the range of 20 - 26 nm. The minimum resistivity of 1.74 × 10{sup −4} Ω cm and an average transmittance of 92% are obtained for the thin film post annealed for 30 min. The optical band gap of ZAO thin films increased from 3.49 to 3.60 eV with the increase of annealing time due to Burstein-Moss effect. The optical constants refractive index (n) and extinction coefficient (k) were also determined from the optical transmission spectra.

  2. The Effect of Thickness on the Physical Properties of Fe2O3 Thin Films Prepared by DC Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Baha'a A. Al-Hilli

    2017-11-01

    Full Text Available The objective of this study is to assess the influence of nano-particle Fe2O3 thin film thickness on some physical properties which were prepared by magnetron DC- sputtering on glass substrate at room temperature. The structure was tested with X-Ray diffraction and it was to be amorphous and to become single crystal with recognized peak in (003 after annealing at temperature 500oC. The physical properties as a function of deposition parameters and then film thickness were studied. The optical properties such as absorbance, energy gap and some optical constants are measured and found that of about (3eV energy gap.

  3. Downstream plasma transport and metal ionization in a high-powered pulsed-plasma magnetron

    International Nuclear Information System (INIS)

    Meng, Liang; Szott, Matthew M.; McLain, Jake T.; Ruzic, David N.; Yu, He

    2014-01-01

    Downstream plasma transport and ionization processes in a high-powered pulsed-plasma magnetron were studied. The temporal evolution and spatial distribution of electron density (n e ) and temperature (T e ) were characterized with a 3D scanning triple Langmuir probe. Plasma expanded from the racetrack region into the downstream region, where a high n e peak was formed some time into the pulse-off period. The expansion speed and directionality towards the substrate increased with a stronger magnetic field (B), largely as a consequence of a larger potential drop in the bulk plasma region during a relatively slower sheath formation. The fraction of Cu ions in the deposition flux was measured on the substrate using a gridded energy analyzer. It increased with higher pulse voltage. With increased B field from 200 to 800 Gauss above racetrack, n e increased but the Cu ion fraction decreased from 42% to 16%. A comprehensive model was built, including the diffusion of as-sputtered Cu flux, the Cu ionization in the entire plasma region using the mapped n e and T e data, and ion extraction efficiency based on the measured plasma potential (V p ) distribution. The calculations matched the measurements and indicated the main causes of lower Cu ion fractions in stronger B fields to be the lower T e and inefficient ion extraction in a larger pre-sheath potential.

  4. Commissioning of indigenous microwave test facility for development and pilot production of 2 MW S-band magnetrons

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Wanmode, Y.D.; Hannurkar, P.R.; Prasad, Sharda

    2005-01-01

    To have self reliance in the field of microwave devices and to have consistent supply of pulsed magnetrons for the Indian accelerator programme. CAT initiated development of 2 MW S-Band pulsed magnetrons in collaboration with CEERI, Pilani. The design, development and testing of the microwave test facilities for ageing. conditioning and performance testing of Indian magnetrons, was successfully done by CAT indigenously. After the rigorous testing. the test facility was shifted, installed and commissioned at CEERI, Pilani by CAT. Over a period of 10 years, nine prototypes were aged and tested, two magnetrons were life tested and five magnetrons under production programme have been successfully conditioned and tested. Testing of more numbers is underway. The system details. commissioning aspects are discussed, results are shown. (author)

  5. Corrosion of thin, magnetron sputtered Nb_2O_5 films

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser; Geribola, Guilherme Altomari; Scheidt, Guilherme; Gonçalves de Araújo, Edval; Lopes de Oliveira, Mara Cristina; Antunes, Renato Altobelli

    2016-01-01

    Highlights: • Niobium oxide based films were obtained by DC magnetron sputtering. • Different deposition times were tested. • The best corrosion resistance was obtained for the Nb_2O_5 film produced at 15′. • Film porosity determines the corrosion resistance. - Abstract: Niobium oxide based thin films were deposited on AISI 316 stainless steel substrates using reactive DC magnetron sputtering. Structure, composition and corrosion resistance of the niobium oxide films were studied. The corrosion behavior of the specimens was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The concentration of niobium and oxygen in the films was obtained by Rutherford backscattering spectroscopy (RBS). The film structure was analyzed by X-ray diffractometry. The corrosion resistance of the substrate was improved by the Nb_2O_5 layers. The best protective performance was achieved for the deposition time of 15 min.

  6. Substrate heating and cooling during magnetron sputtering of copper target

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, Viktor I.; Komlev, Andrey E.; Bondarenko, Anastasia S., E-mail: stopnastia@gmail.com; Baykov, Pavel B.; Karzin, Vitaliy V.

    2016-02-22

    Heating and cooling processes of the substrate during the DC magnetron sputtering of the copper target were investigated. The sensitive element of a thermocouple was used as a substrate. It was found, that the heat outflow rate from the substrate is lower when the magnetron is turned off rather than when it is turned on. Furthermore, the heating rate, the ultimate temperature, and the heat outflow rate related to the deposition of copper atoms are directly proportional to the discharge current density. - Highlights: • New effect of heat outflow from substrate when magnetron is on was discovered. • This new effect is linear in terms of heat outflow rate to target current ratio. • Kinetic equation for heating process additively considers this effect.

  7. Effect of N{sub 2} flow rate on the properties of N doped TiO{sub 2} films deposited by DC coupled RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shou [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430000 (China); State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Yang, Yong, E-mail: 88087113@163.com [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Li, Gang; Jiang, Jiwen; Jin, Kewu; Yao, TingTing; Zhang, Kuanxiang [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Cao, Xin [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116000 (China); Wang, Yun; Xu, Genbao [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China)

    2016-09-05

    N doped TiO{sub 2} films were deposited on glass substrates at room temperature using DC coupled RF magnetron sputtering with a TiO{sub 2} ceramic target. The influences of N{sub 2} flow rate on the deposition rate, crystal structure, chemical composition and band gap of the deposited films were investigated by Optical profiler, X-ray diffraction, X-ray photoelectron spectroscope and ultraviolet-visible spectrophotometer. The film growth rate gradually decreased with increasing N{sub 2} flow rate. As N{sub 2} flow rate increased, the crystallization of the films deteriorated, and the films tended to form amorphous structure. XPS analysis revealed that N dopant atoms were added at the substitutional sites into TiO{sub 2} lattice structure. FE-SEM results showed that the grain size of the film decreased and the crystallinity degraded as N{sub 2} flow rate increases. In addition, N doping caused an obvious red shift in the optical absorption edge. - Highlights: • N doped TiO{sub 2} films were deposited by DC coupled RF magnetron reactive sputtering. • As N{sub 2} flow rate increases, the crystallization of the deposited films degrades. • The higher N{sub 2} flow rate is beneficial to form more substituted N in the film. • N doping causes an obvious red shift in the absorption wavelength.

  8. In Situ and Ex Situ Studies of Molybdenum Thin Films Deposited by rf and dc Magnetron Sputtering as a Back Contact for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Aryal

    2012-01-01

    Full Text Available Molybdenum thin films were deposited by rf and dc magnetron sputtering and their properties analyzed with regards to their potential application as a back contact for CIGS solar cells. It is shown that both types of films tend to transition from tensile to compressive strain when the deposition pressure increases, while the conductivity and the grain size decreas. The nucleation of the films characterized by in situ and real time spectroscopic ellipsometry shows that both films follow a Volmer-Weber growth, with a higher surface roughness and lower deposition rate for the rf deposited films. The electronic relaxation time was then extracted as a function of bulk layer thickness for rf and dc films by fitting each dielectric function to a Drude free-electron model combined with a broad Lorentz oscillator. The values were fitted to a conical growth mode and demonstrated that the rf-deposited films have already smaller grains than the dc films when the bulk layer thickness is 30 nm.

  9. Tube Inner Coating of Non-Conductive Films by Pulsed Reactive Coaxial Magnetron Plasma with Outer Anode

    Directory of Open Access Journals (Sweden)

    Musab Timan Idriss Gasab

    2018-03-01

    Full Text Available The double-ended coaxial magnetron pulsed plasma (DCMPP method with auxiliary outer anode was introduced in order to achieve the uniform coating of non-conductive thin films on the inner walls of insulator tubes. In this study, titanium (Ti was employed as a cathode (sputtering target, and a glass tube was used as a substrate. In an argon (Ar and oxygen (O2 gas mixture, magnetron plasma was generated. Oxygen gas was introduced to deposit a titanium oxide (TiO2 film. A comparison between films coated with and without an auxiliary outer anode was made. As a result, it was clearly shown that the DCMPP method using an auxiliary outer anode enhanced the uniformity of the deposited non-conductive film compared to the conventional DCMPP method. Moreover, the optimum conditions under which the thin TiO2 film was deposited on the inner wall of the glass tube were revealed. From the results, it was supposed that the auxiliary outer anode contributed to the uniformity of the distributions of deposited negative charge on the non-conductive film and consequently the electric field and the plasma density uniform.

  10. Decorative black TiCxOy film fabricated by DC magnetron sputtering without importing oxygen reactive gas

    Science.gov (United States)

    Ono, Katsushi; Wakabayashi, Masao; Tsukakoshi, Yukio; Abe, Yoshiyuki

    2016-02-01

    Decorative black TiCxOy films were fabricated by dc (direct current) magnetron sputtering without importing the oxygen reactive gas into the sputtering chamber. Using a ceramic target of titanium oxycarbide (TiC1.59O0.31), the oxygen content in the films could be easily controlled by adjustment of total sputtering gas pressure without remarkable change of the carbon content. The films deposited at 2.0 and 4.0 Pa, those are higher pressure when compared with that in conventional magnetron sputtering, showed an attractive black color. In particular, the film at 4.0 Pa had the composition of TiC1.03O1.10, exhibited the L* of 41.5, a* of 0.2 and b* of 0.6 in CIELAB color space. These values were smaller than those in the TiC0.29O1.38 films (L* of 45.8, a* of 1.2 and b* of 1.2) fabricated by conventional reactive sputtering method from the same target under the conditions of gas pressure of 0.3 Pa and optimized oxygen reactive gas concentration of 2.5 vol.% in sputtering gas. Analysis of XRD and XPS revealed that the black film deposited at 4.0 Pa was the amorphous film composed of TiC, TiO and C. The adhesion property and the heat resisting property were enough for decorative uses. This sputtering process has an industrial advantage that the decorative black coating with color uniformity in large area can be easily obtained by plain operation because of unnecessary of the oxygen reactive gas importing which is difficult to be controlled uniformly in the sputtering chamber.

  11. Synchronized Pulsed dc - dc Converter as Maximum Power Position Tracker with Wide Load and Insolation Variation for Stand Alone PV System

    International Nuclear Information System (INIS)

    Hardik, P. Desai; Ranjan Maheshwari

    2011-01-01

    This paper investigates the interest focused on employing parallel connected dc-dc converter with high tracking effectiveness under wide variation in environmental conditions (Insolation) and wide load variation. dc-dc converter is an essential part of the stand alone PV system. Paper also presents an approach on how duty cycle for maximum power position (MPP) is adjusted by taking care of varying load conditions and without iterative steps. Synchronized PWM pulses are employed for the converter. High tracking efficiency is achieved with continuous input and inductor current. In this approach, the converter can he utilized in buck as well in boost mode. The PV system simulation was verified and experimental results were in agreement to the presented scheme. (authors)

  12. Effects of substrate heating and vacuum annealing on optical and electrical properties of alumina-doped ZnO films deposited by DC magnetron sputtering

    Science.gov (United States)

    Tang, Chien-Jen; Wang, Chun-Yuan; Jaing, Cheng-Chung

    2011-10-01

    Alumina-doped zinc oxide (AZO) films have wide range of applications in optical and optoelectronic devices. AZO films have advantage in high transparency, high stability to hydrogen plasma and low cost to alternative ITO film. AZO film was prepared by direct-current (DC) magnetron sputtering from ceramic ZnO:Al2O3 target. The AZO films were compared in two different conditions. The first is substrate heating process, in which AZO film was deposited by different substrate temperature, room temperature, 150 °C and 250 °C. The second is vacuum annealing process, in which AZO film with deposited at room temperature have been annealed at 250 °C and 450 °C in vacuum. The optical properties, electrical properties, grain size and surface structure properties of the films were studied by UV-VIS-NIR spectrophotometer, Hall effect measurement equipment, x-ray diffraction, and scanning electron microscopy. The resistivity, carrier mobility, carrier concentration, and grain size of AZO films were 1.92×10-3 Ω-cm, 6.38 cm2/Vs, 5.08×1020 #/cm3, and 31.48 nm respectively, in vacuum annealing of 450 °C. The resistivity, carrier mobility, carrier concentration, and grain size of AZO films were 8.72×10-4 Ω-cm, 6.32 cm2/Vs, 1.13×1021 #/cm3, and 31.56 nm, respectively, when substrate temperature was at 250 °C. Substrate heating process is better than vacuum annealed process for AZO film deposited by DC Magnetron Sputtering.

  13. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  14. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  15. Ionic conductivity and thermal stability of magnetron-sputtered nanocrystalline yttria-stabilized zirconia

    DEFF Research Database (Denmark)

    Sillassen, M.; Eklund, P.; Sridharan, M.

    2009-01-01

    Thermally stable, stoichiometric, cubic yttria-stabilized zirconia (YSZ) thin-film electrolytes have been synthesized by reactive pulsed dc magnetron sputtering from a Zr–Y (80/20 at. %) alloy target. Films deposited at floating potential had a texture. Single-line profile analysis of the 111 x.......5% at bias voltages of −175 and −200 V with additional incorporation of argon. The films were thermally stable; very limited grain coarsening was observed up to an annealing temperature of 800 °C. Temperature-dependent impedance spectroscopy analysis of the YSZ films with Ag electrodes showed that the in......-plane ionic conductivity was within one order of magnitude higher in films deposited with substrate bias corresponding to a decrease in grain size compared to films deposited at floating potential. This suggests that there is a significant contribution to the ionic conductivity from grain boundaries...

  16. Effect of working pressure on corrosion behavior of nitrogen doped diamond-like carbon thin films deposited by DC magnetron sputtering.

    Science.gov (United States)

    Khun, N W; Liu, E

    2011-06-01

    Nitrogen doped diamond-like carbon thin films were deposited on highly conductive p-silicon(100) substrates using a DC magnetron sputtering deposition system by varying working pressure in the deposition chamber. The bonding structure, adhesion strength, surface roughness and corrosion behavior of the films were investigated by using X-ray photoelectron spectroscopy, micro-Raman spectroscopy, micro-scratch test, atomic force microscopy and potentiodynamic polarization test. A 0.6 M NaCl electrolytic solution was used for the corrosion tests. The optimum corrosion resistance of the films was found at a working pressure of 7 mTorr at which a good balance between the kinetics of the sputtered ions and the surface mobility of the adatoms promoted a microstructure of the films with fewer porosities.

  17. Influence of HPPMS pulse length and inert gas mixture on the properties of (Cr,Al)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bagcivan, N.; Bobzin, K. [Surface Engineering Institute, RWTH Aachen University, Kackertstr. 15, D-52072 Aachen (Germany); Grundmeier, G.; Wiesing, M.; Ozcan, O.; Kunze, C. [University of Paderborn, Technical and Macromolecular Chemistry, Warburger Str. 100, D-33098 Paderborn (Germany); Brugnara, R.H., E-mail: brugnara@iot.rwth-aachen.de [Surface Engineering Institute, RWTH Aachen University, Kackertstr. 15, D-52072 Aachen (Germany)

    2013-12-31

    During the production of plastic products by injection molding processes adhesion and abrasion wear as well as corrosion take place in the molding tools. Concerning this, (Cr,Al)N coatings deposited via physical vapor deposition (PVD) have a good potential to be used as protective coatings on injection tools. For an effective protection of coated tools a uniform layer of coating material is also required. In this regard, the HPPMS (high power pulse magnetron sputtering) technology offers possibilities to improve coating thickness uniformity as well as to adapt the chemical and mechanical properties. The present work deals with the investigation of influence of HPPMS pulse length and the argon/krypton ratio in the deposition process on (Cr,Al)N coating properties. For this reason, (Cr,Al)N coatings were deposited with HPPMS pulse length of 40, 80 and 200 μs at constant Ar/Kr ratio (120/80 sccm). The results were compared with a coating deposited with DC Magnetron Sputtering (DC-MS) with the same Ar/Kr ratio. Afterwards, a (Cr,Al)N coating was deposited with constant pulse length (200 μs) without Kr. The chemical composition, morphology and phase composition of the coatings were analyzed by means of EDS (Energy Dispersive Spectroscopy), SEM (Scanning Electron Microscopy) and XRD (X-ray Diffraction), respectively. The composition of the surface near region in the samples was investigated by means of XPS (X-ray Photoelectron Spectroscopy). Mechanical properties were measured by means of nanoindentation. Decreasing of pulse length at constant mean power leads to a considerable increase of cathode current. It could be observed that the deposition rate of the HPPMS process reduces with decreasing pulse length. Nevertheless, short HPPMS pulse lengths and high peak currents lead to an increase of hardness from 25 GPa to 32 GPa while the DC-MS coating displays a hardness of 18 GPa. The use of krypton within the sputter process leads to a marginal increase of the deposition

  18. Effect of N_2 flow rate on the microstructure and electrochemical behavior of TaN_x films deposited by modulated pulsed power magnetron sputtering

    International Nuclear Information System (INIS)

    Mendizabal, L.; Bayón, R.; G-Berasategui, E.; Barriga, J.; Gonzalez, J.J.

    2016-01-01

    Modulated pulsed power magnetron sputtering (MPPMS) technology offers the possibility to grow high performance coatings compared to the ones developed by conventional dc magnetron sputtering. The high degree of ionization of sputtered particles developed during MPPMS can be usefully utilized to precisely tailor the properties of the growing films. One of the main advantages of such a high metal ion flux is related to the densification of the coatings due to enhance ion bombardment towards the growing film. The development of extremely dense and low-defect microstructure coatings can have a positive effect on the corrosion resistance of tantalum nitride (TaN_x) films. In this study, TaN_x thin films have been deposited by MPPMS in a closed field unbalanced magnetron sputtering system. Structure, surface morphology, hardness and corrosion resistance of the developed coatings have been analyzed as a function of different N_2-to-Ar ratios (0, 0.25, 0.625, 1). X-ray diffraction and scanning electron microscopy analysis reveal high dependence of the grown crystal phases and the microstructure on N_2-to-Ar ratio. The hardness of the TaN_x coatings increases when increasing N_2-to-Ar ratio up to a maximum value of 25 GPa (N_2-to-Ar ratio of 0.625). The corrosion behavior was investigated using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry. EIS measurements registered at different immersion times show high impedance values (in the order of 10 MΩ cm"2) and corrosion resistance enhancement with time, indicating the formation of a passive protective oxide layer on the top of their surfaces. TaN_x film grown at 0.25 N_2-to-Ar ratio exhibits the highest corrosion resistance of 103.53 MΩ cm"2 and low porosity of 1.63 × 10"−"3 and is characterized by columnar-free microstructure. - Highlights: • TaN_X coatings deposited by MPPMS at different N_2-to-Ar ratios have been evaluated. • Columnar-free microstructure TaN_x films are obtained at 0

  19. Study of working pressure on the optoelectrical properties of Al–Y codoped ZnO thin-film deposited using DC magnetron sputtering for solar cell applications

    International Nuclear Information System (INIS)

    Hsu, Feng-Hao; Wang, Na-Fu; Tsai, Yu-Zen; Chuang, Ming-Chieh; Cheng, Yu-Song; Houng, Mau-Phon

    2013-01-01

    Low cost transparent conductive Al–Y codoped ZnO (AZOY) thin-films were prepared on a glass substrate using a DC magnetron sputtering technique with various working pressures in the range of 5–13 mTorr. The relationship among the structural, electrical, and optical properties of sputtered AZOY films was studied as a function of working pressure. The XRD measurements show that the crystallinity of the films degraded as the working gas pressure increased. The AZOY thin-film deposited at a working pressure of 5 mTorr exhibited the lowest electrical resistivity of 4.3 × 10 −4 Ω cm, carrier mobility of 30 cm 2 /V s, highest carrier concentration of 4.9 × 10 20 cm −3 , and high transmittance in the visible region (400–800 nm) of approximately 90%. Compared with Al doped ZnO (AZO) thin-films deposited using DC or RF magnetron sputtering methods, a high carrier mobility was observed in our AZOY thin-films. This result can be used to effectively decrease the absorption of near infrared-rays in solar cell applications. The mechanisms are attributed to the larger transition energy between Ar atoms and sputtering particles and the size compensation of the dopants. Finally, the optimal quality AZOY thin-film was used as an emitter layer (or window layer) to form AZOY/n-Si heterojunction solar cells, which exhibited a stable conversion efficiency (η) of 9.4% under an AM1.5 illumination condition.

  20. Synthesis and characterization of MoB2−x thin films grown by nonreactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Malinovskis, Paulius; Lewin, Erik; Jansson, Ulf; Palisaitis, Justinas; Persson, Per O. Å.

    2016-01-01

    DC magnetron sputtering was used to deposit molybdenum boride thin films for potential low-friction applications. The films exhibit a nanocomposite structure with ∼10 nm large MoB 2−x (x > 0.4) grains surrounded by a boron-rich tissue phase. The preferred formation of the metastable and substoichiometric hP3-MoB 2 structure (AlB 2 -type) is explained with kinetic constraints to form the thermodynamically stable hR18-MoB 2 phase with a very complex crystal structure. Nanoindentation revealed a relatively high hardness of (29 ± 2) GPa, which is higher than bulk samples. The high hardness can be explained by a hardening effect associated with the nanocomposite microstructure where the surrounding tissue phase restricts dislocation movement. A tribological study confirmed a significant formation of a tribofilm consisting of molybdenum oxide and boron oxide, however, without any lubricating effects at room temperature.

  1. SWITCH MODE PULSE WIDTH MODULATED DC-DC CONVERTER WITH MULTIPLE POWER TRANSFORMERS

    DEFF Research Database (Denmark)

    2009-01-01

    A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end....... The first electronic circuit comprises terminals (AO, A1) for connecting a source or a load, at least one energy storage inductor (L) coupled in series with at least one of the first windings (T1a, T2a) of the power transformers (T1, T2), and for each power transformer (T1, T2), an arrangement of switches...

  2. Research and Development for an Alternative RF Source Using Magnetrons in CEBAF

    Science.gov (United States)

    Jacobs, Andrew

    2016-09-01

    At Jefferson Lab, klystrons are currently used as a radiofrequency (RF) power source for the 1497 MHz Continuous Electron Beam Accelerator Facility (CEBAF) Continuous Wave (CW) system. A drop-in replacement for the klystrons in the form of a system of magnetrons is being developed. The klystron DC-RF efficiency at CEBAF is 35-51% while the estimated magnetron efficiency is 80-90%. Thus, the introduction of magnetrons to CEBAF will have enormous benefits in terms of electrical power saving. The primary focus of this project was to characterize a magnetron's frequency pushing and pulling curves at 2.45 GHz with stub tuner and anode current adjustments so that a Low Level RF controller for a new 1.497 GHz magnetron can be built. A Virtual Instrument was created in LabVIEW, and data was taken. The resulting data allowed for the creation of many constant lines of frequency and output power. Additionally, the results provided a characterization of magnetron oven temperature drift over the operation time and the relationship between anode current and frequency. Using these results, the control model of different variables and their feedback or feedforward that affect the frequency pushing and pulling of the magnetron is better developed. Department of Energy, Science Undergraduate Laboratory Internships, and Jefferson Lab.

  3. Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhaohui; Cho, Eou-Sik [Department of Electronics Engineering, Kyungwon University, San 65, Bokjung-dong, Soojung-gu, Seongnam city, Kyunggi-do, 461-701 (Korea, Republic of); Kwon, Sang Jik, E-mail: sjkwon@kyungwon.ac.kr [Department of Electronics Engineering, Kyungwon University, San 65, Bokjung-dong, Soojung-gu, Seongnam city, Kyunggi-do, 461-701 (Korea, Republic of)

    2011-09-01

    In this paper, we reported the effect of the power and the working pressure on the molybdenum (Mo) films deposited using an in-line direct current (DC) magnetron sputtering system. The electrical and the structural properties of Mo film were improved by increasing DC power from 1 to 3 kW. On the other side, the resistivity of the Mo films became higher with the increasing working pressure. However, the adhesion property was improved when the working pressure was higher. In this work, in order to obtain an optimal Mo film as a back metal contact of Cu(In,Ga)Se{sub 2} (CIGS) solar cells, a bilayer Mo film was formed through the different film structures depending on the working pressure. The first layer was formed at a high pressure of 12 mTorr for a better adhesion and the second layer was formed at a low pressure of 3 mTorr for a lower resistivity.

  4. Properties of Co-deposited indium tin oxide and zinc oxide films using a bipolar pulse power supply and a dual magnetron sputter source

    International Nuclear Information System (INIS)

    Hwang, Man-Soo; Seob Jeong, Heui; Kim, Won Mok; Seo, Yong Woon

    2003-01-01

    Multilayer coatings consisting of metal layers sandwiched between transparent conducting oxide layers are widely used for flat panel display electrodes and electromagnetic shield coatings for plasma displays, due to their high electrical conductivity and light transmittance. The electrical and optical properties of these multilayer films depend largely on the surface characteristics of the transparent conducting oxide thin films. A smoother surface on the transparent conducting oxide thin films makes it easier for the metal layer to form a continuous film, thus resulting in a higher conductivity and visible light transmittance. Indium tin oxide (ITO) and zinc oxide (ZnO) films were co-deposited using a dual magnetron sputter and a bipolar pulse power supply to decrease the surface roughness of the transparent conducting oxide films. The symmetric pulse mode of the power supply was used to simultaneously sputter an In 2 O 3 (90 wt %) : SnO 2 (10 wt %) target and a ZnO target. We varied the duty of the pulses to control the ratio of ITO : ZnO in the thin films. The electrical and optical properties of the films were studied, and special attention was paid to the surface roughness and the crystallinity of the films. By co-depositing ITO and ZnO at a pulse duty ratio of ITO:ZnO=45:45 using a dual magnetron sputter and a bipolar pulse power supply, we were able to obtain amorphous transparent conducting oxide films with a very smooth surface which had a Zn-rich buffer layer under a In-rich surface layer. All of the films exhibited typical electrical and optical properties of transparent conducting oxide films deposited at room temperature

  5. Effect of target power on the physical properties of Ti thin films prepared by DC magnetron sputtering with supported discharge

    Directory of Open Access Journals (Sweden)

    Kavitha A.

    2017-02-01

    Full Text Available The present paper describes the effect of target power on the properties of Ti thin films prepared by DC magnetron sputtering with (triode mode and without (diode mode supported discharge. The traditional diode magnetron sputtering with an addition of a hot filament has been used to sustain the discharge at a lower pressure. The effect of target power (60, 80, 100 and 120 W on the physical properties of Ti thin films has been studied in diode and triode modes. XRD studies showed that the Ti thin films prepared at a target power up to 100 W in diode mode were amorphous in nature. The Ti thin films exhibited crystalline structure at much lower target power of 80 W with a preferred orientation along (0 0 2 plane. The grain size of Ti thin films prepared in triode mode increased from 64 nm to 80 nm, whereas in diode mode, the grain size increased from 2 nm to 5 nm. EDAX analysis confirmed that the incorporation of reactive gases was lower in triode mode compared to diode mode. The electrical resistivity of Ti thin films deposited in diode mode was found to be 85 µΩ⋅cm (target power 120 W. The electrical resistivity of Ti thin films in triode mode was found to be deceased to 15.2 µΩ⋅cm (target power 120 W.

  6. Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Barik, Ullash; Srinivasan, S; Nagendra, C L; Subrahmanyam, A

    2003-04-01

    Silver oxide thin films have been prepared on soda lime glass substrates at room temperature (300 K) by reactive DC Magnetron sputtering technique using pure silver metal target; the oxygen flow rates have been varied in the range 0.00-2.01 sccm. The X-ray diffraction data on these films show a systematic change from metallic silver to silver (sub) oxides. The electrical resistivity increases with increasing oxygen flow. The films show a p-type behavior (by both Hall and Seebeck measurements) for the oxygen flow rates of 0.54, 1.09 and 1.43 sccm. The refractive index of the films (at 632.8 nm) decreases with increasing oxygen content and is in the range 1.167-1.145, whereas the p-type films show a higher refractive index (1.186-1.204). The work function of these silver oxide films has been measured by Kelvin Probe technique. The results, in specific, the p-type conductivity in the silver oxide films, have been explained on the basis of the theory of partial ionic charge proposed by Sanderson.

  7. Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen

    International Nuclear Information System (INIS)

    Kumar Barik, Ullash; Srinivasan, S.; Nagendra, C.L.; Subrahmanyam, A.

    2003-01-01

    Silver oxide thin films have been prepared on soda lime glass substrates at room temperature (300 K) by reactive DC Magnetron sputtering technique using pure silver metal target; the oxygen flow rates have been varied in the range 0.00-2.01 sccm. The X-ray diffraction data on these films show a systematic change from metallic silver to silver (sub) oxides. The electrical resistivity increases with increasing oxygen flow. The films show a p-type behavior (by both Hall and Seebeck measurements) for the oxygen flow rates of 0.54, 1.09 and 1.43 sccm. The refractive index of the films (at 632.8 nm) decreases with increasing oxygen content and is in the range 1.167-1.145, whereas the p-type films show a higher refractive index (1.186-1.204). The work function of these silver oxide films has been measured by Kelvin Probe technique. The results, in specific, the p-type conductivity in the silver oxide films, have been explained on the basis of the theory of partial ionic charge proposed by Sanderson

  8. Preparation of p-type transparent conducting tin-antimony oxide thin films by DC reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhenguo [College of Electronic Information, Hangzhou Dianzi University, Hangzhou (China); State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou (China); Xi, Junhua; Huo, Lijuan; Zhao, Yi [State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou (China)

    2008-07-01

    P-type transparent conducting tin-antimony oxide (TAO) films were successfully prepared by DC reactive magnetron sputtering followed by post annealing in the air. Structural, optical and electrical properties of the TAO films were investigated. X-ray diffraction studies showed that the films are polycrystalline with orthorhombic structure of Sb{sub 2}O{sub 4}. UV-Visible absorption and transmittance spectra showed that the optical band-gap of the TAO films is about 3.90 eV, and the overall transmittance is higher than 85% in the visible region. Hall effect measurement indicated that the Sn/Sb ratio is a critical parameter to get p-type conducting TAO films. It was found that 0.19

  9. Structural and optical properties of DC magnetron sputtered ZnO films on glass substrate and their modification by Ag ions implantation

    Science.gov (United States)

    Ahmad, R.; Afzal, Naveed; Amjad, U.; Jabbar, S.; Hussain, T.; Hussnain, A.

    2017-07-01

    This work is focused on investigating the effects of deposition time and Ag ions implantation on structural and optical properties of ZnO film. The ZnO film was prepared on glass substrate by pulsed DC magnetron sputtering of pure Zn target in reactive oxygen environment for 2 h, 3 h, 4 h and 5 h respectively. X-ray diffraction results revealed polycrystalline ZnO film whose crystallinity was improved with increase of the deposition time. The morphological features indicated agglomeration of smaller grains into larger ones by increasing the deposition time. The UV-vis spectroscopy analysis depicted a small decrease in the band gap of ZnO from 3.36 eV to 3.27 eV with increase of deposition time. The Ag ions implantation in ZnO films deposited for 5 h on glass was carried out by using Pelletron Accelerator at different ions fluences ranging from 1  ×  1011 ions cm-2 to 2  ×  1012 ions cm-2. XRD patterns of Ag ions implanted ZnO did not show significant change in crystallite size by increasing ions fluence from 1  ×  1011 ions cm-2 to 5  ×  1011 ions cm-2. However, with further increase of the ions fluence, the crystallite size was decreased. The band gap of Ag ions implanted ZnO indicated anomalous variations with increase of the ions fluence.

  10. Influence of Continuous and Discontinuous Depositions on Properties of Ito Films Prepared by DC Magnetron Sputtering

    Science.gov (United States)

    Aiempanakit, K.; Rakkwamsuk, P.; Dumrongrattana, S.

    Indium tin oxide (ITO) films were deposited on glass substrate without external heating by DC magnetron sputtering with continuous deposition of 800 s (S1) and discontinuous depositions of 400 s × 2 times (S2), 200 s × 4 times (S3) and 100 s × 8 times (S4). The structural, surface morphology, optical transmittance and electrical resistivity of ITO films were measured by X-ray diffraction, atomic force microscope, spectrophotometer and four-point probe, respectively. The deposition process of the S1 condition shows the highest target voltage due to more target poisoning occurrence. The substrate temperature of the S1 condition increases with the saturation curve of the RC charging circuit while other conditions increase and decrease due to deposition steps as DC power turns on and off. Target voltage and substrate temperature of ITO films decrease when changing the deposition conditions from S1 to S2, S3 and S4, respectively. The preferential orientation of ITO films were changed from dominate (222) plane to (400) plane with the increasing number of deposition steps. The ITO film for the S4 condition shows the lowest electrical resistivity of 1.44 × 10-3 Ω·cm with the highest energy gap of 4.09 eV and the highest surface roughness of 3.43 nm. These results were discussed from the point of different oxygen occurring on the surface ITO target between the sputtering processes which affected the properties of ITO films.

  11. Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu Sujuan; Han Hongwei; Tai Qidong; Zhang Jing; Xu Sheng; Zhou Conghua; Yang Ying; Hu Hao; Chen Bolei; Sebo, Bobby; Zhao Xingzhong

    2008-01-01

    A surface modification method was carried out by reactive DC magnetron sputtering to fabricate TiO 2 electrodes coated with insulating MgO for dye-sensitized solar cells. The MgO-coated TiO 2 electrode had been characterized by x-ray photoelectron spectroscopy (XPS), energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), UV-vis spectrophotometer, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The study results revealed that the TiO 2 modification increases dye adsorption, decreases trap states and suppresses interfacial recombination. The effects of sputtering MgO for different times on the performance of DSSCs were investigated. It indicated that sputtering MgO for 3 min on TiO 2 increases all cell parameters, resulting in increasing efficiency from 6.45% to 7.57%

  12. Study of working pressure on the optoelectrical properties of Al–Y codoped ZnO thin-film deposited using DC magnetron sputtering for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Hao [Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, No. 1, Dasyue Road, East District, Tainan City 701, Taiwan (China); Wang, Na-Fu; Tsai, Yu-Zen; Chuang, Ming-Chieh; Cheng, Yu-Song [Department of Electronic Engineering, Cheng Shiu University, 840 Chengcing Road, Niaosong District, Kaohsiung City 833, Taiwan (China); Houng, Mau-Phon, E-mail: mphoung@eembox.ncku.edu.tw [Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, No. 1, Dasyue Road, East District, Tainan City 701, Taiwan (China)

    2013-09-01

    Low cost transparent conductive Al–Y codoped ZnO (AZOY) thin-films were prepared on a glass substrate using a DC magnetron sputtering technique with various working pressures in the range of 5–13 mTorr. The relationship among the structural, electrical, and optical properties of sputtered AZOY films was studied as a function of working pressure. The XRD measurements show that the crystallinity of the films degraded as the working gas pressure increased. The AZOY thin-film deposited at a working pressure of 5 mTorr exhibited the lowest electrical resistivity of 4.3 × 10{sup −4} Ω cm, carrier mobility of 30 cm{sup 2}/V s, highest carrier concentration of 4.9 × 10{sup 20} cm{sup −3}, and high transmittance in the visible region (400–800 nm) of approximately 90%. Compared with Al doped ZnO (AZO) thin-films deposited using DC or RF magnetron sputtering methods, a high carrier mobility was observed in our AZOY thin-films. This result can be used to effectively decrease the absorption of near infrared-rays in solar cell applications. The mechanisms are attributed to the larger transition energy between Ar atoms and sputtering particles and the size compensation of the dopants. Finally, the optimal quality AZOY thin-film was used as an emitter layer (or window layer) to form AZOY/n-Si heterojunction solar cells, which exhibited a stable conversion efficiency (η) of 9.4% under an AM1.5 illumination condition.

  13. Fine control of the amount of preferential <001> orientation in DC magnetron sputtered nanocrystalline TiO2 films

    International Nuclear Information System (INIS)

    Stefanov, B; Granqvist, C G; Österlund, L

    2014-01-01

    Different crystal facets of anatase TiO 2 are known to have different chemical reactivity; in particular the {001} facets which truncates the bi-tetrahedral anatase morphology are reported to be more reactive than the usually dominant {101} facets. Anatase TiO 2 thin films were deposited by reactive DC magnetron sputtering in Ar/O 2 atmosphere and were characterized using Rietveld refined grazing incidence X-ray diffraction, atomic force microscopy and UV/Vis spectroscopy. By varying the partial O2 pressure in the deposition chamber, the degree of orientation of the grains in the film could be systematically varied with preferred <001> orientation changing from random upto 39% as determined by March-Dollase method. The orientation of the films is shown to correlate with their reactivity, as measured by photo-degradation of methylene blue in water solutions. The results have implications for fabrication of purposefully chemically reactive thin TiO 2 films prepared by sputtering methods

  14. Synthesis and characterization of MoB{sub 2−x} thin films grown by nonreactive DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Malinovskis, Paulius, E-mail: paulius.malinovskis@kemi.uu.se; Lewin, Erik; Jansson, Ulf [Department of Chemistry–Ångström Laboratory, Uppsala University, SE-751 21 Uppsala (Sweden); Palisaitis, Justinas; Persson, Per O. Å. [Department of Physics, Chemistry, and Biology (IFM), Thin Film Physics Division, Linköping University, SE-581 83 Linköping (Sweden)

    2016-05-15

    DC magnetron sputtering was used to deposit molybdenum boride thin films for potential low-friction applications. The films exhibit a nanocomposite structure with ∼10 nm large MoB{sub 2−x} (x > 0.4) grains surrounded by a boron-rich tissue phase. The preferred formation of the metastable and substoichiometric hP3-MoB{sub 2} structure (AlB{sub 2}-type) is explained with kinetic constraints to form the thermodynamically stable hR18-MoB{sub 2} phase with a very complex crystal structure. Nanoindentation revealed a relatively high hardness of (29 ± 2) GPa, which is higher than bulk samples. The high hardness can be explained by a hardening effect associated with the nanocomposite microstructure where the surrounding tissue phase restricts dislocation movement. A tribological study confirmed a significant formation of a tribofilm consisting of molybdenum oxide and boron oxide, however, without any lubricating effects at room temperature.

  15. Effect of dc and pulsed corona discharge on DNA and proteins

    International Nuclear Information System (INIS)

    Shvedchikov, A.P.; Polyakova, A.V.; Belousova, E.V.; Ponizovskii, A.Z.; Goncharov, V.A.

    1993-01-01

    The authors have investigated the effect of a d.c. and pulsed corona discharge in air and nitrogen on DNA and albumin films in the temperature range 77-298 K. The authors have shown that upon exposure to a corona discharge and O 3 , the biopolymers are degraded. With a reduction in temperature, the extent of degradation of DNA drops

  16. Numerical simulation of Trichel pulses of negative DC corona discharge based on a plasma chemical model

    Science.gov (United States)

    Chen, Xiaoyue; Lan, Lei; Lu, Hailiang; Wang, Yu; Wen, Xishan; Du, Xinyu; He, Wangling

    2017-10-01

    A numerical simulation method of negative direct current (DC) corona discharge based on a plasma chemical model is presented, and a coaxial cylindrical gap is adopted. There were 15 particle species and 61 kinds of collision reactions electrons involved, and 22 kinds of reactions between ions are considered in plasma chemical reactions. Based on this method, continuous Trichel pulses are calculated on about a 100 us timescale, and microcosmic physicochemical process of negative DC corona discharge in three different periods is discussed. The obtained results show that the amplitude of Trichel pulses is between 1-2 mA, and that pulse interval is in the order of 10-5 s. The positive ions produced by avalanche ionization enhanced the electric field near the cathode at the beginning of the pulse, then disappeared from the surface of cathode. The electric field decreases and the pulse ceases to develop. The negative ions produced by attachment slowly move away from the cathode, and the electric field increases gradually until the next pulse begins to develop. The positive and negative ions with the highest density during the corona discharge process are O4+ and O3- , respectively.

  17. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    Science.gov (United States)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Xie, Qin; Ren, Chengyan; Shao, Tao

    2017-10-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level.

  18. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    International Nuclear Information System (INIS)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Ren, Chengyan; Shao, Tao; Xie, Qin

    2017-01-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level. (paper)

  19. Structure adhesion and corrosion resistance study of tungsten bisulfide doped with titanium deposited by DC magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    De La Roche, J. [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al aeropuerto, Campus La Nubia, Manizales (Colombia); González, J.M. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales – RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Restrepo-Parra, E., E-mail: erestrepop@unal.edu.co [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al aeropuerto, Campus La Nubia, Manizales (Colombia); Sequeda, F. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales – RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Alleh, V.; Scharf, T.W. [The University of North Texas, Department of Materials Science and Engineering, Denton, TX 76203 (United States)

    2014-11-30

    Highlights: • Ti-doped WS{sub 2} films were grown via the magnetron co-sputtering technique. • At a high Ti percentage, the crystalline structure of WS{sub 2} coatings tends to be amorphous. • As the Ti percentage increases in WS{sub 2} coatings, nanocomposites tend to form. • Ti-doped WS{sub 2} films have elastic behavior compared with the plastic response of pure WS{sub 2} films. • A high Ti percentage increases the corrosion resistance of WS{sub 2} films. - Abstract: Titanium-doped tungsten bisulfide thin films (WS{sub 2}-Ti) were grown using a DC magnetron co-sputtering technique on AISI 304 stainless steel and silicon substrates. The films were produced by varying the Ti cathode power from 0 to 25 W. Using energy dispersive spectroscopy (EDS), the concentration of Ti in the WS{sub 2} was determined, and a maximum of 10% was obtained for the sample grown at 25 W. Moreover, the S/W ratio was calculated and determined to increase as a function of the Ti cathode power. According to transmission electron microscopy (TEM) results, at high titanium concentrations (greater than 6%), nanocomposite formation was observed, with nanocrystals of Ti embedded in an amorphous matrix of WS{sub 2}. Using the scratch test, the coatings’ adhesion was analyzed, and it was observed that as the Ti percentage was increased, the critical load (Lc) also increased. Furthermore, the failure type changed from plastic to elastic. Finally, the corrosion resistance was evaluated using the electrochemical impedance spectroscopy (EIS) technique, and it was observed that at high Ti concentrations, the corrosion resistance was improved, as Ti facilitates coating densification and generates a protective layer.

  20. Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Ziad Y. Banyamin

    2014-10-01

    Full Text Available Fluorine doped tin oxide (FTO coatings have been prepared using the mid-frequency pulsed DC closed field unbalanced magnetron sputtering technique in an Ar/O2 atmosphere using blends of tin oxide and tin fluoride powder formed into targets. FTO coatings were deposited with a thickness of 400 nm on glass substrates. No post-deposition annealing treatments were carried out. The effects of the chemical composition on the structural (phase, grain size, optical (transmission, optical band-gap and electrical (resistivity, charge carrier, mobility properties of the thin films were investigated. Depositing FTO by magnetron sputtering is an environmentally friendly technique and the use of loosely packed blended powder targets gives an efficient means of screening candidate compositions, which also provides a low cost operation. The best film characteristics were achieved using a mass ratio of 12% SnF2 to 88% SnO2 in the target. The thin film produced was polycrystalline with a tetragonal crystal structure. The optimized conditions resulted in a thin film with average visible transmittance of 83% and optical band-gap of 3.80 eV, resistivity of 6.71 × 10−3 Ω·cm, a carrier concentration (Nd of 1.46 × 1020 cm−3 and a mobility of 15 cm2/Vs.

  1. Zn{sub x}Zr{sub y}O{sub z} thin films grown by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, O. [Instituto de Ciencia de Materiales de Madrid (CSIC), Madrid (Spain); Hernandez-Velez, M. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid (Spain)

    2017-10-15

    The structural and optical properties of thin films deposited by DC reactive magnetron co-sputtering using Zn and Zr targets in argon and oxygen gas mixtures at room temperature are reported. The power applied to the Zr cathode was kept constant, while that applied to the Zn cathode was varied between 0 and 150 W to produce very different Zn{sub x}Zr{sub y}O{sub z} ternary compounds with Zn/Zr atomic ratios in the range of 0.1-10. The composition, crystalline structure, and optical properties of the samples were determined by EDX, XRD, FTIR, and UV-visible spectroscopies. The grown films are polycrystalline, and the preferred crystallographic orientation depends on the Zn atomic concentration in the film. The optical transmission in the UV-visible range is approximately 80% in all cases, and as the Zn atomic content increases, the absorption edge shifts to longer wavelengths. The optical band gap, E{sub g}, shifted from 5.5 to 3.5 eV when the Zn/Zr atomic ratio was increased. The results indicate the potential use of these materials in optoelectronic applications. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Operational experience with the BNL magnetron H- source

    International Nuclear Information System (INIS)

    Witkover, R.L.

    1983-01-01

    A magnetron H - source with a grooved cathode has been in operation at the BNL Linac for over 18 months. The source has run at 5 pps with a 600 μsec pulse width for periods as long as 5 months. Its development and performance will be discussed

  3. Simulating and Testing a DC-DC Half-Bridge SLR Converter

    Science.gov (United States)

    2013-06-01

    future pulse power demands with ship power, a large bank of capacitors or similar rapid discharge source is required. If capacitors are charged...Single Pulsed Avalanche Energy (j) I" Avalanche Current (i) E,, Repetilive Avalanche Energy (i) dv/dt Peak Diode Recovery dv/dt ® Po Total Power...SLR), battery charging, DC-DC, pulse power, power electronics, SLR converter 15. NUMBER OF PAGES 119 16. PRICE CODE 17. SECURITY CLASSIFICATION

  4. High-current magnetron discharge with magnetic insulation of anode

    International Nuclear Information System (INIS)

    Bizyukov, A.A.; Sereda, K.N.; Sleptsov, V.V.

    2008-01-01

    In magnetron discharge at currents higher then critical which magnitude is in the range of 15...30 A the transition from glow discharge in transverse magnetic field to arc discharge occurs. In the present time the problem of arc blowout is solved at the expense of pulse and HF power supply applying. In this paper the alternative method of limiting current of magnetron discharge increasing at the expense of increasing of discharge gap resistance by means of additional anode layer transverse magnetic field and arc current interruption by sectioning of current collector of anode surface is carrying out

  5. NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Neubauer, M.; Lebedev, V. [Fermilab; Schappert, W. [Fermilab; Yakovlev, V. [Fermilab

    2016-10-21

    A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operation cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.

  6. Low resistivity of Ni–Al co-doped ZnO thin films deposited by DC magnetron sputtering at low sputtering power

    Energy Technology Data Exchange (ETDEWEB)

    Lee, JongWoo [Department of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Hui, K.N. [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Hui, K.S., E-mail: kshui@hanyang.ac.kr [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Cho, Y.R., E-mail: yescho@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Chun, Ho-Hwan [Global Core Research Center for Ships and Offshore Plants (GCRC-SOP), Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2014-02-28

    Ni–Al co-doped ZnO (NiAl:ZnO) thin films were deposited on glass substrates by DC magnetron sputtering in Ar using a single ceramic, spark-plasma-sintered target with 2 wt% Al and 5 wt% Ni. The effects of the sputtering power and gas pressure on the NiAl:ZnO films were studied. The structural, electrical, and optical properties of the films were characterized by X-ray diffraction, field emission scanning electron microscopy, Hall effect measurements and UV–vis transmission spectroscopy. As the sputtering power and gas pressure increased, the crystallinity, electrical properties and optical band gap of the films were improved. The NiAl:ZnO film deposited at 40 W at 6.0 mTorr had the strongest (0 0 2) XRD peak and the lowest resistivity of approximately 2.19 × 10{sup −3} Ω cm with an optical transmittance of 90%.

  7. Microstructural evaluation of NiTi-based films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Crăciunescu, Corneliu M., E-mail: corneliu.craciunescu@upt.ro; Mitelea, Ion, E-mail: corneliu.craciunescu@upt.ro; Budău, Victor, E-mail: corneliu.craciunescu@upt.ro [Department of Materials and Manufacturing Engineering, Politehnica University of Timisoara (Romania); Ercuţa, Aurel [Department of Materials and Manufacturing Engineering, Politehnica University of Timisoara and Department of Physics, West University Timisoara (Romania)

    2014-11-24

    Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several substrates were used for the depositions: glass, Cu-Zn-Al, Cu-Al-Ni and Ti-NiCu shape memory alloy ribbons and kapton. The composition of the Ti-Ni-Cu films showed limited differences, compared to the one of the target and the microstructure for the DC magnetron sputtering revealed crystallized structure with features determined on peel off samples from a Si wafer. Both inter and transcrystalline fractures were observed and related to the interfacial stress developed on cooling from deposition temperature.

  8. Investigation of carbon cathode surface before and after the passage of combined dc vacuum arc with superimposed high-current arc pulses

    International Nuclear Information System (INIS)

    Zavaleyev, V.; Walkowicz, J.; Moszynski, D.

    2016-01-01

    The paper presents the results of studies of carbon cathode surface before and after the passage of the combined DC vacuum-arc with superimposed high-current arc pulses. Investigations of surface morphology of carbon cathode showed, that secondary nuclei of high-density are formed after passing of the combined DC-pulse vacuum-arc, which results in the formation of a globular structures. The phase structure analysis by Raman spectroscopy showed that even at a minimum operation time (5 s) of the combined DC-pulse vacuum-arc broadening of the peaks 1355 and 1583 cm-1 occurs, which means that the carbon cathode surface undergo phase transformation. Results obtained by XPS spectroscopy demonstrate that the globular structures formed on the cathode surface are composed of sp 3 -bonded carbon atoms and carbon-oxygen bonds.

  9. Test stand for magnetron H negative ion source at IPP-Nagoya

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, H; Kuroda, T; Miyahara, A

    1981-02-01

    Test facilities for the development of magnetron H(-) ion source consists of the vacuum system, power supplies, diagnostic equipment, and their controlling electronics. Schematics are presented and relevant items described including sequence control, optical links, the charged pulse forming network, the extractor power supply, magnet power supply, temperature control of the cesium feeder, and the pulsed valve driver. Noise problems and diagnostics are also considered.

  10. Effect of DC voltage pulses on memristor behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Brian R.

    2013-10-01

    Current knowledge of memristor behavior is limited to a few physical models of which little comprehensive data collection has taken place. The purpose of this research is to collect data in search of exploitable memristor behavior by designing and implementing tests on a HP Labs Rev2 Memristor Test Board. The results are then graphed in their optimal format for conceptualizing behavioral patterns. This series of experiments has concluded the existence of an additional memristor state affecting the behavior of memristors when pulsed with positively polarized DC voltages. This effect has been observed across multiple memristors and data sets. The following pages outline the process that led to the hypothetical existence and eventual proof of this additional state of memristor behavior.

  11. Study of thermal response of superconducting NbN meander line by using 20 ps pulse laser

    International Nuclear Information System (INIS)

    Miki, Shigehito; Fujiwara, Daisuke; Simakage, Hisashi; Kawakami, Akira; Wang Zhen; Satoh, Kazuo; Yotsuya, Tsutomu; Ishida, Takekazu

    2005-01-01

    The thermal response of a superconducting NbN thin-film meander line was studied by irradiating with a 20 ps pulse laser. A 10 nm-thick NbN thin film was prepared by dc magnetron sputtering and then processed to fabricate a 3 μm-wide, 125.5 mm-long meander line. The device was placed in a 4 K refrigerator, and the bias temperature was kept below the critical temperature T c . The end of an optical fiber was fixed at the front of a meander line, which was then directly irradiated by using the 20 ps pulse laser. The output voltage was observed with a digital oscilloscope and a low-noise amplifier. The output signals of the thermal response were clearly observed

  12. Effect of N{sub 2} flow rate on the microstructure and electrochemical behavior of TaN{sub x} films deposited by modulated pulsed power magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Mendizabal, L., E-mail: lucia.mendizabal@tekniker.es [IK4-TEKNIKER, Department of Surface Physics and Technology, Iñaki Goenaga 5, 20600 Eibar (Spain); Bayón, R. [IK4-TEKNIKER, Department of Tribology, Iñaki Goenaga 5, 20600 Eibar (Spain); G-Berasategui, E.; Barriga, J. [IK4-TEKNIKER, Department of Surface Physics and Technology, Iñaki Goenaga 5, 20600 Eibar (Spain); Gonzalez, J.J. [ETSIB University of Basque Country, Department of Material Science, Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2016-07-01

    Modulated pulsed power magnetron sputtering (MPPMS) technology offers the possibility to grow high performance coatings compared to the ones developed by conventional dc magnetron sputtering. The high degree of ionization of sputtered particles developed during MPPMS can be usefully utilized to precisely tailor the properties of the growing films. One of the main advantages of such a high metal ion flux is related to the densification of the coatings due to enhance ion bombardment towards the growing film. The development of extremely dense and low-defect microstructure coatings can have a positive effect on the corrosion resistance of tantalum nitride (TaN{sub x}) films. In this study, TaN{sub x} thin films have been deposited by MPPMS in a closed field unbalanced magnetron sputtering system. Structure, surface morphology, hardness and corrosion resistance of the developed coatings have been analyzed as a function of different N{sub 2}-to-Ar ratios (0, 0.25, 0.625, 1). X-ray diffraction and scanning electron microscopy analysis reveal high dependence of the grown crystal phases and the microstructure on N{sub 2}-to-Ar ratio. The hardness of the TaN{sub x} coatings increases when increasing N{sub 2}-to-Ar ratio up to a maximum value of 25 GPa (N{sub 2}-to-Ar ratio of 0.625). The corrosion behavior was investigated using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry. EIS measurements registered at different immersion times show high impedance values (in the order of 10 MΩ cm{sup 2}) and corrosion resistance enhancement with time, indicating the formation of a passive protective oxide layer on the top of their surfaces. TaN{sub x} film grown at 0.25 N{sub 2}-to-Ar ratio exhibits the highest corrosion resistance of 103.53 MΩ cm{sup 2} and low porosity of 1.63 × 10{sup −3} and is characterized by columnar-free microstructure. - Highlights: • TaN{sub X} coatings deposited by MPPMS at different N{sub 2}-to-Ar ratios have been

  13. Influence of Power Pulse Parameters on the Microstructure and Properties of the AlCrN Coatings by a Modulated Pulsed Power Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Jun Zheng

    2017-11-01

    Full Text Available In this study, AlCrN coatings were deposited using modulated pulsed power magnetron sputtering (MPPMS with different power pulse parameters by varying modulated pulsed power (MPP charge voltages (350 to 550 V. The influence of power pulse parameters on the microstructure, mechanical properties and thermal stability of the coatings was investigated. The results indicated that all the AlCrN coatings exhibited a dense columnar microstructure. Higher charge voltage could facilitate a denser coating microstructure. As the charge voltage increased up to 450 V or higher, the microvoids along the column boundaries disappeared and the coatings became fully dense. The main phase in the AlCrN coatings was the c-(Al, CrN solid solution phase with NaCl-type phase structure. A diffraction peak of the h-AlN phase was detected at a 2θ of around 33°, when the charge voltage was higher than 500 V. The hardness of the AlCrN coatings varied as a function of charge voltage. The maximum value of the hardness (30.8 GPa was obtained at 450 V. All the coatings showed good thermal stability and maintained their structure and mechanical properties unchanged up to 800 °C during vacuum annealing. However, further increasing the annealing temperature to 1000 °C resulted in apparent change in the microstructure and decrease in the hardness. The charge voltages also showed a significant influence on the high-temperature tribological behavior of the coatings. The coating deposited at the charge voltage of 550 V exhibited excellent tribological properties with a low friction coefficient.

  14. Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique

    Science.gov (United States)

    Song, Liang; Wang, Xianping; Wang, Le; Zhang, Ying; Liu, Wang; Jiang, Weibing; Zhang, Tao; Fang, Qianfeng; Liu, Changsong

    2017-04-01

    He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (˜17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.

  15. Effect of nitrogen doping on TiO.sub.x./sub.N.sub.y./sub. thin film formation at reactive high-power pulsed magnetron sputtering

    Czech Academy of Sciences Publication Activity Database

    Straňák, Vítězslav; Quaas, M.; Bogdanowicz, R.; Steffen, H.; Wulff, H.; Hubička, Zdeněk; Tichý, M.; Hippler, R.

    2010-01-01

    Roč. 43, č. 28 (2010), s. 1-7 ISSN 0022-3727 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Grant - others:AVČR(CZ) M100100915 Institutional research plan: CEZ:AV0Z10100522 Keywords : magnetron sputtering * TiO 2 * pulse discharge * XRD * band gap Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.105, year: 2010 http://iopscience.iop.org/0022-3727/43/28/285203/

  16. Structural investigations of homoepitaxial Si films grown at low temperature by pulsed magnetron sputtering on Si(111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, F. [Hahn-Meitner-Institut Berlin, Abt. Silizium-Photovoltaik, Kekulestr. 5, D-12485 Berlin (Germany)], E-mail: fenske@hmi.de; Schulze, S.; Hietschold, M. [Technische Universitaet Chemnitz, Analytik an Festkoerperoberflaechen, Reichenhainer Str. 70, D-09107 Chemnitz (Germany); Schmidbauer, M. [Institut fuer Kristallzuechtung Berlin, Max-Born-Str.2, D-12489 Berlin (Germany)

    2008-06-02

    Using pulsed magnetron sputtering at low substrate temperature (T{sub s} = 580 {sup o}C) the homoepitaxial growth on Si(111) was studied. The films were comprehensively characterized by cross-section transmission electron microscopy and various diffraction methods. Up to a film thickness of 1240 nm no breakdown of the epitaxial growth was observed. The surface microstructure, characterized by electron backscatter diffraction, exhibits exclusively crystalline structure with (111) orientation. Careful analysis of selected area electron diffraction patterns and high-resolution X-ray diffraction data clearly proves the existence of twinning/stacking faults in the {l_brace}111{r_brace} planes. Besides these defects - which are typical for low-temperature epitaxy - no additional significant defects related to the energetic particle bombardment by the sputter deposition method are observed.

  17. Structural investigations of homoepitaxial Si films grown at low temperature by pulsed magnetron sputtering on Si(111) substrates

    International Nuclear Information System (INIS)

    Fenske, F.; Schulze, S.; Hietschold, M.; Schmidbauer, M.

    2008-01-01

    Using pulsed magnetron sputtering at low substrate temperature (T s = 580 o C) the homoepitaxial growth on Si(111) was studied. The films were comprehensively characterized by cross-section transmission electron microscopy and various diffraction methods. Up to a film thickness of 1240 nm no breakdown of the epitaxial growth was observed. The surface microstructure, characterized by electron backscatter diffraction, exhibits exclusively crystalline structure with (111) orientation. Careful analysis of selected area electron diffraction patterns and high-resolution X-ray diffraction data clearly proves the existence of twinning/stacking faults in the {111} planes. Besides these defects - which are typical for low-temperature epitaxy - no additional significant defects related to the energetic particle bombardment by the sputter deposition method are observed

  18. Temperature-dependent interface characteristic of silicon wafer bonding based on an amorphous germanium layer deposited by DC-magnetron sputtering

    Science.gov (United States)

    Ke, Shaoying; Lin, Shaoming; Ye, Yujie; Mao, Danfeng; Huang, Wei; Xu, Jianfang; Li, Cheng; Chen, Songyan

    2018-03-01

    We report a near-bubble-free low-temperature silicon (Si) wafer bonding with a thin amorphous Ge (a-Ge) intermediate layer. The DC-magnetron-sputtered a-Ge film on Si is demonstrated to be extremely flat (RMS = 0.28 nm) and hydrophilic (contact angle = 3°). The effect of the post-annealing temperature on the surface morphology and crystallinity of a-Ge film at the bonded interface is systematically identified. The relationship among the bubble density, annealing temperature, and crystallinity of a-Ge film is also clearly clarified. The crystallization of a-Ge film firstly appears at the bubble region. More interesting feature is that the crystallization starts from the center of the bubbles and sprawls to the bubble edge gradually. The H2 by-product is finally absorbed by intermediate Ge layer with crystalline phase after post annealing. Moreover, the whole a-Ge film out of the bubble totally crystallizes when the annealing time increases. This Ge integration at the bubble region leads to the decrease of the bubble density, which in turn increases the bonding strength.

  19. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    NARCIS (Netherlands)

    Rafieian Boroujeni, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G.H.

    2015-01-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to

  20. Room temperature growth of nanocrystalline anatase TiO2 thin films by dc magnetron sputtering

    International Nuclear Information System (INIS)

    Singh, Preetam; Kaur, Davinder

    2010-01-01

    We report, the structural and optical properties of nanocrystalline anatase TiO 2 thin films grown on glass substrate by dc magnetron sputtering at room temperature. The influence of sputtering power and pressure over crystallinity and surface morphology of the films were investigated. It was observed that increase in sputtering power activates the TiO 2 film growth from relative lower surface free energy to higher surface free energy. XRD pattern revealed the change in preferred orientation from (1 0 1) to (0 0 4) with increase in sputtering power, which is accounted for different surface energy associated with different planes. Microstructure of the films also changes from cauliflower type to columnar type structures with increase in sputtering power. FESEM images of films grown at low pressure and low sputtering power showed typical cauliflower like structure. The optical measurement revealed the systematic variation of the optical constants with deposition parameters. The films are highly transparent with transmission higher than 90% with sharp ultraviolet cut off. The transmittance of these films was found to be influenced by the surface roughness and film thickness. The optical band gap was found to decrease with increase in the sputtering power and pressure. The refractive index of the films was found to vary in the range of 2.50-2.24 with increase in sputtering pressure or sputtering power, resulting in the possibility of producing TiO 2 films for device applications with different refractive index, by changing the deposition parameters.

  1. Impedimetric Thiourea Sensing in Copper Electrorefining Bath based on DC Magnetron Sputtered Nanosilver as Highly Uniform Transducer

    International Nuclear Information System (INIS)

    Mozaffari, S.A.; Amoli, H. Salar; Simorgh, S.; Rahmanian, R.

    2015-01-01

    Highlights: • Fabrication of a novel disposable impedimetric thiourea sensor based on nanostructured Ag film transducer. • Exploiting sputtering as a high-tech method for preparation of highly uniform nanostructured Ag film. • A wonderful combination of nanostructured Ag film and carbon paper substrate as remarkably stable and reproducible sensor for thiourea detection in copper electrorefining bath. • Application of impedimetric assessment for thiourea monitoring due to its rapidity, sensitivity, and repeatability. - Abstract: Highly uniform sputtered nanostructured silver (Nano-Ag) film on the conductive carbon paper (CP) substrate (Nano-Ag/CP) was applied as a novel approach for thiourea (TU) measurement in copper electrorefining bath. Nano-Ag film was achieved by direct current (DC) magnetron sputtering system at the optimized instrumental deposition conditions. Characterization of the surface structure of Nano-Ag film by field emission-scanning electron microscopy (FE-SEM), exhibits uniform Nano-Ag film as an effective transducer for TU sensing. Step by step monitoring of Nano-Ag/CP electrode fabrication were performed using electrochemical methods such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Fabricated Nano-Ag/CP electrode was used for TU determination using EIS assessment. The impedimetric results show high sensitivity for TU sensing within 2.0–250 ppm.

  2. Special traits of the millimeter wave relativistic magnetron

    International Nuclear Information System (INIS)

    Berdin, S.A.; Chizhov, K.V.; Gadetski, N.P.; Korenev, V.G.; Lebedenko, A.N.; Marchenko, M.I.; Magda, I.I.; Melezhik, O.G.; Sinitsin, V.G.; Soshenko, V.A.

    2014-01-01

    A 8 mm band relativistic magnetron is investigated experimentally and by means of numerical simulation. The physical effects are analyzed which influence negatively the r.f. generation. The processes capable of reducing effectiveness of the generation and duration of the generated pulse include forward and backward axial flows of electrons, and intense electric fields - the generated microwaves and the fields owing to the space charge

  3. Composition, structure and properties of SiN x films fabricated by pulsed reactive closed-field unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Yao, Zh.Q.; Yang, P.; Huang, N.; Sun, H.; Wan, G.J.; Leng, Y.X.; Chen, J.Y.

    2005-01-01

    Silicon nitride (SiN x ) thin films are of special interest in both scientific research and industrial applications due to their remarkable properties such as high thermal stability, chemical inertness, high hardness and good dielectric properties. In this work, SiN x films were fabricated by pulsed reactive closed-field unbalanced magnetron sputtering of high purity single crystal silicon targets in an Ar-N 2 mixture. The effect of N 2 partial pressure on the film composition, chemical bonding configurations, surface morphology, surface free energy, optical and mechanical properties were investigated. We showed that with increased N 2 partial pressure, the N to Si ratio (N/Si) in the film increased and N atoms are preferentially incorporated in the NSi 3 stoichiometric configuration. It leads the Si-N network a tendency to chemical order. Films deposited at a high N 2 fraction were consistently N-rich. The film surface transformed from a loose granular structure with microporosity to a homogeneous, continuous, smooth and dense structure. A progressive densification of the film microstructure occurs as the N 2 fraction is increased. The reduced surface roughness and the increased N incorporation in the film give rise to the increased contact angle with double-distilled water from 24 o to 49.6 o . To some extent, the SiN x films deposited by pulsed magnetron sputtering are hydrophilic in nature. The as-deposited SiN x films exhibit good optical transparency in the visible region and the optical band gap E opt can be varied from 1.68 eV for a-Si to 3.62 eV for SiN x films, depending on the synthesis parameters. With the increase of the N/Si atomic ratio, wear resistance of the SiN x films was improved, a consequence of increased hardness and elastic modulus. The SiN x films have lower friction coefficient and better wear resistance than 316L stainless steel under dry sliding friction, where the SiN x films experienced only fatigue wear

  4. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaozhi; Yue, Zhenxing, E-mail: yuezhx@mail.tsinghua.edu.cn; Meng, Siqin; Yuan, Lixin [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s} of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)

  5. Effects of nitrogen ion implantation time on tungsten films deposited by DC magnetron sputtering on AISI 410 martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Malau, Viktor, E-mail: malau@ugm.ac.id; Ilman, Mochammad Noer, E-mail: noer-ilman@yahoo.com; Iswanto, Priyo Tri, E-mail: priyatri@yahoo.com; Jatisukamto, Gaguk, E-mail: gagukjtsk@yahoo.co.id [Mechanical and Industrial Engineering Department, Gadjah Mada University Jl. Grafika 2, Yogyakarta, 55281 (Indonesia)

    2016-03-29

    Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressure of 7.6 x 10{sup −2} torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10{sup −6} mbar, a fluence of 2 x 10{sup 17} ions/cm{sup 2}, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.

  6. Studies on the electrical properties of reactive DC magnetron-sputtered indium-doped silver oxide thin films: The role of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, A [Semiconductor Physics Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Barik, Ullash Kumar [Semiconductor Physics Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2007-03-15

    Indium ({approx}10 at.%)-doped silver oxide (AIO) thin films have been prepared on glass substrates at room temperature (300 K) by reactive DC magnetron sputtering technique using an alloy target made of pure (99.99%) silver and indium (90:10 at.%) metals. The oxygen flow rates have been varied in the range 0.00-3.44 sccm during sputtering. The X-ray diffraction data on these indium-doped silver oxide films show polycrystalline nature. With increasing oxygen flow rate, the carrier concentration, the Hall mobility and the electron mean free path decrease. These films show a very low positive temperature coefficient of resistivity {approx}3.40x10{sup -8} ohm-cm/K. The work function values for these films (measured by Kelvin probe technique) are in the range 4.81-5.07 eV. The high electrical resistivity indicate that the films are in the island state (size effects). Calculations of the partial ionic charge (by Sanderson's theory) show that indium doping in silver oxide thin films enhance the ionicity.

  7. Studies on the electrical properties of reactive DC magnetron-sputtered indium-doped silver oxide thin films: The role of oxygen

    International Nuclear Information System (INIS)

    Subrahmanyam, A.; Barik, Ullash Kumar

    2007-01-01

    Indium (∼10 at.%)-doped silver oxide (AIO) thin films have been prepared on glass substrates at room temperature (300 K) by reactive DC magnetron sputtering technique using an alloy target made of pure (99.99%) silver and indium (90:10 at.%) metals. The oxygen flow rates have been varied in the range 0.00-3.44 sccm during sputtering. The X-ray diffraction data on these indium-doped silver oxide films show polycrystalline nature. With increasing oxygen flow rate, the carrier concentration, the Hall mobility and the electron mean free path decrease. These films show a very low positive temperature coefficient of resistivity ∼3.40x10 -8 ohm-cm/K. The work function values for these films (measured by Kelvin probe technique) are in the range 4.81-5.07 eV. The high electrical resistivity indicate that the films are in the island state (size effects). Calculations of the partial ionic charge (by Sanderson's theory) show that indium doping in silver oxide thin films enhance the ionicity

  8. The performance of the DC motor by the PID controlling PWM DC-DC boost converter

    OpenAIRE

    Can, Erol; Sayan, Hasan Hüseyin

    2017-01-01

    This paper presents the PID controlling direct current (DC) to the direct current boost converter feds DC motor which has a 3.68 kW and 240 V of DC voltage input on its characteristics. What is first formed is the boost converter mathematical model at the design stage. Secondly, a mathematical model of the DC motor is created so that the boost converter with the machine can be established and modeled at the Matlab Simulink. The PID controller is considered for arranging a pulse width modulati...

  9. Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.

    Science.gov (United States)

    Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon

    2016-05-01

    Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties.

  10. Studies on the cross-magnetron effect in the reactive indium tin oxide deposition. Effects of an inhomogeneous plasma distribution on the coating properties in dynamic and static coating by means of a pulsed dual magnetron

    International Nuclear Information System (INIS)

    Kleinhempel, Ronny

    2008-01-01

    In the present thesis the reactive ITO deposition process under application of metallic In:Sn targets is intensively studied. The coating deposition pursues at a symmetric bipolarly pulsed dual magnetron both on resting and moving substrates. The thesis comprehends two partial fields. On the one hand the dynamic deposition process was comprehensively characterized at an near-industry test facility and successfully transformed by means of its physical parameters to an industrial coating facility. On the other hand static depositions were performed. These allow the analysis of the lateral distribution of the functional coating properties. By this a correlation to the lateral distributions of the measured plasma parameters could be elaborated [de

  11. Preparation and comparison of a-C:H coatings using reactive sputter techniques

    Energy Technology Data Exchange (ETDEWEB)

    Keunecke, M., E-mail: martin.keunecke@ist.fraunhofer.d [Fraunhofer Institute for Surface Engineering and Thin Films (IST), Braunschweig (Germany); Weigel, K.; Bewilogua, K. [Fraunhofer Institute for Surface Engineering and Thin Films (IST), Braunschweig (Germany); Cremer, R.; Fuss, H.-G. [CemeCon AG, Wuerselen (Germany)

    2009-12-31

    Amorphous hydrogenated carbon (a-C:H) coatings are widely used in several industrial applications. These coatings commonly will be prepared by plasma activated chemical vapor deposition (PACVD). The main method used to prepare a-C:H coating in industrial scale is based on a glow discharge in a hydrocarbon gas like acetylene or methane using a substrate electrode powered with medium frequency (m.f. - some 10 to 300 kHz). Some aims of further development are adhesion improvement, increase of hardness and high coating quality on complex geometries. A relatively new and promising technique to fulfil these requirements is the deposition of a-C:H coatings by a reactive d.c. magnetron sputter deposition from a graphite target with acetylene as reactive gas. An advancement of this technique is the deposition in a pulsed magnetron sputter process. Using these three mentioned techniques a-C:H coatings were prepared in the same deposition machine. For adhesion improvement different interlayer systems were applied. The effect of different substrate bias voltages (d.c. and d.c. pulse) was investigated. By applying the magnetron sputter technique in the d.c. pulse mode, plastic hardness values up to 40 GPa could be reached. Besides hardness other mechanical properties like resistance against abrasive wear were measured and compared. Cross sectional SEM images showed the growth structure of the coatings.

  12. Improvement of corrosion protection property of Mg-alloy by DLC and Si-DLC coatings with PBII technique and multi-target DC-RF magnetron sputtering

    International Nuclear Information System (INIS)

    Masami, Ikeyama; Setsuo, Nakao; Tsutomu, Sonoda; Junho, Choi

    2009-01-01

    Magnesium alloys have been considered as one of the most promising light weight materials with potential applications for automobile and aircraft components. Their poor corrosion resistance, however, has to date prevented wider usage. Diamond-like carbon (DLC) and silicon-incorporated DLC (Si-DLC) coatings are known to provide a high degree of corrosion protection, and hold accordingly promise for enhancing the corrosion resistance of the magnesium alloys. In this work we have studied the effect of coating conditions of DLC coatings as well as Si incorporation into coating on corrosion resistance, deposited onto AZ91 magnesium alloy substrates by plasma based ion implantation (PBII). The influences of a Ti interlayer beneath the DLC, Si-DLC and Ti incorporated DLC (Ti-DLC) coatings fabricated by multi-target direct-current radio-frequency (DC-RF) magnetron sputtering were also examined on both the adhesion strength and corrosion resistance of the materials. We have also examined the effect of the Si content in the Si-DLC coatings made by magnetron sputtering on the alloys' corrosion resistance. The results of potentiodynamic polarization measurements demonstrate that Si-DLC coating deposited by PBII exhibits the highest corrosion resistance in an aqueous 0.05 M NaCl solution. Although Ti layer is helpful in increasing adhesion between DLC coating and AZ91 substrate, it also influences adversely corrosion protection. The ozone treatment of the magnesium alloy's surface before the formation of coatings has been found to improve both adhesion strength and corrosion resistance.

  13. Improvement of corrosion protection property of Mg-alloy by DLC and Si-DLC coatings with PBII technique and multi-target DC-RF magnetron sputtering

    Science.gov (United States)

    Masami, Ikeyama; Setsuo, Nakao; Tsutomu, Sonoda; Junho, Choi

    2009-05-01

    Magnesium alloys have been considered as one of the most promising light weight materials with potential applications for automobile and aircraft components. Their poor corrosion resistance, however, has to date prevented wider usage. Diamond-like carbon (DLC) and silicon-incorporated DLC (Si-DLC) coatings are known to provide a high degree of corrosion protection, and hold accordingly promise for enhancing the corrosion resistance of the magnesium alloys. In this work we have studied the effect of coating conditions of DLC coatings as well as Si incorporation into coating on corrosion resistance, deposited onto AZ91 magnesium alloy substrates by plasma based ion implantation (PBII). The influences of a Ti interlayer beneath the DLC, Si-DLC and Ti incorporated DLC (Ti-DLC) coatings fabricated by multi-target direct-current radio-frequency (DC-RF) magnetron sputtering were also examined on both the adhesion strength and corrosion resistance of the materials. We have also examined the effect of the Si content in the Si-DLC coatings made by magnetron sputtering on the alloys' corrosion resistance. The results of potentiodynamic polarization measurements demonstrate that Si-DLC coating deposited by PBII exhibits the highest corrosion resistance in an aqueous 0.05 M NaCl solution. Although Ti layer is helpful in increasing adhesion between DLC coating and AZ91 substrate, it also influences adversely corrosion protection. The ozone treatment of the magnesium alloy's surface before the formation of coatings has been found to improve both adhesion strength and corrosion resistance.

  14. Investigation of physical properties and surface morphology of Cu nanolayer deposited on glass and (Al, Fe) thin films by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, P.A. [Islamic Azad Univ., North Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Islamic Azad Univ., Tabriz (Iran, Islamic Republic of). Dept. of Science-Applied Chemistry; Laheghi, S.N.; Ghoranneviss, M. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Plasma Research Center; Moradi, S. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Aberumand, P. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Laboratory Complex

    2008-07-01

    The applications for copper (Cu) thin films with micro or nanostructural dimensions range from catalysis to microelectronic devices. This paper reported on a study in which DC magnetron sputtering was used to coat iron (Fe), copper (Cu) and aluminum (Al) on glass substrate under a particular voltage, time and optimized deposition pressure. The samples were then coated with Cu using the same technique in preparation of different multilayers. Physical properties such as transmission and reflection per cent, magnetic and electrical properties, size and surface morphology were analyzed using data from AFM, XRD, SEM, Four point probe, and magneto resistive spectrophotometers. The study showed that the size, surface morphology and some physical properties of Cu nanolayer depend on substrate materials, surface morphology and physical properties below the nanolayer. Future work will focus on chemical properties such as catalytic and electrochemical properties. Copper nanoparticles will also be synthesized on other materials such as ZnO. 14 refs., 1 tab., 3 figs.

  15. THE EFFECT OF PRESSURE, BIAS VOLTAGE AND ANNEALING TEMPERATURE ON N₂ AND N₂+SiH₄ DOPED WC/C DC MAGNETRON SPUTTERED LAYERS

    Directory of Open Access Journals (Sweden)

    Peter Hornak

    2017-12-01

    Full Text Available Tungsten carbide (WC/C layers are often researched due to their outstanding mechanical and tribological properties. Here, optimized indented hardness (HIT, indentation modulus (EIT and coefficient of friction (COF values were measured to study the effect of pressure and bias voltage on WC/C layers, deposited on Si by DC magnetron spluttering. Maximal values of HIT=37.2±4.8 GPa, EIT=447±28 GPa and COF=0.64±0.09 were obtained. Additionally, the effect of temperature on optimized layers deposited with and without N₂ and N₂+SiH₄ annealed at 200 °C, 500 °C and 800 °C, were also investigated. The values of HIT, EIT and COF and, observed morphology and structural composition of these contaminated and non-contaminated WC/C layers were evaluated. It was found that layer degradation occurred at different rates depending on the temperature and gas mixture used during the annealing and deposition process, respectively.

  16. Effect of N Concentration on Microstructure Evolution of the Nanostructured (Al, Ti, SiN Coatings Prepared by d.c. Reactive Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    L. Jakab-Farkas

    2009-12-01

    Full Text Available Nanostructured (Al, Ti, SiN thin film coatings were synthesized by d.c. reactive magnetron sputtering, performed in an Ar/N2 gas mixture from a planar rectangular Al:Ti:Si=50:25:25 alloyed target. The mass flow of N2 reactive gas was strictly controlled in sputtering process. Conventional transmission electron microscopy (TEM technique was used for microstructure investigation of the as deposited films. Cross-sectional cuts performed through the deposited films revealed distinct microstructure evolution for different samples. It was found that the variation of the reactive gas amount induced changes in film microstructure. The metallic AlTiSi film exhibited strong columnar growth with a crystalline structure. The addition of a small amount of nitrogen to the process gas leads to a crystallite refinement. Further increase of N concentration resulted in evolution of fine lamellae growth morphology consisting of hainlike pearls in a dendrite, clusters of very fine grains in close crystallographic orientation.

  17. Structure, adhesive strength and electrochemical performance of nitrogen doped diamond-like carbon thin films deposited via DC magnetron sputtering.

    Science.gov (United States)

    Khun, N W; Liu, E; Krishna, M D

    2010-07-01

    Nitrogen doped diamond-like carbon (DLC:N) thin films were deposited on p-Si (100) substrates by DC magnetron sputtering with different nitrogen flow rates at a substrate temperature of about 100 degrees C. The chemical bonding structure of the films was characterized by X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. The adhesive strength and surface morphology of the films were studied using micro-scratch tester and scanning electron microscope (SEM), respectively. The electrochemical performance of the films was evaluated by potentiodynamic polarization testing and linear sweep voltammetry. The electrolytes used for the electrochemical tests were deaerated and unstirred 0.47 M KCl aqueous solution for potentiodynamic polarization testing and 0.2 M KOH and 0.1 M KCl solutions for voltammetric analysis. It was found that the DLC:N films could well passivate the underlying substrates though the corrosion resistance of the films decreased with increased nitrogen content in the films. The DLC:N films showed wide potential windows in the KOH solution, in which the detection ability of the DLC:N films to trace lead of about 1 x 10(-3) M Pb(2+) was also tested.

  18. Tribological Testing, Analysis and Characterization of D.C. Magnetron Sputtered Ti-Nb-N Thin Film Coatings on Stainless Steel

    Science.gov (United States)

    Joshi, Prathmesh

    To enhance the surface properties of stainless steel, the substrate was coated with a 1μm thick coating of Ti-Nb-N by reactive DC magnetron sputtering at different N2 flow rates, substrate biasing and Nb-Ti ratio. The characterization of the coated samples was performed by the following techniques: hardness by Knoop micro-hardness tester, phase analysis by X-ray Diffraction (XRD), compositional analysis by Energy Dispersive X-ray Spectroscopy (EDS) and adhesion by scratch test. The tribology testing was performed on linearly reciprocating ball-on-plate wear testing machine and wear depth and wear volume were evaluated by white light interferometer. The micro-hardness test yielded appreciable enhancement in the surface hardness with the highest value being 1450 HK. Presence of three prominent phases namely NbN, Nb2N3 and TiN resulted from the XRD analysis. EDS analysis revealed the presence of Ti, Nb and Nitrogen. Adhesion was evaluated on the basis of critical loads for cohesive (Lc1) and adhesive (Lc2) failures with values varying between 7-12 N and 16-25 N respectively, during scratch test for coatings on SS substrates.

  19. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    Science.gov (United States)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  20. The influence of target oxygen on the YBa2Cu3O6+δ DC Magnetron sputtering process

    International Nuclear Information System (INIS)

    Larsson, G.; Selinder, T.I.; Helmersson, U

    1990-01-01

    The oxygen partial pressure and the target potential have been monitored under a range of process conditions during single target dc magnetron sputtering of Y-Ba-Cu-O. The introduced sputtering gas consisted in all but one instance of pure argon and hence the oxygen present in the plasma originated mainly from the target. During the first hours of sputtering the oxygen partial pressure was of the same magnitude as the argon pressure (3.0 Pa). As the oxygen was released from the target and subsequently removed by pumping, the target potential increased and the film composition became more stoichiometric. After 30-40 hours of sputtering the target potential and the oxygen pressure stabilized and the film composition was equal to that of the stoichiometric target. If an oxygen flow exceeding a critical level was mixed into the sputtering gas the target potential and the deposition rate decreased swiftly. This was due to target oxidation, further manifested in changing plasma and target colours. In some instances the stabilization after 'presputtering' was incomplete and oscillations in target voltage and oxygen partial pressure were observed. The fluctuations made it virtually impossible to obtain stoichiometric films. The oscillative behaviour of the sputtering process is tentatively explained by a target temperature dependent oxygen diffusion. (au)

  1. Characterization of DC magnetron plasma in Ar/Kr/N2 mixture during deposition of (Cr,Al)N coating

    International Nuclear Information System (INIS)

    Bobzin, K; Bagcivan, N; Theiß, S; Brugnara, R; Bibinov, N; Awakowicz, P

    2017-01-01

    Reactive sputter deposition of (Cr,Al)N coatings in DC magnetron plasmas containing Ar/Kr/N 2 mixtures is characterized by applying a combination of voltage–current measurement, optical emission spectroscopy (OES) and numerical simulation. Theoretical and experimental methods supplement each other and their combination permits us to obtain the most reliable information about the processes by physical vapor deposition. Gas temperature ( T g ) and plasma parameters, namely electron density n e and electron temperature T e are determined by spatial resolved measurements of molecular nitrogen photoemission. Steady-state densities of Cr and Al atoms are measured using OES. The sputtering of Cr and Al atoms is simulated using the TRIDYN code, measured electric current and applied voltage. Transport of sputtered atoms through the plasma volume is simulated by adopting a Monte-Carlo code. In order to quantify the ‘poisoning’ of the target surface with nitrogen, simulated steady state densities of Al and Cr atoms at different states of poisoning and at different distances from the target are compared with the measured densities. In addition, simulated fluxes of Cr and Al atoms to the substrate are compared with the measured deposition rates of the (Cr,Al)N coating. (paper)

  2. The microstructure and wettability of the TiO{sub x} films synthesized by reactive DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lin Zeng [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004 (China); State Key Laboratory of Plastic Forming Simulation and Die and Mould Technology Wuhan, Hubei 430074 (China)], E-mail: linzengsy@gmail.com; Liu Kun; Zhang Yichen; Yue Xiangji; Song Guiqiu [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004 (China); Ba Dechun [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004 (China)], E-mail: dechunba@yahoo.com

    2009-01-25

    Different chemical state of titanium oxide films were deposited on commercially pure Ti (CP Ti) by reactive DC magnetron sputtering under different oxygen flow rates to examine a possibility of their applications to endovascular stents. The chemical composition and crystal structure of the obtained films were analyzed by XPS and XRD, respectively. In dependence on the deposition parameters employed, the obtained films demonstrated different mixture of anatase TiO{sub 2}, Ti{sub 2}O{sub 3}, TiO and Ti. The wettability of the films was measured by the water contact angle variation. By formation of titanium oxide film on CP Ti, contact angle was decreased. In order to modify and control the surface wettability, the resultant TiO{sub x} films were etched subsequently by different plasma. The wettability was influenced by etched process according to the decreased contact angle values of etched TiO{sub x} film. Furthermore, TiO{sub x} films became highly hydrophilic by ultraviolet (UV) irradiation, and returned to the initial relatively hydrophobic state by visible-light (VIS) irradiation. The wettability of the TiO{sub x} film was enabled to convert between hydrophilic and hydrophobic reversibly by alternative UV and VIS irradiation. By adjusting deposition parameter and further modification process, the wettability of the TiO{sub x} films can be changed freely in the range of 0-90 deg.

  3. The Optimum Fabrication Condition of p-Type Antimony Tin Oxide Thin Films Prepared by DC Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Huu Phuc Dang

    2016-01-01

    Full Text Available Transparent Sb-doped tin oxide (ATO thin films were fabricated on quartz glass substrates via a mixed (SnO2 + Sb2O3 ceramic target using direct current (DC magnetron sputtering in ambient Ar gas at a working pressure of 2 × 10−3 torr. X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, Hall-effect, and UV-vis spectra measurements were performed to characterize the deposited films. The substrate temperature of the films was investigated in two ways: (1 films were annealed in Ar ambient gas after being deposited at room temperature or (2 they were deposited directly at different temperatures. The first process for fabricating the ATO films was found to be easier than the second process. The deposited films showed p-type electrical properties, a polycrystalline tetragonal rutile structure, and their average transmittance was greater than 80% in the visible light range at the optimum annealing temperature of 500°C. The best electrical properties of the film were obtained on a 10 wt% Sb2O3-doped SnO2 target with a resistivity, hole concentration, and Hall mobility of 0.55 Ω·cm, 1.2 × 1019 cm−3, and 0.54 cm2V−1s−1, respectively.

  4. Effect of arc suppression on the physical properties of low temperature dc magnetron sputtered tantalum thin films

    International Nuclear Information System (INIS)

    Subrahmanyam, A.; Valleti, Krishna; Joshi, Srikant V.; Sundararajan, G.

    2007-01-01

    Arcing is a common phenomenon in the sputtering process. Arcs and glow discharges emit electrons which may influence the physical properties of films. This article reports the properties of tantalum (Ta) thin films prepared by continuous dc magnetron sputtering in normal and arc-suppression modes. The substrate temperature was varied in the range of 300-673 K. The tantalum films were ∼1.8 μm thick and have good adherence to 316 stainless steel and single-crystal silicon substrates. The phase of the Ta thin film determines the electrical and tribological properties. The films deposited at 300 K using both methods were crystallized in a tetragonal structure (β phase) with a smooth surface (grain size of ∼10 nm) and exhibited an electrical resistivity of ∼194 μΩ cm and a hardness of ∼20 GPa. When the substrate temperature was 473 K and higher, the arc-suppression mode appears to influence the films to crystallize in the α phase with a grain size of ∼40 nm, whereas the normal power mode gave mixed phases β and α beyond 473 K, the arc-suppression mode yields larger grain sizes in the Ta thin films and the hardness decreases. These changes in the physical properties in arc-suppression mode are attributed to either the change in plasma characteristics or the energetic particle bombardment onto the substrate, or both

  5. Simulation of the electric potential and plasma generation coupling in magnetron sputtering discharges

    Science.gov (United States)

    Trieschmann, Jan; Krueger, Dennis; Schmidt, Frederik; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2016-09-01

    Magnetron sputtering typically operated at low pressures below 1 Pa is a widely applied deposition technique. For both, high power impulse magnetron sputtering (HiPIMS) as well as direct current magnetron sputtering (dcMS) the phenomenon of rotating ionization zones (also referred to as spokes) has been observed. A distinct spatial profile of the electric potential has been associated with the latter, giving rise to low, mid, and high energy groups of ions observed at the substrate. The adherent question of which mechanism drives this process is still not fully understood. This query is approached using Monte Carlo simulations of the heavy particle (i.e., ions and neutrals) transport consistently coupled to a pre-specified electron density profile via the intrinsic electric field. The coupling between the plasma generation and the electric potential, which establishes correspondingly, is investigated. While the system is observed to strive towards quasi-neutrality, distinct mechanisms governing the shape of the electric potential profile are identified. This work is supported by the German Research Foundation (DFG) in the frame of the transregional collaborative research centre TRR 87.

  6. Quantitative characterization of silicon- and aluminium oxynitride films produced by reactive dc-magnetron sputtering

    International Nuclear Information System (INIS)

    Dreer, S.

    2000-05-01

    The deposition of aluminum and silicon oxynitride films by reactive dc-magnetron sputtering was systematically planned by design of experiments, carried out and evaluated with the application of specialized statistics software. The influence of the deposition parameters on the resulting films was evaluated by multiple regression analysis. With the obtained data a model of the deposition process for the quantitative prediction of the deposition parameters necessary to obtain films with desired composition was built. This is also of technological importance, since the physical properties of the films strongly depend on their composition. Furthermore, the long term repeatability of the deposition process was implemented into the model. A precise and economic way for quantitative bulk analysis of silicon/aluminum, oxygen and nitrogen based on EPMA was presented and the use of data gained by the latter method is discussed for the calculation of relative sensitivity factors for SIMS and hf-SNMS. Advantages and disadvantages of SIMS, hf-SNMS, hf-GD-OES, and sputter AES were compared. The combination FT-IR/EPMA/SIMS at present offers the best possibility for a quantitative bulk and in depth distribution analysis of such films in the range of 20 to 1000 nm thickness. The films were also characterized by XRD and PAA. The refractive index and the growth rate of the films were determined by spectroscopic ellipsometry. With indentation by a nano hardness tester the hardness and the Young's modulus of the films were obtained. The results of these measurements were evaluated by statistical software. The dependencies of the physical properties on the deposition parameters and on the film thickness were evaluated and quantified. Furthermore, the dependencies of the physical properties on the film composition represented by the oxygen content were evaluated. (author)

  7. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    OpenAIRE

    Rafieian Boroujeni, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G.H.

    2015-01-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx

  8. DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application

    Science.gov (United States)

    Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang

    2018-01-01

    Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.

  9. Verification and Analysis of Implementing Virtual Electric Devices in Circuit Simulation of Pulsed DC Electrical Devices in the NI MULTISIM 10.1 Environment

    Directory of Open Access Journals (Sweden)

    V. A. Solov'ev

    2015-01-01

    Full Text Available The paper presents the analysis results of the implementation potential and evaluation of the virtual electric devices reliability when conducting circuit simulation of pulsed DC electrical devices in the NI Multisim 10.1environment. It analyses metrological properties of electric measuring devices and sensors of the NI Multisim 10.1environment. To calculate the reliable parameters of periodic non-sinusoidal electrical values based on their physical feasibility the mathematical expressions have been defined.To verify the virtual electric devices a circuit model of the power section of buck DC converter with enabled devices under consideration at its input and output is used as a consumer of pulse current of trapezoidal or triangular form. It is used as an example to show a technique to verify readings of virtual electric measuring devices in the NI Multisim 10.1environment.It is found that when simulating the pulsed DC electric devices to measure average and RMS voltage supply and current consumption values it is advisable to use the probe. Electric device power consumption read from the virtual power meter is equal to its average value, and its displayed power factor is inversely proportional to the input current form factor. To determine the RMS pulsed DC current by ammeter and multi-meter it is necessary to measure current by these devices in DC and AC modes, and then determine the RMS value of measurement results.Virtual electric devices verification has proved the possibility of their application to determine the energy performance of transistor converters for various purposes in the circuit simulation in the NI 10.1 Multisim environment, thus saving time of their designing.

  10. Growth of Sr1-xNdxCuOy thin films by rf-magnetron sputtering and pulsed-laser deposition

    International Nuclear Information System (INIS)

    Sugii, N.; Ichikawa, M.; Kuba, K.; Sakurai, T.; Iamamoto, K.; Yamauchi, H.

    1992-01-01

    This paper reports on Sr 1- x Nd x CuO y thin films grown on SrTiO 3 substrates by rf-magnetron sputtering and pulsed-laser deposition. The sputter-deposited film with x=0 has an infinite-layer structure whose lattice constants are: a=0.390 nm and c=0.347 nm. When x is larger than 0.1, the films contain a phase of the Sr 14 Cu 24 O 41 structure. The laser-deposited films of Sr 1- x Nd x CuO y with x ≥ 0.075 were single phase of the infinite-layer structure. The lattice parameter c decreased and the lattice parameter a increased, as the Nd content, x, increased. The films with x=0.10 and 0.125 exhibited superconducting onset temperatures around 26 K. Weak Meissner signals were observed for these films at temperatures below 30 K

  11. Oxidation resistance of CrN/(Cr,V)N hard coatings deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Panjan, P., E-mail: peter.panjan@ijs.si [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Drnovšek, A.; Kovač, J.; Gselman, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Bončina, T. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia); Paskvale, S.; Čekada, M.; Kek Merl, D.; Panjan, M. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2015-09-30

    In recent years vanadium-doped hard coatings have become available as possible candidates for self-lubrication at high temperatures. Their low coefficient of friction has mainly been attributed to the formation of the V{sub 2}O{sub 5} phase. However, the formation of vanadium oxides must be controlled by the out-diffusion of vanadium in order to achieve the combination of a low coefficient of friction and good mechanical properties for the protective coatings. In this work the application of a nanolayer of CrN/(Cr,V)N hard coating was proposed as a way to better control the out-diffusion of vanadium, while the topmost chromium oxide layer acts as barrier for the vanadium diffusion. However, the aim of this investigation was not only to focus on the formation of the oxide layer. Special attention was given to the oxidation process that takes place at the growth defects, where we observed a strong diffusion of vanadium taking place. The CrN/(Cr,V)N nanolayer coatings were deposited by DC unbalanced magnetron sputtering in an CC800/9 (CemeCon) industrial unit. The vanadium concentration in the (Cr,V)N layers was varied in the range 1.0–11.5 at.%. - Highlights: • Oxidation processes of CrN/(Cr,V)N nanolayers with vanadium content were investigated. • The CrN/(Cr,V)N hard layers were oxidized at high temperature in O2 atm. • The top chromium oxide layer acts as a diffusion barrier for vanadium ions during oxidation. • Important role of growth defects during the oxidation process is demonstrated.

  12. Oxidation resistance of CrN/(Cr,V)N hard coatings deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Panjan, P.; Drnovšek, A.; Kovač, J.; Gselman, P.; Bončina, T.; Paskvale, S.; Čekada, M.; Kek Merl, D.; Panjan, M.

    2015-01-01

    In recent years vanadium-doped hard coatings have become available as possible candidates for self-lubrication at high temperatures. Their low coefficient of friction has mainly been attributed to the formation of the V_2O_5 phase. However, the formation of vanadium oxides must be controlled by the out-diffusion of vanadium in order to achieve the combination of a low coefficient of friction and good mechanical properties for the protective coatings. In this work the application of a nanolayer of CrN/(Cr,V)N hard coating was proposed as a way to better control the out-diffusion of vanadium, while the topmost chromium oxide layer acts as barrier for the vanadium diffusion. However, the aim of this investigation was not only to focus on the formation of the oxide layer. Special attention was given to the oxidation process that takes place at the growth defects, where we observed a strong diffusion of vanadium taking place. The CrN/(Cr,V)N nanolayer coatings were deposited by DC unbalanced magnetron sputtering in an CC800/9 (CemeCon) industrial unit. The vanadium concentration in the (Cr,V)N layers was varied in the range 1.0–11.5 at.%. - Highlights: • Oxidation processes of CrN/(Cr,V)N nanolayers with vanadium content were investigated. • The CrN/(Cr,V)N hard layers were oxidized at high temperature in O2 atm. • The top chromium oxide layer acts as a diffusion barrier for vanadium ions during oxidation. • Important role of growth defects during the oxidation process is demonstrated.

  13. Reactive magnetron sputtering of N-doped carbon thin films on quartz glass for transmission photocathode applications

    Science.gov (United States)

    Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Sasinková, V.; Boháček, P.; Arbet, J.

    2018-03-01

    N-doped carbon thin films were deposited on a silicon substrate and quartz glass by RF reactive magnetron sputtering using a carbon target and an Ar+N2 gas mixture. During the magnetron sputtering, the substrate holder temperatures was kept at 800 °C. The carbon film thickness on the silicon substrate was about 70 nm, while on the quartz glass it was in the range 15 nm – 60 nm. The elemental concentration in the films was determined by RBS and ERD. Raman spectroscopy was used to evaluate the intensity ratios I D/I G of the D and G peaks of the carbon films. The transmission photocathodes prepared were placed in the hollow-cathode assembly of a Pierce-structure DC gun to produce photoelectrons. The quantum efficiency (QE) was calculated from the laser energy and cathode charge measured. The properties of the transmission photocathodes based on semitransparent N-doped carbon thin films on quartz glass and their potential for application in DC gun technology are discussed.

  14. Ion energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C; Rubio-Roy, M; Bertran, E; Portal, S; Pascual, E; Polo, M C; Andujar, J L, E-mail: corbella@ub.edu [FEMAN Group, IN2UB, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, c/ MartI i Franques 1, 08028 Barcelona (Spain)

    2011-02-15

    The ion fluxes and ion energy distributions (IED) corresponding to discharges in methane (CH{sub 4}) were measured in time-averaged mode with a compact retarding field energy analyser (RFEA). The RFEA was placed on a biased electrode at room temperature, which was powered by either radiofrequency (13.56 MHz) or asymmetric bipolar pulsed-dc (250 kHz) signals. The shape of the resulting IED showed the relevant populations of ions bombarding the cathode at discharge parameters typical in the material processing technology: working pressures ranging from 1 to 10 Pa and cathode bias voltages between 100 and 200 V. High-energy peaks in the IED were detected at low pressures, whereas low-energy populations became progressively dominant at higher pressures. This effect is attributed to the transition from collisionless to collisional regimes of the cathode sheath as the pressure increases. On the other hand, pulsed-dc plasmas showed broader IED than RF discharges. This fact is connected to the different working frequencies and the intense peak voltages (up to 450 V) driven by the pulsed power supply. This work improves our understanding in plasma processes at the cathode level, which are of crucial importance for the growth and processing of materials requiring controlled ion bombardment. Examples of industrial applications with these requirements are plasma cleaning, ion etching processes during fabrication of microelectronic devices and plasma-enhanced chemical vapour deposition of hard coatings (diamond-like carbon, carbides and nitrides).

  15. ZnO film deposition by DC magnetron sputtering: Effect of target configuration on the film properties

    Energy Technology Data Exchange (ETDEWEB)

    Arakelova, E.; Khachatryan, A.; Kteyan, A.; Avjyan, K.; Grigoryan, S.

    2016-08-01

    Ballistic transport model for target-to-substrate atom transfer during magnetron sputter deposition was used to develop zinc target (cathode) configuration that enabled growth of uniform zinc oxide films on extensive surfaces and provided reproducibility of films characteristics irrespective of the cathode wear-out. The advantage of the developed target configuration for high-quality ZnO film deposition was observed in the sputtering pressure range of 5− 50 mTorr, and in the range of cathode-to-substrate distances 7–20 cm. Characteristics of the deposited films were demonstrated by using X-ray diffraction analysis, as well as optical and electrical measurements. - Highlights: • Change of target configuration for optimization of magnetron sputtering deposition is proposed. • Improvement of ZnO film properties due to use of this target is demonstrated. • This configuration provided reproducibility of the deposited films properties.

  16. Synthesis of Ag-Cu-Pd alloy thin films by DC-magnetron sputtering: Case study on microstructures and optical properties

    Science.gov (United States)

    Rezaee, Sahar; Ghobadi, Nader

    2018-06-01

    The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.

  17. Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputtering

    Science.gov (United States)

    Birkett, Martin; Penlington, Roger

    2016-07-01

    We report on the thickness dependence of electrical resistivity of CuAlMo films grown by dc magnetron sputtering on glass substrates at room temperature. The electrical resistance of the films was monitored in situ during their growth in the thickness range 10-1000 nm. By theoretically modelling the evolution of resistivity during growth we were able to gain an insight into the dominant electrical conduction mechanisms with increasing film thickness. For thicknesses in the range 10-25 nm the electrical resistivity is found to be a function of the film surface roughness and is well described by Namba’s model. For thicknesses of 25-40 nm the experimental data was most accurately fitted using the Mayadas and Shatkes model which accounts for grain boundary scattering of the conduction electrons. Beyond 40 nm, the thickness of the film was found to be the controlling factor and the Fuchs-Sonheimer (FS) model was used to fit the experimental data, with diffuse scattering of the conduction electrons at the two film surfaces. By combining the Fuchs and Namba (FN) models a suitable correlation between theoretical and experimental resistivity can be achieved across the full CuAlMo film thickness range of 10-1000 nm. The irreversibility of resistance for films of thickness >200 nm, which demonstrated bulk conductivity, was measured to be less than 0.03% following subjection to temperature cycles of -55 and +125 °C and the temperature co-efficient of resistance was less than ±15 ppm °C-1.

  18. Room temperature growth of nanocrystalline anatase TiO{sub 2} thin films by dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Preetam, E-mail: preetamphy@gmail.co [Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Kaur, Davinder [Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2010-03-01

    We report, the structural and optical properties of nanocrystalline anatase TiO{sub 2} thin films grown on glass substrate by dc magnetron sputtering at room temperature. The influence of sputtering power and pressure over crystallinity and surface morphology of the films were investigated. It was observed that increase in sputtering power activates the TiO{sub 2} film growth from relative lower surface free energy to higher surface free energy. XRD pattern revealed the change in preferred orientation from (1 0 1) to (0 0 4) with increase in sputtering power, which is accounted for different surface energy associated with different planes. Microstructure of the films also changes from cauliflower type to columnar type structures with increase in sputtering power. FESEM images of films grown at low pressure and low sputtering power showed typical cauliflower like structure. The optical measurement revealed the systematic variation of the optical constants with deposition parameters. The films are highly transparent with transmission higher than 90% with sharp ultraviolet cut off. The transmittance of these films was found to be influenced by the surface roughness and film thickness. The optical band gap was found to decrease with increase in the sputtering power and pressure. The refractive index of the films was found to vary in the range of 2.50-2.24 with increase in sputtering pressure or sputtering power, resulting in the possibility of producing TiO{sub 2} films for device applications with different refractive index, by changing the deposition parameters.

  19. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaohong, E-mail: yxhong1981_2004@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Xu, Wenzheng, E-mail: xwz8199@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Huang, Fenglin, E-mail: windhuang325@163.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Chen, Dongsheng, E-mail: mjuchen@126.com [Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China)

    2016-12-30

    Highlights: • Ag/ZnO composite film was successfully deposited on polyester fabric by magnetron sputtering technique. • Ag film was easily oxidized into Ag{sub 2}O film in high vacuum oxygen environment. • The zinc film coated on the surface of Ag film before RF reactive sputtering could protect the silver film from oxidation. • Polyester fabric coated with Ag/ZnO composite film can obtained structural color. • The anti-ultraviolet and antistatic properties of polyester fabric coated with Ag/ZnO composite film all were good. - Abstract: Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag{sub 2}O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  20. Texture of the nano-crystalline AlN thin films and the growth conditions in DC magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Shakil Khan

    2015-08-01

    Full Text Available DC reactive magnetron sputtering technique has been used for the preparation of AlN thin films. The deposition temperature and the flow ratio of N2/Ar were varied and subsequent dependency of the films crystallites orientation/texture has been addressed. In general, deposited films were found hexagonal polycrystalline with a (002 preferred orientation. The X-ray diffraction (XRD data revealed that the film crystallinity improves, with the increase of substrate temperature from 300 °C to 500 °C. The dropped in full width half maximum (FWHM of the XRD rocking curve value further confirmed it. However, increasing substrate temperature above 500 °C or reducing the nitrogen condition (from 60 to 30% in the environment induced the growth of crystallites with (102 and (103 orientations. The rise of rocking curve FWHM for the corresponding conditions depicted that the films texture quality deteriorated. A further confirmation of the variation in film texture/orentation with the growth conditions has been obtained from the variation in FWHM values of a dominant E1 (TO mode in the Fourier transform infrared (FTIR spectra and the E2 (high mode in Raman spectra. We have correlated the columnar structure in AFM surface analyses with the (002 or c-axis orientation as well. Spectroscopic ellipsometry of the samples have shown a higher refractive index at 500 °C growth temperature.

  1. Omnidirectional photonic band gap in magnetron sputtered TiO{sub 2}/SiO{sub 2} one dimensional photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jena, S., E-mail: shuvendujena9@gmail.com [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Tokas, R.B.; Sarkar, P. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Misal, J.S.; Maidul Haque, S.; Rao, K.D. [Photonics & Nanotechnology Section, BARC-Vizag, Autonagar, Atomic & Molecular Physics Division, Bhabha Atomic Research Centre facility, Visakhapatnam 530 012 (India); Thakur, S.; Sahoo, N.K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-01-29

    One dimensional photonic crystal (1DPC) of TiO{sub 2}/SiO{sub 2} multilayer has been fabricated by sequential asymmetric bipolar pulsed dc magnetron sputtering of TiO{sub 2} and radio frequency magnetron sputtering of SiO{sub 2} to achieve wide omnidirectional photonic band in the visible region. The microstructure and optical response of the TiO{sub 2}/SiO{sub 2} photonic crystal have been characterized by atomic force microscopy, scanning electron microscopy and spectrophotometry respectively. The surface of the photonic crystal is very smooth having surface roughness of 2.6 nm. Reflection and transmission spectra have been measured in the wavelength range 300 to 1000 nm for both transverse electric and transverse magnetic waves. Wide high reflection photonic band gap (∆ λ = 245 nm) in the visible and near infrared regions (592–837 nm) at normal incidence has been achieved. The measured photonic band gap (PBG) is found well matching with the calculated photonic band gap of an infinite 1DPC. The experimentally observed omnidirectional photonic band 592–668 nm (∆ λ = 76 nm) in the visible region with band to mid-band ratio ∆ λ/λ = 12% for reflectivity R > 99% over the incident angle range of 0°–70° is found almost matching with the calculated omnidirectional PBG. The omnidirectional reflection band is found much wider as compared to the values reported in literature so far in the visible region for TiO{sub 2}/SiO{sub 2} periodic photonic crystal. - Highlights: • TiO{sub 2}/SiO{sub 2} 1DPC has been fabricated using magnetron sputtering technique. • Experimental optical response is found good agreement with simulation results. • Wide omnidirectional photonic band in the visible spectrum has been achieved.

  2. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ratova, Marina, E-mail: marina_ratova@hotmail.com [Surface Engineering Group, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD (United Kingdom); Kelly, Peter J.; West, Glen T. [Surface Engineering Group, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD (United Kingdom); Tosheva, Lubomira; Edge, Michele [School of Science and the Environment, Manchester Metropolitan University, Manchester M1 5GD (United Kingdom)

    2017-01-15

    Highlights: • Bismuth tungstate coatings were deposited by reactive magnetron sputtering. • Oscillating bowl was introduced to the system to enable coating of nanopartulates. • Deposition of Bi{sub 2}WO{sub 6} enhanced visible light activity of titania nanoparticles. • The best results were obtained for coating with Bi:W ratio of approximately 2:1. • Deposition of Bi{sub 2}WO{sub 6} onto TiO{sub 2} resulted in more efficient electron-hole separation. - Abstract: Titanium dioxide − bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO{sub 2} evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO{sub 2} nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these

  3. Combined optical emission and resonant absorption diagnostics of an Ar-O{sub 2}-Ce-reactive magnetron sputtering discharge

    Energy Technology Data Exchange (ETDEWEB)

    El Mel, A.A. [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Institut des Matériaux Jean Rouxel, Université de Nantes, CNRS, 2 rue de la Houssinière B.P. 32229, Nantes Cedex 3 44322 (France); Ershov, S. [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Britun, N., E-mail: nikolay.britun@umons.ac.be [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Ricard, A. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, Toulouse Cedex 9 F-31062 (France); Konstantinidis, S. [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Snyders, R. [Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Place du Parc 23, Mons B-7000 (Belgium); Materia Nova Research Center, Parc Initialis, Avenue Copernic 1, Mons B-7000 (Belgium)

    2015-01-01

    We report the results on combined optical characterization of Ar-O{sub 2}-Ce magnetron sputtering discharges by optical emission and resonant absorption spectroscopy. In this study, a DC magnetron sputtering system equipped with a movable planar magnetron source with a Ce target is used. The intensities of Ar, O, and Ce emission lines, as well as the absolute densities of Ar metastable and Ce ground state atoms are analyzed as a function of the distance from the magnetron target, applied DC power, O{sub 2} content, etc. The absolute number density of the Ar{sup m} is found to decrease exponentially as a function of the target-to-substrate distance. The rate of this decrease is dependent on the sputtering regime, which should be due to the different collisional quenching rates of Ar{sup m} by O{sub 2} molecules at different oxygen contents. Quantitatively, the absolute number density of Ar{sup m} is found to be equal to ≈ 3 × 10{sup 8} cm{sup −3} in the metallic, and ≈ 5 × 10{sup 7} cm{sup −3} in the oxidized regime of sputtering, whereas Ce ground state densities at the similar conditions are found to be few times lower. The absolute densities of species are consistent with the corresponding deposition rates, which decrease sharply during the transition from metallic to poisoned sputtering regime. - Highlights: • Optical emission and resonant absorption spectroscopy are employed to study Ar-O{sub 2}-Ce magnetron sputtering discharges. • The density of argon metastables is found to decrease exponentially when increasing the target-to-substrate distance. • The collision-quenching rates of Ar{sup m} by O{sub 2} molecules at different oxygen contents is demonstrated. • The deposition rates of cerium and cerium oxide thin films decrease sharply during the transition from the metallic to the poisoned sputtering regime.

  4. Elimination of DC-Link Current Ripple for Modular Multilevel Converters With Capacitor Voltage-Balancing Pulse-Shifted Carrier PWM

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2015-01-01

    The modular multilevel converter (MMC) is attractive for medium- and high-power applications because of its high modularity, availability, and power quality. In this paper, the current ripple on the dc link of the three-phase MMC derived from the phase-shifted carrier-based pulse-width modulation...

  5. Hierarchical Velocity Control Based on Differential Flatness for a DC/DC Buck Converter-DC Motor System

    Directory of Open Access Journals (Sweden)

    R. Silva-Ortigoza

    2014-01-01

    Full Text Available This paper presents a hierarchical controller that carries out the angular velocity trajectory tracking task for a DC motor driven by a DC/DC Buck converter. The high level control is related to the DC motor and the low level control is dedicated to the DC/DC Buck converter; both controls are designed via differential flatness. The high level control provides a desired voltage profile for the DC motor to achieve the tracking of a desired angular velocity trajectory. Then, a low level control is designed to ensure that the output voltage of the DC/DC Buck converter tracks the voltage profile imposed by the high level control. In order to experimentally verify the hierarchical controller performance, a DS1104 electronic board from dSPACE and Matlab-Simulink are used. The switched implementation of the hierarchical average controller is accomplished by means of pulse width modulation. Experimental results of the hierarchical controller for the velocity trajectory tracking task show good performance and robustness against the uncertainties associated with different system parameters.

  6. Decentralized Interleaving of Paralleled Dc-Dc Buck Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sinha, Mohit [University of Minnesota; Dhople, Sairaj [University of Minnesota; Poon, Jason [University of California at Berkeley

    2017-09-01

    We present a decentralized control strategy that yields switch interleaving among parallel connected dc-dc buck converters without communication. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work represents the first fully decentralized strategy for switch interleaving of paralleled dc-dc buck converters.

  7. Study of static properties of magnetron-type space charges; Etude des proprietes statiques des charges d'espace du type magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Delcroix, Jean-Loup

    1953-05-30

    This research thesis reports an in-depth analysis of physical properties of static regimes to address the issue of space charges. This theoretical study of the Hull magnetron is followed by the description of experiments on the Hull magnetron which highlight transitions between the different regimes. Then, another theoretical approach aims at generalising the magnetron theory, based on other types of magnetron theory (general equations of magnetron-type space charges, inverted Hull magnetron theory, circular field magnetron theory)

  8. Optical properties and thermal stability of TiAlN/AlON tandem absorber prepared by reactive DC/RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Barshilia, Harish C.; Selvakumar, N.; Rajam, K.S. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560 017 (India); Biswas, A. [Spectroscopy Division, Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2008-11-15

    Spectrally selective TiAlN/AlON tandem absorbers were deposited on copper and stainless steel substrates using a reactive DC/RF magnetron sputtering system. The compositions and thicknesses of the individual component layers were optimized to achieve high absorptance ({alpha}=0.931-0.942) and low emittance ({epsilon}=0.05-0.06) on copper substrate. The experimental spectroscopic ellipsometric data have been fitted with the theoretical models to derive the dispersion of the optical constants (n and k). In order to study the thermal stability of the tandem absorbers, they were subjected to heat treatment (in air and vacuum) for different durations and temperatures. The tandem absorber deposited on Cu substrates exhibited high solar selectivity ({alpha}/{epsilon}) of 0.946/0.07 even after heat treatment in air up to 600 C for 2 h. At 625 C, the solar selectivity decreased significantly on Cu substrates (e.g., {alpha}/{epsilon}=0.924/0.30). The tandem absorber on Cu substrates was also stable in air up to 100 h at 400 C with a solar selectivity of 0.919/0.06. Studies on the accelerated aging tests indicated that the activation energy for the degradation of the tandem absorber is of the order of 100 kJ/mol. (author)

  9. Structural and thermal properties of nanocrystalline CuO synthesized by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Verma, M. [Department of Chemistry, IIT Roorkee, Roorkee-247667, India and Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee-247667 (India); Gupta, V. K. [Department of Chemistry, IIT Roorkee, Roorkee-247667 (India); Gautam, Y. K.; Dave, V.; Chandra, R. [Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee-247667 (India)

    2014-01-28

    Recent research has shown immense application of metal oxides like CuO, MgO, CaO, Al{sub 2}O{sub 3}, etc. in different areas which includes chemical warfare agents, medical drugs, magnetic storage media and solar energy transformation. Among the metal oxides, CuO nanoparticles are of special interest because of their excellent gas sensing and catalytic properties. In this paper we report structural and thermal properties of CuO synthesized by reactive magnetron DC sputtering. The synthesized nanoparticles were characterized by X-ray diffractometer. The XRD result reveals that as DC power increased from 30W to 80W, size of the CuO nanoparticles increased. The same results have been verified through TEM analysis. Thermal properties of these particles were studied using thermogravimetry.

  10. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gu Yanhong, E-mail: ygu2@alaska.edu [Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Chen Chengfu [Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Bandopadhyay, Sukumar [Department of Mining Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang Yongjun [Department of Mining Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Guo Yuanjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2012-06-01

    This paper addresses the effect of pulse frequency on the corrosion behavior of microarc oxidation (MAO) coatings on AZ31 Mg alloys in simulated body fluid (SBF). The MAO coatings were deposited by a pulsed DC mode at four different pulse frequencies of 300 Hz, 500 Hz, 1000 Hz and 3000 Hz with a constant pulse ratio. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. The corroded surfaces were examined by X-ray diffraction (XRD), X-ray fluorescence (XRF) and optical microscopy. All the results exhibited that the corrosion resistance of MAO coating produced at 3000 Hz is superior among the four frequencies used. The XRD spectra showed that the corrosion products contain hydroxyapatite, brucite and quintinite. A model for corrosion mechanism and corrosion process of the MAO coating on AZ31 Mg alloy in the SBF is proposed.

  11. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Gu Yanhong; Chen Chengfu; Bandopadhyay, Sukumar; Ning Chengyun; Zhang Yongjun; Guo Yuanjun

    2012-01-01

    This paper addresses the effect of pulse frequency on the corrosion behavior of microarc oxidation (MAO) coatings on AZ31 Mg alloys in simulated body fluid (SBF). The MAO coatings were deposited by a pulsed DC mode at four different pulse frequencies of 300 Hz, 500 Hz, 1000 Hz and 3000 Hz with a constant pulse ratio. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. The corroded surfaces were examined by X-ray diffraction (XRD), X-ray fluorescence (XRF) and optical microscopy. All the results exhibited that the corrosion resistance of MAO coating produced at 3000 Hz is superior among the four frequencies used. The XRD spectra showed that the corrosion products contain hydroxyapatite, brucite and quintinite. A model for corrosion mechanism and corrosion process of the MAO coating on AZ31 Mg alloy in the SBF is proposed.

  12. The role of target-to-substrate distance on the DC magnetron sputtered zirconia thin films' bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Thaveedeetrakul, Arisara [Department of Chemical Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Witit-anun, Nirun [Department of Physics, Burapha University, Chon Buri (Thailand); Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok (Thailand); Boonamnuayvitaya, Virote, E-mail: virote.boo@kmutt.ac.th [Department of Chemical Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)

    2012-01-15

    Zirconium dioxide thin films were deposited on 316L-stainless steel type substrates using DC unbalanced magnetron sputtering. The process parameter of this work was the target-to-substrate distance (d{sub t-s}), which was varied from 60 to 120 mm. The crystal structure and surface topography of zirconium dioxide thin films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results demonstrate that all of the ZrO{sub 2} thin films are composed monoclinic phase. The film sputtered at short d{sub t-s} (60 mm) shows a rather heterogeneous, uneven surface. The grain size, roughness, and thickness of thin films were decreased by increasing d{sub t-s}. The bioactivity was assessed by investigating the formation of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) on the thin film surface soaked in simulated body fluids (SBF) for 7 days. XRD and scanning electron microscopy (SEM) were used to verify the formation of apatite layers on the samples. Bone-like apatites were formed on the surface of the ZrO{sub 2} thin film in SBF immersion experiments. A nanocrystalline hydroxyapatite (HA) with a particle size of 2-4 {mu}m was deposited. Higher crystallinity of HA on the surface was observed when the distance d{sub t-s} increased to more than 80 mm. Therefore, it seems that a d{sub t-s} greater than 80 mm is an important sputtering condition for inducing HA on the zirconia film.

  13. Magnetron sputtering system with an annual discharge zone and two cathode modules

    International Nuclear Information System (INIS)

    Savich, V. A.; Yasyunas, A. A.; Kovrigo, V. M.; Kotov, D. A.; Shiripov, V. Ya.

    2013-01-01

    In this article, general discharge characteristics of a cylindrical magnetron sputtering system with an annual sputtering zone and a high target usage coefficient designed for transparent conducting coatings are shown. Two coupled DC-cathodes are used to improve coating uniformity. Radial sputtered material fluxes are being created. The engineered magnetic system is extremely balanced (G-factor is much higher than 2) and thus provides maximal effective operating power higher than 6 kW. The effectiveness of a magnetic trap results in a fast work cycle (less than 1.5 min) and a high target material usage coefficient (higher than 40%). A multipole magnetic field with null magnetic flux density zones lower target’s surface is being created. There is an influence between cathode modules despite mutual magnetic isolation, so magnetic conductors-shunts are used to weaken it. The magnetron can be used to sputter both metals and conducting ceramics (including ITO). (authors)

  14. Preliminary study of CdTe and CdTe:Cu thin films nanostructures deposited by using DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Marwoto, Putut; Made, D. P. Ngurah; Sugianto [Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Wibowo, Edy; Astuti, Santi Yuli; Aryani, Nila Prasetya [Materials Research Group, Laboratory of Thin Film, Department of Physics, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Othaman, Zulkafli [Departement of Physics, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru (Malaysia)

    2013-09-03

    Growth and properties of CdTe and CdTe:Cu thin films nanostrucures deposited by using dc magnetron sputtering are reported. Scanning electron microscope (SEM) was used to observe the surface morphologies of the thin films. At growth conditions of 250 °C and 14 W, CdTe films did not yet evenly deposited. However, at growth temperature and plasma power of 325 °C and 43 W, both CdTe and CdTe:Cu(2%) have deposited on the substrates. In this condition, the morphology of the films indicate that the films have a grain-like nanostructures. Grain size diameter of about 200 nm begin to appear on top of the films. Energy Dispersive X-rays spectroscopy (EDX) was used to investigate chemical elements of the Cu doped CdTe film deposited. It was found that the film deposited consist of Cd, Te and Cu elements. XRD was used to investigate the full width at half maximum (FWHM) values of the thin films deposited. The results show that CdTe:Cu(2%) thin film has better crystallographic properties than CdTe thin film. The UV-Vis spectrometer was used to investigate the optical properties of thin films deposited. The transmittance spectra showed that transmittance of CdTe:Cu(2%) film is lower than CdTe film. It was found that the bandgap energy of CdTe and CdTe:Cu(2%) thin films of about 1.48 eV.

  15. The microstructure and properties of titanium dioxide films synthesized by unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Leng, Y.X.; Chen, J.Y.; Yang, P.; Sun, H.; Huang, N.

    2007-01-01

    In this work, titanium oxide films were deposited on Ti6Al4V and Si (1 0 0) by DC unbalanced magnetron sputtering method at different oxygen pressure. X-ray diffraction (XRD), microhardness tests, pin-on-disk wear experiments, surface contact angle tests and platelet adhesion investigation were conducted to evaluate the properties of the films. The corrosion behavior of titanium dioxide films was characterized by potentiodynamic polarization. The results showed that titanium oxide films deposited by unbalance magnetron sputtering were compact and could obviously enhance microhardness, wear resistance of titanium alloy substrate. Potentiodynamic polarization curves showed that Ti-6Al-4V deposited with titanium dioxide films had lower dissolution currents than that of the uncoated one. The results of in vitro hemocompatibility analyses indicated that the blood compatibility of the titanium dioxide films with bandgap 3.2 eV have better blood compatibility

  16. Methods and Apparatus for Pulsed-DC Dielectric Barrier Discharge Plasma Actuator and Circuit

    Science.gov (United States)

    Corke, Thomas C. (Inventor); Kaszeta, Richard (Inventor); Gold, Calman (Inventor)

    2017-01-01

    A plasma generating device intended to induce a flow in a fluid via plasma generation includes a dielectric separating two electrodes and a power supply. The first electrode is exposed to a fluid flow while the second electrode is positioned under the dielectric. The power supply is electrically coupled to a switch and the first and second electrodes. When the power supply is energized by repeated action of the switch, it causes a pulsed DC current between the electrodes which causes the fluid to ionize generating a plasma. The generation of the plasma induces a force with a velocity component in the fluid.

  17. Analysis of a high power, resonant DC-DC converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    This paper is introducing a new method of operation for a series resonant converter, with intended application in megawatt high-voltage DC wind turbines. Compared to a frequency controlled series resonant converter operated in sub resonant mode, the method (entitled pulse removal technique) allows...

  18. Active screen cage pulsed dc discharge for implanting copper in polytetrafluoroethylene (PTFE)

    Science.gov (United States)

    Zaka-ul-Islam, Mujahid; Naeem, Muhammad; Shafiq, Muhammad; Sitara; Jabbar Al-Rajab, Abdul; Zakaullah, Muhammad

    2017-07-01

    Polymers such as polytetrafluoroethylene (PTFE) are widely used in artificial organs where long-term anti-bacterial properties are required to avoid bacterial proliferation. Copper or silver ion implantation on the polymer surface is known as a viable method to generate long-term anti-bacterial properties. Here, we have tested pulsed DC plasma with copper cathodic cage for the PTFE surface treatment. The surface analysis of the treated specimens suggests that the surface, structural properties, crystallinity and chemical structure of the PTFE have been changed, after the plasma treatment. The copper release tests show that copper ions are released from the polymer at a slow rate and quantity of the released copper increases with the plasma treatment time.

  19. DESIGN OF A DC/RF PHOTOELECTRON GUN

    International Nuclear Information System (INIS)

    YU, D.; NEWSHAM, Y.; SMIRONOV, A.; YU, J.; SMEDLEY, J.; SRINIVASAN RAU, T.; LEWELLEN, J.; ZHOLENTS, A.

    2003-01-01

    An integrated dc/rf photoelectron gun produces a low-emittance beam by first rapidly accelerating electrons at a high gradient during a short (∼1 ns), high-voltage pulse, and then injecting the electrons into an rf cavity for subsequent acceleration. Simulations show that significant improvement of the emittance appears when a high field (∼ 0.5-1 GV/m) is applied to the cathode surface. An adjustable dc gap ((le) 1 mm) which can be integrated with an rf cavity is designed for initial testing at the Injector Test Stand at Argonne National Laboratory using an existing 70-kV pulse generator. Plans for additional experiments of an integrated dc/rf gun with a 250-kV pulse generator are being made

  20. Effects of pulsed sputtering frequency on the uniformity of Al:ZnO's transparent conductive oxide properties for solar cell applications

    International Nuclear Information System (INIS)

    Yang, Wonkyun; Joo, Junghoon

    2009-01-01

    Bipolar pulsed magnetron sputtering is used to deposit Al doped ZnO (AZO) on a glass substrate for a transparent conducting oxide in a solar cell structure. A 5x25 in. 2 AZO target was sputtered by 50-250 kHz bipolar pulsed dc power supply to deposit a 400x400 mm 2 area by swinging back and forth. Sheet resistance, surface morphology, and optical transmittance were measured at different positions on 16 witness samples (small glass slides) to evaluate uniformity. In the thickness of 800 nm, the average value of sheet resistance was 30 Ω/□ and the average resistivity was 2.1x10 -3 Ω cm. Transmittance was 50%-80% over the visible range. The nonuniformities of thickness, transmittance, and resistivity in the 400x400 mm 2 area were 5.8%, 0.8%, and within 9.5%, respectively.

  1. Geometric considerations in magnetron sputtering

    International Nuclear Information System (INIS)

    Thornton, J.A.

    1982-01-01

    The recent development of high performance magnetron type discharge sources has greatly enhaced the range of coating applications where sputtering is a viable deposition process. Magnetron sources can provide high current densities and sputtering rates, even at low pressures. They have much reduced substrate heating rates and can be scaled to large sizes. Magnetron sputter coating apparatuses can have a variety of geometric and plasma configurations. The target geometry affects the emission directions of both the sputtered atoms and the energetic ions which are neutralized and reflected at the cathode. This fact, coupled with the long mean free particle paths which are prevalent at low pressures, can make the coating properties very dependent on the apparatus geometry. This paper reviews the physics of magnetron operation and discusses the influences of apparatus geometry on the use of magnetrons for rf sputtering and reactive sputtering, as well as on the microstructure and internal stresses in sputtered metallic coatings. (author) [pt

  2. Room temperature deposition of high figure of merit Al-doped zinc oxide by pulsed-direct current magnetron sputtering: Influence of energetic negative ion bombardment on film's optoelectronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Fumagalli, F., E-mail: francesco.fumagalli@iit.it; Martí-Rujas, J., E-mail: javier.rujas@iit.it; Di Fonzo, F., E-mail: fabio.difonzo@iit.it

    2014-10-31

    Aluminum-doped zinc oxide is regarded as a promising indium-free transparent conductive oxide for photovoltaic and transparent electronics. In this study high transmittance (up to 90,6%) and low resistivity (down to 8,4°1{sup −4} Ω cm) AZO films were fabricated at room temperature on thermoplastic and soda-lime glass substrates by means of pulsed-DC magnetron sputtering in argon gas. Morphological, optical and electrical film properties were characterized using scanning electron microscopy, UV–vis–nIR photo-spectrometer, X-ray spectroscopy and four probes method. Optimal deposition conditions were found to be strongly related to substrate position. The dependence of functional properties on substrate off-axis position was investigated and correlated to the angular distributions of negative ions fluxes emerging from the plasma discharge. Figure of merit as high as 2,15 ± 0,14 Ω{sup −1} were obtained outside the negative oxygen ions confinement region. Combination of high quality AZO films deposited on flexible polymers substrates by means of a solid and scalable fabrication technique is of interest for application in cost-effective optoelectrical devices, organic photovoltaics and polymer based electronics. - Highlights: • High figure of merit transparent conductive oxide's deposited at room temperature. • High transmittance and low resistivity obtained on thermoplastic substrates. • Competitive optoelectrical properties compared to high temperature deposition. • Negative ion fluxes confinement influence structural and optoelectrical properties. • Easily adaptable for scaled-up low temperature AZO film deposition installations.

  3. Performance of 22.4-kW nonlaminated-frame dc series motor with chopper controller. [a dc to dc voltage converter

    Science.gov (United States)

    Schwab, J. R.

    1979-01-01

    Performance data obtained through experimental testing of a 22.4 kW traction motor using two types of excitation are presented. Ripple free dc from a motor-generator set for baseline data and pulse width modulated dc as supplied by a battery pack and chopper controller were used for excitation. For the same average values of input voltage and current, the motor power output was independent of the type of excitation. However, at the same speeds, the motor efficiency at low power output (corresponding to low duty cycle of the controller) was 5 to 10 percentage points lower on chopped dc than on ripple free dc. The chopped dc locked-rotor torque was approximately 1 to 3 percent greater than the ripple free dc torque for the same average current.

  4. Epitaxial (100)-oriented Mo/V superlattice grown on MgO(100) by dcMS and HiPIMS

    International Nuclear Information System (INIS)

    Shayestehaminzadeh, S.; Magnusson, R.L.; Gislason, H.P.; Olafsson, S.

    2013-01-01

    Epitaxial (100)-oriented Mo/V superlattices have been grown by High Power Impulse Magnetron Sputtering (HiPIMS) and dc Magnetron Sputtering (dcMS) on single-crystalline MgO(100) substrates at growth temperatures ranging from 30 °C to 600 °C. Superlattice bilayer period of Mo/V around 12/12 monolayers and 15 repeat periods was studied. This study aims to investigate the effect of the HiPIMS process on reducing the growth temperature of Mo/V superlattices using the high energy ionized Mo, V species in the HiPIMS plasma. In one case, the Mo layer was only grown with the HiPIMS process and V layer grown using the dcMS process while in another both layers were grown with the HiPIMS process. The as-deposited films were characterized by X-ray reflection and diffraction techniques. The dcMS process was found to give superior superlattice growth at high growth temperatures while a mixed Mo HiPIMS and V dcMS process gives better result at lower growth temperatures (300 °C). Room temperature growth reveals that neither the mixed Mo HiPIMS and V dcMS process nor the pure HiPIMS for both materials can produce better result compared to the pure dcMS process, which gives a relatively better result. - Highlights: • Epitaxial (100)-oriented Mo/V superlattices have been grown by HiPIMS and dcMS on MgO(100) for various temperatures. • The study was aimed to investigate the effect of ionized HiPIMS process onlowering the growth temperature. • The dcMS process was found to give superior superlattice growth at high growth temperature. • The mixed Mo HiPIMS and V dcMS process gives best result at lower growth temperatures

  5. Development of a Magnetron Resonance Frequency Auto Tuning System for Medical Xband [9300 MHz] RF Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sung Su; Lee, Byung Cheol [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Yujong; Park, Hyung Dal; Lee, Byeong-No; Joo, Youngwoo; Cha, Hyungki; Lee, Soo Min; Song, Ki Baek [KAERI, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-05-15

    The total components of the accelerator are the magnetron, electron gun, accelerating structure, a set of solenoid magnets, four sets of steering coils, a modulator, and a circulator. One of the accelerator components of the accelerating structure is made of oxygen-free high-conductivity copper (OFHC), and its volume is changed according to the ambient temperature. As the volume changes, the resonant frequency of the accelerating structure is changed. Accordingly, the resonance frequency is mismatched between the source of the magnetron and the accelerating structure. An automatic frequency tuning system is automatically matched with the resonant frequency of the magnetron and accelerating structure, which allows a high output power and reliable accelerator operation. An automatic frequency tuning system is composed of a step motor control part for correcting the frequency of the source and power measuring parts, i.e., the forward and reflected power between the magnetron and accelerating structure. In this paper, the design, fabrication, and RF power test of the automatic frequency tuning system for the X-band linac are presented. A frequency tuning system was developed to overcome an unstable accelerator operation owing to the frequency mismatch between the magnetron and accelerating structure. The frequency measurement accuracy is 100 kHz and 0.72 degree per pulse.

  6. Troubleshooting of Modulator DC power supply at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Seong; Kim, Han Sung; Kwon, Hyeok Jung; Kim, Seong Gu; Kim, Dae Il; Lee, Seok Geun; Kim, Jae Ha; Seol, Kyeong Tae; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The process of solving problems to operate the 2nd converter modulator will be introduced. Also, the PSpice simulation result about the 12-pulse rectifier will be compared with the measurement result. KOMAC (KOrea Multi-purpose Accelerator Complex) has four HVCMs (High Voltage Converter Modulator) which are the power source of nine klystrons. Four HVCMs are already operated since 2013 for operating the 100 MeV linear proton accelerator at KOMAC. This HVCM system includes the 12-pulse rectifier (ac-dc), capacitors bank (dc-link, Pos, Neg) and converter modulator (dc-dc). Especially, the 12-pulse rectifier system receives the power from the utility and converts 3,300 ac voltage to 2,200 dc voltage for supplying the dc power to the capacitors bank. This rectifier system used twelve thyristors for the rectification and applied RC snubber networks to protect the semiconductor switches (thyristors). Since the 2nd modulator dc power supply has troubled, the troubleshooting process conducted by the staves of KOMAC. It takes 3 months to solve the problems because it is not easy to find the faulty wiring. Nevertheless, our staves found the faulty point with a hope to operate the modulator system and the PSpice simulation helps to solve the problems. Using PSpice which is tool for simulating the circuit, the dc power supply abnormal phenomenon was simulated exactly. After corrected the faulty wiring, the modulator dc power supply operated.

  7. Study of static properties of magnetron-type space charges

    International Nuclear Information System (INIS)

    Delcroix, Jean-Loup

    1953-01-01

    This research thesis reports an in-depth analysis of physical properties of static regimes to address the issue of space charges. This theoretical study of the Hull magnetron is followed by the description of experiments on the Hull magnetron which highlight transitions between the different regimes. Then, another theoretical approach aims at generalising the magnetron theory, based on other types of magnetron theory (general equations of magnetron-type space charges, inverted Hull magnetron theory, circular field magnetron theory)

  8. Studies of the composition, tribology and wetting behavior of silicon nitride films formed by pulsed reactive closed-field unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Yao, Zh.Q.; Yang, P.; Huang, N.; Wang, J.; Wen, F.; Leng, Y.X.

    2006-01-01

    Silicon nitride films were formed by pulsed reactive closed-field unbalanced magnetron sputtering of high purity Si targets in an Ar-N 2 mixture. The effects of N 2 fraction on the chemical composition, and tribological and wetting behaviors were investigated. The films deposited at a high N 2 fraction were consistently N-rich. The surface microstructure changed from continuous granular surrounded by tiny void regions to a homogeneous and dense microstructure, and densitied as the N 2 fraction is increased. The as-deposited films have a relatively low friction coefficient and better wear resistance than 316L stainless steel under dry sliding friction and experienced only abrasive wear. The decreased surface roughness and increased nitrogen incorporation in the film give rise to increased contact angle with double-stilled water from 24 deg. to 49.6 deg. To some extent, the silicon nitride films deposited are hydrophilic in nature

  9. Hydroxyapatite thin films synthesized by pulsed laser deposition and magnetron sputtering on PMMA substrates for medical applications

    International Nuclear Information System (INIS)

    Socol, G.; Macovei, A.M.; Miroiu, F.; Stefan, N.; Duta, L.; Dorcioman, G.; Mihailescu, I.N.; Petrescu, S.M.; Stan, G.E.; Marcov, D.A.; Chiriac, A.; Poeata, I.

    2010-01-01

    Functionalized implants represent an advanced approaching in implantology, aiming to improve the biointegration and the long-term success of surgical procedures. We report on the synthesis of hydroxyapatite (HA) thin films on polymethylmetacrylate (PMMA) substrates - used as cranio-spinal implant-type structures - by two alternative methods: pulsed laser deposition (PLD) and radio-frequency magnetron sputtering (MS). The deposition parameters were optimized in order to avoid the substrate overheating. Stoichiometric HA structures were obtained by PLD with incident laser fluences of 1.4-2.75 J/cm 2 , pressures of 30-46.66 Pa and 10 Hz pulses repetition rate. The MS depositions were performed at constant pressure of 0.3 Pa in inert and reactive atmospheres. SEM-EDS, XRD, FTIR and pull-out measurements were performed assessing the apatitic-type structure of the prepared films along with their satisfactory mechanical adhesion. Cell viability, proliferation and adhesion tests in osteosarcoma SaOs2 cell cultures were performed to validate the bioactive behaviour of the structures and to select the most favourable deposition regimes. For PLD, this requires a low fluence of 1.4 J/cm 2 , reduced pressure of water vapours and a 100 o C/4 h thermal treatment. For MS, the best results were obtained for 80% Ar + 20% O 2 reactive atmosphere at low RF power (∼75 W). Cells grown on these coatings exhibit behaviour similar to those grown on the standard borosilicate glass control: increased viability, good proliferation, and optimal cell adhesion. In vitro tests proved that HA/PMMA neurosurgical structures prepared by PLD and MS are compatible for the interaction with human bone cells.

  10. Development of natively textured surface hydrogenated Ga-doped ZnO-TCO thin films for solar cells via magnetron sputtering

    International Nuclear Information System (INIS)

    Wang, Fei; Chen, Xin-liang; Geng, Xin-hua; Zhang, De-kun; Wei, Chang-chun; Huang, Qian; Zhang, Xiao-dan; Zhao, Ying

    2012-01-01

    Highlights: ► Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. ► The directly deposited HGZO thin films present rough crater-type surface morphology. ► Typical HGZO thin film exhibits a high electron mobility of 41.3 cm 2 /V s and a relative low sheet resistance of ∼7.0 Ω. ► These HGZO thin films have high optical transmittances in the visible and near infrared region (∼380–1100 nm). ► A gradient H 2 growth method for fabricating HGZO thin films has been proposed in magnetron sputtering process. - Abstract: The main purposes are to obtain high quality transparent conductive oxide (TCO) based on zinc oxide (ZnO) thin films with high optical transparency in the visible and near infrared spectral range, high electrical conductivity and good light-scattering capability to enhance the path of the light inside the Si-based thin film solar cells. Natively textured surface hydrogenated gallium-doped ZnO (HGZO) thin films have been deposited via pulsed direct current (DC) magnetron sputtering on glass substrates at a substrate temperature of 553 K. These natively textured HGZO thin films exhibit high optical transmittance (over 80%) in the visible and near infrared region (λ = 380–1100 nm) and excellent electrical properties. The optimized HGZO thin film with crater-type textured surface obtained at the hydrogen flow rate of ∼2.0 sccm exhibits a high electron mobility of 41.3 cm 2 /V s and a relatively low sheet resistance of ∼7.0 Ω. The influences of hydrogen flow rates on the surface morphology, electrical and optical properties of HGZO thin films were investigated in detail. In addition, we put forward a method of gradient H 2 growth technique for fabricating HGZO thin films so as to obtain rough surface structure with good light-scattering capability and high electrical conductivity. “Crater-like” surface feature size and optical transmittance

  11. Investigation of the possible technological use of magnetron-synthetic coverings on the basis of niobium nitridium to manufacture high conductivity windings during the generation of power magnetic fields

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.; Zhetbaev, A.; Tuleushev, A.; Penkov, F.; Lisitsin, V.; Kim, S.; Tuleushev, Yu.; Turkebaev, T.; Borisenko, A.; Gorlachev, I.; Platov, A.; Lisuchin, S.; Skoz, E.; Zhukov, V.; Guliykin, Yu.; Chavalinsky, Yu.

    1996-01-01

    The main objective. The objective of this project is to investigate the possibilities for technological use of niobium nitride-based magnetron synthesized coatings for the purpose of manufacture of superconducting tape windings when generating strong magnetic fields for NMR-tomographs and commercial magnets. Background. Niobium nitride can be produced by sputtering as a continuous coating directly on the surface of a substrate made of a normal conductor, e.g. a copper or aluminium thin tape, by well-known techniques of plasma-chemical synthesis, using magnetron procedure (d.c. magnetron), allowing al synthesis, using magnetron procedure (d.c. magnetron), allowing to solve some difficult problems of superconductor manufacture by means of plastic deformation. For example, risk of break of a superconducting thread will no longer arises and the procedure of control for heat removal and relation between the thickness of superconducting and normal components will be made much easier, and, in turn, this enables to enhance stability of superconductivity and to prevent flux quench. Methodology. The group of eleven specialists from NNC RK will be occupied in the magnetron synthesis of niobium nitride coatings of copper and aluminum foils (five persons) and in its X-ray, nuclear-physical and electron microscopic analysis (six persons). The group of six specialists from the ULBA plant will be occupied in determination of the critical parameters of belt samples with niobium nitride coatings produced by Inst. of Nuclear Physics' specialists. Multi-purpose research test benches for determination of superconductor critical parameters that are available at the ULBA enables to test different types superconductor characteristics, including film ones, in magnetic fields up to 11 T at helium temperatures. Expected Results. As the result of the project execution complete evaluation concerning technical reasoning for magnetron ways of coating synthesis of niobium nitride when

  12. Time-resolved study of a pulsed dc discharge using quantum cascade laser absorption spectroscopy : NO and gas temperature kinetics

    NARCIS (Netherlands)

    Welzel, S.; Gatilova, L.; Röpcke, J.; Rousseau, A.

    2007-01-01

    In a pulsed dc discharge of an Ar–N2 mixture containing 0.91% of NO the kinetics of the destruction of NO has been studied under static and flowing conditions, i.e. in a closed and open discharge tube (p = 266 Pa). For this purpose quantum cascade laser absorption spectroscopy (QCLAS) in the

  13. Deposition of thin titanium-copper films with antimicrobial effect by advanced magnetron sputtering methods

    Czech Academy of Sciences Publication Activity Database

    Straňák, V.; Wulff, H.; Rebl, H.; Zietz, C.; Arndt, K.; Bogdanowicz, R.; Nebe, B.; Bader, R.; Podbielski, A.; Hubička, Zdeněk; Hippler, R.

    2011-01-01

    Roč. 31, č. 7 (2011), s. 1512-1519 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GAP205/11/0386; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100520 Keywords : implant coating * titanium-copper film * pulsed magnetron sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.686, year: 2011

  14. Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces

    International Nuclear Information System (INIS)

    Alami, J.; Persson, P.O.A.; Music, D.; Gudmundsson, J. T.; Bohlmark, J.; Helmersson, U.

    2005-01-01

    We have synthesized Ta thin films on Si substrates placed along a wall of a 2-cm-deep and 1-cm-wide trench, using both a mostly neutral Ta flux by conventional dc magnetron sputtering (dcMS) and a mostly ionized Ta flux by high-power pulsed magnetron sputtering (HPPMS). Structure of the grown films was evaluated by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The Ta thin film grown by HPPMS has a smooth surface and a dense crystalline structure with grains oriented perpendicular to the substrate surface, whereas the film grown by dcMS exhibits a rough surface, pores between the grains, and an inclined columnar structure. The improved homogeneity achieved by HPPMS is a direct consequence of the high ion fraction of sputtered species

  15. DC-pulsed voltage electrochemical method based on duty cycle self-control for producing TERS gold tips

    International Nuclear Information System (INIS)

    Vasilchenko, V E; Kharintsev, S S; Salakhov, M Kh

    2013-01-01

    This paper presents a modified dc-pulsed low voltage electrochemical method in which a duty cycle is self tuned while etching. A higher yield of gold tips suitable for performing tip-enhanced Raman scattering (TERS) measurements is demonstrated. The improvement is caused by the self-control of the etching rate along the full surface of the tip. A capability of the gold tips to enhance a Raman signal is exemplified by TERS spectroscopy of single walled carbon nanotubes bundle, sulfur and vanadium oxide

  16. Magnetron plasma and nanotechnology

    International Nuclear Information System (INIS)

    Kashtanov, Pavel V; Smirnov, Boris M; Hippler, Rainer

    2007-01-01

    Magnetron plasma processes involving metal atoms and clusters are reviewed. The formation of metal atoms near the cathode and their nucleation in a buffer gas flow are discussed. The flow of a buffer gas with metal clusters through a magnetron chamber disturbs the equilibrium between the buffer gas flow and clusters near the exit orifice and is accompanied by cluster attachment to the chamber walls. Cluster charging far off the cathode, the disturbance of equilibrium between the buffer gas flow and cluster drift, and the attachment of charged clusters to the chamber walls - the factors determining the output parameters of the cluster beam escaping the magnetron chamber - are analyzed. Cluster deposition on a solid surface and on dusty plasma particles is considered. (reviews of topical problems)

  17. The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array

    International Nuclear Information System (INIS)

    Hu, J. T.; Liu, X. Y.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Iza, F.; Kong, M. G.

    2012-01-01

    Here we compare the plasma plume propagation characteristics of a 3-channel pulsed RF plasma jet array and those of the same device operated by a pulsed dc source. For the pulsed-RF jet array, numerous long life time ions and metastables accumulated in the plasma channel make the plasma plume respond quickly to applied electric field. Its structure similar as “plasma bullet” is an anode glow indeed. For the pulsed dc plasma jet array, the strong electric field in the vicinity of the tube is the reason for the growing plasma bullet in the launching period. The repulsive forces between the growing plasma bullets result in the divergence of the pulsed dc plasma jet array. Finally, the comparison of 309 nm and 777 nm emissions between these two jet arrays suggests the high chemical activity of pulsed RF plasma jet array.

  18. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    OpenAIRE

    Rafieian, Damon; Ogieglo, Wojciech; Savenije, T.J.; Lammertink, Rob G H

    2015-01-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx), obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, ...

  19. Investigation of DC magnetron-sputtered TiO2 coatings: Effect of coating thickness, structure, and morphology on photocatalytic activity

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Shabadi, Rajashekhara; Galca, Aurelian Catalin

    2014-01-01

    The photocatalytic performance of magnetron-sputtered titanium dioxide (TiO2) coatings of different thickness in anatase crystalline structure deposited on aluminium 1050 alloy substrates was investigated using a combination of photo-electrochemistry, methylene blue decomposition, and microscopic...

  20. Microstructure and surface mechanical properties of pulse electrodeposited nickel

    Energy Technology Data Exchange (ETDEWEB)

    Ul-Hamid, A., E-mail: anwar@kfupm.edu.sa [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Dafalla, H.; Quddus, A.; Saricimen, H.; Al-Hadhrami, L.M. [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)

    2011-09-01

    The surface of carbon steel was modified by electrochemical deposition of Ni in a standard Watt's bath using dc and pulse plating electrodeposition. The aim was to compare the microstructure and surface mechanical properties of the deposit obtained by both techniques. Materials characterization was conducted using field emission scanning electron microscope fitted with scanning transmission electron detector, atomic force microscope and X-ray diffractometer. Nanoindentation hardness, elastic modulus, adhesion, coefficients of friction and wear rates were determined for both dc and pulse electrodeposits. Experimental results indicate that pulse electrodeposition produced finer Ni grains compared to dc plating. Size of Ni grains increased with deposition. Both dc and pulse deposition resulted in grain growth in preferred (2 0 0) orientation. However, presence of Ni (1 1 1) grains increased in deposits produced by pulse deposition. Pulse plated Ni exhibited higher hardness, creep and coefficient of friction and lower modulus of elasticity compared to dc plated Ni.

  1. The application of standardized control and interface circuits to three dc to dc power converters.

    Science.gov (United States)

    Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.

    1973-01-01

    Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.

  2. Low-cost ZnO:Al transparent contact by reactive rotatable magnetron sputtering for Cu(In,Ga)Se2 solar modules

    International Nuclear Information System (INIS)

    Menner, R.; Hariskos, D.; Linss, V.; Powalla, M.

    2011-01-01

    Sputtering ZnO as transparent front contact (TCO) is standard in today's industrial scale Cu(In,Ga)Se 2 (CIGS) module manufacturing. Although innovative concepts like rotatable magnetron sputtering from ceramic targets have been realised, costs are still high due to expensive ceramic targets. Significant cost reductions are expected by using reactive sputtering of metallic targets. Therefore, ZSW and industrial partners investigated the reactive sputtering of Al-doped zinc oxide (ZAO) as TCO on CIGS absorbers of high quality and industrial relevance. The reactive DC sputtering from rotatable magnetron targets is controlled in the transition mode by adjusting oxygen flow and discharge voltage. Optimisation leads to ZAO films with a TCO quality nearly comparable to standard films deposited by DC ceramic sputtering. Scanning electron microscopy, X-ray diffraction, and Hall analyses of the ZAO films are performed. Medium-size CIGS modules are coated with reactively sputtered ZAO, resulting in 12.8% module efficiency and surpassing the efficiency of the ceramic witness device. Cd-free buffered devices are also successfully coated with reactive TCO. Damp heat stability according to IEC61646 is met by all reactively sputtered devices.

  3. ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    Science.gov (United States)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.

  4. Characterization of aluminum/aluminum nitride coatings sputter deposited using the pulsed-gas process

    International Nuclear Information System (INIS)

    Springer, R.W.; Hosford, C.D.

    1981-01-01

    A dc triode magnetron has been used to produce freestanding Al/Al + AlN lamellar foils by sputter deposition. The 5-μm-thick foils produced on both flat substrates as well as curved substrates exhibited good specularity as well as excellent mechanical properties. The pulse spacing was varied from none to 100-nm spacing. The yield strength of the material was found to obey the Hall-Petch relation sigma/sub ys/ = 230 + .07/d/sup 1/2/, where sigma/sub ys/ is in MPa. Auger electron Spectroscopy and Secondary Ion Mass Spectroscopy indicate that the large flow stress of 230 MPa must be due to grain refinement of the extended source and not an impurity effect. The result is that limitations of masking found in uniaxial flux sources for curved surfaces can be removed allowing the high quality coating of more general shapes

  5. Corrosion resistance of zirconium oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray pyrolysis-nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, G.I., E-mail: gcubillos@unal.edu.co [Department of Chemistry, Group of Materials and Chemical Processes, Universidad Nacional de Colombia, Av. Cra. 30 No 45-03, Bogotá (Colombia); Bethencourt, M., E-mail: manuel.bethencourt@uca.es [Department of Materials Science, Metallurgy Engineering and Inorganic Chemistry, International Campus of Excellence of the Sea - CEI-MAR, University of Cadiz, Avda. República Saharaui s/n, 11510 Puerto Real, Cádiz (Spain); Olaya, J.J., E-mail: jjolayaf@unal.edu.co [Faculty of Engineering, Group of Materials and Chemical Processes, Universidad Nacional de Colombia, Av. Cra. 30 No 45-03, Bogotá (Colombia)

    2015-02-01

    Highlights: • New ZrO{sub x}N{sub y} films were deposited on stainless steel 316L using PSY-N and UBMS. • ZrO{sub x}N{sub y} rhombohedral polycrystalline film grew with PSY-N. • Zr{sub 2}ON{sub 2} crystalline structures, mostly oriented along the (2 2 2) plane, grew with UBMS. • Layers improved corrosion behavior in NaCl media, especially those deposited by UBMS. - Abstract: ZrO{sub x}N{sub y}/ZrO{sub 2} thin films were deposited on stainless steel using two different methods: ultrasonic spray pyrolysis-nitriding (SPY-N) and the DC unbalanced magnetron sputtering technique (UBMS). Using the first method, ZrO{sub 2} was initially deposited and subsequently nitrided in an anhydrous ammonia atmosphere at 1023 K at atmospheric pressure. For UBMS, the film was deposited in an atmosphere of air/argon with a Φair/ΦAr flow ratio of 3.0. Structural analysis was carried out through X-ray diffraction (XRD), and morphological analysis was done through scanning electron microscopy (SEM) and atomic force microscopy (AFM). Chemical analysis was carried out using X-ray photoelectron spectroscopy (XPS). ZrO{sub x}N{sub y} rhombohedral polycrystalline film was produced with spray pyrolysis-nitriding, whereas using the UBMS technique, the oxynitride films grew with cubic Zr{sub 2}ON{sub 2} crystalline structures preferentially oriented along the (2 2 2) plane. Upon chemical analysis of the surface, the coatings exhibited spectral lines of Zr3d, O1s, and N1s, characteristic of zirconium oxynitride/zirconia. SEM analysis showed the homogeneity of the films, and AFM showed morphological differences according to the deposition technique of the coatings. Zirconium oxynitride films enhanced the stainless steel's resistance to corrosion using both techniques. The protective efficacy was evaluated using electrochemical techniques based on linear polarization (LP). The results indicated that the layers provide good resistance to corrosion when exposed to chloride

  6. The properties of TiN ultra-thin films grown on SiO{sub 2} substrate by reactive high power impulse magnetron sputtering under various growth angles

    Energy Technology Data Exchange (ETDEWEB)

    Shayestehaminzadeh, S., E-mail: ses30@hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tryggvason, T.K. [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Karlsson, L. [School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany); Olafsson, S. [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Gudmundsson, J.T. [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); University of Michigan-Shanghai Jiao Tong University, University Joint Institute, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2013-12-02

    Thin TiN films were grown on SiO{sub 2} by reactive high power impulse magnetron sputtering (HiPIMS) and conventional dc magnetron sputtering (dcMS) while varying the angle between the target and the substrate surface from 0° (on-axis growth) to 90° (off-axis growth). Surface morphology and structural characterization were carried out using X-ray diffraction and reflection methods and the film properties were compared. The dcMS process shows higher growth rate than the HiPIMS process for on-axis grown films but the dcMS growth rate drops drastically for off-axis growth while the HiPIMS growth rate decreases slowly with increased angle between target and substrate for off-axis growth and becomes comparable to the dcMS growth rate. The dcMS grown films exhibit angle dependence in the density and surface roughness while the HiPIMS process creates denser and smoother films that are less angle dependent in all aspects. It was observed that the HiPIMS grown films remain poly-crystalline for all angles of rotation while the dcMS grown films are somewhat amorphous after 60°. The [111] and [200] grain sizes are comparable to the total film thickness in the HiPIMS grown films for all angles of rotation. In the case of dcMS, the [111], [200] and [220] grain sizes are roughly of the same size and much smaller than the total thickness for all growth angles except at 60° and higher. - Highlights: • TiN films were grown on SiO{sub 2} by HiPIMS and dcMS under various growth angles. • Influence of growth angle α = 0–90° on deposition rate and film quality was studied. • The HiPIMS process produces denser and smoother films for all growth angles. • At α = 0°, the growth rate of HiPIMS is 25% of dcMS while it is 50% at 90°. • The HiPIMS grown films remain poly-crystalline for all growth angles.

  7. Theoretical models for electron conduction in polymer systems—I. Macroscopic calculations of d.c. transient conductivity after pulse irradiation

    Science.gov (United States)

    Bartczak, Witold M.; Kroh, Jerzy

    The simulation of the transient d.c. conductivity in a quasi one-dimensional system of charges produced by a pulse of ionizing radiation in a solid sample has been performed. The simulation is based on the macroscopic conductivity equations and can provide physical insight into d.c. conductivity measurements, particularly for the case of transient currents in samples with internal space charge. We consider the system of mobile (negative) and immobile (positive) charges produced by a pulse of ionizing radiation in the sample under a fixed external voltage V0. The presence of space charge results in an electric field which is a function of both the spatial and the time variable: E( z, t). Given the space charge density, the electric field can be calculated from the Poisson equation. However, for an arbitrary space charge distribution, the corresponding equations can only be solved numerically. The two non-trivial cases for which approximate analytical solutions can be provided are: (i) The density of the current carriers n( z, t) is negligible in comparison with the density of immobile space charge N( z). A general analytical solution has been found for this case using Green's functions. The solutions for two cases, viz. the homogeneous distribution of space charge N( z) = N, and the non-homogeneous exponential distribution N( z) = A exp(- Bz), have been separately discussed. (ii) The space charge created in the pulse without any space charge present prior to the irradiation.

  8. Analysis of peer-to-peer locking of magnetrons

    International Nuclear Information System (INIS)

    Pengvanich, P.; Lau, Y. Y.; Cruz, E.; Gilgenbach, R. M.; Hoff, B.; Luginsland, J. W.

    2008-01-01

    The condition for mutual, or peer-to-peer, locking of two magnetrons is derived. This condition reduces to Adler's classical phase-locking condition in the limit where one magnetron becomes the ''master'' and the other becomes the ''slave.'' The formulation is extended to the peer-to-peer locking of N magnetrons, under the assumption that the electromagnetic coupling among the N magnetrons is modeled by an N-port network.

  9. Stability of Brillouin flow in planar, conventional, and inverted magnetrons

    International Nuclear Information System (INIS)

    Simon, D. H.; Lau, Y. Y.; Greening, G.; Wong, P.; Gilgenbach, R. M.; Hoff, B. W.

    2015-01-01

    The Brillouin flow is the prevalent flow in crossed-field devices. We systematically study its stability in the conventional, planar, and inverted magnetron geometry. To investigate the intrinsic negative mass effect in Brillouin flow, we consider electrostatic modes in a nonrelativistic, smooth bore magnetron. We found that the Brillouin flow in the inverted magnetron is more unstable than that in a planar magnetron, which in turn is more unstable than that in the conventional magnetron. Thus, oscillations in the inverted magnetron may startup faster than the conventional magnetron. This result is consistent with simulations, and with the negative mass property in the inverted magnetron configuration. Inclusion of relativistic effects and electromagnetic effects does not qualitatively change these conclusions

  10. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    Energy Technology Data Exchange (ETDEWEB)

    Hänninen, Tuomas, E-mail: tuoha@ifm.liu.se; Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans [Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-581 83 (Sweden)

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  11. Zero-Voltage Switching PWM Strategy Based Capacitor Current-Balancing Control for Half-Bridge Three-Level DC/DC Converter

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2018-01-01

    The current imbalance among the two input capacitors is one of the important issues of the half-bridge threelevel (HBTL) DC/DC converter, which would affect system performance and reliability. In this paper, a zero-voltage switching (ZVS) pulse-wide modulation (PWM) strategy including two operation...

  12. Influences of the RF power ratio on the optical and electrical properties of GZO thin films by DC coupled RF magnetron sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shou [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yao, Tingting, E-mail: yaott0815@163.com [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yang, Yong; Zhang, Kuanxiang; Jiang, Jiwen; Jin, Kewu; Li, Gang; Cao, Xin; Xu, Genbao; Wang, Yun [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China)

    2016-12-15

    Ga-doped zinc oxide (GZO) thin films were deposited by closed field unbalanced DC coupled RF magnetron sputtering system at room temperature. The RF sputtering power ratio was adjusted from 0% to 100%. The crystal structure, surface morphology, transmittance and electrical resistivity of GZO films mainly influenced by RF sputtering power ratio were investigated by X-ray diffractometer, scanning electronic microscope, ultraviolet-visible spectrophotometer and Hall effect measurement. The research results indicate that the increasing RF power ratio can effectively reduce the discharge voltage of system and increase the ionizing rate of particles. Meanwhile, the higher RF power ratio can increase the carrier mobility in GZO thin film and improve the optical and electrical properties of GZO thin film significantly. Within the optimal discharge voltage window, the film deposits at 80% RF power ratio exhibits the lowest resistivity of 2.6×10{sup −4} Ω cm. We obtain the GZO film with the best average optical transmittance is approximately 84% in the visible wavelength. With the increasing RF power ratio, the densification of GZO film is enhanced. The densification of GZO film is decrease when the RF power ratio is 100%.

  13. Surface treatment of diamond-like carbon films by reactive Ar/CF{sub 4} high-power pulsed magnetron sputtering plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Takashi, E-mail: t-kimura@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nishimura, Ryotaro [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Azuma, Kingo [Department of Electrical Engineering and Computer Sciences, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Nakao, Setsuo; Sonoda, Tsutomu; Kusumori, Takeshi; Ozaki, Kimihiro [National Institute of Advanced Industrial Science and Technology (AIST) - Chubu, 2266-98 Anagahora, Moriyama, Nagoya 463-8560 (Japan)

    2015-12-15

    Surface modification of diamond-like carbon films deposited by a high-power pulsed magnetron sputtering (HPPMS) of Ar was carried out by a HPPMS of Ar/CF{sub 4} mixture, changing a CF{sub 4} fraction from 2.5% to 20%. The hardness of the modified films markedly decreased from about 13 to about 3.5 GPa with increasing CF{sub 4} fraction, whereas the water contact angle of the modified films increased from 68° to 109° owing to the increase in the CF{sub x} content on the film surface. C 1s spectra in X-ray photoelectron spectroscopy indicated that a graphitic structure of modified films was formed at CF{sub 4} fractions less than 5%, above which the modified films possessed a polymer-like structure. Influence of treatment time on the properties of the modified films was also investigated in the range of treatment time from 5 to 30 min. The properties of the modified films did not depend on the treatment time in the range of treatment time longer than 10 min, whereas the water contact angle was not sensitive to the treatment time at any treatment time.

  14. Characteristics of a-IGZO/ITO hybrid layer deposited by magnetron sputtering.

    Science.gov (United States)

    Bang, Joon-Ho; Park, Hee-Woo; Cho, Sang-Hyun; Song, Pung-Keun

    2012-04-01

    Transparent a-IGZO (In-Ga-Zn-O) films have been actively studied for use in the fabrication of high-quality TFTs. In this study, a-IGZO films and a-IGZO/ITO double layers were deposited by DC magnetron sputtering under various oxygen flow rates. The a-IGZO films showed an amorphous structure up to 500 degrees C. The deposition rate of these films decreased with an increase in the amount of oxygen gas. The amount of indium atoms in the film was confirmed to be 11.4% higher than the target. The resistivity of double layer follows the rules for parallel DC circuits The maximum Hall mobility of the a-IGZO/ITO double layers was found to be 37.42 cm2/V x N s. The electrical properties of the double layers were strongly dependent on their thickness ratio. The IGZO/ITO double layer was subjected to compressive stress, while the ITO/IGZO double layer was subjected to tensile stress. The bending tolerance was found to depend on the a-IGZO thickness.

  15. Nanostructure transition in Cr–C–N coatings deposited by pulsed closed field unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Wu, Z.L.; Lin, J.; Moore, J.J.; Lei, M.K.

    2012-01-01

    Cr–C–N coatings with different compositions, i.e. (C + N)/Cr atomic ratios (x) of 0.81–2.77, were deposited using pulsed closed field unbalanced magnetron sputtering by varying the chromium and graphite target powers, the pulse configuration and the ratio of the nitrogen flow rate to the total gas flow rate. Three kinds of nanostructures were identified in the Cr–C–N coatings dependent on the x values: a nano-columnar structure of hexagonal closed-packed (hcp) Cr 2 (C,N) and face-centered cubic (fcc) Cr(C,N) at x = 0.81 and 1.03 respectively, a nanocomposite structure consisting of nanocrystalline Cr(C,N) embedded in an amorphous C(N) matrix at x = 1.26 and 1.78, and a Cr-containing amorphous C(N) structure at x = 2.77. A maximum hardness of 31.0 GPa and a high H/E ratio of 1.0 have been achieved in the nc-Cr(C,N)/a-C(N) nanocomposite structure at x = 1.26, whereas the coating with a Cr-containing amorphous C(N) structure had a minimum hardness of 10.9 GPa and a low H/E ratio of 0.08 at x = 2.77. The incorporation of carbon into the Cr–N coatings led to a phase transition from hcp-Cr 2 (C,N) to fcc-Cr(C,N) by the dissolution into the nanocrystallites, and promoted the amorphization of Cr–C–N coatings with the precipitation of amorphous C(N). It was found that a high x value over 1.0 in the Cr–C–N coatings is the composition threshold to the nanostructure transition. - Highlights: ► Nanostructure transition of Cr–C–N coatings depended on (C + N)/Cr atomic ratio. ► A nano-columnar structure formed at atomic ratio less than 1.0. ► A nc-Cr(C,N)/a-C(N) nanocomposite structure formed at atomic ratio of 1.0–2.7. ► A Cr-containing amorphous C(N) structure formed at atomic ratio more than 2.7. ► Maximum hardness of 31.0 GPa was for nanocomposite coatings at atomic ratio of 1.26.

  16. Negative Ion Sources: Magnetron and Penning

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    The history of the magnetron and Penning electrode geometry is briefly outlined. Plasma generation by electrical discharge-driven electron impact ionization is described and the basic physics of plasma and electrodes relevant to magnetron and Penning discharges are explained. Negative ions and their applications are introduced, along with their production mechanisms. Caesium and surface production of negative ions are detailed. Technical details of how to build magnetron and Penning surface plasma sources are given, along with examples of specific sources from around the world. Failure modes are listed and lifetimes compared.

  17. Negative Ion Sources: Magnetron and Penning

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    The history of the magnetron and Penning electrode geometry is briefly outlined. Plasma generation by electrical discharge-driven electron impact ionization is described and the basic physics of plasma and electrodes relevant to magnetron and Penning discharges are explained. Negative ions and their applications are introduced, along with their production mechanisms. Caesium and surface production of negative ions are detailed. Technical details of how to build magnetron and Penning surface plasma sources are given, along with examples of specific sources from around the world. Failure modes are listed and lifetimes compared. (author)

  18. Effects of microwave pulse-width damage on a bipolar transistor

    International Nuclear Information System (INIS)

    Ma Zhen-Yang; Chai Chang-Chun; Ren Xing-Rong; Yang Yin-Tang; Chen Bin; Zhao Ying-Bo

    2012-01-01

    This paper presents a theoretical study of the pulse-width effects on the damage process of a typical bipolar transistor caused by high power microwaves (HPMs) through the injection approach. The dependences of the microwave damage power, P, and the absorbed energy, E, required to cause the device failure on the pulse width τ are obtained in the nanosecond region by utilizing the curve fitting method. A comparison of the microwave pulse damage data and the existing dc pulse damage data for the same transistor is carried out. By means of a two-dimensional simulator, ISE-TCAD, the internal damage processes of the device caused by microwave voltage signals and dc pulse voltage signals are analyzed comparatively. The simulation results suggest that the temperature-rising positions of the device induced by the microwaves in the negative and positive half periods are different, while only one hot spot exists under the injection of dc pulses. The results demonstrate that the microwave damage power threshold and the absorbed energy must exceed the dc pulse power threshold and the absorbed energy, respectively. The dc pulse damage data may be useful as a lower bound for microwave pulse damage data. (interdisciplinary physics and related areas of science and technology)

  19. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    International Nuclear Information System (INIS)

    Sulaeman, M. Y.; Widita, R.

    2014-01-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation

  20. Deposition of PZT thin film onto copper-coated polymer films by mean of pulsed-DC and RF-reactive sputtering

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Labitzke, R.; Adolphi, B.; Jastrabík, Lubomír; Adámek, Petr; Drahokoupil, Jan; Hubička, Zdeněk; Kiselev, D.A.; Kholkin, A. L.; Gerlach, G.; Dejneka, Alexandr

    2011-01-01

    Roč. 205, č. 2 (2011), S241-S244 ISSN 0257-8972 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : pulsed DC reactive sputtering * RF reactive sputtering * complex oxide film deposition * polymer substrate Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.867, year: 2011

  1. Nanomesh of Cu fabricated by combining nanosphere lithography and high power pulsed magnetron sputtering and a preliminary study about its function

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wanchuan; Chen, Jiang; Jiang, Lang; Yang, Ping, E-mail: yangping8@263.net; Sun, Hong; Huang, Nan

    2013-10-15

    The Cu nanomesh was obtained by a combination of nanosphere lithography (NSL) and high power pulsed magnetron sputtering (HiPPMS). A deposition mask was formed on TiO{sub 2} substrates by the self-assembly of polystyrene latex spheres with a diameter of 1 μm, then Cu nanomesh structure was produced on the substrate using sputtering. The structures were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results show the increase of temperature of the polystyrene mask caused by the thermal radiation from the target and the bombardment of sputtering particles would affect the quality of the final nanopattern. The tests of photocatalytic degradation, platelet adhesion and human umbilical artery smooth muscle cells (HUASMCs) culture show Cu deposition could promote the photocatalytic efficiency of TiO{sub 2}, affect platelet adhesion and inhibit smooth muscle cell adhesion and proliferation. It is highlighted that these findings may serve as a guide for the research of multifunctional surface structure.

  2. Generation of positive and negative oxygen ions in magnetron discharge during reactive sputtering of alumina

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Petr; Bulíř, Jiří; Lančok, Ján; Musil, Jindřich; Novotný, Michal

    2010-01-01

    Roč. 7, č. 11 (2010), s. 910-914 ISSN 1612-8850 R&D Projects: GA AV ČR IAA100100718; GA AV ČR KAN400100653; GA ČR GP202/09/P324 Institutional research plan: CEZ:AV0Z10100522 Keywords : aluminium oxide * ion-energy distribution function * magnetron * mass spectrometry * pulsed discharges Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.643, year: 2010

  3. A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges

    Science.gov (United States)

    Zheng, B. C.; Wu, Z. L.; Wu, B.; Li, Y. G.; Lei, M. K.

    2017-05-01

    A spatially averaged, time-dependent global plasma model has been developed to describe the reactive deposition of a TiAlSiN thin film by modulated pulsed power magnetron sputtering (MPPMS) discharges in Ar/N2 mixture gas, based on the particle balance and the energy balance in the ionization region, and considering the formation and erosion of the compound at the target surface. The modeling results show that, with increasing the N2 partial pressure from 0% to 40% at a constant working pressure of 0.3 Pa, the electron temperature during the strongly ionized period increases from 4 to 7 eV and the effective power transfer coefficient, which represents the power fraction that effectively heats the electrons and maintains the discharge, increases from about 4% to 7%; with increasing the working pressure from 0.1 to 0.7 Pa at a constant N2 partial pressure of 25%, the electron temperature decreases from 10 to 4 eV and the effective power transfer coefficient decreases from 8% to 5%. Using the modeled plasma parameters to evaluate the kinetic energy of arriving ions, the ion-to-neutral flux ratio of deposited species, and the substrate heating, the variations of process parameters that increase these values lead to an enhanced adatom mobility at the target surface and an increased input energy to the substrate, corresponding to the experimental observation of surface roughness reduction, the microstructure transition from the columnar structure to the dense featureless structure, and the enhancement of phase separation. At higher N2 partial pressure or lower working pressure, the modeling results demonstrate an increase in electron temperature, which shifts the discharge balance of Ti species from Ti+ to Ti2+ and results in a higher return fraction of Ti species, corresponding to the higher Al/Ti ratio of deposited films at these conditions. The modeling results are well correlated with the experimental observation of the composition variation and the microstructure

  4. Time-resolved electrical measurements of a pulsed-dc methane discharge used in diamond-like carbon films production

    International Nuclear Information System (INIS)

    Corbella, C.; Polo, M.C.; Oncins, G.; Pascual, E.; Andujar, J.L.; Bertran, E.

    2005-01-01

    Amorphous hydrogenated carbon (a-C:H) thin films were obtained at room temperature via asymmetric bipolar pulsed-dc methane glow discharge. The power frequency values were varied from 100 to 200 kHz and the maximum amplitude voltage from -600 to -1400 V. Such films present diamond-like carbon (DLC) properties [J.L. Andujar, M. Vives, C. Corbella, E. Bertran, Diamond Relat. Mater. 12 (2003) 98]. The plasma, powered by a pulse frequency of 100 kHz, was electrically studied by a Langmuir probe. The next parameters were calculated within the pulse cycle from I-V measurements with 1 μs resolution: plasma and floating potentials, electron temperature, and electron and ion densities. The presence of a population of hot electrons (10 eV) was detected at high bias voltage region. The density of cold electrons grows one order of magnitude after each negative pulse, whereas the ion density suffers a prompt increase during each positive pulse. The surface topography of DLC films was scanned by atomic force microscopy (AFM). A smoothly varying friction coefficient (between 0.2 and 0.3) was measured by AFM in contact mode. X-ray reflectivity (XRR) analysis provided a wide characterization of the films, involving density, thickness and roughness. The C/H ratio, as directly obtained by elemental analysis (EA), shows an increase at higher bias voltages. All these features are discussed in terms of process parameters varied in film growth

  5. Enhanced properties of tungsten thin films deposited with a novel HiPIMS approach

    Science.gov (United States)

    Velicu, Ioana-Laura; Tiron, Vasile; Porosnicu, Corneliu; Burducea, Ion; Lupu, Nicoleta; Stoian, George; Popa, Gheorghe; Munteanu, Daniel

    2017-12-01

    Despite the tremendous potential for industrial use of tungsten (W), very few studies have been reported so far on controlling and tailoring the properties of W thin films obtained by physical vapor deposition techniques and, even less, for those deposited by High Power Impulse Magnetron Sputtering (HiPIMS). This study presents results on the deposition process and properties characterization of nanocrystalline W thin films deposited on silicon and molybdenum substrates (100 W average sputtering power) by conventional dc magnetron sputtering (dcMS) and HiPIMS techniques. Topological, structural, mechanical and tribological properties of the deposited thin films were investigated. It was found that in HiPIMS, both deposition process and coatings properties may be optimized by using an appropriate magnetic field configuration and pulsing design. Compared to the other deposited samples, the W films grown in multi-pulse (5 × 3 μs) HiPIMS assisted by an additional magnetic field, created with a toroidal-shaped permanent magnet placed in front of the magnetron cathode, show significantly enhanced properties, such as: smoother surfaces, higher homogeneity and denser microstructure, higher hardness and Young's modulus values, better adhesion to the silicon substrate and lower coefficient of friction. Mechanical behaviour and structural changes are discussed based on plasma diagnostics results.

  6. Surface functionalization of nanostructured LaB{sub 6}-coated Poly Trilobal fabric by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yan, E-mail: wuyanchn@hotmail.com [Mechanical and Electrical Engineering Branch, Jiaxing Nanyang Polytechnic Institute, Jiaxing 314003 (China); Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Zhang, Lin, E-mail: zhanglin2007@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Min, Guanghui, E-mail: ghmin@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Yu, Huashun; Gao, Binghuan; Liu, Huihui; Xing, Shilong; Pang, Tao [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China)

    2016-10-30

    Highlights: • Nanostructured LaB{sub 6} films were deposited on flexible textile substrates by dc magnetron sputtering. • The pronounced influence of the working pressure on the morphologies and optical properties of LaB{sub 6} films has been revealed. • The concept of Ultraviolet Protection Factor (UPF) was employed and LaB{sub 6}-coated PET textiles with ultraviolet protection ability were obtained. - Abstract: Nanostructured LaB{sub 6} films were deposited on flexible Poly Trilobal substrates (PET textiles) through direct current magnetron sputtering in order to broaden its applications and realize surface functionalization of polyester fabrics. Characterizations and performances were investigated by employing a scanning electron microscope (SEM), Fourier transformation infrared spectroscopy (FT-IR) and ultraviolet-visible (UV–vis) spectrophotometer. Ultraviolet Protection Factor (UPF) conducted by the integral conversion was employed to measure the ultraviolet protection ability. As expected, the growth of LaB{sub 6} film depending on the pressure variation enhanced UV-blocking ability (UPF rating at 30.17) and absorption intensity of the textiles.

  7. Pulse width modulation inverter with battery charger

    Science.gov (United States)

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  8. Measurement of the C2H2 destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    International Nuclear Information System (INIS)

    Rousseau, A; Guaitella, O; Gatilova, L; Hannemann, M; Roepcke, J

    2007-01-01

    The kinetics of destruction of C 2 H 2 is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm -1 ) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C 2 H 2 concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C 2 H 2 depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C 2 H 2 is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO 2 photocatalyst on the C 2 H 2 oxidation rate is reported

  9. Ac-dc converter firing error detection

    International Nuclear Information System (INIS)

    Gould, O.L.

    1996-01-01

    Each of the twelve Booster Main Magnet Power Supply modules consist of two three-phase, full-wave rectifier bridges in series to provide a 560 VDC maximum output. The harmonic contents of the twelve-pulse ac-dc converter output are multiples of the 60 Hz ac power input, with a predominant 720 Hz signal greater than 14 dB in magnitude above the closest harmonic components at maximum output. The 720 Hz harmonic is typically greater than 20 dB below the 500 VDC output signal under normal operation. Extracting specific harmonics from the rectifier output signal of a 6, 12, or 24 pulse ac-dc converter allows the detection of SCR firing angle errors or complete misfires. A bandpass filter provides the input signal to a frequency-to-voltage converter. Comparing the output of the frequency-to-voltage converter to a reference voltage level provides an indication of the magnitude of the harmonics in the ac-dc converter output signal

  10. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  11. Highly stable hydrogenated gallium-doped zinc oxide thin films grown by DC magnetron sputtering using H2/Ar gas

    International Nuclear Information System (INIS)

    Takeda, Satoshi; Fukawa, Makoto

    2004-01-01

    The effects of water partial pressure (P H 2 O ) on electrical and optical properties of Ga-doped ZnO films grown by DC magnetron sputtering were investigated. With increasing P H 2 O , the resistivity (ρ) of the films grown in pure Ar gas (Ar-films) significantly increased due to the decrease in both free carrier density and Hall mobility. The transmittance in the wavelength region of 300-400 nm for the films also increased with increasing P H 2 O . However, no significant P H 2 O dependence of the electrical and optical properties was observed for the films grown in H 2 /Ar gas mixture (H 2 /Ar-films). Secondary ion mass spectrometry (SIMS) and X-ray diffraction (XRD) analysis revealed that hydrogen concentration in the Ar-films increased with increasing P H 2 O and grain size of the films decreases with increasing the hydrogen concentration. These results indicate that the origin of the incorporated hydrogen is attributed to the residual water vapor in the coating chamber, and that the variation of ρ and transmittance along with P H 2 O of the films resulted from the change in the grain size. On the contrary, the hydrogen concentration in H 2 /Ar-films was almost constant irrespective of P H 2 O and the degree of change in the grain size of the films versus P H 2 O was much smaller than that of Ar-films. These facts indicate that the hydrogen primarily comes from H 2 gas and the adsorption species due to H 2 gas preferentially adsorb to the growing film surface over residual water vapor. Consequently, the effects of P H 2 O on the crystal growth are reduced

  12. Optimization of pulsed DC PACVD parameters: Toward reducing wear rate of the DLC films

    International Nuclear Information System (INIS)

    Ebrahimi, Mansoureh; Mahboubi, Farzad; Naimi-Jamal, M. Reza

    2016-01-01

    Highlights: • Effect of pulsed DC PACVD deposition temperature, duty cycle, hydrogen flow and argon/CH4 flow ratio on the wear rate and durability of DLC films was studied. • Results show that wear rate of the DLC films, reduced from 14×E-4 mm3/Nm to 1×E-6 mm3/Nm with increasing the duty cycle from 50% to 80%. • In low duty cycle (around 50%), wear rate increases with increasing in Argon/CH4 flow ratio. • Oxidation, fatigue, abrasion and graphitization are main wear mechanisms in the DLC film. - Abstract: The effect of pulsed direct current (DC) plasma-assisted chemical vapor deposition (PACVD) parameters such as temperature, duty cycle, hydrogen flow, and argon/CH_4 flow ratio on the wear behavior and wear durability of the diamond-like carbon (DLC) films was studied by using response surface methodology (RSM). DLC films were deposited on nitrocarburized AISI 4140 steel. Wear rate and wear durability of the DLC films were examined with the pin-on-disk method. Field emission scanning electron microscopy, Raman spectroscopy, and nanoindentation techniques were used for studying wear mechanisms, chemical structure, and hardness of the DLC films. RSM results show that duty cycle is one of the important parameters that affect the wear rate of the DLC samples. The wear rate of the samples deposited with a duty cycle of >75% decreases with an increase in the argon/CH4 ratio. In contrast, for a duty cycle of <65%, the wear rate increases with an increase in the argon/CH_4 ratio. The wear durability of the DLC samples increases with an increase in the duty cycle, hydrogen flow, and argon/CH_4 flow ratio at the deposition temperature between 85 °C and 110 °C. Oxidation, fatigue, abrasive wear, and graphitization are the wear mechanisms observed on the wear scar of the DLC samples deposited with the optimum deposition conditions.

  13. Optimization of pulsed DC PACVD parameters: Toward reducing wear rate of the DLC films

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Mansoureh [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, P.O. Box 1875-4413, Tehran (Iran, Islamic Republic of); Mahboubi, Farzad, E-mail: mahboubi@aut.ac.ir [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, P.O. Box 1875-4413, Tehran (Iran, Islamic Republic of); Naimi-Jamal, M. Reza [Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846, Tehran (Iran, Islamic Republic of)

    2016-12-15

    Highlights: • Effect of pulsed DC PACVD deposition temperature, duty cycle, hydrogen flow and argon/CH4 flow ratio on the wear rate and durability of DLC films was studied. • Results show that wear rate of the DLC films, reduced from 14×E-4 mm3/Nm to 1×E-6 mm3/Nm with increasing the duty cycle from 50% to 80%. • In low duty cycle (around 50%), wear rate increases with increasing in Argon/CH4 flow ratio. • Oxidation, fatigue, abrasion and graphitization are main wear mechanisms in the DLC film. - Abstract: The effect of pulsed direct current (DC) plasma-assisted chemical vapor deposition (PACVD) parameters such as temperature, duty cycle, hydrogen flow, and argon/CH{sub 4} flow ratio on the wear behavior and wear durability of the diamond-like carbon (DLC) films was studied by using response surface methodology (RSM). DLC films were deposited on nitrocarburized AISI 4140 steel. Wear rate and wear durability of the DLC films were examined with the pin-on-disk method. Field emission scanning electron microscopy, Raman spectroscopy, and nanoindentation techniques were used for studying wear mechanisms, chemical structure, and hardness of the DLC films. RSM results show that duty cycle is one of the important parameters that affect the wear rate of the DLC samples. The wear rate of the samples deposited with a duty cycle of >75% decreases with an increase in the argon/CH4 ratio. In contrast, for a duty cycle of <65%, the wear rate increases with an increase in the argon/CH{sub 4} ratio. The wear durability of the DLC samples increases with an increase in the duty cycle, hydrogen flow, and argon/CH{sub 4} flow ratio at the deposition temperature between 85 °C and 110 °C. Oxidation, fatigue, abrasive wear, and graphitization are the wear mechanisms observed on the wear scar of the DLC samples deposited with the optimum deposition conditions.

  14. Magnetron deposition of metal-ceramic protective coatings on glasses of windows of space vehicles

    OpenAIRE

    Sergeev, Viktor Petrovich; Panin, Viktor Evgenyevich; Psakhie, Sergey Grigorievich; Chernyavskii, Alexandr; Svechkin, Valerii; Khristenko, Yurii; Kalashnikov, Mark Petrovich; Voronov, Andrei

    2014-01-01

    Transparent refractory metal-ceramic nanocomposite coatings with a high coefficient of elasticrecovery and microhardness on the basis of Ni/Si-Al-N are formed on a glass substrate by the pulse magnetron deposition method. The structure-phase states were investigated by TEM, SEM. It was established that the first layer consists of Ni nanograins with a fcc crystalline lattice, the second layer is two-phase: 5-10 nm nanocrystallites of the AlN phase with the hcp crystalline lattice in amorphous ...

  15. Direct current magnetron sputter-deposited ZnO thin films

    International Nuclear Information System (INIS)

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong; Knipp, Dietmar

    2011-01-01

    Zinc oxide (ZnO) is a very promising electronic material for emerging transparent large-area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 150 nm to 750 nm were deposited on glass substrates. The deposition pressure and the substrate temperature were varied from 12 mTorr to 25 mTorr, and from room temperature to 450 deg. C, respectively. The influence of the film thickness, deposition pressure and the substrate temperature on structural and optical properties of the ZnO films was investigated using atomic force microscopy (AFM) and ultraviolet-visible (UV-Vis) spectrometer. The experimental results reveal that the film thickness, deposition pressure and the substrate temperature play significant role in the structural formation and the optical properties of the deposited ZnO thin films.

  16. Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111)

    CERN Document Server

    Li, T Q; Tsuji, Y; Ohsawa, T; Komiyama, H

    2002-01-01

    The initial growth and texture formation mechanism of titanium nitride (TiN) films were investigated by depositing TiN films on (111) silicon substrates by using reactive magnetron sputtering of a Ti metallic target under a N sub 2 /Ar atmosphere, and then analyzing the films in detail by using transmission electron microscopy (TEM) and x-ray diffraction (XRD). Two power sources for the sputtering, dc and rf, were compared. At the initial growth stage, a continuous amorphous film containing randomly oriented nuclei was observed when the film thickness was about 3 nm. The nuclei grew and formed a polycrystalline layer when the film thickness was about 6 nm. As the film grew further, its orientation changed depending on the deposition conditions. For dc sputtering, the appearance of (111) or (200)-preferred orientations depended on the N sub 2 partial pressure, and the intensity of the preferred orientation increased with increasing film thickness. For rf sputtering, however, when the film thickness was small (...

  17. DC drive system for cine/pulse cameras

    Science.gov (United States)

    Gerlach, R. H.; Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.

    1977-01-01

    Camera-drive functions are separated mechanically into two groups which are driven by two separate dc brushless motors. First motor, a 90 deg stepper, drives rotating shutter; second electronically commutated motor drives claw and film transport. Shutter is made of one piece but has two openings for slow and fast exposures.

  18. Design of a -1 MV dc UHV power supply for ITER NBI

    Science.gov (United States)

    Watanabe, K.; Yamamoto, M.; Takemoto, J.; Yamashita, Y.; Dairaku, M.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; Umeda, N.; Sakamoto, K.; Inoue, T.

    2009-05-01

    Procurement of a dc -1 MV power supply system for the ITER neutral beam injector (NBI) is shared by Japan and the EU. The Japan Atomic Energy Agency as the Japan Domestic Agency (JADA) for ITER contributes to the procurement of dc -1 MV ultra-high voltage (UHV) components such as a dc -1 MV generator, a transmission line and a -1 MV insulating transformer for the ITER NBI power supply. The inverter frequency of 150 Hz in the -1 MV power supply and major circuit parameters have been proposed and adopted in the ITER NBI. The dc UHV insulation has been carefully designed since dc long pulse insulation is quite different from conventional ac insulation or dc short pulse systems. A multi-layer insulation structure of the transformer for a long pulse up to 3600 s has been designed with electric field simulation. Based on the simulation the overall dimensions of the dc UHV components have been finalized. A surge energy suppression system is also essential to protect the accelerator from electric breakdowns. The JADA contributes to provide an effective surge suppression system composed of core snubbers and resistors. Input energy into the accelerator from the power supply can be reduced to about 20 J, which satisfies the design criteria of 50 J in total in the case of breakdown at -1 MV.

  19. Geometry Optimization of DC/RF Photoelectron Gun

    CERN Document Server

    Chen Ping; Yu, David

    2005-01-01

    Pre-acceleration of photoelectrons in a pulsed, high voltage, short, dc gap and its subsequent injection into an rf gun is a promising method to improve electron beam emittance in rf accelerators. Simulation work has been performed in order to optimize the geometric shapes of a dc/rf gun and improve electron beam properties. Variations were made on cathode and anode shapes, dc gap distance, and inlet shape of the rf cavity. Simulations showed that significant improvement on the normalized emittance (< 1 mm-mrad), compared to a dc gun with flat cathode, could be obtained after the geometric shapes of the gun were optimized.

  20. Effect of Nitrogen Content on Physical and Chemical Properties of TiN Thin Films Prepared by DC Magnetron Sputtering with Supported Discharge

    Science.gov (United States)

    Kavitha, A.; Kannan, R.; Gunasekhar, K. R.; Rajashabala, S.

    2017-10-01

    Amorphous titanium nitride (TiN) thin films have been prepared on silicon (Si) and glass substrates by direct-current (DC) reactive magnetron sputtering with a supported discharge (triode). Nitrogen gas (N2) at partial pressure of 0.3 Pa, 0.4 Pa, 0.5 Pa, and 0.6 Pa was used to prepare the TiN thin films, maintaining total pressure of argon and N2 of about 0.7 Pa. The chemical, microstructural, optical, and electrical properties of the TiN thin films were systematically studied. Presence of different phases of Ti with nitrogen (N), oxygen (O2), and carbon (C) elements was revealed by x-ray photoelectron spectroscopy characterization. Increase in the nitrogen pressure from 0.3 Pa to 0.6 Pa reduced the optical bandgap of the TiN thin film from 2.9 eV to 2.7 eV. Photoluminescence study showed that TiN thin film deposited at N2 partial pressure of 0.3 Pa exhibited three shoulder peaks at 330 nm, 335 nm, and 340 nm, which disappeared when the sample was deposited with N2 partial pressure of 0.6 Pa. Increase in the nitrogen content decreased the electrical resistivity of the TiN thin film from 3200 μΩ cm to 1800 μΩ cm. Atomic force microscopy studies of the TiN thin films deposited with N2 partial pressure of 0.6 Pa showed a uniform surface pattern associated with accumulation of fine grains. The results and advantages of this method of preparing TiN thin films are also reported.

  1. Performance Test of the Microwave Ion Source with the Multi-layer DC Break

    International Nuclear Information System (INIS)

    Kim, Dae Il; Kwon, Hyeok Jung; Kim, Han Sung; Seol, Kyung Tae; Cho, Yong Sub

    2012-01-01

    A microwave proton source has been developed as a proton injector for the 100-MeV proton linac of the PEFP (Proton Engineering Frontier Project). On microwave ion source, the high voltage for the beam extraction is applied to the plasma chamber, also to the microwave components such as a 2.45GHz magnetron, a 3-stub tuner, waveguides. If microwave components can be installed on ground side, the microwave ion source can be operated and maintained easily. For the purpose, the multi-layer DC break has been developed. A multi-layer insulation has the arrangement of conductors and insulators as shown in the Fig. 1. For the purpose of stable operation as the multi-layer DC break, we checked the radiation of the insulator depending on materials and high voltage test of a fabricated multi-layer insulation. In this report, the details of performance test of the multi-layer DC break will be presented

  2. Structure and morphology of magnetron sputter deposited ultrathin ZnO films on confined polymeric template

    Science.gov (United States)

    Singh, Ajaib; Schipmann, Susanne; Mathur, Aakash; Pal, Dipayan; Sengupta, Amartya; Klemradt, Uwe; Chattopadhyay, Sudeshna

    2017-08-01

    The structure and morphology of ultra-thin zinc oxide (ZnO) films with different film thicknesses on confined polymer template were studied through X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS). Using magnetron sputter deposition technique ZnO thin films with different film thicknesses (weight of polystyrene). The detailed internal structure, along the surface/interfaces and the growth direction of the system were explored in this study, which provides insight into the growth procedure of ZnO on confined polymer and reveals that a thin layer of ZnO, with very low surface and interface roughness, can be grown by DC magnetron sputtering technique, with approximately full coverage (with bulk like electron density) even in nm order of thickness, in 2-7 nm range on confined polymer template, without disturbing the structure of the underneath template. The resulting ZnO-polystyrene hybrid systems show strong ZnO near band edge (NBE) and deep-level (DLE) emissions in their room temperature photoluminescence spectra, where the contribution of DLE gets relatively stronger with decreasing ZnO film thickness, indicating a significant enhancement of surface defects because of the greater surface to volume ratio in thinner films.

  3. Modeling and experimental studies of a side band power re-injection locked magnetron

    Science.gov (United States)

    Ye, Wen-Jun; Zhang, Yi; Yuan, Ping; Zhu, Hua-Cheng; Huang, Ka-Ma; Yang, Yang

    2016-12-01

    A side band power re-injection locked (SBPRIL) magnetron is presented in this paper. A tuning stub is placed between the external injection locked (EIL) magnetron and the circulator. Side band power of the EIL magnetron is reflected back to the magnetron. The reflected side band power is reused and pulled back to the central frequency. A phase-locking model is developed from circuit theory to explain the process of reuse of side band power in SBPRIL magnetron. Theoretical analysis proves that the side band power is pulled back to the central frequency of the SBPRIL magnetron, then the amplitude of the RF voltage increases and the phase noise performance is improved. Particle-in-cell (PIC) simulation of a 10-vane continuous wave (CW) magnetron model is presented. Computer simulation predicts that the frequency spectrum’s peak of the SBPRIL magnetron has an increase of 3.25 dB compared with the free running magnetron. The phase noise performance at the side band offset reduces 12.05 dB for the SBPRIL magnetron. Besides, the SBPRIL magnetron experiment is presented. Experimental results show that the spectrum peak rises by 14.29% for SBPRIL magnetron compared with the free running magnetron. The phase noise reduces more than 25 dB at 45-kHz offset compared with the free running magnetron. Project supported by the National Basic Research Program of China (Grant No. 2013CB328902) and the National Natural Science Foundation of China (Grant No. 61501311).

  4. Vacuum deposition and pulsed modification of Ge thin films on Si. Structure and photoluminescence

    International Nuclear Information System (INIS)

    Batalov, R.I.; Bayazitov, R.M.; Novikov, G.A.; Shustov, V.A.; Bizyaev, D.A.; Gajduk, P.I.; Ivlev, G.D.; Prokop'ev, S.L.

    2013-01-01

    Vacuum deposition of Ge thin films onto Si substrates by magnetron sputtering was studied. During deposition sputtering time and substrate temperature were varied. Nanosecond pulsed annealing of deposited films by powerful laser or ion beams was performed. The dependence of the structure and optical properties of Ge/Si films on parameters of pulsed treatments was investigated. Optimum parameters of deposition and pulsed treatments resulting into light emitting monocrystalline Ge/Si layers are determined. (authors)

  5. The effect of changing the magnetic field strength on HiPIMS deposition rates

    International Nuclear Information System (INIS)

    Bradley, J W; Mishra, A; Kelly, P J

    2015-01-01

    The marked difference in behaviour between HiPIMS and conventional dc or pulsed-dc magnetron sputtering discharges with changing magnetic field strengths is demonstrated through measurements of deposition rate. To provide a comparison between techniques the same circular magnetron was operated in the three excitation modes at a fixed average power of 680 W and a pressure of 0.54 Pa in the non-reactive sputtering of titanium. The total magnetic field strength B at the cathode surface in the middle of the racetrack was varied from 195 to 380 G. DC and pulsed-dc discharges show the expected behaviour that deposition rates fall with decreasing B (here by ∼25–40%), however the opposite trend is observed in HiPIMS with deposition rates rising by a factor of 2 over the same decrease in B.These observations are understood from the stand point of the different composition and transport processes of the depositing metal flux between the techniques. In HiPIMS, this flux is largely ionic and slow post-ionized sputtered particles are subject to strong back attraction to the target by a retarding plasma potential structure ahead of them. The height of this potential barrier is known to increase with increasing B.From a simple phenomenological model of the sputtered particles fluxes, and using the measured deposition rates from the different techniques as inputs, the combined probabilities of ionization, α, and back attraction, β, of the metal species in HiPIMS has been calculated. There is a clear fall in αβ (from ∼0.9 to ∼0.7) with decreasing B-field strengths, we argue primarily due to a weakening of electrostatic ion back attraction, so leading to higher deposition rates. The results indicate that careful design of magnetron field strengths should be considered to optimise HiPIMS deposition rates. (paper)

  6. Effect of geometry on the surface characteristics of steel components AISI 4140 nitrited by DC-pulsed plasma

    International Nuclear Information System (INIS)

    Calahonra, C; De Las Heras, E; De La Serena, F; Corengia, P; Ybarra, G; Svoboda, H

    2004-01-01

    Steel AISI 4140 pieces containing cylindrical pinholes with different diameters and depths were nitrited by plasma, in an atmosphere of 25% N 2 + 75% H 2 under a DC-pulsed glow discharge for 15 h. The samples were nitrited to study the influence of the sizes of the pinholes on the uniformity of the compound layer, on the depth of the zone of diffusion and on the surface and subsurface micro-hardness. The results showed that nitriding pieces with pinholes introduces variations in the electric parameters and modifies the uniformity of the coat of compounds formed, altering the mechanical properties of the surface and subsurface (CW)

  7. Syntheses and characterization of TiC/a:C composite coatings using pulsed closed field unbalanced magnetron sputtering (P-CFUBMS)

    International Nuclear Information System (INIS)

    Lin, J.; Moore, J.J.; Mishra, B.; Pinkas, M.; Sproul, W.D.

    2008-01-01

    TiC/a:C nanocomposite coatings were prepared by reactively sputtering titanium and graphite targets in pure argon atmosphere using a pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) system. The microstructure of TiC/a:C coatings consisting of nanocrystalline TiC dispersed in an amorphous matrix of free carbon was investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The effects of coating compositions on the structure and properties of TiC/a:C coatings were investigated. In the present study, TiC/a:C coatings exhibit high hardness (24-29 GPa), low coefficient of friction (0.24-0.25) and low wear rate (less than 2.5 x 10 -7 mm 3 N -1 m -1 ) when the carbon concentration is in the range of 55-66 at.%. Further increase of the carbon content beyond 70 at.% significantly decreased the volume fraction of TiC nanocrystalline and formed a large amount of free amorphous carbon in the coatings. The excessive amorphous carbon phases resulted in a decrease in the coating hardness and the sliding friction coefficient, e.g. a low COF of 0.15 was obtained when the carbon concentration reached 80.5 at.%. However, the decreased hardness will lead to an increase in the wear rate in these high carbon content TiC/a:C coatings

  8. Modified DLC coatings prepared in a large-scale reactor by dual microwave/pulsed-DC plasma-activated chemical vapour deposition

    International Nuclear Information System (INIS)

    Corbella, C.; Bialuch, I.; Kleinschmidt, M.; Bewilogua, K.

    2008-01-01

    Diamond-Like Carbon (DLC) films find abundant applications as hard and protective coatings due to their excellent mechanical and tribological performances. The addition of new elements to the amorphous DLC matrix tunes the properties of this material, leading to an extension of its scope of applications. In order to scale up their production to a large plasma reactor, DLC films modified by silicon and oxygen additions have been grown in an industrial plant of 1m 3 by means of pulsed-DC plasma-activated chemical vapour deposition (PACVD). The use of an additional microwave (MW) source has intensified the glow discharge, partly by electron cyclotron resonance (ECR), accelerating therefore the deposition process. Hence, acetylene, tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO) constituted the respective gas precursors for the deposition of a-C:H (DLC), a-C:H:Si and a-C:H:Si:O films by dual MW/pulsed-DC PACVD. This work presents systematic studies of the deposition rate, hardness, adhesion, abrasive wear and water contact angle aimed to optimize the technological parameters of deposition: gas pressure, relative gas flow of the monomers and input power. This study has been completed with measures of the atomic composition of the samples. Deposition rates around 1 μm/h, typical for standard processes held in the large reactor, were increased about by a factor 10 when the ionization source has been operated in ECR mode

  9. Measurement of the C{sub 2}H{sub 2} destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Guaitella, O [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Gatilova, L [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Hannemann, M [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany); Roepcke, J [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany)

    2007-04-07

    The kinetics of destruction of C{sub 2}H{sub 2} is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm{sup -1}) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C{sub 2}H{sub 2} concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C{sub 2}H{sub 2} depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C{sub 2}H{sub 2} is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO{sub 2} photocatalyst on the C{sub 2}H{sub 2} oxidation rate is reported.

  10. Magnetron sputtered Hf-B-Si-C-N films with controlled electrical conductivity and optical transparency, and with ultrahigh oxidation resistance

    Czech Academy of Sciences Publication Activity Database

    Šímová, V.; Vlček, J.; Zuzjaková, Š.; Houška, J.; Shen, Y.; Jiang, J. C.; Meletis, E. I.; Peřina, Vratislav

    2018-01-01

    Roč. 653, č. 5 (2018), s. 333-340 ISSN 0040-6090 R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : Hf-B-Si-C-N films * pulsed reactive magnetron sputtering * electrical conductivitiy * optical transparency * high-temperature oxidation resistance Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.879, year: 2016

  11. Method for integrating a train of fast, nanosecond wide pulses

    International Nuclear Information System (INIS)

    Rose, C.R.

    1987-01-01

    This paper describes a method used to integrate a train of fast, nanosecond wide pulses. The pulses come from current transformers in a RF LINAC beamline. Because they are ac signals and have no dc component, true mathematical integration would yield zero over the pulse train period or an equally erroneous value because of a dc baseline shift. The circuit used to integrate the pulse train first stretches the pulses to 35 ns FWHM. The signals are then fed into a high-speed, precision rectifier which restores a true dc baseline for the following stage - a fast, gated integrator. The rectifier is linear over 55dB in excess of 25 MHz, and the gated integrator is linear over a 60 dB range with input pulse widths as short as 16 ns. The assembled system is linear over 30 dB with a 6 MHz input signal

  12. Characterisation of magnetron sputtered SmCo5 thin films

    International Nuclear Information System (INIS)

    Wang, Y.; Sood, D.K.; Kothari

    1999-01-01

    SmCo 5 thin films were deposited using DC magnetron sputtering on single crystal silicon substrate with chromium and SiO 2 top layers. Deposition was carried out at three different substrate temperatures: room temperature, 400 deg C and 600 deg C. Films were characterised by using Rutherford Backscattering Spectroscopy (RBS), X-ray Diffraction (XRD), Secondary Ion Mass Spectrometry (SIMS) and SQUID magnetometer. RBS analysis indicated that the films have excellent stoichiometry with the Sm to Co ratio of 1:5. This analysis also showed that the films deposited or annealed at high temperatures (≥600 deg C) indicated significant inter-diffusion at the interface between the barrier layer and the film. Oxygen was found to be the major impurity in the films. XRD data indicated that the films formed 1:5 and 2:17 phases under different deposition conditions. The preliminary studies of these films using magnetic force microscopy revealed the presence of magnetic domains

  13. Development of new cylindrical magnetrons for industrial use

    International Nuclear Information System (INIS)

    Clayton, B.

    2000-09-01

    A number of alternative techniques were considered and tested with a view to the construction of a cylindrical sputtering device. This device was required to be capable of depositing tribological coatings inside approximately cylindrical substrates of diameters less than 100mm, in an industrial situation. A cylindrical magnetron device was designed, and constructed as a prototype, using a magnetic assembly inside a cylindrical target with outside diameter (o.d.) 40mm. Two alternative magnetic assemblies were tested, and found to have complimentary advantages. The magnetron characteristics of the device were tested, as were key properties (such as adhesion level and hardness) of the coatings deposited. In all cases good results were obtained. A 22mm o.d. device based on the same design was shown to operate, but with less satisfactory characteristics. In an attempt to improve the miniaturised design, the feasibility of gas cooling (rather than water cooling) the cylindrical magnetron was demonstrated. A system incorporating four 40mm o.d. cylindrical magnetrons was designed, constructed and briefly tested. This was intended to prove the feasibility of using a multi-magnetron system to reduce the cost to coat. Its dimensions and design were tailored to an industrially specified engine block. In use the plasma rings formed on the 40mm magnetron target surfaces during operation were found to be of unequal intensities, especially on the shorter magnetron design used in the four-fold system. In an attempt to tackle this problem, a finite element model of the magnetic field generated by the magnetic assembly was built, run and verified. Changes were made to this model, and a new .magnet assembly was built and tested based on the results obtained. This did not lead to a final solution of the problem, but has set bounds within which the solution must lie. (author)

  14. Characterization of SiC in DLC/a-Si films prepared by pulsed filtered cathodic arc using Raman spectroscopy and XPS

    International Nuclear Information System (INIS)

    Srisang, C.; Asanithi, P.; Siangchaew, K.; Pokaipisit, A.; Limsuwan, P.

    2012-01-01

    DLC/a-Si films were deposited on germanium substrates. a-Si film was initially deposited as a seed layer on the substrate using DC magnetron sputtering. DLC film was then deposited on the a-Si layer via a pulsed filtered cathodic arc (PFCA) system. In situ ellipsometry was used to monitor the thicknesses of the growth films, allowing a precise control over the a-Si and DLC thicknesses of 6 and 9 nm, respectively. It was found that carbon atoms implanting on a-Si layer act not only as a carbon source for DLC formation, but also as a source for SiC formation. The Raman peak positions at 796 cm -1 and 972 cm -1 corresponded to the LO and TO phonon modes of SiC, respectively, were observed. The results were also confirmed using TEM, XPS binding energy and XPS depth profile analysis.

  15. DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter

    Science.gov (United States)

    Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi

    2013-06-01

    Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.

  16. Observation of a periodic runaway in the reactive Ar/O2 high power impulse magnetron sputtering discharge

    Directory of Open Access Journals (Sweden)

    Seyedmohammad Shayestehaminzadeh

    2015-11-01

    Full Text Available This paper reports the observation of a periodic runaway of plasma to a higher density for the reactive discharge of the target material (Ti with moderate sputter yield. Variable emission of secondary electrons, for the alternating transition of the target from metal mode to oxide mode, is understood to be the main reason for the runaway occurring periodically. Increasing the pulsing frequency can bring the target back to a metal (or suboxide mode, and eliminate the periodic transition of the target. Therefore, a pulsing frequency interval is defined for the reactive Ar/O2 discharge in order to sustain the plasma in a runaway-free mode without exceeding the maximum power that the magnetron can tolerate.

  17. Phase and Frequency Locked Magnetrons for SRF Sources

    International Nuclear Information System (INIS)

    Neubauer, M.; Johnson, R.P.; Popovic, M.; Moretti, A.

    2009-01-01

    Magnetrons are low-cost highly-efficient microwave sources, but they have several limitations, primarily centered about the phase and frequency stability of their output. When the stability requirements are low, such as for medical accelerators or kitchen ovens, magnetrons are the very efficient power source of choice. But for high energy accelerators, because of the need for frequency and phase stability - proton accelerators need 1-2 degrees source phase stability, and electron accelerators need .1-.2 degrees of phase stability - they have rarely been used. We describe a novel variable frequency cavity technique which will be utilized to phase and frequency lock magnetrons.

  18. Automation of Aditya tokamak plasma position control DC power supply

    Energy Technology Data Exchange (ETDEWEB)

    Arambhadiya, Bharat, E-mail: bharat@ipr.res.in; Raj, Harshita; Tanna, R.L.; Edappala, Praveenlal; Rajpal, Rachana; Ghosh, Joydeep; Chattopadhyay, P.K.; Kalal, M.B.

    2016-11-15

    Highlights: • Plasma position control is very essential for obtaining repeatable high temperature, high-density discharges of longer durations in tokomak. • The present capacitor bank has limitations of maximum current capacity and position control beyond 200 ms. • The installation of a separate set of coils and a DC power supply can control the plasma position beyond 200 ms. • A high power thyristor (T588N1200) triggers for DC current pulse of 300 A fires precisely at required positions to modify plasma position. • The commissioning is done for the automated in-house, quick and reliable solution. - Abstract: Plasma position control is essential for obtaining repeatable high temperature, high-density discharges of longer duration in tokamaks. Recently, a set of external coils is installed in the vertical field mode configuration to control the radial plasma position in ADITYA tokamak. The existing capacitor bank cannot provide the required current pulse beyond 200 ms for position control. This motivated to have a DC power supply of 500 A to provide current pulse beyond 200 ms for the position control. The automatization of the DC power supply mandated interfaces with the plasma control system, Aditya Pulse Power supply, and Data acquisition system for coordinated discharge operation. A high current thyristor circuit and a timer circuit have been developed for controlling the power supply automatically for charging vertical field coils of Aditya tokamak. Key protection interlocks implemented in the development ensure machine and occupational safety. Fiber-optic trans-receiver isolates the power supply with other subsystems, while analog channel is optically isolated. Commissioning and testing established proper synchronization of the power supply with tokamak operation. The paper discusses the automation of the DC power supply with main circuit components, timing control, and testing results.

  19. Deposition of diamond-like carbon films by plasma source ion implantation with superposed pulse

    International Nuclear Information System (INIS)

    Baba, K.; Hatada, R.

    2003-01-01

    Diamond-like carbon (DLC) films were prepared on silicon wafer substrate by plasma source ion implantation with superposed negative pulse. Methane and acetylene gases were used as working gases for plasma. A negative DC voltage and a negative pulse voltage were superposed and applied to the substrate holder. The DC voltage was changed in the range from 0 to -4 kV and the pulse voltage was changed from 0 to -18 kV. The surface of DLC films was very smooth. The deposition rate of DLC films increased with increasing in superposed DC bias voltage. Carbon ion implantation was confirmed for the DLC film deposited from methane plasma with high pulse voltage. I D /I G ratios of Raman spectroscopy were around 1.5 independent on pulse voltage. The maximum hardness of 20.3 GPa was observed for the film prepared with high DC and high pulse voltage

  20. Raman Spectroscopy of DLC/a-Si Bilayer Film Prepared by Pulsed Filtered Cathodic Arc

    Directory of Open Access Journals (Sweden)

    C. Srisang

    2012-01-01

    Full Text Available DLC/a-Si bilayer film was deposited on germanium substrate. The a-Si layer, a seed layer, was firstly deposited on the substrate using DC magnetron sputtering and DLC layer was then deposited on the a-Si layer using pulsed filtered cathodic arc method. The bilayer films were deposited with different DLC/a-Si thickness ratios, including 2/2, 2/6, 4/4, 6/2, and 9/6. The effect of DLC/a-Si thickness ratios on the sp3 content of DLC was analyzed by Raman spectroscopy. The results show that a-Si layer has no effect on the structure of DLC film. Furthermore, the upper shift in G wavenumber and the decrease in ID/IG inform that sp3 content of the film is directly proportional to DLC thickness. The plot modified from the three-stage model informed that the structural characteristics of DLC/a-Si bilayer films are located close to the tetrahedral amorphous carbon. This information may be important for analyzing and developing bilayer protective films for future hard disk drive.

  1. Egr2 induced during DC development acts as an intrinsic negative regulator of DC immunogenicity.

    Science.gov (United States)

    Miah, Mohammad Alam; Byeon, Se Eun; Ahmed, Md Selim; Yoon, Cheol-Hee; Ha, Sang-Jun; Bae, Yong-Soo

    2013-09-01

    Early growth response gene 2 (Egr2), which encodes a zinc finger transcription factor, is rapidly and transiently induced in various cell types independently of de novo protein synthesis. Although a role for Egr2 is well established in T-cell development, Egr2 expression and its biological function in dendritic cells (DCs) have not yet been described. Here, we demonstrate Egr2 expression during DC development, and its role in DC-mediated immune responses. Egr2 is expressed in the later stage of DC development from BM precursor cells. Even at steady state, Egr2 is highly expressed in mouse splenic DCs. Egr2-knockdown (Egr2-KD) DCs showed increased levels of major histocompatability complex (MHC) class I and II and co-stimulatory molecules, and enhanced antigen uptake and migratory capacities. Furthermore, Egr2-KD abolished SOCS1 expression and signal transducer and activator of transcription 5 (STAT5) activation during DC development, probably resulting in the enhancement of IL-12 expression and Th1 immunogenicity of a DC vaccine. DC-mediated cytotoxic T lymphocyte (CTL) activation and antitumor immunity were significantly enhanced by Egr2-KD, and impaired by Egr2 overexpression in antigen-pulsed DC vaccines. These data suggest that Egr2 acts as an intrinsic negative regulator of DC immunogenicity and can be an attractive molecular target for DC vaccine development. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Peptide-loaded dendritic cells prime and activate MHC-class I-restricted T cells more efficiently than protein-loaded cross-presenting DC

    DEFF Research Database (Denmark)

    Met, Ozcan; Buus, Søren; Claesson, Mogens H

    2003-01-01

    -pulsed DC. Moreover, SIINFEKL-loaded DC were up to 50 times more efficient than DC-pulsed with OVA-protein for generation of an H-2K(b)-restricted response. Immunization of mice with SIINFEKL-loaded DC resulted in a much stronger H-2K(b)-restricted response than immunization with OVA-pulsed DC. These data......Undifferentiated and differentiated dendritic cells (uDC and dDC, respectively), derived from the bone marrow, were studied in vitro and in vivo. Ovalbumin (OVA) and two OVA-derived peptides binding to H-2K(b) and I-A(b), respectively, were used. Two IL-2 secreting T cell hybridomas specific...... for the OVA-derived epitopes were used in the in vitro read-out. The ability to cross-present the H-2K(b) binding OVA(257-264)-peptide (SIINFEKL) was restricted to dDC, which express CD11c(+), CD86(+), and MHC-II(+). In vitro, the antigenicity of SIINFEKL-loaded DC declined at a slower rate than that of OVA...

  3. Improved characteristics of HV pulse modulators for technological accelerators

    International Nuclear Information System (INIS)

    Dolgov, A.; Kildisheva, O.

    2004-01-01

    The new modulator series intended to provide a pulse power supply of MI-451, MI-456 microwave magnetrons is described. The main feature of this modulator series, as compared with the existing national counterparts, is the storage charging power supply. The offered modulators with improved charging power supplies have the substantially better efficiency and high operation stability and reliability

  4. Monte Carlo Simulations of High-speed, Time-gated MCP-based X-ray Detectors: Saturation Effects in DC and Pulsed Modes and Detector Dynamic Range

    International Nuclear Information System (INIS)

    Kruschwitz, Craig; Ming Wu; Moy, Ken; Rochau, Greg

    2008-01-01

    We present here results of continued efforts to understand the performance of microchannel plate (MCP)-based, high-speed, gated, x-ray detectors. This work involves the continued improvement of a Monte Carlo simulation code to describe MCP performance coupled with experimental efforts to better characterize such detectors. Our goal is a quantitative description of MCP saturation behavior in both static and pulsed modes. We have developed a new model of charge buildup on the walls of the MCP channels and measured its effect on MCP gain. The results are compared to experimental data obtained with a short-pulse, high-intensity ultraviolet laser; these results clearly demonstrate MCP saturation behavior in both DC and pulsed modes. The simulations compare favorably to the experimental results. The dynamic range of the detectors in pulsed operation is of particular interest when fielding an MCP-based camera. By adjusting the laser flux we study the linear range of the camera. These results, too, are compared to our simulations

  5. Circuit description of unipolar DC-to-DC converters for APS storage ring quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    McGhee, D.G.

    1993-01-01

    This paper describes the control, interlock, and power circuits for 680 unipolar switch mode DC-to-DC converters used to regulate the Advanced Photon Sources (APS's) storage ring quadrupole and sextupole magnet currents. Quadrupole current stability is ± 6x10 -5 and the sextupole current stability is ±3x10 -4 . The stability is obtained with pulse width modulation, operating at a switching frequency of 20kHz with full current switching. The converters are housed in 200 cabinets located on top of the storage ring tunnel. Raw DC power is distributed from 80 AC-to-DC power supplies, four at each of 20 locations around the storage ring. Voltages, currents, and temperatures are computer monitored and logged for the converters and magnets. All converters and magnets are water cooled with the flow and pressure monitored at the inlet and outlet of groups. Water is interlocked with the raw power supplies and not the individual converters

  6. Impact of pulse duration in high power impulse magnetron sputtering on the low-temperature growth of wurtzite phase (Ti,Al)N films with high hardness

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Tetsuhide, E-mail: simizu-tetuhide@tmu.ac.jp [Division of Human Mechatronics Systems, Graduate School of System Design, Tokyo Metropolitan University, 6-6, Asahigaoka, Hino-shi, 191-0065 Tokyo (Japan); Teranishi, Yoshikazu; Morikawa, Kazuo; Komiya, Hidetoshi; Watanabe, Tomotaro; Nagasaka, Hiroshi [Surface Finishing Technology Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10, Aomi, Kohtoh-ku, 135-0064 Tokyo (Japan); Yang, Ming [Division of Human Mechatronics Systems, Graduate School of System Design, Tokyo Metropolitan University, 6-6, Asahigaoka, Hino-shi, 191-0065 Tokyo (Japan)

    2015-04-30

    (Ti,Al)N films were deposited from a Ti{sub 0.33}Al{sub 0.67} alloy target with a high Al content at a substrate temperature of less than 150 °C using high power impulse magnetron sputtering (HIPIMS) plasma. The pulse duration was varied from 60 to 300 μs with a low frequency of 333 Hz to investigate the effects on the dynamic variation of the substrate temperature, microstructural grain growth and the resulting mechanical properties. The chemical composition, surface morphology and phase composition of the films were analyzed by energy dispersive spectroscopy, scanning electron microscopy and X-ray diffraction, respectively. Mechanical properties were additionally measured by using a nanoindentation tester. A shorter pulse duration resulted in a lower rate of increase in the substrate temperature with an exponentially higher peak target current. The obtained films had a high Al content of 70–73 at.% with a mixed highly (0002) textured wurtzite phase and a secondary phase of cubic (220) grains. Even with the wurtzite phase and the relatively high Al contents of more than 70 at.%, the films exhibited a high hardness of more than 30 GPa with a relatively smooth surface of less than 2 nm root-mean-square roughness. The hardest and smoothest surfaces were obtained for pulses with an intermediate duration of 150 μs. The differences between the obtained film properties under different pulse durations are discussed on the basis of the grain growth process observed by transmission electron microscopy. The feasibility of the low-temperature synthesis of AlN rich wurtzite phase (Ti,Al)N films with superior hardness by HIPIMS plasma duration was demonstrated. - Highlights: • Low temperature synthesis of AlN rich wurtzite phase (Ti,Al)N film was demonstrated. • 1 μm-thick TiAlN film was deposited under the temperature less than 150 °C by HIPIMS. • High Al content with highly (0002) textured wurtzite phase structure was obtained. • High hardness of 35 GPa were

  7. A ZVS PWM control strategy with balanced capacitor current for half-bridge three-level DC/DC converter

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Chen, Zhe

    2017-01-01

    The capacitor current would be imbalanced under the conventional control strategy in the half-bridge three-level (HBTL) DC/DC converter due to the effect of the output inductance of the power supply and the input line inductance, which would affect the converter's reliability. This paper proposes...... a pulse-wide modulation (PWM) strategy composed of two operation modes for the HBTL DC/DC converter, which can realize the zero-voltage switching (ZVS) for the efficiency improvement. In addition, a capacitor current balancing control is proposed by alternating the two operation modes of the proposed ZVS...... PWM strategy, which can eliminate the current imbalance among the two input capacitors. Therefore, the proposed control strategy can improve the converter's performance and reliability in: 1) reducing the switching losses and noises of the power switches; 2) balancing the thermal stresses...

  8. Pulsed corona generation using a diode-based pulsed power generator

    Science.gov (United States)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  9. Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles

    Science.gov (United States)

    Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G.

    2017-11-01

    Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied.

  10. Deposition and characterization of pulsed direct current magnetron sputtered Al{sub 95.5}Cr{sub 2.5}Si{sub 2} (N{sub 1-x}O{sub x}) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, H., E-mail: hossein.najafi@epfl.c [Institut de Physique de la Matiere Condensee (IPMC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne (Switzerland); Shetty, A.; Karimi, A. [Institut de Physique de la Matiere Condensee (IPMC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne (Switzerland); Morstein, M. [Platit AG, Advanced Coating Systems, CH-2545 Selzach (Switzerland)

    2010-10-29

    Aluminum rich oxynitride thin films were prepared using pulsed direct current (DC) magnetron sputtering from an Al{sub 95.5}Cr{sub 2.5}Si{sub 2} (at.%) target. Two series of films were deposited at 400 {sup o}C and 650 {sup o}C by changing the O{sub 2}/(O{sub 2} + N{sub 2}) ratio in the reactive gas from 0% (pure nitrides) to 100% (pure oxides). The films were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and nanoindentation. The results showed the existence of three different regions of microstructure and properties with respect to the oxygen concentration. For the samples deposited at 650 {sup o}C in the nitrogen rich region (O{sub 2}/(O{sub 2} + N{sub 2}) {<=} 0.08), the formation of the h-AlN (002) and Al-N bond were confirmed by XRD and XPS measurements. The hardness of the films was around 30 GPa. In the intermediate region (0.08 {<=} O{sub 2}/(O{sub 2} + N{sub 2}) {<=} 0.24), the presence of an amorphous structure and the shifting of the binding energies to lower values corresponding to non-stoichiometric compounds were observed and the hardness decreased to 12 GPa. The lowering of mechanical properties was attributed to the transition of the clean target to the reacted target under non-steady state deposition conditions. In the oxygen rich region (0.24 {<=} (O{sub 2}/(O{sub 2} + N{sub 2}) {<=} 1), the existence of {alpha}-Al{sub 2}O{sub 3}-(113), {alpha}-Al{sub 2}O{sub 3}-(116) and Al-O bonds confirmed the domination of this phase in this region of deposition and the hardness increased again to 30-35 GPa. Films deposited at 400 {sup o}C showed the same behavior except in the oxygen rich region, where hardness remains low at about 12-14 GPa.

  11. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    International Nuclear Information System (INIS)

    Heaney, M.B.

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al 2 O 3 /Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 x 10 17 in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO 3 crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies

  12. Ultrahigh vacuum dc magnetron sputter-deposition of epitaxial Pd(111)/Al2O3(0001) thin films.

    Science.gov (United States)

    Aleman, Angel; Li, Chao; Zaid, Hicham; Kindlund, Hanna; Fankhauser, Joshua; Prikhodko, Sergey V; Goorsky, Mark S; Kodambaka, Suneel

    2018-05-01

    Pd(111) thin films, ∼245 nm thick, are deposited on Al 2 O 3 (0001) substrates at ≈0.5 T m , where T m is the Pd melting point, by ultrahigh vacuum dc magnetron sputtering of Pd target in pure Ar discharges. Auger electron spectra and low-energy electron diffraction patterns acquired in situ from the as-deposited samples reveal that the surfaces are compositionally pure 111-oriented Pd. Double-axis x-ray diffraction (XRD) ω-2θ scans show only the set of Pd 111 peaks from the film. In triple-axis high-resolution XRD, the full width at half maximum intensity Γ ω of the Pd 111 ω-rocking curve is 630 arc sec. XRD 111 pole figure obtained from the sample revealed six peaks 60°-apart at a tilt angles corresponding to Pd 111 reflections. XRD ϕ scans show six 60°-rotated 111 peaks of Pd at the same ϕ angles for 11[Formula: see text]3 of Al 2 O 3 based on which the epitaxial crystallographic relationships between the film and the substrate are determined as [Formula: see text]ǁ[Formula: see text] with two in-plane orientations of [Formula: see text]ǁ[Formula: see text] and [Formula: see text]ǁ[Formula: see text]. Using triple axis symmetric and asymmetric reciprocal space maps, interplanar spacings of out-of-plane (111) and in-plane (11[Formula: see text]) are found to be 0.2242 ± 0.0003 and 0.1591 ± 0.0003 nm, respectively. These values are 0.18% lower than 0.2246 nm for (111) and the same, within the measurement uncertainties, as 0.1588 nm for (11[Formula: see text]) calculated from the bulk Pd lattice parameter, suggesting a small out-of-plane compressive strain and an in-plane tensile strain related to the thermal strain upon cooling the sample from the deposition temperature to room temperature. High-resolution cross-sectional transmission electron microscopy coupled with energy dispersive x-ray spectra obtained from the Pd(111)/Al 2 O 3 (0001) samples indicate that the Pd-Al 2 O 3 interfaces are essentially atomically abrupt and

  13. Phase Grouping of Larmor Electrons by a Synchronous Wave in Controlled Magnetrons

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Lebedev, V. [Fermilab; Yakovlev, V. [Fermilab

    2018-04-01

    A simplified analytical model based on the charge drift approximation has been developed. It considers the resonant interaction of the synchronous wave with the flow of Larmor electrons in a magnetron. The model predicts stable coherent generation of the tube above and below the threshold of self-excitation. This occurs if the magnetron is driven by a sufficient resonant injected signal (up to -10 dB). The model substantiates precise stability, high efficiency and low noise at the range of the magnetron power control over 10 dB by variation of the magnetron current. The model and the verifying experiments with 2.45 GHz, 1 kW magnetrons are discussed.

  14. Studies on the reactive pulsed-magnetron sputtering of ITO from metallic targets; Untersuchungen zum reaktiven Pulsmagnetronsputtern von ITO von metallischen Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gnehr, W.M.

    2006-06-15

    The thesis deals with a reactive sputter process for the deposition of ITO- films. In contrast to the usual technique, the sputter targets consists of indium-tin-alloy instead of ceramic ITO. All experiments were conducted on an inline coater with 600 mm target-width. The process is stabilized by a control loop based on optical emission detection. The experiments prove, that this control loop guarantees a long term stability of the outcomes of the coating process.Process parameters, that are crucial for the optical and electrical properties of the deposited thin films are identified and studied. Among them are the flow of oxygen and the substrate temperature but also less obvious parameters such as the distance between target and substrate.Througout the work the focus is on the film deposition with pulsed plasmas. Novel bipolar DC pulse- and pulse package generators are employed for the deposition.In order to shed some light onto the influence of certain pulse parameters on the outcome of a particular coating process, a Monte-Carlo-Simulation of the particle flow in pulsed plasmas is developed. This simulation yields the distribution of particles and their respective energies on deliberately placed planes in the process chamber. Particles under investigation are both sputtered species and neutral sputter gas atoms reflected at the target. The results of this simulation provide an explanation for the influence of certain pulse parameters on the outcome of the coating process. The further investigations deal with the influence of the construction of the process chamber on the coating process. For this purpose, locally resolved optical spectra are recorded. In order to analyse these spectra, a novel connected fit algorithm is developed.This algorithm yields the distribution of certain fitparameters on the substrate. Provided the most complex of the discussed parametrizations of the dielectric function are used, these can be crucial properties such as the carrier

  15. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.; Ebenhöch, J.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Primetzhofer, D. [Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, S-75120 Uppsala (Sweden); Kurapov, D.; Arndt, M.; Rudigier, H. [Oerlikon Balzers Coating AG, Iramali 18, LI-9496 Balzers, Principality of Liechtenstein (Liechtenstein)

    2014-09-07

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies. Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.

  16. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Hans, M.; Baben, M. to; Music, D.; Ebenhöch, J.; Schneider, J. M.; Primetzhofer, D.; Kurapov, D.; Arndt, M.; Rudigier, H.

    2014-01-01

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies. Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds

  17. Structural and optical properties of zirconia thin films deposited by reactive high-power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoli; Jin, Jie [Tianjin University, School of Electronic Information Engineering, Tianjin (China); Cheng, Jui-Ching, E-mail: juiching@ntut.edu.tw [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China); Lee, Jyh-Wei [Ming Chi University of Technology, College of Materials Engineering, New Taipei City, Taiwan (China); Wu, Kuo-Hong [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China); Lin, Kuo-Cheng; Tsai, Jung-Ruey [Asia University, Department of Photonics and Communication Engineering, Taichung, Taiwan (China); Liu, Kou-Chen, E-mail: jacobliu@mail.cgu.edu.tw [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China)

    2014-11-03

    Zirconia films are deposited by reactive high power impulse magnetron sputtering (HiPIMS) technology on glass and indium-tin-oxide (ITO)/glass substrates. Preparation, microstructure and optical characteristics of the films have been studied. During deposition, the influence of the target power and duty cycle on the peak current–voltage and power density has been observed in oxide mode. Transparent thin films under different oxygen proportions are obtained on the two substrates. Atomic force microscopy measurements showed that the surface roughness of the films was lower by reactive HiPIMS than DC sputtering for all oxygen contents. The transmission and reflectance properties of differently grown zirconia films were also investigated using an ultraviolet–visible spectrophotometer. The optical transmittance of films grown on glass substrates by HiPIMS reached maximum values above 90%, which exceeded that by DC sputtering. The band edge near 5.86 eV shifted to a lower wavelength for zirconia films prepared with oxygen flow rates lower than 4.5 sccm. For the films prepared on ITO/glass substrates, the transmittance and the band gap of zirconia films were limited by ITO films; a maximum average transmittance of 84% was obtained at 4.5 sccm O{sub 2} and the energy band gap was in the range of 3.7–3.8 eV for oxygen flow rates ranging from 3.5 to 5.0 sccm. Finally, the electrical properties of zirconia films have also been discussed. - Highlights: • Zirconia films are deposited by reactive high power impulse magnetron sputtering. • Low roughness films are obtained. • Films show a high transmittance (> 90%). • Films prepared on glass have a band gap of 5.9 eV.

  18. Investigations Of A Pulsed Cathodic Vacuum Arc

    Science.gov (United States)

    Oates, T. W. H.; Pigott, J.; Denniss, P.; Mckenzie, D. R.; Bilek, M. M. M.

    2003-06-01

    Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed.

  19. Investigations Of A Pulsed Cathodic Vacuum Arc

    International Nuclear Information System (INIS)

    Oates, T.W.H.; Pigott, J.; Denniss, P.; Mckenzie, D.R.; Bilek, M.M.M.

    2003-01-01

    Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed

  20. Arc dynamics of a pulsed DC nitrogen rotating gliding arc discharge

    Science.gov (United States)

    Zhu, Fengsen; Zhang, Hao; Li, Xiaodong; Wu, Angjian; Yan, Jianhua; Ni, Mingjiang; Tu, Xin

    2018-03-01

    In this study, a novel pulsed direct current (DC) rotating gliding arc (RGA) plasma reactor co-driven by an external magnetic field and a tangential gas flow has been developed. The dynamic characteristics of the rotating gliding arc have been investigated by means of numerical simulation and experiment. The simulation results show that a highly turbulent vortex flow can be generated at the bottom of the RGA reactor to accelerate the arc rotation after arc ignition, whereas the magnitude of gas velocity declined significantly along the axial direction of the RGA reactor. The calculated arc rotation frequency (14.4 Hz) is reasonably close to the experimental result (18.5 Hz) at a gas flow rate of 10 l min-1. In the presence of an external magnet, the arc rotation frequency is around five times higher than that of the RGA reactor without using a magnet, which suggests that the external magnetic field plays a dominant role in the maintenance of the arc rotation in the upper zone of the RGA reactor. In addition, when the magnet is placed outside the reactor reversely to form a reverse external magnetic field, the arc can be stabilized at a fixed position in the inner wall of the outer electrode at a critical gas flow rate of 16 l min-1.

  1. Series-Connected High Frequency Converters in a DC Microgrid System for DC Light Rail Transit

    Directory of Open Access Journals (Sweden)

    Bor-Ren Lin

    2018-01-01

    Full Text Available This paper studies and presents a series-connected high frequency DC/DC converter connected to a DC microgrid system to provide auxiliary power for lighting, control and communication in a DC light rail vehicle. Three converters with low voltage and current stresses of power devices are series-connected with single transformers to convert a high voltage input to a low voltage output for a DC light rail vehicle. Thus, Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs with a low voltage rating and a turn-on resistance are adopted in the proposed circuit topology in order to decrease power losses on power switches and copper losses on transformer windings. A duty cycle control with an asymmetric pulse-width modulation is adopted to control the output voltage at the desired voltage level. It is also adopted to reduce switching losses on MOSFETs due to the resonant behavior from a leakage inductor of an isolated transformer and output capacitor of MOSFETs at the turn-on instant. The feasibility and effectiveness of the proposed circuit have been verified by a laboratory prototype with a 760 V input and a 24 V/60 A output.

  2. Geometrical Aspects of a Hollow-cathode Magnetron (HCM)

    International Nuclear Information System (INIS)

    Cohen, Samuel A.; Wang, Zhehui

    1998-01-01

    A hollow-cathode magnetron (HCM), built by surrounding a planar sputtering-magnetron cathode with a hollow-cathode structure (HCS), is operable at substantially lower pressures than its planar-magnetron counterpart. We have studied the dependence of magnetron operational parameters on the inner diameter D and length L of a cylindrical HCS. Only when L is greater than L sub zero, a critical length, is the HCM operable in the new low-pressure regime. The critical length varies with HCS inner diameter D. Explanations of the lower operational pressure regime, critical length, and plasma shape are proposed and compared with a one-dimension diffusion model for energetic or primary electron transport. At pressures above 1 mTorr, an electron-impact ionization model with Bohm diffusion at a temperature equivalent to one-half the primary electron energy and with an ambipolar constraint can explain the ion-electron pair creation required to sustain the discharge. The critical length L sub zero is determined by the magnetization length of the primary electrons

  3. Investigation and control of dc arc jet instabilities to obtain a self-sustained pulsed laminar arc jet

    International Nuclear Information System (INIS)

    Krowka, J; Rat, V; Coudert, J F

    2013-01-01

    The uncontrolled arc plasma instabilities in suspension plasma spraying or solution precursor plasma spraying cause non-homogeneous plasma treatments of material during their flight and also on coatings during their formation. This paper shows that the arc motion in dc plasma torches mainly originates in two main modes of oscillation (Helmholtz and restrike modes). The emphasis is put on the restrike mode in which the time component is extracted after building up and applying a numerical filter to raw arc voltage signals. The dependence of re-arcing events on experimental parameters is analysed in the frame of a phenomenological restrike model. It is shown that when the restrike frequency reaches the Helmholtz one, both modes are locked together and a pulsed arc jet is generated. (paper)

  4. Growth and characterization of textured YBaCo2O5+δ thin films grown on (001)-SrTiO3 via DC magnetron sputtering

    International Nuclear Information System (INIS)

    Galeano, V.; Arnache, O.; Supelano, I.; Vargas, C.A. Parra; Morán, O.

    2016-01-01

    Thin films of the layered cobaltite YBaCo 2 O 5+δ were successfully grown on (001)-oriented SrTiO 3 single-crystal substrates by means of DC magnetron sputtering. The 112 phase of the compound was stabilized by choosing an adequate Co reactant and through careful thermal treatment of the target. The results demonstrate the strong influence of these variables on the final phase of the compound. A substrate temperature of 1053 K and an oxygen pressure of 300 Pa seemed to be appropriate growing conditions for depositing (00ℓ)-textured YBaCo 2 O 5+δ thin films onto the chosen substrate. In like fashion to the polycrystalline YBaCo 2 O 5+δ , the films showed a clear sequence of antiferromagnetic–ferromagnetic–paramagnetic transitions within a narrow temperature range. Well-defined hysteresis loops were observed at temperatures as high as 270 K, which supports the existence of a FM order in the films. In turn, the dependence of the resistivity on the temperature shows a semiconductor-like behavior, without any distinguishable structure, within the temperature range measured (50–350 K). The analysis of the experimental data showed that the transport mechanism in the films is well described by using the Mott variable range hopping (VRH) conduction model. - Highlights: • YBaCo 2 O 5+δ thin films are grown on SrTiO 3 substrates. • Strong (00ℓ) reflections are observed in the X-ray diffraction pattern. • A clear sequence of magnetic transitions is observed. • Semiconducting-like behavior is verified.

  5. Fast response double series resonant high-voltage DC-DC converter

    International Nuclear Information System (INIS)

    Lee, S S; Iqbal, S; Kamarol, M

    2012-01-01

    In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.

  6. Controller for computer control of brushless dc motors. [automobile engines

    Science.gov (United States)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  7. A novel injection-locked amplitude-modulated magnetron at 1497 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Michael [Muons Inc., Batavia, IL (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-12-15

    Thomas Jefferson National Accelerator Facility (JLab) uses low efficiency klystrons in the CEBAF machine. In the older portion they operate at 30% efficiency with a tube mean time between failure (MTBF) of five to six years. A highly efficient source (>55-60%) must provide a high degree of backwards compatibility, both in size and voltage requirements, to replace the klystron presently used at JLab, while providing energy savings. Muons, Inc. is developing a highly reliable, highly efficient RF source based upon a novel injection-locked amplitude modulated (AM) magnetron with a lower total cost of ownership, >80% efficiency, and MTBF of six to seven years. The design of the RF source is based upon a single injection-locked magnetron system at 8 kW capable of operating up to 13 kW, using the magnetron magnetic field to achieve the AM required for backwards compatibility to compensate for microphonics and beam loads. A novel injection-locked 1497 MHz 8 kW AM magnetron with a trim magnetic coil was designed and its operation numerically simulated during the Phase I project. The low-level RF system to control the trim field and magnetron anode voltage was designed and modeled for operation at the modulation frequencies of the microphonics. A plan for constructing a prototype magnetron and control system was developed.

  8. Ring magnetron ionizer

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1986-01-01

    A ring magnetron D - charge exchange ionizer has been built and tested. An H - current of 500 μA was extracted with an estimated H 0 density in the ionizer of 10 12 cm -3 . This exceeds the performance of ionizers presently in use on polarized H - sources. The ionizer will soon be tested with a polarized atomic beam

  9. Gate Driver Circuit of Power Electronic Switches with Reduced Number of Isolated DC/DC Converter for a Switched Reluctance Motor

    International Nuclear Information System (INIS)

    Memon, A.A.

    2013-01-01

    This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is also significant that required number of isolation converters is much less than the switches used in converter. In addition, a simple logic circuit has been presented for producing the gate signals at correct phase sequence which is compared with the gated signals directly obtained from the encoder of an existing machine. (author)

  10. Characterization of sp3 bond content of carbon films deposited by high power gas injection magnetron sputtering method by UV and VIS Raman spectroscopy

    Science.gov (United States)

    Zdunek, Krzysztof; Chodun, Rafał; Wicher, Bartosz; Nowakowska-Langier, Katarzyna; Okrasa, Sebastian

    2018-04-01

    This paper presents the results of investigations of carbon films deposited by a modified version of the magnetron sputtering method - HiPGIMS (High Power Gas Injection Magnetron Sputtering). In this experiment, the magnetron system with inversely polarized electrodes (sputtered cathode at ground potential and positively biased, spatially separated anode) was used. This arrangement allowed us to conduct the experiment using voltages ranging from 1 to 2 kV and a power supply system equipped with 25/50 μF capacitor battery. Carbon films were investigated by VIS/UV Raman spectroscopy. Sp3/sp2 bonding ratio was evaluated basing the elementary components of registered spectra. Our investigation showed that sp3 bond content increases with discharge power but up to specific value only. In extreme conditions of generating plasma impulses, we detected a reversed relation of the sp3/sp2 ratio. In our opinion, a energy of plasma pulse favors nucleation of a sp3 phase because of a relatively higher ionization state but in extreme cases the influence of energy is reversed.

  11. Characterization of sp3 bond content of carbon films deposited by high power gas injection magnetron sputtering method by UV and VIS Raman spectroscopy.

    Science.gov (United States)

    Zdunek, Krzysztof; Chodun, Rafał; Wicher, Bartosz; Nowakowska-Langier, Katarzyna; Okrasa, Sebastian

    2018-04-05

    This paper presents the results of investigations of carbon films deposited by a modified version of the magnetron sputtering method - HiPGIMS (High Power Gas Injection Magnetron Sputtering). In this experiment, the magnetron system with inversely polarized electrodes (sputtered cathode at ground potential and positively biased, spatially separated anode) was used. This arrangement allowed us to conduct the experiment using voltages ranging from 1 to 2kV and a power supply system equipped with 25/50μF capacitor battery. Carbon films were investigated by VIS/UV Raman spectroscopy. Sp 3 /sp 2 bonding ratio was evaluated basing the elementary components of registered spectra. Our investigation showed that sp 3 bond content increases with discharge power but up to specific value only. In extreme conditions of generating plasma impulses, we detected a reversed relation of the sp 3 /sp 2 ratio. In our opinion, a energy of plasma pulse favors nucleation of a sp 3 phase because of a relatively higher ionization state but in extreme cases the influence of energy is reversed. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effect of microstructure on mechanical and tribological properties of TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.L. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); College of Engineering, Hunan Agricultural University/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128 (China); Li, Y.G.; Wu, B. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Lei, M.K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-12-31

    TiAlSiN nanocomposite coatings were deposited in a closed field unbalanced magnetron sputtering system by reactive sputtering from Ti{sub 0.475}Al{sub 0.475}Si{sub 0.05} targets using modulated pulsed power magnetron sputtering (MPPMS) under a floating substrate bias. The ratio of the nitrogen flow rate to the total gas flow rate (f{sub N{sub 2}}) was varied from 0 to 40%. The application of MPPMS as sputtering sources was aimed at generating a high ionization degree of the sputtered material and a high plasma density by using a pulsed high power approach. When f{sub N{sub 2}} = 0%, an amorphous-like structure Ti{sub 0.479}Al{sub 0.454}Si{sub 0.066} coating was deposited with a hardness of 10 GPa. When nitrogen was added, an optimized nanocomposite structure of nc-TiAlN/a-Si{sub 3}N{sub 4} formed in the TiAlSiN coating deposited at f{sub N{sub 2}} = 10%, in which 5–10 nm TiAlN nanocrystallites were embedded in a 2–3 nm thick amorphous Si{sub 3}N{sub 4} matrix. As the f{sub N{sub 2}} was increased up to 40%, the elementary composition of the coatings remained almost the same, but the grain size of nanocrystallites approached to 10–20 nm and the AlN phase gradually precipitated. A maximum hardness (H) of 33.2 GPa, a hardness to the elastic modulus (E) ratio of 0.081 and an H{sup 3}/E*{sup 2} ratio of 0.19 GPa were found in the coating deposited at f{sub N{sub 2}} = 10%. The friction coefficient of the TiAlSiN coatings was around 0.8–0.9 as sliding against a Si{sub 3}N{sub 4} counterpart under a normal load of 0.5 N. A wear rate of 2.0 × 10{sup −5} mm{sup 3} N{sup −1} m{sup −1} was measured in the TiAlSiN coatings deposited at f{sub N{sub 2}} = 20–40%. As only a low residual stress is found in the TiAlSiN coatings, we consider the complete phase separation is responsible for the enhanced mechanical and tribological properties of the nc-TiAlN/a-Si{sub 3}N{sub 4} nanocomposite coatings. - Highlights: • TiAlSiN nanocomposite coatings were prepared by

  13. Structural study and fabrication of nano-pattern on ultra thin film of Ag grown by magnetron sputtering

    International Nuclear Information System (INIS)

    Banerjee, S.; Mukherjee, S.; Kundu, S.

    2001-01-01

    We present the structural study of ultra thin Ag films using grazing incidence x-ray reflectivity and the modification of these films with the tip of an atomic force microscope. Ag thin films are deposited using dc magnetron sputtering on a Si(001) substrate. Initially, the growth of the film is carpet like and above a certain thickness (∼42 A) the film structure changes to form mounds. This ultra thin film of Ag having carpet-like growth can be modified by the tip of an atomic force microscope, which occurs due to the porous nature of the film. A periodic pattern of nanometer dimensions has been fabricated on this film using the atomic force microscope tip. (author)

  14. Pure and Nb2O5-doped TiO2 amorphous thin films grown by dc magnetron sputtering at room temperature: Surface and photo-induced hydrophilic conversion studies

    International Nuclear Information System (INIS)

    Suchea, M.; Christoulakis, S.; Tudose, I.V.; Vernardou, D.; Lygeraki, M.I.; Anastasiadis, S.H.; Kitsopoulos, T.; Kiriakidis, G.

    2007-01-01

    Photo-induced hydrophilicity of titanium dioxide makes this material one of the most suitable for various coating applications in antifogging mirrors and self-cleaning glasses. The field of functional titanium dioxide coatings is expanding rapidly not only in applications for glass but also in applications for polymer, metal and ceramic materials. The high hydrophilic surface of TiO 2 is interesting for understanding also the basic photon-related surface science of titanium dioxide. In doing so, it is inevitably necessary to understand the relationship between the photoreaction and the surface properties. In this work, photo-induced hydrophilic conversion was evaluated on amorphous pure and niobium oxide-doped titanium dioxide thin films on Corning 1737F glass grown by dc magnetron sputtering technique at room temperature. This study is focused on the influence of the Ar:O ratio during sputtering plasma deposition on thin film surface morphology and subsequent photo-induced hydrophilic conversion results. Structural characterization carried out by X-ray diffraction and atomic force microscopy (AFM) has shown that our films are amorphous and extremely smooth with a surface roughness bellow 1 nm. Contact angle measurements were performed on as-deposited and during/after 10 min UV exposure. We present evidence that the photo-induced hydrophilic conversion of film surface is directly correlated with surface morphology and can be controlled by growth conditions

  15. A Zero-Voltage Switching Control Strategy for Dual Half-Bridge Cascaded Three-Level DC/DC Converter with Balanced Capacitor Voltages

    DEFF Research Database (Denmark)

    Liu, Dong; Wang, Yanbo; Chen, Zhe

    2017-01-01

    The input capacitor's voltages are unbalanced under the conventional control strategy in a dual half-bridge cascaded three-level (TL) DC/DC converter, which would affect the high voltage stresses on the capacitors. This paper proposes a pulse-wide modulation (PWM) strategy with two working modes...... for the dual half-bridge cascaded TL DC/DC converter, which can realize the zero-voltage switching (ZVS). More significantly, a capacitor voltage balance control is proposed by alternating the two working modes of the proposed ZVS PWM strategy, which can eliminate the voltage unbalance on the four input...... capacitors. Therefore, the proposed control strategy can improve the converter's performances in: 1) reducing the switching losses and noises of the power switches; and 2) reducing the voltage stresses on the input capacitors. Finally, the simulation results are conducted to verify the proposed control...

  16. Magnetron injection gun scaling

    International Nuclear Information System (INIS)

    Lawson, W.

    1988-01-01

    Existing analytic design equations for magnetron injection guns (MIG's) are approximated to obtain a set of scaling laws. The constraints are chosen to examine the maximum peak power capabilities of MIG's. The scaling laws are compared with exact solutions of the design equations and are supported by MIG simulations

  17. Metal-oxide-junction, triple point cathodes in a relativistic magnetron

    International Nuclear Information System (INIS)

    Jordan, N. M.; Gilgenbach, R. M.; Hoff, B. W.; Lau, Y. Y.

    2008-01-01

    Triple point, defined as the junction of metal, dielectric, and vacuum, is the location where electron emission is favored in the presence of a sufficiently strong electric field. To exploit triple point emission, metal-oxide-junction (MOJ) cathodes consisting of dielectric ''islands'' over stainless steel substrates have been fabricated. The two dielectrics used are hafnium oxide (HfO x ) for its high dielectric constant and magnesium oxide (MgO) for its high secondary electron emission coefficient. The coatings are deposited by ablation-plasma-ion lithography using a KrF laser (0-600 mJ at 248 nm) and fluence ranging from 3 to 40 J/cm 2 . Composition and morphology of deposited films are analyzed by scanning electron microscopy coupled with x-ray energy dispersive spectroscopy, as well as x-ray diffraction. Cathodes are tested on the Michigan Electron Long-Beam Accelerator with a relativistic magnetron, at parameters V=-300 kV, I=1-15 kA, and pulse lengths of 0.3-0.5 μs. Six variations of the MOJ cathode are tested, and are compared against five baseline cases. It is found that particulate formed during the ablation process improves the electron emission properties of the cathodes by forming additional triple points. Due to extensive electron back bombardment during magnetron operation, secondary electron emission also may play a significant role. Cathodes exhibit increases in current densities of up to 80 A/cm 2 , and up to 15% improvement in current start up time, as compared to polished stainless steel cathodes

  18. Analog Fiber Optic Link with DC-100 MHz Bandwidth

    National Research Council Canada - National Science Library

    Sullivan, C. A; Girardi, P. G; Lohrmann, Dieter R

    2008-01-01

    An analog fiber optic link covering the frequency range from DC to 100 MHz was designed, constructed, and tested, in order to connect a 10 kA pulse current probe to oscilloscopes for oscillographing...

  19. DC electric springs with DC/DC converters

    DEFF Research Database (Denmark)

    Wang, Qingsong; Cheng, Ming; Jiang, Yunlei

    2016-01-01

    The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi-directio......The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi...... and/or constant discharging for batteries is adopted and four operating modes are analyzed as charging-positive, charging-negative, discharging-positive and discharging-negative modes. An additional mechanism for fast charging or fast discharging is also designed to secure normal operation...... of batteries. With the proposed DCES, the power fluctuations due to intermittent RESs can be passed to non-critical loads (NCLs) and batteries while power on critical loads (CLs) is kept stable. This is possibly the first attempt to design a DCES with only DC/DC converters. The performances of the proposed...

  20. Construction of double discharge pulsed electron beam generator and its applications

    International Nuclear Information System (INIS)

    Goektas, H.

    2001-12-01

    Generation of fast pulsed electron beam by superposing DC and pulsed hollow cathode discharge is studied. The electrical characteristics and measurements of the electron beam generator are done dc glow discharge and for the pulsed one. The electron beam current, its density and magnetic field effect, pinch effect, have been studied. The dependence of the electron beam parameters with respect to pressure and magnetic field have been studied. The pulsing effect of the beam is reviewed. By using the generator, micron holes drilling and carbon deposition was done at the laboratory. As a target source for carbon deposition methane gas is used and for Hydrogen-free carbon deposition was graphite

  1. Time-resolved tunable diode laser absorption spectroscopy of excited argon and ground-state titanium atoms in pulsed magnetron discharges

    Czech Academy of Sciences Publication Activity Database

    Sushkov, V.; Do, H.T.; Čada, Martin; Hubička, Zdeněk; Hippler, R.

    2013-01-01

    Roč. 22, č. 1 (2013), 1-10 ISSN 0963-0252 R&D Projects: GA ČR(CZ) GAP205/11/0386; GA ČR GAP108/12/2104 Institutional research plan: CEZ:AV0Z10100522 Keywords : absorption spectroscopy * diode laser * magnetron * argon metastable * HiPIMS * titanium * time-resolved Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.056, year: 2013 http://iopscience.iop.org/0963-0252/22/1/015002/

  2. Computerized Torque Control for Large dc Motors

    Science.gov (United States)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  3. Phase and Frequency Locked Magnetrons for SRF Sources

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Michael [Muons, Inc.; Johnson, Rolland

    2014-09-12

    There is great potential for a magnetron power source that can be controlled both in phase and frequency. Such a power source could revolutionize many particle accelerator systems that require lower capital cost and/or higher power efficiency. Beyond the accelerator community, phase and frequency locked magnetons could improve radar systems around the world and make affordable phased arrays for wireless power transmission for solar powered satellites. This joint project of Muons, Inc., Fermilab, and L-3 CTL was supported by an STTR grant monitored by the Nuclear Physics Office of the DOE Office of Science. The object of the program was to incorporate ferrite materials into the anode of a magnetron and, with appropriate biasing of the ferrites, to maintain frequency lock and to allow for frequency adjustment of the magnetron without mechanical tuners. If successful, this device would have a dual use both as a source for SRF linacs and for military applications where fast tuning of the frequency is a requirement. In order to place the materials in the proper location, several attributes needed to be modeled. First the impact of the magnetron’s magnetic field needed to be shielded from the ferrites so that they were not saturated. And second, the magnetic field required to change the frequency of the magnetron at the ferrites needed to be shielded from the region containing the circulating electrons. ANSYS calculations of the magnetic field were used to optimize both of these parameters. Once the design for these elements was concluded, parts were fabricated and a complete test assembly built to confirm the predictions of the computer models. The ferrite material was also tested to determine its compatibility with magnetron tube processing temperatures. This required a vacuum bake out of the chosen material to determine the cleanliness of the material in terms of outgassing characteristics, and a subsequent room temperature test to verify that the characteristics of

  4. Second-harmonic generation in atomic vapor with picosecond laser pulses

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.

    1997-01-01

    Picosecond laser pulses were used to study the highly forbidden resonant second-harmonic generation (SHG) in potassium vapor. The input intensity dependence, vapor density dependence, buffer-gas pressure dependence, and spatial profile of the SHG were measured. A pump - probe experiment was conducted to probe the time dependence of the SHG signal. The experimental results can be understood from an ionization-initiated dc-field-induced SHG model. A theory of a dc-field-induced SHG model is developed that takes into account the time development of the dc electric field in detail. This temporal buildup of the dc field along with transient coherent excitation between two-photon-allowed transitions can explain the experimental results quantitatively, including the previous vapor SHG results with nanosecond laser pulses. copyright 1997 Optical Society of America

  5. Advanced DC/DC converters

    CERN Document Server

    Luo, Fang Lin

    2003-01-01

    DC/DC conversion techniques have undergone rapid development in recent decades. With the pioneering work of these authors, DC/DC converters have now moved into their sixth generation. This book offers a concise, practical presentation of DC/DC converters, summarizing the spectrum of conversion tecnologies and presentingmany new ideas and more than 100 new topologies. Nowhere else in the literature are DC/DC converters so logically sorted and systematically introduced, and nowhere else can readers find detailed information on prototype topologies that represent a major contribution to modern power engineering. More than 320 figures, 60 tables, and 500 formulae facilitate understand and provide precise data.

  6. Fuzzy tungsten in a magnetron sputtering device

    Energy Technology Data Exchange (ETDEWEB)

    Petty, T.J., E-mail: tjpetty@liv.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ (United Kingdom); Khan, A. [Pariser Building-G11, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, M13 9PL (United Kingdom); Heil, T. [NiCaL, Block C Waterhouse Building, 1-3 Brownlow Street, Liverpool, L69 3GL (United Kingdom); Bradley, J.W., E-mail: j.w.bradley@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ (United Kingdom)

    2016-11-15

    Helium ion induced tungsten nanostructure (tungsten fuzz) has been studied in a magnetron sputtering device. Three parameters were varied, the fluence from 3.4 × 10{sup 23}–3.0 × 10{sup 24} m{sup −2}, the He ion energy from 25 to 70 eV, and the surface temperature from 900 to 1200 K. For each sample, SEM images were captured, and measurements of the fuzz layer thickness, surface roughness, reflectivity, and average structure widths are provided. A cross-over point from pre-fuzz to fully formed fuzz is found at 2.4 ± 0.4 × 10{sup 24} m{sup −2}, and a temperature of 1080 ± 60 K. No significant change was observed in the energy sweep. The fuzz is compared to low fluence fuzz created in the PISCES-A linear plasma device. Magnetron fuzz is less uniform than fuzz created by PISCES-A and with generally larger structure widths. The thicknesses of the magnetron samples follow the original Φ{sup 1/2} relation as opposed to the incubation fluence fit. - Highlights: • Fuzz has been created in a magnetron sputtering device. • Three parameters for fuzz formation have been swept. • A cross-over from pre-fuzz to fully formed fuzz is seen. • Evidence for annealing out at lower temperatures than has been seen before. • Evidence to suggest that fuzz grown in discrete exposures is not consistent with fuzz grown in one long exposure.

  7. Fuzzy tungsten in a magnetron sputtering device

    International Nuclear Information System (INIS)

    Petty, T.J.; Khan, A.; Heil, T.; Bradley, J.W.

    2016-01-01

    Helium ion induced tungsten nanostructure (tungsten fuzz) has been studied in a magnetron sputtering device. Three parameters were varied, the fluence from 3.4 × 10 23 –3.0 × 10 24  m −2 , the He ion energy from 25 to 70 eV, and the surface temperature from 900 to 1200 K. For each sample, SEM images were captured, and measurements of the fuzz layer thickness, surface roughness, reflectivity, and average structure widths are provided. A cross-over point from pre-fuzz to fully formed fuzz is found at 2.4 ± 0.4 × 10 24  m −2 , and a temperature of 1080 ± 60 K. No significant change was observed in the energy sweep. The fuzz is compared to low fluence fuzz created in the PISCES-A linear plasma device. Magnetron fuzz is less uniform than fuzz created by PISCES-A and with generally larger structure widths. The thicknesses of the magnetron samples follow the original Φ 1/2 relation as opposed to the incubation fluence fit. - Highlights: • Fuzz has been created in a magnetron sputtering device. • Three parameters for fuzz formation have been swept. • A cross-over from pre-fuzz to fully formed fuzz is seen. • Evidence for annealing out at lower temperatures than has been seen before. • Evidence to suggest that fuzz grown in discrete exposures is not consistent with fuzz grown in one long exposure.

  8. 256 fs, 2 nJ soliton pulse generation from MoS2 mode-locked fiber laser

    Science.gov (United States)

    Jiang, Zike; Chen, Hao; Li, Jiarong; Yin, Jinde; Wang, Jinzhang; Yan, Peiguang

    2017-12-01

    We demonstrate an Er-doped fiber laser (EDFL) mode-locked by a MoS2 saturable absorber (SA), delivering a 256 fs, 2 nJ soliton pulse at 1563.4 nm. The nonlinear property of the SA prepared by magnetron sputtering deposition (MSD) is measured with a modulation depth (MD) of ∼19.48% and a saturable intensity of 4.14 MW/cm2. To the best of our knowledge, the generated soliton pulse has the highest pulse energy of 2 nJ among the reported mode-locked EDFLs based on transition metal dichalcogenides (TMDs). Our results indicate that MSD-grown SAs could offer an exciting platform for high pulse energy and ultrashort pulse generation.

  9. A New parallel Resonant DC-Link Inverter for Soft Switched PWM

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J G; Kim, H S; Cho, G H [Korea Advanced Energy Research Inst., Daeduk-Danji (Korea, Republic of). Korea Nuclear Safety Center

    1993-03-01

    A novel soft switching PWM converter for high frequency AC/DC power conversion is presented by using a new parallel resonant dc-link(PRDCL) and by adopting single phase soft switching(SPSS) technique. The new PRDCL provides variable link pulse position as well as variable link pulse width, which is quite different feature from the other resonant dc-links and thus the PWM capability can be remarkably increased. The SPSS technique is also adopted for further enhancement of PWM capability. Moderate combination of two soft switching operations enables the conventional space vector PWM technique to be used. Due to distinctive advantages including true PWM capability, minimum device voltage stresses(all Vs) and reasonable additional device count(3 devices), the proposed converter can be operated in a wide power range(20-200 KW). Operational principles, analyses and the realization of a space vector PWM of the proposed converter are presented. Simulation results are also shown to verify the operational principle. (author). 15 refs., 14 figs.

  10. DC Langmuir Probe for Measurement of Space Plasma: A Brief Review

    Directory of Open Access Journals (Sweden)

    Koichiro Oyama

    2015-09-01

    Full Text Available Herein, we discuss the in situ measurement of the electron temperature in the ionosphere/plasmasphere by means of DC Langmuir probes. Major instruments which have been reported are a conventional DC Langmuir probe, whose probe voltage is swept; a pulsed probe, which uses pulsed bias voltage; a rectification probe, which uses sinusoidal signal; and a resonance cone probe, which uses radio wave propagation. The content reviews past observations made with the instruments above. We also discuss technical factors that should be taken into account for reliable measurement, such as problems related to the contamination of electrodes and the satellite surface. Finally, we discuss research topics to be studied in the near future.

  11. Electrical and optical study of transparent V-based oxide semiconductors prepared by magnetron sputtering under different conditions

    Directory of Open Access Journals (Sweden)

    E. Prociow

    2011-04-01

    Full Text Available This work is focused on structural, optical and electrical behaviors of vanadium-based oxide thin films prepared by magnetron sputtering under different conditions. Thin films have been deposited on glass substrates from metallic vanadium target at low sputtering pressure. Different working gases: argon/oxygen mixture, and especially pure oxygen gas, have been applied. Results of X-ray diffraction together with optical transmission and temperature- dependent electrical resistivity measurements have been presented. Transmission coefficient, cut-off wavelength and the width of the optical band gap have been calculated from optical measurements. The d.c. resistivity values at room temperature and thermal activation energy have been obtained from electrical investigations. The influence of sputtering process conditions on optical and electrical properties has been discussed.

  12. Combined resonant tank capacitance and pulse frequency modulation control for ZCS-SR inverter-fed high voltage DC power supply

    International Nuclear Information System (INIS)

    Lee, S S; Iqbal, S; Kamarol, M

    2011-01-01

    Conventional pulse frequency modulated (PFM) zero current switching (ZCS) series resonant (SR) inverter fed high voltage dc power supplies have nearly zero switching loss. However, they have limitations of poor controllability at light loads and large output voltage ripple at low switching frequencies. To address these problems, this paper proposes a combined resonant tank capacitance and pulse frequency modulation based control approach. For the realization of the proposed control approach, the tank circuit of the resonant inverter is made up of several resonant capacitors that are switched into or out of the tank circuit by electromechanical switches. The output voltage of the converter is regulated by digitally modulating the resonant tank capacitance and narrowly varying the switching frequency. The proposed control scheme has several features, namely a wide range of controllability even at light loads, less output voltage ripple, and less current stress on the inverter's power switches at light loads. Therefore, the proposed control approach alleviates most of the problems associated with conventional PFM. Experimental results obtained from a scaled down laboratory prototype are presented to verify the effectiveness of the proposed system.

  13. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament.

    Science.gov (United States)

    Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A

    2010-02-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  14. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament

    International Nuclear Information System (INIS)

    Ueno, A.; Oguri, H.; Ikegami, K.; Namekawa, Y.; Ohkoshi, K.; Tokuchi, A.

    2010-01-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB 6 ) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 μH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 Ax140 V) and a duty factor of more than 1.5%(600 μsx25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H - ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 μs and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  15. Tribological behavior of an austenitic stainless steel AISI 316L nitrurated by DC-pulsed plasma

    International Nuclear Information System (INIS)

    De Las Heras, E; Walther, F; Corengia, P.A; Quinteiro, M.O; Cabo, A; Bruhl, S; Sommadossi, S

    2004-01-01

    Austenitic stainless steels are widely used in different applications because they withstands corrosion. Ionic nitruration has proven to be an adequate technique for modifying this type of steel, in order to improve its resistance to wear without diminishing its resistance to corrosion. While many publications have reported improvements in the tribological properties of the nitrurated AISI 316, systematic studies that evaluate this behavior using industrial equipment for its thermochemical treatment are of interest. This work studied the tribological behavior of an AISI 316L steel nitrurated by DC pulsed plasma in an industrial machine in an atmosphere of 25% N 2 and 75% H 2 for 20 h at 400 o C by means of abrasion tests under different conditions in an A 135 Amsler-disk machine. In order to characterize the abraded samples microhardness, optic and scanning electron microscopy profiles to determine the abrasion mechanisms were performed. The results showed substantial improvement in the abrasion resistance of the nitrurated samples compared to the non nitrurated ones and the different abrasion mechanisms are discussed to explain the test results (CW)

  16. Electron energy distribution function in a cathode fall region of DC-glow discharge

    International Nuclear Information System (INIS)

    Elakshar, F.F.; Garamoon, A.A.; Hassouba, M.A.

    1997-01-01

    Recently a substantial effort has been devoted towards the development of a quantitative microscopic measurements in the cathode fall region of the DC-glow discharge magnetron sputtering unit. The electron energy distribution function (EEDF) has been measured using a single Langmuir probe at the edge of the cathode fall. Two groups of electrons are observed in helium and argon gas discharges. The two groups have no chance to be thermalized since they leave the cathode fall region fast. The electron temperature measurements have been compared with spectroscopic determination. Plasma density has been computed and compared with probe measurements. Sources of the two groups of electrons are also discussed. (author)

  17. A Unidirectional DC-DC Autotransformer for DC Grid Application

    Directory of Open Access Journals (Sweden)

    Meng Zhou

    2018-03-01

    Full Text Available Conventional unidirectional DC-DC converters for DC grid application employ DC-AC-DC two-stage conversion technology and suffer from high converter cost and power loss. To solve these issues, a unidirectional step-up DC-DC autotransformer (UUDAT and a unidirectional step-down DC-DC autotransformer (DUDAT are studied. The UUDAT and DUDAT are composed of a series connection of diode bridges and voltage source converters. Topologies of UUDAT and DUDAT are detailed. The harmonic and un-controllability issues are discussed. Control and possible application scenarios for UUDAT and DUDAT are depicted. DC fault isolation mechanism and the methods of dimensioning the voltage and power ratings of the components in UUDAT and DUDAT are studied. Extensive simulations on power system level and experiments on a UUDAT and DUDAT prototype verified their technical feasibility.

  18. Influence of Magnetron Effect on Barium Hexaferrite Thin Layers

    International Nuclear Information System (INIS)

    Hassane, H.; Chatelon, J.P.; Rousseau, J.J; Siblini, A.; Kriga, A.

    2011-01-01

    In this paper, we study the effects of a magnet, located in the cathode, on barium hexaferrite thin films deposited by RF magnetron sputtering technique. During the process, these effects can modify thickness, roughness and stress of coatings. The characteristics of the deposited layers depend on the substrate position that is located opposite of magnetron cathode. In the m agnetron area , one can observe that the high stress can produce cracks or detachment of layers and the increasing of both depositing rate and surface roughness. After sputtering elaboration, barium hexaferrite films are in a compressive stress mode. But, after the post-deposition heat treatment these films are in a tensile stress mode. To improve the quality of BaM films, the subsrtate has to be set outside the magnetron area. (author)

  19. A Comprehensive Analysis and Hardware Implementation of Control Strategies for High Output Voltage DC-DC Boost Power Converter

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2017-01-01

    Full Text Available Classical DC-DC converters used in high voltage direct current (HVDC power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I and fuzzy logic closed-loop controller to get high and stable output voltage. Complete hardware prototype of EHV is implemented and experimental tasks are carried out with digital signal processor (DSP TMS320F2812. The control algorithms P-I, fuzzy logic and the pulse-width modulation (PWM signals for N-channel MOSFET device are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions.

  20. Effect of organic-buffer-layer on electrical property and environmental reliability of Ga-doped ZnO films prepared by RF plasma assisted DC magnetron sputtering on plastic substrate

    International Nuclear Information System (INIS)

    Hinoki, Toshio; Kyuhara, Chika; Agura, Hideaki; Yazawa, Kenji; Kinoshita, Kentaro; Ohmi, Koutoku; Kishida, Satoru

    2010-01-01

    Ga-doped ZnO (GZO) transparent conductive films have been prepared by RF plasma assisted DC magnetron sputtering under a reductive atmosphere on organic-buffer-layer (OBL) coated polyethylene telephthalate (PET) substrates without intentionally heating substrates. Electrical and optical properties, crystallinity, and environmental reliability of the GZO films have been investigated. The distributional characteristic of resistivity is observed in the GZO film deposited on the OBL-coated PET substrates. The high resistivity at facing the erosion area in the source target is reduced by providing the RF plasma and H 2 gas near the substrate, resulting in a uniform distribution of the sheet resistance. It has been also found that the increase of resistivity by an accelerated aging test performed under a storage condition at 60 o C and at a relative humidity of 95% is suppressed by employing the OBL. The OBL suppresses the formation of cracks, which are induced by the aging test. These facts are thought to contribute to a high environmental reliability of GZO films on PET substrates. Values of resistivity, Hall mobility and carrier concentration are obtained: 5.0-20 x 10 -3 Ω cm, 4.0 cm 2 /Vs, and 3.8 x 10 20 cm -3 , respectively. An average transmittance of the GZO film including OBL and PET substrate is 78% in a visible region. The OBL enables to realize the practical use of GZO films on PET sheets.

  1. Structure of AlN films deposited by magnetron sputtering method

    Directory of Open Access Journals (Sweden)

    Nowakowska-Langier K.

    2015-09-01

    Full Text Available AlN films on a Si substrate were synthesized by magnetron sputtering method. A dual magnetron system operating in AC mode was used in the experiment. Processes of synthesis were carried out in the atmosphere of a mixture of Ar/N2. Morphology and phase structure of the AlN films were investigated at different pressures. Structural characterizations were performed by means of SEM and X-ray diffraction methods. Our results show that the use of magnetron sputtering method in a dual magnetron sputtering system is an effective way to produce AlN layers which are characterized by a good adhesion to the silicon substrate. The morphology of the films is strongly dependent on the Ar/N2 gas mixture pressure. An increase of the mixture pressure is accompanied by a columnar growth of the layers. The films obtained at the pressure below 1 Pa are characterized by finer and compacter structure. The AlN films are characterized by a polycrystalline hexagonal (wurtzite structure in which the crystallographic orientation depends on the gas mixture pressure.

  2. Nanoporous zinc oxide films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Ghimpu, L.; Lupan, O.; Popescu, L.; Tiginyanu, I.M.

    2011-01-01

    In this paper we demonstrate an inexpensive approach for the fabrication of nanoporous zinc oxide films by using magnetron sputtering. Study of the structural properties proves the crystallographic perfection of porous nanostructures and the possibility of its controlling by adjusting the technological parameters in the growth process. The XRD pattern of nanoporous ZnO films exhibits high intensity of the peaks relative to the background signal which is indicative of the ZnO hexagonal phase and a good crystallinity of the samples grown by magnetron sputtering.

  3. Structure and morphology of magnetron sputter deposited ultrathin ZnO films on confined polymeric template

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ajaib [Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore 453552 (India); Schipmann, Susanne [II. Insatitute of Physics and JARA-FIT, RWTH Aachen University, 52056 Aachen (Germany); Mathur, Aakash; Pal, Dipayan [Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore 453552 (India); Sengupta, Amartya [Department of Physics, Indian Institute of Technology Delhi, Delhi 110016 (India); Klemradt, Uwe [II. Insatitute of Physics and JARA-FIT, RWTH Aachen University, 52056 Aachen (Germany); Chattopadhyay, Sudeshna, E-mail: sudeshna@iiti.ac.in [Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore 453552 (India); Discipline of Physics, Indian Institute of Technology Indore, Indore 453552 (India); Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552 (India)

    2017-08-31

    Highlights: • Ultra-thin ZnO films grown on confined polymeric (polystyrene, PS) template. • XRR and GISAXS explore the surface/interfaces structure and morphology of ZnO/PS. • Insights into the growth mechanism of magnetron sputtered ZnO thin film on PS template. • Nucleated disk-like cylindrical particles are the basis of the formation of ZnO layers. • Effect of ZnO film thickness on room temperature PL spectra in ZnO/PS systems. - Abstract: The structure and morphology of ultra-thin zinc oxide (ZnO) films with different film thicknesses on confined polymer template were studied through X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS). Using magnetron sputter deposition technique ZnO thin films with different film thicknesses (<10 nm) were grown on confined polystyrene with ∼2R{sub g} film thickness, where R{sub g} ∼ 20 nm (R{sub g} is the unperturbed radius of gyration of polystyrene, defined by R{sub g} = 0.272 √M{sub 0}, and M{sub 0} is the molecular weight of polystyrene). The detailed internal structure, along the surface/interfaces and the growth direction of the system were explored in this study, which provides insight into the growth procedure of ZnO on confined polymer and reveals that a thin layer of ZnO, with very low surface and interface roughness, can be grown by DC magnetron sputtering technique, with approximately full coverage (with bulk like electron density) even in nm order of thickness, in 2–7 nm range on confined polymer template, without disturbing the structure of the underneath template. The resulting ZnO-polystyrene hybrid systems show strong ZnO near band edge (NBE) and deep-level (DLE) emissions in their room temperature photoluminescence spectra, where the contribution of DLE gets relatively stronger with decreasing ZnO film thickness, indicating a significant enhancement of surface defects because of the greater surface to volume ratio in thinner films.

  4. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Weichsel, T., E-mail: tim.weichsel@fep.fraunhofer.de; Hartung, U.; Kopte, T. [Fraunhofer Institute for Electron Beam and Plasma Technology, 01277 Dresden (Germany); Zschornack, G. [Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Kreller, M.; Silze, A. [DREEBIT GmbH, 01900 Grossroehrsdorf (Germany)

    2014-05-15

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10{sup 10} cm{sup −3} to 1 × 10{sup 11} cm{sup −3}, when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10{sup 18} atoms/s for aluminum, which meets the demand for the production of a milliampere Al{sup +} ion beam.

  5. Researches on the Improvement of the Bioactivity of TiO2 Deposits, Obtained by Magnetron Sputtering - DC

    Science.gov (United States)

    Toma, B. F.; Baciu, R. E.; Bejinariu, C.; Cimpoieşu, N.; Ciuntu, B. M.; Toma, S. L.; Burduhos-Nergis, D. P.; Timofte, D.

    2018-06-01

    In this paper, layers of TiO2 were deposited, by magnetron sputtering, on a glass support. The parameters of the deposition process were kept constant except for the O2/(Ar + O2) ratio that varied on three levels. The physical and mechanical properties of the layers obtained were investigated by SEM optical microscopy, electronics, AFM and X-ray diffraction. The bioactivity of TiO2 surfaces was investigated by growing M3C3-E1 osteoblast cells produced by RIKEN Cell Bank (Japan) for a period of 5 days. The modification of the working environment in the enclosure determines both the phasic modification in the TiO2 film, respectively the amount of the anatase or rutile phase and the decrease of the average roughness of the film from 112.3nm to 56.7nm. The research has demonstrated that the finer layers with a high content of anatase promote the growth of M3C3-E1 cells.

  6. Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique

    2014-01-01

    We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667

  7. DC Stark addressing for quantum memory in Tm:YAG

    Science.gov (United States)

    Gerasimov, Konstantin; Minnegaliev, Mansur; Urmancheev, Ravil; Moiseev, Sergey

    2017-10-01

    We observed a linear DC Stark effect for 3H6 - 3H4 optical transition of Tm3+ ions in Y3Al5O12. We observed that application of electric field pulse suppresses the two-pulse photon echo signal. If we then apply a second electric pulse of opposite polarity the echo signal is restored again, which indicates the linear nature of the observed effect. The effect is present despite the D2 symmetry of the Tm3+ sites that prohibits a linear Stark effect. Experimental data analysis shows that the observed electric field influence can be attributed to defects that break the local crystal field symmetry near Tm3+ ions. Using this effect we demonstrate selective retrieval of light pulses in two-pulse photon echo.

  8. Amorphous ITO thin films prepared by DC sputtering for electrochromic applications

    International Nuclear Information System (INIS)

    Teixeira, V.; Cui, H.N.; Meng, L.J.; Fortunato, E.; Martins, R.

    2002-01-01

    Indium-Tin-Oxide (ITO) thin films were deposited on glass substrates using DC magnetron reactive sputtering at different bias voltages and substrate temperatures. Some improvements were obtained on film properties, microstructure and other physical characteristics for different conditions. Amorphous and polycrystalline films can be obtained for various deposition conditions. The transmission, absorption, spectral and diffuse reflection of ITO films were measured in some ranges of UV-Vis-NIR. The refractive index (n), Energy band gap E g and the surface roughness of the film were derived from the measured spectra data. The carrier density (n c ) and the carrier mobility (μ) of the film micro conductive properties were discussed. The films exhibited suitable optical transmittance and conductivity for electrochromic applications

  9. Reactive magnetron sputtering model at making Ti-TiOx coatings

    International Nuclear Information System (INIS)

    Luchkin, A G; Kashapov, N F

    2014-01-01

    Mathematical model of reactive magnetron sputtering for plant VU 700-D is described. Approximating curves for experimental current-voltage characteristic for two gas input schemas are shown. Choice of gas input schema influences on model parameters (mainly on pumping speed). Reactive magnetron sputtering model allows develop technology of Ti - TiO x coatings deposition without changing atmosphere and pressure in vacuum chamber

  10. 3 MeV DC accelerator, EBC Kharghar

    International Nuclear Information System (INIS)

    Bakhtsingh, R.I.; Acharya, S.

    2017-01-01

    The Accelerator and Pulse Power Division (APPD) has designed and developed a 3 MeV, 10 mA DC electron beam accelerator at Electron Beam Centre, Kharghar, Navi Mumbai. This machine has been utilized for reduction of SO_x and NO_x in simulated flue gases and treatment of waste water to reduce COD and BOD

  11. Startup experience with the MFTF-B ECRH 100 kV dc power supply

    International Nuclear Information System (INIS)

    Bishop, S.R.; Goodman, R.A.; Wilson, J.H.

    1983-01-01

    One of the 24 Accel dc Power Supplies (ADCPS) originally intended for the Mirror Fusion Test Facility (MFTF-B) Neutral Beam Power Supply (NBPS) System has been converted to provide negative polarity output at 90 kV with a load current of 64 A dc. The load duty cycle is a pulse of 30-seconds duration with a pulse repetition period of five minutes. A new control system has been built which will serve as a prototype for the MFTF-B ADCPS controls, and a test setup was built which will be used to test the ADCPS. The Electron Cyclotron Resonance Heating (ECRH) dc Power Supply (DCPS) has been tested under both no-load and dummy-load conditions, under remote control, without notable problems. Test results indicate that the power supply should be reliable and safe to operate, and will meet the load duty requirements

  12. Startup experience with the MFTF-B ECRH 100 kV dc power supply

    International Nuclear Information System (INIS)

    Bishop, S.R.; Goodman, R.A.; Wilson, J.H.

    1983-01-01

    One of the 24 Accel DC Power Supplies (ADCPS) originally intended for the Mirror Fusion Test Facility (MFTF-B) Neutral Beam Power Supply (NBPS) System has been converted to provide negative polarity output at 90 kV with a load current of 64 A dc. The load duty cycle is a pulse of 30-seconds duration with a pulse repetition period of five minutes. A new control system has been built which will serve as a prototype for the MFTF-B ADCPS controls, and a test setup was built which will be used to test the ADCPS. The Electron Cyclotron Resonance Heating (ECRH) DC Power Supply (DCPS) has been tested under both no-load and dummy-load conditions, under remote control, without notable problems. Test results indicate that the power supply should be reliable and safe to operate, and will meet the load duty requirements

  13. A resonant dc-dc power converter assembly

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the s......The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...... of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first...

  14. Process stabilization by peak current regulation in reactive high-power impulse magnetron sputtering of hafnium nitride

    International Nuclear Information System (INIS)

    Shimizu, T; Villamayor, M; Helmersson, U; Lundin, D

    2016-01-01

    A simple and cost effective approach to stabilize the sputtering process in the transition zone during reactive high-power impulse magnetron sputtering (HiPIMS) is proposed. The method is based on real-time monitoring and control of the discharge current waveforms. To stabilize the process conditions at a given set point, a feedback control system was implemented that automatically regulates the pulse frequency, and thereby the average sputtering power, to maintain a constant maximum discharge current. In the present study, the variation of the pulse current waveforms over a wide range of reactive gas flows and pulse frequencies during a reactive HiPIMS process of Hf-N in an Ar–N 2 atmosphere illustrates that the discharge current waveform is a an excellent indicator of the process conditions. Activating the reactive HiPIMS peak current regulation, stable process conditions were maintained when varying the N 2 flow from 2.1 to 3.5 sccm by an automatic adjustment of the pulse frequency from 600 Hz to 1150 Hz and consequently an increase of the average power from 110 to 270 W. Hf–N films deposited using peak current regulation exhibited a stable stoichiometry, a nearly constant power-normalized deposition rate, and a polycrystalline cubic phase Hf-N with (1 1 1)-preferred orientation over the entire reactive gas flow range investigated. The physical reasons for the change in the current pulse waveform for different process conditions are discussed in some detail. (paper)

  15. Pulsed Direct Current Electrospray: Enabling Systematic Analysis of Small Volume Sample by Boosting Sample Economy.

    Science.gov (United States)

    Wei, Zhenwei; Xiong, Xingchuang; Guo, Chengan; Si, Xingyu; Zhao, Yaoyao; He, Muyi; Yang, Chengdui; Xu, Wei; Tang, Fei; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong

    2015-11-17

    We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS(2) information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS(2) data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis.

  16. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection

    OpenAIRE

    Diwei He; Stephen P. Morgan; Dimitrios Trachanis; Jan van Hese; Dimitris Drogoudis; Franco Fummi; Francesco Stefanni; Valerio Guarnieri; Barrie R. Hayes-Gill

    2015-01-01

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 ?m CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the...

  17. Utility Interfaced Pulse-Width Modulation of Solar Fed Voltage ...

    African Journals Online (AJOL)

    Utility Interfaced Pulse-Width Modulation of Solar Fed Voltage Source Inverter Using Fixed-Band Hysteresis Current Controller Method. ... with the conversion of solar energy into electrical energy; boosting the dc power; inversion of the dc to ac and then synchronization of the inverter output with the utility, and consequently, ...

  18. Step-Up DC-DC converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam P.; Gorji, Saman A.

    2017-01-01

    on the general law and framework of the development of next-generation step-up dc-dc converters, this paper aims to comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage......DC-DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which......-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc-dc converters are presented and summarized with comparative study of different voltage-boosting techniques....

  19. Spokes and charged particle transport in HiPIMS magnetrons

    International Nuclear Information System (INIS)

    Brenning, N; Lundin, D; Minea, T; Vitelaru, C; Costin, C

    2013-01-01

    Two separate scientific communities are shown to have studied one common phenomenon, azimuthally rotating dense plasma structures, also called spokes, in pulsed-power E × B discharges, starting from quite different approaches. The first body of work is motivated by fundamental plasma science and concerns a phenomenon called the critical ionization velocity, CIV, while the other body of work is motivated by the applied plasma science of high power impulse magnetron sputtering (HiPIMS). Here we make use of this situation by applying experimental observations, and theoretical analysis, from the CIV literature to HiPIMS discharges. For a practical example, we take data from observed spokes in HiPIMS discharges and focus on their role in charged particle transport, and in electron energization. We also touch upon the closely related questions of how they channel the cross-B discharge current, how they maintain their internal potential structure and how they influence the energy spectrum of the ions? New particle-in-cell Monte Carlo collisional simulations that shed light on the azimuthal drift and expansion of the spokes are also presented. (paper)

  20. Influence of Bipolar Pulse Poling Technique for Piezoelectric Vibration Energy Harvesters using Pb(Zr,Ti)O3 Films on 200 mm SOI Wafers

    International Nuclear Information System (INIS)

    Moriwaki, N; Fujimoto, K; Suzuki, K; Kobayashi, T; Itoh, T; Maeda, R; Suzuki, Y; Makimoto, N

    2013-01-01

    Piezoelectric vibration energy harvester arrays using Pb(Zr,Ti)O 3 thin films on 200 mm SOI wafers were fabricated. In-plane distribution of influence of bipolar pulse poling technique on direct current (DC) power output from the harvesters was investigated. The results indicate that combination poling treatment of DC and bipolar pulse poling increases a piezoelectric property and reduces a dielectric constant. It means that this poling technique improves the figure of merit of sensors and harvesters. Maximum DC power from a harvester treated by DC poling after bipolar pulse poling is about five times larger than a one treated by DC poling only

  1. Attosecond pulse generation in noble gases in the presence of extreme high intensity THz pulses

    International Nuclear Information System (INIS)

    Balogh, E.; Varju, K.

    2010-01-01

    Complete text of publication follows. The shortest - attosecond - light pulses available today are produced by high harmonic generation (HHG) of near-infrared (NIR) laser pulses in noble gas jets, providing a broad spectral plateau of XUV radiation ending in a cutoff. The minimum pulse duration is determined by the achievable bandwidth (i.e. the position of the cutoff), and the chirp of the produced pulses. The extension of the cutoff by increasing the laser intensity is limited by the depletion and phase matching problems of the medium. An alternative method demonstrated to produce higher harmonic orders is by using longer pump pulse wavelength, with the disadvantage of decreased efficiency. Recently it was shown that application of a quasi-DC high strength electric field results in an increase of more than a factor of two in the order of efficiently generated high harmonics. However, the possibility to implement the method proposed in [3] of using a CO 2 laser to create a quasi-DC field for assisting HHG of the NIR laser is questionable, because it's technically very challenging to synchronize pulses from different laser sources. Alternatively, synchronous production of THz pulses with the NIR laser pulse offers a more promising route. The first numerical test of this idea has been reported in [4]. In this contribution we further investigate the method for realistic THz field strengths and short driving pulses, exploring the effect of longer pump laser wavelength on the process. We assume the presence of high intensity THz pulses for supplying the high-strength quasi-DC electric field. The spectrum as well as the chirp of the produced radiation is calculated. We use the non-adiabatic saddle point method to determine the generated radiation described in [6]. We simulate harmonic generation in noble gas atoms, with few cycle NIR pulses of peak intensity at and above 2 x 10 14 W/cm 2 (388 MV/cm) and wavelengths 800 nm and 1560 nm. The THz field strength is varied

  2. A resonant dc-dc power converter assembly

    OpenAIRE

    Madsen, Mickey Pierre

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or fo...

  3. Adhesion Improvement and Characterization of Magnetron Sputter Deposited Bilayer Molybdenum Thin Films for Rear Contact Application in CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    Weimin Li

    2016-01-01

    Full Text Available Molybdenum (Mo thin films are widely used as rear electrodes in copper indium gallium diselenide (CIGS solar cells. The challenge in Mo deposition by magnetron sputtering lies in simultaneously achieving good adhesion to the substrates while retaining the electrical and optical properties. Bilayer Mo films, comprising five different thickness ratios of a high pressure (HP deposited bottom layer and a low pressure (LP deposited top layer, were deposited on 40 cm × 30 cm soda-lime glass substrates by DC magnetron sputtering. We focus on understanding the effects of the individual layer properties on the resulting bilayer Mo films, such as microstructure, surface morphology, and surface oxidation. We show that the thickness of the bottom HP Mo layer plays a major role in determining the micromechanical and physical properties of the bilayer Mo stack. Our studies reveal that a thicker HP Mo bottom layer not only improves the adhesion of the bilayer Mo, but also helps to improve the film crystallinity along the preferred [110] direction. However, the surface roughness and the porosity of the bilayer Mo films are found to increase with increasing bottom layer thickness, which leads to lower optical reflectance and a higher probability for oxidation at the Mo surface.

  4. A Plasma Lens for Magnetron Sputtering

    International Nuclear Information System (INIS)

    Anders, Andre; Brown, Jeff

    2010-01-01

    A plasma lens, consisting of a solenoid and potential-defining ring electrodes, has been placed between a magnetron and substrates to be coated. Photography reveals qualitative information on excitation, ionization, and the transport of plasma to the substrate.

  5. Baseline restoration technique based on symmetrical zero-area trapezoidal pulse shaper

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guoqiang, E-mail: 24829500@qq.com [Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan, Chengdu University of Technology, Chengdu 610059 (China); Yang, Jian, E-mail: 22105653@qq.com [Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan, Chengdu University of Technology, Chengdu 610059 (China); Hu, Tianyu; Ge, Liangquan [Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan, Chengdu University of Technology, Chengdu 610059 (China); Ouyang, Xiaoping [Northwest Institute of Nuclear Technology, Xi’an 710024,China (China); Zhang, Qingxian; Gu, Yi [Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan, Chengdu University of Technology, Chengdu 610059 (China)

    2017-06-21

    Since the baseline of the unipolar pulse shaper have the direct-current (DC) offset and drift, an additional baseline estimator is need to obtain baseline values in real-time. The bipolar zero-area (BZA) pulse shapers can be used for baseline restoration, but they cannot restrain the baseline drift due to their asymmetrical shape. In this study, three trapezoids are synthesized as a symmetrical zero-area (SZA) shape, which can remove the DC offset and restrain the baseline drift. This baseline restoration technique can be easily implemented in digital pulse processing (DPP) systems base on the recursive algorithm. To strengthen our approach, the iron's characteristic x-ray was detected using a Si-PIN diode detector. Compared with traditional trapezoidal pulse shapers, the SZA trapezoidal pulse shaper improved the energy resolution from 237 eV to 216 eV for the 6.403 keV Kα peak.

  6. Preparation of hydrogenated amorphous carbon films using a microsecond-pulsed DC capacitive-coupled plasma chemical vapor deposition system operated at high frequency up to 400 kHz

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-06-01

    Hydrogenated amorphous carbon (a-C:H) films are deposited on silicon (Si) substrates using a high-repetition microsecond-pulsed DC plasma chemical vapor deposition (CVD) system from acetylene (C2H2) at a gas pressure of 15 Pa inside a custom-made vacuum chamber. The plasma discharge characteristics, hydrocarbon species, and the microstructure of the resulting films are examined at various pulse repetition rates from 50 to 400 kHz and a fixed duty cycle of 50%. The optical emission spectra confirmed the increase in electron excitation energy from 1.09 to 1.82 eV and the decrease in the intensity ratio of CH/C2 from 1.04 to 0.75 with increasing pulse frequency, indicating the enhanced electron impact dissociation of C2H2 gas. With increasing pulse frequency, the deposition rate gradually increased, reaching a maximum rate of 60 nm/min at 200 kHz, after which a progressive decrease was noted, whereas the deposition area was almost uniform for all the prepared films. Clear trends of increasing sp3 content (amorphization) and decreasing hydrogen (H) content in the films were observed as the pulse repetition rate increased, while most of the hydrogen atoms bonded to carbon atoms by sp3 hybridization rather than by sp2 hybridization.

  7. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S. K.; Mohan, S. [Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore-560012 (India); Bysakh, S. [Central Glass and Ceramics Research Institute, Kolkata-700032 (India); Kumar, A.; Kamat, S. V. [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India)

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.

  8. Fully controlled 5-phase, 10-pulse, line commutated rectifier

    Directory of Open Access Journals (Sweden)

    Mahmoud I. Masoud

    2015-12-01

    Full Text Available The development and production of multiphase machines either generators or motors, specially five-phase, offers improved performance compared to three-phase counterpart. Five phase generators could generate power in applications such as, but not limited to, wind power generation, electric vehicles, aerospace, and oil and gas. The five-phase generator output requires converter system such as ac–dc converters. In this paper, a fully controlled 10-pulse line commutated rectifier, suitable to be engaged with wind energy applications, fed from five-phase source is introduced. A shunt active power filter (APF is used to improve power factor and supply current total harmonic distortion (THD. Compared to three-phase converters, 6-pulse or 12-pulse rectifiers, the 10-pulse rectifier engaged with 5-phase source alleviate their drawbacks such as high dc ripples and no need for electric gear or phase shifting transformer. MATLAB/SIMULINK platform is used as a simulation tool to investigate the performance of the proposed rectifier.

  9. DC and AC biasing of a transition edge sensor microcalorimeter

    International Nuclear Information System (INIS)

    Cunningham, M.F.; Ullom, J.N.; Miyazaki, T.; Drury, O.; Loshak, A.; Berg, M.L. van den; Labov, S.E.

    2002-01-01

    We are developing AC-biased transition edge sensor (TES) microcalorimeters for use in large arrays with frequency-domain multiplexing. Using DC bias, we have achieved a resolution of 17 eV FWHM at 2.6 keV with a decay time of 90 μs and an effective detector diameter of 300 μm. We have successfully measured thermal pulses with a TES microcalorimeter operated with an AC bias. We present here preliminary results from a single pixel detector operated under DC and AC bias conditions

  10. Conversion of continuous-direct-current TIG welder to pulse-arc operation

    Science.gov (United States)

    Lien, D. R.

    1969-01-01

    Electronics package converts a continuous-dc tungsten-inert gas welder for pulse-arc operation. Package allows presetting of the pulse rate, duty cycle, and current value, and enables welding of various alloys and thicknesses of materials.

  11. Power supply and pulsing strategies for the future linear colliders

    International Nuclear Information System (INIS)

    Brogna, A S; Weber, M; Göttlicher, P

    2012-01-01

    The concept of the power delivery systems of the future linear colliders exploits the pulsed bunch structure of the beam in order to minimize the average current in the cables and the electronics and thus to reduce the material budget and heat dissipation. Although modern integrated circuit technologies are already available to design a low-power system, the concepts on how to pulse the front-end electronics and further reduce the power are not yet well understood. We propose a possible implementation of a power pulsing system based on a DC/DC converter and we choose the Analog Hadron Calorimeter as a specific example. The model features large switching currents of electronic modules in short time intervals to stimulate the inductive components along the cables and interconnections.

  12. Characteristics of pulse corona discharge over water surface

    Science.gov (United States)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  13. Characteristics of pulse corona discharge over water surface

    International Nuclear Information System (INIS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-01-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO 2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  14. Geometrical aspects of a hollow-cathode planar magnetron

    International Nuclear Information System (INIS)

    Wang, Z.; Cohen, S.A.

    1999-01-01

    A hollow-cathode planar magnetron (HCPM), built by surrounding a planar sputtering-magnetron cathode with a hollow-cathode structure (HCS) [Z. Wang and S. A. Cohen, J. Vac. Sci. Technol. A 17, 77 (1999)], is operable at substantially lower pressures than its planar-magnetron counterpart. HCPM operational parameters depend on the inner diameter D and length L of its cylindrical HCS. Only when L is greater than L 0 , a critical length, is the HCPM operable in the new low-pressure regime. The critical length varies with HCS inner diameter D. Explanations of the lower operational pressure regime, critical length, and plasma shape are proposed and compared with a one-dimension diffusion model for energetic electron transport. At pressures above 1 mTorr, Bohm diffusion (temperature congruent primary electron energy), with an ambipolar constraint, can explain the ion - electron pair creation required to sustain the discharge. At the lowest pressure, ∼0.3 mTorr, collision-limited diffusion creates fewer ion - electron pairs than required for steady state and therefore cannot explain the experimental data. The critical length L 0 is consistent with the magnetization length of the primary electrons. copyright 1999 American Institute of Physics

  15. Step-Up DC-DC converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam P.; Gorji, Saman A.

    2017-01-01

    on the general law and framework of the development of next-generation step-up dc-dc converters, this paper aims to comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage...

  16. CrN/AlN superlattice coatings synthesized by pulsed closed field unbalanced magnetron sputtering with different CrN layer thicknesses

    International Nuclear Information System (INIS)

    Lin Jianliang; Moore, John J.; Mishra, Brajendra; Pinkas, Malki; Zhang Xuhai; Sproul, William D.

    2009-01-01

    CrN/AlN superlattice coatings with different CrN layer thicknesses were prepared using a pulsed closed field unbalanced magnetron sputtering system. A decrease in the bilayer period from 12.4 to 3.0 nm and simultaneously an increase in the Al/(Cr + Al) ratio from 19.1 to 68.7 at.% were obtained in the CrN/AlN coatings when the Cr target power was decreased from 1200 to 200 W. The bilayer period and the structure of the coatings were characterized by means of low angle and high angle X-ray diffraction and transmission electron microscopy. The mechanical and tribological properties of the coatings were studied using the nanoindentation and ball-on-disc wear tests. It was found that CrN/AlN superlattice coatings synthesized in the current study exhibited a single phase face-centered cubic structure with well defined interfaces between CrN and AlN nanolayers. Decreases in the residual stress and the lattice parameter were identified with a decrease in the CrN layer thickness. The hardness of the coatings increased with a decrease in the bilayer period and the CrN layer thickness, and reached the highest value of 42 GPa at a bilayer period of 4.1 nm (CrN layer thickness of 1.5 nm, AlN layer thickness of 2.5 nm) and an Al/(Cr + Al) ratio of 59.3 at.% in the coatings. A low coefficient of friction of 0.35 and correspondingly low wear rate of 7 x 10 -7 mm 3 N -1 m -1 were also identified in this optimized CrN/AlN coating when sliding against a WC-6%Co ball.

  17. Controller for a High-Power, Brushless dc Motor

    Science.gov (United States)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  18. Growth and characterization of textured YBaCo{sub 2}O{sub 5+δ} thin films grown on (001)-SrTiO{sub 3} via DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Galeano, V. [Universidad Nacional de Colombia, Campus Medellín, Facultad de Ciencias, Departamento de Física, Laboratorio de Cerámicos y Vítreos, A.A. 568, Medellín (Colombia); Arnache, O. [Grupo de Estado Sólido, Departamento de Física, Universidad de Antioquia, A.A. 1226, Medellín (Colombia); Supelano, I.; Vargas, C.A. Parra [Universidad Pedagógica y Tecnológica de Colombia, Departamento de Física, Avenida Central del Norte 39-115, Tunja (Colombia); Morán, O., E-mail: omoranc@unal.edu.co [Universidad Nacional de Colombia, Campus Medellín, Facultad de Ciencias, Departamento de Física, Laboratorio de Cerámicos y Vítreos, A.A. 568, Medellín (Colombia)

    2016-06-30

    Thin films of the layered cobaltite YBaCo{sub 2}O{sub 5+δ} were successfully grown on (001)-oriented SrTiO{sub 3} single-crystal substrates by means of DC magnetron sputtering. The 112 phase of the compound was stabilized by choosing an adequate Co reactant and through careful thermal treatment of the target. The results demonstrate the strong influence of these variables on the final phase of the compound. A substrate temperature of 1053 K and an oxygen pressure of 300 Pa seemed to be appropriate growing conditions for depositing (00ℓ)-textured YBaCo{sub 2}O{sub 5+δ} thin films onto the chosen substrate. In like fashion to the polycrystalline YBaCo{sub 2}O{sub 5+δ}, the films showed a clear sequence of antiferromagnetic–ferromagnetic–paramagnetic transitions within a narrow temperature range. Well-defined hysteresis loops were observed at temperatures as high as 270 K, which supports the existence of a FM order in the films. In turn, the dependence of the resistivity on the temperature shows a semiconductor-like behavior, without any distinguishable structure, within the temperature range measured (50–350 K). The analysis of the experimental data showed that the transport mechanism in the films is well described by using the Mott variable range hopping (VRH) conduction model. - Highlights: • YBaCo{sub 2}O{sub 5+δ} thin films are grown on SrTiO{sub 3} substrates. • Strong (00ℓ) reflections are observed in the X-ray diffraction pattern. • A clear sequence of magnetic transitions is observed. • Semiconducting-like behavior is verified.

  19. Thirty-six pulse rectifier scheme based on zigzag auto-connected transformer

    Directory of Open Access Journals (Sweden)

    Xiao-Qiang Chen

    2016-03-01

    Full Text Available In this paper, a low kilo-volt-ampere rating zigzag connected autotransformer based 36-pulse rectifier system supplying vector controlled induction motor drives (VCIMD is designed, modeled and simulated. Detailed design procedure and magnetic rating calculation of the proposed autotransformer and interphase reactor is studied. Moreover, the design process of the autotransformer is modified to make it suitable for retrofit applications. Simulation results confirm that the proposed 36-pulse rectifier system is able to suppress less than 35th harmonics in the utility line current. The influence of load variation and load character is also studied to demonstrate the performance and effectiveness of the proposed 36-pulse rectifiers. A set of power quality indices at AC mains and DC link are presented to compare the performance of 6-, 24- and 36-pulse AC-DC converters.

  20. Commutator dc machines used as mechanical capacitors in a series resonant ohmic-heating circuit simulation

    International Nuclear Information System (INIS)

    Thullen, P.; Weldon, D.M.

    1979-01-01

    Rotating electrical machines, and in particular commutator dc machines can serve as a high-power energy-source for testing large, pulsed magnets. This paper describes a pulsed power supply based on traction motors which will be used to test the LASL prototype 20-MJ superconducting tokamak induction coil

  1. Evaluation of Cu2ZnSnS4 Absorber Films Sputtered from a Single, Quaternary Target

    OpenAIRE

    Carlhamn Rasmussen, Liv

    2013-01-01

    Cu2ZnSnS4 (CZTS) is a promising absorber material for thin-film solar cells since it contains no rare or toxic elements, has a high absorption coefficient and a near ideal bandgap energy. It does, however, present some challenges due to the limited single-phase region of the desired kesterite phase and its instability towards decomposition. Sputtering of CZTS from quaternary, compound targets using RF magnetron sputtering is known. In this thesis work CZTS absorbers were made using pulsed DC ...

  2. Electroporation of DC-3F cells is a dual process.

    Science.gov (United States)

    Wegner, Lars H; Frey, Wolfgang; Silve, Aude

    2015-04-07

    Treatment of biological material by pulsed electric fields is a versatile technique in biotechnology and biomedicine used, for example, in delivering DNA into cells (transfection), ablation of tumors, and food processing. Field exposure is associated with a membrane permeability increase usually ascribed to electroporation, i.e., formation of aqueous membrane pores. Knowledge of the underlying processes at the membrane level is predominantly built on theoretical considerations and molecular dynamics (MD) simulations. However, experimental data needed to monitor these processes with sufficient temporal resolution are scarce. The whole-cell patch-clamp technique was employed to investigate the effect of millisecond pulsed electric fields on DC-3F cells. Cellular membrane permeabilization was monitored by a conductance increase. For the first time, to our knowledge, it could be established experimentally that electroporation consists of two clearly separate processes: a rapid membrane poration (transient electroporation) that occurs while the membrane is depolarized or hyperpolarized to voltages beyond so-called threshold potentials (here, +201 mV and -231 mV, respectively) and is reversible within ∼100 ms after the pulse, and a long-term, or persistent, permeabilization covering the whole voltage range. The latter prevailed after the pulse for at least 40 min, the postpulse time span tested experimentally. With mildly depolarizing or hyperpolarizing pulses just above threshold potentials, the two processes could be separated, since persistent (but not transient) permeabilization required repetitive pulse exposure. Conductance increased stepwise and gradually with depolarizing and hyperpolarizing pulses, respectively. Persistent permeabilization could also be elicited by single depolarizing/hyperpolarizing pulses of very high field strength. Experimental measurements of propidium iodide uptake provided evidence of a real membrane phenomenon, rather than a mere

  3. Brighter H- source for the intense pulsed neutron source accelerator system

    International Nuclear Information System (INIS)

    Stipp, V.; DeWitt, A.; Madsen, J.

    1983-01-01

    Further increases in the beam intensity of the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory required the replacement of the H - source with a higher current source. A magnetron ion source of Fermi National Accelerator Laboratory (FNAL) design was adapted with a grooved cathode to provide a stable 40 to 50 mA of beam operating at 30 Hz for up to a 90 μs pulse duration. Problems of space charge blowup due to the lack of neutralization of the H - beam were solved by injecting additional gs into the 20 keV transport system. The source has recently been installed in the machine and the available input to the accelerator has more than doubled

  4. On the control of deposition process for enhanced mechanical properties of nc-TiC/a-C: H coatings with DC magnetron sputtering at low or high ion flux

    Czech Academy of Sciences Publication Activity Database

    Souček, P.; Schmidtová, T.; Zábranský, L.; Buršíková, V.; Vašina, P.; Caha, O.; Buršík, Jiří; Peřina, Vratislav; Mikšová, Romana; Pei, Y.; de Hosson, J. T. M.

    Roč. 255, 25 September (2014), s. 8-14 ISSN 0257-8972 Institutional support: RVO:68081723 ; RVO:61389005 Keywords : enhanced mechanical properties * ion flux on the substrate * magnetron sputtering Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.998, year: 2014

  5. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  6. Influence of substrate on structural, morphological and optical properties of TiO2 thin films deposited by reaction magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Xinghua Zhu

    2017-12-01

    Full Text Available Titanium dioxide (TiO2 films have been prepared by DC reaction magnetron sputtering technique on different substrates (glass, SiO2, platinum electrode-Pt, Silicon-Si. X-ray diffraction (XRD patterns showed that all TiO2 films were grown along the preferred orientation of (110 plane. Samples on Si and Pt substrates are almost monophasic rutile, however, samples on glass and SiO2 substrates accompanied by a weak anatase structure. Atomic force microscopy (AFM images revealed uniform grain distribution except for films on Pt substrates. Photoluminescence (PL spectra showed obvious intrinsic emission band, but films on glass was accompanied by a distinct defect luminescence region. Raman spectroscopy suggested that all samples moved to high wavenumbers and films on glass moved obviously.

  7. Effect of High Temperature Annealing on Conduction-Type ZnO Films Prepared by Direct-Current Magnetron Sputtering

    International Nuclear Information System (INIS)

    Sun Li-Jie; He Dong-Kai; Xu Xiao-Qiu; Zhong Ze; Wu Xiao-Peng; Lin Bi-Xia; Fu Zhu-Xi

    2010-01-01

    We experimentally find that the ZnO thin films deposited by dc-magnetron sputtering have different conduction types after annealing at high temperature in different ambient. Hall measurements show that ZnO films annealed at 1100°C in N 2 and in O 2 ambient become n-type and p-type, respectively. This is due to the generation of different intrinsic defects by annealing in different ambient. X-ray photoelectron spectroscopy and photolumi-nescence measurements indicate that zinc interstitial becomes a main defects after annealing at 1100°C in N 2 ambient, and these defects play an important role for n-type conductivity of ZnO. While the ZnO films annealed at 1100°C in O 2 ambient, the oxygen antisite contributes ZnO films to p-type. (condensed matter: structure, mechanical and thermal properties)

  8. Isolated PWM DC-AC SICAM with an active capacitive voltage clamp[Pulse Density Modulated; Pulse Width Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2004-03-15

    In this report an isolated PWM DC-AC SICAM with an active capacitive voltage clamp is presented. AC-DC power supply is implemented in its simplest form: diode rectifier followed by a medium-size charge-storage capacitors and possibly with an EMC filter on the mains entrance. Isolation from the AC mains is achieved using a high frequency (HF) transformer, whose voltages are not audio-modulated. The latter simplifies the design and is expected to have many advantages over the approach where the transformer voltages are modulated in regards to the audio signal reference. Input stage is built as a DC-AC inverter (push-pull, half-bridge or a full-bridge) and operated with 50% duty cycle, with all the challenges to avoid transformer saturation and obtain symmetrical operation. On the secondary side the output section is implemented as rectifier+inverter AC-AC stage, i.e. a true bidirectional bridge, which operation is aimed towards amplification of the audio signal. In order to solve the problem with the commutation of the load current, a dead time between the incoming and outgoing bidirectional switch is implemented, while a capacitive voltage clamp is used to keep the induced overvoltage to reasonable levels. The energy stored in the clamping capacitor is not wasted as in the dissipative clamps, but is rather transferred back to the primary side for further processing using an auxiliary isolated single-switch converter, i.e. an active clamping technique is used. (au)

  9. Autologous Dendritic Cells Pulsed with Allogeneic Tumor Cell Lysate in Mesothelioma: From Mouse to Human.

    Science.gov (United States)

    Aerts, Joachim G J V; de Goeje, Pauline L; Cornelissen, Robin; Kaijen-Lambers, Margaretha E H; Bezemer, Koen; van der Leest, Cor H; Mahaweni, Niken M; Kunert, André; Eskens, Ferry A L M; Waasdorp, Cynthia; Braakman, Eric; van der Holt, Bronno; Vulto, Arnold G; Hendriks, Rudi W; Hegmans, Joost P J J; Hoogsteden, Henk C

    2018-02-15

    Purpose: Mesothelioma has been regarded as a nonimmunogenic tumor, which is also shown by the low response rates to treatments targeting the PD-1/PD-L1 axis. Previously, we demonstrated that autologous tumor lysate-pulsed dendritic cell (DC) immunotherapy increased T-cell response toward malignant mesothelioma. However, the use of autologous tumor material hampers implementation in large clinical trials, which might be overcome by using allogeneic tumor cell lines as tumor antigen source. The purpose of this study was to investigate whether allogeneic lysate-pulsed DC immunotherapy is effective in mice and safe in humans. Experimental Design: First, in two murine mesothelioma models, mice were treated with autologous DCs pulsed with either autologous or allogeneic tumor lysate or injected with PBS (negative control). Survival and tumor-directed T-cell responses of these mice were monitored. Results were taken forward in a first-in-human clinical trial, in which 9 patients were treated with 10, 25, or 50 million DCs per vaccination. DC vaccination consisted of autologous monocyte-derived DCs pulsed with tumor lysate from five mesothelioma cell lines. Results: In mice, allogeneic lysate-pulsed DC immunotherapy induced tumor-specific T cells and led to an increased survival, to a similar extent as DC immunotherapy with autologous tumor lysate. In the first-in-human clinical trial, no dose-limiting toxicities were established and radiographic responses were observed. Median PFS was 8.8 months [95% confidence interval (CI), 4.1-20.3] and median OS not reached (median follow-up = 22.8 months). Conclusions: DC immunotherapy with allogeneic tumor lysate is effective in mice and safe and feasible in humans. Clin Cancer Res; 24(4); 766-76. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Magnetron with smooth anode. Statistical theory and ordered oscillations; Magnetron a anode lisse. Theorie statistique et oscillations ordonnees

    Energy Technology Data Exchange (ETDEWEB)

    Coste, J.

    1961-03-15

    We have to investigate the equilibrium regime that appears between a hot cathode and the electronic cloud that is confined around the cathode by a magnetic field parallel to its axis. The densities being high enough to involve the effect of space charge. The challenge of the magnetron theory is to face 2 issues: first the structure of the electronic cloud in a diode submitted to a magnetic field and secondly the oscillations that are likely to appear in this cloud. In this work we have made 2 attempts to clarify the situation, we have extended the classical theory of the static charge of space through a study of its oscillation modes on one hand and on the other hand we have tackled the issue of the structure of the electronic cloud with the tool of statistics. This document is divided into 2 chapters. In the first chapter we present a static study of the magnetron in which we take a statistical approach deliberately. We give answers to the issue of the thermodynamical equilibrium of the electronic cloud and we have found a mode very close to the Brillouin mode. The statistical approach has made us discuss the boundary conditions on the cathode, it means the coupling between the cathode and the electronic cloud. In the second chapter we present the theoretical study of the oscillations in a magnetron operating in the Brillouin mode. The resonances that appear in experimental data stay difficult to explain.

  11. Optimization of pulsed DC PACVD parameters: Toward reducing wear rate of the DLC films

    Science.gov (United States)

    Ebrahimi, Mansoureh; Mahboubi, Farzad; Naimi-Jamal, M. Reza

    2016-12-01

    The effect of pulsed direct current (DC) plasma-assisted chemical vapor deposition (PACVD) parameters such as temperature, duty cycle, hydrogen flow, and argon/CH4 flow ratio on the wear behavior and wear durability of the diamond-like carbon (DLC) films was studied by using response surface methodology (RSM). DLC films were deposited on nitrocarburized AISI 4140 steel. Wear rate and wear durability of the DLC films were examined with the pin-on-disk method. Field emission scanning electron microscopy, Raman spectroscopy, and nanoindentation techniques were used for studying wear mechanisms, chemical structure, and hardness of the DLC films. RSM results show that duty cycle is one of the important parameters that affect the wear rate of the DLC samples. The wear rate of the samples deposited with a duty cycle of >75% decreases with an increase in the argon/CH4 ratio. In contrast, for a duty cycle of <65%, the wear rate increases with an increase in the argon/CH4 ratio. The wear durability of the DLC samples increases with an increase in the duty cycle, hydrogen flow, and argon/CH4 flow ratio at the deposition temperature between 85 °C and 110 °C. Oxidation, fatigue, abrasive wear, and graphitization are the wear mechanisms observed on the wear scar of the DLC samples deposited with the optimum deposition conditions.

  12. Chromium-doped DLC for implants prepared by laser-magnetron deposition.

    Science.gov (United States)

    Jelinek, Miroslav; Kocourek, Tomáš; Zemek, Josef; Mikšovský, Jan; Kubinová, Šárka; Remsa, Jan; Kopeček, Jaromir; Jurek, Karel

    2015-01-01

    Diamond-like carbon (DLC) thin films are frequently used for coating of implants. The problem of DLC layers lies in bad layer adhesion to metal implants. Chromium is used as a dopant for improvement of adhesion of DLC films. DLC and Cr-DLC layers were deposited on silicon, Ti6Al4V and CoCrMo substrates by a hybrid technology using combination of pulsed laser deposition (PLD) and magnetron sputtering. The topology of layers was studied using SEM, AFM and mechanical profilometer. Carbon and chromium content and concentration of trivalent and toxic hexavalent chromium bonds were determined by XPS and WDS. It follows from the scratch tests that Cr doping improved adhesion of DLC layers. Ethylene glycol, diiodomethane and deionized water were used to measure the contact angles. The surface free energy (SFE) was calculated. The antibacterial properties were studied using Pseudomonas aeruginosa and Staphylococcus aureus bacteria. The influence of SFE, hydrophobicity and surface roughness on antibacterial ability of doped layers is discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. High-rate deposition of Ta-doped SnO2 films by reactive magnetron sputtering using a Sn–Ta metal-sintered target

    International Nuclear Information System (INIS)

    Muto, Y.; Nakatomi, S.; Oka, N.; Iwabuchi, Y.; Kotsubo, H.; Shigesato, Y.

    2012-01-01

    Ta-doped SnO 2 films were deposited on glass substrate (either unheated or heated at 200 °C) by reactive magnetron sputtering with a Sn–Ta metal-sintered target using a plasma control unit (PCU) and mid-frequency (mf, 50 kHz) unipolar pulsing. The PCU feedback system precisely controlled the flow of the reactive and sputtering gases (O 2 and Ar, respectively) by monitoring either discharge impedance or the plasma emission of the atomic O* line at 777 nm. The planar target was connected to the switching unit, which was operated in unipolar pulse mode. Power density on the target was maintained at 4.4 W cm −2 during deposition. The lowest obtained resistivity for the films deposited on heated substrate was 6.4 × 10 −3 Ωcm, where the deposition rate was 250 nm min −1 .

  14. 75 FR 23571 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, DC-10-15, DC...

    Science.gov (United States)

    2010-05-04

    ... Airworthiness Directives; McDonnell Douglas Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10... amends Sec. 39.13 by adding the following new AD: 2010-09-12 McDonnell Douglas Corporation: Amendment 39... to McDonnell Douglas Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A...

  15. Pulsed laser illumination of photovoltaic cells

    Science.gov (United States)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  16. Detailed design of a 13 kA 13 kV dc solid-state turn-off switch

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1985-01-01

    An experimental facility for the study of electromagnetic effects in the First Wall-Blanket-shield (FWBS) systems of fusion reactors has been constructed at Argonne National Laboratory (ANL). In a test volume of 0.76 m 3 , a vertical, pulsed 5 kG dipole field (B -1 ) is perpendicular to a 10 kG solenoid field. Power supplies of 2.75 MW at 550 V dc and 5.5 MW at 550 V dc and a solid-state switch rated at 13 kA and 13 kV (169 MW) control the pulsed magnetic fields. The total stored energy in the coils is 2.6 MJ. This paper describes the design and construction features of the solid-state switching circuit which turns off a dc of 13 kA in approximately 82 μs and holds off voltages of < 13 kV

  17. Arc-discharge and magnetron sputtering combined equipment for nanocomposite coating deposition

    International Nuclear Information System (INIS)

    Koval, N.N.; Borisov, D.P.; Savostikov, V.M.

    2005-01-01

    It is known that characteristics of nanocomposite coatings produced by reactive magnetron sputtering undergo an essential influence on the following parameters such as original component composition of targets being sputtered, as well as abundance ratio of such components in the coatings deposited, relative content of inert and reactionary gases in a gas mixture used and a value of operating pressure in a chamber, substrate temperature, and a value of substrate bias potential, determining energy of ionized atoms, ionized atoms flow density, i.e. ion current density on a substrate. The multifactor character of production process of nanocomposite coatings with certain physical and mechanical properties demands a purposeful and complex control on all above-mentioned parameters. To solve such a problem, an arc-discharge and magnetron sputtering combined equipment including a vacuum chamber of approximately ∼ 0.5 m 3 with a built-in low-pressure plasma generator made on the basis of non-self-sustained discharge with a thermal cathode and a planar magnetron combined with two sputtered targets has been created. Construction of such a complex set-up provides both an autonomous mode of operation and simultaneous operation of an arc plasma generator and magnetron sputtering system. Magnetron sputtering of either one or two targets simultaneously is provided as well. An arc plasma generator enables ions current density control on a substrate in a wide range due to discharge current varying from 1 to 100 A. Energy of ions is also being controlled in a wide range by a negative bias potential from 0 to 1000 V applied to a substrate. The wide control range of gas plasma density of a arc discharge of approximately 10 9 -10 11 cm -3 and high uniformity of its distribution over the total volume of an operating chamber (about 15% error with regard to the mean value) provides a purposeful and simultaneous control either of magnetron discharge characteristics (operating pressure of

  18. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Damon Rafieian

    2015-09-01

    Full Text Available We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx<2, obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, whereas stoichiometric films formed anatase. This route therefore presents a formation route for rutile films via lower (<500 °C temperature pathways. The dynamics of the annealing process were followed by in situ ellipsometry, showing the optical properties transformation. The final crystal structures were identified by XRD. The anatase film obtained by this deposition method displayed high carriers mobility as measured by time-resolved microwave conductance. This also confirms the high photocatalytic activity of the anatase films.

  19. Scaled-Up Nonequilibrium Air Plasmas Generated by DC and Pulsed Discharges

    Science.gov (United States)

    2010-09-08

    memory effect - these electrons can remain from previous pulse thanks to the high f . During the short spark pulse, Rp drops down to few hundred ohms ...Morvova, E. Marode, and I. Morva. J. Phys. D: Appl. Phys., 33:3198, 2000. [23] Y Akishev, O Goossens, T Callebaut, C Leys , A Napartovich, and N

  20. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  1. Fiber-integrated tungsten disulfide saturable absorber (mirror) for pulsed fiber lasers

    Science.gov (United States)

    Chen, Hao; Li, Irene Ling; Ruan, Shuangchen; Guo, Tuan; Yan, Peiguang

    2016-08-01

    We propose two schemes for achieving tungsten disulfide (WS2)-based saturable absorber (SA) and saturable absorber mirror (SAM). By utilizing the pulsed laser deposition method, we grow the WS2 film on microfiber to form an evanescent field interaction SA device. Incorporating this SA device into a common ring-cavity erbium-doped fiber (EDF) laser, stably passive mode-locking can be achieved with pulse duration of 395 fs and signal-to-noise ratio of 64 dB. We also produce a fiber tip integrated WS2-SAM by utilizing the magnetron sputtering technique (MST). This new type of SAM combines the WS2 layer as SA and gold mirror as high reflective mirror. By employing the WS2-SAM, we construct the linear-cavity EDF lasers, and achieve passive mode-locking operation with pulse duration of ˜1 ns and SNR of ˜61 dB. We further achieve stably passive Q-switching operation with pulse duration of ˜160 ns and pulse energy of 54.4 nJ. These fiber-integrated SAs and SAMs have merits of compactness and reliability, paving the way for the development of new photonic devices such as SAs for pulsed laser technology.

  2. Understanding deposition rate loss in high power impulse magnetron sputtering: I. Ionization-driven electric fields

    International Nuclear Information System (INIS)

    Brenning, N; Huo, C; Raadu, M A; Lundin, D; Helmersson, U; Vitelaru, C; Stancu, G D; Minea, T

    2012-01-01

    The lower deposition rate for high power impulse magnetron sputtering (HiPIMS) compared with direct current magnetron sputtering for the same average power is often reported as a drawback. The often invoked reason is back-attraction of ionized sputtered material to the target due to a substantial negative potential profile, sometimes called an extended presheath, from the location of ionization toward the cathode. Recent studies in HiPIMS devices, using floating-emitting and swept-Langmuir probes, show that such extended potential profiles do exist, and that the electric fields E z directed toward the target can be strong enough to seriously reduce ion transport to the substrate. However, they also show that the potential drops involved can vary by up to an order of magnitude from case to case. There is a clear need to understand the underlying mechanisms and identify the key discharge variables that can be used for minimizing the back-attraction. We here present a combined theoretical and experimental analysis of the problem of electric fields E z in the ionization region part of HiPIMS discharges, and their effect on the transport of ionized sputtered material. In particular, we have investigated the possibility of a ‘sweet spot’ in parameter space in which the back-attraction of ionized sputtered material is low. It is concluded that a sweet spot might possibly exist for some carefully optimized discharges, but probably in a rather narrow window of parameters. As a measure of how far a discharge is from such a window, a Townsend product Π Townsend is proposed. A parametric analysis of Π Townsend shows that the search for a sweet spot is complicated by the fact that contradictory demands appear for several of the externally controllable parameters such as high/low working gas pressure, short/long pulse length, high/low pulse power and high/low magnetic field strength. (paper)

  3. Polymeric electrochemical element for adaptive networks: Pulse mode

    International Nuclear Information System (INIS)

    Smerieri, Anteo; Berzina, Tatiana; Erokhin, Victor; Fontana, M. P.

    2008-01-01

    An electrochemically controlled polymeric heterojunction working as a memristor, i.e., having memory properties, was investigated in pulse mode, mimicking synaptic behavior of signal transmission in biological systems. Influence of parameters such as pulse duration, interval between pulses, and value of potential base level was analyzed. Learning capabilities were shown to be reversible and repeatable for both potentiation and inhibition of signal transmission. The adaptive behavior of the element was investigated and was shown to be more efficient than the dc mode

  4. Design of long pulse/steady state negative hydrogen ion sources for fusion applications

    International Nuclear Information System (INIS)

    Prelec, K.

    1980-01-01

    By using parameters of ion sources when operating in a pulsed mode and without cooling (pulse length 2 . For the range of cathode power densities between 0.2 kW/cm 2 and 1 Kw/cm 2 , nucleated boiling has to be used for heat removal; below 0.2 kW/cm 2 water flow cooling suffices. Although this source should deliver 0.3 to 0.5 A of H - ions in a steady state operation and at full power, the other source, which has a magnetron geometry, is more promising. The latter incorporates two new features compared to first designs, geometrical focusing of fast, primary negative hydrogen ions from the cathode into the extraction slit, and a wider discharge gap in the back of the source. These two changes have resulted in an improvement of the power and gas efficiencies by a factor of 3 to 4 and in a reduction of the cathode power density by an order of magnitude. The source has water cooling for all the electrodes, because maximum power densities will not be higher than 0.2 kW/cm 2 . Very recently a modification of this magnetron source is being considered; it consists of plasma injection into the source from a hollow cathode discharge

  5. A high-current pulsed cathodic vacuum arc plasma source

    International Nuclear Information System (INIS)

    Oates, T.W.H.; Pigott, J.; Mckenzie, D.R.; Bilek, M.M.M.

    2003-01-01

    Cathodic vacuum arcs (CVAs) are well established as a method for producing metal plasmas for thin film deposition and as a source of metal ions. Fundamental differences exist between direct current (dc) and pulsed CVAs. We present here results of our investigations into the design and construction of a high-current center-triggered pulsed CVA. Power supply design based on electrolytic capacitors is discussed and optimized based on obtaining the most effective utilization of the cathode material. Anode configuration is also discussed with respect to the optimization of the electron collection capability. Type I and II cathode spots are observed and discussed with respect to cathode surface contamination. An unfiltered deposition rate of 1.7 nm per pulse, at a distance of 100 mm from the source, has been demonstrated. Instantaneous plasma densities in excess of 1x10 19 m -3 are observed after magnetic filtering. Time averaged densities an order of magnitude greater than common dc arc densities have been demonstrated, limited by pulse repetition rate and filter efficiency

  6. DC Home Appliances for DC Distribution System

    Directory of Open Access Journals (Sweden)

    MUHAMMAD KAMRAN

    2017-10-01

    Full Text Available This paper strengthens the idea of DC distribution system for DC microgrid consisting of a building of 50 apartments. Since the war of currents AC system has been dominant because of the paucity of research in the protection of the DC system. Now with the advance research in power electronics material and components, generation of electricity is inherently DC as by solar PV, fuel cell and thermoelectric generator that eliminates the rectification process. Transformers are replaced by the power electronics buck-boost converters. DC circuit breakers have solved the protection problems for both DC transmission and distribution system. In this paper 308V DC microgrid is proposed and home appliances (DC internal are modified to operate on 48V DC from DC distribution line. Instead of using universal and induction motors in rotary appliances, BLDC (Brushless DC motors are proposed that are highly efficient with minimum electro-mechanical and no commutation losses. Proposed DC system reduces the power conversion stages, hence diminishes the associated power losses and standby losses that boost the overall system efficiency. So in view of all this a conventional AC system can be replaced by a DC system that has many advantages by cost as well as by performance

  7. Understanding of self-terminating pulse generation using silicon controlled rectifier and RC load

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chris, E-mail: chrischang81@gmail.com; Karunasiri, Gamani, E-mail: karunasiri@nps.edu [Department of Physics, Naval Postgraduate School, Monterey, CA 93943 (United States); Alves, Fabio, E-mail: falves@alionscience.com [Alion Science and Technology at NPS, Monterey, CA 93943 (United States)

    2016-01-15

    Recently a silicon controlled rectifier (SCR)-based circuit that generates self-terminating voltage pulses was employed for the detection of light and ionizing radiation in pulse mode. The circuit consisted of a SCR connected in series with a RC load and DC bias. In this paper, we report the investigation of the physics underlying the pulsing mechanism of the SCR-based. It was found that during the switching of SCR, the voltage across the capacitor increased beyond that of the DC bias, thus generating a reverse current in the circuit, which helped to turn the SCR off. The pulsing was found to be sustainable only for a specific range of RC values depending on the SCR’s intrinsic turn-on/off times. The findings of this work will help to design optimum SCR based circuits for pulse mode detection of light and ionizing radiation without external amplification circuitry.

  8. Development of a dc, broad beam, Mevva ion source

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; MacGill, R.A.

    1991-09-01

    We are developing an embodiment of metal vapor vacuum arc (Mevva) ion source which will operate dc and have very large area beam. In preliminary testing, a dc titanium ion beam was formed with a current of approximately 0.6 amperes at an extraction voltage of 9kV (about 18 keV ion energy, by virtue of the ion charge state distribution) and using an 18 cm diameter set of multi-aperture. Separately, we have tested and formed beam from a 50 cm diameter (2000 cm 2 ) set of grids using a pulsed plasma gun. This configuration appears to be very efficient in terms of plasma utilization, and we have formed beams with diameter 33 cm (FWHM) and ion current up to 7 amperes at an extraction voltage of 50 kV (about 100 keV mean ion energy) and up to 20 amperes peak at the current overshoot part of the beam pulse. Here we describe this Part Of our Mevva development program and summarize the results obtained to-date

  9. Cathode cooling systems for the magnetron and Penning H- sources: a progress report of work at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    McKenzie-Wilson, R.B.

    1977-01-01

    The magnetron/Penning H - sources being developed at Brookhaven National Laboratory have produced ion currents up to 1 A with pulse lengths of 10 ms. The pulse length is limited by heating of the cathode surface. Cathode thermal conditions were investigated and lead to the conclusion that a cathode cooling system must be capable of handling 3 kW cm -2 of heated cathode surface. A review of cooling fluid requirements coupled with an examination of possible cooling fluids, leads to the conclusion that demineralized water is a suitable cooling fluid when used under pressurized nucleated boiling conditions. A correlation is used to show that heat-flux of 1.25 kW cm -2 could be removed using current technology and that this heat flux may be extended to 3 kW cm -2 by use of the Hyper-Vapotron effect. The temperature of the working surface of the cathode may be varied over a small temperature range by varying the system pressure during operation

  10. Plasma diagnostics during magnetron sputtering of aluminum doped zinc oxide

    DEFF Research Database (Denmark)

    Stamate, Eugen; Crovetto, Andrea; Sanna, Simone

    2016-01-01

    Plasma parameters during magnetron sputtering of aluminum-doped zinc oxide are investigated with optical emission spectroscopy, electrostatic probes and mass spectrometry with the aim of understanding the role of negative ions of oxygen during the film growth and improving the uniformity of the f......Plasma parameters during magnetron sputtering of aluminum-doped zinc oxide are investigated with optical emission spectroscopy, electrostatic probes and mass spectrometry with the aim of understanding the role of negative ions of oxygen during the film growth and improving the uniformity...

  11. Non-channel magnetron gun as the electron source for resonance linear accelerator

    International Nuclear Information System (INIS)

    Ivanov, G.M.; Makhnenko, L.A.; Cherenshchikov, S.A.

    1999-01-01

    Studies on the magnetron gun with a cold cathode being part of linear accelerator on the travelling wave are described. Two modes of the gun operation differing by presence of UHF field of the pre-buncher near the gun are observed. In the mode without UHF field the short (about 2 ns) pulses of accelerated electrons with amplitude up to 0.5 A at the gun current up to 20 A were obtained. The presence of UHF field near the gun makes it possible to obtain the beam of higher duration (up to 1.0 μs), but with current up to 20 mA at the accelerator outlet and up to 1 A at the gun outlet. The mechanism of the gun operation is concerned with the secondary-electron current increase and setting self-sustaining secondary emission. Gun characteristics under study are acceptable for the purposes of injection into accelerator [ru

  12. Family of multiport bidirectional DC-DC converters

    NARCIS (Netherlands)

    Tao, H.; Kotsopoulos, A.; Duarte, J.L.; Hendrix, M.A.M.

    2006-01-01

    Multiport DC-DC converters are of potential interest in applications such as generation systems utilising multiple sustainable energy sources. A family of multiport bidirectional DC-DC converters derived from a general topology is presented. The topology shows a combination of DC-link and magnetic

  13. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, D., E-mail: daniel.cristea@unitbv.ro [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Crisan, A. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Cretu, N. [Electrical Engineering and Applied Physics Department, Transilvania University, 500036 Brasov (Romania); Borges, J. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710 - 057 Braga (Portugal); Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Lopes, C.; Cunha, L. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710 - 057 Braga (Portugal); Ion, V.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, “Photonic Processing of Advanced Materials” Group, PO Box MG-16, RO 77125 Magurele-Bucharest (Romania); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Apreutesei, M. [MATEIS Laboratory-INSA de Lyon, 21 Avenue Jean Capelle, 69621 Villeurbanne cedex (France); Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, Ecole Centrale de Lyon, Ecully F-69134 (France); Munteanu, D. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania)

    2015-11-01

    Highlights: • Tantalum oxynitride thin films have been deposited by magnetron sputtering, in various configurations. • The rising of the reactive gases mixture flow has the consequence of a gradual increase in the non-metallic content in the films, which results in a 10 orders of magnitude resistivity domain. • The higher resistivity films exhibit dielectric constants up to 41 and quality factors up to 70. - Abstract: The main purpose of this work is to present and to interpret the change of electrical properties of Ta{sub x}N{sub y}O{sub z} thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N{sub 2} and O{sub 2}, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, −50 V or −100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance Ta{sub x}N{sub y}O{sub z} films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric Ta{sub x}N{sub y}O{sub z} films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.

  14. Assessment of an Average Controller for a DC/DC Converter via Either a PWM or a Sigma-Delta-Modulator

    Directory of Open Access Journals (Sweden)

    R. Silva-Ortigoza

    2014-01-01

    Full Text Available Sliding mode control is a discontinuous control technique that is, by its nature, appropriate for controlling variable structure systems, such as the switch regulated systems employed in power electronics. However, when designing control laws based on the average models of these systems a modulator is necessary for their experimental implementation. Among the most widely used modulators in power electronics are the pulse width modulation (PWM and, more recently, the sigma-delta-modulator (Σ-Δ-modulator. Based on the importance of achieving an appropriate implementation of average control laws and the relevance of the trajectory tracking task in DC/DC power converters, for the first time, this research presents the assessment of the experimental results obtained when one of these controllers is implemented through either a PWM or a Σ-Δ-modulator to perform such a task. A comparative assessment based on the integral square error (ISE index shows that, at frequencies with similar efficiency, the Σ-Δ-modulator provides a better tracking performance for the DC/DC Buck converter. In this paper, an average control based on differential flatness was used to perform the experiments. It is worth mentioning that a different trajectory tracking controller could have been selected for this research.

  15. Effect of the degree of high power impulse magnetron sputtering utilisation on the structure and properties of TiN films

    Energy Technology Data Exchange (ETDEWEB)

    Hovsepian, Papken Eh.; Sugumaran, Arunprabhu A., E-mail: Arunprabhu.ArunachalamSugumaran@student.shu.ac.uk; Purandare, Yashodhan; Loch, Daniel A.L.; Ehiasarian, Arutiun P.

    2014-07-01

    TiN films were deposited using high power impulse magnetron sputtering (HIPIMS) enabled four cathode industrial size coating system equipped with HIPIMS power supplies. The standard version of this system allows control over the ion bombardment during coating growth by varying the strength of the electromagnetic field of the unbalancing coils and bias voltage applied to the substrate. The coatings were produced in different coating growth conditions achieved in combined HIPIMS — direct current (dc) unbalanced magnetron sputtering (HIPIMS/UBM) processes where HIPIMS was used as an additional tool to manipulate the ionisation degree in the plasma. Four cathode combinations were explored with increasing contribution of HIPIMS namely 4UBM (pure UBM), 1HIPIMS + 3UBM, 2HIPIMS + 2UBM and 2HIPIMS (pure HIPIMS) to deposit TiN coatings. Optical emission spectroscopy (OES) measurements were carried out to examine the plasma generated by the various combinations of HIPIMS and UBM cathodes. The micro-structural study was done by scanning electron microscopy (SEM). X-ray diffraction (XRD) technique was used to calculate the residual stress and texture parameter. It has been revealed that the residual stress can be controlled in a wide range from − 0.22 GPa to − 11.67 GPa by intelligent selection of the degree of HIPIMS utilisation, strength of the electromagnetic field of the unbalancing coils and the bias voltage applied to the substrate while maintaining the stoichiometry of the coatings. The effect of the degree of HIPIMS utilisation on the microstructure, texture and residual stress is discussed. Combining HIPIMS with dc-UBM sputtering is also seen as an effective tool for improving the productivity of the deposition process. - Highlights: • High {Ti"1"+} in the plasma with increasing number of HIPIMS sources • Residual stress can be manipulated in a wide range. • Texture can be altered. • The 2HIPIMS + 2UBM combination appears to be the most advantageous.

  16. Towards higher stability of resonant absorption measurements in pulsed plasmas.

    Science.gov (United States)

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  17. Towards higher stability of resonant absorption measurements in pulsed plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Michiels, Matthieu [Materia Nova Research Center, Parc Initialis, B-7000 Mons (Belgium); Snyders, Rony [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Materia Nova Research Center, Parc Initialis, B-7000 Mons (Belgium)

    2015-12-15

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called “dynamic source triggering,” between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  18. Design of a high power, resonant converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    This paper presents a design procedure and loss estimation for a high power, medium voltage series resonant converter (entitled SRC#), intended for application in megawatt medium-voltage DC wind turbines. The converter is operated with a novel method of operation, entitled pulse removal technique...

  19. Deposition of hematite Fe.sub.2./sub.O.sub.3./sub. thin film by DC pulsed magnetron and DC pulsed hollow cathode sputtering system

    Czech Academy of Sciences Publication Activity Database

    Hubička, Zdeněk; Kment, Štěpán; Olejníček, Jiří; Čada, Martin; Kubart, T.; Brunclíková, Michaela; Kšírová, Petra; Adámek, Petr; Remeš, Zdeněk

    2013-01-01

    Roč. 549, Dec (2013), s. 184-191 ISSN 0040-6090 R&D Projects: GA ČR GAP108/12/2104; GA MŠk LH12043 Grant - others:AVČR(CZ) M100101215 Institutional support: RVO:68378271 Keywords : HIPIMS * thin films * hollow cathode Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.867, year: 2013

  20. The importance of an external circuit in a particle-in-cell/Monte Carlo collisions model for a direct current planar magnetron

    International Nuclear Information System (INIS)

    Bultinck, E.; Kolev, I.; Bogaerts, A.; Depla, D.

    2008-01-01

    In modeling direct current (dc) discharges, such as dc magnetrons, a current-limiting device is often neglected. In this study, it is shown that an external circuit consisting of a voltage source and a resistor is inevitable in calculating the correct cathode current. Avoiding the external circuit can cause the current to converge (if at all) to a wrong volt-ampere regime. The importance of this external circuit is studied by comparing the results with those of a model without current-limiting device. For this purpose, a 2d3v particle-in-cell/Monte Carlo collisions model was applied to calculate discharge characteristics, such as cathode potential and current, particle fluxes and densities, and potential distribution in the plasma. It is shown that the calculated cathode current is several orders of magnitude lower when an external circuit is omitted, leading to lower charged particle fluxes and densities, and a wider plasma sheath. Also, it was shown, that only simulations with external circuit can bring the cathode current into a certain plasma regime, which has its own typical properties. In this work, the normal and abnormal regimes were studied