WorldWideScience

Sample records for pulse x-ray source

  1. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  2. Short X-ray pulses from third-generation light sources.

    Science.gov (United States)

    Stepanov, A G; Hauri, C P

    2016-01-01

    High-brightness X-ray radiation produced by third-generation synchrotron light sources (TGLS) has been used for numerous time-resolved investigations in many different scientific fields. The typical time duration of X-ray pulses delivered by these large-scale machines is about 50-100 ps. A growing number of time-resolved studies would benefit from X-ray pulses with two or three orders of magnitude shorter duration. Here, techniques explored in the past for shorter X-ray pulse emission at TGLS are reviewed and the perspective towards the realisation of picosecond and sub-picosecond X-ray pulses are discussed.

  3. The Radiation Dose Determination of the Pulsed X-ray Source

    Science.gov (United States)

    Miloichikova, I.; Stuchebrov, S.; Zhaksybayeva, G.; Wagner, A.

    2014-10-01

    In this paper the radiation dose measurement technique of the pulsed X-ray source RAP-160-5 is described. The dose rate measurement results from the pulsed X-ray beams at the different distance between the pulsed X-ray source focus and the detector obtained with the help of the thermoluminescent detectors DTL-02, the universal dosimeter UNIDOS E equipped with the plane-parallel ionization chamber type 23342, the dosimeter-radiometer DKS-96 and the radiation dosimeter AT 1123 are demonstrated. The recommendations for the dosimetry measurements of the pulsed X-ray generator RAP-160-5 under different radiation conditions are proposed.

  4. Pile-up corrections in laser-driven pulsed x-ray sources

    CERN Document Server

    Hernández, Guillermo

    2016-01-01

    A formalism for treating the pile-up produced in laser-driven pulsed x-ray sources has been developed. It allows the direct use of x-ray spectroscopy without artificially decreasing the number of counts in the detector. The influence of the pile-up on the overestimation of temperature parameters is shown up.

  5. Generating Picosecond X-Ray Pulses with Beam Manipulation in Synchrotron Light Sources

    CERN Document Server

    Guo, Weiming; Harkay, Katherine C; Sajaev, Vadim; Yang Bing Xin

    2005-01-01

    The length of x-ray pulses generated by storage ring light sources is usually tens of picoseconds. For example, the value is 40 ps rms at the Advanced Photon Source (APS). Methods of x-ray pulse compression are of great interest at the APS. One possible method, per Zholents et al., is to tilt the electron bunch with deflecting rf cavities.* Alternately, we found that the electron bunch can develop a tilt after application of a vertical kick in the presence of nonzero chromaticity. After slicing, the x-ray pulse length is determined by the tilt angle and the vertical beam size. In principal, sub-picosecond pulses can be obtained at APS. To date we have observed 6 ps rms visible light pulses with a streak camera. Efforts are underway to attempt further compression of the x-ray pulse and to increase the brilliance. This method can be easily applied to any storage ring light sources to generate x-ray pulses up to two orders of magnitude shorter than the electron bunch length. In this paper, we will present the th...

  6. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S G; Barty, C P J; Betts, S M; Brown, W J; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Hartemann, F V; Kuba, J; LaSage, G P; Rosenzweig, J B; Slaughter, D R; Springer, P T; Tremaine, A M

    2003-07-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.

  7. Wide-range monitor for pulsed x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Kaifer, R.C.; Jenkins, T.E.; Straume, T.

    1981-10-12

    A monitoring instrument based on a high-pressure ionization chamber has been developed that measures average dose rates as low as 0.1 mR/h and responds linearly to short pulses at dose rates up to 1.2 x 10/sup 10/ R/h. Its sensitivity can be remotely changed by a factor of 10/sup 4/, to enable accurate measurement of both background radiation and very high intensities such as can be expected from accelerator beam-spills. The instrument's detector-electrometer pulse response was measured using a dose-calibrated field-emission accelerator having a 30-ns pulse width.

  8. Ultrafast X-ray Science at the Sub-Picosecond Pulse Source

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Kelly J.; /SLAC, SSRL

    2005-09-30

    The ultrafast, high brightness x-ray free electron laser (XFEL) sources of the future have the potential to revolutionize the study of time dependent phenomena in the natural sciences. These linear accelerator (linac) sources will generate femtosecond (fs) x-ray pulses with peak flux comparable to conventional lasers, and far exceeding all other x-ray sources. The Stanford Linear Accelerator Center (SLAC) has pioneered the development of linac science and technology for decades, and since 2000 SLAC and the Stanford Synchrotron Radiation Laboratory (SSRL) have focused on the development of linac based ultrafast electron and x-ray sources. This development effort has led to the creation of a new x-ray source, called the Sub-Picosecond Pulse Source (SPPS), which became operational in 2003 [1]. The SPPS represents the first step toward the world's first hard x-ray free electron laser (XFEL), the Linac Coherent Light Source (LCLS), due to begin operation at SLAC in 2009. The SPPS relies on the same linac-based acceleration and electron bunch compression schemes that will be used at the LCLS to generate ultrashort, ultrahigh peak brightness electron bunches [2]. This involves creating an energy chirp on the electron bunch during acceleration and subsequent compression of the bunch in a series of energy-dispersive magnetic chicanes to create 80 fs electron pulses. The SPPS has provided an excellent opportunity to demonstrate the viability of these electron bunch compression schemes and to pursue goals relevant to the utilization and validation of XFEL light sources.

  9. Characterisation of flash X-ray source generated by Kali-1000 Pulse Power System

    Science.gov (United States)

    Satyanarayana, N.; Durga Prasada Rao, A.; Mittal, K. C.

    2016-02-01

    The electron beam-driven Rod Pinch Diode (RPD) is presently fielded on KALI-1000 Pulse Power System at Bhabha Atomic Research Centre, Visakhapatnam and is a leading candidate for future flash X-ray radiographic sources. The diode is capable of producing less than 2-mm radiation spot sizes and greater than 350 milli rads of dose measured at 1 m from the X-ray source. KALI-1000 Pulse Power Source is capable of delivering up to 600 kV using a Tesla Transformer with Demineralized Insulated Transmission Line (DITL), the diode typically operates between 250-330 kV . Since the radiation dose has a power-law dependence on diode voltage, this limits the dose production on KALI-1000 system. Radiation dose with angular variation is measured using thermoluminescent detectors (TLD's) and the X-ray spot size is measured using pin hole arrangement with image plate (IP) to obtain the time-integrated source profile as well as a time-resolved spot diagnostic. An X-ray pinhole camera was used to pick out where the energetic e-beam connects to the anode. Ideally the diode should function such that the radiation is emitted from the tip. The camera was mounted perpendicular to the machine's axis to view the radiation from the tip. Comparison of the spot sizes of the X-ray sources obtained by the pin hole and rolled edge arrangements was carried and results obtained by both the techniques are with in ± 10% of the average values.

  10. Generating picosecond x-ray pulses in synchrotron light sources using dipole kickers

    Directory of Open Access Journals (Sweden)

    W. Guo

    2007-02-01

    Full Text Available The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of nonzero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained from a 27-ps electron bunch at the Advanced Photon Source. Based on this principle, we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1–2 kHz, which can be used for pump-probe experiments.

  11. Measurement of the energy and power radiated by a pulsed blackbody x-ray source

    Directory of Open Access Journals (Sweden)

    H. C. Ives

    2006-11-01

    Full Text Available We have developed a diagnostic system that measures the spectrally integrated (i.e. the total energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38×38 square array of 10-μm-diameter pinholes in a 50-μm-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of ∼1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode’s output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and—on every shot—provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects of the sensitivity of an array-diode combination is presented.

  12. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  13. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90{sup o} Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated {approx} 300 fs, 30 keV (0.4 {angstrom}) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has

  14. Generation of Short X-Ray Pulses Using Crab Cavities at the Advanced Photon Source

    CERN Document Server

    Harkay, Katherine C; Chae, Yong-Chul; Decker, Glenn; Dejus, Roger J; Emery, Louis; Guo, Weiming; Horan, Douglas; Kim, Kwang-Je; Kustom, Robert; Mills, Dennis M; Milton, Stephen; Pile, Geoffery; Sajaev, Vadim; Shastri, Sarvjit D; Waldschmidt, Geoff J; White, Marion; Yang Bing Xin; Zholents, Alexander

    2005-01-01

    There is growing interest within the user community to utilize the pulsed nature of synchrotron radiation from storage ring sources. Conventional third-generation light sources can provide pulses on the order of 100 ps but typically cannot provide pulses of about 1 ps that some users now require to advance their research programs. However, it was recently proposed by A. Zholents et al. to use rf orbit deflection to generate subpicosecond X-ray pulses.* In this scheme, two crab cavities are used to deliver a longitudinally dependent vertical kick to the beam, thus exciting longitudinally correlated vertical motion of the electrons. This makes it possible to spatially separate the radiation coming from different longitudinal parts of the beam. An optical slit can then be used to slice out a short part of the radiation pulse, or an asymetrically cut crystal can be used to compress the radiation in time. In this paper, we present a feasibility study of this method applied to the Advanced Photon Source. We find th...

  15. Status of the Short-Pulse X-ray Project at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A; Berenc, T G; Borland, M; Brajuskovic, B; Bromberek, D J; Carwardine, J; Decker, G; Emery, L; Fuerst, J D; Grelick, A E; Horan, D; Kaluzny, J; Lenkszus, F; Lill, R M; Liu, J; Ma, H; Sajaev, V; Smith, T L; Stillwell, B K; Waldschmidt, G J; Wu, G; Yang, B X; Yang, Y; Zholents, A; Byrd, J M; Doolittle, L R; Huang, G; Cheng, G; Ciovati, G; Dhakal, P; Eremeev, G V; Feingold, J J; Geng, R L; Henry, J; Kneisel, P; Macha, K; Mammosser, J D; Matalevich, J; Palczewski, A D; Rimmer, R A; Wang, H; Wilson, K M; Wiseman, M; Li, Z

    2012-07-01

    The Advanced Photon Source Upgrade (APS-U) Project at Argonne will include generation of short-pulse x-rays based on Zholents deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. In collaboration with Jefferson Laboratory, we are prototyping and testing a number of single-cell deflecting cavities and associated auxiliary systems with promising initial results. In collaboration with Lawrence Berkeley National Laboratory, we are working to develop state-of-the-art timing, synchronization, and differential rf phase stability systems that are required for SPX. Collaboration with Advanced Computations Department at Stanford Linear Accelerator Center is looking into simulations of complex, multi-cavity geometries with lower- and higher-order modes waveguide dampers using ACE3P. This contribution provides the current R&D status of the SPX project.

  16. Developments of compact pulsed-power system toward X-ray sources

    Directory of Open Access Journals (Sweden)

    Miyamoto Takuya

    2013-11-01

    Full Text Available In order to generate X-rays from X-pinch, the peak current and current-rising time required are estimated to be 100 kA and 100 ns, respectively. To obtain these parameters, we developed a pulsed-power system, which consists of a parallelized pulse-forming network (PFN. The 20 PFN modules of the system were driven at a charging voltage of 20 kV by a thin copper wire of load resistance. The results showed that the current and current-rising time are 18 kA and 107 ns, respectively. The wire/plasma temperature is 6.9 eV. The pulsed-power system is expected to generate X-rays from X-pinch by the proposed system. This can be achieved by raising the voltage and increasing the number of PFN modules.

  17. X-ray lithography source

    Science.gov (United States)

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  18. Radiography using a dense plasma focus device as a source of pulsed X-rays

    Science.gov (United States)

    Herrera, Julio; Castillo, Fermín; Gamboa, Isabel; Rangel, José

    2007-11-01

    Soft and hard X-ray emissions have been studied in the FN-II, which is a small dense plasma focus machine (5 kJ), operating at the Instituto de Ciencias Nucleares, UNAM, using aluminum filtered pin-hole cameras. Their angular distribution has been measured using TLD-200 dosimeters [1]. Their temporal evolution has been observed by means of a PIN diode, and scinltillators coupled to photomultipliers outside the discharge chamber. The X rays source can be concentrated by placing a needle on the end of the electrode. X-rays crossing across a 300 micron aluminum window, through the axis of the machine, can be used to obtain high contrast radiographs, with an average dose of 0.4 mGy per shot. In contrast, the average dose with a hollow cathode is 0.2 mGy per shot. This work is partially supported by grant IN105705 de la DGAPA-UNAM. [1] F. Castillo, J.J.E. Herrera, J. Rangel, I. Gamboa, G. Espinosa y J.I. Golzarri ``Angular Distribution of fusion products and X-rays emitted by a small dense plasma focus machine'' Journal of Applied Physics 101 013303-1-7 (2007).

  19. CELESTIAL X-RAY SOURCES.

    Science.gov (United States)

    sources, (4) the physical conditions in the pulsating x-ray source in the Crab Nebula , and (5) miscellaneous related topics. A bibliography of all work performed under the contract is given. (Author)

  20. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  1. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.

    Science.gov (United States)

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S; Cryan, James P; Siefermann, Katrin R; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P; Zegkinoglou, Ioannis; Fraund, Matthew W; Khurmi, Champak; Hertlein, Marcus P; Wright, Travis W; Huse, Nils; Schoenlein, Robert W; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A; Rude, Bruce S; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  2. Demonstration of a long pulse X-ray source at the National Ignition Facility

    Science.gov (United States)

    May, M. J.; Opachich, Y. P.; Kemp, G. E.; Colvin, J. D.; Barrios, M. A.; Widmann, K. W.; Fournier, K. B.; Hohenberger, M.; Albert, F.; Regan, S. P.

    2017-04-01

    A long duration high fluence x-ray source has been developed at the National Ignition Facility (NIF). The target was a 14.4 mm tall, 4.1 mm diameter, epoxy walled, gas filled pipe. Approximately 1.34 MJ from the NIF laser was used to heat the mixture of (55:45) Kr:Xe at 1.2 atm (˜5.59 mg/cm3) to emit in a fairly isotropic radiant intensity of 400-600 GW/sr from the Ephoton = 3-7 keV spectral range for a duration of ≈ 14 ns. The HYDRA simulated radiant intensities were in reasonable agreement with experiments but deviated at late times.

  3. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    Science.gov (United States)

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  4. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  5. Energy spectrum measurement of high power and high energy(6 and 9 MeV) pulsed x-ray source for industrial use

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Hiroyuki [Hitachi, Ltd. Power Systems Company, Ibaraki (Japan); Murata, Isao [Graduate School of Engineering, Osaka University, Osaka (Japan)

    2016-06-15

    Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

  6. Demonstration of a time-resolved x-ray scattering instrument utilizing the full-repetition rate of x-ray pulses at the Pohang Light Source

    Science.gov (United States)

    Jo, Wonhyuk; Eom, Intae; Landahl, Eric C.; Lee, Sooheyong; Yu, Chung-Jong

    2016-03-01

    We report on the development of a new experimental instrument for time-resolved x-ray scattering (TRXS) at the Pohang Light Source (PLS-II). It operates with a photon energy ranging from 5 to 18 keV. It is equipped with an amplified Ti:sappahire femtosecond laser, optical diagnostics, and laser beam delivery for pump-probe experiments. A high-speed single-element detector and high trigger-rate oscilloscope are used for rapid data acquisition. While this instrument is capable of measuring sub-nanosecond dynamics using standard laser pump/x-ray probe techniques, it also takes advantage of the dense 500 MHz standard fill pattern in the PLS-II storage ring to efficiently record nano-to-micro-second dynamics simultaneously. We demonstrate this capability by measuring both the (fast) impulsive strain and (slower) thermal recovery dynamics of a crystalline InSb sample following intense ultrafast laser excitation. Exploiting the full repetition rate of the storage ring results in a significant improvement in data collection rates compared to conventional bunch-tagging methods.

  7. Characterization of continuous and pulsed emission modes of a hybrid micro focus x-ray source for medical imaging applications

    Science.gov (United States)

    Ghani, Muhammad U.; Wong, Molly D.; Ren, Liqiang; Wu, Di; Zheng, Bin; Rong, John. X.; Wu, Xizeng; Liu, Hong

    2017-05-01

    The aim of this study was to quantitatively characterize a micro focus x-ray tube that can operate in both continuous and pulsed emission modes. The micro focus x-ray source (Model L9181-06, Hamamatsu Photonics, Japan) has a varying focal spot size ranging from 16 μm to 50 μm as the source output power changes from 10 to 39 W. We measured the source output, beam quality, focal spot sizes, kV accuracy, spectra shapes and spatial resolution. Source output was measured using an ionization chamber for various tube voltages (kVs) with varying current (μA) and distances. The beam quality was measured in terms of half value layer (HVL), kV accuracy was measured with a non-invasive kV meter, and the spectra was measured using a compact integrated spectrometer system. The focal spot sizes were measured using a slit method with a CCD detector with a pixel pitch of 22 μm. The spatial resolution was quantitatively measured using the slit method with a CMOS flat panel detector with a 50 μm pixel pitch, and compared to the qualitative results obtained by imaging a contrast bar pattern. The focal spot sizes in the vertical direction were smaller than that of the horizontal direction, the impact of which was visible when comparing the spatial resolution values. Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam quality, spectra shape and spatial resolution effects. There were no significantly large differences, thus providing the motivation for future studies to design and develop stable and robust cone beam imaging systems for various diagnostic applications.

  8. X-ray Chirped Pulse Amplification: towards GW Soft X-ray Lasers

    Directory of Open Access Journals (Sweden)

    Marta Fajardo

    2013-07-01

    Full Text Available Extensive modeling of the seeding of plasma-based soft X-ray lasers is reported in this article. Seminal experiments on amplification in plasmas created from solids have been studied in detail and explained. Using a transient collisional excitation scheme, we show that a 18 µJ, 80 fs fully coherent pulse is achievable by using plasmas pumped by a compact 10 Hz laser. We demonstrate that direct seeding of plasmas created by nanosecond lasers is not efficient. Therefore, we propose and fully study the transposition to soft X-rays of the Chirped Pulse Amplification (CPA technique. Soft X-ray pulses with energy of 6 mJ and 200 fs duration are reachable by seeding plasmas pumped by compact 100 J, sub-ns, 1 shot/min lasers. These soft X-ray lasers would reach GW power, corresponding to an increase of 100 times as compared to the highest peak power achievable nowadays in the soft X-ray region (30 eV–1 keV. X-ray CPA is opening new horizon for soft x-ray ultra-intense sources.

  9. Temporal synchronization of GHz repetition rate electron and laser pulses for the optimization of a compact inverse-Compton scattering x-ray source

    CERN Document Server

    Hadmack, Michael R; Madey, John M J; Kowalczyk, Jeremy M D

    2014-01-01

    The operation of an inverse-Compton scattering source of x-rays or gamma-rays requires the precision alignment and synchronization of highly focused electron bunches and laser pulses at the collision point. The arrival times of electron and laser pulses must be synchronized with picosecond precision. We have developed an RF synchronization technique that reduces the initial timing uncertainty from 350 ps to less than 2 ps, greatly reducing the parameter space to be optimized while commissioning the x-ray source. We describe the technique and present measurements of its performance.

  10. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  11. Ultrafast X-ray pulse measurement method

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2010-01-01

    In this paper we describe a measurement technique capable of resolving femtosecond X-ray pulses from XFEL facilities. Since these ultrashort pulses are themselves the shortest event available, our measurement strategy is to let the X-ray pulse sample itself. Our method relies on the application of a "fresh" bunch technique, which allows for the production of a seeded X-ray pulse with a variable delay between seed and electron bunch. The shot-to-shot averaged energy per pulse is recorded. It turns out that one actually measures the autocorrelation function of the X-ray pulse, which is related in a simple way to the actual pulse width. For implementation of the proposed technique, it is sufficient to substitute a single undulator segment with a short magnetic chicane. The focusing system of the undulator remains untouched, and the installation does not perturb the baseline mode of operation. We present a feasibility study and we make exemplifications with typical parameters of an X-ray FEL.

  12. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-05-06

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to the signal initiating a process in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe schemes for achieving accurate timing of femtosecond x-ray synchrotron radiation pulses relative to a pump laser, where x-rays pulses of <100 fs duration are generated from the proposed LUX source based on a recirculating superconducting linac. We present a description of the timing signal generation and distribution systems to minimize timing jitter of the x-rays relative to the experimental lasers.

  13. Coherent-pulse 2D crystallography using a free-electron laser x-ray source.

    Science.gov (United States)

    Mancuso, A P; Schropp, A; Reime, B; Stadler, L-M; Singer, A; Gulden, J; Streit-Nierobisch, S; Gutt, C; Grübel, G; Feldhaus, J; Staier, F; Barth, R; Rosenhahn, A; Grunze, M; Nisius, T; Wilhein, T; Stickler, D; Stillrich, H; Frömter, R; Oepen, H-P; Martins, M; Pfau, B; Günther, C M; Könnecke, R; Eisebitt, S; Faatz, B; Guerassimova, N; Honkavaara, K; Kocharyan, V; Treusch, R; Saldin, E; Schreiber, S; Schneidmiller, E A; Yurkov, M V; Weckert, E; Vartanyants, I A

    2009-01-23

    Coherent diffractive imaging for the reconstruction of a two-dimensional (2D) finite crystal structure with a single pulse train of free-electron laser radiation at 7.97 nm wavelength is demonstrated. This measurement shows an advance on traditional coherent imaging techniques by applying it to a periodic structure. It is also significant that this approach paves the way for the imaging of the class of specimens which readily form 2D, but not three-dimensional crystals. We show that the structure is reconstructed to the detected resolution, given an adequate signal-to-noise ratio.

  14. X-ray pulse wavefront metrology using speckle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Berujon, Sebastien, E-mail: berujon@esrf.eu; Ziegler, Eric; Cloetens, Peter [European Synchrotron Radiation Facility, BP-220, F-38043 Grenoble (France)

    2015-05-09

    The theoretical description and experimental implementation of a speckle-tracking-based instrument which permits the characterisation of X-ray pulse wavefronts. An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology.

  15. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  16. Globular Cluster X-ray Sources

    CERN Document Server

    Verbunt, F

    2004-01-01

    After a brief historical overview we discuss the luminous X-ray sources in globular clusters of our Galaxy. This is followed by an overview of the very luminous X-ray sources studied in globular clusters of 14 other galaxies, and a discussion of their formation and the relation to X-ray sources outside globular clusters. We describe the discovery and classification of low-luminosity X-ray sources, and end the review with some remarks on the formation and evolution of X-ray sources in globular clusters. Observational results are summarized in three tables. Comments are very welcome. Please send them to F.W.M.Verbunt@astro.uu.nl and lewin@mit.edu.

  17. The relationship between hard X-ray pulse timings and the locations of footpoint sources during solar flares

    CERN Document Server

    Inglis, A R; 10.1088/0004-637X/748/2/139

    2013-01-01

    The cause of quasi-periodic pulsations (QPP) in solar flares remains the subject of debate. Recently, Nakariakov & Zimovets (2011) proposed a new model suggesting that, in two-ribbon flares, such pulsations could be explained by propagating slow waves. These waves may travel obliquely to the magnetic field, reflect in the chromosphere and constructively interfere at a spatially separate site in the corona, leading to quasi-periodic reconnection events progressing along the flaring arcade. Such a slow wave regime would have certain observational characteristics. We search for evidence of this phenomenon during a selection of two-ribbon flares observed by RHESSI, SOHO and TRACE; the flares of 2002 November 9, 2005 January 19 and 2005 August 22. We were not able to observe a clear correlation between hard X-ray footpoint separations and pulse timings during these events. Also, the motion of hard X-ray footpoints is shown to be continuous within the observational error, whereas a discontinuous motion might be...

  18. Nanomaterial-based x-ray sources

    Science.gov (United States)

    Cole, Matthew T.; Parmee, R. J.; Milne, William I.

    2016-02-01

    Following the recent global excitement and investment in the emerging, and rapidly growing, classes of one and two-dimensional nanomaterials, we here present a perspective on one of the viable applications of such materials: field electron emission based x-ray sources. These devices, which have a notable history in medicine, security, industry and research, to date have almost exclusively incorporated thermionic electron sources. Since the middle of the last century, field emission based cathodes were demonstrated, but it is only recently that they have become practicable. We outline some of the technological achievements of the past two decades, and describe a number of the seminal contributions. We explore the foremost market hurdles hindering their roll-out and broader industrial adoption and summarise the recent progress in miniaturised, pulsed and multi-source devices.

  19. Synchronization of x-ray pulses to the pump laser in an ultrafast x-ray facility

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Barry, W.; Byrd, J.M.; Schoenlein, R.; Zholents, A.

    2002-05-30

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to a pump laser exciting processes in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe a scheme for synchronizing femtosecond x-ray pulses relative to a pump laser. X-ray pulses of <100 fs duration are generated from a proposed source based on a recirculating superconducting linac [1,2,3]. Short x-ray pulses are obtained by a process of electron pulse compression, followed by transverse temporal correlation of the electrons, and ultimately x-ray pulse compression. Timing of the arrival of the x-ray pulse with respect to the pump laser is found to be dominated by the operation of the deflecting cavities which provide the transverse temporal correlation of the electrons. The deflecting cavities are driven from a highly stable RF signal derived from a modelocked laser oscillator which is also the origin of the pump l aser pulses.

  20. X-ray pulse wavefront metrology using speckle tracking.

    Science.gov (United States)

    Berujon, Sebastien; Ziegler, Eric; Cloetens, Peter

    2015-07-01

    An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology.

  1. High-power laser-driven source of ultra-short X-ray and gamma-ray pulses

    Energy Technology Data Exchange (ETDEWEB)

    Esirkepov, T.Zh.; Bulanov, S.V.; Pirozhkov, A.S.; Kando, M. [Advanced Photon Research Center, Japan Atomic Energy Agency, Kyoto (Japan); Zhidkov, A.G. [Central Research Institute of Electric Power Industry, Yokosuka-shi, Kanagawa-Ken (Japan)

    2009-11-15

    A novel ultra-bright high-intensity source of X-ray and gamma radiation is suggested. It is based on the double Doppler effect, where a relativistic flying mirror reflects a counter-propagating electromagnetic radiation causing its frequency multiplication and intensification, and on the inverse double Doppler effect, where the mirror acquires energy from an ultra-intense co-propagating electromagnetic wave. The role of the flying mirror is played by a high-density thin plasma slab accelerating in the radiation pressure dominant regime. Frequencies of high harmonics generated at the flying mirror by a relativistically strong counter-propagating radiation undergo multiplication with the same factor as the fundamental frequency of the reflected radiation, approximately equal to the quadruple of the square of the mirror Lorentz factor. (authors)

  2. High-power laser-driven source of ultra-short X-ray and gamma-ray pulses

    Science.gov (United States)

    Esirkepov, T. Zh.; Bulanov, S. V.; Zhidkov, A. G.; Pirozhkov, A. S.; Kando, M.

    2009-11-01

    A novel ultra-bright high-intensity source of X-ray and gamma radiation is suggested. It is based on the double Doppler effect, where a relativistic flying mirror reflects a counter-propagating electromagnetic radiation causing its frequency multiplication and intensification, and on the inverse double Doppler effect, where the mirror acquires energy from an ultra-intense co-propagating electromagnetic wave. The role of the flying mirror is played by a high-density thin plasma slab accelerating in the radiation pressure dominant regime. Frequencies of high harmonics generated at the flying mirror by a relativistically strong counter-propagating radiation udergo multiplication with the same factor as the fundamental frequency of the reflected radiation, approximately equal to the quadruple of the square of the mirror Lorentz factor.

  3. Globular cluster x-ray sources.

    Science.gov (United States)

    Pooley, David

    2010-04-20

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 10(36) ergs(-1)) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth--low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)--but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters.

  4. Globular cluster x-ray sources

    Science.gov (United States)

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  5. X-Ray Emission from Compact Sources

    Energy Technology Data Exchange (ETDEWEB)

    Cominsky, L

    2004-03-23

    This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

  6. X-ray source for mammography

    Science.gov (United States)

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  7. Effects of electron recirculation on a hard x-ray source observed during the interaction of a high intensity laser pulse with thin Au targets

    Science.gov (United States)

    Compant La Fontaine, A.; Courtois, C.; Lefebvre, E.; Bourgade, J. L.; Landoas, O.; Thorp, K.; Stoeckl, C.

    2013-12-01

    The interaction of a high intensity laser pulse on the preplasma of a high-Z solid target produced by the pulse's pedestal generates high-energy electrons. These electrons subsequently penetrate inside the solid target and produce bremsstrahlung photons, generating an x-ray source which can be used for photonuclear studies or to radiograph high area density objects. The source characteristics are compared for targets with thin (20 μm) and thick (100 μm) Au foils on the Omega EP laser at Laboratory for Laser Energetics. Simulations using the particle-in-cell code CALDER show that for a 20 μm thickness Au target, electrons perform multiple round-trips in the target under the effect of the laser ponderomotive potential and the target electrostatic potential. These relativistic electrons have random transverse displacements, with respect to the target normal, attributed to electrostatic fluctuation fields. As a result, the x-ray spot size is increased by a factor 2 for thin target compared to thick targets, in agreement with experimental results. In addition, the computed doses agree with the measured ones provided that electron recirculation in the thin target is taken into account. A dose increase by a factor 1.7 is then computed by allowing for recirculation. In the 100 μm target case, on the other hand, this effect is found to be negligible.

  8. High duty cycle inverse Compton scattering X-ray source

    Science.gov (United States)

    Ovodenko, A.; Agustsson, R.; Babzien, M.; Campese, T.; Fedurin, M.; Murokh, A.; Pogorelsky, I.; Polyanskiy, M.; Rosenzweig, J.; Sakai, Y.; Shaftan, T.; Swinson, C.

    2016-12-01

    Inverse Compton Scattering (ICS) is an emerging compact X-ray source technology, where the small source size and high spectral brightness are of interest for multitude of applications. However, to satisfy the practical flux requirements, a high-repetition-rate ICS system needs to be developed. To this end, this paper reports the experimental demonstration of a high peak brightness ICS source operating in a burst mode at 40 MHz. A pulse train interaction has been achieved by recirculating a picosecond CO2 laser pulse inside an active optical cavity synchronized to the electron beam. The pulse train ICS performance has been characterized at 5- and 15- pulses per train and compared to a single pulse operation under the same operating conditions. With the observed near-linear X-ray photon yield gain due to recirculation, as well as noticeably higher operational reliability, the burst-mode ICS offers a great potential for practical scalability towards high duty cycles.

  9. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction.

    Science.gov (United States)

    Maddox, B R; Akin, M C; Teruya, A; Hunt, D; Hahn, D; Cradick, J; Morgan, D V

    2016-08-01

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from the sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10(7) molybdenum Kα photons.

  10. Results from the Daresbury Compton backscattering X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Laundy, D. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD (United Kingdom); Priebe, G. [Max Born Institute, Max-Born-Strasse 2A, 12489 Berlin, DE (Germany); Jamison, S.P. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD (United Kingdom); Graham, D.M. [The Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); Phillips, P.J. [STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom); Smith, S.L.; Saveliev, Y. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD (United Kingdom); Vassilev, S. [The University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Seddon, E.A., E-mail: elaine.seddon@stfc.ac.uk [The Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2012-10-11

    The Daresbury Compton Backscattering X-ray Source uses a high power Ti Sapphire laser interacting in head on geometry with electron bunches in the ALICE energy recovery linear accelerator. X-ray photons with peak energy of 21 keV were generated with the accelerator operating at an energy of 29.6 MeV. The spatial profile of the X-rays emitted near the electron beam axis was measured. The characteristics of the X-ray yield measured as a function of relative timing between the laser pulse and the interacting electron bunch was found to be consistent with the modelled intensity behaviour using measured electron and laser beam parameters.

  11. Establishing nonlinearity thresholds with ultraintense X-ray pulses.

    Science.gov (United States)

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A; Patterson, Bruce D; Penfold, Thomas J; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J

    2016-09-13

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.

  12. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    Science.gov (United States)

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J.; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A.; Patterson, Bruce D.; Penfold, Thomas J.; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J.

    2016-09-01

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.

  13. Carbon nanotube based X-ray sources: Applications in pre-clinical and medical imaging

    Science.gov (United States)

    Lee, Yueh Z.; Burk, Laurel; Wang, Ko-Han; Cao, Guohua; Lu, Jianping; Zhou, Otto

    2011-08-01

    Field emission offers an alternate method of electron production for Bremsstrahlung based X-ray tubes. Carbon nanotubes (CNTs) serve as very effective field emitters, allowing them to serve as electron sources for X-ray sources, with specific advantages over traditional thermionic tubes. CNT derived X-ray sources can create X-ray pulses of any duration and frequency, gate the X-ray pulse to any source and allow the placement of many sources in close proximity.We have constructed a number of micro-CT systems based on CNT X-ray sources for applications in small animal imaging, specifically focused on the imaging of the heart and lungs. This paper offers a review of the pre-clinical applications of the CNT based micro-CT that we have developed. We also discuss some of the current and potential clinical applications of the CNT X-ray sources.

  14. Methods of Attosecond X-Ray Pulse Generation

    CERN Document Server

    Zholents, Alexander

    2005-01-01

    Our attitude towards attosecond x-ray pulses has changed dramatically over the past several years. Not long ago x-ray pulses with a duration of a few hundred attoseconds were just science fiction for most of us, but they are already a tool for some researchers in present days. Breakthrough progress in the generation of solitary soft x-ray pulses of attosecond duration has been made by the laser community. Following this lead, people in the free electron laser community have begun to develop new ideas on how to generate attosecond x-ray pulses in the hard x-ray energy range. In this report I will review some of these ideas.

  15. A dedicated synchrotron light source for ultrafast x-ray science

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.; DeSantis, S.; Hartman, N.; Heimann, P.; Lafever, R.; Li, D.; Padmore, H.; Rimmer, R.; Robinson, K.E.; Schoenlein, R.; Tanabe, J.; Wang, S.; Zholents, A.; Kairan, D.

    2001-06-16

    We describe a proposed femtosecond synchrotron radiation x-ray source based on a flat-beam RF gun and a recirculating superconducting linac that provides beam to an array of undulators and bend magnets. X-ray pulse durations of <100 fs at a 10 kHz repetition rate are obtained by a combination of electron pulse compression, transverse temporal correlation of the electrons, and x-ray pulse compression.

  16. LUX - A recirculating linac-based ultrafast X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Green, M.A.; Heimann, P.; Leone, S.R.; Lidia, S.; Li, D.; Parmigiani, F.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wilcox, R.; Wolski, A.; Zholents, A.

    2003-08-01

    We describe the design of a proposed source of ultra-fast synchrotron radiation x-ray pulses based on a recirculating superconducting linac, with an integrated array of ultrafast laser systems. The source produces x-ray pulses with duration of 10-50 fs at a 10 kHz repetition rate, with tunability from EUV to hard x-ray regimes, and optimized for the study of ultra-fast dynamics. A high-brightness rf photocathode provides electron bunches. An injector linac accelerates the beam to the 100 MeV range, and is followed by four passes through a 700 MeV recirculating linac. Ultrafast hard x-ray pulses are obtained by a combination of electron bunch manipulation, transverse temporal correlation of the electrons, and x-ray pulse compression. EUV and soft x-ray pulses as short as 10 fs are generated in a harmonic-cascade free electron laser scheme.

  17. Single 100-terawatt attosecond X-ray light pulse generation

    CERN Document Server

    Xu, X R; Zhang, Y X; Lu, H Y; Zhang, H; Dromey, B; Zhu, S P; Zhou, C T; Zepf, M; He, X T

    2016-01-01

    The birth of attosecond light sources is expected to inspire a breakthrough in ultrafast optics, which may extend human real-time measurement and control techniques into atomic-scale electronic dynamics. For applications, it is essential to obtain a single attosecond pulse of high intensity, large photon energy and short duration. Here we show that single 100-terawatt attosecond X-ray light pulse with intensity ${1\\times10^{21}}\\textrm{W}/\\textrm{cm}^{{ 2}}$ and duration ${7.9} \\textrm{as}$ can be produced by intense laser irradiation on a capacitor-nanofoil target composed of two separate nanofoils. In the interaction, a strong electrostatic potential develops between two nanofoils, which drags electrons out of the second foil and piles them up in vacuum, forming an ultradense relativistic electron nanobunch. This nanobunch exists in only half a laser cycle and smears out in others, resulting in coherent synchrotron emission of a single pulse. Such an unprecedentedly giant attosecond X-ray pulse may bring us...

  18. Jets from ultraluminous X-ray sources

    Science.gov (United States)

    Urquhart, Ryan

    2017-08-01

    An important set of unsolved problems in accretion physics is whether super-Eddington accretion flows produce jets, what the jet power is (compared with the accretion power), and what the large-scale effect of the jet is on the surrounding gas. Most ultraluminous X-ray sources (ULXs) are super-Eddington stellar-mass compact objects: they provide the best local-Universe test of MHD accretion flow simulations. Observational evidence of collimated jets and fast outflows in ULXs may come in different forms: steady synchrotron radio emission from an unresolved, persistent core; radio flaring associated with discrete ejecta; internal shocks along the jet; hotspots from the jet/ISM interaction; hundred-parsec scale wind/jet-inflated nebulae. We discuss examples of the various cases, use them as proxies to measure the jet power, and compare them with (sub-Eddington) AGN and X-ray binary jets.

  19. Study of x-rays produced from debris-free sources with Ar, Kr and Kr/Ar mixture linear gas jets irradiated by UNR Leopard laser beam with fs and ns pulse duration

    Science.gov (United States)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Safronova, A. S.; Shrestha, I. K.; Petrov, G. M.; Moschella, J. J.; Petkov, E. E.; Stafford, A.; Cooper, M. C.; Weller, M. E.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-06-01

    Experiments of x-ray emission from Ar, Kr, and Ar/Kr gas jet mixture were performed at the UNR Leopard Laser Facility operated with 350 fs pulses at laser intensity of 2 × 1019 W/cm2 and 0.8 ns pulses at an intensity of 1016 W/cm2. Debris free x-ray source with supersonic linear nozzle generated clusters/monomer jet with an average density of ≥1019 cm-3 was compared to cylindrical tube subsonic nozzle, which produced only monomer jet with average density 1.5-2 times higher. The linear (elongated) cluster/gas jet provides the capability to study x-ray yield anisotropy and laser beam self-focusing with plasma channel formation that are interconnecting with efficient x-ray generation. Diagnostics include x-ray diodes, pinhole cameras and spectrometers. It was observed that the emission in the 1-9 keV spectral region was strongly anisotropic depending on the directions of laser beam polarization for sub-ps laser pulse and supersonic linear jet. The energy yield in the 1-3 keV region produced by a linear nozzle was an order of magnitude higher than from a tube nozzle. Non-LTE models and 3D molecular dynamic simulations of Ar and Kr clusters irradiated by sub-ps laser pulses have been implemented to analyze obtained data. A potential evidence of electron beam generation in jets' plasma was discussed. Note that the described debris-free gas-puff x-ray source can generate x-ray pulses in a high repetition regime. This is a great advantage compared to solid laser targets.

  20. PULSED CAPILLARY DISCHARGE CHARACTERIZATION FOR SOFT X-RAY MICROSCOPY APPLICATIONS

    OpenAIRE

    VALDIVIA LEIVA; MARIA PIA

    2011-01-01

    The hollow cathode capillary discharge is of great interest as a high brightness, short pulse soft x-ray source. This thesis presents work done in the development, modifications, and subsequent characterization of a compact plasma source comprised of a pulsed capillary discharge exploiting hollow cathode dynamics. The low inductance, low stored energy, source is optimized using optical, electrical, x-ray, and e-beam diagnostics. The effect of parameters on the capillary phys...

  1. Laser-based X-ray and electron source for X-ray fluorescence studies

    Science.gov (United States)

    Valle Brozas, F.; Crego, A.; Roso, L.; Peralta Conde, A.

    2016-08-01

    In this work, we present a modification to conventional X-rays fluorescence using electrons as excitation source and compare it with the traditional X-ray excitation for the study of pigments. For this purpose, we have constructed a laser-based source capable to produce X-rays as well as electrons. Because of the large penetration depth of X-rays, the collected fluorescence signal is a combination of several material layers of the artwork under study. However, electrons are stopped in the first layers, allowing a more superficial analysis. We show that the combination of both excitation sources can provide extremely valuable information about the structure of the artwork.

  2. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  3. Temporal and Spectral Resolved Measurement of Soft X-ray From Ultrashort Pulse Laser Produced Plasma

    Institute of Scientific and Technical Information of China (English)

    W.Theobald; L.Veisz; H.Schwoerer; R.Sauerbrey; X.Z.Tang

    2001-01-01

    Ultrashort laser pulse produced plasmas are powerful sources of incoherent XUV/soft X-ray radiation and have important applications range from microscopy to lithography. Adding a prepulse is one possible way to enhance soft X-ray emission. The experiment is performed on the Jena 10 TW laser system in IOQ, Germany. The main purpose is to measure the time-resolved soft X-ray spectrum, and study how a prepulse play an important role and enhance the X-ray emission as well as and pulse duration. We clarified the temporal behavior of X-ray emission from quartz plasma produced by intensive femtosecond 800 nm laser pulse, and obtained a quantitative pictures of the

  4. Compact X-ray Sources in Nearby Galaxy Nuclei

    CERN Document Server

    Colbert, E J M

    1998-01-01

    We have found compact, near-nuclear X-ray sources in 21 (54\\%) of a complete sample of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 $-$ 2.4 keV) of these compact X-ray sources are $\\sim$10$^{37}

  5. Obscuring Supersoft X-ray Sources in Stellar Winds

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Thomas Bøje; Dominik, Carsten; Nelemans, Gijs

    2011-01-01

    We investigate the possibility of obscuring supersoft X-ray sources in the winds of companion stars. We derive limits on the amount of circumstellar material needed to fully obscure a 'canonical' supersoft X-ray source in the Large Magellanic Cloud, as observed with the Chandra X-ray Observatory....

  6. Measuring x-ray spectra of flash radiographic sources

    Science.gov (United States)

    Gehring, Amanda E.; Espy, Michelle A.; Haines, Todd J.; Mendez, Jacob; Moir, David C.; Sedillo, Robert; Shurter, Roger P.; Volegov, Petr; Webb, Timothy J.

    2015-08-01

    A Compton spectrometer has been re-commissioned for measurements of flash radiographic sources. The determination of the energy spectrum of these sources is difficult due to the high count rates and short nature of the pulses (~50 ns). The spectrometer is a 300 kg neodymium-iron magnet which measures spectra in the <1 MeV to 20 MeV energy range. Incoming x-rays are collimated into a narrow beam incident on a converter foil. The ejected Compton electrons are collimated so that the forward-directed electrons enter the magnetic field region of the spectrometer. The position of the electrons at the magnet's focal plane is a function of their momentum, allowing the x-ray spectrum to be reconstructed. Recent measurements of flash sources are presented.

  7. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  8. Properties and Applications of Laser Generated X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R F; Key, M H

    2002-02-25

    The rapid development of laser technology and related progress in research using lasers is shifting the boundaries where laser based sources are preferred over other light sources particularly in the XUV and x-ray spectral region. Laser based sources have exceptional capability for short pulse and high brightness and with improvements in high repetition rate pulsed operation, such sources are also becoming more interesting for their average power capability. This study presents an evaluation of the current capabilities and near term future potential of laser based light sources and summarizes, for the purpose of comparison, the characteristics and near term prospects of sources based on synchrotron radiation and free electron lasers. Conclusions are drawn on areas where the development of laser based sources is most promising and competitive in terms of applications potential.

  9. RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W J; Hartemann, F V; Tremaine, A M; Springer, P T; Le Sage, G P; Barty, C P J; Rosenzweig, J B; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Slaughter, D R; Anderson, S

    2002-10-16

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.

  10. Laser-based X-ray and electron source for X-ray fluorescence studies

    CERN Document Server

    Brozas, F Valle; Roso, L; Conde, A Peralta

    2016-01-01

    In this work we present a modification to conventional X-rays fluorescence using electrons as excitation source, and compare it with the traditional X-ray excitation for the study of pigments. For this purpose we have constructed a laser-based source capable to produce X-rays as well as electrons. Because of the large penetration depth of X-rays, the collected fluorescence signal is a combination of several material layers of the artwork under study. However electrons are stopped in the first layers allowing therefore a more superficial analysis. We show that the combination of both excitation sources can provide extremely valuable information about the structure of the artwork.

  11. Laser-driven soft-X-ray undulator source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Matthias

    2010-08-04

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of {proportional_to}17 nm from a compact setup. Undulator spectra were detected in {proportional_to}70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of {proportional_to}10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  12. Single shot diffraction of picosecond 8.7-keV x-ray pulses

    Directory of Open Access Journals (Sweden)

    F. H. O’Shea

    2012-02-01

    Full Text Available We demonstrate multiphoton, single shot diffraction images of x rays produced by inverse Compton scattering a high-power CO_{2} laser from a relativistic electron beam, creating a pulse of 8.7 keV x rays. The tightly focused, relatively high peak brightness electron beam and high photon density from the 2 J CO_{2} laser yielded 6×10^{7} x-ray photons over the full opening angle in a single shot. Single shot x-ray diffraction is performed by passing the x rays though a vertical slit and on to a flat silicon (111 crystal. 10^{2} diffracted photons were detected. The spectrum of the detected x rays is compared to simulation. The diffraction and detection of 10^{2} x rays is a key step to a more efficient time resolved diagnostic in which the number of observed x rays might reach 10^{4}; enabling a unique, flexible x-ray source as a sub-ps resolution diagnostic for studying the evolution of chemical reactions, lattice deformation and melting, and magnetism.

  13. Luminous Binary Supersoft X-Ray Sources

    Science.gov (United States)

    Oliversen, Ronald J. (Technical Monitor); DiStefano, Roseanne

    2005-01-01

    One of the key accomplishments of the two preceding years was our development of an algorithm to select SSSs in external galaxies which have been observed by Chandra or XMM-Newton. By applying this algorithm to data from a number of galaxies, we discovered an extension of the class of SSSs to sources that are somewhat harder (100 - 300 eV, instead of tens of eV), but which are nevertheless much softer than canonical X-ray sources. We call these new sources quasisoft sources (QSSs). During this past year, we have built on and extended this work. We have (1) continued to identify SSSs and QSSs in external galaxies, (2) worked on models for the sources and find that black hole models seem promising for a subset of them, and (3) have studied individual systems, especially M101-ULX1. This special system has been observed as an SSS in its high &ate, with a luminosity in excess of 10(exp 41) erg/s. It has also been observed as a QSS when it is less luminous, and as a hard source in its low state. It is one of the best candidates to be an accreting intermediate-mass black hole. We have several papers in preparation. Below we list papers which are complete, including only new work and papers whose status has changed (e.g., been accepted for publication) since our last report. In addition, our work on QSSs has received some publicity. It was the subject of a Chandra press release and was picked up by several media outlets.

  14. Normal Auger processes with ultrashort x-ray pulses in neon

    Science.gov (United States)

    Sullivan, Raymond; Jia, Junteng; Vázquez-Mayagoitia, Álvaro; Picón, Antonio

    2016-10-01

    Modern x-ray sources enable the production of coherent x-ray pulses with a pulse duration in the same order as the characteristic lifetimes of core-hole states of atoms and molecules. These pulses enable the manipulation of the core-hole population during Auger-decay processes, modifying the line shape of the electron spectra. In this work, we present a theoretical model to study those effects in neon. We identify effects in the Auger-electron-photoelectron coincidence spectrum due to the duration and intensity of the pulses. The normal Auger line shape is recovered in Auger-electron spectra integrated over all photoelectron energies.

  15. Line-Source Based X-Ray Tomography

    Directory of Open Access Journals (Sweden)

    Deepak Bharkhada

    2009-01-01

    Full Text Available Current computed tomography (CT scanners, including micro-CT scanners, utilize a point x-ray source. As we target higher and higher spatial resolutions, the reduced x-ray focal spot size limits the temporal and contrast resolutions achievable. To overcome this limitation, in this paper we propose to use a line-shaped x-ray source so that many more photons can be generated, given a data acquisition interval. In reference to the simultaneous algebraic reconstruction technique (SART algorithm for image reconstruction from projection data generated by an x-ray point source, here we develop a generalized SART algorithm for image reconstruction from projection data generated by an x-ray line source. Our numerical simulation results demonstrate the feasibility of our novel line-source based x-ray CT approach and the proposed generalized SART algorithm.

  16. Low-luminosity X-ray sources and the Galactic ridge X-ray emission

    CERN Document Server

    Warwick, R S

    2014-01-01

    Using the XMM-Newton Slew Survey, we construct a hard-band selected sample of low-luminosity Galactic X-ray sources. Two source populations are represented, namely coronally-active stars and binaries (ASBs) and cataclysmic variables (CVs), with X-ray luminosities collectively spanning the range 10^(28-34) erg/s (2-10 keV). We derive the 2-10 keV X-ray luminosity function (XLF) and volume emissivity of each population. Scaled to the local stellar mass density, the latter is found to be 1.08 +/- 0.16 x 10^28 erg/s/M and 2.5 +/- 0.6 x 10^27 erg/s/M, for the ASBs and CVs respectively, which in total is a factor 2 higher than previous estimates. We employ the new XLFs to predict the X-ray source counts on the Galactic plane at l = 28.5 deg and show that the result is consistent with current observational constraints. The X-ray emission of faint, unresolved ASBs and CVs can account for a substantial fraction of the Galactic ridge X-ray emission (GRXE). We discuss a model in which roughly 80 per cent of the 6-10 keV...

  17. Kinematics of Compton backscattering x-ray source for angiography

    Energy Technology Data Exchange (ETDEWEB)

    Blumberg, L.N.

    1992-05-01

    Calculations of X-Ray production rates, energy spread, and spectrum of Compton-backscattered photons from a Free Electron Laser on an electron beam in a low energy (136-MeV) compact (8.5-m circumference) storage ring indicate that an X-Ray intensity of 34.6 10{sup 7} X-Ray photons per 0.5-mm {times} 0.5-mm pixel for Coronary Angiography near the 33.169-keV iodine K-absorption edge can be achieved in a 4-msec pulse within a scattering cone of 1-mrad half angle. This intensity, at 10-m from the photon-electron interaction point to the patient is about a factor of 10 larger than presently achieved from a 4.5-T superconducting wiggler source in the NSLS 2.5-GeV storage ring and over an area about 5 times larger. The 2.2-keV energy spread of the Compton-backscattered beam is, however, much larger than the 70-eV spread presently attained form the wiggler source and use of a monochromator. The beam spot at the 10-m interaction point-to-patient distance is 20-mm diameter; larger spots are attainable at larger distances but with a corresponding reduction in X-Ray flux. Such a facility could be an inexpensive clinical alternative to present methods of non-invasive Digital Subtraction Angiography (DSA), small enough to be deployed in an urban medical center, and could have other medical, industrial and aerospace applications. Problems with the Compton backscattering source include laser beam heating of the mirror in the FEL oscillator optical cavity, achieving a large enough X-Ray beam spot at the patient, and obtaining radiation damping of the transverse oscillations and longitudinal emittance dilution of the storage ring electron beam resulting from photon-electron collisions without going to higher electron energy where the X-Ray energy spread becomes excessive for DSA. 38 refs.

  18. Portable pulse X-ray apparatus with gas insulation

    CERN Document Server

    Avilov, E A; Kanunov, I M

    2001-01-01

    There are presented the data on development,investigation and application of a pulse X-ray apparatus with gas insulation.There are described circuit and design solutions for a 90 kV apparatus to be used in medical X-ray diagnostics and 200 kV apparatus to be applied for the researches of high-speed processes.There are demonstrated the advantages of using gas under pressure as insulating medium.There are presented basic output characteristics of the devices.

  19. Development and characterization of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, C.

    1996-11-01

    A laser-produced plasma was generated by focusing 100 fs laser pulses, with an energy of 150 mJ, onto metal targets. The laser intensity was expected to reach 10{sup 17} W/cm{sup -2}. Radiation was emitted from the created plasma, with photon energies up to the MeV region. The laser-based X-ray source was optimized, with the purpose of making it a realistic source of hard X-rays (>10 keV). Dedicated equipment was developed for efficient generation and utilization of the hard X-rays. The X-ray source was characterized with respect to its spatial extent and the X-ray yield. Measurements were made of the spectral distribution, by the use of single-photon-counting detectors in different geometries, crystal spectrometers and dose measurements in combination with absorption filters. Ablation of the target material in the laser produced plasma was investigated. Imaging applications have been demonstrated, including ultrafast (picosecond) X-ray imaging, magnification imaging of up to x80, differential imaging in the spectral domain, and imaging of various biological and technical objects. The biological response of ultra-intense X-ray pulses was assessed in cell-culture exposures. The results indicate that the biological response from ultra-intense X-ray exposures is similar to the response with conventional X-ray tubes. 82 refs., 14 figs.

  20. Compact X-ray source based on Compton backscattering

    CERN Document Server

    Bulyak, E V; Zelinsky, A; Karnaukhov, I; Kononenko, S; Lapshin, V G; Mytsykov, A; Telegin, Yu P; Khodyachikh, A; Shcherbakov, A; Molodkin, V; Nemoshkalenko, V; Shpak, A

    2002-01-01

    The feasibility study of an intense X-ray source based on the interaction between the electron beam in a compact storage ring and the laser pulse accumulated in an optical resonator is carried out. We propose to reconstruct the 160 MeV electron storage ring N-100, which was shutdown several years ago. A new magnetic lattice will provide a transverse of electron beam size of approx 35 mu m at the point of electron beam-laser beam interaction. The proposed facility is to generate X-ray beams of intensity approx 2.6x10 sup 1 sup 4 s sup - sup 1 and spectral brightness approx 10 sup 1 sup 2 phot/0.1%bw/s/mm sup 2 /mrad sup 2 in the energy range from 10 keV up to 0.5 MeV. These X-ray beam parameters meet the requirements for most of technological and scientific applications. Besides, we plan to use the new facility for studying the laser cooling effect.

  1. Pulse pile-up in hard X-ray detector systems. [for solar X-rays

    Science.gov (United States)

    Datlowe, D. W.

    1975-01-01

    When pulse-height spectra are measured by a nuclear detection system at high counting rates, the probability that two or more pulses will arrive within the resolving time of the system is significant. This phenomenon, pulse pile-up, distorts the pulse-height spectrum and must be considered in the interpretation of spectra taken at high counting rates. A computational technique for the simulation of pile-up is developed. The model is examined in the three regimes where (1) the time between pulses is long compared to the detector-system resolving time, (2) the time between pulses is comparable to the resolving time, and (3) many pulses occur within the resolving time. The technique is used to model the solar hard X-ray experiment on the OSO-7 satellite; comparison of the model with data taken during three large flares shows excellent agreement. The paper also describes rule-of-thumb tests for pile-up and identifies the important detector design factors for minimizing pile-up, i.e., thick entrance windows and short resolving times in the system electronics.

  2. Multidimensional resonant nonlinear spectroscopy with coherent broadband x-ray pulses

    Science.gov (United States)

    Bennett, Kochise; Zhang, Yu; Kowalewski, Markus; Hua, Weijie; Mukamel, Shaul

    2016-12-01

    New x-ray free electron laser (XFEL) and high harmonic generation (HHG) light sources are capable of generating short and intense pulses that make x-ray nonlinear spectroscopy possible. Multidimensional spectroscopic techniques, which have long been used in the nuclear magnetic resonance, infrared, and optical regimes to probe the electronic structure and nuclear dynamics of molecules by sequences of short pulses with variable delays, can thus be extended to the attosecond x-ray regime. This opens up the possibility of probing core-electronic structure and couplings, the real-time tracking of impulsively created valence-electronic wavepackets and electronic coherences, and monitoring ultrafast processes such as nonadiabatic electron-nuclear dynamics near conical-intersection crossings. We survey various possible types of multidimensional x-ray spectroscopy techniques and demonstrate the novel information they can provide about molecules.

  3. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Nicoul, Matthieu

    2010-09-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0{+-}0.3) ps, and the ratio of the Grueneisen parameters was found to be {gamma}{sub e} / {gamma}{sub i} = (0.5{+-}0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A{sub 1g} mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase

  4. Compact Optical Counterparts of Ultraluminous X-ray Sources

    CERN Document Server

    Tao, Lian; Grise, Fabien; Kaaret, Philip

    2011-01-01

    Using archival Hubble Space Telescope (HST) imaging data, we report the multiband photometric properties of 13 ultraluminous X-ray sources (ULXs) that have a unique compact optical counterpart. Both magnitude and color variation are detected at time scales of days to years. The optical color, variability, and X-ray to optical flux ratio indicate that the optical emission of most ULXs is dominated by X-ray reprocessing on the disk, similar to that of low mass X-ray binaries. For most sources, the optical spectrum is a power-law, $F_{\

  5. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Sterling Backus

    2012-05-14

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  6. Progress Towards A Dedicated Synchrotron Radiation Source For Ultrafast X-Ray Science

    Science.gov (United States)

    Lidia, Steve

    2002-03-01

    We present progress towards the design of a femtosecond synchrotron radiation x-ray source based on a flat-beam rf gun and a recirculating superconducting linac that provides beam to an array of undulators and bend magnets. Optical pulse durations of <100 fs are obtained by a combination of electron pulse compression, transverse temporal correlation of the electrons, and x-ray pulse compression. After an introduction and initial scientific motivation, we cover the following aspects of the design: layout and lattice, ultra-fast x-ray pulse production, flat electron-beam production, the rf gun, rf systems, cryogenic systems, collective effects, photon production, and synchronization of x-ray and laser pulses. We conclude with a summary of issues and areas of development that remain to be addressed.

  7. Initial feasibility study of a dedicated synchrotron radiation light source for ultrafast X-ray science

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, John N.; DeSantis, S.; Hartman, N.; Heimann, P.; LaFever, R.; Li, D.; Padmore, H.; Rimmer, R.; Robinson, K.; Schoenlein, R.; Tanabe, J.; Wang, S.; Zholents, A.; Kairan, D.

    2001-10-26

    We present an initial feasibility summary of a femtosecond synchrotron radiation x-ray source based on a flat-beam rf gun and a recirculating superconducting linac that provides beam to an array of undulators and bend magnets. Optical pulse durations of < 100 fs are obtained by a combination of electron pulse compression, transverse temporal correlation of the electrons, and x-ray pulse compression. After an introduction and initial scientific motivation, we cover the following aspects of the design: layout and lattice, ultra-fast x-ray pulse production, flat electron-beam production, the rf gun, rf systems, cryogenic systems, collective effects, photon production, and synchronization of x-ray and laser pulses. We conclude with a summary of issues and areas of development that remain to be addressed.

  8. Characterization of an ultrafast Bragg-Switch for shortening hard x-ray pulses

    Science.gov (United States)

    Sander, M.; Koc, A.; Kwamen, C. T.; Michaels, H.; Reppert, A. v.; Pudell, J.; Zamponi, F.; Bargheer, M.; Sellmann, J.; Schwarzkopf, J.; Gaal, P.

    2016-11-01

    We present a nanostructured device that functions as photoacoustic hard x-ray switch. The device is triggered by femtosecond laser pulses and allows for temporal gating of hard x-rays on picosecond (ps) timescales. It may be used for pulse picking or even pulse shortening in 3rd generation synchrotron sources. Previous approaches mainly suffered from insufficient switching contrasts due to excitation-induced thermal distortions. We present a new approach where thermal distortions are spatially separated from the functional switching layers in the structure. Our measurements yield a switching contrast of 14, which is sufficient for efficient hard x-ray pulse shortening. The optimized structure also allows for utilizing the switch at high repetition rates of up to 208 kHz.

  9. Shielded radiography with a laser-driven MeV-energy X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shouyuan; Golovin, Grigory [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Miller, Cameron [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Clarke, Shaun; Pozzi, Sara [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Umstadter, Donald, E-mail: donald.umstadter@unl.edu [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 10{sup 7} photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam’s inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  10. Chandra X-Ray Sources in the LALA Cetus Field

    Science.gov (United States)

    Wang, J. X.; Zheng, Z. Y.; Malhotra, S.; Finkelstein, S. L.; Rhoads, J. E.; Norman, C. A.; Heckman, T. M.

    2007-11-01

    The 174 ks Chandra Advanced CCD Imaging Spectrometer exposure of the Large Area Lyman Alpha Survey (LALA) Cetus field is the second of the two deep Chandra images on LALA fields. In this paper we present the Chandra X-ray sources detected in the Cetus field, along with an analysis of X-ray source counts, stacked X-ray spectrum, and optical identifications. A total of 188 X-ray sources were detected: 174 in the 0.5-7.0 keV band, 154 in the 0.5-2.0 keV band, and 113 in the 2.0-7.0 keV band. The X-ray source counts were derived and compared with LALA field (172 ks exposure). Interestingly, we find consistent hard-band X-ray source density, but (36+/-12)% higher soft-band X-ray source density in Cetus field. The weighted stacked spectrum of the detected X-ray sources can be fitted by a power law with photon index Γ=1.55. Based on the weighted stacked spectrum, we find that the resolved fraction of the X-ray background drops from (72+/-1)% at 0.5-1.0 keV to (63+/-4)% at 6.0-8.0 keV. The unresolved spectrum can be fitted by a power law over the range 0.5-7 keV, with a photon index Γ=1.22. We also present optical counterparts for 154 of the X-ray sources, down to a limiting magnitude of r'=25.9 (Vega), using a deep r'-band image obtained with the MMT. Optical Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution.

  11. Single molecule imaging with longer x-ray laser pulses

    CERN Document Server

    Martin, Andrew V; Caleman, Carl; Quiney, Harry M

    2015-01-01

    In serial femtosecond crystallography, x-ray laser pulses do not need to outrun all radiation damage processes because Bragg diffraction exceeds the damage-induced background scattering for longer pulses ($\\sim$ 50--100 fs). This is due to a "self-gating pulse" effect whereby damage terminates Bragg diffraction prior to the pulse completing its passage through the sample, as if that diffraction were produced by a shorter pulse of equal fluence. We show here that a similar gating effect applies to single molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of average structure separately to the diffraction from statistical fluctuations of the structure due to damage ("damage noise"). Our results suggest that sub-nanometer single molecule imaging with longer pulses, like those produced at currently operating facilities, should not yet be ruled out. The...

  12. A simulation study of Tsinghua Thomson scattering X-ray source

    Institute of Scientific and Technical Information of China (English)

    TANG Chuan-Xiang; LI Ren-Kai; HUANG Wen-Hui; CHEN Huai-Bi; DU Ying-Chao; DU Qiang; DU Tai-Bin; HE Xiao-Zhong; HUA Jian-Fei; LIN Yu-Zhen; QIAN Hou-Jun; SHI Jia-Ru; XIANG Dao; YAN Li-Xin; Yu Pei-Cheng

    2009-01-01

    Thomson scattering X-ray sources are compact and afrordable facifities that produce short duration,high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies,and also medical and industrial applications.Such a facility has been built at the Accelerator Laboratory of Tsinghua University,and upgrade is in progress.In this paper,we present a proposed layout of the upgrade with design parameters by simulation,aiming at high X-ray pulses flux and brightness,and also enabling advanced dynamics studies and applications of the electron beam.Design and construction status of main subsystems are also presented.

  13. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  14. Quantum-mechanical analysis of pulse reconstruction for a narrow bandwidth attosecond x-ray pulse

    Institute of Scientific and Technical Information of China (English)

    Ge Yu-Cheng

    2009-01-01

    The photoelectron energy spectra(PESs)excited by narrow bandwidth attosecond x-ray pulses in the presence of a few-cycle laser are quantum-mechanically calculated.Transfer equations are used to reconstruct the detailed temporal structure of an attosecond x-ray pulse directly from a measured PES.Theoretical analysis shows that the temporal uncertainties of the pulse reconstruction depend on the x-ray bandwidth.The procedure of pulse reconstruction is direct and simple without making any previous pulse assumption,data fitting analysis and time-resolved measurement of PESs.The temporal measurement range is half of a laser optical cycle.

  15. Liquid explosions induced by X-ray laser pulses

    Science.gov (United States)

    Stan, Claudiu A.; Milathianaki, Despina; Laksmono, Hartawan; Sierra, Raymond G.; McQueen, Trevor A.; Messerschmidt, Marc; Williams, Garth J.; Koglin, Jason E.; Lane, Thomas J.; Hayes, Matt J.; Guillet, Serge A. H.; Liang, Mengning; Aquila, Andrew L.; Willmott, Philip R.; Robinson, Joseph S.; Gumerlock, Karl L.; Botha, Sabine; Nass, Karol; Schlichting, Ilme; Shoeman, Robert L.; Stone, Howard A.; Boutet, Sébastien

    2016-10-01

    Explosions are spectacular and intriguing phenomena that expose the dynamics of matter under extreme conditions. We investigated, using time-resolved imaging, explosions induced by ultraintense X-ray laser pulses in water drops and jets. Our observations revealed an explosive vaporization followed by high-velocity interacting flows of liquid and vapour, and by the generation of shock trains in the liquid jets. These flows are different from those previously observed in laser ablation, owing to a simpler spatial pattern of X-ray absorption. We show that the explosion dynamics in our experiments is consistent with a redistribution of absorbed energy, mediated by a pressure or shock wave in the liquid, and we model the effects of explosions, including their adverse impact on X-ray laser experiments. X-ray laser explosions have predictable dynamics that may prove useful for controlling the state of pure liquids over broad energy scales and timescales, and for triggering pressure-sensitive molecular dynamics in solutions.

  16. X-ray Radio Correlation In Black Hole Sources

    CERN Document Server

    Rao, A R

    2006-01-01

    We examine the X-ray - radio correlation in Galactic black hole sources. We highlight some of the results which extend the flux-flux relations to sources with very high accretion rates. Some of the recent results indicate that the synchrotron process is unlikely to be the mechanism responsible for the X-ray emission, particularly at high accretion rates. We present a truncated accretion disk scenario and argue that accretion rate and accretion disk geometry ultimately act as a driver of the X-ray - radio correlation. We stress the importance of wide-band X-ray spectral measurements to understand the disk-jet connection and briefly outline some attempts made in the Indian context to build instruments for wide-band X-ray spectroscopy.

  17. Development of a Sub-Picosecond Tunable X-Ray Source at the LLNL Electron Linac

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, D; Springer, P; Le Sage, G; Crane, J; Ditmire, T; Cowan, T; Anderson, S G; Rosenzweig, J B

    2001-08-31

    The use of ultrafast laser pulses to generate very high brightness, ultra short (fs to ps) pulses of x-rays is a topic of great interest to the x-ray user community. In principle, femtosecond-scale pump-probe experiments can be used to temporally resolve structural dynamics of materials on the time scale of atomic motion. The development of sub-ps x-ray pulses will make possible a wide range of materials and plasma physics studies with unprecedented time resolution. A current project at LLNL will provide such a novel x-ray source based on Thomson scattering of high power, short laser pulses with a high peak brightness, relativistic electron bunch. The system is based on a 5 mm-mrad normalized emittance photoinjector, a 100 MeV electron RF linac, and a 300 mJ, 35 fs solid-state laser system. The Thomson x-ray source produces ultra fast pulses with x-ray energies capable of probing into high-Z metals, and a high flux per pulse enabling single shot experiments. The system will also operate at a high repetition rate ({approx} 10 Hz).

  18. Measuring x-ray spectra of flash radiographic sources [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, Amanda Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Espy, Michelle A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haines, Todd Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mendez, Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moir, David C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sedillo, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shurter, Roger P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Volegov, Petr Lvovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Webb, Timothy J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-02

    The x-ray spectra of flash radiographic sources are difficult to measure. The sources measured were Radiographic Integrated Test Stand-6 (370 rad at 1 m; 50 ns pulse) and Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) (550 rad at 1 m; 50 ns pulse). Features of the Compton spectrometer are described, and spectra are shown. Additional slides present data on instrumental calibration.

  19. Imaging Macromolecules with X-ray laser pulses

    CERN Document Server

    CERN. Geneva

    2017-01-01

    The short wavelength of X-rays allows us to resolve atoms, but in practise for biological materials the achievable resolution is limited by the destruction of the sample by the radiation that forms the image.  For over 100 years, the workaround to this problem of radiation damage has been to average signals from repeating copies of the object arranged in a large crystal.  It is now possible to overcome damage limits by using intense X-ray pulses that vaporise the sample, but which are short enough in duration to freeze any motion of the sample on the atomic scale.  With the advent of X-ray FELs we have been able to confirm this principle, and are now applying it to overcoming a major bottleneck for protein crystallography, which is the need for large well-diffracting crystals.  The intense pulses also open up opportunities to help solve the crystallographic phase problem.  In particular we have found that commonly-occurring disordered crystals that are usually not ...

  20. X-ray bursters and the X-ray sources of the galactic bulge

    Science.gov (United States)

    Lewin, W. H. G.; Joss, P. C.

    1981-01-01

    An attempt is made to distill from observational and theoretical information on the galactic bulge X-ray sources in general, and on the X-ray burst sources in particular, those aspects which seem to have the greatest relevance to the understanding of these sources. Galactic bulge sources appear to be collapsed objects of roughly solar mass, in most cases neutron stars, which are accreting matter from low-mass stellar companions. Type I bursts seem to result from thermonuclear flashes in the surface layers of some of these neutron stars, while the type II bursts from the Rapid Burster are almost certainly due to an instability in the accretion flow onto a neutron star. It is concluded that the studies cited offer a new and powerful observational handle on the fundamental properties of neutron stars and of the interacting binary systems in which they are often contained.

  1. Automated classification of Chandra X-ray sources

    Science.gov (United States)

    Brehm, Derek; Kargaltsev, O.; Rangelov, B.; Volkov, I.; Pavlov, G. G.

    2014-01-01

    With the advent of the latest generation X-ray telescopes there has been a major influx of data associated with the detection of hundreds of thousands X-ray sources. As one can rarely tell a source type from its X-ray properties alone, the full potential of the X-ray catalogs can only be unlocked by correlating multiwavelength (MW) properties via cross-identification with other surveys. However, one would spend an enormous amount of time classifying these objects by their physical nature if the classification was to be done on a source-by-source basis by humans. Therefore, we are using a supervised learning algorithm to classify sources detected by the Chandra X-ray Observatory. The classifications are based on a training dataset which currently includes about 7,000 X-ray sources of known nature (main sequence stars, Wolf-Rayet stars, young stars, active galactic nuclei, low mass X-ray binaries, high mass x-ray binaries, and neutron stars). For each source, the training dataset includes up to 24 multiwavelength properties. The efficiency and accuracy of the classification is verified by dividing the training dataset in two and performing cross-validation. The results are also inspected by plotting source properties in 2D slices of the parameter space. As an application of our automated procedure we classified unidentified sources in the supernova remnant (SNR) G352.7-0.1, in the field of HESS J1809-193, and in part of the Chandra Source Catalog 1.0. We present the results of the verification tests and the classification results. This research was partially supported by NASA/SAO grant AR3-14017X.

  2. LUX — A Recirculating Linac-based Ultrafast X-ray Source

    Science.gov (United States)

    Corlett, J. N.; Barletta, W. A.; DeSantis, S.; Doolittle, L.; Fawley, W. M.; Green, M. A.; Heimann, P.; Leone, S. R.; Lidia, S.; Li, D.; Parmigiani, F.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wilcox, R.; Wolski, A.; Zholents, A.

    2004-05-01

    We describe the design of a proposed source of ultra-fast synchrotron radiation x-ray pulses based on a recirculating superconducting linac, with an integrated array of ultrafast laser systems. The source produces x-ray pulses with duration of 10-50 fs at a 10 kHz repetition rate, with tunability from EUV to hard x-ray regimes, and optimized for the study of ultra-fast dynamics. A high-brightness rf photocathode provides electron bunches. An injector linac accelerates the beam to the 100 MeV range, and is followed by four passes through a 700 MeV recirculating linac. Ultrafast hard x-ray pulses are obtained by a combination of electron bunch manipulation, transverse temporal correlation of the electrons, and x-ray pulse compression. EUV and soft x-ray pulses as short as 10 fs are generated in a harmonic-cascade free electron laser scheme. We describe the facility major systems and peformance.

  3. LUX: a design study for a linac-/laser-based ultrafast x-ray source

    Science.gov (United States)

    Corlett, John N.; Barletta, William A.; DeSantis, Stefano; Doolittle, Larry; Fawley, William M.; Heimann, Philip; Leone, Stephen; Lidia, Steven; Li, Derun; Penn, Gregory; Ratti, Alex; Reinsch, Matheus; Schoenlein, Robert; Staples, John; Stover, Gregory; Virostek, Steve; Wan, Weishi; Wells, Russell; Wilcox, Russell; Wolski, Andy; Wurtele, Jonathan; Zholents, Alexander A.

    2004-11-01

    We describe the design concepts for a potential future source of femtosecond x-ray pulses based on synchrotron radiation production in a recirculating electron linac. Using harmonic cascade free-electron lasers (FEL's) and spontaneous emission in short-period, narrow-gap insertion devices, a broad range of photon energies are available with tunability from EUV to hard x-ray regimes. Photon pulse durations are controllable and range from 10 fs to 200 fs, with fluxes 107-1012 photons per pulse. Full spatial and temporal coherence is obtained for EUV and soft X-rays. A fiber laser master oscillator and stabilized timing distribution scheme are proposed to synchronize accelerator rf systems and multiple lasers throughout the facility, allowing timing synchronization between sample excitation and X-ray probe of approximately 20-50 fs.

  4. Sub-Picosecond Tunable Hard X-Ray Undulator Source for Laser/X-Ray Pump-Probe Experiments

    Science.gov (United States)

    Ingold, G.; Beaud, P.; Johnson, S.; Streun, A.; Schmidt, T.; Abela, R.; Al-Adwan, A.; Abramsohn, D.; Böge, M.; Grolimund, D.; Keller, A.; Krasniqi, F.; Rivkin, L.; Rohrer, M.; Schilcher, T.; Schmidt, T.; Schlott, V.; Schulz, L.; van der Veen, F.; Zimoch, D.

    2007-01-01

    The FEMTO source under construction at the μXAS beamline is designed to enable tunable time-resolved laser/x-ray absorption and diffraction experiments in photochemistry and condensed matter with ps- and sub-ps resolution. The design takes advantage of (1) the highly stable operation of the SLS storage ring, (2) the reliable high harmonic operation of small gap, short period undulators to generate hard x-rays with energy 3-18 keV at 2.4 GeV beam energy, and (3) the progress in high power, high repetition rate fs solid-state laser technology to employ laser/e-beam `slicing' to reach a time resolution of ultimately 100 fs. The source will profit from the inherently synchronized pump (laser I: 100 fs, 2 mJ, 1 kHz) and probe (sliced X-rays, laser II: 50 fs, 5 mJ, 1 kHz) pulses, and from the excellent stability of the SLS storage ring which is operated in top-up mode and controlled by a fast orbit feedback (FOFB). Coherent radiation emitted at THz frequencies by the sliced 100 fs electron bunches will be monitored as on-line cross-correlation signal to keep the laser-electron beam interaction at optimum. The source is designed to provide at 8 keV (100 fs) a monochromized flux of 104 ph/s/0.01% bw (Si crystal monochromator) and 106 ph/s/1.5% bw (multilayer monochromator) at the sample. It is operated in parasitic mode using a hybrid bunch filling pattern. Because of the low intensity measurements are carried out repetitively over many shots using refreshing samples and gated detectors. `Diffraction gating' experiments will be used to characterize the sub-ps X-ray pulses.

  5. Miniature X-ray Source for Planetary Exploration Instruments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed work is to develop a rugged, low power, passively cooled X-Ray source that is compatible with miniaturized XRD systems. The XRD...

  6. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+105 and the Evolution of Hard X-ray Spectrum

    Indian Academy of Sciences (India)

    R. K. Manchanda

    2000-06-01

    We report the spectral measurement of GRS 1915+105 in the hard X-ray energy band of 20-140keV. The observations were made on March 30th, 1997 during a quiescent phase of the source. We discuss the mechanism of emission of hard X-ray photons and the evolution of the spectrum by comparing the data with earlier measurements and an axiomatic model for the X-ray source.

  7. Reflection of femtosecond pulses from soft X-ray free-electron laser by periodical multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, D.; Grigorian, S.; Pietsch, U. [Faculty of Physics, University of Siegen (Germany); Hendel, S.; Bienert, F.; Sacher, M.D.; Heinzmann, U. [Faculty of Physics, University of Bielefeld (Germany)

    2009-08-15

    Recent experiments on a soft X-ray free-electron laser (FEL) source (FLASH in Hamburg) have shown that multilayers (MLs) can be used as optical elements for highly intense X-ray irradiation. An effort to find most appropriate MLs has to consider the femtosecond time structure and the particular photon energy of the FEL. In this paper we have analysed the time response of 'low absorbing' MLs (e.g. such as La/B{sub 4}C) as a function of the number of periods. Interaction of a pulse train of Gaussian shaped sub-pulses using a realistic ML grown by electron-beam evaporation technique has been analysed in the soft-X-ray range. The structural parameters of the MLs were obtained by reflectivity measurements at BESSY II and subsequent profile fittings. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  8. Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression

    Directory of Open Access Journals (Sweden)

    Senlin Huang

    2014-12-01

    Full Text Available In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less than 200 attoseconds can be obtained.

  9. Liquid explosions induced by X-ray laser pulses

    Science.gov (United States)

    Stan, Claudiu; Laksmono, Hartawan; Sierra, Raymond; McQueen, Trevor; Milathianaki, Despina; Koglin, Jason; Lane, Thomas; Messerschmidt, Marc; Williams, Garth; Hayes, Matt; Guillet, Serge; Botha, Sabine; Nass, Karol; Schlichting, Ilme; Shoeman, Robert; Stone, Howard; Boutet, Sébastien

    2015-11-01

    Sudden generation and release of enough energy to vaporize matter are encountered in systems that range from supernovae explosions and asteroid impacts to applications in fusion energy generation, materials processing, and laser surgery. Understanding these strong explosions is important to both fundamental science and technical applications. We studied a new type of microexplosion, induced by absorption of X-ray pulses from a free-electron laser in micron-sized drops and jets of water. These explosions are related to, but different from, those observed in experiments performed with optical lasers. Unlike explosions caused by optical lasers, X-ray laser explosions produce symmetric expansion patterns that are simpler to rationalize. The release of energy initially concentrated in a small region inside drops and jets leads to ballistic vapor flow and inertial liquid flow. The kinematics of these flows indicates that the conversion of the energy deposited by X-rays into flow has a scaling that is similar to the one encountered in shock waves.

  10. Long Duration Multi-hohlraum X-ray Sources for Eagle Nebula Laboratory Experiments

    Science.gov (United States)

    Kane, Jave; Heeter, Robert; Martinez, David; Casner, Alexis; Villette, Bruno; Mancini, Roberto; Pound, Marc

    2013-10-01

    A novel foam-filled multi-hohlraum long-duration x-ray source has been demonstrated at the Omega EP laser and used to obtain L-band spectra of photoionized Ti. A larger scale version of the source will be used in the Science on NIF Eagle Nebula experiments studying dynamic evolution of distinctive pillar and cometary structures in star-forming clouds, where the long duration and directionality of photoionizing radiation from nearby stars generates new classes of flows and instabilities. At NIF, a target representing an astrophysical molecular cloud will be placed several mm from an x-ray source lasting 40-100 ns. At EP, three hohlraums were illuminated in sequence with 3.3 kJ pulses lasting 6 ns, or 4.3 kJ pulses lasting 10 ns, generating 18 or 30 ns of x-ray output at 90-100 eV color temperature. Performance of the source was validated using the μ DMX and VSG spectrometers, ASBO VISAR, and x-ray pinhole imagery. The HYDRA code suggests the EP-scale source can also be shot at NIF with at least 10 kJ per hohlraum. The multi-hohlraum source concept has potential further application to hard x-ray sources, soft x-ray backlighters, and nonlinear ablative hydrodynamics. Prepared by LLNL under Contract DE-AC52-07NA27344. J. Kane supported by DOE OFES grant HEDLP LAB 11-583.

  11. Performance of the Cygnus X-ray Source

    Science.gov (United States)

    Smith, John R.; Carlson, Randolph; Fulton, Robert D.; Altes, R.; Carboni, V.; Chavez, Jacob R.; Corcoran, P.; Coulter, William L.; Douglas, J.; Droemer, D.; Gibson, William A.; Helvin, Thomas B.; Henderson, David J.; Johnson, David L.; Maenchen, John E.; Mitton, Charlas V.; Molina, Isidro; Nishimoto, H.; Ormond, Eugene C.; Ortega, Paul A.; Quicksilver, Robert J.; Ridlon, Rae N.; Rose, Evan A.; Scholfield, David W.; Smith, I.; Valerio, Antonio R.; White, R.

    2002-12-01

    Cygnus is a radiographic x-ray source developed for support of the Sub-Critical Experiments Program at the Nevada Test Site. Major requirements for this application are: a dramatically reduced spot size as compared to both Government Laboratory and existing commercial alternatives, layout flexibility, and reliability. Cygnus incorporates proven pulsed power technology (Marx Generator, Pulse Forming Line, Water Transmission Line, and Inductive Voltage Adder sub-components) to drive a high voltage vacuum diode. In the case of Cygnus, a relatively new approach (the rod pinch diode [1]) is employed to achieve a small source diameter. Design specifications are: 2.25 MeV endpoint energy, 3 rads dose at 1 meter. The pulsed power and system architecture design plan has been previously presented [2]. The first set of Cygnus shots were geared to verification of electrical parameters and, therefore, used a large area diode configuration offering increased shot rate as compared to that of the rod pinch diode. In this paper we present results of initial rod pinch operation in terms of electrical and radiation parameters.

  12. Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Weninger, Clemens

    2015-10-15

    Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The

  13. Development of single frame X-ray framing camera for pulsed plasma experiments

    Indian Academy of Sciences (India)

    J Upadhyay; J A Chakera; C P Navathe; P A Naik; A S Joshi; P D Gupta

    2006-10-01

    A single-frame X-ray framing camera has been set up for fast imaging of X-ray emissions from pulsed plasma sources. It consists of two parts, viz. an X-ray pin-hole camera using an open-ended microchannel plate (MCP) detector coupled to a CCD camera, and a high voltage short duration gate pulse for the MCP. The camera uses a 10-m pin-hole aperture for imaging on the MCP detector with a magnification of 6X. The high voltage pulser circuit generates a pulse of variable duration from 5 to 30 ns (at 70% of peak amplitude) with variable amplitude from 800 V to 1·25 kV, and is triggered through a laser pulse synchronized with the event to be recorded. The performance of the system has been checked by recording X-ray emission from a laser-produced copper plasma. A reduction factor of ∼6·5 is seen in the dark current contribution as the MCP gate pulse is decreased from 250s to 5 ns duration.

  14. Ways to produce and measure atto- and femtosecond soft X-ray pulses

    Institute of Scientific and Technical Information of China (English)

    GE YuCheng

    2007-01-01

    The ways to produce and measure atto- and femtosecond soft X-ray pulses are reported. The laser phase relation of high-order harmonic generation (HHG) shows two different radiation energy distributions in time (or laser phase) domain. These energy-phase relations are helpful for realizing the dynamic processes of HHG. Two presented parameterized formulas can be used to calculate the durations of the energy distributions with a bandwidth of the pulse. These formulas are useful in calculating and simulating pulses transports and interactions with mediums. The time structures of atto- and femtosecond soft X-ray pulses can be directly measured with photoelectron spectrum transfer equations and the related laser phase determination methods without any previous pulse shape and the instantaneous frequency assumptions. These equations and methods can be used to evaluate and improve the technical parameters of the ultra-short X-ray sources. They have wide measurement ranges and high time resolutions, which may enable ultra-fast measurements to reach metrological precisions, and lead to a new tide of scientific researches in physics, chemistry, biochemistry, etc. The application of attoand femtosecond X-rays as well as the theoretical and technical problems in measurements are briefly discussed.

  15. Characterisation and application of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, M

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm{sup 2} onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained 120 refs, figs, tabs

  16. The Soft X-ray Research instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Dakovski, Georgi L., E-mail: dakovski@slac.stanford.edu; Heimann, Philip; Holmes, Michael [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Krupin, Oleg [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); European XFEL, Notkestrasse 85, 22607 Hamburg (Germany); Minitti, Michael P.; Mitra, Ankush; Moeller, Stefan; Rowen, Michael; Schlotter, William F.; Turner, Joshua J. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-02

    A description of the Soft X-ray Research instrument (SXR) at the Linac Coherent Light Source is given. Recent scientific highlights illustrate the wide variety of experiments and detectors that can be accommodated at SXR. The Soft X-ray Research instrument provides intense ultrashort X-ray pulses in the energy range 280–2000 eV. A diverse set of experimental stations may be installed to investigate a broad range of scientific topics such as ultrafast chemistry, highly correlated materials, magnetism, surface science, and matter under extreme conditions. A brief description of the main instrument components will be given, followed by some selected scientific highlights.

  17. Chandra Multiwavelength Project X-ray Point Source Catalog

    CERN Document Server

    Kim, M; Wilkes, B J; Green, P J; Kim, E; Anderson, C S; Barkhouse, W A; Evans, N R; Ivezic, Z; Karovska, M; Kashyap, V L; Lee, M G; Maksym, P; Mossman, A E; Silverman, J D; Tananbaum, H D; Kim, Minsun; Kim, Dong-Woo; Wilkes, Belinda J.; Green, Paul J.; Kim, Eunhyeuk; Anderson, Craig S.; Barkhouse, Wayne A.; Evans, Nancy R.; Ivezic, Zeljko; Karovska, Margarita; Kashyap, Vinay L.; Lee, Myung Gyoon; Maksym, Peter; Mossman, Amy E.; Silverman, John D.; Tananbaum, Harvey D.

    2006-01-01

    We present the Chandra Multiwavelength Project (ChaMP) X-ray point source catalog with ~6,800 X-ray sources detected in 149 Chandra observations covering \\~10 deg^2. The full ChaMP catalog sample is seven times larger than the initial published ChaMP catalog. The exposure time of the fields in our sample ranges from 0.9 to 124 ksec, corresponding to a deepest X-ray flux limit of f_{0.5-8.0} = 9 x 10^{-16} erg/cm2/sec. The ChaMP X-ray data have been uniformly reduced and analyzed with ChaMP-specific pipelines, and then carefully validated by visual inspection. The ChaMP catalog includes X-ray photometric data in 8 different energy bands as well as X-ray spectral hardness ratios and colors. To best utilize the ChaMP catalog, we also present the source reliability, detection probability and positional uncertainty. To quantitatively assess those parameters, we performed extensive simulations. In particular, we present a set of empirical equations: the flux limit as a function of effective exposure time, and the p...

  18. Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse

    Directory of Open Access Journals (Sweden)

    J. Szlachetko

    2014-03-01

    Full Text Available Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10−18 s to femtoseconds (10−15 s and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS, we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

  19. Development of a new X-ray source using backscattered X-ray with the use of a cold cathode

    Science.gov (United States)

    Tanizawa, Keisuke; Sekiya, Tetsuo; Ohshio, Shigeo; Akasaka, Hiroki; Saitoh, Hidetoshi

    2011-02-01

    The development of an intense X-ray source using backscattered X-ray produced using an advanced electrode configuration is described. The electrodes were composed of field emitters deposited on a wire mounted on a perforated plate as the cathode and a copper plate as the anode. Electrons from these emitters collided with the copper plate and X-ray was generated at collision points. The backscattered X-ray in the direction normal to the electron trajectory through a hole in the anode escaped from the vacuum chamber through a beryllium window. Continuous and characteristic X-rays were detected at an applied voltage lower than that of a conventional X-ray source from 3.0 to 9.4 kV, respectively. Moreover, the X-ray dosage measured with a survey meter reached 0.95 mSv/h at 5.0 kV of applied voltage. The transmission images of three types of material used as an X-ray source for the X-ray imaging system indicate three advantages; low power consumption, focal point controllable by adjusting applied voltage, and photographable motion picture of X-ray transmission.

  20. Pulsed X-ray radiography of a gas jet target for laser-matter interaction experiments with the use of a CCD detector

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, R. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Bartnik, A. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Fiedorowicz, H. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland)]. E-mail: hfiedorowicz@wat.edu.pl; Jarocki, R. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Kostecki, J. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); MikoIajczyk, J. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Szczurek, A. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Szczurek, M. [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw (Poland); Foeldes, I.B. [KFKI-Research Institute for Particle and Nuclear Physics, Association EURATOM, P.O. Box 49, H-1525 Budapest (Hungary); Toth, Zs. [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged, Pf.: 406 (Hungary)

    2005-10-01

    Characterization of gas jet targets has been carried out using pulsed X-ray radiography. A laser-plasma X-ray source was applied for backlighting of the targets to obtain X-ray shadowgraphs registered with a CCD detector. From the shadowgraphs, characteristics of the targets were determined.

  1. Optical Counterparts of Ultra Luminous X-ray Sources

    CERN Document Server

    Gutíerrez, C M

    2006-01-01

    We present optical identification and characterization of counterparts of four objects previously catalogued as ultra-luminous X-ray sources. The objects were selected from the Colbert & Ptak (2002) catalogue. The optical counterparts are identified as point-like objects with magnitudes in the range \\~17-19. The optical spectra of three of the sources (IXO 32, 37 and 40) show the presence of emission lines typical of quasars. The position of these lines allows a precise estimation of their redshifts (2.769, 0.567 and 0.789 for IXO 32, 37 and 40 respectively). The fourth X-ray source, IXO35, is associated with a red object that has a spectrum typical of an M star in our Galaxy. These identifications are useful for building clean samples of ULX sources, selecting suitable targets for future observations and performing statistical studies on the different populations of X-ray sources.

  2. Laser and Pulsed Power Electron Density Imaging Through Talbot-Lau X-ray Deflectometry

    Science.gov (United States)

    Valdivia Leiva, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begischev, Ildar; Theobald, Wolfgang; Bromage, Jake; Regan, Sean; Klein, Salee; Muñoz-Cordovez, Gonzalo; Vescovi, Milenko; Valenzuela-Villaseca, Vicente; Veloso, Felipe

    2016-10-01

    A Talbot-Lau X-ray Deflectometer was deployed using laser driven and x-pinch x-ray backlighters. The Talbot-Lau X-ray Deflectometer is an ideal electron density diagnostic for High Energy Density plasmas with the potential to simultaneously deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single image with source limited resolution. Grating survival and electron density mapping was demonstrated for 10-29 J, 8-30 ps laser pulses using Cu foil targets at the Multi-TeraWatt facility. An areal electron density of 0.050 g/cm2 was obtained at the center of a fluoro-nylon fiber of 300 mm diameter with a source FWHM of 80 µm and resolution of 50 µm. Grating survival and Moiré pattern formation was demonstrated using a Cu x-pinch plasma of FWHM 27 µm, driven by the 350 kA, 350 ns Llampudken pulsed power generator. These results closely match simulations and laboratory results. It was demonstrated that the technique can detect both sharp and smooth density gradients in the range of 2x1023 to 2x1025 cm-3, thus allowing implementation of the electron density technique as a HED plasma diagnostic in both laser and pulsed power experiments U.S. DoE/NNSA and DE-NA0002955.

  3. Optimized Volumetric Scanning for X-Ray Array Sources

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S K; Foudray, A M; Wang, A; Kallman, J S; Martz, H

    2009-09-29

    Non-destructive evaluation (NDE) is the science and technology of determining non-invasively the internal structure of manufactured parts, objects, and materials. NDE application areas include medicine, industrial manufacturing, military, homeland security, and airport luggage screening. X-ray measurement systems are most widely used because of their ability to image through a wide range of material densities (from human tissue in medical applications to the dense materials of weapon components). Traditional x-ray systems involve a single source and detector system that rotate and/or translate about the object under evaluation. At each angular location, the source projects x-rays through the object. The rays undergo attenuation proportional to the density of the object's constitutive material. The detector records a measure of the attenuation. Mathematical algorithms are used to invert the forward attenuated ray projection process to form images of the object. This is known as computed tomography (CT). In recent years, the single-source x-ray NDE systems have been generalized to arrays of x-ray sources. Array sources permit multiple views of the object with fewer rotations and translations of the source/detector system. The spatially diverse nature of x-ray array sources has the potential of reducing data collection time, reducing imaging artifacts, and increasing the resolution of the resultant images. Most of the existing CT algorithms were not derived from array source models with a spatially diverse set of viewing perspectives. Single-source x-ray CT data collection, processing, and imaging methods and algorithms are not applicable when the source location is expanded from one dimension (a rotating and/or translating point source) to two (a rotating and/or translating array). They must be reformulated. The goal of this project is to determine the applicability of x-ray array sources to problems of interest to LLNL and its customers. It is believed array

  4. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    Energy Technology Data Exchange (ETDEWEB)

    Canova, Federico [Amplitude Technologies, Evry (France); Poletto, Luca (ed.) [National Research Council, Padova (Italy). Inst. of Photonics and Nanotechnology

    2015-07-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

  5. X-ray Optics for BES Light Source Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Dennis [Argonne National Lab. (ANL), Argonne, IL (United States); Padmore, Howard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lessner, Eliane [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  6. X-ray Optics for BES Light Source Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Dennis [Argonne National Lab. (ANL), Argonne, IL (United States); Padmore, Howard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lessner, Eliane [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  7. Catheterized plasma X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Derzon, Mark S.; Robinson, Alex; Galambos, Paul C.

    2017-06-20

    A radiation generator useful for medical applications, among others, is provided. The radiation generator includes a catheter; a plasma discharge chamber situated within a terminal portion of the catheter, a cathode and an anode positioned within the plasma discharge chamber and separated by a gap, and a high-voltage transmission line extensive through the interior of the catheter and terminating on the cathode and anode so as to deliver, in operation, one or more voltage pulses across the gap.

  8. X-ray sources in globular clusters of other galaxies

    CERN Document Server

    Lewin, W H G; Lewin, Walter H.G.; Verbunt, Frank

    2005-01-01

    A large number of X-ray sources in globular clusters of galaxies other than the Milky Way has been found with Chandra. We discuss three issues relating to these sources. The X-ray luminosity function (XLF) of the sources in globular clusters of M31 is marginally compatible with the XLF of globular clusters of the Milky Way. The individual XLFs of a dozen elliptical galaxies, after correction for incompleteness, are compatible with one another and show no break; however, the XLF found by adding the individual XLFs of elliptical galaxies has a break at L_x about 5x10(38) ergs/s. For the moment there is no evidence for a difference between the XLFs of sources inside and outside globular clusters of elliptical galaxies. It is not (yet?) possible to decide which fraction of low-mass X-ray binaries in elliptical galaxies outside globular clusters have formed inside globular clusters.

  9. Fourth-generation X-ray sources: some possible applications to biology.

    Science.gov (United States)

    Doniach, S

    2000-05-01

    The term 'fourth generation X-ray sources' has come to mean X-ray free-electron lasers which use multi-GeV electron beams from linear accelerators to generate X-rays by self-amplified stimulated emission when fired into long undulators. Properties of the radiation expected from such sources are reviewed briefly and two possible applications of the resulting pulsed highly collimated X-radiation to problems in biology are discussed: use of X-ray photon correlation spectroscopy to measure time correlations of atoms in protein crystals, and use of Mössbauer radiation extracted from the photon beams by resonant Bragg diffraction from (57)Fe-containing crystals, for MAD phasing of very large unit-cell biomolecular crystals and possibly for photon echo measurements.

  10. Development and characterization of a tunable ultrafast X-ray source via inverse-Compton-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jochmann, Axel

    2014-07-01

    Ultrashort, nearly monochromatic hard X-ray pulses enrich the understanding of the dynamics and function of matter, e.g., the motion of atomic structures associated with ultrafast phase transitions, structural dynamics and (bio)chemical reactions. Inverse Compton backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright X-ray pulses which can be used in a pump-probe experiment, but also for the investigation of the electron beam dynamics at the interaction point. The focus of this PhD work lies on the detailed understanding of the kinematics during the interaction of the relativistic electron bunch and the laser pulse in order to quantify the influence of various experiment parameters on the emitted X-ray radiation. The experiment was conducted at the ELBE center for high power radiation sources using the ELBE superconducting linear accelerator and the DRACO Ti:sapphire laser system. The combination of both these state-of-the-art apparatuses guaranteed the control and stability of the interacting beam parameters throughout the measurement. The emitted X-ray spectra were detected with a pixelated detector of 1024 by 256 elements (each 26μm by 26μm) to achieve an unprecedented spatial and energy resolution for a full characterization of the emitted spectrum to reveal parameter influences and correlations of both interacting beams. In this work the influence of the electron beam energy, electron beam emittance, the laser bandwidth and the energy-anglecorrelation on the spectra of the backscattered X-rays is quantified. A rigorous statistical analysis comparing experimental data to ab-initio 3D simulations enabled, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard X-ray source PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) and potential all optical gamma-ray sources. The results

  11. In situ X-ray diffraction during pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vonk, Vedran [Max-Planck-Institute for Metals Research, Stuttgart (Germany); Huijben, Mark [University of California, Berkeley (United States); Driessen, Kurt; Rijnders, Guus; Blank, Dave; Harkema, Sybolt [University of Twente, Enschede (Netherlands); Graafsma, Heinz [Deutsches Elektronen- Synchrotron, Hamburg (Germany)

    2007-07-01

    The use of in situ X-ray diffraction for the study of thin film growth enables in a straightforward way to derive the atomic structure, because the kinematical scattering approximation holds. Here we present the results of studying the heteroepitaxial growth by Pulsed Laser Deposition of complex oxides such as the High-T c superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} and the insulator LaAlO{sub 3} on SrTiO{sub 3}(001) substrates. A special sample chamber has been constructed to be used with synchrotron X-rays. Detailed pictures of the growth kinetics and of the atomic interface structure at deposition conditions result from fitting quantitatively both the intensity growth oscillations and the crystal truncation rods. The growth of the complex oxide thin films presented here is characterized by substantial interlayer-mass transport and large deviations from the bulk room-temperature atomic structure. The results show the effects of the interplay between formation and diffusion energies on the processes of nucleation and kinetics during heteroepitaxial growth.

  12. 600 eV falcon-linac thomson x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Crane, J K; LeSage, G P; Ditmire, T; Cross, R; Wharton, K; Moffitt, K; Cowan, T E; Hays, G; Tsai, V; Anderson, G; Shuttlesworth, R; Springer, P

    2000-12-15

    The advent of 3rd generation light sources such as the Advanced Light Source (ALS) at LBL, and the Advanced Photon Source at Argonne, have produced a revolution in x-ray probing of dense matter during the past decade. These machines use electron-synchrotrons in conjunction with undulator stages to produce 100 psec x-ray pulses with photon energies of several kiloelectronvolts (keV). The applications for x-ray probing of matter are numerous and diverse with experiments in medicine and biology, semiconductors and materials science, and plasma and solid state physics. In spite of the success of the 3rd generation light sources there is strong motivation to push the capabilities of x-ray probing into new realms, requiring shorter pulses, higher brightness and harder x-rays. A 4th generation light source, the Linac Coherent Light Source (LCLS), is being considered at the Stanford Linear Accelerator [1]. The LCLS will produce multi-kilovolt x-rays of subpicosecond duration that are 10 orders of magnitude brighter than today's 3rd generation light sources.[1] Although the LCLS will provide unprecedented capability for performing time-resolved x-ray probing of ultrafast phenomena at solid densities, this machine will not be completed for many years. In the meantime there is a serious need for an ultrashort-pulse, high-brightness, hard x-ray source that is capable of probing deep into high-Z solid materials to measure dynamic effects that occur on picosecond time scales. Such an instrument would be ideal for probing the effects of shock propagation in solids using Bragg and Laue diffraction. These techniques can be used to look at phase transitions, melting and recrystallization, and the propagation of defects and dislocations well below the surface in solid materials. [2] These types of dynamic phenomena undermine the mechanical properties of metals and are of general interest in solid state physics, materials science, metallurgy, and have specific relevance to

  13. LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    Science.gov (United States)

    Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang

    2009-06-01

    A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  14. Mobile x-ray complex based on ironless pulsed betatrons. X-ray complex conception for small-angle tomography

    Science.gov (United States)

    Kozlov, S. G.; Kuropatkin, Yu P.; Nizhegorodtsev, V. I.; Savchenko, K. V.; Selemir, V. D.; Urlin, E. V.; Shamro, O. A.

    2017-05-01

    The conception of creating mobile radiographic complex based on ironless pulsed betatrons is proposed for radiography of dynamic objects having large optical thicknesses. Realization of this conception allows: a) optimizing geometry of the hydrodynamic experiment at the expense of the change of the radiation source and recorder position relatively to the test object, located in the explosion-proof chamber(EPC). Thus, it lets the intensity of the x-ray radiation be increased twice in the recorder plane as compared with available Russian complexes; b) creating an efficient environment protection system at the expense of localization of dangerous explosion products, and a shock wave connected with them; c) significantly decreasing the cost of radiographic complexes, if not building heavy protective casemates and their infrastructure. Instead of them it is possible to use cheap rapidly erected constructions. The mobile radiographic complex is described. Its characteristics, obtained during the testing powering were provided. Thickness of the lead test at 1m from the tantalum target at the limiting energy of the betatron electron beam Elim∼12 MeV( it is determined by the value of a capacitive storage of the pulsed powering system of the electromagnet) was ∼115 mm. Conception of a multibeam complex creation based on ironless pulsed betatrons for small-angle tomography was also considered.

  15. Development of a flat-panel X-ray source

    Science.gov (United States)

    Grant, Edwin Joseph

    A novel flat-panel transmission type X-ray source was developed for both medical and industrial use. Depending on the geometry of the given situation, the flat-panel X-ray source could be used in tomography, radiography or tomosynthesis. Furthermore, the unit could be used as a portable X-ray scanner or an integral part of an existing detection system. The design incorporates a field emission cathode made of ultra-nanocrystalline diamonds (UNCD) doped with nitrogen. These field emitters show good electron output at low power and can be deposited over large areas as is the case with carbon nanotube "forest" (CNT) cathodes. This work presents the first generation of the UNCD based FEA prototype which was manufactured at the Center of Nanoscale Material, within Argonne National Laboratory, with standard microfabrication techniques. The prototype is a 3 x 3 pixel field emission array (FEA), with a pixel size of 225 mum by 225 mum and a pitch of 500 mum. The fabricated cathode was developed using a microfabrication process which allows for individual electrically addressable UNCD gated arrays on-chip which demonstrated monolithic integration of the electron extraction grid. The transmission target consists of tungsten for X-ray generation, which is sputtered directly upon a thin aluminum sheet as an X-ray filter. A low voltage power supply allows for electron extraction between the cathode and the grid; while a high voltage power supply accelerates the electrons towards the anode. A low energy X-ray high purity germanium detector (HPGe) is mounted outside of the vacuum chamber for X-ray detection and measurement.

  16. Stellar X-ray Sources in the Rosette Nebula

    Institute of Scientific and Technical Information of China (English)

    W. P. Chen; P. S. Chiang; J. Z. Li

    2004-01-01

    We present optical photometric and spectroscopic studies of ROSAT X-ray stellar sources in the Rosette Nebula star-forming region. The brightest Xray sources are either massive stars or active T Tauri stars associated with the open cluster NGC 2244, or are foreground stars. Some of the spectra of the young stars newly identified in the region are presented.

  17. A JEM-X catalog of X-ray sources

    DEFF Research Database (Denmark)

    Westergaard, Niels Jørgen Stenfeldt; Chenevez, Jerome; Lund, Niels;

    2007-01-01

    The JEM-X catalog of X-ray sources presented here is based on detections in individual science windows with a sensitivity limit of about 10 mCrab (5-15 keV). It contains 127 sources and only those that can be identified from the existing reference catalog. The input data are taken from the, up...

  18. Upgrade of X-band thermionic cathode RF gun for Compton scattering X-ray source

    Science.gov (United States)

    Taniguchi, Yoshihiro; Sakamoto, Fumito; Natsui, Takuya; Yamamoto, Tomohiko; Hashimoto, Eiko; Lee, KiWoo; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Higo, Toshiyasu; Fukuda, Shigeki; Akemoto, Mitsuo

    2009-09-01

    A Compton scattering X-ray source consisting of an X-band (11.424 GHz) electron linear accelerator (linac) and Q-switched Nd: YAG laser is currently under development at the University of Tokyo. Monochromatic X-rays are required for a variety of medical and biological applications. The X-ray source produces monochromatic X-rays via collision between a 35-MeV multi-bunch (104 bunches in a 1 μs RF pulse) electron beam and 1.4 J/10 ns (532 nm) Nd: YAG laser pulse. The linac uses an X-band 3.5-cell thermionic cathode RF gun and an alpha magnet as an injector. Until now, electron beam generation (2 MeV, 1 pC/bunch at the exit of the injector), beam acceleration, and X-ray generation have been verified. In order to increase X-ray energy and intensity, we have completed the design and construction of a new RF gun with relevant modifications in some structures. In this paper, we describe the details of the concepts of designing a new RF gun and discuss future works.

  19. Pulsed x-ray imaging of high-density objects using a ten picosecond high-intensity laser driver

    Science.gov (United States)

    Rusby, D. R.; Brenner, C. M.; Armstrong, C.; Wilson, L. A.; Clarke, R.; Alejo, A.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Mirfayzi, S. R.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-10-01

    Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of 10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.

  20. Generation of large-bandwidth x-ray free-electron-laser pulses

    Directory of Open Access Journals (Sweden)

    Angela Saa Hernandez

    2016-09-01

    Full Text Available X-ray free-electron lasers (XFELs are modern research tools in disciplines such as biology, material science, chemistry, and physics. Besides the standard operation that aims at minimizing the bandwidth of the produced XFEL radiation, there is a strong scientific demand to produce large-bandwidth XFEL pulses for several applications such as nanocrystallography, stimulated Raman spectroscopy, and multiwavelength anomalous diffraction. We present a self-consistent method that maximizes the XFEL pulse bandwidth by systematically maximizing the energy chirp of the electron beam at the undulator entrance. This is achieved by optimizing the compression scheme and the electron distribution at the source in an iterative back-and-forward tracking. Start-to-end numerical simulations show that a relative bandwidth of 3.25% full-width can be achieved for the hard x-ray pulses in the SwissFEL case.

  1. Soft x-ray generation in gases with an ultrashort pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, Todd Raymond [Univ. of California, Davis, CA (United States)

    1996-01-08

    An experimental investigation of soft x-ray production resulting from the interaction of intense near infra-red laser radiation with gases is presented in this thesis. Specifically, soft x-ray generation through high order harmonic generation or exploiting intense inverse bremsstrahlung heating is examined. Most of these studies are conducted with femtosecond, terawatt class Cr:LiSrAlF6 (LiSAF) laser, though results derived from studies with other laser systems are presented as well. The majority of this work is devoted to experimental investigations, however, theoretical and computational models are developed to interpret the data. These studies are motivated by the possibility of utilizing the physics of intense laser/matter interactions as a potential compact source of bright x-rays. Consequently, the thrust of many of the experiments conducted is aimed at characterizing the x-rays produced for possible use in applications. In general, the studies of this manuscript fall into three categories. First, a unique 130 fs, 8 TW laser that is based on chirped pulse amplification, is described, and its performance is evaluated. The generation of x-rays through high order harmonics is then discussed with emphasis on characterizing and optimizing harmonic generation. Finally, the generation of strong, incoherent x-ray radiation by the intense irradiation of large (>1,000 atom) clusters in gas jets, is explored. The physics of laser energy absorption by clusters illuminated with intensities of 1015 to 1017 W/cm2 is considered in detail. X-ray spectroscopy of the hot plasmas that result from the irradiation of the clusters is conducted, and energy transport and kinetics issues in these plasmas are discussed.

  2. Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyants, I.A.; /DESY /Moscow Phys. Eng. Inst.; Singer, A.; Mancuso, A.P.; Yefanov, O.M.; /DESY; Sakdinawat, A.; Liu, Y.; Bang, E.; /UC, Berkeley; Williams, G.J.; /SLAC; Cadenazzi, G.; Abbey, B.; /Melbourne U.; Sinn, H.; /European XFEL, Hamburg; Attwood, D.; /UC, Berkeley; Nugent, K.A.; /Melbourne U.; Weckert, E.; /DESY; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J.J.; Schlotter, W.F.; /SLAC /LERMA, Ivry /Zurich, ETH /LBL, Berkeley /ANL, APS /Argonne /SLAC /LLNL, Livermore /Latrobe U. /SLAC /SLAC /European XFEL, Hamburg /SLAC /Hamburg U.

    2012-06-06

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in 'diffract-and-destroy' mode. We determined a coherence length of 17 {micro}m in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  3. Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyants, I.A.; /DESY /Moscow Phys. Eng. Inst.; Singer, A.; Mancuso, A.P.; Yefanov, O.M.; /DESY; Sakdinawat, A.; Liu, Y.; Bang, E.; /UC, Berkeley; Williams, G.J.; /SLAC; Cadenazzi, G.; Abbey, B.; /Melbourne U.; Sinn, H.; /European XFEL, Hamburg; Attwood, D.; /UC, Berkeley; Nugent, K.A.; /Melbourne U.; Weckert, E.; /DESY; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J.J.; Schlotter, W.F.; /SLAC /LERMA, Ivry /Zurich, ETH /LBL, Berkeley /ANL, APS /Argonne /SLAC /LLNL, Livermore /Latrobe U. /SLAC /SLAC /European XFEL, Hamburg /SLAC /Hamburg U.

    2012-06-06

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in 'diffract-and-destroy' mode. We determined a coherence length of 17 {micro}m in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  4. A Compact Light Source: Design and Technical Feasibility Study of a Laser-Electron Storage Ring X-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, R

    2004-02-02

    Thomson scattering infrared photons off energetic electrons provides a mechanism to produce hard X-rays desirable for applied sciences research. Using a small, modest energy (25MeV) electron storage ring together with a resonantly-driven optical storage cavity, a narrow spectrum of hard X-rays could be produced with the quality and monochromatic intensity approaching that of beamline sources at large synchrotron radiation laboratories. The general design of this X-ray source as well as its technical feasibility are presented. In particular, the requirements of optical pulse gain enhancement in an external cavity are described and experimentally demonstrated using a CW mode-locked laser.

  5. X-ray Counterparts of Infrared Faint Radio Sources

    Science.gov (United States)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2IFRS, but if confirmed, the increased AGN numbers at these redshifts will account for the unresolved part of the X-ray background. The identification of X-ray counterparts of IFRS is considered to be the smoking gun for this hypothesis. We propose to observe 8 IFRS using 30ks pointed observations. X-ray detections of IFRS with different ratios of radio-to-infrared fluxes, will constrain the class-specific SED.

  6. Movable anode x-ray source with enhanced anode cooling

    Science.gov (United States)

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  7. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    CERN Document Server

    Tsai, Hai-En; Shaw, Joseph; Li, Zhengyan; Arefiev, Alexey V; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V; Shvets, G; Downer, M C

    2014-01-01

    We present results of the first tunable Compton backscattering (CBS) x-ray source that is based on the easily aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The LPA is driven in the blowout regime by 30 TW, 30 fs laser pulses, and produces high-quality, tunable, quasi-monoenergetic electron beams. A thin plastic film near the gas jet exit efficiently retro-reflects the LPA driving pulse with relativistic intensity into oncoming electrons to produce $2\\times10^{7}$ CBS x-ray photons per shot with 10-20 mrad angular divergence and 50 % (FWHM) energy spread without detectable bremsstrahlung background. The x-ray central energy is tuned from 75 KeV to 200 KeV by tuning the LPA e-beam central energy. Particle-in-cell simulations of the LPA, the drive pulse/PM interaction and CBS agree well with measurements.

  8. Soft x-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters

    Science.gov (United States)

    Fukuda, Y.; Faenov, A. Ya.; Pikuz, T.; Kando, M.; Kotaki, H.; Daito, I.; Ma, J.; Chen, L. M.; Homma, T.; Kawase, K.; Kameshima, T.; Kawachi, T.; Daido, H.; Kimura, T.; Tajima, T.; Kato, Y.; Bulanov, S. V.

    2008-03-01

    The intense soft x-ray light source using the supersonic expansion of the mixed gas of He and CO2, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft x-rays from the CO2 clusters. Using this soft x-ray emissions, nanostructure images of 100-nm-thick Mo foils in a wide field of view (mm2 scale) with high spatial resolution (800nm ) are obtained with high dynamic range LiF crystal detectors. The local inhomogeneities of soft x-ray absorption by the nanometer-thick foils is measured with an accuracy of less than ±3%.

  9. Processing of X-ray Microcalorimeter Data with Pulse Shape Variation using Principal Component Analysis

    CERN Document Server

    Yan, Daikang; Gades, Lisa; Jacobsen, Chris; Madden, Timothy; Miceli, Antonino

    2016-01-01

    We present a method using principal component analysis (PCA) to process x-ray pulses with severe shape variation where traditional optimal filter methods fail. We demonstrate that PCA is able to noise-filter and extract energy information from x-ray pulses despite their different shapes. We apply this method to a dataset from an x-ray thermal kinetic inductance detector which has severe pulse shape variation arising from position-dependent absorption.

  10. Femtosecond x-ray free electron laser pulse duration measurement from spectral correlation function

    Directory of Open Access Journals (Sweden)

    A. A. Lutman

    2012-03-01

    Full Text Available We present a novel method for measuring the duration of femtosecond x-ray pulses from self-amplified spontaneous emission free electron lasers by performing statistical analysis in the spectral domain. Analytical expressions of the spectral correlation function were derived in the linear regime to extract both the pulse duration and the spectrometer resolution. Numerical simulations confirmed that the method can be also used in the nonlinear regime. The method was demonstrated experimentally at the Linac Coherent Light Source by measuring pulse durations down to 13 fs FWHM.

  11. Understanding X-ray reflection emissivity profiles in AGN: Locating the X-ray source

    CERN Document Server

    Wilkins, D R

    2012-01-01

    The illumination pattern (or emissivity profile) of the accretion disc due to the reflection of X-rays in AGN can be understood in terms of relativistic effects on the rays propagating from a source in a corona surrounding the central black hole, both on their trajectories and on the accretion disc itself. Theoretical emissivity profiles due to isotropic point sources as well as simple extended geometries are computed in general relativistic ray tracing simulations performed on graphics processing units (GPUs). Such simulations assuming only general relativity naturally explain the accretion disc emissivity profiles determined from relativistically broadened emission lines which fall off steeply (with power law indices of between 6 and 8) over the inner regions of the disc, then flattening off to almost a constant before tending to a constant power law of index 3 over the outer disc. Simulations for a variety of source locations, extents and geometries show how the emissivity profiles depend on these properti...

  12. Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Barty, Christopher P. J.

    2017-07-11

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  13. A multipurpose tunable source of monochromatic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Chesta, M.A.; Plivelic, T.S.; Mainardi, R.T. E-mail: mainardi@mail.famaf.unc.edu.ar

    2002-02-01

    The emission of characteristic X-rays from any chemical element induced by beta particles of high energy (10{sup 5}-10{sup 6} eV) is much higher than photon excitation, with the possible exception of selective excitation. This work describes the properties of a variable energy X-ray generator that uses {sup 90}Sr as a source of beta particles and a multitarget array in a transparent source geometry. This compact device provides, through suitable selection of the target material, over 30 monoenergetic lines spread uniformly in the energy range of between 6 and 100 keV. The X-ray photon flux thus generated has an intensity of between 10{sup 2}-10{sup 3} s{sup -1} sr{sup -1} per MBq of the beta source activity. With this single beta source, the X-ray yield is higher as compared with generators using {sup 241}Am or other X- or gamma-ray sources with the same activity, and the line's intensity changes by less than a factor of three over the whole energy range.

  14. X-RAY SOURCES IN THE DWARF SPHEROIDAL GALAXY DRACO

    Energy Technology Data Exchange (ETDEWEB)

    Sonbas, E. [University of Adiyaman, Department of Physics, 02040 Adiyaman (Turkey); Rangelov, B.; Kargaltsev, O.; Dhuga, K. S.; Hare, J.; Volkov, I., E-mail: edasonbas@yahoo.com [Department of Physics, The George Washington University, Washington, DC 20052 (United States)

    2016-04-10

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with L{sub X} > 3 × 10{sup 33} erg s{sup −1} in Draco, suggesting that there are no actively accreting black hole and neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.

  15. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chin, A.H. [Univ. of California, Berkeley, CA (United States); Schoenlein, R.W.; Glover, T.E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale.

  16. On the response of electronic personal dosimeters in constant potential and pulsed X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Margarete C.; Silva, Teogenes; Silva, Claudete R.E., E-mail: margaretecristinag@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oliveira, Paulo Marcio C. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem

    2015-07-01

    Electronic personal dosimeters (EPDs) based on solid state detectors have widely been used but some deficiencies in their response in pulsed radiation beams have been reported. Nowadays, there is not an international standard for pulsed X-ray beams for calibration or type testing of dosimeters. Irradiation conditions for testing the response of EPDs in both the constant potential and pulsed X-ray beams were established in CDTN. Three different types of EPDs were tested in different conditions in similar ISO and IEC X-ray qualities. Results stressed the need of performing additional checks before using EPDs in constant potential or pulsed X-rays. (author)

  17. On the response of electronic personal dosimeters in constant potential and pulsed x- ray beams

    Science.gov (United States)

    Guimarães, M. C.; Silva, C. R. E.; Oliveira, P. M. C.; da Silva, T. A.

    2016-07-01

    Electronic personal dosimeters (EPDs) based on solid state detectors have widely been used but some deficiencies in their response in pulsed radiation beams have been reported. Nowadays, there is not an international standard for pulsed x-ray beams for calibration or type testing of dosimeters. Irradiation conditions for testing the response of EPDs in both the constant potential and pulsed x-ray beams were established in CDTN. Three different types of EPDs were tested in different conditions in similar ISO and IEC x-ray qualities. Results stressed the need of performing additional checks before using EPDs in constant potential or pulsed x-rays.

  18. Correlations between pulsed X-ray flux and radio arrival time in the Vela pulsar

    CERN Document Server

    Lommen, A N; Gwinn, C; Arzoumanian, Z; Harding, A; Strickman, M S; Dodson, R; McCulloch, P; Moffett, D

    2007-01-01

    We report the results of simultaneous observations of the Vela pulsar in X-rays and radio from the RXTE satellite and the Mount Pleasant Radio Observatory in Tasmania. We sought correlations between the Vela's X-ray and radio flux densities and radio arrival times on a pulse by pulse basis. We found significantly higher flux density in Vela's main X-ray peak during radio pulses that arrived early. This excess flux shifts to the 'trough' following the 2nd X-ray peak during radio pulses that arrive later. We suggest that the mechanism producing the radio pulses is intimately connected to the mechanism producing X-rays. Current models using resonant absorption in the outer magnetosphere as a cause of the radio emission, and less directly of the X-ray emission, are explored as a possible explanation for the correlation.

  19. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    Science.gov (United States)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  20. Flares in the X-ray source EXO 2030 + 375

    Science.gov (United States)

    Apparao, Krishna M. V.

    1991-01-01

    Six X-ray flares were observed in the source EXO 2030 + 375 with an average time interval of about 4 hr between the flares. It is shown here that the flares can be due to Rayleigh-Taylor instabilities near the magnetospheric boundary of the neutron star when it reaches the equilibrium period.

  1. Stellar X-ray sources in the Chandra COSMOS survey

    CERN Document Server

    Wright, Nicholas J; Civano, Francesca

    2010-01-01

    We present an analysis of the X-ray properties of a sample of solar- and late-type field stars identified in the Chandra Cosmic Evolution Survey (COSMOS), a deep (160ks) and wide (0.9 deg2) extragalactic survey. The sample of 60 sources was identified using both morphological and photometric star/galaxy separation methods. We determine X-ray count rates, extract spectra and light curves and perform spectral fits to determine fluxes and plasma temperatures. Complementary optical and near-IR photometry is also presented and combined with spectroscopy for 48 of the sources to determine spectral types and distances for the sample. We find distances ranging from 30pc to ~12kpc, including a number of the most distant and highly active stellar X-ray sources ever detected. This stellar sample extends the known coverage of the L_X-distance plane to greater distances and higher luminosities, but we do not detect as many intrinsically faint X-ray sources compared to previous surveys. Overall the sample is typically more...

  2. Compact X-ray Light Source Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  3. Chandra ACIS Survey of X-ray Point Sources in Nearby Galaxies. II. X-ray Luminosity Functions and Ultraluminous X-ray Sources

    CERN Document Server

    Wang, Song; Liu, Jifeng; Bregman, Joel N

    2016-01-01

    Based on the recently completed {\\it Chandra}/ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library for 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular ($\\alpha\\sim1.50\\pm0.07$) to elliptical ($\\sim1.21\\pm0.02$), to spirals ($\\sim0.80\\pm0.02$), to peculiars ($\\sim0.55\\pm0.30$), and to irregulars ($\\sim0.26\\pm0.10$). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosi...

  4. Ultrafast outflows in ultraluminous X-ray sources

    CERN Document Server

    Pinto, Ciro; Middleton, Matthew; Walton, Dom

    2016-01-01

    Ultraluminous X-ray sources (ULXs) are bright extragalactic sources with X-ray luminosities above 10^39 erg/s powered by accretion onto compact objects. According to the first studies performed with XMM-Newton ULXs seemed to be excellent candidates to host intermediate-mass black holes (10^2-4 solar masses). However, in the last years the interpretation of super-Eddington accretion onto stellar-mass black holes or neutron stars for most ULXs has gained a strong consensus. One critical missing piece to confirm the super-Eddington scenario was the direct detection of the massive, radiatively-driven winds expected as atomic emission/absorption lines in ULX spectra. The first evidence for winds was found as residuals in the soft X-ray spectra of ULXs. Most recently we have been able to resolve these residuals into rest-frame emission and blueshifted (~0.2c) absorption lines arising from highly ionized gas in the deep high-resolution XMM-Newton spectra of two ultraluminous X-ray sources. The compact object is ther...

  5. Development of an ultrashort table-top electron and x-ray source pumped by laser

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire; Leboutet, Hubert

    1999-09-01

    We report on the design of the CIBER-X source which is a new laser driven table-top ultrashort electron and x-ray source. X-ray pulses are produced by a three-step process which consists of the electron pulse production from a thin metallic photocathode illuminated by picosecond 213 nm laser pulses with 16 ps duration. The electrons are accelerated in the diode by a cw electric field of 11 MV/m, and the photoinjector produces a single 70 - 100 keV electron pulse of approximately 0,5 nC and approximately 20 A peak current at a repetition rate of 10 Hz. The gun is a standard Pierce diode electrode type, the electrons leaving the diode through a hole made in the anode. The electrons are then transported along a path approximately 20 cm long, and are focused by two magnetic fields produced by electromagnetic coils. Finally, the x-rays are produced by the impact of electrons on a massive target of Tm. Simulations of geometrical and energetic characteristics of the complete source were done previously with assistance of the code PIXEL1. Finally, experimental performances of electron and x-ray bursts are discussed.

  6. Hard X-ray Sources for the Mexican Synchrotron Project

    Science.gov (United States)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  7. Automatic classification of time-variable X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  8. AGN content of X-ray, IR and radio sources

    Science.gov (United States)

    Mickaelian, A. M.; Paronyan, G. M.; Abrahamyan, H. V.; Gyulzadyan, M. V.; Mikayelyan, G. A.

    2016-09-01

    We have carried out a number of surveys and identification works related to X-ray, IR and radio sources and searched for extragalactic ones. Among them, most interesting are Active Galactic Nuclei (AGN) and Starburst (SB) Galaxies. Some 4500 AGN have been revealed from ROSAT BSC and FSC sources, and many more are hidden ones; those showing evidence of activity but with no emission lines in optical wavelengths. We estimated AGN content of X-ray sources as 52.9%. IR sources contain thousands of SBs, and most important are those having signs of interaction and/or merging. We have carried out optical identifications of IRAS point sources, and 1278 IR galaxies have been revealed, including LIRGs and ULIRGs. We have also combined IRAS PSC and FSC catalogs and compiled its extragalactic sample, which allowed to estimate AGN content among IR sources as 23.7%. Extragalactic radio sources contain bright galaxies, AGN and SBs. We have studied the border between AGN and normal galaxies by radio/optical flux ratios to establish which objects may be attributed to AGN based on radio properties. Interestingly, absolute majority of objects associated with both X-ray and radio sources are AGN.

  9. Time dependence of X-ray polarizability of a crystal induced by an intense femtosecond X-ray pulse

    Directory of Open Access Journals (Sweden)

    A. Leonov

    2014-11-01

    Full Text Available The time evolution of the electron density and the resulting time dependence of Fourier components of the X-ray polarizability of a crystal irradiated by highly intense femtosecond pulses of an X-ray free-electron laser (XFEL is investigated theoretically on the basis of rate equations for bound electrons and the Boltzmann equation for the kinetics of the unbound electron gas. The photoionization, Auger process, electron-impact ionization, electron–electron scattering and three-body recombination have been implemented in the system of rate equations. An algorithm for the numerical solution of the rate equations was simplified by incorporating analytical expressions for the cross sections of all the electron configurations in ions within the framework of the effective charge model. Using this approach, the time dependence of the inner shell populations during the time of XFEL pulse propagation through the crystal was evaluated for photon energies between 4 and 12 keV and a pulse width of 40 fs considering a flux of 1012 photons pulse−1 (focusing on a spot size of ∼1 µm. This flux corresponds to a fluence ranging between 0.8 and 2.4 mJ µm−2. The time evolution of the X-ray polarizability caused by the change of the atomic scattering factor during the pulse propagation is numerically analyzed for the case of a silicon crystal. The time-integrated polarizability drops dramatically if the fluence of the X-ray pulse exceeds 1.6 mJ µm−2.

  10. High power bremsstrahlung X-ray source for radiation processing

    Science.gov (United States)

    Yotsumoto, K.; Sunaga, H.; Tanaka, S.; Kanazawa, T.; Agematsu, T.; Tanaka, R.; Yoshida, K.; Taniguchi, S.; Sakamoto, I.; Tamura, N.

    The high power X-ray irradiation facility designed for the sterilization of medical appliances is described. The X-ray source consists of the 5 MeV, 300 kW Cockcroft Walton type of electron accelerator and the water cooled tantalum target. Conditions necessary for designing the X-ray target are conversion efficiency from electron beam to X-ray, thermal conductivity, readiness for machining and cost of the material. The conversion efficiency was determined through the Monte Carlo type calculation and obtained as 10.8 % for 3.667 g/cm 2 thickness (1 csda range) of tantalum target. In order to obtain the data on the source design, experiments have been carried out at the JAERI TAKASAKI 2 MeV, 60 kW Cockcroft-Walton type of electron accelerator equipped with a tantalum target. The size of package and the speed of conveyor was determined through the calculation of the absorbed dose distribution in the irradiated medium and the utilization efficiency.

  11. Near-Infrared Spectroscopy of Faint Discrete X-ray Point Sources Constituting the Galactic Ridge X-ray Emission

    CERN Document Server

    Morihana, Kumiko; Dubath, Pierre; Yoshida, Tessei; Suzuki, Kensuke; Ebisawa, Ken

    2016-01-01

    The Galactic Ridge X-ray Emission (GRXE) is apparently extended X-ray emission along the Galactic Plane. The X-ray spectrum is characterized by hard continuum with a strong Fe K emission feature in the 6-7 keV band. A substantial fraction (~80%) of the GRXE in the Fe band was resolved into point sources by deep Chandra imaging observations, thus GRXE is mostly composed of dim Galactic X-ray point sources at least in this energy band. To investigate the populations of these dim X-ray point sources, we carried out Near-Infrared (NIR) follow-up spectroscopic observations in two deep Chandra fields located in the Galactic plane at (l,b)=(0.1{\\arcdeg}, -1.4{\\arcdeg}) and (28.5{\\arcdeg}, 0.0{\\arcdeg}) using NTT/SofI and Subaru/MOIRCS. We obtained well-exposed NIR spectra from 65 objects and found that there are three main classes of Galactic sources based on the X-ray color and NIR spectral features: those having (A) hard X-ray spectra and NIR emission features such as HI(Br{\\gamma}), HeI, and HeII (2 objects), (B)...

  12. NuSTAR Hard X-ray Survey of the Galactic Center Region II: X-ray Point Sources

    CERN Document Server

    Hong, JaeSub; Hailey, Charles J; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E; Alexander, David M; Aramaki, Tsuguo; Baganoff, Frederick K; Barret, David; Barrière, Nicolas; Boggs, Steven E; Canipe, Alicia M; Christensen, Finn E; Craig, William W; Desai, Meera A; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W; Harrison, Fiona A; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E; Madsen, Kristen K; Mao, Peter H; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J; Zhang, William W; Zoglauer, Andreas

    2016-01-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg^2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ~4 x and ~8 x 10^32 erg s^-1 at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources ...

  13. Generating femtosecond X-ray pulses using an emittance-spoiling foil in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y., E-mail: ding@slac.stanford.edu; Coffee, R.; Decker, F.-J.; Emma, P.; Field, C.; Huang, Z.; Krejcik, P.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Maxwell, T. J.; Turner, J. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Behrens, C. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg (Germany); Helml, W. [Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany)

    2015-11-09

    Generation of femtosecond to sub-femtosecond pulses is attracting much attention in X-ray free-electron laser user community. One method is to use a slotted, emittance-spoiling foil which was proposed before (P. Emma et al., Phys. Rev. Lett. 92, 074801 (2004)) and has been widely used at the Linac Coherent Light Source. Direct experimental characterization of the slotted-foil performance was previously unfeasible due to a lack of appropriate diagnostics. With a recently installed X-band radio-frequency transverse deflector, we are able to characterize the electron bunch spoiling effect and X-ray pulse when using the slotted foil. We show that few-femtosecond X-ray pulses are generated with flexible control of the single-pulse duration or double-pulse separation with comparison to the theoretical model.

  14. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Lee, Sooheyong [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Hasylab at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric, E-mail: aymeric@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-14

    A description of the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source is presented. Recent highlights illustrate the coherence properties of the source as well as some recent dynamics measurements and future directions. The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented.

  15. Single shot diffraction of picosecond 8.7-keV x-ray pulses

    OpenAIRE

    F. H. O’Shea; O. Williams; Andonian, G.; Barber, S; Sakai, Y.; Rosenzweig, J. B.; Pogorelsky, I.; Fedurin, M.; K. Kusche; Yakimenko, V.

    2012-01-01

    We demonstrate multiphoton, single shot diffraction images of x rays produced by inverse Compton scattering a high-power CO_{2} laser from a relativistic electron beam, creating a pulse of 8.7 keV x rays. The tightly focused, relatively high peak brightness electron beam and high photon density from the 2 J CO_{2} laser yielded 6×10^{7} x-ray photons over the full opening angle in a single shot. Single shot x-ray diffraction is performed by passing the x rays though a vertical slit and on to ...

  16. Distributed source x-ray tube technology for tomosynthesis imaging

    Science.gov (United States)

    Sprenger, F.; Calderon-Colon, X.; Cheng, Y.; Englestad, K.; Lu, J.; Maltz, J.; Paidi, A.; Qian, X.; Spronk, D.; Sultana, S.; Yang, G.; Zhou, O.

    2010-04-01

    Tomosynthesis imaging requires projection images from different viewing angles. Conventional systems use a moving xray source to acquire the individual projections. Using a stationary distributed x-ray source with a number of sources that equals the number of required projections, this can be achieved without any mechanical motion. Advantages are a potentially faster image acquisition speed, higher spatial and temporal resolution and simple system design. We present distributed x-ray sources based on carbon nanotube (CNT) field emission cathodes. The field emission cathodes deliver the electrons required for x-ray production. CNT emitters feature a stable emission at high current density, a cold emission, excellent temporal control of the emitted electrons and good configurability. We discuss the use of stationary sources for two applications: (i) a linear tube for stationary digital breast tomosynthesis (sDBT), and (ii) a square tube for on-board tomosynthesis image-guided radiation therapy (IGRT). Results from high energy distributed sources up to 160kVp are also presented.

  17. ISO investigates the nature of extremely-red hard X-ray sources responsible for the X-ray background

    CERN Document Server

    Franceschini, A; Césarsky, C J; Elbaz, D; Flores, H; Granato, G L; Franceschini, Alberto; Fadda, Dario; Cesarsky, Catherine; Elbaz, David; Flores, Hector; Granato, Gian Luigi

    2001-01-01

    We analyse very deep X-ray and mid-IR surveys in common areas of the Lockman Hole and the HDF North to study the sources of the X-ray background (XRB) and to test the standard obscured accretion paradigm. We detect with ISO a rich population of X-ray luminous sources with red optical colours, including a fraction identified with Extremely Red Objects (R-K > 5) and galaxies with SEDs typical of normal massive ellipticals or spirals at z ~ 1. The high 0.5-10 keV X-ray luminosities of these objects (1E43-1E45 erg/s) indicate that the ultimate energy source is gravitational accretion, while the X-ray to IR flux ratios and the X-ray spectral hardness show evidence of photoelectric absorption at low X-ray energies. An important hint on the physics comes from the mid-IR data at 6.7 and 15 um, well reproduced by model spectra of completely obscured quasars under standard assumptions and l.o.s. optical depths tau ~ 30-40. Other predictions of the standard XRB picture, like the distributions of intrinsic bolometric lum...

  18. Gravitational waves from remnants of ultraluminous X-ray sources

    CERN Document Server

    Hopman, C; Hopman, Clovis; Zwart, Simon Portegies

    2005-01-01

    Ultraluminous X-ray sources (ULXs) with X-ray luminosities larger than the Eddington luminosity of stellar mass objects may be powered by intermediate mass black holes (IBHs) of masses Mbh~10^3Msun. If IBHs form in young dense stellar clusters, they can be fed by Roche lobe overflow from a tidally captured massive (Ms>10Msun) stellar companion. After the donor leaves the main sequence it forms a compact remnant, which spirals in due to gravitational wave (GW) emission. We show that space based detectors such as the Light Interferometer Space Antenna are likely to detect several of these sources. GW sources stemming from this scenario have small eccentricities which give distinct GW signals. Detection of such a GW signal will unambiguously prove the existence of IBHs, and support the hypothesis that some ULXs are powered by IBHs with captured companions.

  19. Production of transform-limited X-ray pulses through self-seeding at the European X-ray FEL

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2011-01-01

    An important goal for any advanced X-ray FEL is an option for providing Fourier-limited X-ray pulses. In this way, no monochromator is needed in the experimental hall. Self-seeding is a promising approach to significantly narrow the SASE bandwidth to produce nearly transform-limited pulses. These are important for many experiments including 3D diffraction imaging. We discuss the implementation of a single-crystal self-seeding scheme in the hard X-ray lines of the European XFEL. For this facility, transform-limited pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap baseline undulators. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations dealing with the up-to-date parameters of the European XFEL, we show that the FEL power reaches about 400 GW, or one order of magnitude higher power than the SASE saturation level (20 GW). This analysis indic...

  20. Stopping Narrow-Band X-Ray Pulses in Nuclear Media

    Science.gov (United States)

    Kong, Xiangjin; Pálffy, Adriana

    2016-05-01

    A control mechanism for stopping x-ray pulses in resonant nuclear media is investigated theoretically. We show that narrow-band x-ray pulses can be mapped and stored as nuclear coherence in a thin-film planar x-ray cavity with an embedded 57Fe nuclear layer. The pulse is nearly resonant to the 14.4 keV Mössbauer transition in the 57Fe nuclei. The role of the control field is played here by a hyperfine magnetic field which induces interference effects reminiscent of electromagnetically induced transparency. We show that, by switching off the control magnetic field, a narrow-band x-ray pulse can be completely stored in the cavity for approximately 100 ns. Additional manipulation of the external magnetic field can lead to both group velocity and phase control of the pulse in the x-ray cavity sample.

  1. X-ray beam source from a Self-modulated laser wakefield accelerator

    Science.gov (United States)

    Lemos, Nuno; Albert, Felicie; Marsh, K. A.; Shaw, J. L.; King, P.; Patankar, S.; Ralph, J.; Pollock, B. B.; Martins, J. L.; Amorim, L. D.; Tsung, F. S.; Goyon, C.; Pak, A.; Moody, J. D.; Schumaker, W.; Fiuza, F.; Glenzer, S. H.; Hegelichand, B. M.; Saunders, A.; Flacone, R. W.; Joshi, C.

    2016-10-01

    To diagnose material properties under extreme conditions of temperature and pressure the development of a directional, small-divergence, small source size and short pulse duration x-ray source has become essential. In this work we explore through experiments and PIC simulations the betatron radiation generated in self-modulated laser-wakefield accelerators. The experiment was preformed at the Jupiter Laser Facility, LLNL where electrons with energies up to 200 MeV and Betatron x-rays with critical energies >10 keV were observed. OSIRIS 2D PIC simulations indicate that the x-ray critical energy directly scales with the a0 of the laser and can easily be increased to critical energies exceeding 50 keV using a laser with a0 of 3.

  2. Single particle imaging with soft x-rays at the Linac Coherent Light Source

    Science.gov (United States)

    Martin, Andrew V.; Andreasson, Jakob; Aquila, Andrew; Bajt, Saša; Barends, Thomas R. M.; Barthelmess, Miriam; Barty, Anton; Benner, W. Henry; Bostedt, Christoph; Bozek, John D.; Bucksbaum, Phillip; Caleman, Carl; Coppola, Nicola; DePonte, Daniel P.; Ekeberg, Tomas; Epp, Sascha W.; Erk, Benjamin; Farquar, George R.; Fleckenstein, Holger; Foucar, Lutz; Frank, Matthias; Gumprecht, Lars; Hampton, Christina Y.; Hantke, Max; Hartmann, Andreas; Hartmann, Elisabeth; Hartmann, Robert; Hau-Riege, Stephan P.; Hauser, Günther; Holl, Peter; Hoemke, André; Jönsson, Olof; Kassemeyer, Stephan; Kimmel, Nils; Kiskinova, Maya; Krasniqi, Faton; Krzywinski, Jacek; Liang, Mengning; Loh, Ne-Te Duane; Lomb, Lukas; Maia, Filipe R. N. C.; Marchesini, Stefano; Messerschmidt, Marc; Nass, Karol; Odic, Duško; Pedersoli, Emanuele; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schmidt, Carlo; Schultz, Joachim; Seibert, M. Marvin; Shoeman, Robert L.; Sierra, Raymond G.; Soltau, Heike; Starodub, Dmitri; Steinbrener, Jan; Stellato, Francesco; Strüder, Lothar; Svenda, Martin; Tobias, Herbert; Ullrich, Joachim; Weidenspointner, Georg; Westphal, Daniel; White, Thomas A.; Williams, Garth; Hajdu, Janos; Schlichting, Ilme; Bogan, Michael J.; Chapman, Henry N.

    2011-06-01

    Results of coherent diffractive imaging experiments performed with soft X-rays (1-2 keV) at the Linac Coherent Light Source are presented. Both organic and inorganic nano-sized objects were injected into the XFEL beam as an aerosol focused with an aerodynamic lens. The high intensity and femtosecond duration of X-ray pulses produced by the Linac Coherent Light Source allow structural information to be recorded by X-ray diffraction before the particle is destroyed. Images were formed by using iterative methods to phase single shot diffraction patterns. Strategies for improving the reconstruction methods have been developed. This technique opens up exciting opportunities for biological imaging, allowing structure determination without freezing, staining or crystallization.

  3. Filtered x-ray diode diagnostics fielded on the Z-accelerator for source power measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, G.A.; Deeney, C.; Cuneo, M. [and others

    1998-06-02

    Filtered x-ray diode, (XRD), detectors are used as primary radiation flux diagnostics on Sandia`s Z-accelerator, which generates nominally a 200 TW, 2 MJ, x-ray pulse. Given such flux levels and XRD sensitivities the detectors are being fielded 23 meters from the source. The standard diagnostic setup and sensitivities are discussed. Vitreous carbon photocathodes are being used to reduce the effect of hydrocarbon contamination present in the Z-machine vacuum system. Nevertheless pre- and post-calibration data taken indicate spectrally dependent changes in the sensitivity of these detectors by up to factors up to 2 or 3.

  4. Experimental and theoretical characterisation of short pulse X ray lasers

    CERN Document Server

    Strati, F

    2002-01-01

    Since the demonstration in 1984 of x-ray laser action in Ne-like Se at 20.6 and 20.9 nm, much experimental and theoretical effort has been ongoing to investigate different lasing schemes. Aims in this research include improving pumping efficiency, beam quality and overall energy output of the demonstrated x-ray lasers and the production of lasing at shorter wavelengths. The envisaged and demonstrated applications of x-ray lasers utilise their short wavelength, high brightness and coherence. Examples of potential applications include x-ray imaging and holography of biological materials in the water window region (2.3 - 4.4 nm), x-ray photolithography for the fabrication of microcircuits and structures below the micron scale and x-ray interferometry, deflectometry and radiography of dense plasma environments of interest in inertial confinement fusion and astrophysics. Soft x-ray laser action has been demonstrated in various plasma active media with wavelengths ranging from 3.5 nm to 40.0 nm and above. However, ...

  5. The Polarimeter for Relativistic Astrophysical X-ray Sources

    Science.gov (United States)

    Jahoda, Keith; Kallman, Timothy R.; Kouveliotou, Chryssa; Angelini, Lorella; Black, J. Kevin; Hill, Joanne E.; Jaeger, Theodore; Kaaret, Philip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Schnittman, Jeremy; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru

    2016-07-01

    The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study, with a launch date in 2020. The PRAXyS Observatory exploits grazing incidence X-ray mirrors and Time Projection Chamber Polarimeters capable of measuring the linear polarization of cosmic X-ray sources in the 2-10 keV band. PRAXyS combines well-characterized instruments with spacecraft rotation to ensure low systematic errors. The PRAXyS payload is developed at the Goddard Space Flight Center with the Johns Hopkins University Applied Physics Laboratory, University of Iowa, and RIKEN (JAXA) collaborating on the Polarimeter Assembly. The LEOStar-2 spacecraft bus is developed by Orbital ATK, which also supplies the extendable optical bench that enables the Observatory to be compatible with a Pegasus class launch vehicle. A nine month primary mission will provide sensitive observations of multiple black hole and neutron star sources, where theory predicts polarization is a strong diagnostic, as well as exploratory observations of other high energy sources. The primary mission data will be released to the community rapidly and a Guest Observer extended mission will be vigorously proposed.

  6. Hard X-ray sources from miniature plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Raspa, V. [Buenos Aires Univ., PLADEMA, CONICET and INFIP (Argentina); Silva, P.; Moreno, J.; Zambra, M.; Soto, L. [Comision Chilena de Energia Nuclear, Santiago (Chile)

    2004-07-01

    As first stage of a program to design a repetitive pulsed radiation generator for industrial applications, two miniature plasma foci have been designed and constructed at the Chilean commission of nuclear energy. The devices operate at an energy level of the order of tens of joules (PF-50 J, 160 nF capacitor bank, 20-35 kV, 32-100 J, {approx} 150 ns time to peak current) and hundred of joules (PF-400 J, 880 nF, 20-35 kV, 176-539 J, {approx} 300 ns time to peak current). Hard X-rays are being studied in these devices operating with hydrogen. Images of metallic plates with different thickness were obtained on commercial radiographic film, Agfa Curix ST-G2, in order to characterize the energy of the hard X-ray outside of the discharge chamber of PF-400 J. An effective energy of the order of 90 keV was measured under those conditions. X ray images of different metallic objects also have been obtained. (authors)

  7. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Henry Herng Wei

    2004-04-16

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates {approx}100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a {Delta}S=2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented.

  8. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Henry Herng Wei [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates ~100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a ΔS=2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented.

  9. First Search for an X-ray -- Optical Reverberation Signal in an Ultraluminous X-ray Source

    CERN Document Server

    Pasham, Dheeraj R; Cenko, S Bradley; Trippe, Margaret L; Mushotzky, Richard F; Gandhi, Poshak

    2016-01-01

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to AGN broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (RMS of 9.0$\\pm$0.5%), the optical emission does not show any statistically significant variations. We set a 3$\\sigma$ upper limit on the RMS optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected RMS optical variability is $\\approx$2% which is still a factor of roughly two lower than what was possible with the VLT observations in...

  10. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    Science.gov (United States)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  11. Geometry calibration between X-ray source and detector for tomosynthesis with a portable X-ray system.

    Science.gov (United States)

    Sato, Kohei; Ohnishi, Takashi; Sekine, Masashi; Haneishi, Hideaki

    2017-05-01

    Tomosynthesis is attracting attention as a low-dose tomography technology compared with X-ray CT. However, conventional tomosynthesis imaging devices are large and stationary. Furthermore, there is a limitation in the working range of the X-ray source during image acquisition. We have previously proposed the use of a portable X-ray device for tomosynthesis that can be used for ward rounds and emergency medicine. The weight of this device can be reduced by using a flat panel detector (FPD), and flexibility is realized by the free placement of the X-ray source and FPD. Tomosynthesis using a portable X-ray device requires calibration of the geometry between the X-ray source and detector at each image acquisition. We propose a method for geometry calibration and demonstrate tomosynthesis image reconstruction by this method. An image processing-based calibration method using an asymmetric and multilayered calibration object (AMCO) is presented. Since the AMCO is always attached to the X-ray source housing for geometry calibration, the additional setting of a calibration object or marker around or on the patients is not required. The AMCO's multilayer structure improves the calibration accuracy, especially in the out-of-plane direction. Two experiments were conducted. The first was performed to evaluate the calibration accuracy using an XY positioning stage and a gonio stage. As a result, an accuracy of approximately 1 mm was achieved both in the in-plane and out-of-plane directions. An angular accuracy of approximately [Formula: see text] was confirmed. The second experiment was conducted to evaluate the reconstructed image using a foot model phantom. Only the sagittal plane could be clearly observed with the proposed method. We proposed a tomosynthesis imaging system using a portable X-ray device. From the experimental results, the proposed method could provide sufficient calibration accuracy and a clear sagittal plane of the reconstructed tomosynthesis image.

  12. Towards brilliant, compact x-ray sources: a new x-ray photonic device

    Science.gov (United States)

    Scherer, Brian; Mandal, Sudeep; Salisbury, Joshua; Edic, Peter; Hopkins, Forrest; Lee, Susanne M.

    2017-05-01

    General Electric has designed an innovative x-ray photonic device that concentrates a polychromatic beam of diverging x-rays into a less divergent, parallel, or focused x-ray beam. The device consists of multiple, thin film multilayer stacks. X-rays incident on a given multilayer stack propagate within a high refractive index transmission layer while undergoing multiple total internal reflections from a novel, engineered multilayer containing materials of lower refractive index. Development of this device could lead to order-of-magnitude flux density increases, over a large broadband energy range from below 20 keV to above 300 keV. In this paper, we give an overview of the device and present GE's progress towards fabricating prototype devices.

  13. Ways of development of compact coherent femtosecond X-ray sources for applications in nano- and biophotonics

    Science.gov (United States)

    Mikheev, L.

    2017-01-01

    Ways of the development of compact coherent sources of soft X-ray femtosecond pulses are discussed, which meet the requirements for the implementation of the “diffraction-before-destruction” approach in the lensless X-ray Coherent Diffractive Imaging (CDI) technique enabling quantitative 3D mapping of material structure with the nanoscale spatial resolution. An innovative hybrid (solid/gas) approach to produce ultra-intense femtosecond laser pulses in the visible is described in the context of its applications for laser driven high harmonic generation (HHG) and soft X-ray generation in laser plasmas due to recombination mechanism of excitation.

  14. Spatiotemporal stability of a femtosecond hard-x-ray undulator source studied by control of coherent optical phonons.

    Science.gov (United States)

    Beaud, P; Johnson, S L; Streun, A; Abela, R; Abramsohn, D; Grolimund, D; Krasniqi, F; Schmidt, T; Schlott, V; Ingold, G

    2007-10-26

    We report on the temporal and spatial stability of the first tunable femtosecond undulator hard-x-ray source for ultrafast diffraction and absorption experiments. The 2.5-1 Angstrom output radiation is driven by an initial 50 fs laser pulse employing the laser-electron slicing technique. By using x-ray diffraction to probe laser-induced coherent optical phonons in bulk bismuth, we estimate an x-ray pulse duration of 140+/-30 fs FWHM with timing drifts below 30 fs rms measured over 5 days. Optical control of coherent lattice motion is demonstrated.

  15. Generation of Picosecond X-Ray Pulses in the ALS Using RF Orbit Deflection

    CERN Document Server

    Robin, David; Fischer, Peter; Heimann, Philip; Kim, Dong-Hyun; Kwiatkowski, Slawomir; Li, Derun; Sannibale, Fernando; Steier, Christoph; Wan, Weishi; Wittmer, Walter; Zholents, Alexander

    2005-01-01

    A scheme is studied for producing ps length pulses of x-ray radiation from the Advanced Light Source (ALS) using two RF deflecting cavities. The cavities create vertical displacements of electrons correlated with their longitudinal position in the bunch. The two cavities separated by 180 degrees of vertical phase advance. This allows the vertical kick from one cavity to be compensated by the vertical kick of the other. The location of the cavities corresponds to the end of one straight section and the beginning of the following straight section. Halfway between the cavities a bending magnet source is located. The radiation from the bend can be compressed to ~1 ps in duration.

  16. Ultraluminous X-ray Sources in Interacting Galaxies

    CERN Document Server

    Swartz, Douglas A

    2009-01-01

    I give a brief review of how X-rays from nearby galaxies are used as direct tracers of recent star formation. This leads to the conclusion that it is the most luminous point-like sources that are associated with star formation and that the majority of these are high-mass X-ray binaries.I then discuss a recent study that shows that ULXs are preferentially found in regions as young as or younger than typical HII regions in their host galaxies. Finally, I describe a new study that attempts to determine the maximum luminosity of ULXs in the local universe by searching for them in interacting galaxies where the star formation rate is high.

  17. Reionization by UV or X-ray sources

    CERN Document Server

    Baek, S; Di Matteo, P; Revaz, Y; Combes, F

    2010-01-01

    We present simulations of the 21-cm signal during the Epoch of reionization. We focus on modeling properly the absorption regime in the presence of inhomogeneous Wouthuysen-Field effect and X-ray heating. We have run radiative transfer simulations for three bands in the source spectrum (Lyman, UV and X-ray) in order to fully account for these processes. We find that the brightness temperature fluctuation of the 21 cm signal has an amplitude larger than 100 mK during the early reionization, up to 10 times higher than the typical amplitude of a few 10 mK obtained during the later emission phase. More importantly, we find that even a rather high contribution from QSO-like sources only damps the absorption regime without erasing it. Heating the IGM with X-ray takes time. Our results show that observations of the early reionization will probably benefit from a higher signal-to-noise value than during later stages. Analyzing the statistical properties of the signal (power spectrum and PDF) we found three diagnostic...

  18. Two eclipsing ultraluminous X-ray sources in M 51

    CERN Document Server

    Urquhart, Ryan

    2016-01-01

    We present the discovery, from archival Chandra and XMM-Newton data, of X-ray eclipses in two ultraluminous X-ray sources (ULXs), located in the same region of the galaxy M 51: CXOM51 J132940.0$+$471237 (ULX-1, for simplicity) and CXOM51 J132939.5$+$471244 (ULX-2). Three eclipses were detected for ULX-1, two for ULX-2. The presence of eclipses puts strong constraints on the viewing angle, suggesting that both ULXs are seen almost edge-on and are certainly not beamed towards us. Despite the similar viewing angles and luminosities ($L_{\\rm X} \\approx 2 \\times 10^{39}$ erg s$^{-1}$ in the $0.3$-$8$ keV band for both sources), their X-ray properties are different. ULX-1 has a soft spectrum, well fitted by Comptonization emission from a medium with electron temperature $kT_e \\approx 1$ keV. ULX-2 is harder, well fitted by a slim disk with $kT_{\\rm in} \\approx 1.5$-$1.8$ keV and normalization consistent with a $\\sim 10 M_{\\odot}$ black hole. ULX-1 has a significant contribution from multi-temperature thermal plasma...

  19. Matching microlensing events with X-ray sources

    CERN Document Server

    Sartore, N

    2011-01-01

    The detection of old neutron stars and black holes in isolation is one of the cornerstones of compact object astrophysics. Microlensing surveys may help on this purpose since the lensing mechanism is independent of the emission properties of the lens. Indeed, several black hole candidates deriving through microlensing observations have been reported in the literature. The identification of counterparts, especially in the X-rays, would be a strong argument in favor of the compact nature of these lenses. We perform a cross-correlation between the catalogs of microlensing events by the OGLE, MACHO and MOA teams, and those of X-rays sources from XMM-Newton and Chandra satellites. Based on our previous work, we select only microlensing events longer than 100 days, which should contain a large fraction of lenses as compact objects. Our matching criterion takes into account the positional coincidence in the sky. We find a single match between a microlensing event OGLE 2004-BLG-81 and the X-ray source 2XMM J180540.5-...

  20. A bright point source of ultrashort hard x-rays from laser bioplasmas

    CERN Document Server

    Krishnamurthy, M; Lad, Amit D; Ahmad, Saima; Narayanan, V; Rajeev, R; Kundu, M; Kumar, G Ravindra; Ray, Krishanu

    2010-01-01

    Micro and nano structures scatter light and amplify local electric fields very effectively. Energy incident as intense ultrashort laser pulses can be converted to x-rays and hot electrons more efficiently with a substrate that suitably modifies the local fields. Here we demonstrate that coating a plain glass surface with a few micron thick layer of an ubiquitous microbe, {\\it Escherichia coli}, catapults the brightness of hard x-ray bremsstrahlung emission (up to 300 keV) by more than two orders of magnitude at an incident laser intensity of 10$^{16}$ W cm$^{-2}$. This increased yield is attributed to the local enhancement of electric fields around individual {\\it E. coli} cells and is reproduced by detailed particle-in-cell (PIC) simulations. This combination of laser plasmas and biological targets can lead to turnkey, multi-kilohertz and environmentally safe sources of hard x-rays.

  1. An injector for the proposed Berkeley Ultrafast X-Ray Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Lidia, Steven; Corlett, John; Pusina, Jan; Staples, John; Zholents, Alexander

    2003-05-19

    Berkeley Lab has proposed to build a recirculating linac based X-ray source for ultra-fast dynamic studies [1]. This machine requires a flat electron beam with a small vertical emittance and large x/y emittance ratio to allow for compression of spontaneous undulator emission of soft and hard x-ray pulses, and a low-emittance, round electron beam for coherent emission of soft x-rays via the FEL process based on cascaded harmonic generation [2]. We propose an injector system consisting of two high gradient high repetition rate photo cathode guns [3] (one for each application), an {approx}120 MeV super conducting linear accelerator, a 3rd harmonic cavity for linearization of the longitudinal phase space, and a bunch compressor. We present details of the design and the results of particle tracking studies using several computer codes.

  2. Bright X-ray source from a laser-driven micro-plasma-waveguide

    CERN Document Server

    Yi, Longqing

    2016-01-01

    Bright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense ...

  3. Constraints on photon pulse duration from longitudinal electron beam diagnostics at a soft x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    C. Behrens

    2012-03-01

    Full Text Available The successful operation of x-ray free-electron lasers (FELs, like the Linac Coherent Light Source or the Free-Electron Laser in Hamburg (FLASH, makes unprecedented research on matter at atomic length and ultrafast time scales possible. However, in order to take advantage of these unique light sources and to meet the strict requirements of many experiments in photon science, FEL photon pulse durations need to be known and tunable. This can be achieved by controlling the FEL driving electron beams, and high-resolution longitudinal electron beam diagnostics can be utilized to provide constraints on the expected FEL photon pulse durations. In this paper, we present comparative measurements of soft x-ray pulse durations and electron bunch lengths at FLASH. The soft x-ray pulse durations were measured by FEL radiation pulse energy statistics and compared to electron bunch lengths determined by frequency-domain spectroscopy of coherent transition radiation in the terahertz range and time-domain longitudinal phase space measurements. The experimental results, theoretical considerations, and simulations show that high-resolution longitudinal electron beam diagnostics provide reasonable constraints on the expected FEL photon pulse durations. In addition, we demonstrated the generation of soft x-ray pulses with durations below 50 fs (FWHM after the implementation of the new uniform electron bunch compression scheme used at FLASH.

  4. Deterministic Chaos in the X-ray Sources

    Science.gov (United States)

    Grzedzielski, M.; Sukova, P.; Janiuk, A.

    2015-12-01

    Hardly any of the observed black hole accretion disks in X-ray binaries and active galaxies shows constant flux. When the local stochastic variations of the disk occur at specific regions where a resonant behaviour takes place, there appear the quasi-periodic oscillations (QPOs). If the global structure of the flow and its non-linear hydrodynamics affects the fluctuations, the variability is chaotic in the sense of deterministic chaos. Our aim is to solve a problem of the stochastic versus deterministic nature of the black hole binary variabilities. We use both observational and analytic methods. We use the recurrence analysis and we study the occurence of long diagonal lines in the recurrence plot of observed data series and compare it to the surrogate series. We analyze here the data of two X-ray binaries - XTE J1550-564 and GX 339-4 observed by Rossi X-ray Timing Explorer. In these sources, the non-linear variability is expected because of the global conditions (such as the mean accretion rate) leading to the possible instability of an accretion disk. The thermal-viscous instability and fluctuations around the fixed-point solution occurs at high accretion rate, when the radiation pressure gives dominant contribution to the stress tensor.

  5. Deterministic chaos in the X-Ray sources

    CERN Document Server

    Grzedzielski, M; Janiuk, A

    2015-01-01

    Hardly any of the observed black hole accretion disks in X-Ray binaries and active galaxies shows constant flux. When the local stochastic variations of the disk occur at specific regions where a resonant behaviour takes place, there appear the Quasi-Periodic Oscillations (QPOs). If the global structure of the flow and its non-linear hydrodynamics affects the fluctuations, the variability is chaotic in the sense of deterministic chaos. Our aim is to solve a problem of the stochastic versus deterministic nature of the black hole binaries vari- ability. We use both observational and analytic methods. We use the recurrence analysis and we study the occurence of long diagonal lines in the recurrence plot of observed data series and compare it to the sur- rogate series. We analyze here the data of two X-Ray binaries - XTE J1550-564, and GX 339-4 observed by Rossi X-ray Timing Explorer. In these sources, the non-linear variability is expected because of the global conditions (such as the mean accretion rate) leadin...

  6. Deterministic Chaos in the X-ray Sources

    Indian Academy of Sciences (India)

    M. Grzedzielski; P. Sukova; A. Janiuk

    2015-12-01

    Hardly any of the observed black hole accretion disks in X-ray binaries and active galaxies shows constant flux. When the local stochastic variations of the disk occur at specific regions where a resonant behaviour takes place, there appear the quasi-periodic oscillations (QPOs). If the global structure of the flow and its non-linear hydrodynamics affects the fluctuations, the variability is chaotic in the sense of deterministic chaos. Our aim is to solve a problem of the stochastic versus deterministic nature of the black hole binary variabilities. We use both observational and analytic methods. We use the recurrence analysis and we study the occurence of long diagonal lines in the recurrence plot of observed data series and compare it to the surrogate series. We analyze here the data of two X-ray binaries – XTE J1550-564 and GX 339-4 observed by Rossi X-ray Timing Explorer. In these sources, the non-linear variability is expected because of the global conditions (such as the mean accretion rate) leading to the possible instability of an accretion disk. The thermal-viscous instability and fluctuations around the fixedpoint solution occurs at high accretion rate, when the radiation pressure gives dominant contribution to the stress tensor.

  7. An Observational Diagnostic for Ultraluminous X-Ray Sources

    CERN Document Server

    Kalogera, V; Ivanova, N; King, A R

    2004-01-01

    We consider observational tests for the nature of Ultraluminous X-ray sources (ULXs). These must distinguish between thermal-timescale mass transfer on to stellar-mass black holes leading to anisotropic X-ray emission, and accretion on to intermediate-mass black holes. We suggest that long-term transient behavior via the thermal-viscous disk instability could discriminate between these two possibilities for ULXs in regions of young stellar populations. Thermal-timescale mass transfer generally produces stable disks and persistent X-ray emission. In contrast, mass transfer from massive stars to black holes produces unstable disks and thus transient behavior, provided that the black hole mass exceeds some minimum value. This minimum mass depends primarily on the donor mass and evolutionary state. We show that it exceeds 50 solar masses for a large fraction (greater than 90%) of the mass-transfer lifetime for the most likely donors in young clusters. Thus if long-term monitoring reveals a large transient fractio...

  8. Narrow Line X-Ray Calibration Source for High Resolution Microcalorimeters

    Science.gov (United States)

    Hokin, M.S.; McCammon, D.; Morgan, K.M.; Bandler, Simon Richard; Lee, S.J.; Moseley, S.H.; Smith, S.J.

    2013-01-01

    We are developing a narrow line calibration source for use with X-ray microcalorimeters. At energies below 300 electronvolts fluorescent lines are intrinsically broad, making calibration of high resolution detectors difficult. This source consists of a 405 nanometers (3 electronvolts) laser diode coupled to an optical fiber. The diode is pulsed to create approximately one hundred photons in a few microseconds. If the pulses are short compared to the rise time of the detector, they will be detected as single events with a total energy in the soft X-ray range. Poisson fluctuations in photon number per pulse create a comb of X-ray lines with 3 electronvolts spacing, so detectors with energy resolution better than 2 electronvolts are required to resolve the individual lines. Our currently unstabilized diode has a multimode width less than 1 nanometer, giving a 300 electronvolt event a Full width at half maximum (FWHM) less than 0.1 electronvolts. By varying the driving voltage, or pulse width, the source can produce a comb centered on a wide range of energies. The calibration events are produced at precisely known times. This allows continuous calibration of a flight mission without contaminating the observed spectrum and with minimal deadtime.

  9. On the feasibility of nanocrystal imaging using intense and ultrashort 1.5 {\\AA} X-ray pulses

    CERN Document Server

    Caleman, C; Maia, F R N C; Ortiz, C; Parak, F G; Hajdu, J; van der Spoel, D; Chapman, H N; Timneanu, N

    2010-01-01

    Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest. X-ray lasers, such as the recently built LINAC Coherent Light Source (LCLS), offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very intense X-ray pulses. Such pulses may allow the imaging of single molecules, clusters or nanoparticles, but coherent flash imaging will also open up new avenues for structural studies on nano- and micro-crystalline substances. This paper addresses the theoretical potentials and limitations of nanocrystallography with extremely intense coherent X-ray pulses. We use urea nanocrystals as a model for generic biological substances and simulate primary and secondary ionization dynamics in the crystalline sample. Our results establish conditions for ultrafast nanocrystallography diffraction experiments as a function of fluenc...

  10. Uhuru observations of 4U 1608-52 - The 'steady' X-ray source associated with the X-ray burst source in Norma

    Science.gov (United States)

    Tananbaum, H.; Chaisson, L. J.; Forman, W.; Jones, C.; Matilsky, T. A.

    1976-01-01

    Data are presented for the X-ray source 4U 1608-52, summarizing its light curve, location, and spectral parameters. Evidence is presented showing that this source is the 'steady' X-ray counterpart of the X-ray burst source in Norma. The spectrum of the 'steady' source is compared with the spectrum observed during two bursts, and it is noted that there is substantially more low-energy absorption during the bursts. The 'steady' source spectral data are used to examine the optical data, and it is concluded that if the X-ray spectrum is thermal, then a globular-cluster counterpart probably would have been detected (whereas none has been). Further X-ray and optical observations are suggested for this source, since an optical identification may be central in determining whether all X-ray bursts have a common origin and if this origin requires a globular-cluster environment.

  11. Uhuru observations of 4U 1608-52 - The 'steady' X-ray source associated with the X-ray burst source in Norma

    Science.gov (United States)

    Tananbaum, H.; Chaisson, L. J.; Forman, W.; Jones, C.; Matilsky, T. A.

    1976-01-01

    Data are presented for the X-ray source 4U 1608-52, summarizing its light curve, location, and spectral parameters. Evidence is presented showing that this source is the 'steady' X-ray counterpart of the X-ray burst source in Norma. The spectrum of the 'steady' source is compared with the spectrum observed during two bursts, and it is noted that there is substantially more low-energy absorption during the bursts. The 'steady' source spectral data are used to examine the optical data, and it is concluded that if the X-ray spectrum is thermal, then a globular-cluster counterpart probably would have been detected (whereas none has been). Further X-ray and optical observations are suggested for this source, since an optical identification may be central in determining whether all X-ray bursts have a common origin and if this origin requires a globular-cluster environment.

  12. Filming Femtosecond Molecular Movies with X-ray Pulses

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov

    This thesis describes the investigation of time-resolved phenomena using X-ray techniques, and in particular the new possibilities and challenges arising from the application of these techniques on the femtosecond time-scale. The thesis will review the processes following laser excitation...... of molecular species in solution, describing the interplay between electronic and structural dynamics, as well as the role of the solvent. This will be followed by an introduction of the three X-ray techniques used in this work, and it will be shown how the application of these techniques in a laser pump / X...... yielded by (and the practical challenges connected to) their simultaneous implementation in a single experiment. Finally, the experimental results of a signicant set of laser pump / X-ray probe experiments will be presented and discussed in order to gauge the applicability of these techniques as tools...

  13. Production of transform-limited X-ray pulses through self-seeding at the European X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-09-15

    An important goal for any advanced X-ray FEL is an option for providing Fourier-limited X-ray pulses. In this way, no monochromator is needed in the experimental hall. Self-seeding is a promising approach to significantly narrow the SASE bandwidth to produce nearly transform-limited pulses. These are important for many experiments including 3D diffraction imaging.We discuss the implementation of a single-crystal self-seeding scheme in the hard X-ray lines of the European XFEL. For this facility, transform-limited pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap baseline undulators. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations dealing with the up-to-date parameters of the European XFEL, we show that the FEL power reaches about 400 GW, or one order of magnitude higher power than the SASE saturation level (20 GW). This analysis indicates that our self-seeding scheme is not significantly affected by non-ideal electron phase-space distribution, and yields about the same performance as in the case for an electron beam with ideal parameters. The self-seeding scheme with a single crystal monochromator is extremely compact (about 5 m long), and cost estimations are low enough to consider adding it to the European XFEL capabilities from the very beginning of the operation phase. (orig.)

  14. The Project PLASMONX for Plasma Acceleration Experiments and a Thomson X-Ray Source at SPARC

    CERN Document Server

    Serafini, Luca; Alessandria, Franco; Bacci, Alberto; Baldeschi, Walter; Barbini, Alessandro; Bellaveglia, Marco; Bertolucci, Sergio; Biagini, Maria; Boni, Roberto; Bonifacio, Rodolfo; Boscolo, Ilario; Boscolo, Manuela; Bottigli, Ubaldo; Broggi, Francesco; Castellano, Michele; Cecchetti, Carlo A; Cialdi, Simone; Clozza, Alberto; De Martinis, Carlo; Di Pirro, Giampiero; Drago, Alessandro; Esposito, Adolfo; Ferrario, Massimo; Ficcadenti, L; Filippetto, Daniele; Fusco, Valeria; Galimberti, Marco; Gallo, Alessandro; Gatti, Giancarlo; Ghigo, Andrea; Giove, Dario; Giulietti, Antonio; Giulietti, Danilo; Gizzi, Leonida A; Golosio, Bruno; Guiducci, Susanna; Incurvati, Maurizio; Köster, Petra; Labate, Luca; Ligi, Carlo; Marcellini, Fabio; Maroli, Cesare; Mauri, Marco; Migliorati, Mauro; Mostacci, Andrea; Oliva, Pier N; Palumbo, Luigi; Pellegrino, Luigi; Petrillo, Vittoria; Piovella, Nicola; Poggiu, Angela; Pozzoli, Roberto; Preger, Miro; Ricci, Ruggero; Rome, Massimiliano; Rossi, Antonella; Sanelli, Claudio; Serio, Mario; Sgamma, Francesco; Spataro, Bruno; Stecchi, Alessandro; Stella, Angelo; Stumbo, Simone; Tazzioli, Franco; Tommasini, Paolo; Vaccarezza, Cristina; Vescovi, Mario; Vicario, Carlo

    2005-01-01

    We present the status of the activity on the project PLASMONX, which foresees the installation of a multi-TW Ti:Sa laser system at the CNR-ILIL laboratory to conduct plasma acceleration experiments and the construction of an additional beam line at SPARC to develop a Thomson X-ray source at INFN-LNF. After pursuing self-injection experiments at ILIL, when the electron beam at SPARC will be available the SPARC laser system will be upgraded to TW power level in order to conduct either external injection plasma acceleration experiments and ultra-bright X-ray pulse generation with the Thomson source. Results of numerical simulations modeling the interaction of the SPARC electron beam and the counter-propagating laser beam are presented with detailed discussion of the monochromatic X-ray beam spectra generated by Compton backscattering: X-ray energies are tunable in the range 20 to 1000 keV, with pulse duration from 30 fs to 20 ps. Preliminary simulations of plasma acceleration with self-injection are illustrated,...

  15. Rate equations for nitrogen molecules in ultrashort and intense x-ray pulses

    CERN Document Server

    Liu, Ji-Cai; Cederbaum, Lorenz S; Cryan, James P; Glownia, James M; Schafer, Kenneth J; Buth, Christian

    2015-01-01

    We study theoretically the molecular dynamics of nitrogen molecules (N$_2$) exposed to x rays at a wavelength of 1.1 nm (1100 eV photon energy) from the Linac Coherent Light Source (LCLS) free electron laser. Molecular rate equations are derived to describe the intertwined photoionization, decay, and dissociation processes occurring for N2 in intense and ultrafast x rays from LCLS. This model complements our earlier phenomenological approaches, the single-atom, symmetric-sharing, and fragmentation-matrix models of J. Chem. Phys. $\\mathbf{136}$, 214310 (2012). Our rate-equations are used to obtain the effective pulse energy at the sample and the time scale for the dissociation of the metastable dication N$_2^{2+}$. This leads to a very good agreement between the theoretically and experimentally obtained ion yields and, consequently, the average charge states. The effective pulse energy is found to decrease with shortening pulse duration. This variation in the effective pulse energy together with a change in th...

  16. On the physical nature of the source of ultraluminous X-ray pulsations

    Science.gov (United States)

    Ter-Kazarian, G.

    2016-01-01

    To reconcile the observed unusual high luminosity of NuSTAR X-ray pulsations from M82X-2 with the most extreme violation of the Eddington limit, and in view that the persistent X-ray radiation from M82X-2 almost precludes the possibility of common pulsars, we tackle the problem by the implications of microscopic theory of black hole (MTBH). The preceding developments of MTBH are proved to be quite fruitful for the physics of ultra-high energy (UHE) cosmic-rays. Namely, replacing a central singularity by the infrastructures inside event horizon, subject to certain rules, MTBH explains the origin of ZeV-neutrinos which are of vital interest for the source of UHE-particles. The M82X-2 is assumed to be a spinning intermediate mass black hole resided in final stage of growth. Then, the thermal blackbody X-ray emission, arisen due to the rotational kinetic energy of black hole, escapes from event horizon through the vista to outside world, which is detected as ultraluminous X-ray pulsations. The M82X-2 indeed releases ˜99.6 % of its pulsed radiative energy predominantly in the X-ray bandpass 0.3-30 keV. We derive a pulse profile and give a quantitative account of energetics and orbital parameters of the semi-detached X-ray binary containing a primary accretor M82X-2 of inferred mass M≃138.5-226 M_{⊙} and secondary massive, M2> 48.3-64.9 M_{⊙}, O/B-type donor star with radius of R> 22.1-25.7 R_{⊙}, respectively. We compute the torque added to M82X-2 per unit mass of accreted matter which yields the measured spin-up rate.

  17. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Adjei, Daniel, E-mail: nana.adjeidan@gmail.com [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Vyšín, Luděk [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, 152, Radzikowskiego Str., 31-342 Cracow (Poland); Pina, Ladislav [Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Davídková, Marie [Institute of Nuclear Physics, Czech Academy of Sciences, Řež (Czech Republic); Juha, Libor [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray “water window” spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280–540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 10{sup 3} photons/μm{sup 2}/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms’ sensitivity to pulsed radiation in the “water window”, where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET – Linear Energy Transfer) and dose-rate effects in radiobiology.

  18. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Science.gov (United States)

    Adjei, Daniel; Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk; Vyšín, Luděk; Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M.; Pina, Ladislav; Davídková, Marie; Juha, Libor

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray "water window" spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280-540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 103 photons/μm2/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms' sensitivity to pulsed radiation in the "water window", where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET - Linear Energy Transfer) and dose-rate effects in radiobiology.

  19. TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    Institute of Scientific and Technical Information of China (English)

    YAN Li-Xin; DU Ying-Chao; DU Qiang; LI Ren-Kai; HUA Jian-Fei; HUANG Wen-Hui; TANG Chuan-Xiang

    2009-01-01

    A TW(Tera Watt)laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source(TTX)is being built.Both UV(ultraviolet)laser pulse for driving the photocathode radiofrequency(RF)gun and the IR(infrared)laser pulse as the electron-beam-scattered-light are provided by the system.Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  20. Automatic classification of time-variable X-ray sources

    CERN Document Server

    Lo, Kitty K; Murphy, Tara; Gaensler, B M

    2014-01-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the second \\textit{XMM-Newton} serendipitous source catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10-fold cross validation accuracy of the training data is ${\\sim}$97% on a seven-class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest der...

  1. Stopping x-ray pulses in a thin-film cavity via electromagnetically induced transparency

    CERN Document Server

    Kong, Xiangjin

    2015-01-01

    Stopping light via an electromagnetically induced transparency setup for x-ray pulses in a thin film planar x-ray cavity is investigated theoretically. The pulse is nearly resonant to the 14.4 keV M\\"ossbauer transition in $^{57}\\mathrm{Fe}$, with one nm-thin layer of the latter embedded in the thin-film x-ray cavity. Via a moderate hyperfine magnetic field which takes over the role of the control field, electromagnetically induced transparency and slowing down of the x-ray pulse occurs in the cavity setup. We show that by switching off the control magnetic field, a narrowband x-ray pulse can be completely stored in the cavity for approx. hundred ns. Coherent storage occurs in this scenario by imprinting the x-ray field onto nuclear coherences in a controllable and robust manner. Additional manipulation of the external magnetic field can lead to both group velocity and phase control of the pulse in the x-ray cavity sample.

  2. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-01

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X

  3. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Haugh and M. B. Schneider

    2008-10-31

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. A multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.

  4. Femtosecond X-ray Pulses From a frequency chirped SASE FEL

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z

    2003-01-14

    We discuss the temporal and spectral properties of self-amplified spontaneous emission (SASE) utilizing an energy-chirped electron beam. A short temporal pulse is generated by using a monochromator to select a narrow radiation bandwidth from the frequency chirped SASE. For the filtered radiation, the minimum pulse length is limited by the intrinsic SASE bandwidth, while the number of modes and the energy fluctuation can be controlled through the monochromator bandwidth. Two cases are considered: (1) placing the monochromator at the end of a single long undulator; (2) placing the monochromator after an initial undulator and amplifying the short-duration output in a second undulator. We analyze these cases and show that tens of femtosecond x-ray pulses may be generated for the linac coherent light source.

  5. Diagnosing Pulsed Power Produced Plasmas with X-ray Thomson Scattering at the Nevada Terawatt Facility

    Science.gov (United States)

    Valenzuela, J. C.; Krauland, C.; Mariscal, D.; Krasheninnikov, I.; Beg, F. N.; Wiewior, P.; Covington, A.; Presura, R.; Ma, T.; Niemann, C.; Mabey, P.; Gregori, G.

    2015-11-01

    We present experimental results on X-ray Thomson scattering (XRTS) at the Nevada Terawatt Facility (NTF) to study current driven plasmas. Using the Leopard laser, ~ 30 J and pulse width of 0.8 ns, we generated He- α emission (4.75 keV) from a thin Ti foil. Initial parameter scans showed that the optimum intensity is ~ 1015W/cm2 with a foil thickness of 2 μm for forward X-ray production. Bandwidth measurements of the source, using a HAPG crystal in the Von Hamos configuration, were found to be ΔE/E ~ 0.01. Giving the scattering angle of our experimental setup of 129 degrees and X-ray probing energy, the non-collective regime was accessed. The ZEBRA load was a 3 mm wide, 500 μm thick, and 10 mm long graphite foil, placed at one of the six current return posts. Estimates of the plasma temperature, density and ionization state were made by fitting the scattering spectra with dynamic structure factor calculations based on the random phase approximation for the treatment of charged particle coupling. The work was partially funded by the Department of Energy grant number DE-NA0001995.

  6. An Ultraluminous X-ray Source Powered by An Accreting Neutron Star

    CERN Document Server

    Bachetti, M; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-01-01

    Ultraluminous X-ray sources (ULX) are off-nuclear point sources in nearby galaxies whose X-ray luminosity exceeds the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their luminosity ranges from $10^{40}$ erg s$^{-1} $10^{40}$ erg s$^{-1}$), which require black hole masses MBH >50 solar masses and/or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries. Here we report broadband X-ray observations of the nuclear region of the galaxy M82, which contains two bright ULXs. The observations reveal pulsations of average period 1.37 s with a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to $L_X$(3 - 30 keV) = $4.9 \\times 10^{39}$ erg s$^{-1}$. The pulsating source is spatially coincident with a variable ULX which can reach $L_X$ (0.3 - 10 keV) = $1.8 \\times 10^{40}$ erg s$^{-1}$. This ...

  7. Patchy Accretion Disks in Ultraluminous X-ray Sources

    CERN Document Server

    Miller, J M; Barret, D; Harrison, F A; Fabian, A C; Webb, N A; Walton, D J; Rana, V

    2014-01-01

    The X-ray spectra of the most extreme ultra-luminous X-ray sources -- those with L > 1 E+40 erg/s -- remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT_e ~ 2 keV) and high optical depths (tau ~ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations. Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the p...

  8. Two-dimensional X-ray focusing by off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source

    Science.gov (United States)

    Grigoriev, Maxim; Fakhrtdinov, Rashid; Irzhak, Dmitry; Firsov, Alexander; Firsov, Anatoly; Svintsov, Alexander; Erko, Alexey; Roshchupkin, Dmitry

    2017-02-01

    The results of studying a two-dimensional X-ray focusing by an off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source are presented. This optics enables obtaining a focal spot of 2 μm on the laboratory X-ray source with a focusing efficiency of 30% at a high signal/noise ratio.

  9. A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.

    Science.gov (United States)

    Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D

    2015-01-01

    X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.

  10. Femtosecond powder diffraction with a laser-driven hard X-ray source.

    Science.gov (United States)

    Zamponi, F; Ansari, Z; Woerner, M; Elsaesser, T

    2010-01-18

    X-ray powder diffraction with a femtosecond time resolution is introduced to map ultrafast structural dynamics of polycrystalline condensed matter. Our pump-probe approach is based on photoexcitation of a powder sample with a femtosecond optical pulse and probing changes of its structure by diffracting a hard X-ray pulse generated in a laser-driven plasma source. We discuss the key aspects of this scheme including an analysis of detection sensitivity and angular resolution. Applying this technique to the prototype molecular material ammonium sulfate, up to 20 powder diffraction rings are recorded simultaneously with a time resolution of 100 fs. We describe how to derive transient charge density maps of the material from the extensive set of diffraction data in a quantitative way.

  11. Operation of a picosecond narrow-bandwidth Laser–Thomson-backscattering X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Jochmann, A., E-mail: a.jochmann@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Irman, A.; Lehnert, U.; Couperus, J.P.; Kuntzsch, M. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Trotsenko, S. [Helmholtz-Institut Jena, Friedrich Schiller Universität Jena, D-07743 Jena (Germany); Wagner, A.; Debus, A.D.; Schlenvoigt, H.-P.; Helbig, U.; Bock, S. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Ledingham, K.W.D. [SUPA, Strathclyde University Glasgow, UK-07743 Glasgow (United Kingdom); Cowan, T.E.; Sauerbrey, R.; Schramm, U. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany)

    2013-08-15

    A tunable source of intense ultra-short hard X-ray pulses represents a novel tool for the structural analysis of complex systems with unprecedented temporal and spatial resolution. With the simultaneous availability of a high power short-pulse laser system this provides unique opportunities at the forefront of relativistic light–matter interactions. At Helmholtz-Zentrum Dresden-Rossendorf (HZDR) we demonstrated the principle of such a light source (PHOENIX – Photon Electron collider for Narrow bandwidth Intense X-Rays) by colliding picosecond electron bunches from the ELBE linear accelerator with counter-propagating femtosecond laser pulses from the 150 TW Draco Ti:Sapphire laser system. The generated narrowband X-rays are highly collimated and can be reliably adjusted from 12 keV to 20 keV by tuning the electron energy (24–30 MeV). Ensuring the spatial–temporal overlap at the interaction point and suppressing the Bremsstrahlung background a signal to noise ratio of greater than 300 was reached.

  12. A K-alpha x-ray source using high energy and high repetition rate laser system for phase contrast imaging

    OpenAIRE

    Serbanescu, Cristina; Fourmaux, Sylvain; Kieffer, Jean-Claude; Kincaid, Russell; Krol, Andrzej

    2009-01-01

    K-alpha x-ray sources from laser produced plasmas provide completely new possibilities for x-ray phase-contrast imaging applications. By tightly focusing intense femtosecond laser pulses onto a solid target K-alpha x-ray pulses are generated through the interaction of energetic electrons created in the plasma with the bulk target. In this paper, we present a continuous and efficient Mo K-alpha x-ray source produced by a femtosecond laser system operating at 100 Hz repetition rate with maximum...

  13. kHz femtosecond laser-plasma hard X-ray and fast ion source

    Science.gov (United States)

    Thoss, A.; Korn, G.; Richardson, M. C.; Faubel, M.; Stiel, H.; Voigt, U.; Siders, C. W.; Elsaesser, T.

    2002-04-01

    We describe the first demonstration of a new stable, kHz femtosecond laser-plasma source of hard x-ray continuum and Kα emission using a thin liquid metallic jet target. kHz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot-to-shot and is debris-free. We have solved this requirement with the use of a fine (10-30 μm diameter) liquid metal jet target that provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We will show hard x-ray spectra recorded from liquid Ga targets that show the generation of the 9.3 keV and 10.3 keV, Kα and Kβ lines superimposed on a multi-keV Bremsstrahlung continuum. This source was generated by a 50fs duration, 1 kHz, 2W, high intensity Ti:Sapphire laser. We will discuss the extension of this source to higher powers and higher repetition rates, providing harder x-ray emission, with the incorporation of pulse-shaping and other techniques to enhance the x-ray conversion efficiency. Using the same liquid target technology, we have also demonstrated the generation of forward-going sub-MeV protons from a 10 μm liquid water target at 1 kHz repetition rates. kHz sources of high energy ions will find many applications in time-resolved particle interaction studies, as well as lead to the efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors both in the forward and backward directions up to energies of ~500 keV. As the intensity of compact high repetition-rate lasers sources increase, we can expect improvements in the energy, conversion efficiency and directionality to occur. The impact of these developments on a number of fields will be discussed. As compact

  14. NATO Advanced Study Institute on Chemical Crystallography with Pulsed Neutrons and Synchrotron X-Rays

    CERN Document Server

    Jeffrey, George

    1988-01-01

    X-ray and neutron crystallography have played an increasingly impor­ tant role in the chemical and biochemical sciences over the past fifty years. The principal obstacles in this methodology, the phase problem and com­ puting, have been overcome. The former by the methods developed in the 1960's and just recognised by the 1985 Chemistry Nobel Prize award to Karle and Hauptman, the latter by the dramatic advances that have taken place in computer technology in the past twenty years. Within the last decade, two new radiation sources have been added to the crystallographer's tools. One is synchrotron X-rays and the other is spallation neutrons. Both have much more powerful fluxes than the pre­ vious sources and they are pulsed rather than continuos. New techniques are necessary to fully exploit the intense continuos radiation spectrum and its pulsed property. Both radiations are only available from particular National Laboratories on a guest-user basis for scientists outside these Na­ tional Laboratories. Hi...

  15. Small hard X-ray source using X-band linac

    CERN Document Server

    Uesaka, M; Iijima, H; Tsuchihashi, K; Urakawa, J; Higo, T; Akemoto, M; Hayano, H

    2002-01-01

    For application to dynamic angiographies and life science, small hard X-ray source by laser electron beam collision using X-band linac has been developed. The outline of X-band linac system and the X-ray intensity are discussed. The X-ray intensity of some combinations of laser and electron sources was evaluated by numerical calculations. Four kinds of combinations such as photo-cathode RF-gun + short pulse laser, thermionic-cathode RF-gun + Q-switch Nd:YAG laser, multi-bunch photo-cathode RF-gun + laser accumulator and 200 MeV electron storage ring + laser accumulator were investigated. X-band RF-gun is being used and S-band Mg photo-cathode RF-gun is studied. The X-ray intensity of the thermionic-cathode RF-gun + Q-switch Nd:YAG laser is 10 sup 7 phons/s(total) at 50 keV. This value can be used for structure analysis of protein. (S.Y.)

  16. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Sisniega, A.; Vaquero, J. J., E-mail: juanjose.vaquero@uc3m.es [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Desco, M. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid ES28029 (Spain)

    2014-01-15

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in

  17. LIGHT SOURCE: Spot size diagnostics for flash radiographic X-ray sources at LAPA

    Science.gov (United States)

    Li, Cheng-Gang; Li, Qin; Shi, Jin-Shui; Deng, Jian-Jun

    2009-06-01

    Spot size is one of the parameters to characterize the performance of a radiographic X-ray source. It determines the degree of blurring due to magnification directly. In recent years, a variety of measurement methods have been used to diagnose X-ray spot size at Laboratory of Accelerator Physics and Application (LAPA). Computer simulations and experiments showed that using a rolled-edge to measure the spot size are more accurate, and the intensity distribution of X-ray source was obtained by a device with a square aperture. Experimental and simulation results on a flash X-ray source at our laboratory are presented and discussed in this paper. In addition, a new method for time resolved diagnostics of X-ray spot size is introduced too.

  18. Generation of attosecond soft x-ray pulses in a longitudinal space charge amplifier

    Directory of Open Access Journals (Sweden)

    M. Dohlus

    2011-09-01

    Full Text Available A longitudinal space charge amplifier (LSCA, operating in soft x-ray regime, was recently proposed. Such an amplifier consists of a few amplification cascades (focusing channel and chicane and a short radiator undulator in the end. The broadband nature of LSCA supports generation of few-cycle pulses as well as wavelength compression. In this paper we consider an application of these properties of LSCA for generation of attosecond x-ray pulses. It is shown that a compact and cheap addition to the soft x-ray free-electron laser facility FLASH would allow one to generate 60 attosecond (FWHM long x-ray pulses with the peak power at the 100 MW level and a contrast above 98%.

  19. Generation of attosecond soft X-ray pulses in a longitudinal space charge amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, M.; Schneidmiller, E.A.; Yurkov, M.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    A longitudinal space charge amplifier (LSCA), operating in soft X-ray regime, was recently proposed. Such an amplifier consists of a few amplification cascades (focusing channel and chicane) and a short radiator undulator in the end. Broadband nature of LSCA supports generation of few-cycle pulses as well as wavelength compression. In this paper we consider an application of these properties of LSCA for generation of attosecond X-ray pulses. It is shown that a compact and cheap addition to the soft X-ray free electron laser facility FLASH would allow to generate 60 attosecond (FWHM) long X-ray pulses with the peak power at 100 MW level and a contrast above 98%. (orig.)

  20. Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators.

    Science.gov (United States)

    Luo, W; Yu, T P; Chen, M; Song, Y M; Zhu, Z C; Ma, Y Y; Zhuo, H B

    2014-12-29

    Generation of attosecond x-ray pulse attracts more and more attention within the advanced light source user community due to its potentially wide applications. Here we propose an all-optical scheme to generate bright, attosecond hard x-ray pulse trains by Thomson backscattering of similarly structured electron beams produced in a vacuum channel by a tightly focused laser pulse. Design parameters for a proof-of-concept experiment are presented and demonstrated by using a particle-in-cell code and a four-dimensional laser-Compton scattering simulation code to model both the laser-based electron acceleration and Thomson scattering processes. Trains of 200 attosecond duration hard x-ray pulses holding stable longitudinal spacing with photon energies approaching 50 keV and maximum achievable peak brightness up to 1020 photons/s/mm2/mrad2/0.1%BW for each micro-bunch are observed. The suggested physical scheme for attosecond x-ray pulse trains generation may directly access the fastest time scales relevant to electron dynamics in atoms, molecules and materials.

  1. Chilled disks in ultraluminous X-ray sources

    Science.gov (United States)

    Soria, Roberto; Kuncic, Zdenka; Gonçalves, Anabela C.

    2007-04-01

    The "soft-excess" component fitted to the X-ray spectra of many ultraluminous X-ray sources (ULXs) remains a controversial finding, which may reveal fundamental information either on the black hole (BH) mass or on the state of the accretion flow. In the simplest model, it was explained as thermal emission from a cool accretion disk around an intermediate-mass BH (about 1000 solar masses). We argue that this scenario is highly implausible, and discuss and compare the two most likely alternatives. 1) The soft-excess does come from a cool disk; however, the temperature is low not because of a high BH mass but because most of the accretion power is drained from the inner disk via magnetic torques, and channelled into jets and outflows ("chilled disk" scenario). Using a phenomenological model, we infer that ULXs contain BHs of about 50 solar masses accreting gas at about 10 times their Eddington rate. 2) The soft excess is in fact a soft deficit, if the power-law continuum is properly fitted. Such broad absorption features are caused by smeared absorption lines in fast, highly ionized outflows. This scenario has already been successfully applied to the soft excess in AGN. If so, this spectral feature reveals details of disk outflows,but is unrelated to the BH mass.

  2. Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sheftman, D.; Shafer, D.; Efimov, S.; Gruzinsky, K.; Gleizer, S.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2012-10-15

    A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A {approx}4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

  3. X-ray detectors at the Linac Coherent Light Source.

    Science.gov (United States)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-05-01

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  4. Comparison of short pulse generation schemes for a soft x-ray free electron laser

    Science.gov (United States)

    Martin, I. P. S.; Bartolini, R.

    2011-03-01

    In this paper we study the performance of two complementary short pulse generation schemes as applied to a soft x-ray free electron laser. The first scheme, recently proposed by Saldin et al., makes use of a laser pulse consisting of only a few optical cycles to give an energy chirp to a short section of an electron bunch and tapers the main radiator undulator in order to compensate the chirped region. The second scheme investigated takes a low-charge, high brightness electron bunch and compresses it to ˜1fs in order to operate in the so-called “single-spike” regime. We perform start-to-end simulations of both these schemes, assess the sensitivity of each scheme to realistic jitter sources, and provide a direct comparison of the respective strengths and drawbacks.

  5. Comparison of short pulse generation schemes for a soft x-ray free electron laser

    Directory of Open Access Journals (Sweden)

    I. P. S. Martin

    2011-03-01

    Full Text Available In this paper we study the performance of two complementary short pulse generation schemes as applied to a soft x-ray free electron laser. The first scheme, recently proposed by Saldin et al., makes use of a laser pulse consisting of only a few optical cycles to give an energy chirp to a short section of an electron bunch and tapers the main radiator undulator in order to compensate the chirped region. The second scheme investigated takes a low-charge, high brightness electron bunch and compresses it to ∼1  fs in order to operate in the so-called “single-spike” regime. We perform start-to-end simulations of both these schemes, assess the sensitivity of each scheme to realistic jitter sources, and provide a direct comparison of the respective strengths and drawbacks.

  6. RF deflecting cavity design for Berkeley ultrafast X-ray source

    Science.gov (United States)

    Li, D.; Corlett, J.

    2002-05-01

    Our proposed source for production of ultra-short (less than 100 fs FWHM) x-ray pulses utilizes a scheme for manipulation of the relatively long (2 ps) electron bunch in transverse phase-space, followed by compression of the emitted x-ray pulse in crystal optics. In order to compress the x-ray pulses, RF cavities operating in a dipole mode (TM110-like) are required to deflect the head and tail of a 2.5 GeV bunch in opposite directions. For a 2 ps duration electron bunch, an 8.5 MV deflecting voltage is required at a RF frequency of 3.9 GHz. In this paper, we will present a preliminary cavity design based on numerical simulations performed by MAFIA and URMEL codes. Seven-cell superconducting p mode dipole RF cavities are proposed to provide the necessary deflecting voltage. Due to the presence of beam iris, the mavities operate in a hybrid mode where TM and TE like modes co-exist. Even on mhe beam axis, both magnetic and electric fields contribute to the transverse mick. Lower order monopole modes (LOMs) in the cavities may cause energy spread of the electron beam and need to be damped. The effects of the LOMs on beam dynamics are estimated. Possible damping schemes will be discussed.

  7. RF deflecting cavity design for Berkeley ultrafast X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Derun; Corlett, J.

    2002-05-30

    Our proposed source for production of ultra-short (less than 100 fs FWHM) x-ray pulses utilizes a scheme for manipulation of the relatively long ({approx}2 ps) electron bunch in transverse phase-space, followed by compression of the emitted x-ray pulse in crystal optics [1]. In order to compress the x-ray pulses, RF cavities operating in a dipole mode (TM{sub 110}-like) are required to deflect the head and tail of a 2.5 GeV bunch in opposite directions. For a 2 ps duration electron bunch, an 8.5 MV deflecting voltage is required at a RF frequency of 3.9 GHz. In this paper, we will present a preliminary cavity design based on numerical simulations performed by MAFIA and URMEL codes. Seven-cell superconducting {pi} mode dipole RF cavities are proposed to provide the necessary deflecting voltage. Due to the presence of beam iris, the cavities operate in a hybrid mode where TM and TE like modes co-exist. Even on the beam axis, both magnetic and electric fields contribute to the transverse kick. Lower order monopole modes (LOMs) in the cavities may cause energy spread of the electron beam and need to be damped. The effects of the LOMs on beam dynamics are estimated. Possible damping schemes will be discussed.

  8. Soft-x-ray imaging from an ultrashort-pulse laser-produced plasma using a multilayer coated optic

    Science.gov (United States)

    Norby, J. R.; van Woerkom, L. D.

    1996-02-01

    Measurements are presented of soft-x-ray images from a plasma produced by a high-intensity ultrashort-pulse laser. For the intensity range of 1015-1016 W / cm2 the soft-x-ray source appears to follow the spatial profile of the driving laser. A curved multilayer coated optic is used to collect 13.5-nm light and form a magnified image of the plasma. Knife-edge scans have been performed in the image plane and show a geometrically limited spot size of 280 mu m.

  9. Interaction of femtosecond X-ray pulses with periodical multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitry

    2010-07-01

    The VUV Free Electron Laser FLASH operates in soft X-ray range and produces high-intensive pulse trains with few tens femtoseconds duration. The transversely fully coherent beam will open new experiments in solid state physics which can not be studied with present radiation sources. The study of the time dependent response of the multilayer to the X-ray pulse can provide insights into the process of interaction of highly intense FEL radiation with matter. To test the influence of electron excitation on the optical properties of boron carbide, the refractive index of B{sub 4}C was measured near B K-edge by energy-resolved photon-in-photon-out method probing a Bragg reflection from periodical multilayers. The measured data clearly show that the variation of the fine structure of the Kabsorption edges due to the chemical nature of the absorber element. The knowledge obtained from experiments with continuous radiation was used to design the respective experiments with pulse from the FEL. In my thesis, it is proposed that the geometrical setup, where the incident pulse arrives from the FEL under the angle close to the 1st order ML Bragg peak, provides the most valuable information. Preliminary simulation considering form factors of neutral and ionized boron showed that due to ionization, pronounced changes in the reflectivity curve are expected. The proposed scheme can be the powerful tool to study the various processes within the electronic subsystem of the FEL pulse interaction with matter. This type of investigations gives a deep understanding of the nature of the electronic excitation and the recombination at the femtosecond scale. (orig.)

  10. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, D. (Purdue Univ., Lafayette, IN (USA)); Anderson, S. (Michigan State Univ., East Lansing, MI (USA)); Mattigod, S. (Pacific Northwest Lab., Richland, WA (USA))

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

  11. Discovery of coherent pulsations from the Ultraluminous X-ray Source NGC 7793 P13

    CERN Document Server

    Fuerst, F; Harrison, F A; Stern, D; Barret, D; Brightman, M; Fabian, A C; Madsen, K K; Middleton, M J; Miller, J M; Pottschmidt, K; Ptak, A; Rana, V

    2016-01-01

    We report the detection of coherent pulsations from the ultraluminous X-ray source NGC 7793 P13. The ~0.42s nearly sinusoidal pulsations were initially discovered in broadband X-ray observations using XMM-Newton and NuSTAR taken in 2016. We subsequently also found pulsations in archival XMM-Newton data taken in 2013 and 2014. The significant (>>5 sigma) detection of coherent pulsations demonstrates that the compact object in P13 is a neutron star with an observed peak luminosity of ~1e40 erg/s, well above the Eddington limit for a 1.4 M_sun accretor. This makes P13 the second ultraluminous X-ray source known to be powered by an accreting neutron star. The pulse period varies between epochs, with a slow but persistent spin up over the 2013-2016 period. This spin-up indicates a magnetic field of B ~ 1.5e12 G, typical of many accreting pulsars. The most likely explanation for the extreme luminosity is a high degree of beaming, however this is difficult to reconcile with the sinusoidal pulse profile.

  12. A review of laser and synchrotron based X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. [Paris-Sud Univ., Orsay (France). LSAI; Key, M.H. [Paris-Sud Univ., Orsay (France). LSAI; Lawrence Livermore National Lab., CA (United States)

    2001-07-01

    The rapid development of laser technology and related progress in research using lasers is shifting the boundaries where laser based sources are preferred over other light sources particularly in the XUV and X-ray spectral region. Laser based sources have exceptional capability for short pulse and high brightness and with improvements in high repetition rate pulsed operation, such sources are also becoming more interesting for their average power capability. This study presents an evaluation of the current capabilities and near term future potential of laser based light sources and summarises, for the purpose of comparison, the characteristics and near term prospects of sources based on synchrotron radiation and free electron lasers. Relative comparisons are given within charts of peak brightness. (orig.)

  13. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  14. Multiple station beamline at an undulator x-ray source

    DEFF Research Database (Denmark)

    Als-Nielsen, J.; Freund, A.K.; Grübel, G.

    1994-01-01

    -ray transparent monochromator crystals. Diamond in particular is an attractive monochromator as it is rather X-ray transparent and can be fabricated to a high degree of crystal perfection. Moreover, it has a very high heat conductivity and a rather small thermal expansion so the beam X-ray heat load problem...

  15. Time series analysis of bright galactic X-ray sources

    DEFF Research Database (Denmark)

    Priedhorsky, W. C.; Brandt, Søren; Lund, Niels

    1995-01-01

    We analyze 70 to 110 day data sets from eight bright galactic X-ray binaries observed by WATCH/Eureca, in search of periodic variations. We obtain new epochs for the orbital variation of Cyg X-3 and 4U 1700-37, and confirmation of a dip in Cyg X-1 at superior conjunction of the X-ray star. No evi...

  16. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations.

    Science.gov (United States)

    Zou, Shiyang; Song, Peng; Guo, Liang; Pei, Wenbing

    2013-09-01

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux can be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.

  17. Pulse energy measurement at the hard x-ray laser in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M.; Tanaka, T.; Saito, N. [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba 305-8568 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kurosawa, T. [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba 305-8568 (Japan); Richter, M. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, D-10587 Berlin (Germany); Sorokin, A. A. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22603 Hamburg (Germany); Ioffe Physico-Technical Institute, RAS, Polytekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Tiedtke, K. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22603 Hamburg (Germany); Kudo, T.; Yabashi, M. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Tono, K. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ishikawa, T. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2012-07-09

    The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

  18. Optical Synchronization Systems for Femtosecond X-raySources

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Russell; Staples, John W.; Holzwarth, Ronald

    2004-05-09

    In femtosecond pump/probe experiments using short X-Ray and optical pulses, precise synchronization must be maintained between widely separated lasers in a synchrotron or FEL facility. We are developing synchronization systems using optical signals for applications requiring different ranges of timing error over 100 meter of glass fiber. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1 10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with a piezoelectric phase modulator. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range we will lock two single-frequency lasers separated by several tera Hertz to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  19. Optical Synchronization Systems for Femtosecond X-Ray Sources

    CERN Document Server

    Wilcox, Russell; Staples, John W

    2005-01-01

    In femtosecond pump/probe experiments using short x-ray and optical pulses, precise synchronization must be maintained between widely separated lasers in a synchrotron or FEL facility. We are developing synchronization systems using optical signals for applications requiring different ranges of timing error. For the sub-100fs range we use an amplitude modulated CW laser at 1GHz to transmit RF phase information, and control the delay through a 100m fiber by observing the retroreflected signal. Initial results show 40fs peak-to-peak error above 10Hz, and 200fs long term drift, mainly due to amplitude sensitivity in the analog mixers. For the sub-10fs range we will lock two single-frequency lasers separated by several teraHertz to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes. For attosecond synchronization we propose a stabilized, free space link using bulk lens wavegu...

  20. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G. [Imperial College London, London (United Kingdom); Drakopoulos, Michael [Diamond Light Source, I12 Joint Engineering, Environmental, Processing (JEEP) Beamline, Didcot, Oxfordshire (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, Grenoble (France); Eakins, Daniel E., E-mail: d.eakins@imperial.ac.uk [Imperial College London, London (United Kingdom)

    2016-03-24

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  1. Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire

    2000-11-01

    We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.

  2. A proposal for a collecting mirror assembly for large divergence x-ray sources.

    Science.gov (United States)

    Ichimaru, Satoshi; Hatayama, Masatoshi; Ohchi, Tadayuki; Oku, Satoshi

    2014-11-01

    We propose a new type of collecting mirror assembly (CMA) for x rays, which will enable us to build a powerful optical system for collecting x rays from large divergence sources. The CMA consists of several mirror sections connected in series. The angle of each section is designed so that the x rays reflected from it are parallel to the x rays directly incident on the following sections. A simplified CMA structure is designed and applied to the Al-Kα emission line. It is estimated that by using the CMA the number of x rays detected could be increased by a factor of about 2.5.

  3. 25 Tesla pulsed-high-magnetic-field system for soft X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, M., E-mail: mhaya@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Narumi, Y.; Nojiri, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nakamura, T.; Hirono, T.; Kinoshita, T. [JASRI/SPring-8, Sayo, Hyogo 679-5198 (Japan); Kodama, K. [Department of Mechanical Engineering, Nara National College of Technology, Nara 639-1080 (Japan); Kindo, K. [Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581 (Japan)

    2011-04-15

    Research highlights: {yields} We have developed a 25 T pulsed magnetic field system for soft X-ray MCD. {yields} The new capacitor bank can generate a field in the bipolar mode. {yields} We measured the Soft X-ray MCD of paramagnetic Gd{sub 2}O{sub 3} up to 25 T. - Abstract: We have developed a 25 T pulsed high magnetic field system for soft X-ray Magnetic Circular Dichroism: XMCD. The ultra-high vacuum chamber with a pulse magnet coil is installed. By using a newly developed bipolar capacitor bank, the XMCD of paramagnetic Gd{sub 2}O{sub 3} at the M{sub 5} and the M{sub 4} edges was clearly observed at low temperatures. The present system is capable of measuring XMCD of field induced moments in various compounds including paramagnets and antiferromagnets.

  4. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents

    2005-05-01

    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  5. Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation

    Science.gov (United States)

    Turtos, R. M.; Gundacker, S.; Polovitsyn, A.; Christodoulou, S.; Salomoni, M.; Auffray, E.; Moreels, I.; Lecoq, P.; Grim, J. Q.

    2016-10-01

    Fast timing has emerged as a critical requirement for radiation detection in medical and high energy physics, motivating the search for scintillator materials with high light yield and fast time response. However, light emission rates from conventional scintillation mechanisms fundamentally limit the achievable time resolution, which is presently at least one order of magnitude slower than required for next-generation detectors. One solution to this challenge is to generate an intense prompt signal in response to ionizing radiation. In this paper, we present colloidal semiconductor nanocrystals (NCs) as promising prompt photon sources. We investigate two classes of NCs: two-dimensional CdSe nanoplatelets (NPLs) and spherical CdSe/CdS core/giant shell quantum dots (GS QDs). We demonstrate that the emission rates of these NCs under pulsed X-ray excitation are much faster than traditional mechanisms in bulk scintillators, i.e. 5d-4f transitions. CdSe NPLs have a sub-100 ps effective decay time of 77 ps and CdSe/CdS GS QDs exhibit a sub-ns value of 849 ps. Further, the respective CdSe NPL and CdSe/CdS GS QD X-ray excited photoluminescence have the emission characteristics of excitons (X) and multiexcitons (MX), with the MXs providing additional prospects for fast timing with substantially shorter lifetimes.

  6. Molecular dynamics induced by short and intense x-ray pulses from the LCLS

    Science.gov (United States)

    Berrah, Nora

    2016-12-01

    The past six years have led to a wealth of experimental and theoretical data revealing the nature of the interaction between gas-phase molecules and short and intense x-ray pulses, from the Linac coherent light source free electron laser (FEL). We present here a few highlights that describe some of the first photoabsorption measurements of gas-phase molecules. In particular, we report on a three decades long prediction of single-site double core holes (ss-DCH) and two-site double core holes (ts-DCH) in diatomic and triatomic molecules. We also describe recent measurements that validate a simple theory regarding femtosecond intense x-ray induced fragmentation dynamics of C60 as well as photoabsorption measurements of encapsulated fullerenes, Ho3N@C80. The latter investigation opens the way for even more complex molecular studies with FELs. In all of the described highlights, working in close collaboration with theorists enabled the interpretation of, or predicted our measurements, and in some cases our experiments guided the modeling. We conclude this article by describing the potential of new instrumentation for chemical and biological sciences especially in light of new or improved FELs.

  7. A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application

    OpenAIRE

    Wang, Sigen; Calderon, Xiomara; Peng, Rui; Schreiber, Eric C.; Zhou, Otto; Chang, Sha

    2011-01-01

    The authors report a carbon nanotube (CNT) field emission multipixel x-ray array source for microradiotherapy for cancer research. The developed multipixel x-ray array source has 50 individually controllable pixels and it has several distinct advantages over other irradiation source including high-temporal resolution (millisecond level), the ability to electronically shape the form, and intensity distribution of the radiation fields. The x-ray array was generated by a CNT cathode array (5×10)...

  8. Nature of the Extreme Ultraluminous X-ray Sources

    CERN Document Server

    Wiktorowicz, Grzegorz; Sadowski, Aleksander; Belczynski, Krzysztof

    2015-01-01

    In this proof-of-concept study we demonstrate how a binary system can easily form an extreme ULX source with the X-ray luminosity of L_x > 10^42 erg/s. Formation efficiencies and lifetimes of such objects are high enough to potentially explain all observed extreme ULXs. These systems are not only limited to binaries with stellar-origin black hole accretors. Noteworthy, we have also identified such objects with neutron stars. Typically, a 10 Msun black hole is fed by a massive (~10 Msun) Hertzsprung gap donor with Roche lobe overflow rate of ~10^-3 Msun/yr (~2600 Mdot_Edd). For neutron star systems the typical donors are evolved low-mass (~2 Msun) helium stars with Roche lobe overflow rate of ~10^-2 Msun/yr. We base our study purely on the available Roche lobe overflow rate in a binary system and show that if only even a small fraction (>10^-3) of the overflow reaches the BH, the source will be super-Eddington. Our study does not prove that any particular extreme ULX (e.g., HLX-1) is a regular binary system wi...

  9. Spectral variability of ultraluminous X-ray sources

    CERN Document Server

    Kajava, Jari J E

    2008-01-01

    We study spectral variability of 11 ultraluminous X-ray sources (ULX) using archived XMM-Newton and Chandra observations. We use three models to describe the observed spectra; a power-law, a multi-colour disk (MCD) and a combination of these two models. We find that out of the 11 ULXs in our sample, 7 ULXs show a correlation between the luminosity and the photon index Gamma (hereafter L-Gamma correlation). Furthermore, out of the 7 ULXs that have the L-Gamma correlation, 4 ULXs also show spectral pivoting in the observed energy band. We also find that two ULXs show an L-Gamma anti-correlation. The spectra of 4 ULXs in the sample can be adequately fitted with a MCD model. We compare these sources to known black hole binaries (BHB) and find that they follow similar paths in their luminosity-temperature (hereafter L-T) diagrams. Finally we show that the 'soft excess' reported for many of these ULXs at 0.2 keV seem to follow a trend L \\propto T^{-4} when modeled with a power-law plus a 'cool' MCD model. This is c...

  10. Spectral variability of ultraluminous X-ray sources

    CERN Document Server

    Kajava, Jari J E

    2009-01-01

    We study spectral variability of 11 ultraluminous X-ray sources (ULX) using archived XMM-Newton and Chandra observations. We use three models to describe the observed spectra: a power-law, a multi-colour disc (MCD) and a combination of these two models. We find that 7 ULXs show a correlation between the luminosity Lx and the photon index Gamma. Furthermore, 4 out of these 7 ULXs also show spectral pivoting in the observed energy band. We also find that two ULXs show an Lx-Gamma anti-correlation. The spectra of 4 ULXs in the sample can be adequately fitted with a MCD model. We compare these sources to known black hole binaries (BHB) and find that they follow similar paths in their luminosity-temperature diagrams. Finally we show that the `soft excess' reported for many of these ULXs at about 0.2 keV seems to roughly follow a trend Lsoft \\propto T^{-3.5} when modelled with a power-law plus a `cool' MCD model. This is contrary to the L \\propto T^4 relation that is expected from theory and what is seen for many a...

  11. A new soft x-ray pulse height analysis array in the HL-2A tokamak

    Science.gov (United States)

    Zhang, Y. P.; Liu, Yi; Yang, J. W.; Song, X. Y.; Liao, M.; Li, X.; Yuan, G. L.; Yang, Q. W.; Duan, X. R.; Pan, C. H.

    2009-12-01

    A new soft x-ray pulse height analysis (PHA) array including nine independent subsystems, on basis of a nonconventional software multichannel analysis system and a silicon drift detector (SDD) linear array consisting of nine high performance SDD detectors, has been developed in the HL-2A tokamak. The use of SDD has greatly improved the measurement accuracy and the spatiotemporal resolutions of the soft x-ray PHA system. Since the ratio of peak to background counts obtained from the SDD PHA system is very high, p /b≧3000, the soft x-ray spectra measured by the SDD PHA system can approximatively be regarded as electron velocity distribution. The electron velocity distribution can be well derived in the pure ohmic and auxiliary heating discharges. The performance of the new soft x-ray PHA array and the first experimental results with some discussions are presented.

  12. Compton Scattering and Its Applications: The PLEIADES Femtosecond X-ray Source at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Hartemann, F V; Brown, W J; Anderson, S G; Barty, C P J; Betts, S M; Booth, R; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Kuba, J; Rupp, B; Tremaine, A M; Springer, P T

    2003-05-01

    Remarkable developments in critical technologies including terawatt-class lasers using chirped-pulse amplification, high brightness photoinjectors, high-gradient accelerators, and superconducting linacs make it possible to design and operate compact, tunable, subpicosecond Compton scattering x-ray sources with a wide variety of applications. In such novel radiation sources, the collision between a femtosecond laser pulse and a low emittance relativistic electron bunch in a small ({micro}m{sup 3}) interaction volume produces Doppler-upshifted scattered photons with unique characteristics: the energy is tunable in the 5-500 keV range, the angular divergence of the beam is small (mrad), and the pulses are ultrashort (10 fs - 10 ps). Two main paths are currently being followed in laboratories worldwide: high peak brightness, using ultrahigh intensity femtosecond lasers at modest repetition rates, and high average brightness, using superconducting linac and high average power laser technology at MHz repetition rates. Targeted applications range from x-ray protein crystallography and high contrast medical imaging to femtosecond pump-probe and diffraction experiments. More exotic uses of such sources include the {gamma}-{gamma} collider, NIF backlighting, nonlinear Compton scattering, and high-field QED. Theoretical considerations and experimental results will be discussed within this context.

  13. Compact X-ray Source using a High Repetition Rate Laser and Copper Linac

    CERN Document Server

    Graves, W S; Brown, P; Carbajo, S; Dolgashev, V; Hong, K -H; Ihloff, E; Khaykovich, B; Lin, H; Murari, K; Nanni, E A; Resta, G; Tantawi, S; Zapata, L E; Kärtner, F X; Moncton, D E

    2014-01-01

    A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and RF photoinjector powered by a single ultrastable RF transmitter at x-band RF frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The 100 kHz repetition rate is orders of magnitude beyond existing high brightness copper linacs. The entire accelerator is approximately 1 meter long and produces hard x-rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for m...

  14. Compton Scattering and its Applications:. the Pleiades Femtosecond X-Ray Source at LLNL

    Science.gov (United States)

    Hartemann, F. V.; Brown, W. J.; Anderson, S. G.; Barty, C. P. J.; Betts, S. M.; Booth, R.; Crane, J. K.; Cross, R. R.; Fittinghoff, D. N.; Gibson, D. J.; Kuba, J.; Rupp, B.; Tremaine, A. M.; Springer, P. T.

    2004-10-01

    Remarkable developments in critical technologies including terawatt-class lasers using chirped-pulse amplification, high brightness photoinjectors, high-gradient accelerators, and superconducting linacs make it possible to design and operate compact, tunable, subpicosecond Compton scattering x-ray sources with a wide variety of applications. In such novel radiation sources, the collision between a femtosecond laser pulse and a low emittance relativistic electron bunch in a small (μm3) interaction volume produces Doppler-upshifted scattered photons with unique characteristics: the energy is tunable in the 5-500 keV range, the angular divergence of the beam is small (mrad), and the pulses are ultrashort (10 fs - 10 ps). Two main paths are currently being followed in laboratories worldwide: high peak brightness, using ultrahigh intensity femtosecond lasers at modest repetition rates, and high average brightness, using superconducting linac and high average power laser technology at MHz repetition rates. Targeted applications range from x-ray protein crystallography and high contrast medical imaging to femtosecond pump-probe and diffraction experiments. More exotic uses of such sources include the γ-γ collider, NIF backlighting, nonlinear Compton scattering, and high-field QED. Theoretical considerations and experimental results will be discussed within this context.

  15. Demonstration experiment of a laser synchrotron source for tunable, monochromatic x-rays at 500 eV

    Energy Technology Data Exchange (ETDEWEB)

    Ting, A.; Fischer, R.; Fisher, A. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    A Laser Synchrotron Source (LSS) was proposed to generate short-pulsed, tunable x-rays by Thomson scattering of laser photons from a relativistic electron beam. A proof-of-principle experiment was performed to generate x-ray photons of 20 eV. A demonstration experiment is being planned and constructed to generate x-ray photons in the range of {approximately}500 eV. Laser photons of {lambda}=1.06 {mu}m are Thomson backscattered by a 4.5 MeV electron beam which is produced by an S-band RF electron gun. The laser photons are derived from either (i) a 15 Joules, 3 nsec Nd:glass laser, (ii) the uncompressed nsec: pulse of the NRL table-top terawatt (T{sup 3}) laser, or (iii) the compressed sub-picosec pulse of the T{sup 3} laser. The RF electron gun is being constructed with initial operation using a thermionic cathode. It will be upgraded to a photocathode to produce high quality electron beams with high current and low emittance. The x-ray pulse structure consists of {approximately}10 psec within an envelope of a macropulse whose length depends on the laser used. The estimated x-ray photon flux is {approximately}10{sup 18} photons/sec, and the number of photons per macropulse is {approximately}10{sup 8}. Design parameters and progress of the experiment will be presented.

  16. A K-alpha x-ray source using high energy and high repetition rate laser system for phase contrast imaging.

    Science.gov (United States)

    Serbanescu, Cristina; Fourmaux, Sylvain; Kieffer, Jean-Claude; Kincaid, Russell; Krol, Andrzej

    2009-01-01

    K-alpha x-ray sources from laser produced plasmas provide completely new possibilities for x-ray phase-contrast imaging applications. By tightly focusing intense femtosecond laser pulses onto a solid target K-alpha x-ray pulses are generated through the interaction of energetic electrons created in the plasma with the bulk target. In this paper, we present a continuous and efficient Mo K-alpha x-ray source produced by a femtosecond laser system operating at 100 Hz repetition rate with maximum pulse energy of 110 mJ before compression. The source has an x-ray conversion efficiency of greater than 10(-5) into K-alpha line emission. In preparation for phase contrast imaging applications, the size of the resultant K-alpha x-ray emission spot has been also characterized. The source exhibits sufficient spatial coherence to observe phase contrast. We observe a relatively small broadening of the K-alpha source size compared to the size of the laser beam itself. Detailed characterization of the source including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented.

  17. Tabletop Ultrabright Kiloelectronvolt X-Ray Sources from Xe and Kr Hollow Atom States

    Science.gov (United States)

    Sankar, Poopalasingam

    Albert Einstein, the father of relativity, once said, "Look deep into nature, and then you will understand everything better". Today available higher resolution tabletop tool to look deep into matters and living thing is an x-ray source. Although the available tabletop x-rays sources of the 20th century, such as the ones used for medical or dental x-rays are tremendously useful for medical diagnostics and industry, a major disadvantage is that they have low quality skillful brightness, which limits its resolution and accuracy. In the other hand, x-ray free-electrons laser (XFEL) and synchrotron radiation sources provided extreme bright x-rays. However, number of applications of XFEL and synchrotron such as medical and industrials, has been hampered by their size, complexity, and cost. This has set a goal of demonstrating x-ray source with enough brightness for potential applications in an often-called tabletop compact x-ray source that could be operated in university laboratory or hospitals. We have developed two tabletop ultrabright keV x-ray sources, one from a Xe hollow-atom states and the other one from Kr hollow-atom stares with a unique characteristic that makes them complementary to currently-available extreme-light sources; XFEL, and synchrotron x-ray source. Upgraded tabletop ultra-fast KrF* pump-laser interacts with target rare-gas clusters and produces hollow-atom states, which later coherently collapse to the empty inner-shell and thereby generate keV x-ray radiation. The KrF* pump-laser beam is self-focused and forms a self-channel to guide the generated x-ray radiation in the direction of the pump-laser beam to produce directed x-ray beam. Xe (M) x-ray source operates at 1.2-1.6 nm wavelength while the Kr(L) x-ray source operates in 600-800 pm wavelength. System is mounted upon 3 optical-tables (5´x12´) with two KrF amplifiers at a repetition rate of 0.1 Hz. A lower bound for brightness value for both Xe and Kr x-ray sources is 1026 photons s-1mm-2

  18. Studies on high-quality electron beams and tunable x-ray sources produced by laser wakefield accelerators

    Science.gov (United States)

    Zeng, Ming; Luo, Ji; Chen, Min; Sheng, Zheng-Ming

    2016-11-01

    The applications of laser wake field accelerators (LWFA) rely heavily on the quality of produced high energy electron beams and X-ray sources. We present our recent progress on this issue. Firstly we propose a bichromatic laser ionization injection scheme for obtaining high quality electron beams. With the laser pulse combinations of 800 nm and 267 nm, or 2400 nm and 800 nm in wavelengths, electron beams with energy spread of 1% or lower can be produced. Secondly we propose polarization tunable X-ray sources based on LWFA. By shooting a laser pulse into a preformed plasma channel with a skew angle referring to the channel axis, the plasma channel can act as a helical undulator for elliptically polarized X-rays.

  19. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    Directory of Open Access Journals (Sweden)

    Rebecca Boll

    2016-07-01

    Full Text Available Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse.

  20. X-ray imaging detectors for synchrotron and XFEL sources

    Directory of Open Access Journals (Sweden)

    Takaki Hatsui

    2015-05-01

    Full Text Available Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors.

  1. X-ray imaging detectors for synchrotron and XFEL sources.

    Science.gov (United States)

    Hatsui, Takaki; Graafsma, Heinz

    2015-05-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors.

  2. Miniature X-ray Source for Planetary Exploration Instruments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed work is to develop a design model for a CNT cold cathode, low power, passively cooled, and grounded-anode X-ray tube that is compatible...

  3. Recent Measurements And Plans for the SLAC Compton X-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Vlieks, A.E.; Akre, R.; Caryotakis, G.; DeStefano, C.; Frederick, W.J.; Heritage, J.P.; Luhmann, N.C.; Martin, D.; Pellegrini, C.; /SLAC /UC, Davis /UCLA

    2006-02-14

    A compact source of monoenergetic X-rays, generated via Compton backscattering, has been developed in a collaboration between U.C Davis and SLAC. The source consists of a 5.5 cell X-band photoinjector, a 1.05 m long high gradient accelerator structure and an interaction chamber where a high power (TW), short pulse (sub-ps) infrared laser beam is brought into a nearly head-on collision with a high quality focused electron beam. Successful completion of this project will result in the capability of generating a monoenergetic X-ray beam, continuously tunable from 20 - 85 keV. We have completed a series of measurements leading up to the generation of monoenergetic X-rays. Measurements of essential electron beam parameters and the techniques used in establishing electron/photon collisions will be presented. We discuss the design of an improved interaction chamber, future electro-optic experiments using this chamber and plans for expanding the overall program to the generation of Terahertz radiation.

  4. Focusing performance and thermal property of carbon-nanotube emitter-based X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Ho; Kim, Wan Sun; Ryu, Je Hwang; Kim, Kyung Sook; Park, Hun Kuk [Kyung Hee University, Seoul (Korea, Republic of)

    2014-12-15

    Carbon-nanotube (CNT) emitter-based X-ray sources have been extensively investigated as new imaging devices. The electron-beam trajectory in the CNT emitter-based X-ray sources were simulated to determine the optimized conditions for high focusing performance and limited thermal damage to the anode. The beam trajectory from the cathode to the anode was simulated, and the focal spot size (FSS) of the beam was determined by varying the structure of the electrode in the X-ray system. The temperature change of the anode caused by the electron-beam was calculated. The effects of electrode voltage and of the distance between the electrode and the anode on the FSS were significant while the effect of electrode thickness was small in all structures. When the electron-beam was emitted with an FSS of 170 μm and a power of 130 W, the thermal damage to the anode was reduced by using a 2-ms pulsed-voltage operation for a duration of 8 ms.

  5. Intense high repetition rate Mo Kα x-ray source generated from laser solid interaction for imaging application

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K.; Li, M. H.; Yan, W. C.; Ma, Y.; Zhao, J. R.; Li, Y. F.; Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Guo, X. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Optoelectronics, Beijing Institute of Technology, Beijing 100081 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Y. P.; Zhang, J. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-11-15

    We report an efficient Mo Kα x-ray source produced by interaction of femtosecond Ti: sapphire laser pulses with a solid Molybdenum target working at 1 kHz repetition rate. The generated Mo Kα x-ray intensity reaches to 4.7 × 10{sup 10} photons sr{sup −1} s{sup −1}, corresponding to an average power of 0.8 mW into 2π solid angle. The spatial resolution of this x-ray source is measured to be 26 lp/mm. With the high flux and high spatial resolution characteristics, high resolving in-line x-ray radiography was realized on test objects and large size biological samples within merely half a minute. This experiment shows the possibility of laser plasma hard x-ray source as a new low cost and high resolution system for radiography and its ability of ultrafast x-ray pump-probe study of matter.

  6. X-ray imaging detectors for synchrotron and XFEL sources

    OpenAIRE

    Takaki Hatsui; Heinz Graafsma

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivit...

  7. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Andrej

    2013-06-15

    holography, and coherent X-ray diffractive imaging (CXDI). In the former, the dynamics of a system are explored whereas in the latter two predominantly static real space images of the sample are obtained by phase retrieval techniques. Using the intense, coherent, and ultrashort X-ray pulses produced by so-called X-ray free-electron lasers and energy recovery linacs these techniques promise new insights in structural biology, condensed matter physics, magnetism and other correlated systems. The key feature of all these methods is the interference between the field scattered by different parts of the sample under study. As such, spatial coherence across the sample is essential and understanding the coherence properties of the beams generated at new generation X-ray sources is of vital importance for the scientific community. This understanding can even be used to improve the applied methods. In this thesis we aim to describe existing and develop new techniques to study transverse coherence properties of X-ray beams at third and fourth generation sources.

  8. Explosive Device for Generation of Pulsed Fluxes of Soft X-Ray Radiation

    Science.gov (United States)

    Selemir, V. D.; Demidov, V. A.; Ivanovsky, A. V.; Yermolovich, V. F.; Kornilov, V. G.; Chelpanov, V. I.; Kazakov, S. A.; Vlasov, Y. V.; Orlov, A. P.

    2004-11-01

    The concept and realization of the explosive electrophysical device EMIR to generate soft x-ray radiation pulses are described. EMIR is based on the development of VNIIEF technologies in high-power flux compression generators, and on transforming systems based on lines with distributed parameters and current opening switches. Vacuum lines with magnetic insulation or water coaxial lines are considered for transmission of the energy pulses to the load. Transformation of magnetic energy to kinetic energy, thermalization and soft x-ray radiation are performed in a z-pinch with a double liner system.

  9. Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum

    Science.gov (United States)

    Tennant, Allyn F.; Becker, Werner; Juda, Michael; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.

    2001-01-01

    The Chandra X-Ray Observatory observed the Crab pulsar using the Low-Energy Transmission Grating with the High-Resolution Camera. Time-resolved zeroth-order images reveal that the pulsar emits X-rays at all pulse phases. Analysis of the flux at minimum - most likely non-thermal in origin - places an upper limit (T(sub infinity) neutron star. In addition, analysis of the pulse profile establishes that the error in the Chandra-determined absolute time is quite small, -0.2 +/- 0.1 ms.

  10. The BeppoSAX High Energy Large Area Survey. IV. On the soft X-ray properties of the hard X-ray-selected HELLAS sources

    CERN Document Server

    Vignali, C; Fiore, F; La Franca, F

    2001-01-01

    We present a comprehensive study of the soft X-ray properties of the BeppoSAX High-Energy Large Area Survey (HELLAS) sources. A large fraction (about 2/3) of the hard X-ray selected sources is detected by ROSAT. The soft X-ray colors for many of these objects, along with the 0.5-2 keV flux upper limits for those undetected in the ROSAT band, do imply the presence of absorption. The comparison with the ROSAT Deep Survey sources indicates that a larger fraction of absorbed objects among the HELLAS sources is present, in agreement with their hard X-ray selection and the predictions of the X-ray background synthesis models. Another striking result is the presence of a soft (additional) X-ray component in a significant fraction of absorbed objects.

  11. The 5 Hour Pulse Period and Broadband Spectrum of the Symbiotic X-Ray Binary 3A 1954+319

    Science.gov (United States)

    Marcu, Diana M.; Fuerst, Felix; Pottschmidt, Katja; Grinberg, Victoria; Miller, Sebstian; Wilms, Joern; Postnov, Konstantin A.; Corbet, Robin H. D.; Markwardt, Craig B.; Cadolle Bel, Marion

    2011-01-01

    We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries, Le" systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of approximately 5.3 h is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and not significantly energy dependent. During the outburst a strong spin-up of -1.8 x 10(exp -4) h h(exp -1) occurred. Between 2005 and 2008 a long term spin-down trend of 2.1 x 10(exp -5) h h(exp -1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for symbiotic X-ray binaries.

  12. Effect of an x-ray source on the ion abundance of the upper atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, S.V.

    1984-05-01

    The author considers the effect of a pulsed x-ray source on the production of doubly charged ions from atomic and molecular oxygen and molecular nitrogen, incorporating the Auger effect, at heights of 90-450 km in the earth's ionosphere. Calculations indicate that these ions make up approximately 5% at heights below 200-250km and several tens of percent at heights of 300-450km, with lifetimes between 0.1 and 1000 sec at heights of 190-450km.

  13. Optics for the lattice of the compact storage ring for a Compton X-ray source

    Institute of Scientific and Technical Information of China (English)

    YU Pei-Cheng; WANG Yu; SHEN Xiao-zhe; HUANG Wen-Hui; YAN Li-xin; DU Ying-Chao; LI Ren-Kai; TANG Chuan-Xiang

    2009-01-01

    We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source.The optics design for different operation modes of the storage ring are discussed in detail.For the pulse mode optics,an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate;as for the steady mode,the method to control momentum compact factor is adopted[Gladkikh P,Phys.Rev.ST Accel.Beams 8,050702]to obtain stability of the electron beam.

  14. A two-stage series diode for intense large-area moderate pulsed X rays production

    Science.gov (United States)

    Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Su, Zhaofeng; Li, Mo; Ren, Shuqing; Huang, Zhongliang

    2017-01-01

    This paper presents a method for moderate pulsed X rays produced by a series diode, which can be driven by high voltage pulse to generate intense large-area uniform sub-100-keV X rays. A two stage series diode was designed for Flash-II accelerator and experimentally investigated. A compact support system of floating converter/cathode was invented, the extra cathode is floating electrically and mechanically, by withdrawing three support pins several milliseconds before a diode electrical pulse. A double ring cathode was developed to improve the surface electric field and emission stability. The cathode radii and diode separation gap were optimized to enhance the uniformity of X rays and coincidence of the two diode voltages based on the simulation and theoretical calculation. The experimental results show that the two stage series diode can work stably under 700 kV and 300 kA, the average energy of X rays is 86 keV, and the dose is about 296 rad(Si) over 615 cm2 area with uniformity 2:1 at 5 cm from the last converter. Compared with the single diode, the average X rays' energy reduces from 132 keV to 88 keV, and the proportion of sub-100-keV photons increases from 39% to 69%.

  15. Infrared Counterparts to Chandra X-Ray Sources in the Antennae

    CERN Document Server

    Clark, D M; Brandl, B R; Wilson, J C; Carson, J C; Henderson, C P; Hayward, T L; Barry, D J; Ptak, A F; Colbert, E J M

    2006-01-01

    We use deep J and Ks images of the Antennae (NGC 4038/9) obtained with WIRC on the Palomar 200-inch telescope, together with the Chandra X-ray source list of Zezas et al. (2002a), to search for IR counterparts to X-ray point sources. We establish an X-ray/IR astrometric frame tie with 0.5" rms residuals over a \\~4.3' field. We find 13 ``strong'' IR counterparts brighter than Ks = 17.8 mag and < 1.0" from X-ray sources, and an additional 6 ``possible'' IR counterparts between 1.0" and 1.5" from X-ray sources. The surface density of IR sources near the X-ray sources suggests only ~2 of the ``strong'' counterparts and ~3 of the ``possible'' counterparts are chance superpositions of unrelated objects. Comparing both strong and possible IR counterparts to our photometric study of ~220 Antennae, IR clusters, we find the IR counterparts to X-ray sources are \\~1.2 mag more luminous in Ks than average non-X-ray clusters. We also note that the X-ray/IR matches are concentrated in the spiral arms and ``overlap'' regi...

  16. A radio monitoring survey of ultra-luminous X-ray sources

    NARCIS (Netherlands)

    Körding, E.; Colbert, E.; Falcke, H.D.E.

    2005-01-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg s-1. A well-defined sample of the 9

  17. The X-ray eclipse geometry of the super-soft X-ray source CAL 87

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, T.; Lopes de Oliveira, R. [Departamento de Física, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão, SE (Brazil); Borges, B. W., E-mail: tribeiro@ufs.br, E-mail: rlopes@ufs.br, E-mail: bernardo@astro.ufsc.br [Universidade Federal de Santa Catarina, Campus Araranguá, 88905-120 Araranguá, SC (Brazil)

    2014-09-01

    We explore XMM-Newton observations of the eclipsing super-soft X-ray source CAL 87 in order to map the accretion structures of the system. Indirect imaging techniques were applied in X-ray light curves to provide eclipse maps. The surface brightness distribution exhibits an extended and symmetric emission, and a feature is revealed from the hardest X-rays that is likely due to a bright spot. A rate of P-dot =(+6±2)×10{sup −10} for changes in the orbital period of the system was derived from the eclipses. There is no significant variation of the emission lines even during eclipses, arguing that the lines are formed in an extended region. The continuum emission dominates the decrease in flux that is observed during eclipses. The O VIII Lyα line reveals a broadening velocity that is estimated to be 365{sub −69}{sup +65} km s{sup –1} (at 1σ), marginal evidence for asymmetry in its profile, and sometimes shows evidence of double-peaked emission. Together, the results support that the wind-driven mass transfer scenario is running in CAL 87.

  18. The scaling of X-ray variability with luminosity in Ultra-luminous X-ray sources

    CERN Document Server

    Gonzalez-Martin, O; Reig, P; Zezas, A

    2010-01-01

    We investigated the relationship between the X-ray variability amplitude and X-ray luminosity for a sample of 14 bright Ultra-luminous X-ray sources (ULXs) with XMM-Newton/EPIC data, and compare it with the well established similar relationship for Active Galactic Nuclei (AGN). We computed the normalised excess variance in the 2-10 keV light curves of these objects and their 2-10 keV band intrinsic luminosity. We also determined model "variability-luminosity" relationships for AGN, under several assumptions regarding their power-spectral shape. We compared these model predictions at low luminosities with the ULX data. The variability amplitude of the ULXs is significantly smaller than that expected from a simple extrapolation of the AGN "variability-luminosity" relationship at low luminosities. We also find evidence for an anti-correlation between the variability amplitude and L(2-10 keV) for ULXs. The shape of this relationship is consistent with the AGN data but only if the ULXs data are shifted by four ord...

  19. The spatial, spectral and polarization properties of solar flare X-ray sources

    CERN Document Server

    Jeffrey, Natasha L S

    2014-01-01

    X-rays are a valuable diagnostic tool for the study of high energy accelerated electrons. Bremsstrahlung X-rays produced by, and directly related to, high energy electrons accelerated during a flare, provide a powerful diagnostic tool for determining both the properties of the accelerated electron distribution, and of the flaring coronal and chromospheric plasmas. This thesis is specifically concerned with the study of spatial, spectral and polarization properties of solar flare X-ray sources via both modelling and X-ray observations using the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Firstly, a new model is presented, accounting for finite temperature, pitch angle scattering and initial pitch angle injection. This is developed to accurately infer the properties of the acceleration region from the observations of dense coronal X-ray sources. Moreover, examining how the spatial properties of dense coronal X-ray sources change in time, interesting trends in length, width, position, number density ...

  20. Kilohertz sources of hard x rays and fast ions with femtosecond laser plasmas

    Science.gov (United States)

    Thoss, A.; Richardson, M.; Korn, G.; Faubel, M.; Stiel, H.; Vogt, U.; Elsaesser, T.

    2003-01-01

    We demonstrate a new, stable, kilohertz femtosecond laser plasma source of hard-x-ray continuum and Kα emission that uses a microscopic liquid jet target that is continuous and debris free. Plasmas produced by ultrashort (50-fs) intense laser pulses from a fine (10-30-μm diameter) liquid Ga jet emit bright 9.3- and 10.3-keV Kα and Kβ lines superimposed on a multikilovolt bremmstrahlung continuum. Kilohertz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high-intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot to shot and debris free. Our target provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We show the hard-x-ray spectrum described above. The source was generated by a 50-fs-duration, 1-kHz, 2-W, high-intensity Ti:sapphire laser. Using the same technology, we also generate forward-going sub-mega-electron-volt (sub-MeV) protons from a 10-μm liquid water target at 1-kHz repetition rates. Kilohertz sources of high-energy ions will find many applications in time-resolved particle interaction studies and will lead to efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors in both the forward and the backward directions up to energies of ~500 keV. As the intensity of compact high-repetition-rate lasers sources increases, we can expect improvements in the energy, conversion efficiency, and directionality to occur. The effect of these developments is discussed. As compact, high-repetition-rate femtosecond laser technology reaches focused intensities of ~1019 W/cm2, many new applications of high-repetition-rate hard-x-ray and MeV ion sources will become practical.

  1. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.

    Science.gov (United States)

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A; Becker, Andreas; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2014-06-10

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.

  2. Medical imaging using a laser-wakefield driven x-ray source

    Science.gov (United States)

    Cole, Jason; Wood, Jonathan; Lopes, Nelson; Poder, Kristjan; Kamperidis, Christos; Alatabi, Saleh; Bryant, Jonathan; Kneip, Stefan; Mecseki, Katalin; Norris, Dominic; Teboul, Lydia; Westerburg, Henrik; Abel, Richard; Jin, Andi; Symes, Dan; Mangles, Stuart; Najmudin, Zulfikar

    2016-10-01

    Laser-wakefield accelerators driven by high-intensity laser pulses are a proven centimetre-scale source of GeV electron beams. One of the proposed uses for these accelerators is the driving of compact hard x-ray synchrotron light sources. Such sources have been shown to be bright, have small source size and high photon energy, and are therefore interesting for imaging applications. By doubling the focal length at the Astra-Gemini laser facility of the Rutherford Appleton Laboratory, UK, we have significantly improved the average betatron x-ray flux compared to previous experiments. This fact, coupled to the stability of the radiation source, facilitated the acquisition of full 3D tomograms of hard bone tissue and soft mouse neonates, the latter requiring the recording of over 500 successive radiographs. Such multimodal performance is unprecedented in the betatron field and indicates the usefulness of these sources in clinical imaging applications, scalable to very high photon flux without compromising source size or photon energy.

  3. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    Energy Technology Data Exchange (ETDEWEB)

    Boutet, Sebastien; Williams, Garth J.; /SLAC

    2011-08-16

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  4. A SEARCH FOR HYPERLUMINOUS X-RAY SOURCES IN THE XMM-NEWTON SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Zolotukhin, I.; Webb, N. A.; Godet, O.; Barret, D. [CNRS, IRAP, 9 av. Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Bachetti, M., E-mail: ivan.zolotukhin@irap.omp.eu [INAF/Osservatorio Astronomico di Cagliari, via della Scienza 5, I-09047 Selargius (Italy)

    2016-02-01

    We present a new method to identify luminous off-nuclear X-ray sources in the outskirts of galaxies from large public redshift surveys, distinguishing them from foreground and background interlopers. Using the 3XMM-DR5 catalog of X-ray sources and the SDSS DR12 spectroscopic sample of galaxies, with the help of this off-nuclear cross-matching technique, we selected 98 sources with inferred X-ray luminosities in the range 10{sup 41} < L{sub X} < 10{sup 44} erg s{sup −1}, compatible with hyperluminous X-ray objects (HLX). To validate the method, we verify that it allowed us to recover known HLX candidates such as ESO 243–49 HLX–1 and M82 X–1. From a statistical study, we conservatively estimate that up to 71 ± 11 of these sources may be foreground- or background sources, statistically leaving at least 16 that are likely to be HLXs, thus providing support for the existence of the HLX population. We identify two good HLX candidates and using other publicly available data sets, in particular the VLA FIRST in radio, UKIRT Infrared Deep Sky Survey in the near-infrared, GALEX in the ultraviolet and Canada–France–Hawaii Telescope Megacam archive in the optical, we present evidence that these objects are unlikely to be foreground or background X-ray objects of conventional types, e.g., active galactic nuclei, BL Lac objects, Galactic X-ray binaries, or nearby stars. However, additional dedicated X-ray and optical observations are needed to confirm their association with the assumed host galaxies and thus secure their HLX classification.

  5. Imaging Molecular Structure and Dynamics utilizing X-ray Free-Electron-Laser Sources

    OpenAIRE

    Küpper, Jochen

    2015-01-01

    Imaging controlled molecules with ultrashort x- ray pulses from free-electron lasers enables the recording of “molecular movies”, i.e., snapshots of molecules at work, with spatial (picometer) and temporal (femtosecond) atomic resolution.

  6. Discovery of Pulsed X-ray Emission from the SMC Transient RX J0117.6-7330

    CERN Document Server

    Macomb, D J; Harmon, B A; Lamb, R C; Prince, T A

    1999-01-01

    We report on the detection of pulsed, broad-band, X-ray emission from the transient source RX J0117.6-7330. The pulse period of 22 seconds is detected by the ROSAT/PSPC instrument in a 1992 Sep 30 - Oct 2 observation and by the CGRO/BATSE instrument during the same epoch. Hard X-ray pulsations are detectable by BATSE for approximately 100 days surrounding the ROSAT observation (1992 Aug 28 - Dec 8). The total directly measured X-ray luminosity during the ROSAT observation is 1.0E38 (d/60 kpc)^2 ergs s-1. The pulse frequency increases rapidly during the outburst, with a peak spin-up rate of 1.2E-10 Hz s-1 and a total frequency change 1.8%. The pulsed percentage is 11.3% from 0.1-2.5 keV, increasing to at least 78% in the 20-70 keV band. These results establish RX J0117.6-7330 as a transient Be binary system.

  7. An ultracompact X-ray source based on a laser-plasma undulator.

    Science.gov (United States)

    Andriyash, I A; Lehe, R; Lifschitz, A; Thaury, C; Rax, J-M; Krushelnick, K; Malka, V

    2014-08-22

    The capability of plasmas to sustain ultrahigh electric fields has attracted considerable interest over the last decades and has given rise to laser-plasma engineering. Today, plasmas are commonly used for accelerating and collimating relativistic electrons, or to manipulate intense laser pulses. Here we propose an ultracompact plasma undulator that combines plasma technology and nanoengineering. When coupled with a laser-plasma accelerator, this undulator constitutes a millimetre-sized synchrotron radiation source of X-rays. The undulator consists of an array of nanowires, which are ionized by the laser pulse exiting from the accelerator. The strong charge-separation field, arising around the wires, efficiently wiggles the laser-accelerated electrons. We demonstrate that this system can produce bright, collimated and tunable beams of photons with 10-100 keV energies. This concept opens a path towards a new generation of compact synchrotron sources based on nanostructured plasmas.

  8. A deeper look at the X-ray point source population of NGC 4472

    Science.gov (United States)

    Joseph, T. D.; Maccarone, T. J.; Kraft, R. P.; Sivakoff, G. R.

    2017-10-01

    In this paper we discuss the X-ray point source population of NGC 4472, an elliptical galaxy in the Virgo cluster. We used recent deep Chandra data combined with archival Chandra data to obtain a 380 ks exposure time. We find 238 X-ray point sources within 3.7 arcmin of the galaxy centre, with a completeness flux, FX, 0.5-2 keV = 6.3 × 10-16 erg s-1 cm-2. Most of these sources are expected to be low-mass X-ray binaries. We finding that, using data from a single galaxy which is both complete and has a large number of objects (˜100) below 1038 erg s-1, the X-ray luminosity function is well fitted with a single power-law model. By cross matching our X-ray data with both space based and ground based optical data for NGC 4472, we find that 80 of the 238 sources are in globular clusters. We compare the red and blue globular cluster subpopulations and find red clusters are nearly six times more likely to host an X-ray source than blue clusters. We show that there is evidence that these two subpopulations have significantly different X-ray luminosity distributions. Source catalogues for all X-ray point sources, as well as any corresponding optical data for globular cluster sources, are also presented here.

  9. X-ray Sources and their Optical Counterparts in the Globular Cluster M4

    CERN Document Server

    Bassa, C; Homer, L; Verbunt, F; Gaensler, B M; Lewin, W H G; Anderson, S F; Margon, B; Kaspi, V M; Van der Klis, M; Bassa, Cees; Pooley, David; Homer, Lee; Verbunt, Frank; Gaensler, Bryan M.; Lewin, Walter H. G.; Anderson, Scott F.; Margon, Bruce; Kaspi, Victoria M.; Klis, Michiel van der

    2004-01-01

    We report on the Chandra X-ray Observatory ACIS-S3 imaging observation of the Galactic globular cluster M4 (NGC 6121). We detect 12 X-ray sources inside the core and 19 more within the cluster half-mass radius. The limiting luminosity of this observation is Lx~10e29 erg/sec for sources associated with the cluster, the deepest X-ray observation of a globular cluster to date. We identify 6 X-ray sources with known objects and use ROSAT observations to show that the brightest X-ray source is variable. Archival data from the Hubble Space Telescope allow us to identify optical counterparts to 16 X-ray sources. Based on the X-ray and optical properties of the identifications and the information from the literature, we classify two (possibly three) sources as cataclysmic variables, one X-ray source as a millisecond pulsar and 12 sources as chromospherically active binaries. Comparison of M4 with 47 Tuc and NGC 6397 suggests a scaling of the number of active binaries in these clusters with the cluster (core) mass.

  10. FY05 LDRD Final ReportTime-Resolved Dynamic Studies using Short Pulse X-Ray Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A; Dunn, J; van Buuren, T; Budil, K; Sadigh, B; Gilmer, G; Falcone, R; Lee, R; Ng, A

    2006-02-10

    Established techniques must be extended down to the ps and sub-ps time domain to directly probe product states of materials under extreme conditions. We used short pulse ({le} 1 ps) x-ray radiation to track changes in the physical properties in tandem with measurements of the atomic and electronic structure of materials undergoing fast laser excitation and shock-related phenomena. The sources included those already available at LLNL, including the picosecond X-ray laser as well as the ALS Femtosecond Phenomena beamline and the SSRL based sub-picosecond photon source (SPPS). These allow the temporal resolution to be improved by 2 orders of magnitude over the current state-of-the-art, which is {approx} 100 ps. Thus, we observed the manifestations of dynamical processes with unprecedented time resolution. Time-resolved x-ray photoemission spectroscopy and x-ray scattering were used to study phase changes in materials with sub-picosecond time resolution. These experiments coupled to multiscale modeling allow us to explore the physics of materials in high laser fields and extreme non-equilibrium states of matter. The ability to characterize the physical and electronic structure of materials under extreme conditions together with state-of-the-art models and computational facilities will catapult LLNL's core competencies into the scientific world arena as well as support its missions of national security and stockpile stewardship.

  11. Characteristics of a multi-keV monochromatic point x-ray source based on vacuum diode with laser-produced plasma as cathode

    Indian Academy of Sciences (India)

    A Moorti; A Raghuramaiah; P A Naik; P D Gupta

    2004-11-01

    Temporal, spatial and spectral characteristics of a multi-keV monochromatic point x-ray source based on vacuum diode with laser-produced plasma as cathode are presented. Electrons from a laser-produced aluminium plasma were accelerated towards a conical point tip titanium anode to generate K-shell x-ray radiation. Approximately 1010 photons/pulse were generated in x-ray pulses of ∼ 18 to ∼ 28 ns duration from a source of ∼ 300 m diameter, at ℎ = 4.51 keV ( emission of titanium), with a brightness of ∼ 1020 photons/cm2 /s/sr. This was sufficient to record single-shot x-ray radiographs of physical objects on a DEF-5 x-ray film kept at a distance of up to ∼ 10 cm.

  12. High-brightness laser plasma soft X-ray source using a double-stream gas puff target irradiated with the Prague Asterix Laser System (PALS)

    Energy Technology Data Exchange (ETDEWEB)

    Fiedorowicz, H.; Bartnik, A.; Juha, L.; Jungwirth, K.; Kralikova, B.; Krasa, J.; Kubat, P.; Pfeifer, M.; Pina, L.; Prchal, P.; Rohlena, K.; Skala, J.; Ullschmied, J.; Horvath, M.; Wawer, J

    2004-01-14

    High brightness laser plasma soft X-ray source based on a recently developed double-stream gas puff target irradiated with 0.5 ns laser pulses with energies up to 700 J from the Prague Asterix Laser System (PALS) is presented. The gas puff target was created by pulsed injection of xenon into a hollow stream of helium using an electromagnetic valve system with the double-nozzle setup. Soft X-ray emission was measured using the transmission grating spectrograph coupled to a CCD camera and the calibrated silicon photodiodes. The absolute soft X-ray production was determined to be 160 J for 540 J of laser energy, giving the soft X-ray conversion efficiency of about 30%. The source has been used in initial experiments on soft X-ray ablation of organic polymers and elemental solids.

  13. Multiwavelength Study of Chandra X-Ray Sources in the Antennae

    CERN Document Server

    Clark, D M; Brandl, B R; Wilson, J C; Carson, J C; Henderson, C P; Hayward, T L; Barry, D J; Ptak, A F; Colbert, E J M

    2010-01-01

    We use WIRC, IR images of the Antennae (NGC 4038/4039) together with the extensive catalogue of 120 X-ray point sources (Zezas et al. 2006) to search for counterpart candidates. Using our proven frame-tie technique, we find 38 X-ray sources with IR counterparts, almost doubling the number of IR counterparts to X-ray sources first identified in Clark et al. (2007). In our photometric analysis, we consider the 35 IR counterparts that are confirmed star clusters. We show that the clusters with X-ray sources tend to be brighter, K_s ~16 mag, with (J-K_s) = 1.1 mag. We then use archival HST images of the Antennae to search for optical counterparts to the X-ray point sources. We employ our previous IR-to-X-ray frame-tie as an intermediary to establish a precise optical-to-X-ray frame-tie with <0.6 arcsec rms positional uncertainty. Due to the high optical source density near the X-ray sources, we determine that we cannot reliably identify counterparts. Comparing the HST positions to the 35 identified IR star clu...

  14. Dual color x-rays from Thomson or Compton sources

    Science.gov (United States)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Ferrario, M.; Maroli, C.; Rau, J. V.; Ronsivalle, C.; Serafini, L.; Vaccarezza, C.; Venturelli, M.

    2015-05-01

    We analyze the possibility of producing two color X or γ radiation by Thomson/Compton back-scattering between a high intensity laser pulse and a two-energy level electron beam, constituted by a couple of beamlets separated in time and/or energy obtained by a photoinjector with comb laser techniques and linac velocity bunching. The parameters of the Thomson source at SPARC_LAB have been simulated, proposing a set of values for a realistic experiments.

  15. Dual color x rays from Thomson or Compton sources

    Science.gov (United States)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Ferrario, M.; Gatti, G.; Maroli, C.; Rau, J. V.; Ronsivalle, C.; Serafini, L.; Vaccarezza, C.; Venturelli, M.

    2014-02-01

    We analyze the possibility of producing two-color x or γ radiation by Thomson/Compton backscattering between a high intensity laser pulse and a two-energy level electron beam, constituted by a couple of beamlets separated in time and/or energy obtained by a photoinjector with comb laser techniques and linac velocity bunching. The parameters of the Thomson source at SPARC_LAB have been simulated, proposing a set of realistic experiments.

  16. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng; Chen, Jun, E-mail: stscjun@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275 (China); School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Li, Ziping [The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275 (China); She, Juncong; Deng, Shaozhi; Xu, Ningsheng [State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275 (China); School of Microelectronics, Sun Yat-sen University, Guangzhou 510275 (China)

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

  17. Intensity interferometry of single x-ray pulses from a synchrotron storage ring

    CERN Document Server

    Singer, A; Marras, A; Klyuev, A; Becker, J; Schlage, K; Skopintsev, P; Gorobtsov, O; Shabalin, A; Wille, H -C; Franz, H; Graafsma, H; Vartanyants, I A

    2014-01-01

    We report on measurements of second-order intensity correlations at the high brilliance storage ring PETRA III using a prototype of the newly developed Adaptive Gain Integrating Pixel Detector (AGIPD). The detector recorded individual synchrotron radiation pulses with an x-ray photon energy of 14.4 keV and repetition rate of about 5 MHz. The second-order intensity correlation function was measured simultaneously at different spatial separations that allowed to determine the transverse coherence length at these x-ray energies. The measured values are in a good agreement with theoretical simulations based on the Gaussian Schell-model.

  18. Analyses of the short pulse laser pumped transient collisional excited X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, A.; Utsumi, T.; Moribayashi, K.; Zhidkov, A.; Kado, M.; Tanaka, M.; Hasegawa, N.; Kawachi, T. [Japan Atomic Energy Research Inst., Osaka (Japan). Advanced Photon Research Center

    2001-07-01

    The soft X-ray gain of the transient collisional excited (TCE) Ni-like Ag laser is investigated using the plasma hydrodynamics and atomic kinetics codes. The gain is calculated for a plasma produced from two 100ps laser irradiated solid target to show qualitative agreement with the experiment. The calculation shows significant improvement of the gain using a thin foil target pumped by two short laser pulses, because of a better coupling of the pump laser energy into the gain region of the plasma. The codes will provide performance prediction as well as optimization of the experimental studies of the TCE X-ray lasers. (orig.)

  19. Stereoscopic observations of a solar flare hard X-ray source in the high corona

    Science.gov (United States)

    Kane, S. R.; Mctiernan, J.; Loran, J.; Fenimore, E. E.; Klebesadel, R. W.; Laros, J. G.

    1992-01-01

    The vertical structure of the impulsive and gradual hard X-ray sources in high coronae and the characteristics of the impulsive soft X-ray emission are investigated on the basis of PVE, ICE, and GOES observations of the energetic flare on February 16, 1984. The average photon spectra observed by these instruments during the impulsive and gradual hard X-ray bursts are summarized. A comparison of these unocculted and partially occulted spectra shows that the sources of the impulsive hard X-ray (greater than about 25 keV) and impulsive soft X-ray (2-5 keV) emissions in this flare extended to coronal altitudes greater than about 200,000 km above the photosphere. At about 100 keV, the ratio of the coronal source brightness to the total source brightness was 0.001 during the impulsive phase and less than about 0.01 during the gradual hard X-ray burst. The sources of the gradual hard X-ray burst and gradual soft X-ray burst were almost completely occulted, indicating that these sources were located at heights less than 200,000 km above the photosphere.

  20. THREE NEW GALACTIC CENTER X-RAY SOURCES IDENTIFIED WITH NEAR-INFRARED SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, Curtis [Department of Physics, University of California, Davis, CA 95616 (United States); Bandyopadhyay, Reba M.; Eikenberry, Stephen S.; Sarajedini, Ata [Department of Astronomy, University of Florida, 211 Bryant Space Center, P.O. Box 112055, Gainesville, FL 32611 (United States); Sellgren, Kris [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Blum, Robert; Olsen, Knut [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Bauer, Franz E., E-mail: curtis.n.dewitt@nasa.gov [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile)

    2013-11-01

    We have conducted a near-infrared spectroscopic survey of 47 candidate counterparts to X-ray sources discovered by the Chandra X-Ray Observatory near the Galactic center (GC). Though a significant number of these astrometric matches are likely to be spurious, we sought out spectral characteristics of active stars and interacting binaries, such as hot, massive spectral types or emission lines, in order to corroborate the X-ray activity and certify the authenticity of the match. We present three new spectroscopic identifications, including a Be high-mass X-ray binary (HMXB) or a γ Cassiopeiae (Cas) system, a symbiotic X-ray binary, and an O-type star of unknown luminosity class. The Be HMXB/γ Cas system and the symbiotic X-ray binary are the first of their classes to be spectroscopically identified in the GC region.

  1. Pulsar X-Ray and Gamma-Ray Pulse Profiles Constraint on Obliquity and Observer Angles

    CERN Document Server

    Harding, A K; Harding, Alice K.; Muslimov, Alexander G.

    1998-01-01

    We model the thermal X-ray profiles of Geminga, Vela and PSR 0656+14, which have also been detected as gamma-ray pulsars, to constrain the phase space of obliquity and observer angles required to reproduce the observed X-ray pulsed fractions and pulse widths. These geometrical constraints derived from the X-ray light curves are explored for various assumptions about surface temperature distribution and flux anisotropy caused by the magnetized atmosphere. We include curved spacetime effects on photon trajectories and magnetic field. The observed gamma-ray pulse profiles are double peaked with phase separations of 0.4 - 0.5 between the peaks. Assuming that the gamma-ray profiles are due to emission in a hollow cone centered on the magnetic pole, we derive the constraints on the phase space of obliquity and observer angles, for different gamma-ray beam sizes, required to produce the observed gamma-ray peak phase separations. We compare the constraints from the X-ray emission to those derived from the observed ga...

  2. Development of a multilayer mirror for high-intensity monochromatic x-ray using lab-based x-ray source.

    Science.gov (United States)

    Nguyen, Thanh-hai; Song, Seonggeun; Jung, Jin-Ho; Jeon, Insu

    2012-09-15

    A parabolic, multilayer x-ray mirror, which can be used with a general lab-based x-ray source, was designed and fabricated. A glass substrate for the mirror was fabricated. Its surface was determined by following the rotation of a parabolic curve and was polished precisely. On the substrate surface, six W/Al bilayers were deposited to form the multilayer mirror. The effects of the mirror on x-ray images were investigated based on the calculated modulation transfer function (MTF) and image intensity values. Higher MTF and intensity values of an x-ray image were obtained using the mirror.

  3. Time-resolved Rocking Curve Measurement Method using Laboratory X-ray Source

    OpenAIRE

    林, 雄二郎; 佐藤, 真伸; 古賀, 三井; 佃, 昇; 蔵元, 英一

    2005-01-01

    Fast x-ray detectors and fast signal processing devices have enabled to measure time dependence of x-ray diffraction intensity. Using a fast x-ray detection system, we have developed a time-resolved measurement method of rocking curves with a laboratory x-ray source. The method has been demonstrated for time-resolved rocking curves from an ultrasound-vibrated silicon crystal in MHz range. The measured rocking curves have been consistent with simulated curves based on the dynamical diffraction...

  4. A recirculating linac based synchrotron light source for ultrafast x-ray science

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Barry, W.; Byrd, J.M.; DeSantis, S.; Heimann, P.; Lidia, S.; Li, D.; Rimmer, R.; Robinson, K.; Schoenlein, R.; Tanabe, J.; Wang, S.; Wan, W.; Wells, R.; Zholents, A.; Placidi, M.; Pirkl, W.

    2002-05-30

    LBNL is pursuing a multi-divisional initiative that has this year further developed design studies and the scientific program for a facility dedicated to the production of x-ray pulses with ultra-short time duration. Our proposed x-ray facility [1] has the short x-ray pulse length ({approx};60 fs FWHM) necessary to study very fast dynamics, high flux (approximately 1011 photons/sec/0.1 percentBW) to study weakly scattering systems, and tuneability over 1-10 keV photon energy. The photon production section of the machine accomodates seven 2m long undulators and six 2T field dipole magnets. The x-ray pulse repetition rate of 10 kHz is matched to studies of dynamical processes (initiated by ultra-short laser pulses) that typicaly have a long recovery time or are not generally cyclic or reversible and need time to allow relaxation, replacement, or flow of the sample. The technique for producing ultra-short x-ray pulses uses relatively long electron bunches to minimise high-peak-current collective effects, and the ultimate x-ray duration is achieved by a combination of bunch manipulation and optical compression.

  5. Source effects in analyzer-based X-ray phase contrast imaging with conventional sources

    Energy Technology Data Exchange (ETDEWEB)

    Hoennicke, M. G. [Universidade Federal da Integracao Latino-Americana, 85867-970 Foz do Iguacu, PR (Brazil); Manica, J. [Universidade Estadual do Oeste do Parana, 85867-970 Foz do Iguacu, PR (Brazil); Mazzaro, I.; Cusatis, C. [LORXI, Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19091, 81531-990 Curitiba, PR (Brazil); Huang, X.-R. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-11-15

    Several recent papers have shown the implementation of analyzer based X-ray phase contrast imaging (ABI) with conventional X-ray sources. The high flux is always a requirement to make the technique useful for bio-medical applications. Here, we present and discuss three important parameters, which need to be taken into account, when searching for the high flux ABI: anisotropic magnification, double image, and source size spread due to intrinsic dispersive diffraction by asymmetrically cut crystals. These parameters, if not well optimized, may cause important features in the acquired images which can mislead the interpretation. A few ways to minimize these effects are implemented and discussed, including some experimental results.

  6. S-band linac-based X-ray source with {pi}/2-mode electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Abhay, E-mail: abhay@post.kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Araki, Sakae [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Dixit, Tanuja [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Fukuda, Masafumi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Krishnan, R; Pethe, Sanjay [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Sakaue, Kazuyuki [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Terunuma, Nobuhiro; Urakawa, Junji [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Washio, Masakazu [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the {pi}/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the {pi}/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  7. Multilayer zone plates for X-ray focusing fabricated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Florian; Eberl, Christian; Liese, Tobias; Krebs, Hans-Ulrich [Institut fuer Materialphysik, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2012-07-01

    X-ray microscopy in the soft and hard regime is a highly useful technique for biological and materials sciences, polymer research, colloidal science and even earth science. One alternative approach for two-dimensional x-ray focusing is to prepare non-periodic multilayer structures. They can be designed in zone plate geometry by depositing high quality non-periodic multilayers on wires according to the Fresnel zone plate law. For this, ZrO{sub 2}/Ti and W/Si multilayers with high optical contrast in the soft and hard x-ray region, respectively, were pulsed laser deposited (PLD) at 248 nm. In this contribution, the growth of multilayers on flat and curved surfaces (studied by electron microscopy after focused ion beam preparation) is compared, and the fabrication steps of different zone plate structures are presented.

  8. On the black hole masses in ultra-luminous X-ray sources

    Science.gov (United States)

    Zhou, Xin-Lin

    2015-05-01

    Ultra-luminous X-ray sources (ULXs) are off-nuclear X-ray sources in nearby galaxies with X-ray luminosities ⩾ 1039 erg s-1. The measurement of the black hole (BH) masses of ULXs is a long-standing problem. Here we estimate BH masses in a sample of ULXs with XMM-Newton observations using two different mass indicators, the X-ray photon index and X-ray variability amplitude based on the correlations established for active galactic nuclei (AGNs). The BH masses estimated from the two methods are compared and discussed. We find that some extreme high-luminosity (LX > 5 ×1040 erg s-1) ULXs contain the BH of 104-105 M⊙ . The results from X-ray variability amplitude are in conflict with those from X-ray photon indices for ULXs with lower luminosities. This suggests that these ULXs generally accrete at rates different from those of X-ray luminous AGNs, or they have different power spectral densities of X-ray variability. We conclude that most of ULXs accrete at super-Eddington rate, thus harbor stellar-mass BH.

  9. High-brightness X-ray free-electron laser with an optical undulator by pulse shaping.

    Science.gov (United States)

    Chang, Chao; Liang, Jinyang; Hei, Dongwei; Becker, Michael F; Tang, Kelei; Feng, Yiping; Yakimenko, Vitaly; Pellegrini, Claudio; Wu, Juhao

    2013-12-30

    A normal-incident flattop laser with a tapered end is proposed as an optical undulator to achieve a high-gain and high-brightness X-ray free electron laser (FEL). The synchronic interaction of an electron bunch with the normal incident laser is realized by tilting the laser pulse front. The intensity of the flattop laser is kept constant during the interaction time of the electron bunch and the laser along the focal plane of a cylindrical lens. Optical shaping to generate the desired flattop pulse with a tapered end from an original Gaussian pulse distribution is designed and simulated. The flattop laser with a tapered end can enhance the X-ray FEL beyond the exponential growth saturation power by one order to reach 1 Gigawatt as compared to that without a tapered end. The peak brightness can reach 1030 photons/mm2/mrad2/s/0.1% bandwidth, more than 10 orders brighter than the conventional incoherent Thompson Scattering X-ray source.

  10. CHANDRA ACIS Survey of X-Ray Point Sources: The Source Catalog

    Science.gov (United States)

    Wang, Song; Liu, Jifeng; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng

    2016-06-01

    The Chandra archival data is a valuable resource for various studies on different X-ray astronomy topics. In this paper, we utilize this wealth of information and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 Advanced CCD Imaging Spectrometer observations, which produces 363,530 source detections belonging to 217,828 distinct X-ray sources. This number is twice the size of the Chandra Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows that 17,828 sources are located within the D 25 isophotes of 1110 galaxies, and 7504 sources are located between the D 25 and 2D 25 isophotes of 910 galaxies. Contamination analysis with the log N-log S relation indicates that 51.3% of objects within 2D 25 isophotes are truly relevant to galaxies, and the “net” source fraction increases to 58.9%, 67.3%, and 69.1% for sources with luminosities above 1037, 1038, and 1039 erg s-1, respectively. Among the possible scientific uses of this catalog, we discuss the possibility of studying intra-observation variability, inter-observation variability, and supersoft sources (SSSs). About 17,092 detected sources above 10 counts are classified as variable in individual observation with the Kolmogorov-Smirnov (K-S) criterion (P K-S < 0.01). There are 99,647 sources observed more than once and 11,843 sources observed 10 times or more, offering us a wealth of data with which to explore the long-term variability. There are 1638 individual objects (˜2350 detections) classified as SSSs. As a quite interesting subclass, detailed studies on X-ray spectra and optical spectroscopic follow-up are needed to categorize these SSSs and pinpoint their properties. In addition

  11. Characteristics of ultrafast K line hard x-ray source from femtosecond terawatt laser-produced plasma

    Institute of Scientific and Technical Information of China (English)

    陈敏; 陈建文; 高鸿奕; 陆培祥; 徐至展

    2003-01-01

    Theoretical studies and analytical scalings were carried out to find the optimized laser parameters and target conditions so that ultrashort hard x-ray pulses and high x-ray power could be achieved. The dependence of laser intensity and wavelength on the yield of K-shell x-ray emission was studied. We propose an optimal design for a foil target for producing high-yield hard x-ray pulses of customizing duration.

  12. The X-ray spectral evolution of the ultraluminous X-ray source Holmberg IX X-1

    CERN Document Server

    Luangtip, W; Done, C

    2016-01-01

    We present a new analysis of X-ray spectra of the archetypal ultraluminous X-ray source (ULX) Holmberg IX X-1 obtained by the Swift, XMM-Newton and NuSTAR observatories. This ULX is a persistent source, with a typical luminosity of ~10^40 erg s^-1, that varied by a factor of 4 - 5 over eight years. We find that its spectra tend to evolve from relatively flat or two-component spectra in the medium energy band (1-6 keV), at lower luminosities, to a spectrum that is distinctly curved and disc-like at the highest luminosities, with the peak energy in the curved spectrum tending to decrease with increased luminosity. We argue that the spectral evolution of the ULX can be explained by super-Eddington accretion models, where in this case we view the ULX down the evacuated funnel along its rotation axis, bounded by its massive radiatively driven wind. The spectral changes then originate in enhanced geometric beaming as the accretion rate increases and wind funnel narrows, causing the scattered flux from the central r...

  13. Studies of Supersoft X-ray Sources (SSS) and Quasisoft X-ray Sources (QSS) in the Milky Way and Magellanic Clouds

    Science.gov (United States)

    Pun, Chun-Shing J.; Li, K.; Kong, A. K. H.; DiStefano, R.

    2010-03-01

    Quasisoft X-ray sources (QSSs) are luminous (L > 1036 erg s-1, kT between 120eV and 350eV) X-ray sources emitting few or no photons at energy above 2 keV yet clearly emitting at above 1.1 keV. While their spectra are harder than luminous supersoft X-ray sources (SSSs), which have characteristic temperatures of tens of eV, QSSs are significantly softer than most canonical X-ray sources. They have been identified in elliptical galaxies, spiral galaxies (in both spiral arms and halos), and globular clusters. We report here on the progress of a comprehensive and systematic search of SSSs and QSSs in the Milky Way and in the Magellanic Clouds using archival X-ray data. Our focus is to conduct an optimized search to identify all candidates in order to differentiate between the different natures of SSSs and QSSs. The candidates collected would be checked for counterparts in other wavelengths, which could possibly help us to determine the fundamental nature of these sources, including the properties, if present, of the accretors and the accretion disks. This work is supported by a Hong Kong SAR Research Grants Council General Research Fund and by a NASA ADP grant.

  14. Near-infrared counterparts of Chandra X-ray sources toward the Galactic Center

    CERN Document Server

    DeWitt, Curtis; Eikenberry, Stephen S; Blum, Robert; Olsen, Knut; Sellgren, Kris; Sarajedini, Ata

    2010-01-01

    The Chandra X-ray Observatory has now discovered nearly 10,000 X-ray point sources in the 2 x 0.8 degree region around the Galactic Center (Muno 2009). The sources are likely to be a population of accreting binaries in the Galactic Center, but little else is known of their nature. We obtained JHKs imaging of the 17'x 17' region around Sgr A*, an area containing 4339 of these X-ray sources, with the ISPI camera on the CTIO 4-m telescope. We cross-correlate the Chandra and ISPI catalogs to find potential IR counterparts to the X-ray sources. The extreme IR source crowding in the field means that it is not possible to establish the authenticity of the matches with astrometry and photometry alone. We find 2137 IR/X-ray astrometrically matched sources: statistically we estimate that our catalog contains 289 +/- 13 true matches to soft X-ray sources and 154 +/- 39 matches to hard X-ray sources. However, the fraction of true counterparts to candidate counterparts for hard sources is just 11 %, compared to 60 % for s...

  15. A high-field pulsed magnet system for x-ray scattering studies in Voigt geometry

    CERN Document Server

    Islam, Zahirul; Ruff, Jacob P C; Das, Ritesh K; Trakhtenberg, Emil; Nojiri, Hiroyuki; Narumi, Yasuo; Canfield, Paul C

    2011-01-01

    We present a new pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies in Voigt geometry. The apparatus consists of a large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields up to ~30 T with a minimum of ~6 ms in total duration are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (~23.6 deg.) through the magnet bore by virtue of a novel double-funnel insert. This instrument would facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using conventional split-pair magnets and offers a practical solution for preserving optical access in future higher-field pulsed magnets.

  16. Broadband X-ray spectra of the ultraluminous x-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    DEFF Research Database (Denmark)

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.;

    2014-01-01

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X...

  17. A hard X-ray study of the ultraluminous X-ray source NGC 5204 X-1 with NuSTAR and XMM-Newton

    DEFF Research Database (Denmark)

    Mukherjee, E. S.; Walton, D. J.; Bachetti, M.;

    2015-01-01

    We present the results from coordinated X-ray observations of the ultraluminous X-ray source NGC 5204 X-1 performed by the Nuclear Spectroscopic Telescope Array and XMM-Newton in early 2013. These observations provide the first detection of NGC 5204 X-1 above 10 keV, extending the broadband...

  18. Soft-X-Ray Projection Lithography Using a High-Repetition-Rate Laser-Induced X-Ray Source for Sub-100 Nanometer Lithography Processes

    NARCIS (Netherlands)

    E. Louis,; F. Bijkerk,; Shmaenok, L.; Voorma, H. J.; van der Wiel, M. J.; Schlatmann, R.; Verhoeven, J.; van der Drift, E. W. J. M.; Romijn, J.; Rousseeuw, B. A. C.; Voss, F.; Desor, R.; Nikolaus, B.

    1993-01-01

    In this paper we present the status of a joint development programme on soft x-ray projection lithography (SXPL) integrating work on high brightness laser plasma sources. fabrication of multilayer x-ray mirrors. and patterning of reflection masks. We are in the process of optimization of a laser-pla

  19. Development of low-energy x-ray fluorescence micro-distribution analysis using a laser plasma x-ray source and multilayer optics?

    NARCIS (Netherlands)

    Stuik, R.; Shmaenok, L. A.; Fledderus, H.; Andreev, S. S.; Shamov, E. A.; Zuev, S. Y.; Salashchenko, N. N.; F. Bijkerk,

    1999-01-01

    A new technique is presented for low-energy X-ray fluorescence micro-distribution analysis of low-Z elements at micrometer spatial resolutions. The technique is based on the use of a laser plasma X-ray source and spherically curved multilayer optics. A large collimator is used to focus the light fro

  20. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor; Kostyrya, Igor D. [Institute of High Current Electronics, Russian Academy of Science, Tomsk 634055 (Russian Federation); Ma Hao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2012-12-15

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  1. Monitoring the activity variations of galactic X-ray sources with WATCH on EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, N.

    1995-01-01

    sources the observation periods extended over more than 100 days. A number of X-ray transients with durations between one and five days were discovered, and, additionally two long duration X-ray transients (GRS 1915+10 and GRO J0422+32) were active and could be monitored. Towards the end of the mission...

  2. The X-ray source content of the XGPS Galactic Plane Survey

    CERN Document Server

    Motch, C; Cropper, M S; Carrera, F; Guillout, P; Pineau, F X; Pakull, M W; Rosen, S; Schwope, A; Tedds, J; Webb, N; Negueruela, I; Watson, M G

    2009-01-01

    We report the results of an optical campaign carried out by the XMM-Newton Survey Science Centre with the specific goal of identifying the brightest X-ray sources in the XMM-Newton Galactic Plane Survey of Hands et al. (2004). In addition to photometric and spectroscopic observations obtained at the ESO-VLT and ESO-3.6m, we used cross-correlations with the 2XMMi, USNO-B1.0, 2MASS and GLIMPSE catalogues to progress the identification process. Active coronae account for 16 of the 30 identified X-ray sources. Many of the identified hard X-ray sources are associated with massive stars emitting at intermediate X-ray luminosities of 10^32-34 erg/s. Among these are a very absorbed likely hyper-luminous star with X-ray/optical spectra and luminosities comparable with those of eta Carina, a new X-ray selected WN8 Wolf-Rayet star, a new Be/X-ray star belonging to the growing class of Gamma-Cas analogs and a possible supergiant X-ray binary of the kind discovered recently by INTEGRAL. One of the sources, XGPS-25 has a c...

  3. Laser-Plasma Sources for Soft-X-Ray Projection Lithography

    NARCIS (Netherlands)

    F. Bijkerk,; Shmaenok, L.; Vanhonk, A.; Bastiaensen, R.; Platonov, Y. Y.; Shevelko, A. P.; Mitrofanov, A. V.; Voss, F.; Desor, R.; Frowein, H.; Nikolaus, B.

    1994-01-01

    Results are reported concerning high-repetition-rate excimer lasers with average powers up to 415 W and their usage for generating laser-plasma soft X-ray sources. A conversion efficiency of laser light into monochromatized soft X-ray radiation of 0.7% at 13.5 nm (2% bandwidth) was achieved using an

  4. Laser-Plasma Sources for Soft-X-Ray Projection Lithography

    NARCIS (Netherlands)

    F. Bijkerk,; Shmaenok, L.; Vanhonk, A.; Bastiaensen, R.; Platonov, Y. Y.; Shevelko, A. P.; Mitrofanov, A. V.; Voss, F.; Desor, R.; Frowein, H.; Nikolaus, B.

    1994-01-01

    Results are reported concerning high-repetition-rate excimer lasers with average powers up to 415 W and their usage for generating laser-plasma soft X-ray sources. A conversion efficiency of laser light into monochromatized soft X-ray radiation of 0.7% at 13.5 nm (2% bandwidth) was achieved using an

  5. Spot size diagnostics for flash radiographic X-ray sources at LAPA

    Institute of Scientific and Technical Information of China (English)

    LI Cheng-Gang; LI Qin; SHI Jin-Shui; DENG Jian-Jun

    2009-01-01

    Spot size is one of the parameters to characterize the performance of a radiographic X-ray source.It determines the degree of blurring due to magnification directly.In recent years,a variety of measurement methods have been used to diagnose X-ray spot size at Laboratory of Accelerator Physics and Application (LAPA).Computer simulations and experiments showed that using a rolled-edge to measure the spot size are more accurate,and the intensity distribution of X-ray source was obtained by a device with a square aperture.Experimental and simulation results on a flash X-ray source at our laboratory are presented and discussed in this paper.In addition,a new method for time resolved diagnostics of X-ray spot size is introduced too.

  6. A compact tunable polarized X-ray source based on laser-plasma helical undulators

    CERN Document Server

    Luo, Ji; Zeng, Ming; Vieira, Jorge; Yu, Lu-Le; Weng, Su-Ming; Silva, Luis O; Jaroszynski, Dino A; Sheng, Zheng-Ming; Zhang, Jie

    2016-01-01

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because their accelerating gradients are three orders of magnitude larger than traditional accelerators. However, X-ray radiation from such devices still lacks of tunability, especially the intensity and polarization distribution. Here we propose a tunable polarized radiation source from a helical plasma undulator based on plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of $2\\times10^{19} photons/s/mm^{2}/mrad^{2}/0.1%$ bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with the ...

  7. X-ray intensity and source size characterizations for the 25 kV upgraded Manson source at Sandia National Laboratories

    Science.gov (United States)

    Loisel, G.; Lake, P.; Gard, P.; Dunham, G.; Nielsen-Weber, L.; Wu, M.; Norris, E.

    2016-11-01

    At Sandia National Laboratories, the x-ray generator Manson source model 5 was upgraded from 10 to 25 kV. The purpose of the upgrade is to drive higher characteristics photon energies with higher throughput. In this work we present characterization studies for the source size and the x-ray intensity when varying the source voltage for a series of K-, L-, and M-shell lines emitted from Al, Y, and Au elements composing the anode. We used a 2-pinhole camera to measure the source size and an energy dispersive detector to monitor the spectral content and intensity of the x-ray source. As the voltage increases, the source size is significantly reduced and line intensity is increased for the three materials. We can take advantage of the smaller source size and higher source throughput to effectively calibrate the suite of Z Pulsed Power Facility crystal spectrometers.

  8. Multi-keV x-ray sources from HYBRID targets on GEKKO and OMEGA facilities

    Directory of Open Access Journals (Sweden)

    Primout M.

    2013-11-01

    Full Text Available The feasibility of efficient X-ray sources for radiography on the LMJ (Laser MégaJoule in the multi-kJ/ns range was demonstrated on the OMEGA laser facility (Univ. Rochester from 2002 to 2004 [1,2]. We significantly enhanced the conversion efficiency of titanium (4–6 keV, copper (8–10 keV and germanium (9–13 keV foils by using an optimized pre-pulse/pulse combination. Since higher X-ray energy and therefore electronic temperature need hydroconfinement, plastic cylindrical hohlraums internally coated with titanium, copper and germanium with various OMEGA beam configurations were successfully tested from 2005 to 2009 [3–5]. In addition, many shots with metal-doped aerogel (Ti, Fe, Ge were tested on OMEGA [6]. Recently we tested a new concept of “HYBRID sources” based on the combination of a thin titanium foil at the exit hole of a plastic cylinder filled with very low density SiO2 aerogel (2 and 5 mg/cc. The benefit of the underdense medium is, first, to transport the laser energy to the titanium foil after its conversion into a supersonic ionization front and, second, to prevent foil expansion and excessive kinetic energy losses by longitudinal hydroconfinement.

  9. Small-animal tomography with a liquid-metal-jet x-ray source

    Science.gov (United States)

    Larsson, D. H.; Lundström, U.; Westermark, U.; Takman, P. A. C.; Burvall, A.; Arsenian Henriksson, M.; Hertz, H. M.

    2012-03-01

    X-ray tomography of small animals is an important tool for medical research. For high-resolution x-ray imaging of few-cm-thick samples such as, e.g., mice, high-brightness x-ray sources with energies in the few-10-keV range are required. In this paper we perform the first small-animal imaging and tomography experiments using liquid-metal-jet-anode x-ray sources. This type of source shows promise to increase the brightness of microfocus x-ray systems, but present sources are typically optimized for an energy of 9 keV. Here we describe the details of a high-brightness 24-keV electron-impact laboratory microfocus x-ray source based on continuous operation of a heated liquid-In/Ga-jet anode. The source normally operates with 40 W of electron-beam power focused onto the metal jet, producing a 7×7 μm2 FWHM x-ray spot. The peak spectral brightness is 4 × 109 photons / ( s × mm2 × mrad2 × 0.1%BW) at the 24.2 keV In Kα line. We use the new In/Ga source and an existing Ga/In/Sn source for high-resolution imaging and tomography of mice.

  10. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  11. A search for hyperluminous X-ray sources in the XMM-Newton source catalog

    CERN Document Server

    Zolotukhin, Ivan; Godet, Olivier; Bachetti, Matteo; Barret, Didier

    2015-01-01

    We present a new method to identify luminous off-nuclear X-ray sources in the outskirts of galaxies from large public redshift surveys, distinguishing them from foreground and background interlopers. Using the 3XMM-DR5 catalog of X-ray sources and the SDSS DR12 spectroscopic sample of galaxies, with the help of this off-nuclear cross-matching technique, we selected 98 sources with inferred X-ray luminosities in the range $10^{41} < L_{\\rm X} < 10^{44}\\,{\\rm erg\\,s}^{-1}$, compatible with hyperluminous X-ray objects (HLX). To validate the method, we verify that it allowed us to recover known HLX candidates such as ESO 243$-$49 HLX$-$1 and M82 X$-$1. From a statistical study, we conservatively estimate that up to $71 \\pm 11$ of these sources may be fore- or background sources, statistically leaving at least 16 that are likely to be HLXs, thus providing support for the existence of the HLX population. We identify two good HLX candidates and using other publicly available datasets, in particular the VLA FIR...

  12. X-ray sources and their optical counterparts in the globular cluster M 22

    CERN Document Server

    Webb, N A; Gendre, B; Barret, D; Lasota, J P; Rizzi, L

    2004-01-01

    Using XMM-Newton EPIC imaging data, we have detected 50 low-luminosity X-ray sources in the field of view of M 22, where 5 +/- 3 of these sources are likely to be related to the cluster. Using differential optical photometry, we have identified probable counterparts to those sources belonging to the cluster. Using X-ray spectroscopic and timing studies, supported by the optical colours, we propose that the most central X-ray sources in the cluster are cataclysmic variables, millisecond pulsars, active binaries and a blue straggler. We also identify a cluster of galaxies behind this globular cluster.

  13. X-ray Sources in the Hubble Deep Field Detected by Chandra

    CERN Document Server

    Hornschemeier, A E; Garmire, G P; Schneider, D P; Broos, P S; Townsley, L K; Bautz, M W; Burrows, D N; Chartas, G; Feigelson, E D; Griffiths, R; Lumb, D H; Nousek, J A; Sargent, W L W

    2000-01-01

    We present first results from an X-ray study of the Hubble Deep Field North (HDF-N) and its environs obtained using 166 ks of data collected by the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-ray Observatory. This is the deepest X-ray observation ever reported, and in the HDF-N itself we detect six X-ray sources down to a 0.5--8 keV flux limit of 4E-16 erg cm^-2 s^-1. Comparing these sources with objects seen in multiwavelength HDF-N studies shows positional coincidences with the extremely red object NICMOS J123651.74 +621221.4, an active galactic nucleus (AGN), three elliptical galaxies, and one nearby spiral galaxy. The X-ray emission from the ellipticals is consistent with that expected from a hot interstellar medium, and the spiral galaxy emission may arise from a `super-Eddington' X-ray binary or ultraluminous supernova remnant. Four of the X-ray sources have been detected at radio wavelengths. We also place X-ray upper limits on AGN candidates found in the HDF-N, and we present the t...

  14. THE CHANDRA LOCAL VOLUME SURVEY: THE X-RAY POINT-SOURCE CATALOG OF NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Binder, B.; Williams, B. F.; Dalcanton, J. J.; Anderson, S. F.; Weisz, D. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Eracleous, M. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gaetz, T. J.; Plucinsky, P. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Skillman, E. D. [Astronomy Department, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2012-10-10

    We present the source catalog of a new Chandra ACIS-I observation of NGC 300 obtained as part of the Chandra Local Volume Survey. Our 63 ks exposure covers {approx}88% of the D{sub 25} isophote (R Almost-Equal-To 6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance to a limiting unabsorbed 0.35-8 keV luminosity of {approx}10{sup 36} erg s{sup -1}. Sources were cross-correlated with a previous XMM-Newton catalog, and we find 75 'X-ray transient candidate' sources that were detected by one observatory, but not the other. We derive an X-ray scale length of 1.7 {+-} 0.2 kpc and a recent star formation rate of 0.12 M{sub Sun} yr{sup -1} in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering {approx}32% of our Chandra field, was used to search for optical counterparts to the X-ray sources, and we have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background active galactic nucleus candidates. Finally, we present the X-ray luminosity functions (XLFs) at different X-ray energies, and we find the total NGC 300 X-ray point-source population to be consistent with other late-type galaxies hosting young stellar populations ({approx}< 50 Myr). We find that XLF of sources associated with older stellar populations has a steeper slope than the XLF of X-ray sources coinciding with young stellar populations, consistent with theoretical predictions.

  15. Infrared identification of hard X-ray sources in the Galaxy

    CERN Document Server

    Gómez-Morán, A Nebot; Pineau, F -X; Carrera, F J; Pakull, M W; Riddick, F

    2015-01-01

    The nature of the low- to intermediate-luminosity (Lx$\\,\\sim 10^{32-34}$ erg s$^{-1}$) source population revealed in hard band (2-10 keV) X-ray surveys of the Galactic Plane is poorly understood. To overcome such problem we cross-correlated the XMM-Newton 3XMM-DR4 survey with the infrared 2MASS and GLIMPSE catalogues. We identified reliable X-ray-infrared associations for 690 sources. We selected 173 sources having hard X-ray spectra, typical of hard X-ray high-mass stars (kT$\\,>\\,5\\,$keV), and 517 sources having soft X-ray spectra, typical of active coronae. About $18\\,\\%$ of the soft sources are classified in the literature: $\\sim\\,91\\%$ as stars, with a minor fraction of WR stars. Roughly $15\\,\\%$ of the hard sources are classified in the literature: $\\sim\\,68\\%$ as high-mass X-ray stars single or in binary systems (WR, Be and HMXBs), with a small fraction of G and B stars. We carried out infrared spectroscopic pilot observations at the William Herschel Telescope for five hard X-ray sources. Three of them ...

  16. THE CHANDRA LOCAL VOLUME SURVEY: THE X-RAY POINT-SOURCE POPULATION OF NGC 404

    Energy Technology Data Exchange (ETDEWEB)

    Binder, B.; Williams, B. F.; Weisz, D. R. [University of Washington, Department of Astronomy, Box 351580, Seattle, WA 98195 (United States); Eracleous, M. [Department of Astronomy and Astrophysics and Center for Gravitational Wave Physics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Gaetz, T. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Skillman, E. D. [University of Minnesota, Astronomy Department, 116 Church St. SE, Minneapolis, MN 55455 (United States)

    2013-02-15

    We present a comprehensive X-ray point-source catalog of NGC 404 obtained as part of the Chandra Local Volume Survey. A new 97 ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of {approx}123 ks. Our survey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of {approx}6 Multiplication-Sign 10{sup 35} erg s{sup -1} in the 0.35-8 keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. We searched overlapping Hubble Space Telescope observations for optical counterparts to our X-ray detections, but find only two X-ray sources with candidate optical counterparts. We find 21 likely low-mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background active galactic nuclei. The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented. The XLFs in the soft band (0.5-2 keV) and the hard band (2-8 keV) have a limiting luminosity at the 90% completeness limit of 10{sup 35} erg s{sup -1} and 10{sup 36} erg s{sup -1}, respectively, significantly lower than previous X-ray studies of NGC 404. We find the XLFs to be consistent with those of other X-ray populations dominated by LMXBs. However, the number of luminous (>10{sup 37} erg s{sup -1}) X-ray sources per unit stellar mass in NGC 404 is lower than is observed for other galaxies. The relative lack of luminous XRBs may be due to a population of LMXBs with main-sequence companions formed during an epoch of elevated star formation {approx}0.5 Gyr ago.

  17. X-ray source development for EXAFS measurements on the National Ignition Facility

    Science.gov (United States)

    Coppari, F.; Thorn, D. B.; Kemp, G. E.; Craxton, R. S.; Garcia, E. M.; Ping, Y.; Eggert, J. H.; Schneider, M. B.

    2017-08-01

    Extended X-ray absorption Fine Structure (EXAFS) measurements require a bright, spectrally smooth, and broad-band x-ray source. In a laser facility, such an x-ray source can be generated by a laser-driven capsule implosion. In order to optimize the x-ray emission, different capsule types and laser irradiations have been tested at the National Ignition Facility (NIF). A crystal spectrometer is used to disperse the x-rays and high efficiency image plate detectors are used to measure the absorption spectra in transmission geometry. EXAFS measurements at the K-edge of iron at ambient conditions have been obtained for the first time on the NIF laser, and the requirements for optimization have been established.

  18. X-ray Sources Generated from Gas-Filled Laser-Heated Targets

    Energy Technology Data Exchange (ETDEWEB)

    Back, C A; Grun, J; Decker, C D; Davis, J; Laming, J M; Feldman, U; Suter, L J; Landen, O L; Miller, M; Serduke, F; Wuest, C

    2000-06-06

    The X-ray sources in the 4-7 keV energy regime can be produced by laser-irradiating high-Z gas-filled targets with high-powered lasers. A series of experiments have been performed using underdense targets that are supersonically heated with {approx} 35 W of 0.35 {micro}m laser light. These targets were cylindrical Be enclosures that were filled with 1-2 atms of Xe gas. L-shell x-ray emission is emitted from the plasma and detected by Bragg crystal spectrometers and x-ray diodes. Absolute flux measurements show conversion efficiencies of {approx} 10% in the multi-kilovolt x-ray emission. These sources can be used as bright x-ray backlighters or for material testing.

  19. X-ray source development for EXAFS measurements on the National Ignition Facility.

    Science.gov (United States)

    Coppari, F; Thorn, D B; Kemp, G E; Craxton, R S; Garcia, E M; Ping, Y; Eggert, J H; Schneider, M B

    2017-08-01

    Extended X-ray absorption Fine Structure (EXAFS) measurements require a bright, spectrally smooth, and broad-band x-ray source. In a laser facility, such an x-ray source can be generated by a laser-driven capsule implosion. In order to optimize the x-ray emission, different capsule types and laser irradiations have been tested at the National Ignition Facility (NIF). A crystal spectrometer is used to disperse the x-rays and high efficiency image plate detectors are used to measure the absorption spectra in transmission geometry. EXAFS measurements at the K-edge of iron at ambient conditions have been obtained for the first time on the NIF laser, and the requirements for optimization have been established.

  20. Burst-only sources: probing type I X-ray bursters at low persistent luminosities

    Energy Technology Data Exchange (ETDEWEB)

    Cornelisse, R.; Zand, J.J.M. in ' t; Kuulkers, E.; Heise, J.; Verbunt, F.; Cocchi, M.; Bazzano, A.; Natalucci, L.; Ubertini, P

    2004-06-01

    The Wide Field Cameras onboard BeppoSAX observed 9 type I X-ray bursters without detectable persistent emission around the burst. According to the standard theory of X-ray bursts these sources should be in the lowest mass-accretion regime, opening the possibility to study this regime for the first time. We compare the sources with the burst theory, and show that the evidence of a new sub-class of low mass X-ray binaries, the burst-only source, is still meagre.

  1. Anti-correlated hard X-ray time lags in Galactic black hole sources

    CERN Document Server

    Sriram, K; Pendharkar, J K; Rao, A R; Pendharkar, Jayant K.

    2007-01-01

    We investigate the accretion disk geometry in Galactic black hole sources by measuring the time delay between soft and hard X-ray emissions. Similar to the recent discoveries of anti-correlated hard X-ray time lags in Cyg X-3 and GRS 1915+105, we find that the hard X-rays are anti-correlated with soft X-rays with a significant lag in another source: XTE J1550-564. We also find the existence of pivoting in the model independent X-ray spectrum during these observations. We investigate time-resolved X-ray spectral parameters and find that the variation in these parameters is consistent with the idea of a truncated accretion disk. The QPO frequency, which is a measure of the size of truncated accretion disk, too changes indicating that the geometric size of the hard X-ray emitting region changes along with the spectral pivoting and soft X-ray flux. Similar kind of delay is also noticed in 4U 1630-47.

  2. X-ray phase-contrast tomography with a compact laser-driven synchrotron source.

    Science.gov (United States)

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D; Pfeiffer, Franz

    2015-05-05

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced--and more challenging--X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches.

  3. First X-ray observations of Low-Power Compact Steep Spectrum Sources

    CERN Document Server

    Kunert-Bajraszewska, M; Siemiginowska, A; Guainazzi, M

    2013-01-01

    We report first X-ray Chandra observations of a sample of seven low luminosity compact (LLC) sources. They belong to a class of young compact steep spectrum (CSS) radio sources. Four of them have been detected, the other three have upper limit estimations for X-ray flux, one CSS galaxy is associated with an X-ray cluster. We have used the new observations together with the observational data for known strong CSS and gigahertz-peaked spectrum (GPS) objects and large scale FRIs and FRIIs to study the relation between morphology, X-ray properties and excitation modes in radio-loud AGNs. We found that: (1) The low power objects fit well to the already established X-ray - radio luminosity correlation for AGNs and occupy the space among, weaker in the X-rays, FRI objects. (2) The high excitation galaxies (HEG) and low excitation galaxies (LEG) occupy distinct locus in the radio/X-ray luminosity plane, notwithstanding their evolutionary stage. This is in agreement with the postulated different origin of the X-ray em...

  4. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    Science.gov (United States)

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  5. Single-molecule imaging with longer X-ray laser pulses

    Directory of Open Access Journals (Sweden)

    Andrew V. Martin

    2015-11-01

    Full Text Available During the last five years, serial femtosecond crystallography using X-ray laser pulses has been developed into a powerful technique for determining the atomic structures of protein molecules from micrometre- and sub-micrometre-sized crystals. One of the key reasons for this success is the `self-gating' pulse effect, whereby the X-ray laser pulses do not need to outrun all radiation damage processes. Instead, X-ray-induced damage terminates the Bragg diffraction prior to the pulse completing its passage through the sample, as if the Bragg diffraction were generated by a shorter pulse of equal intensity. As a result, serial femtosecond crystallography does not need to be performed with pulses as short as 5–10 fs, but can succeed for pulses 50–100 fs in duration. It is shown here that a similar gating effect applies to single-molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of the average structure separately to the diffraction from statistical fluctuations of the structure due to damage (`damage noise'. The results suggest that sub-nanometre single-molecule imaging with 30–50 fs pulses, like those produced at currently operating facilities, should not yet be ruled out. The theory presented opens up new experimental avenues to measure the impact of damage on single-particle diffraction, which is needed to test damage models and to identify optimal imaging conditions.

  6. Energy Resolution Effects on Plasma Electron Temperature Measurements by Soft X-Ray Pulse-Height-Analysis

    Institute of Scientific and Technical Information of China (English)

    SHI Yue-Jiang; WAN Bao-Nian

    2001-01-01

    The soft x-ray pulse-height-analysis technique is a conventional tool to measure electron temperature on tokamaks.The soft x-ray spectra distortion due to the energy resolution of the detector will affect the temperature andimpurity concentration determination. To evaluate these effects, distorted spectra as functions of energy resolutionare derived by numerical modelling. The results show that the low-energy resolution detector can fit for the largesized tokamak soft x-ray spectra.

  7. Ablation of a nanostructured metal surface by ultrashort X-ray pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rosandi, Yudi, E-mail: rosandi@geophys.unpad.ac.id [Department of Physics, Universitas Padjadjaran, Jatinangor, Sumedang 45363 (Indonesia); Fachbereich Physik und Forschungszentrum OPTIMAS, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern (Germany); Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.de [Fachbereich Physik und Forschungszentrum OPTIMAS, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern (Germany)

    2014-07-01

    Using molecular-dynamics simulation, we study the interaction of an ultrashort X-ray pulse with an Al surface. The surface has a periodic grating structure consisting of alternating ridges of height 80 nm and width 80 nm, separated by trenches of width 160 nm. After irradiation with an ultrashort (0.2 ps) X-ray pulse with a fluence above the ablation threshold we observe that the ridges first disintegrate into a foamy mixture of melt and gas bubbles, which grow faster than those in the trenches. Due to the interference of tensile pressure build-up below the ridges and the trenches, the material does not spall. At the concave edges, jets are emitted with velocities of around 1000 m/s, which may ultimately lead to the creation of finer surface structures.

  8. Ultrashort x-ray pulse generation by electron beam slicing in storage rings

    Directory of Open Access Journals (Sweden)

    A. He

    2014-04-01

    Full Text Available We propose a new method to generate ultrashort x-ray pulses using focused short low energy (∼20  MeV electron bunches to create short slices of electrons from the circulating electron bunches in a synchrotron radiation storage ring. When a low energy electron bunch crosses from the top of a high energy storage ring electron bunch, its Coulomb force will kick a short slice from the core of the storage ring electron bunch. The separated slices, when passing through an undulator, will radiate ultrashort x-ray pulses at about 160 fs. We discuss the advantages, challenges, and provide data which confirm the feasibility of this new method.

  9. A new technique to generate 100 GW-level attosecond X-ray pulses from the X-ray SASE FELs

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2004-01-01

    We propose a scheme for generation of single 100 GW 300-as pulse in the X-ray free electron laser with the use of a few cycles optical pulse from Ti:sapphire laser system. Femtosecond optical pulse interacts with the electron beam in the two-period undulator resonant to 800 nm wavelength and produces energy modulation within a slice of the electron bunch. Following the energy modulator the electron beam enters the first part of the baseline gap-adjustable X-ray undulator and produces SASE radiation with 100 MW-level power. Due to energy modulation the frequency is correlated to the longitudinal position within the few-cycle-driven slice of the SASE radiation pulse. The largest frequency offset corresponds to a single-spike pulse in the time domain which is confined to one half-oscillation period near the central peak electron energy. After the first undulator the electron beam is guided through a magnetic delay which we use to position the X-ray spike with the largest frequency offset at the "fresh" part of t...

  10. From ultraluminous X-ray sources to ultraluminous supersoft sources: NGC 55 ULX, the missing link

    Science.gov (United States)

    Pinto, C.; Alston, W.; Soria, R.; Middleton, M. J.; Walton, D. J.; Sutton, A. D.; Fabian, A. C.; Earnshaw, H.; Urquhart, R.; Kara, E.; Roberts, T. P.

    2017-07-01

    In recent work with high-resolution reflection grating spectrometers (RGS) aboard XMM-Newton, Pinto et al. have discovered that two bright and archetypal ultraluminous X-ray sources (ULXs) have strong relativistic winds in agreement with theoretical predictions of high accretion rates. It has been proposed that such winds can become optically thick enough to block and reprocess the disc X-ray photons almost entirely, making the source appear as a soft thermal emitter or ultraluminous supersoft X-ray source (ULS). To test this hypothesis, we have studied a ULX where the wind is strong enough to cause significant absorption of the hard X-ray continuum: NGC 55 ULX. The RGS spectrum of NGC 55 ULX shows a wealth of emission and absorption lines blueshifted by significant fractions of the light speed (0.01-0.20)c indicating the presence of a powerful wind. The wind has a complex dynamical structure with the ionization state increasing with the outflow velocity, which may indicate launching from different regions of the accretion disc. The comparison with other ULXs such as NGC 1313 X-1 and NGC 5408 X-1 suggests that NGC 55 ULX is being observed at higher inclination. The wind partly absorbs the source flux above 1 keV, generating a spectral drop similar to that observed in ULSs. The softening of the spectrum at lower (˜ Eddington) luminosities and the detection of a soft lag agree with the scenario of wind clumps crossing the line of sight, partly absorbing and reprocessing the hard X-rays from the innermost region.

  11. The X-ray spectral evolution of the ultraluminous X-ray source Holmberg IX X-1

    Science.gov (United States)

    Luangtip, Wasutep; Roberts, Timothy P.; Done, Chris

    2016-08-01

    We present a new analysis of X-ray spectra of the archetypal ultraluminous X-ray source (ULX) Holmberg IX X-1 obtained by the Swift, XMM-Newton and NuSTAR observatories. This ULX is a persistent source, with a typical luminosity of ˜1040 erg s-1, that varied by a factor of 4-5 over eight years. We find that its spectra tend to evolve from relatively flat or two-component spectra in the medium energy band (1-6 keV), at lower luminosities, to a spectrum that is distinctly curved and disc-like at the highest luminosities, with the peak energy in the curved spectrum tending to decrease with increased luminosity. We argue that the spectral evolution of the ULX can be explained by super-Eddington accretion models, where in this case we view the ULX down the evacuated funnel along its rotation axis, bounded by its massive radiatively driven wind. The spectral changes then originate in enhanced geometric beaming as the accretion rate increases and wind funnel narrows, causing the scattered flux from the central regions of the supercritical flow to brighten faster than the isotropic thermal emission from the wind, and so the curved hard spectral component to dominate at the highest luminosities. The wind also Compton down-scatters photons at the edge of the funnel, resulting in the peak energy of the spectrum decreasing. We also confirm that Holmberg IX X-1 displays spectral degeneracy with luminosity, and suggest that the observed differences are naturally explained by precession of the black hole rotation axis for the suggested wind geometry.

  12. Low Energy Plasma Focus as an Intense X-ray Source for Radiography

    Institute of Scientific and Technical Information of China (English)

    S. Hussain; M. Zakaullah; Shujaat Ali; A. Waheed

    2004-01-01

    Study on X-ray emission from a low energy (1.8 k J) plasma focus device powered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175 kA by using a lead-inserted copper-tapered anode is reported. The X-ray yield in different energy windows is measured as a function of hydrogen filling pressure. The maximum yield in 4π-geometry is found to be (27.3±1.1) J and corresponding wall plug efficiency for X-ray generation is 1.52 ±0.06%. X-ray emission, presumably due to bombarding activity of electrons in current sheath at the anode tip was dominant, which is confirmed by the pinhole images. The feasibility of the device as an intense X-ray source for radiography is demonstrated.

  13. The Chandra Local Volume Survey: The X-ray Point Source Population of NGC 404

    CERN Document Server

    Binder, B; Eracleous, M; Gaetz, T J; Kong, A K H; Skillman, E D; Weisz, D R

    2012-01-01

    We present a comprehensive X-ray point source catalog of NGC 404 obtained as part of the Chandra Local Volume Survey. A new, 97 ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of ~123 ks. Our survey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of ~6x10^35 erg s^-1 in the 0.35-8 keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. We searched overlapping HST observations for optical counterparts to our X-ray detections, but find only two X-ray sources with candidate optical counterparts. We find 21 likely low mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background AGN. The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented. The XLFs in the soft band (0.5-2 keV) and the hard band (2-8 keV) have a limiting luminosity at the 90% comple...

  14. A High-Energy, Ultrashort-Pulse X-Ray System for the Dynamic Study of Heavy, Dense Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, David Jeremy [Univ. of California, Davis, CA (United States)

    2004-01-01

    Thomson-scattering based x-ray radiation sources, in which a laser beam is scattered off a relativistic electron beam resulting in a high-energy x-ray beam, are currently being developed by several groups around the world to enable studies of dynamic material properties which require temporal resolution on the order of tens of femtoseconds to tens of picoseconds. These sources offer pulses that are shorter than available from synchrotrons, more tunable than available from so-called Ka sources, and more penetrating and more directly probing than ultrafast lasers. Furthermore, Thomson-scattering sources can scale directly up to x-ray energies in the few MeV range, providing peak brightnesses far exceeding any other sources in this regime. This dissertation presents the development effort of one such source at Lawrence Livermore National Laboratory, the Picosecond Laser-Electron InterAction for the Dynamic Evaluation of Structures (PLEIADES) project, designed to target energies from 30 keV to 200 keV, with a peak brightness on the order of 1018 photons • s-1 • mm-2 • mrad-2 • 0.01% bandwidth-1. A 10 TW Ti:Sapphire based laser system provides the photons for the interaction, and a 100 MeV accelerator with a 1.6 cell S-Band photoinjector at the front end provides the electron beam. The details of both these systems are presented, as is the initial x-ray production and characterization, validating the theory of Thomson scattering. In addition to the systems used to enable PLEIADES, two alternative systems are discussed. An 8.5 GHz X-Band photoinjector, capable of sustaining higher accelerating gradients and producing lower emittance electron beams in a smaller space than the S-Band gun, is presented, and the initial operation and commissioning of this gun is presented. Also, a hybrid chirped-pulse amplification system is presented as an alternative to the standard regenerative amplifier technology in high

  15. Generation of intense attosecond x-ray pulses using ultraviolet laser induced microbunching in electron beams

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2009-06-01

    Full Text Available We propose a scheme that combines the echo-enabled harmonic generation technique with the bunch compression and allows one to generate harmonic numbers of a few hundred in a microbunched beam through up-conversion of the frequency of an ultraviolet seed laser. A few-cycle intense laser is used to generate the required energy chirp in the beam for bunch compression and for selection of an attosecond x-ray pulse. Sending this beam through a short undulator results in an intense isolated attosecond x-ray pulse. Using a representative realistic set of parameters, we show that 1 nm x-ray pulse with peak power of a few hundred MW and duration as short as 20 attoseconds (FWHM can be generated from a 200 nm ultraviolet seed laser. The proposed scheme may enable the study of electronic dynamics with a resolution beyond the atomic unit of time (∼24 attoseconds and may open a new regime of ultrafast sciences.

  16. LIGHT SOURCE: Optics for the lattice of the compact storage ring for a Compton X-ray source

    Science.gov (United States)

    Yu, Pei-Cheng; Wang, Yu; Shen, Xiao-Zhe; Huang, Wen-Hui; Yan, Li-Xin; Du, Ying-Chao; Li, Ren-Kai; Tang, Chuan-Xiang

    2009-06-01

    We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source. The optics design for different operation modes of the storage ring are discussed in detail. For the pulse mode optics, an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate; as for the steady mode, the method to control momentum compact factor is adopted [Gladkikh P, Phys. Rev. ST Accel. Beams 8, 050702] to obtain stability of the electron beam.

  17. Catalytic action of β source on x-ray emission from plasma focus

    Science.gov (United States)

    Ahmad, S.; Sadiq, Mehboob; Hussain, S.; Shafiq, M.; Zakaullah, M.; Waheed, A.

    2006-01-01

    The influence of preionization around the insulator sleeve by a mesh-type β source (Ni6328) for the x-ray emission from a (2.3-3.9 kJ) plasma focus device is investigated. Quantrad Si p-i-n diodes along with suitable filters are employed as time-resolved x-ray detectors and a multipinhole camera with absorption filters is used for time-integrated analysis. X-ray emission in 4π geometry is measured as a function of argon and hydrogen gas filling pressures with and without β source at different charging voltages. It is found that the pressure range for the x-ray emission is broadened, x-ray emission is enhanced, and shot to shot reproducibility is improved with the β source. With argon, the CuKα emission is estimated to be 27.14 J with an efficiency of 0.7% for β source and 21.5 J with an efficiency of 0.55% without β source. The maximum x-ray yield in 4π geometry is found to be about 68.90 J with an efficiency of 1.8% for β source and 54.58 J with an efficiency of 1.4% without β source. With hydrogen, CuKα emission is 11.82 J with an efficiency of 0.32% for β source and 10.07 J with an efficiency of 0.27% without β source. The maximum x-ray yield in 4π geometry is found to be 30.20 J with an efficiency of 0.77% for β source and 25.58 J with an efficiency of 0.6% without β source. The x-ray emission with Pb insert at the anode tip without β source is also investigated and found to be reproducible and significantly high. The maximum x-ray yield is estimated to be 46.6 J in 4π geometry with an efficiency of 1.4% at 23 kV charging voltage. However, degradation of x-ray yield is observed when charging voltage exceeds 23 kV for Pb insert. From pinhole images it is observed that the x-ray emission due to the bombardment of electrons at the anode tip is dominant in both with and without β source.

  18. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, K; Weber, F; Dewald, E; Glenzer, S; Landen, O; Turner, R; Waide, P

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  19. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    Science.gov (United States)

    Campbell, K. M.; Weber, F. A.; Dewald, E. L.; Glenzer, S. H.; Landen, O. L.; Turner, R. E.; Waide, P. A.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  20. Phase-contrast imaging of a soft biological object using X-pinch as X-ray source

    Science.gov (United States)

    Liu, R.; Wang, X. X.; Zou, X. B.; Zeng, N. G.; He, L. Y.

    2008-07-01

    The X-ray emission from an X-pinch was measured with diamond photoconducting detectors and a pinhole camera, and the results show that the X-ray source of the X-pinch is extremely small in size and high in brightness. As such, the X-pinch could be considered as an X-ray point source having a high spatial coherence that is required by a simplified scheme of X-ray phase-contrast imaging. The X-pinch was used as X-ray source for the phase-contrast imaging of a weakly X-ray-absorbing mosquito and an image with high contrast was obtained.

  1. Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation

    CERN Document Server

    Turtos, R.M.; Polovitsyn, A.; Christodoulou, S.; Salomoni, M.; Auffray, E.; Moreels, I.; Lecoq, P.; Grim, J.Q.

    2016-01-01

    Fast timing has emerged as a critical requirement for radiation detection in medical and high energy physics, motivating the search for scintillator materials with high light yield and fast time response. However, light emission rates from conventional scintillation mechanisms fundamentally limit the achievable time resolution, which is presently at least one order of magnitude slower than required for next-generation detectors. One solution to this challenge is to generate an intense prompt signal in response to ionizing radiation. In this paper, we present colloidal semiconductor nanocrystals (NCs) as promising prompt photon sources. We investigate two classes of NCs: two-dimensional CdSe nanoplatelets (NPLs) and spherical CdSe/CdS core/giant shell quantum dots (GS QDs). We demonstrate that the emission rates of these NCs under pulsed X-ray excitation are much faster than traditional mechanisms in bulk scintillators, i.e. 5d-4f transitions. CdSe NPLs have a sub-100 ps effective decay time of 77 ps and CdSe/...

  2. Chandra ACIS Survey of X-ray Point Sources: The Source Catalog

    CERN Document Server

    Wang, Song; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng

    2016-01-01

    The $Chandra$ archival data is a valuable resource for various studies on different topics of X-ray astronomy. In this paper, we utilize this wealth and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 ACIS observations, which produces 363,530 source detections, belonging to 217,828 distinct X-ray sources. This number is twice the size of the $Chandra$ Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows 17,828 sources are located within the $D_{25}$ isophotes of 1110 galaxies, and 7504 sources are located between the $D_{25}$ and 2$D_{25}$ isophotes of 910 galaxies. Contamination analysis with the log$N$--log$S$ relation indicates that 51.3\\% of objects within 2$D_{25}$ isophotes are...

  3. X-rays beware: the deepest Chandra catalogue of point sources in M31

    Science.gov (United States)

    Vulic, N.; Gallagher, S. C.; Barmby, P.

    2016-10-01

    This study represents the most sensitive Chandra X-ray point source catalogue of M31. Using 133 publicly available Chandra ACIS-I/S observations totalling ˜1 Ms, we detected 795 X-ray sources in the bulge, north-east, and south-west fields of M31, covering an area of ≈0.6 deg2, to a limiting unabsorbed 0.5-8.0 keV luminosity of ˜1034 erg s-1. In the inner bulge, where exposure is approximately constant, X-ray fluxes represent average values because they were determined from many observations over a long period of time. Similarly, our catalogue is more complete in the bulge fields since monitoring allowed more transient sources to be detected. The catalogue was cross-correlated with a previous XMM-Newton catalogue of M31's D25 isophote consisting of 1948 X-ray sources, with only 979 within the field of view of our survey. We found 387 (49 per cent) of our Chandra sources (352 or 44 per cent unique sources) matched to within 5 arcsec of 352 XMM-Newton sources. Combining this result with matching done to previous Chandra X-ray sources we detected 259. new sources in our catalogue. We created X-ray luminosity functions (XLFs) in the soft (0.5-2.0 keV) and hard (2.0-8.0 keV) bands that are the most sensitive for any large galaxy based on our detection limits. Completeness-corrected XLFs show a break around ≈1.3 × 1037 erg s-1, consistent with previous work. As in past surveys, we find that the bulge XLFs are flatter than the disc, indicating a lack of bright high-mass X-ray binaries in the disc and an aging population of low-mass X-ray binaries in the bulge.

  4. The ROSAT deep survey; 5, X-rays Sources and Optical Identifications in the Marano Field

    CERN Document Server

    Zamorani, G; Hasinger, G; Burg, R; Giacconi, R; Schmidt, M; Trümper, J E; Ciliegi, P; Gruppioni, C; Marano, B

    1999-01-01

    We present the X-ray data and the optical identifications for a deep ROSAT PSPC observation in the "Marano field". In the inner region of the ROSAT field (15' radius) we detected 50 X-ray sources with Sx >= 3.7x10^(-15) erg/cm^2/s. When corrected for the different sensitivity over the field, the estimated observed surface density at Sx >= 4x10^(-15) erg/cm^2/s is 272+/-40 sources/sq.deg. Four X-ray sources, corresponding to 8% of the total sample, have been detected in radio images with a flux limit of about 0.2 mJy. Careful statistical analysis of multicolour CCD data in the error boxes of the 50 X-ray sources has led to the identification of 42 sources, corresponding to 84% of the X-ray sample. These 42 reliable identifications are 33 AGNs (including two radio galaxies and one BL Lac candidate; 79% of the identified sources), 2 galaxies, 3 groups or clusters of galaxies and 4 stars. We also show that it is likely that a few of the 8 unidentified sources are such because the derived X-ray positions may be of...

  5. The Chandra Local Volume Survey: The X-ray Point Source Catalog of NGC 300

    CERN Document Server

    Binder, Breanna; Eracleous, Michael; Gaetz, Terrance J; Plucinsky, Paul P; Skillman, Evan D; Dalcanton, Julianne J; Anderson, Scott F; Weisz, Daniel R; Kong, Albert K H

    2012-01-01

    We present the source catalog of a new Chandra ACIS-I observation of NGC 300 obtained as part of the Chandra Local Volume Survey. Our 63 ks exposure covers ~88% of the D25 isophote (R~6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance to a limiting unabsorbed 0.35-8 keV luminosity of ~10^36 erg s^-1. Sources were cross-correlated with a previous XMM-Newton catalog, and we find 75 "X-ray transient candidate" sources that were detected by one observatory, but not the other. We derive an X-ray scale length of 1.7+/-0.2 kpc and a recent star formation rate of 0.12 Msun yr^-1, in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering ~32% of our Chandra field, was used to search for optical counterparts to the X-ray sources, and we have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background AGN candidates. Finally, we present the X-ray luminos...

  6. Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility

    Science.gov (United States)

    Kamiyama, T.; Hara, K. Y.; Taira, H.; Sato, H.

    2016-11-01

    The convertible source system for the neutron and the X-ray imagings was installed in the 45MeV electron linear accelerator facility at Hokkaido University. The source system is very useful for a complementary imaging. The imaging measurements for a sample were performed with both beams by using a vacuum tube type image intensifier. The enhanced contrast was obtained from the dataset of the radiograms measured with the neutron and X-ray beams.

  7. TRANSIENT X-RAY SOURCE POPULATION IN THE MAGELLANIC-TYPE GALAXY NGC 55

    Energy Technology Data Exchange (ETDEWEB)

    Jithesh, V.; Wang, Zhongxiang, E-mail: jithesh@shao.ac.cn [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2016-04-10

    We present the spectral and temporal properties of 15 candidate transient X-ray sources detected in archival XMM-Newton and Chandra observations of the nearby Magellanic-type, SB(s)m galaxy NGC 55. Based on an X-ray color classification scheme, the majority of the sources may be identified as X-ray binaries (XRBs), and six sources are soft, including a likely supernova remnant. We perform a detailed spectral and variability analysis of the data for two bright candidate XRBs. Both sources displayed strong short-term X-ray variability, and their X-ray spectra and hardness ratios are consistent with those of XRBs. These results, combined with their high X-ray luminosities (∼10{sup 38} erg s{sup −1}), strongly suggest that they are black hole (BH) binaries. Seven less luminous sources have spectral properties consistent with those of neutron star or BH XRBs in both normal and high-rate accretion modes, but one of them is the likely counterpart to a background galaxy (because of positional coincidence). From our spectral analysis, we find that the six soft sources are candidate super soft sources (SSSs) with dominant emission in the soft (0.3–2 keV) X-ray band. Archival Hubble Space Telescope optical images for seven sources are available, and the data suggest that most of them are likely to be high-mass XRBs. Our analysis has revealed the heterogeneous nature of the transient population in NGC 55 (six high-mass XRBs, one low-mass XRBs, six SSSs, one active galactic nucleus), helping establish the similarity of the X-ray properties of this galaxy to those of other Magellanic-type galaxies.

  8. [Experimental investigation of laser plasma soft X-ray source with gas target].

    Science.gov (United States)

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  9. Attosecond X-ray Source for Light-Triggered Time-Resolved Experiments Associated with the X-ray SASE FEL

    CERN Document Server

    Saldin, Evgeny L; Yurkov, Mikhail V

    2004-01-01

    We propose a technique for the production of attosecond X-ray pulses which is based on the use of X-ray SASE FEL combined with a femtosecond laser system. A few-cycle optical pulse from a Ti:sapphire laser interacts with the electron beam in a two-period undulator resonant to 800 nm wavelength and produces energy modulation within a slice of the electron bunch. Following the energy modulator the electron beam enters the X-ray undulator and produces SASE radiation. Due to energy modulation the frequency is correlated to the longitudinal position within the few-cycle-driven slice of SASE radiation pulse. The largest frequency offset corresponds to a single-spike pulse in the time domain which is confined to one half-oscillation period near the central peak electron energy. The selection of single-spike pulses is achieved by using a crystal monochromator after the X-ray undulator. Our studies show that the proposed technique is capable to produce 300 attoseconds long single pulses with GW-level output power in t...

  10. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    Science.gov (United States)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  11. A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application

    Science.gov (United States)

    Wang, Sigen; Calderon, Xiomara; Peng, Rui; Schreiber, Eric C.; Zhou, Otto; Chang, Sha

    2011-05-01

    The authors report a carbon nanotube (CNT) field emission multipixel x-ray array source for microradiotherapy for cancer research. The developed multipixel x-ray array source has 50 individually controllable pixels and it has several distinct advantages over other irradiation source including high-temporal resolution (millisecond level), the ability to electronically shape the form, and intensity distribution of the radiation fields. The x-ray array was generated by a CNT cathode array (5×10) chip with electron field emission. A dose rate on the order of >1.2 Gy/min per x-ray pixel beam is achieved at the center of the irradiated volume. The measured dose rate is in good agreement with the Monte Carlo simulation result.

  12. Reproducible radiation-damage processes in proteins irradiated by intense x-ray pulses

    Science.gov (United States)

    Hau-Riege, Stefan P.; Bennion, Brian J.

    2015-02-01

    X-ray free-electron lasers have enabled femtosecond protein nanocrystallography, a novel method to determine the structure of proteins. It allows time-resolved imaging of nanocrystals that are too small for conventional crystallography. The short pulse duration helps in overcoming the detrimental effects of radiation damage because x rays are scattered before the sample has been significantly altered. It has been suggested that, fortuitously, the diffraction process self-terminates abruptly once radiation damage destroys the crystalline order. Our calculations show that high-intensity x-ray pulses indeed trigger a cascade of damage processes in ferredoxin crystals, a particular metalloprotein of interest. However, we found that the damage process is initially not completely random. Correlations exist among the protein monomers, so that Bragg diffraction still occurs in the damaged crystals, despite significant atomic displacements. Our results show that the damage process is reproducible to a certain degree, which is potentially beneficial for the orientation step in single-molecule imaging.

  13. Generation of Attosecond X-Ray Pulse through Coherent Relativistic Nonlinear Thomson Scattering

    CERN Document Server

    Lee, K; Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    In contrast to some recent experimental results, which state that the Nonlinear Thomson Scattered (NTS) radiation is incoherent, a coherent condition under which the scattered radiation of an incident laser pulse by a bunch of electrons can be coherently superposed has been investigated. The Coherent Relativistic Nonlinear Thomson Scattered (C-RNTS) radiation makes it possible utilizing the ultra-short pulse nature of NTS radiation with a bunch of electrons, such as plasma or electron beams. A numerical simulation shows that a 25 attosecond X-ray pulse can be generated by irradiating an ultra-intense laser pulse of 4x10(19) W/cm2 on an ultra-thin solid target of 50 nm thickness, which is commercially available. The coherent condition can be easily extended to an electron beam from accelerators. Different from the solid target, much narrower electron beam is required for the generation of an attosecond pulse. Instead, this condition could be applied for the generation of intense Compton scattered X-rays with a...

  14. Ultrahigh resolution and brilliance laser wakefield accelerator betatron x-ray source for rapid in vivo tomographic microvasculature imaging in small animal models

    Science.gov (United States)

    Fourmaux, Sylvain; Kieffer, Jean-Claude; Krol, Andrzej

    2017-03-01

    We are developing ultrahigh spatial resolution (FWHM animal models using optimized contrast agent. It exploits Laser Wakefield Accelerator (LWFA) betatron x-ray emission phenomenon. Ultrashort high-intensity laser pulse interacting with a supersonic gas jet produces an ion cavity ("bubble") in the plasma in the wake of the laser pulse. Electrons that are injected into this bubble gain energy, perform wiggler-like oscillations and generate burst of incoherent x-rays with characteristic duration time comparable to the laser pulse duration, continuous synchrotron-like spectral distribution that might extend to hundreds keV, very high brilliance, very small focal spot and highly directional emission in the cone-beam geometry. Such LWFA betatron x-ray source created in our lab produced 1021 -1023 photonsṡ shot-1ṡmrad-2ṡmm-2/0.1%bw with mean critical energy in the12-30 keV range. X-ray source size for a single laser shot was FWHM=1.7 μm x-ray beam divergence 20-30 mrad, and effective focal spot size for multiple shots FWHM= 2 μm. Projection images of simple phantoms and complex biological objects including insects and mice were obtained in single laser shots. We conclude that ultrahigh spatial resolution μCTA (FWHM 2 μm) requiring thousands of projection images could be accomplished using LWFA betatron x-ray radiation in approximately 40 s with our existing 220 TW laser and sub seconds with next generation of ultrafast lasers and x-ray detectors, as opposed to several hours required using conventional microfocal x-ray tubes. Thus, sub second ultrahigh resolution in vivo microtomographic microvasculature imaging (in both absorption and phase contrast mode) in small animal models of cancer and vascular diseases will be feasible with LWFA betatron x-ray source.

  15. Electron optics simulation for designing carbon nanotube based field emission x-ray source

    Science.gov (United States)

    Sultana, Shabana

    In this dissertation, electron optics simulation for designing carbon nanotube (CNT) based field emission x-ray source for medical imaging applications will be presented. However, for design optimization of x-ray tubes accurate electron beam optics simulation is essential. To facilitate design of CNT x-ray sources a commercial 3D finite element software has been chosen for extensive simulation. The results show that a simplified model of uniform electron field emission from the cathode surface is not sufficient when compared to experimental measurements. This necessitated the development of a refined model to describe a macroscopic field emission CNT cathode for electron beam optics simulations. The model emulates the random distribution of CNTs and the associated variation of local field enhancement factor. The main parameter of the model has been derived empirically from the experimentally measured I-V characteristics of the CNT cathode. Simulation results based on this model agree well with experiments which include measurements of the transmission rate and focus spot size. The model provides a consistent simulation platform for optimization of electron beam optics in CNT x-ray source design. A systematic study of electron beam optics in CNT x-ray tubes led to the development of a new generation of compact x-ray source with multiple pixels. A micro focus field emission x-ray source with a variable focal spot size has been fully characterized and evaluated. It has been built and successfully integrated into micro-CT scanners which are capable of dynamic cardiac imaging of free-breathing small animals with high spatial and temporal resolutions. In addition a spatially distributed high power multi-beam x-ray source has also been designed and integrated into a stationary digital breast tomosynthesis (s-DBT) configuration. This system has the potential to reduce the total scan time to 4 seconds and yield superior image quality in breast imaging.

  16. Symbiotic Stars in X-rays. II. Faint Sources Detected with XMM-Newton and Chandra

    Science.gov (United States)

    Nunez, N. E.; Luna, G. J. M.; Pillitteri, I.; Mukai, K.

    2014-01-01

    We report the detection from four symbiotic stars that were not known to be X-ray sources. These four object show a ß-type X-ray spectrum, that is, their spectra can be modeled with an absorbed optically thin thermal emission with temperatures of a few million degrees. Photometric series obtained with the Optical Monitor on board XMM-Newton from V2416 Sgr and NSV 25735 support the proposed scenario where the X-ray emission is produced in a shock-heated region inside the symbiotic nebulae.

  17. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; Schafer, Donald W.; Guillet, Serge; Busse, Armin; Bergan, Robert; Olson, William; Fox, Kay; Stewart, Nathaniel; Curtis, Robin; Miahnahri, Alireza Alan; Boutet, Sébastien, E-mail: sboutet@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-15

    Description of the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source. Recent scientific highlights illustrate the femtosecond crystallography, high power density and extreme matter capabilities of the CXI instrument. The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  18. Calibration of a time-resolved hard-x-ray detector using radioactive sources

    Science.gov (United States)

    Stoeckl, C.; Theobald, W.; Regan, S. P.; Romanofsky, M. H.

    2016-11-01

    A four-channel, time-resolved, hard x-ray detector (HXRD) has been operating at the Laboratory for Laser Energetics for more than a decade. The slope temperature of the hot-electron population in direct-drive inertial confinement fusion experiments is inferred by recording the hard x-ray radiation generated in the interaction of the electrons with the target. Measuring the energy deposited by hot electrons requires an absolute calibration of the hard x-ray detector. A novel method to obtain an absolute calibration of the HXRD using single photons from radioactive sources was developed, which uses a thermoelectrically cooled, low-noise, charge-sensitive amplifier.

  19. X-Ray Sources and High-Throughput Data Collection Methods

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Gyorgy

    2012-03-15

    X-ray diffraction experiments on protein crystals are at the core of the structure determination process. An overview of X-ray sources and data collection methods to support structure-based drug design (SBDD) efforts is presented in this chapter. First, methods of generating and manipulating X-rays for the purpose of protein crystallography, as well as the components of the diffraction experiment setup are discussed. SBDD requires the determination of numerous protein-ligand complex structures in a timely manner, and the second part of this chapter describes how to perform diffraction experiments efficiently on a large number of crystals, including crystal screening and data collection.

  20. An all-optical Compton source for single-exposure x-ray imaging

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Andriyash, I.; Lifschitz, A.; Malka, V.; Rousse, A.; Phuoc, K. Ta

    2016-03-01

    All-optical Compton sources are innovative, compact devices to produce high energy femtosecond x-rays. Here we present results on a single-pulse scheme that uses a plasma mirror to reflect the drive beam of a laser plasma accelerator and to make it collide with the highly-relativistic electrons in its wake. The accelerator is operated in the self-injection regime, producing quasi-monoenergetic electron beams of around 150 MeV peak energy. Scattering with the intense femtosecond laser pulse leads to the emission of a collimated high energy photon beam. Using continuum-attenuation filters we measure significant signal content beyond 100 keV and with simulations we estimate a peak photon energy of around 500 keV. The source divergence is about 13 mrad and the pointing stability is 7 mrad. We demonstrate that the photon yield from the source is sufficiently high to illuminate a centimeter-size sample placed 90 centimeters behind the source, thus obtaining radiographs in a single shot.

  1. Plasmon-enhanced photocathode for high brightness and high repetition rate x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Aleksandr; Senft, Christoph; Thompson, K. F.; Feng, J.; Cabrini, S.; Schuck, P. J.; Padmore, Howard; Peppernick, Samuel J.; Hess, Wayne P.

    2013-02-11

    High brightness electron sources are at the heart of anew generation of x-ray sources based on the Free ElectronLaser (FEL) as well as in Energy Recovery Linac (ERL) and Inverse Compton Scattering (ICS) sources.The source of electrons consists of a photoinjector, comprised of a laser-driven photocathode in a high gradient electric field produced by an rf cavity. The function of the rf cavity is to provide a field sufficient for acceleration of electrons to relativistic velocity over a small distance, thus minimizing effects of the space-charge. Even so, the dense electron beam required for high brightness suffers from a space charge field that chirps and reshapes the electron pulse increasing beam emittance and thus reducing the overall brightness. This emittance growth can be avoided if the initial distribution of electrons is pancake shaped, with a semicircular transverse intensity profile. In this case, the electron distribution develops under its space charge field from a pancake into a uniformly filled ellipsoidal beam. This condition, referred to as the blowout regime, requires ultrashort pulses less than 100 fs long and has been successfully demonstrated recently in a high gradient photoinjector.

  2. Development of a Novel Tunable X-Ray Source for the RPI-LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Y. Danon; R.C. Block

    2004-11-30

    This document summarizes the results of a three year effort to develop a parametric x-ray (PXR) source. The emphasis of this research was to demonstrate production of high yield monoenergetic x-rays. Production of PXR is accomplished by placing a crystal in a relativistic electron beam. The process was first demonstrated in 1985 in Russia. Numerous papers were written about the characteristics of PXR from both experimental and theoretical perspectives. The advantage of PXR over other monoenergetic x-ray sources is that it is produced at large angle relative to the electron beam and at high intensity. None of the previous work described in the literature capitalized on this effect to study what is required in order to generate an effective monoenergetic x-ray source that can be used for practical applications. The work summarized here describes the process done in order to optimize the PXR production process by selecting an appropriate crystal and the optimal conditions. The research focused on production of 18 keV x-rays which are suitable for mammography however the results are not limited to this application or energy range. We are the first group to demonstrate x-ray imaging using PXR. Such sources can improve current medical imaging modalities. More research is required in order to design a prototype of a compact source.

  3. Faint X-ray Sources in the Globular Cluster Terzan 5

    CERN Document Server

    Heinke, C O; Cohn, H N; Lugger, P M; Grindlay, J E; Pooley, D; Lewin, W H G

    2006-01-01

    We report our analysis of a Chandra X-ray observation of the rich globular cluster Terzan 5, in which we detect 50 sources to a limiting 1.0-6 keV X-ray luminosity of 3*10^{31} ergs/s within the half-mass radius of the cluster. Thirty-three of these have L_X>10^{32} ergs/s, the largest number yet seen in any globular cluster. In addition to the quiescent low-mass X-ray binary (LMXB, identified by Wijnands et al.), another 12 relatively soft sources may be quiescent LMXBs. We compare the X-ray colors of the harder sources in Terzan 5 to the Galactic Center sources studied by Muno and collaborators, and find the Galactic Center sources to have harder X-ray colors, indicating a possible difference in the populations. We cannot clearly identify a metallicity dependence in the production of low-luminosity X-ray binaries in Galactic globular clusters, but a metallicity dependence of the form suggested by Jordan et al. for extragalactic LMXBs is consistent with our data.

  4. Transient X-ray source population in the Magellanic-type galaxy NGC 55

    CERN Document Server

    Jithesh, V

    2016-01-01

    We present the spectral and temporal properties of 15 candidate transient X-ray sources detected in archival {\\it XMM-Newton} and {\\it Chandra} observations of the nearby Magellanic-type, SB(s)m galaxy NGC 55. On the basis of an X-ray color classification scheme, the majority of the sources may be identified as X-ray binaries (XRBs), and six sources are soft, including a likely supernova remnant. We perform a detailed spectral and variability analysis of the data for two bright candidate XRBs. Both sources displayed strong short-term X-ray variability, and their X-ray spectra and hardness ratios are consistent with those of XRBs. These results, combined with their high X-ray luminosities ($\\sim 10^{38}~\\rm erg~s^{-1}$), strongly suggest that they are black hole (BH) binaries. Seven less luminous sources have spectral properties consistent with those of neutron star or BH XRBs in both normal and high-rate accretion modes, but one of them is the likely counterpart to a background galaxy (because of positional c...

  5. X-ray-boosted photoionization for the measurement of an intense laser pulse

    Institute of Scientific and Technical Information of China (English)

    Ge Yu-Cheng; He Hai-Ping

    2013-01-01

    Investigations show that X-ray-boosted photoionization (XBP) has the following advantages for in-situ measurements of ultrahigh laser intensity Ⅰ and field envelope F(t) (time t,pulse duration τL,carrier-envelope-phase Φ):accuracy,dynamic range,and rapidness.The calculated XBP spectra resemble inversely proportional functions of the photoelectron momentum shift.The maximum momentump9 and the observable value Q (defined as a double integration of a normalized photoelectron energy spectrum,PES) linearly depend on I1/2 and τL,respectively.Φ and F(t) can be determined from the PES cut-off energy and peak positions.The measurable laser intensity can be up to and over 1018 W/cm2 by using high energy X-rays and highly charged inert gases.

  6. Optimal main pulse angle for different preplasma conditions in transient collisionally pumped x-ray lasers.

    Science.gov (United States)

    Ursescu, Daniel; Zielbauer, Bernhard; Kuehl, Thomas; Neumayer, Paul; Pert, Geoff

    2007-04-01

    The effects of the incidence angle of the main pump (MP) pulse in non-normal pumping geometry and the influence of the MP duration are investigated experimentally and theoretically for a transient collisionally pumped (TCE) x-ray laser in Ni-like Zr at 45 degrees and 72 degrees incidence angle on the target. The way they transfer to the x-ray laser output depends on the preplasma conditions, most notably on the average ionization distribution at the arrival of the MP. Moreover, contrary to previous grazing incidence pumping results, it is found that the shortest attainable MP maximizes the output. Modeling of the experimental results is performed with EHYBRID code. The results are important for scaling high repetition-rate non-normal incidence pumped lasers to sub- 10nm wavelengths.

  7. Scheme for generation of fully-coherent, TW power level hard X-ray pulses from baseline undulators at the European X-ray FEL

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2010-01-01

    The most promising way to increase the output power of an X-ray FEL (XFEL) is by tapering the magnetic field of the undulator. Also, significant increase in power is achievable by starting the FEL process from a monochromatic seed rather than from noise. This report proposes to make use of a cascade self-seeding scheme with wake monochromators in a tunable-gap baseline undulator at the European XFEL to create a source capable of delivering coherent radiation of unprecedented characteristics at hard X-ray wavelengths. Compared with SASE X-ray FEL parameters, the radiation from the new source has three truly unique aspects: complete longitudinal and transverse coherence, and a peak brightness three orders of magnitude higher than what is presently available at LCLS. Additionally, the new source will generate hard X-ray beam at extraordinary peak (TW) and average (kW) power level. The proposed source can thus revolutionize fields like single biomolecule imaging, inelastic scattering and nuclear resonant scatteri...

  8. Taking X-ray Diffraction to the Limit: Macromolecular Structures from Femtosecond X-ray Pulses and Diffraction Microscopy of Cells with Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, H N; Miao, J; Kirz, J; Sayre, D; Hodgson, K O

    2003-10-01

    The methodology of X-ray crystallography has recently been successfully extended to the structure determination of non-crystalline specimens. The phase problem was solved by using the oversampling method, which takes advantage of ''continuous'' diffraction pattern from non-crystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging non-periodic objects, like cells and cellular structures using coherent and bright X-rays from the 3rd generation synchrotron radiation. In the longer run, the technique may be applied to image single biomolecules by using the anticipated X-ray free electron lasers. Computer simulations have so far demonstrated two important steps: (1) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself, and (2) the phase information can be ab initio retrieved from a set of calculated noisy diffraction patterns of single protein molecules.

  9. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower

  10. Derivation of total filtration thickness for diagnostic x-ray source assembly

    Science.gov (United States)

    Sekimoto, Michiharu; Katoh, Yoh

    2016-08-01

    The method defined by the IEC 60522 for determining the inherent filtration of an x-ray source device is applicable only for a limited range of tube voltage. Because the users cannot legally remove the x-ray movable diaphragm of the x-ray source device, total filtration, which is the sum of the additional filtration diaphragm movable for specific filtration and x-ray, cannot be measured. We develop a method for simply obtaining the total filtration for different tube voltage values. Total filtration can be estimated from a ratio R‧ of the air kerma Kx+T\\prime , which is measured with an Al plate with thickness T, and Kx\\prime measured without an Al plate. The conditions of the target material of the x-ray source device are then entered into the Report 78 Spectrum Processor to calculate the air kerma K x and K x+T for Al thicknesses x and (x  +  T), respectively, to obtain R. The minimum value of x, which is the difference between the R and R‧, is the total filtration of the x-ray source device. The total filtration calculated using the industrial x-ray source device was within  ±1% in the 40-120 kV range. This method can calculate the total filtration using air kerma measurements with and without the Al plate. Therefore, the load on the x-ray tube can be reduced, and preparation of multiple Al plates is not necessary. Furthermore, for the 40-120 kV tube voltage range, the user can easily measure the total filtration.

  11. Optical Identifications of Companion Soft X-ray Sources of Mrk 231

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We present optical identification results for four ROSAT PSPC soft X-ray companions of Mrk 231 based on the deep BATC 6660 A-band image and the optical spectra obtained by the 60/90cm Schmidt telescope and the 2.16mtelescope at the Xinglong Station, NAOC. Three optical counterparts are quasarswith redshifts z > 1 and the remaining X-ray source is probably a background galaxycluster. Therefore, none of these soft X-ray companions are physically connectedwith the central X-ray source Mrk 231. Incorporating the previous results of Arp 220and Mrk 273 (Xia et al. 1998, 1999), we suggest that the apparent soft X-rayassociations with ULIRGs are chance coincidence in most cases.

  12. Laboratory source based full-field x-ray microscopy at 9 keV

    Energy Technology Data Exchange (ETDEWEB)

    Fella, C.; Balles, A.; Wiest, W. [Lehrstuhl für Röntgenmikroskopie, Julius-Maximilians-Universität, 97074 Würzburg (Germany); Zabler, S.; Hanke, R. [Lehrstuhl für Röntgenmikroskopie, Julius-Maximilians-Universität, 97074 Würzburg (Germany); Fraunhofer Development Center X-Ray Technology (EZRT), Flugplatzstrasse 75, 90768 Fürth (Germany)

    2016-01-28

    In the past decade, hard x-ray transmission microscopy experienced tremendous developments. With the avail-ability of efficient Fresnel zone plates, even set-ups utilizing laboratory sources were developed [1]. In order to improve the performance of these x-ray microscopes, novel approaches to fabricate optical elements [2] and brighter x-ray tubes [3] are promising candidates. We are currently building a laboratory transmission x-ray microscope for 9.25 keV, using an electron impact liquid-metal-jet anode source. Up to now, the further elements of our setup are: a polycapillary condenser, a tungsten zone plate, and a scintillator which is optically coupled to a CMOS camera. However, further variations in terms of optical elements are intended. Here we present the current status of our work, as well as first experimental results.

  13. Evidence for Quasi-periodic X-Ray Dips from an Ultraluminous X-Ray Source: Implications for the Binary Motion

    CERN Document Server

    Pasham, Dheeraj R

    2013-01-01

    We report results from long-term (approximately 1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy-dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6+-4 days the amplitude of which weakens during the second half of the light curve and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243+-23 days, in contra...

  14. The X-ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-ray Sources

    CERN Document Server

    Laycock, Silas G T; Williams, Benjamin F; Prestwich, Andrea; Binder, Breanna; Christodoulou, Dimitris M

    2016-01-01

    We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3 sigma level, from a catalog of 110 unique point sources. We find 4 transients (flux variability ratio greater than 10) and a further 8 objects with ratio > 5. The observations span years 2003 - 2010 and reach a limiting luminosity of >10$^{35}$ erg/s, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light-curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magella...

  15. Inverse Compton scattering X-ray source yield optimization with a laser path folding system inserted in a pre-existent RF linac

    Science.gov (United States)

    Chaleil, A.; Le Flanchec, V.; Binet, A.; Nègre, J. P.; Devaux, J. F.; Jacob, V.; Millerioux, M.; Bayle, A.; Balleyguier, P.; Prazeres, R.

    2016-12-01

    An inverse Compton scattering source is under development at the ELSA linac of CEA, Bruyères-le-Châtel. Ultra-short X-ray pulses are produced by inverse Compton scattering of 30 ps-laser pulses by relativistic electron bunches. The source will be able to operate in single shot mode as well as in recurrent mode with 72.2 MHz pulse trains. Within this framework, an optical multipass system that multiplies the number of emitted X-ray photons in both regimes has been designed in 2014, then implemented and tested on ELSA facility in the course of 2015. The device is described from both geometrical and timing viewpoints. It is based on the idea of folding the laser optical path to pile-up laser pulses at the interaction point, thus increasing the interaction probability. The X-ray output gain measurements obtained using this system are presented and compared with calculated expectations.

  16. Ultraviolet spectroscopy of the supersoft X-ray source RX J0439.8-6809

    Science.gov (United States)

    Van Teeseling, Andre

    1997-07-01

    Observationally, supersoft X-ray sources are classified as near-Eddington stellar objects with almost all emission at energies blue star in the LMC. A 3sigma upper limit to the peak-to-peak optical variability is 0.07 mag. Of all optically identified supersoft X-ray sources, RX J0439.8-6809 has the lowest optical-to-X-ray flux ratio. The nature of RX J0439.8-6809 is still unknown. It might be the hottest known pre-white dwarf, suffering a late helium shell flash. Alternatively, RX J0439.8-6809 could be an accreting binary, in which case it might be the first known double-degenerate supersoft X-ray source with a predicted orbital period of only a few minutes. An ultraviolet spectrum is essential to distinguish between these two spectacular possibilities, and to bridge the gap between the X-ray and optical observations. Such a spectrum can only be obtained with the HST STIS. Therefore, we propose to obtain two ultraviolet spectra, which will test the assumption that the optical spectrum is the Rayleigh-Jeans tail of the soft X-ray component, which will determine the spectral energy distribution, and which may provide the first direct evidence for accretion in this source by detecting an excess in the ultraviolet or ultraviolet emission lines like N V Lambda 1240.

  17. High contrast Kr gas jet K alpha x-ray source for high energy density physics experiments.

    Science.gov (United States)

    Kugland, N L; Neumayer, P; Döppner, T; Chung, H-K; Constantin, C G; Girard, F; Glenzer, S H; Kemp, A; Niemann, C

    2008-10-01

    A high contrast 12.6 keV Kr K alpha source has been demonstrated on the petawatt-class Titan laser facility using strongly clustering Kr gas jet targets. The contrast ratio (K alpha to continuum) is 65, with a competitive ultrashort pulse laser to x-ray conversion efficiency of 10(-5). Filtered shadowgraphy indicates that the Kr K alpha and K beta x rays are emitted from a roughly 1x2 mm(2) emission volume, making this source suitable for area backlighting and scattering. Spectral calculations indicate a typical bulk electron temperature of 50-70 eV (i.e., mean ionization state 13-16), based on the observed ratio of K alpha to K beta. Kr gas jets provide a debris-free high energy K alpha source for time-resolved diagnosis of dense matter.

  18. X-ray phase imaging with a laboratory source using selective reflection from a mirror.

    Science.gov (United States)

    Pelliccia, Daniele; Paganin, David M

    2013-04-22

    A novel approach for hard x-ray phase contrast imaging with a laboratory source is reported. The technique is based on total external reflection from the edge of a mirror, aligned to intercept only half of the incident beam. The mirror edge thus produces two beams. The refraction x-rays undergo when interacting with a sample placed before the mirror, causes relative intensity variations between direct and reflected beams. Quantitative phase contrast and pure absorption imaging are demonstrated using this method.

  19. The SPARX Project: R & D Activity Towards X-Rays FEL Sources

    Energy Technology Data Exchange (ETDEWEB)

    Alesini, D.; Bellaveglia, M.; Bertolucci, S.; Biagini, M.E.; Boni, R.; Boscolo, M.; Castellano, M.; Clozza, A.; Di Pirro, G.; Drago, A.; Esposito, A.; Ferrario, M.; Filippetto, D.; Fusco, V.; Gallo, A.; Ghigo, A.; Guiducci, S.; Incurvati, M.; Ligi, C.; Marcellini, F.; Migliorati, M.; /Frascati /ENEA, Frascati /INFN, Milan /INFN, Rome /INFN,

    2005-08-05

    SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Universita di Roma Tor Vergata aiming at the construction of a FELSASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on R&D activity on critical components and techniques for future X-ray facilities as described in this paper.

  20. AM CVn systems as optical, X-ray and GWR sources

    NARCIS (Netherlands)

    Yungelson, L.; Nelemans, G.; Portegies Zwart, S.F.; Tovmassian, G.; Sion, E.

    2004-01-01

    We discuss the model for the Galactic sample of the AM CVn systems with P[orb] ≤ 1500 s that can be detected in the optical and/or X-ray bands and may be resolved by the gravitational waves detector LISA. At 3 ≲P ≲ 10 min all detectable systems are X-ray sources. At P ≳ 10 min most systems are only

  1. Prospects for Measuring Neutron-Star Masses and Radii with X-Ray Pulse Profile Modeling

    CERN Document Server

    Psaltis, Dimitrios; Chakrabarty, Deepto

    2013-01-01

    Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron stars provides a direct method for measuring neutron-star properties. This technique constitutes an important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions. In this paper, we determine the number of distinct observables that can be derived from pulse profile modeling and show that using only bolometric pulse profiles is insufficient for breaking the degeneracy between inferred neutron-star radius and mass. However, we also show that for moderately spinning (300-800 Hz) neutron stars, analysis of pulse profiles in two different energy bands provides additional constraints that allow a unique determination of the neutron-star properties. Using the fractional amplitudes of the fundamental and the first harmonic of the pulse profile in addition to the amplitude and phase difference of the spectral color oscillations, we quantify the signal-to-noise ratio necessary to achieve a speci...

  2. "Real-Life" Pulse Flattening on the LLNL Flash X-ray (FXR) Machine

    Energy Technology Data Exchange (ETDEWEB)

    DeHope, W J; Jacob, J S; Kihara, R; Ong, M; Zentler, J M

    2007-06-25

    High-resolution radiography using high-current electron accelerators based on the linear induction accelerator principle requires the linac's final spot on the X-ray target to be millimeter-sized. The requisite final focusing solenoid is adjusted for a specific beam energy at its entrance, hence, temporal variation of entrance beam energy results in a less than optimal time-averaged spot size. The FXR (Flash X-Ray) induction linac facility at Lawrence Livermore National Laboratory will be briefly described with an emphasis on its pulsed power system. In principle, the pulsed Blumleins at the heart of the system output a square pulse when discharged at the peak of their charging waveform so that, with correct cell timing synchronization, the effective beam output into the final focusing solenoid should be optimally flat. We have found that real-life consideration of transmission line and pulse power details in both the injector and accelerator sections of the machine results in significant energy variations in the final beam. We have implemented methods of measurement and analysis that permits this situation to be quantified and improved upon. The improvement will be linked to final beam spot size and enhancement in expected radiographic resolution.

  3. Toward TW-Level, Hard X-Ray Pulses at LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Fawley, W.M.; Frisch, J.; Huang, Z.; Jiao, Y.; Nuhn, H.-D.; /SLAC; Pellegrini, C.; /SLAC /UCLA; Reiche, S.; /PSI, Villigen; Wu, J,; /SLAC

    2011-12-13

    Coherent diffraction imaging of complex molecules such as proteins requires a large number (e.g., {approx} 10{sup 13}/pulse) of hard X-ray photons within a time scale of {approx} 10 fs or less. This corresponds to a peak power of {approx} 1 TW, much larger than that currently generated by LCLS or other proposed X-ray free electron lasers (FELs). We study the feasibility of producing such pulses using a LCLS-like, low charge electron beam, as will be possible in the LCLS-II upgrade project, employing a configuration beginning with a SASE amplifier, followed by a 'self-seeding' crystal monochromator, and finishing with a long tapered undulator. Our results suggest that TW-level output power at 8.3 keV is possible from a total undulator system length around 200 m. In addition power levels larger than 100 GW are generated at the third harmonic. We present a tapering strategy that extends the original 'resonant particle' formalism by optimizing the transport lattice to maximize optical guiding and enhance net energy extraction. We discuss the transverse and longitudinal coherence properties of the output radiation pulse and the expected output pulse energy sensitivity, both to taper errors and to power fluctuations on the monochromatized SASE seed.

  4. High Power Experiment of X-Band Thermionic Cathode RF Gun for Compton Scattering X-ray Source

    Science.gov (United States)

    Sakamoto, Fumito; Uesaka, Mitsuru; Dobashi, Katsuhiro; Yamamoto, Tomohiko; Meng, De; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Matsuo, Kenichi; Sakae, Hisaharu; Yamamoto, Masashi

    2006-11-01

    We are currently developing a compact monochromatic X-ray source based on laser-electron collision. To realize remarkably compact-, high-intensity- and highly-stable-system, we adopt an X-band multi-bunch liner accelerator (linac) and reliable Q-switch laser. The X-ray yields by the multi-bunch electron beam and Q-switch Nd: YAG laser of 1.4 J/10 ns (FWHM) (532 nm, second harmonic) is 107 photons/RF-pulse (108 photons/sec for 10 Hz operation). The injector of the system consists of a 3.5-cell X-band thermionic cathode RF gun and an alpha magnet. So far we have achieved beam generation from the X-band thermionic cathode RF gun. The peak beam energy is 2 MeV. This experimental high energy (˜2 MeV) beam generation from the X-band thermionic cathode RF gun is the first in the world. In this paper, we describe the system of the Compton scattering X-ray source based on the X-band linac, experimental results of X-band thermionic cathode RF gun and the details of the experimental setup for Compton scattering X-ray generation that are under construction.

  5. Populations of Bright X-ray Sources in the Starburst Galaxies NGC 4038/4039

    Institute of Scientific and Technical Information of China (English)

    Xi-Wei Liu; Xiang-Dong Li

    2007-01-01

    Assuming a naive star formation history,we construct synthetic X-ray source populations.using a population synthesis code,for comparison with the observed X-ray luminosity function (XLF) of the interacting galaxies NGC 4038/4039.We have included highand intermediate-mass X-ray binaries.young rotation-powered pulsars and fallback disk-fed black holes in modeling the bright X-ray sources detected.We find that the majority of the X-ray sources are likely to be intermediate-mass X-ray binaries.but for typical binary evolution parameters.the predicted XLF seems to be steeper than observed.We note that the shape of the XLFs depends critically on the existence of XLF break for young populations.and suggest super-Eddington accretion luminosities or the existence of intermediate-mass black holes to account for the high luminosity end and the slope of the XLF in NGC 4038/4039.

  6. Structure of isolated biomolecules obtained from ultrashort x-ray pulses: exploiting the symmetry of random orientations.

    Science.gov (United States)

    Saldin, D K; Shneerson, V L; Fung, R; Ourmazd, A

    2009-04-01

    Amongst the promised capabilities of fourth-generation x-ray sources currently under construction is the ability to record diffraction patterns from individual biological molecules. One version of such an experiment would involve directing a stream of molecules into the x-ray beam and sequentially recording the scattering from each molecule of a short, but intense, pulse of radiation. The pulses are sufficiently short that the diffraction pattern is that due to scattering from identical molecules 'frozen' in random orientations. Each diffraction pattern may be thought of as a section through the 3D reciprocal space of the molecule, of unknown, random, orientation. At least two algorithms have been proposed for finding the relative orientations from just the measured diffraction data. The 'common-line' method, also employed in 3D electron microscopy, appears not best suited to the very low mean photon count per diffraction pattern pixel expected in such experiments. A manifold embedding technique has been used to reconstruct the 3D diffraction volume and hence the electron density of a small protein at the signal level expected of the scattering of an x-ray free electron laser pulse from a 500 kD biomolecule. In this paper, we propose an alternative algorithm which raises the possibility of reconstructing the 3D diffraction volume of a molecule without determining the relative orientations of the individual diffraction patterns. We discuss why such an algorithm may provide a practical and computationally convenient method of extracting information from very weak diffraction patterns. We suggest also how such a method may be adapted to the problem of finding the variations of a structure with time in a time-resolved pump-probe experiment.

  7. Interactions between radio sources and X-ray gas at the centers of cooling core clusters

    Science.gov (United States)

    Sarazin, C. L.; Blanton, E. L.; Clarke, T. E.

    Recent Chandra and XMM observations of the interaction of central radio sources and cooling cores in clusters of galaxies will be presented. The clusters studied include A262, A2052, A2626, A113, A2029, A2597, and A4059. The radio sources blow "bubbles" in the X-ray gas, displacing the gas and compressing it into shells around the radio lobes. At the same time, the radio sources are confined by the X-ray gas. At larger radii, "ghost bubbles" are seen which are weak in radio emission except at low frequencies. These may be evidence of previous eruptions of the radio sources. In some cases, buoyantly rising bubbles may entrain cooler X-ray gas from the centers of the cooling cores. Some radio sources previously classified as cluster merger radio relics may actually be displaced radio bubbles from the central radio sources. The relation between the radio bubbles, and cooler gas (10 keV).

  8. Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Zucchini, F.; Chauvin, C.; Combes, P.; Sol, D.; Loyen, A.; Roques, B.; Grunenwald, J. [CEA, DAM, GRAMAT, F-46500 Gramat (France); Bland, S. N. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)

    2015-03-15

    X-ray emission from a molybdenum X-pinch has been investigated as a potential probe for the high pressure states made in dynamic compression experiments. Studies were performed on a novel 300 kA, 400 ns generator which coupled the load directly to a low inductance capacitor and switch combination. The X-pinch load consisted of 4 crossed molybdenum wires of 13 μm diameter, crossed at an angle of 62°. The load height was 10 mm. An initial x-ray burst generated at the wire crossing point, radiated in the soft x-ray range (hυ < 10 keV). This was followed, 2–5 ns later, by at least one harder x-ray burst (hυ > 10 keV) whose power ranged from 1 to 7 MW. Time integrated spectral measurements showed that the harder bursts were dominated by K-alpha emission; though, a lower level, wide band continuum up to at least 30 keV was also present. Initial tests demonstrated that the source was capable of driving Laue diffraction experiments, probing uncompressed samples of LiF and aluminium.

  9. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    CERN Document Server

    Poletto, Luca

    2015-01-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advance...

  10. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    Science.gov (United States)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  11. Chandra Studies of Unidentified X-ray Sources in the Galactic Bulge

    Science.gov (United States)

    Mori, Hideyuki

    2013-09-01

    We propose to study a complete X-ray sample in the luminosity range of > 10^34 erg s^-1 in the Galactic bulge, including 5 unidentified sources detected in the ROSAT All Sky Survey. Our goal is to obtain a clear picture about X-ray populations in the bulge, by utilizing the excellent Chandra position accuracy leading to unique optical identification together with the X-ray spectral properties. This is a new step toward understanding the formation history of the bulge. Furthermore, because the luminosity range we observe corresponds to a ``missing link'' region ever studied for a neutron star or blackhole X-ray binary, our results are also unique to test accretion disk theories at intermediate mass accretion rates.

  12. A CCD area detector for X-ray diffraction under high pressure for rotating anode source

    Indian Academy of Sciences (India)

    Amar Sinha; Alka B Garg; V Vijayakumar; B K Godwal; S K Sikka

    2000-04-01

    Details of a two-dimensional X-ray area detector developed using a charge coupled device, a image intensifier and a fibre optic taper are given. The detector system is especially optimized for angle dispersive X-ray diffraction set up using rotating anode generator as X-ray source. The performance of this detector was tested by successfully carrying out powder X-ray diffraction measurements on various materials such as intermetallics AuIn2, AuGa2, high material Pd and low scatterer adamantane (C10H16) at ambient conditions. Its utility for quick detection of phase transitions at high pressures with diamond anvil cell is demonstrated by reproducing the known pressure induced structural transitions in RbI, KI and a new structural phase transition in AuGa2 above 10 GPa. Various softwares have also been developed to analyze data from this detector.

  13. Calibration Of A KrF Laser-Plasma Source For X-Ray Microscopy Applications

    Science.gov (United States)

    Turcu, I. C. E.; O'Neill, F.; Zammit, U.; Al-Hadithi, Y.; Eason, R. W.; Rogayski, A. M.; Hills, C. P. B.; Michette, A. G.

    1988-02-01

    Plasma X-ray sources for biological microscopy in the water-window have been produced by focusing tige 200 3, 50 ns Sprit q KrF laser onto carbon targets at irradiance between 2.2 x 10" W/cm4 and 3.7 x 10i3W/cm. Absolute measurements of X-ray production have been made using a calibrated, vacuum X-ray diode detector. A peak conversion efficiency . 10% is measured from KrF laseri)Tight tcto wate-window X-rays at 280 eV < hv < 530 eV for a target irradiance . 1 x x 10 W/cm'. Some measurements with gold and tungsten targets give conversion efficiencies 2$25% at a similar laser irradiance.

  14. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Landen, O. L.; Wehrenberg, C. E.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California, 94551 (United States); Hohenberger, M.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-04-15

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb He{sub α} x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a “prepulse” shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.

  15. Atmospheric pressure operation of a repetitive KrF laser-plasma x-ray source at hv = 1.1 keV

    Science.gov (United States)

    Turcu, I. C. Edmond; O'Neill, Fergus; Tallents, Gregory J.; Hannon, T.; Batani, Dimitri; Giulietti, Antonio; Wharton, C. W.; Meldrum, R. A.

    1990-08-01

    A repetitively pulsed (5Hz) KrF laser-based X-ray source producing photons at i-ru 1.1 keV (copper, L-shell) from a copper coated rotating target has been used to study soft X-ray induced DNA damage effects in Chinese hamster cells. The source was computer controlled for accurate delivery to the biological material of pre-set doses. DNA damage was induced by exposures lasting 7s for V79 cells and 40s for AA8 cells. To minimise the debris from the laser-plasma source and for convenient handling of biological specimens, the target chamber contained helium at 1 atmosphere with a slow flow. The X-ray yield of the source decreased by only at most 10-20% compared to vacuum operation and a further 16% of X-rays were absorbed in helium between target and the biological material placed outside the target chamber behind a beryllium filter. The measured spectral and spatial distribution of the copper X-ray emission was found to be largely independent of the ambient helium pressure. The time resolved X-ray signal lasted for only 3 ns starting at the beginning of the 2lns laser pulse and its shape was independent of helium pressure in the target chamber.

  16. Old and Young X-ray Point Source Populations in Nearby Galaxies

    CERN Document Server

    Colbert, E; Ptak, A; Strickland, D K

    2004-01-01

    We analyzed 1441 Chandra X-ray point sources in 32 nearby galaxies. The total point-source X-ray luminosity L_XP is well correlated with B, K, and FIR+UV luminosities of spiral host galaxies, and with the B and K luminosities for ellipticals. This suggests an intimate connection between L_XP and both the old and young stellar populations, for which K and FIR+UV luminosities are proxies for the galaxy mass M and star-formation rate SFR. We derive proportionality constants 1.3E29 erg/s/Msol and 0.7E39 erg/s/(Msol/yr), which can be used to estimate the old and young components from M and SFR, respectively. The cumulative X-ray luminosity functions for the point sources have quite different slopes for the spirals (gamma ~= 0.5-0.8) and ellipticals (gamma ~= 1.4), implying *the most luminous point sources dominate L_XP* for the spirals. Most of the point sources have X-ray colors that are consistent with either LMXBs or Ultraluminous X-ray sources (ULXs a.k.a. IXOs) and we rule out classical HMXBs (e.g. neutron-st...

  17. Chandra Observation of the X-Ray Source Population of NGC 6946

    CERN Document Server

    Holt, S S; Hwang, U; Petre, R

    2003-01-01

    We present the results of a study of discrete X-ray sources in NGC 6946 using a deep Chandra ACIS observation. Based on the slope of the log N-log S distribution and the general correlation of sources with the spiral arms, we infer that the overall discrete source sample in NGC 6946 is dominated by high mass X-ray binaries, in contrast to the source distributions in M31 and the Milky Way. This is consistent with the higher star formation rate in NGC 6946 than in those galaxies. We find that the strong X-ray sources in the region of the galactic center do not correlate in detail with images of the region in the near-IR, although one of them may be coincident with the galactic center. The non-central ultra-luminous X-ray source in NGC 6946, previously identified with a supernova remnant, has an X-ray spectrum and luminosity that is inconsistent with either a traditional pulsar wind nebula or a blast wave remnant.

  18. A radio survey of supersoft, persistent and transient X-ray sources in the Magellanic Clouds

    CERN Document Server

    Fender, R P; Tzioumis, A K

    1998-01-01

    We present a radio survey of X-ray sources in the Large and Small Magellanic clouds with the Australia Telescope Compact Array at 6.3 and 3.5 cm. Specifically, we have observed the fields of five LMC and two SMC supersoft X-ray sources, the X-ray binaries LMC X-1, X-2, X-3 & X-4, the X-ray transient Nova SMC 1992, and the soft gamma-ray repeater SGR 0525-66. None of the targets are detected as point sources at their catalogued positions. In particular, the proposed supersoft jet source RXJ 0513-69 is not detected, placing constraints on its radio luminosity compared to Galactic jet sources. Limits on emission from the black hole candidate systems LMC X-1 and X-3 are consistent with the radio behaviour of persistent Galactic black hole X-ray binaries, and a previous possible radio detection of LMC X-1 is found to almost certainly be due to nearby field sources. The SNR N49 in the field of SGR 0525-66 is mapped at higher resolution than previously, but there is still no evidence for any enhanced emission or...

  19. Hydrodynamics driven by ultrashort laser pulse: simulations and the optical pump—X-ray probe experiment

    Science.gov (United States)

    Inogamov, N. A.; Zhakhovsky, V. V.; Hasegawa, N.; Nishikino, M.; Yamagiwa, M.; Ishino, M.; Agranat, M. B.; Ashitkov, S. I.; Faenov, A. Ya.; Khokhlov, V. A.; Ilnitsky, D. K.; Petrov, Yu. V.; Migdal, K. P.; Pikuz, T. A.; Takayoshi, S.; Eyama, T.; Kakimoto, N.; Tomita, T.; Baba, M.; Minami, Y.; Suemoto, T.; Kawachi, T.

    2015-06-01

    Spatial structures of ablative mass flow produced by femtosecond laser pulses are studied. In experiments with a gold film, the Ti:sapp laser pulse having a focal size of 100 microns on a target was used, while a soft X-ray probe pulse was utilized for diagnostics. The experimental data are compared with simulated mass flows obtained by two-temperature hydrodynamics and molecular dynamics methods. Simulation shows evolution of a thin surface layer pressurized after electron-ion thermalization, which leads to melting, cavitation and formation of spallation liquid layer. The calculated asymptotic surface velocity of this layer as a function of fluence is in reasonably good agreement with experimental data.

  20. Testifying experiment of the multi-pulse phenomena of capillary discharge soft-X-ray laser

    Institute of Scientific and Technical Information of China (English)

    Bohan Luan; Yongpeng Zhao; Qi Wang; Yuanli Cheng; Yao Xie

    2008-01-01

    In a capillary discharge experiment for the neon-like argon lasing, we have proposed an experimental scheme to verify that the multi-spike of X-ray diode (XRD) signal is a multi-pulse laser or is a reflection of the laser pulse in the XRD.The ceramic capillary has an inner diameter of 3mm and a length of 200mm.At the gas pressure of 28Pa and discharge current of 27kA, stable lasing has been realized.The experimental results prove that the multi-spike of XRD signal is a reflection of the electromagnetic signal produced by the laser pulse in the XRD.The improved electrocircuit scheme of the XRD to minimize the reflection phenomena is also found.

  1. Compact source of narrowband and tunable X-rays for radiography

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Sudeep, E-mail: sbanejee2@unl.edu [Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68516 (United States); Chen, Shouyuan; Powers, Nathan; Haden, Daniel; Liu, Cheng; Golovin, G.; Zhang, Jun; Zhao, Baozhen [Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68516 (United States); Clarke, S.; Pozzi, S. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Silano, J.; Karwowski, H. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Umstadter, Donald [Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68516 (United States)

    2015-05-01

    We discuss the development of a compact X-ray source based on inverse-Compton scattering with a laser-driven electron beam. This source produces a beam of high-energy X-rays in a narrow cone angle (5–10 mrad), at a rate of 10{sup 8} photons-s{sup −1}. Tunable operation of the source over a large energy range, with energy spread of ∼50%, has also been demonstrated. Photon energies >10 MeV have been obtained. The narrowband nature of the source is advantageous for radiography with low dose, low noise, and minimal shielding.

  2. The X-Ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-Ray Sources

    Science.gov (United States)

    Laycock, Silas; Cappallo, Rigel; Williams, Benjamin F.; Prestwich, Andrea; Binder, Breanna; Christodoulou, Dimitris M.

    2017-02-01

    We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3σ level, from a catalog of 110 unique point sources. We find four transients (flux variability ratio greater than 10) and a further eight objects with ratios >5. The observations span the years 2003–2010 and reach a limiting luminosity of >1035 erg s‑1, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magellanic Clouds (40–200 My) where most of the known HMXBs reside. We find 10 strong HMXB candidates, 2 probable background Active Galactic Nuclei, 4 foreground flare-stars or active binaries, and 5 not yet classifiable sources. Complete classification of the sample requires optical spectroscopy for radial velocity analysis and deeper X-ray observations to obtain higher S/N spectra and search for pulsations. A catalog and supporting data set are provided.

  3. A JEM-X Catalog of X-ray Sources

    DEFF Research Database (Denmark)

    Westergaard, Niels Jørgen Stenfeldt

    2009-01-01

    . A search for weaker, persistent, sources has been done in deep mosaic images that have been produced with all available observations for a large number of sky regions. The two resulting catalogs hold 158 and 179 sources respectively, but the combined catalog consists of 209 sources. This catalog can...... be downloaded as a FITS binary table file with source information such as names, positions, and fluxes at the PoS web page for the conference....

  4. Common-source TLD and RADFET characterization of Co-60, Cs-137, and x-ray irradiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Simons, M. [Research Triangle Inst., Research Triangle Park, NC (United States); Pease, R.L. [RLP Research, Albuquerque, NM (United States); Fleetwood, D.M. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1997-06-01

    Dose enhancement and dose rate were measured in more than a dozen gamma sources using pMOS RADFETs and TLDs from two independent sources. ARACOR X-ray dose rates were calibrated using single- and dual-dielectric RADFETs.

  5. Analysis of coronal and chromospheric hard X-ray sources in an eruptive solar flare

    Science.gov (United States)

    Zimovets, Ivan; Golovin, Dmitry; Livshits, Moisey; Vybornov, Vadim; Sadykov, Viacheslav; Mitrofanov, Igor

    We have analyzed hard X-ray emission of an eruptive solar flare on 3 November 2010. The entire flare region was observed by the STEREO-B spacecraft. This gave us an information that chromospheric footpoints of flare magnetic loops were behind the east solar limb for an earth observer. Hard X-ray emission from the entire flare region was detected by the High Energy Neutron Detector (HEND) onboard the 2001 Mars Odyssey spacecraft while hard X-rays from the coronal part of the flare region were detected by the RHESSI. This rare situation has allowed us to investigate both coronal and chromospheric sources of hard X-ray emission separately. Flare impulsive phase was accompanied by eruption of a magnetic flux rope and formation of a plasmoid detected by the AIA/SDO in the EUV range. Two coronal hard X-ray sources (S_{1} and S_{2}) were detected by the RHESSI. The upper source S_{1} coincided with the plasmoid and the lower source S_{2} was near the tops of the underlying flare loops that is in accordance with the standard model of eruptive flares. Imaging spectroscopy with the RHESSI has allowed to measure energetic spectra of hard X-ray emission from the S_{1} and S_{2} sources. At the impulsive phase peak they have power-law shape above ≈ 15 keV with spectral slopes gamma_{S_{1}}=3.46 ± 1.58 and gamma_{S_{2}}=4.64 ± 0.12. Subtracting spatially integrated spectrum of coronal hard X-ray emission measured by the RHESSI from the spectrum measured by the HEND we found spectrum of hard X-rays emitted from the footpoints of the flare loops (source S_{0}). This spectrum has a power-law shape with gamma_{S_{0}}=2.21 ± 0.57. It is shown that it is not possible to explain the measured spectra of the S_{2} and S_{0} sources in frames of the thin and thick target models respectively if we assume that electrons were accelerated in the energy release site situated below the plasmoid and above the flare loops as suggested by the standard flare model. To resolve the contradiction

  6. SIGMA discovery of a transient hard X-ray source in the galactic center region.

    Science.gov (United States)

    Vargas, M.; Goldwurm, A.; Paul, J.; Denis, M.; Borrel, V.; Bouchet, L.; Roques, J. P.; Jourdain, E.; Trudolyubov, S.; Gilfanov, M.; Churazov, E.; Sunyaev, R.; Khavenson, N.; Dyachkov, A.; Novikov, B.; Chulkov, I.

    1996-09-01

    A new X-ray transient source, GRS 1730-312 (=KS 1730-312), was discovered by the hard X-ray/soft γ-ray coded mask telescope SIGMA/GRANAT in the Galactic Center region during observations performed in September 1994. The flare started on September 22 and lasted approximately 3days, during which the source became the brightest object of the region at energies above 35keV. The average 35-200keV spectrum can be described by a power law with photon index of -2.5 or by a thermal bremsstrahlung model with kT_e_=~70keV. SIGMA data have been found consistent with the spectral shape and with the spectral evolution observed by the TTM/Mir-Kvant telescope at lower energies. This new source belongs to the population of hard X-ray sources already detected by SIGMA in the direction of the Galactic Bulge region.

  7. Luminous X-ray sources in spiral and star-forming galaxies.

    Science.gov (United States)

    Ward, Martin

    2002-09-15

    For studies of discrete X-ray source populations in nearby galaxies, high spatial resolution is a key to making progress. Now, for the first time, using the Chandra X-ray observatory, we are able to study these source populations in detail for galaxies beyond M31 and our local group galaxies. Analysis of accretion-driven and supernova-related discrete sources provides a new perspective on the evolution of galactic stellar populations, as well as giving insights into the physical mechanisms operating in individual cases. A particularly intriguing area, which we are only just beginning to address, is the nature of the most X-ray-luminous sources that are being discovered in many spiral and star-forming galaxies.

  8. Developing small vacuum spark as an x-ray source for calibration of an x-ray focusing crystal spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ghomeishi, Mostafa; Adikan, Faisal Rafiq Mahamd [Photonic Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Karami, Mohammad [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2012-10-15

    A new technique of x-ray focusing crystal spectrometers' calibration is the desired result. For this purpose the spectrometer is designed to register radiated copper K{alpha} and K{beta} lines by using a flat {alpha}-quartz crystal. This experiment uses pre-breakdown x-ray emissions in low vacuum of about 2.5-3 mbar. At this pressure the pinch will not form so the plasma will not radiate. The anode material is copper and the capacity of the capacitor bank is 22.6 nF. This experiment designed and mounted a repetitive triggering system to save the operator time making hundreds of shots. This emission amount is good for calibration and geometrical adjustment of an optical crystal x-ray focusing spectrometer.

  9. Developing small vacuum spark as an x-ray source for calibration of an x-ray focusing crystal spectrometer.

    Science.gov (United States)

    Ghomeishi, Mostafa; Karami, Mohammad; Adikan, Faisal Rafiq Mahamd

    2012-10-01

    A new technique of x-ray focusing crystal spectrometers' calibration is the desired result. For this purpose the spectrometer is designed to register radiated copper Kα and Kβ lines by using a flat α-quartz crystal. This experiment uses pre-breakdown x-ray emissions in low vacuum of about 2.5-3 mbar. At this pressure the pinch will not form so the plasma will not radiate. The anode material is copper and the capacity of the capacitor bank is 22.6 nF. This experiment designed and mounted a repetitive triggering system to save the operator time making hundreds of shots. This emission amount is good for calibration and geometrical adjustment of an optical crystal x-ray focusing spectrometer.

  10. Development of a microfocus x-ray tube with multiple excitation sources

    Science.gov (United States)

    Maeo, Shuji; Krämer, Markus; Taniguchi, Kazuo

    2009-03-01

    A microfocus x-ray tube with multiple targets and an electron gun with a focal spot size of 10 μm in diameter has been developed. The electron gun contains a LaB6 cathode and an Einzel lens. The x-ray tube can be operated at 50 W (50 kV, 1 mA) and has three targets, namely, Cr, W, and Rh on the anode that can be selected completely by moving the anode position. A focal spot size of 10 μm in diameter can be achieved at 0.5 mA current. As demonstration of the usability of a multiexcitation x-ray tube, the fluorescence x-rays have been measured using a powder specimen mixed of TiO2, Co, and Zr of the same quantity. The differences of excitation efficiency have clearly appeared according to the change in excitation source. From the results discussed here, it can be expected that the presented x-ray tube will be a powerful tool in microx-ray fluorescence spectrometers and various x-ray instruments.

  11. Quantitative X-Ray Phase-Contrast Microtomography from a Compact Laser Driven Betatron Source

    CERN Document Server

    Wenz, J; Khrennikov, K; Bech, M; Thibault, P; Heigoldt, M; Pfeiffer, F; Karsch, S

    2014-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to brilliant keV X-ray emission. This so-called Betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present the first phase-contrast micro-tomogram revealing quantitative electron density values of a biological sample using betatron X-rays, and a comprehensive source characterization. Our results suggest that laser-based X-ray technology offers the potential fo...

  12. A POPULATION OF ULTRALUMINOUS X-RAY SOURCES WITH AN ACCRETING NEUTRON STAR

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yong; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210046 (China)

    2015-04-01

    Most ultraluminous X-ray sources (ULXs) are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star (NS) accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized NS. In this work we model the formation history of NS ULXs in an M82- or Milky Way (MW)-like Galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birth rate is around 10{sup −4} yr{sup −1} for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass–orbital period plane. Our results suggest that, compared with black hole X-ray binaries, NS X-ray binaries may significantly contribute to the ULX population, and high-mass and intermediate-mass X-ray binaries dominate the NS ULX population in M82- and MW-like Galaxies, respectively.

  13. Groups of Galaxies in AEGIS: The 200 ksec Chandra Extended X-ray Source catalogue

    CERN Document Server

    Jeltema, Tesla E; Laird, Elise S; Willmer, Christopher N A; Coil, Alison L; Cooper, Michael C; Davis, Marc; Nandra, Kirpal; Newman, Jeffrey A

    2009-01-01

    We present the discovery of seven X-ray emitting groups of galaxies selected as extended X-ray sources in the 200 ksec Chandra coverage of the All-wavelength Extended Groth Strip International Survey (AEGIS). In addition, we report on AGN activity associated to these systems. Using the DEEP2 Galaxy Redshift Survey coverage, we identify optical counterparts and determine velocity dispersions. In particular, we find three massive high-redshift groups at z>0.7, one of which is at z=1.13, the first X-ray detections of spectroscopically selected DEEP2 groups. We also present a first look at the the L_X-T, L_X-sigma, and sigma-T scaling relations for high-redshift massive groups. We find that the properties of these X-ray selected systems agree well with the scaling relations of similar systems at low redshift, although there are X-ray undetected groups in the DEEP2 catalogue with similar velocity dispersions. The other three X-ray groups with identified redshifts are associated with lower mass groups at z~0.07 and...

  14. Near-edge x-ray absorption fine structure spectroscopy at atmospheric pressure with a table-top laser-induced soft x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Kühl, Frank-Christian, E-mail: Frank-christian.kuehl@mail.de; Müller, Matthias, E-mail: matthias.mueller@llg-ev.de; Schellhorn, Meike; Mann, Klaus [Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, D-37077 Göttingen (Germany); Wieneke, Stefan [Hochschule für angewandte Wissenschaft und Kunst, Von-Ossietzky-Str 99, D-37085 Göttingen (Germany); Eusterhues, Karin [Friedrich-Schiller-Universität Jena, Fürstengraben 1, D-07743 Jena (Germany)

    2016-07-15

    The authors present a table-top soft x-ray absorption spectrometer, accomplishing investigations of the near-edge x-ray absorption fine structure (NEXAFS) in a laboratory environment. The system is based on a low debris plasma ignited by a picosecond laser in a pulsed krypton gas jet, emitting soft x-ray radiation in the range from 1 to 5 nm. For absorption spectroscopy in and around the “water window” (2.3–4.4 nm), a compact helium purged sample compartment for experiments at atmospheric pressure has been constructed and tested. NEXAFS measurements on CaCl{sub 2} and KMnO{sub 4} samples were conducted at the calcium and manganese L-edges, as well as at the oxygen K-edge in air, atmospheric helium, and under vacuum, respectively. The results indicate the importance of atmospheric conditions for an investigation of sample hydration processes.

  15. Generation of high-photon flux-coherent soft x-ray radiation with few-cycle pulses.

    Science.gov (United States)

    Demmler, Stefan; Rothhardt, Jan; Hädrich, Steffen; Krebs, Manuel; Hage, Arvid; Limpert, Jens; Tünnermann, Andreas

    2013-12-01

    We present a tabletop source of coherent soft x-ray radiation with high-photon flux. Two-cycle pulses delivered by a fiber-laser-pumped optical parametric chirped-pulse amplifier operating at 180 kHz repetition rate are upconverted via high harmonic generation in neon to photon energies beyond 200 eV. A maximum photon flux of 1.3·10(8) photons/s is achieved within a 1% bandwidth at 125 eV photon energy. This corresponds to a conversion efficiency of ~10(-9), which can be reached due to a gas jet simultaneously providing a high target density and phase matching. Further scaling potential toward higher photon flux as well as higher photon energies are discussed.

  16. Solving X-ray protein structures without a crystal: using X-ray Free Electron Laser, the fourth generation synchrotron light sources

    Institute of Scientific and Technical Information of China (English)

    Bo Huang

    2010-01-01

    @@ A synchrotron light source is a source of electromagnetic radiation artificially produced by specialized electron accelerators. Compared to the commonly used in-house X-ray sources, it is wavelength adjustable, much stronger and more focused. In the last two decades, synchrotron usage has become the mainstream for X-ray protein structure determination. Taking the advantage of micro-focus light beams of the third generation synchrotron, the size of a usable protein crystal for data collection decreases to micron level, which increases the rate of macromolecular structure determination to about 10 new protein data bank entries per day.

  17. Microfocus x-ray imaging of traceable pointlike {sup 22}Na sources for quality control

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Oda, K.; Sato, Y.; Ito, H.; Masuda, S.; Yamada, T.; Matsumoto, M.; Murayama, H.; Takei, H. [Allied Health Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan); Positron Medical Center, Tokyo Metropolitan Institute of Gerontology Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015 (Japan); Advanced Industrial Science and Technology (AIST) Central 2, Umezono 1-1-1, Tsukuba-shi, Ibaraki 305-8568 (Japan); Kanagawa Industrial Technology Center (KITC) Shimoimazumi 705-1, Ebina-shi, Kanagawa 243-0435 (Japan); Japan Radioisotope Association (JRIA) Komagome 2-28-45, Bunkyo-ku, Tokyo 113-8941 (Japan); Molecular Imaging Center, National Institute of Radiological Sciences Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Graduate School of Medical Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan)

    2012-07-15

    Purpose: The purpose of this study is to propose a microfocus x-ray imaging technique for observing the internal structure of small radioactive sources and evaluating geometrical errors quantitatively, and to apply this technique to traceable pointlike {sup 22}Na sources, which were designed for positron emission tomography calibration, for the purpose of quality control of the pointlike sources. Methods: A microfocus x-ray imaging system with a focus size of 0.001 mm was used to obtain projection x-ray images and x-ray CT images of five pointlike source samples, which were manufactured during 2009-2012. The obtained projection and tomographic images were used to observe the internal structure and evaluate geometrical errors quantitatively. Monte Carlo simulation was used to evaluate the effect of possible geometrical errors on the intensity and uniformity of 0.511 MeV annihilation photon pairs emitted from the sources. Results: Geometrical errors were evaluated with sufficient precision using projection x-ray images. CT images were used for observing the internal structure intuitively. As a result, four of the five examined samples were within the tolerance to maintain the total uncertainty below {+-}0.5%, given the source radioactivity; however, one sample was found to be defective. Conclusions: This quality control procedure is crucial and offers an important basis for using the pointlike {sup 22}Na source as a basic calibration tool. The microfocus x-ray imaging approach is a promising technique for visual and quantitative evaluation of the internal geometry of small radioactive sources.

  18. Tunable, all-optical quasi-monochromatic Thomson X-ray source

    CERN Document Server

    Khrennikov, K; Buck, A; Xu, J; Heigoldt, M; Veisz, L; Karsch, S

    2014-01-01

    Brilliant X-ray sources are of great interest for many research fields from biology via medicine to material research. The quest for a cost-effective, brilliant source with unprecedented temporal resolution has led to the recent realization of various high-intensity-laser-driven X-ray beam sources. Here we demonstrate the first all-laser-driven, energy-tunable and quasi-monochromatic X-ray source based on Thomson backscattering. This is a decisive step beyond previous results, where the emitted radiation exhibited an uncontrolled broad energy distribution. In the experiment, one part of the laser beam was used to drive a few-fs bunch of quasi-monoenergetic electrons from a Laser-Wakefield Accelerator (LWFA), while the remainder was scattered off the bunch in a near-counter-propagating geometry. When the electron energy was tuned from 10-50 MeV, narrow-bandwidth X-ray spectra peaking at 5-35keV were directly measured, limited in photon energy by the sensitivity curve of our X-ray detector. Due to the ultrashor...

  19. A Bright Spatially-Coherent Compact X-ray Synchrotron Source

    CERN Document Server

    Kneip, S; Martins, J L; Martins, S F; Bellei, C; Chvykov, V; Dollar, F; Fonseca, R; Huntington, C; Kalintchenko, G; Maksimchuk, A; Mangles, S P D; Matsuoka, T; Nagel, S R; Palmer, C; Schreiber, J; Phuoc, K Ta; Thomas, A G R; Yanovsky, V; Silva, L O; Krushelnick, K; Najmudin, Z

    2009-01-01

    Each successive generation of x-ray machines has opened up new frontiers in science, such as the first radiographs and the determination of the structure of DNA. State-of-the-art x-ray sources can now produce coherent high brightness keV x-rays and promise a new revolution in imaging complex systems on nanometre and femtosecond scales. Despite the demand, only a few dedicated synchrotron facilities exist worldwide, partially due the size and cost of conventional (accelerator) technology. Here we demonstrate the use of a recently developed compact laser-plasma accelerator to produce a well-collimated, spatially-coherent, intrinsically ultrafast source of hard x-rays. This method reduces the size of the synchrotron source from the tens of metres to centimetre scale, accelerating and wiggling a high electron charge simultaneously. This leads to a narrow-energy spread electron beam and x-ray source that is >1000 times brighter than previously reported plasma wiggler and thus has the potential to facilitate a myri...

  20. Discovery of Extremely Embedded X-ray Sources in the R Coronae Australis Star Forming Core

    CERN Document Server

    Hamaguchi, K; Petre, R; White, N E; Stelzer, B; Nedachi, K; Kobayashi, N; Tokunaga, A T; Hamaguchi, Kenji; Corcoran, Michael F.; Petre, Rob; White, Nicholas E.; Stelzer, Beate; Nedachi, Ko; Kobayashi, Naoto; Tokunaga, Alan T.

    2005-01-01

    With the XMM-Newton and Chandra observatories, we detected two extremely embedded X-ray sources in the R Corona Australis (R CrA) star forming core, near IRS 7. These sources, designated as XB and XA, have X-ray absorption columns of ~3e23 cm-2 equivalent to AV ~180 mag. They are associated with the VLA centimeter radio sources 10E and 10W, respectively. XA is the counterpart of the near-infrared source IRS 7, whereas XB has no K-band counterpart above 19.4 mag. This indicates that XB is younger than typical Class I protostars, probably a Class 0 protostar or in an intermediate phase between Class 0 and Class I. The X-ray luminosity of XB varied between 29X-ray brightness by a factor of two in 30 ksec during an XMM-Newton observation. The XMM-Newton spectra indicate emission from a hot plasma with kT ~3-4 keV and also show fluorescent emission from cold iron. Though the X-ray spectrum from XB is similar to flare ...

  1. Tailoring the amplification of attosecond pulse through detuned X-ray FEL undulator.

    Science.gov (United States)

    Kumar, Sandeep; Kang, Heung-Sik; Kim, Dong Eon

    2015-02-09

    We demonstrate that the amplification of attosecond pulse in X-ray free electron laser (FEL) undulator can be tailored. The characteristic of the amplification of an isolated attosecond pulse in the FEL undulator is investigated. An isolated 180 attoseconds full width half maximum (FWHM) pulse at 1.25 nm with a spectral bandwidth of 1% is injected into an undulator. The simulation results show that for a direct seeding of 3MW, the seed is amplified to the peak power of 106 GW (40 μJ, an output pulse-width of 383 attoseconds) in the presence of a detuning at FEL resonance condition in 100-m long undulator. We note that the introduction of detuning leads to the better performance compared to the case without detuning: shorter by 15.5% in a pulse-width and higher by 76.6% in an output power. Tapering yields a higher power (116% increases in the output power compared to the case without detuning) but a longer pulse (15.4% longer in the pulse-width). It was observed that ± Δλ(r)/8 (Δλ(r)/λ(r) ~1%) is the maximum degree of detuning, beyond which the amplification becomes poor: lower in the output power and longer in the pulse duration. The minimum power for a seed pulse needs to be higher than 1 MW for the successful amplification of an attosecond pulse at 1.25 nm. Also, the electron beam energy-spread must be less than 0.1% for a suitable propagation of attosecond pulse along the FEL undulator under this study.

  2. Studying nanomagnets and magnetic heterostructures with X-ray PEEM at the Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyader, Loiec; Kleibert, Armin [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Fraile Rodriguez, Arantxa [Departament de Fisica Fonamental and Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona (Spain); El Moussaoui, Souliman; Balan, Ana; Buzzi, Michele; Raabe, Joerg [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Nolting, Frithjof, E-mail: frithjof.nolting@psi.ch [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Time resolved PEEM set up using a femtosecond laser as the pump pulse. Black-Right-Pointing-Pointer Magnetization vectometry based on advanced computer algorithms enables the determination of the in-plane and out-of-plane magnetization directions in micro and nanostructures. Black-Right-Pointing-Pointer Special sample holders allow measurements in applied magnetic fields to study the hysteresis loop of nanoparticles and to image in up to 40 mT out-of-plane magnetic fields. -- Abstract: Polarization dependent X-ray absorption spectroscopy and microscopy enables the element selective investigation of magnetic systems at the nanoscale. At the Swiss Light Source a photoemission electron microscope is used for the study of a broad variety of systems. Here, a review of recent activities is presented with a focus on instrumental and analytical developments. A new procedure for the 3 dimensional determination of the magnetization vector has been developed, and is demonstrated for GdFeCo microstructures displaying in-plane and out-of-plane domains, and sub-20 nm Fe nanoparticles. The recent progress for measurements in applied magnetic fields is presented and a new set-up for time-resolved measurements employing femtosecond laser pulses is described.

  3. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays

    Science.gov (United States)

    Bartels; Backus; Zeek; Misoguti; Vdovin; Christov; Murnane; Kapteyn

    2000-07-13

    When an intense laser pulse is focused into a gas, the light-atom interaction that occurs as atoms are ionized results in an extremely nonlinear optical process--the generation of high harmonics of the driving laser frequency. Harmonics that extend up to orders of about 300 have been reported, some corresponding to photon energies in excess of 500 eV. Because this technique is simple to implement and generates coherent, laser-like, soft X-ray beams, it is currently being developed for applications in science and technology; these include probing the dynamics in chemical and materials systems and imaging. Here we report that by carefully tailoring the shapes of intense light pulses, we can control the interaction of light with an atom during ionization, improving the efficiency of X-ray generation by an order of magnitude. We demonstrate that it is possible to tune the spectral characteristics of the emitted radiation, and to steer the interaction between different orders of nonlinear processes.

  4. On the origin of two unidentified radio/X-ray sources discovered with XMM-Newton

    Science.gov (United States)

    García, Federico; Combi, Jorge A.; Medina, María C.; Romero, Gustavo E.

    2015-12-01

    Aims: We aim at clarifying the nature of the emission of two spatially related unidentified X-ray sources detected with XMM-Newton telescope at intermediate-low Galactic latitude Methods: We use the imaging and spectral capabilities of XMM-Newton to study the X-ray properties of these two sources. In addition, we complement our study with radio data obtained at different frequencies to analyze a possible physical association between the sources. Results: Observations reveal a point-like source aligned with elongated diffuse emission. The X-ray spectra of these sources is best-fitted by an absorbed power law with photon index Γ ~ 1.7 for the point-like source and ~2.0 for the extended source. Both sources show nonthermal radio-continuum counterparts that might indicate a physical association. In addition, from the available data, we did not detect variability on the point-like source in several timescales. Two possible scenarios are analyzed: one Galactic and one extra-Galactic. First, based on HI line absorption, assuming a Galactic origin, we infer a distance upper bound of ≲2 kpc, which poses a constraint on the height over the Galactic plane of ≲200 pc and on the linear size of the system of ≲2.3 pc. In this case, the X-ray luminosities are ≳1032 erg s-1 and ≳7.5 × 1032 erg s-1, for the point-like and extended sources, respectively. Second, an extra-Galactic nature is discussed, where the point-like source might be the core of a radio galaxy and the extended source its lobe. In this case, we compare derived fluxes, spectral indices, and spatial correlation with those typical from the radio galaxy population, showing the feasibility of this alternative astrophysical scenario. Conclusions: From the available observational evidence, we suggest that the most promising scenario to explain the nature of these sources is a system consisting of a one-sided radio galaxy, where the point-like source is an active galactic nucleus and the extended source

  5. LIGHT SOURCE: RF deflecting cavity for bunch length measurement in Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Shi, Jia-Ru; Chen, Huai-Bi; Tang, Chuan-Xiang; Huang, Wen-Hui; Du, Ying-Chao; Zheng, Shu-Xin; Ren, Li

    2009-06-01

    An RF deflecting cavity used for bunch length measurement has been designed and fabricated at Tsinghua University for the Thomson Scattering X-Ray Source. The cavity is a 2856 MHz, π-mode, 3-cell standing-wave cavity, to diagnose the 3.5 MeV beam produced by photocathode electron gun. With a larger power source, the same cavity will again be used to measure the accelerated beam with energy of 50 MeV before colliding with the laser pulse. The RF design using MAFIA for both the cavity shape and the power coupler is reviewed, followed by presenting the fabrication procedure and bench measurement results of two cavities.

  6. The Antennae Ultraluminous X-Ray Source, X-37, Is A Background Quasar

    CERN Document Server

    Clark, D M; Eikenberry, S S; Brandl, B R; Wilson, J C; Carson, J C; Henderson, C P; Hayward, T L; Barry, J; Ptak, A F; Colbert, E J M

    2005-01-01

    In this paper we report that a bright, X-ray source in the Antennae galaxies (NGC 4038/9), previously identified as an ultra-luminous X-ray source, is in fact a background quasar. We identify an isolated infrared and optical counterpart within 0.3+/-0.5 arcseconds the X-ray source X-37. After acquiring an optical spectrum of its counterpart, we use the narrow [OIII] and broad H_alpha emission lines to identify X-37 as a quasar at a redshift of z=0.26. Through a U, V, and K_s photometric analysis, we demonstrate that most of the observable light along this line of sight is from the quasar. We discuss the implications of this discovery and the importance of acquiring spectra for optical and IR counterparts to ULXs.

  7. Non-Nuclear Hyper/Ultraluminous X-Ray Sources in the Starbursting Cartwheel Ring Galaxy

    CERN Document Server

    Gao, Y; Appleton, P N; Lucas, R A; Gao, Yu; Lucas, Ray A.

    2003-01-01

    We report the Chandra/ACIS-S detection of more than 20 ultraluminous X-ray sources (ULXs, L_{0.5-10 keV} >~ 3 x 10^{39} ergs/sec) in the Cartwheel collisional ring galaxy system, of which over a dozen are located in the outer active star-forming ring. A remarkable hyperluminous X-ray source (HLX, L_{0.5-10 keV} >~ 10^{41} ergs/sec assuming isotropic radiation), which dominates the X-ray emission from the Cartwheel ring, is located in the same segment of the ring as most ULXs. These powerful H/ULXs appear to be coincident with giant HII region complexes, young star clusters, and radio and mid-infrared hot-spots: all strong indicators of recent massive star formation. The X-ray spectra show that H/ULXs have similar properties as those of the {\\it most luminous} ULXs found in the nearest starbursts and galaxy mergers such as the Antennae galaxies and M82. The close association between the X-ray sources and the starbursting ring strongly suggests that the H/ULXs are intimately associated with the production and r...

  8. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source (HTPD 08 paper)

    Energy Technology Data Exchange (ETDEWEB)

    Haugh, M; Schneider, M B

    2008-04-28

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 {micro}m square pixels, and 15 {micro}m thick. A multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/{Delta}E {approx} 10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within {+-}1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.

  9. Chandra Observations of the X-ray Point Source Population in NGC 4636

    CERN Document Server

    Posson-Brown, J; Forman, W; Donnelly, R H; Jones, C; Posson-Brown, Jennifer; Raychaudhury, Somak; Forman, William; Jones, Christine

    2006-01-01

    We present an analysis of the X-ray point source population in the nearby Virgo elliptical galaxy NGC 4636 from four Chandra X-ray observations. These ACIS observations, totaling ~210 ks, were taken over a three year period. Using a wavelet decomposition detection algorithm, we detect 336 individual point sources. For our analysis, we use a subset of the 245 detections with >10 cts (a limiting luminosity of approximately 1E37 erg/s in the 0.5-2 keV band, outside the 1.5' bright galaxy core). Of these sources, ~120 are likely members of the galaxy. We examine, for the first time, variability over a period of years for X-ray point sources in an elliptical galaxy. We present a luminosity function for the point sources in NGC 4636, fit by a power-law with gamma= -1.24 +/- 0.04, as well as a radial source density profile, hardness ratios for the sources, and lightcurves for bright sources which display short-term variability. We find an upper limit to the current X-ray luminosity of the historical supernova SN1939...

  10. What is the nature of the high energy X-ray sources in the galaxy?

    Science.gov (United States)

    Cuturilo, Sophie; Tomsick, John; Clavel, Maica; Lansbury, George B.

    2017-01-01

    Finding sources of high energy “hard” X-rays allow us to probe the most extreme conditions in the Universe. Such sources include accreting black holes and neutron stars, where we find the strongest gravitational and magnetic fields, as well as pulsars and supernova remnants, where particles are accelerated to produce the hard X-rays. Over the past decade, the INTEGRAL satellite ahs been discovering new high energy sources, and this has allowed us to understand the population of bright hard X-ray sources. Over the past few years, the NuSTAR satellite, with much better sensitivity than INTEGRAL, has been allowing us to find even more hard X-ray sources, and we will present results from studies of sources discovered in the NuSTAR serendipitous source survey. We analyzed seven different potential sources looking for counterparts using NuSTAR, Chandra and ground based optical/NIR observations. Of the seven, two have confirmed counterparts and five need either an optical/NIR detection or further spectroscopy.

  11. Electron-based EUV and ultrashort hard-x-ray sources

    Science.gov (United States)

    Egbert, A.; Mader, B.; Tkachenko, B.; Chichkov, B. N.

    2002-11-01

    A brief review of our progress in the realization of femtosecond laser-driven ultrashort hard-x-ray sources is given. New results on the development of electron-based compact EUV sources for "at-wavelength" metrology and next generation lithography are presented. AIP Conference Proceedings.

  12. Attenuation of super-soft X-ray sources by circumstellar material

    DEFF Research Database (Denmark)

    Nielsen, Mikkel; Gilfanov, Marat

    2015-01-01

    of the circumbinary material photo-ionised by the radiation of the central source. Our results show that the circumstellar mass-loss rates required for obcuration of super-soft X-ray sources is about an order of magnitude larger than those reported in earlier studies, for comparable model parameters. While this does...

  13. On-site Real-Time Inspection System for Pump-impeller using X-band Linac X-ray Source

    Science.gov (United States)

    Yamamoto, Tomohiko; Natsui, Takuya; Taguchi, Hiroki; Taniguchi, Yoshihiro; Lee, Ki woo; Hashimoto, Eiko; Sakamoto, Fumito; Sakumi, Akira; Yusa, Noritaka; Uesaka, Mitsuru; Nakamura, Naoki; Yamamoto, Masashi; Tanabe, Eiji

    2009-03-01

    The methods of nondestructive testing (NDT) are generally ultrasonic, neutron, eddy-current and X-rays, NDT by using X-rays, in particular, is the most useful inspection technique having high resolution. We can especially evaluate corroded pipes of petrochemical complex, nuclear and thermal-power plants by the high energy X-ray NDT system. We develop a portable X-ray NDT system with X-band linac and magnetron. This system can generate a 950 keV electron beam. We are able to get X-ray images of samples with 1 mm spatial resolution. This system has application to real time impeller inspection because linac based X-ray sources are able to generate pulsed X-rays. So, we can inspect the rotating impeller if the X-ray pulse rate is synchronized with the impeller rotation rate. This system has application in condition based maintenance (CBM) of nuclear plants, for example. However, 950 keV X-ray source can only be used for thin tubes with 20 mm thickness. We have started design of a 3.95 MeV X-band linac for broader X-ray NDT application. We think that this X-ray NDT system will be useful for corrosion wastage and cracking in thicker tubes at nuclear plants and impeller of larger pumps. This system consists of X-band linac, thermionic cathode electron gun, magnetron and waveguide components. For achieving higher electric fields the 3.95 MeV X-band linac structure has the side-coupled acceleration structure. This structure has more efficient acceleration than the 950 keV linac with alternating periodic structure (APS). We adopt a 1.3 MW magnetron for the RF source. This accelerator system is about 30 cm long. The beam current is about 150 mA, and X-ray dose rate is 10 Gy@1 m/500 pps. In this paper, the detail of the whole system concept and the electromagnetic field of designed linac structure will be reported.

  14. X-Rays Beware: The Deepest Chandra Catalogue of Point Sources in M31

    CERN Document Server

    Vulic, N; Barmby, P

    2016-01-01

    This study represents the most sensitive Chandra X-ray point source catalogue of M31. Using 133 publicly available Chandra ACIS-I/S observations totalling ~1 Ms, we detected 795 X-ray sources in the bulge, northeast, and southwest fields of M31, covering an area of approximately 0.6 deg$^{2}$, to a limiting unabsorbed 0.5-8.0 keV luminosity of $10^{34}$ erg/s. In the inner bulge, where exposure is approximately constant, X-ray fluxes represent average values because they were determined from many observations over a long period of time. Similarly, our catalogue is more complete in the bulge fields since monitoring allowed more transient sources to be detected. The catalogue was cross-correlated with a previous XMM-Newton catalogue of M31's $D_{25}$ isophote consisting of 1948 X-ray sources, with only 979 within the field of view of our survey. We found 387 (49%) of our Chandra sources (352 or 44% unique sources) matched to within 5 arcsec of 352 XMM-Newton sources. Combining this result with matching done to ...

  15. Integral field spectroscopy of the ultraluminous X-ray source Holmberg II X-1

    CERN Document Server

    Lehmann, I; Fabrika, S; Roth, M; Miyaji, T; Afanasiev, V; Sholukhova, O; Sánchez, S F; Greiner, J; Hasinger, G; Costantini, E; Surkov, A; Burenkov, A

    2004-01-01

    We present optical integral field observations of the H II region containing the ultraluminous X-ray source Holmberg II X-1. We confirm the existence of an X-ray ionized nebula as the counterpart of the source due to the detection of an extended He II (4686A) region (21 x 47 pc) at the Chandra ACIS-S position. An extended blue objects with a size of 11 x 14 pc is coincident with the X-ray/He II region, which could indicate either a young stellar complex or a cluster. We have derived an X-ray to optical luminosity ratio of Lx/Lb>170, and presumable it is Lx/Lb~300-400 using the recent HST ACS data. We find a complex velocity dispersion at the position of the ULX. In addition, there is a radial velocity variation in the X-ray ionized region found in the He II emission of +-50 km/s on spatial scales of 2-3 arcsec. We believe that the putative black hole not only ionizes the surrounding HII gas, but also perturbs it dynamically (via jets or the accretion disk wind). The spatial analysis of the public Chandra ACIS...

  16. Development of Compact Soft X-ray Source Based on Laser Undulator

    CERN Document Server

    Kuroda, Ryunosuke; Minamiguchi, S; Saitô, T; Ueyama, D; Washio, Masakazu

    2004-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on backward Compton scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser and 4 MeV high quality electron beam generated from rf gun system. The range of energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein’s coefficient in this range, a dehydration of the specimens is not necessary. As a preliminary experiment, about 300 eV X-ray generation was carried out. As next step, soft X-ray optics with zone plate was proposed for Soft X-ray microscopy. In this conference, we will report details and results of the experiment.

  17. At-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sutter, John; Alcock, Simon G.; Sawhney, Kawal

    2014-09-01

    Modern, third-generation synchrotron radiation sources provide coherent and extremely bright beams of X-ray radiation. The successful exploitation of such beams depends to a significant extent on imperfections and misalignment of the optics employed on the beamlines. This issue becomes even more critical with the increasing use of active optics, and the desire to achieve diffraction-limited and coherence-preserving X-ray beams. In recent years, significant progress has been made to improve optic testing and optimization techniques, especially those using X-rays for so-called atwavelength metrology. These in-situ and at-wavelength metrology methods can be used not only to optimize the performance of X-ray optics, but also to correct and minimize the collective distortions of upstream beamline optics, including monochromators, and transmission windows. An overview of at-wavelength metrology techniques implemented at Diamond Light Source is presented, including grating interferometry and X-ray near-field speckle based techniques. Representative examples of the application of these techniques are also given, including in-situ and atwavelength calibration and optimization of: active, piezo bimorph mirrors; Kirkpatrick-Baez (KB) mirrors; and refractive optics such as compound refractive lenses.

  18. Soft x-ray spectromicroscopy development for materials science at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, T.; Padmore, H. [Lawrence Berkeley National Lab., CA (United States); Ade, H. [North Carolina State Univ., Raleigh, NC (United States); Hitchcock, A.P. [McMaster Univ., Hamilton, Ontario (Canada); Rightor, E.G. [Dow Texas Polymer Center, Freeport, TX (United States); Tonner, B.P. [Univ. of Wisconsin, Milwaukee, WI (United States)

    1996-08-01

    Several third generation synchrotron radiation facilities are now operational and the high brightness of these photon sources offers new opportunities for x-ray microscopy. Well developed synchrotron radiation spectroscopy techniques are being applied in new instruments capable of imaging the surface of a material with a spatial resolution smaller than one micron. There are two aspects to this. One is to further the field of surface science by exploring the effects of spatial variations across a surface on a scale not previously accessible to x-ray measurements. The other is to open up new analytical techniques in materials science using x-rays, on a spatial scale comparable to that of the processes or devices to be studied. The development of the spectromicroscopy program at the Advanced Light Source will employ a variety of instruments, some are already operational. Their development and use will be discussed, and recent results will be presented to illustrate their capabilities.

  19. A long-period, violently variable X-ray source in a young supernova remnant.

    Science.gov (United States)

    De Luca, A; Caraveo, P A; Mereghetti, S; Tiengo, A; Bignami, G F

    2006-08-11

    Observations with the Newton X-ray Multimirror Mission satellite show a strong periodic modulation at 6.67 +/- 0.03 hours of the x-ray source at the center of the 2000-year-old supernova remnant RCW 103. No fast pulsations are visible. If genetically tied to the supernova remnant, the source could either be an x-ray binary, composed of a compact object and a low-mass star in an eccentric orbit, or an isolated neutron star. In the latter case, the combination of its age and period would indicate that it is a peculiar magnetar, dramatically slowed down, possibly by a supernova debris disc. Both scenarios require nonstandard assumptions about the formation and evolution of compact objects in supernova explosions.

  20. Multiphoton Ionization as a clock to Reveal Molecular Dynamics with Intense Short X-ray Free Electron Laser Pulses

    CERN Document Server

    Fang, L; Murphy, B; Tarantelli, F; Kukk, E; Cryan, J P; Glownia, M; Bucksbaum, P H; Coffee, R N; Chen, M; Buth, C; Berrah, N

    2013-01-01

    We investigate molecular dynamics of multiple ionization in N2 through multiple core-level photoabsorption and subsequent Auger decay processes induced by intense, short X-ray free electron laser pulses. The timing dynamics of the photoabsorption and dissociation processes is mapped onto the kinetic energy of the fragments. Measurements of the latter allow us to map out the average internuclear separation for every molecular photoionization sequence step and obtain the average time interval between the photoabsorption events. Using multiphoton ionization as a tool of multiple-pulse pump-probe scheme, we demonstrate the modi?cation of the ionization dynamics as we vary the x-ray laser pulse duration.

  1. A Machine-learning approach to classification of X-ray sources

    Science.gov (United States)

    Hare, Jeremy; Kargaltsev, Oleg; Rangelov, Blagoy; Pavlov, George; Posselt, Bettina; Volkov, Igor

    2017-08-01

    Chandra and XMM-Newton X-ray observatories have serendipitously detected a large number of Galactic sources. Although their properties are automatically extracted and stored in catalogs, most of these sources remain unexplored. Classifying these sources can enable population studies on much larger scales and may also reveal new types of X-ray sources. For most of these sources the X-ray data alone are not enough to identify their nature, and multiwavelength data must be used. We developed a multiwavelength classification pipeline (MUWCLASS), which relies on supervised machine learning and a rich training dataset. We describe the training dataset, the pipeline and its testing, and will show/discuss how the code performs in different example environments, such as unidentified gamma-ray sources, supernova remnants, dwarf galaxies, stellar clusters, and the inner Galactic plane. We also discuss the application of this approach to the data from upcoming new X-ray observatories (e.g., eROSITA, Athena).

  2. The Chandra COSMOS Survey: III. Optical and Infrared Identification of X-ray Point Sources

    CERN Document Server

    Civano, F; Brusa, M; Comastri, A; Salvato, M; Zamorani, G; Aldcroft, T; Bongiorno, A; Capak, P; Cappelluti, N; Cisternas, M; Fiore, F; Fruscione, A; Hao, H; Kartaltepe, J; Koekemoer, A; Gilli, R; Impey, C D; Lanzuisi, G; Lusso, E; Mainieri, V; Miyaji, T; Lilly, S; Masters, D; Puccetti, S; Schawinski, K; Scoville, N Z; Silverman, J; Trump, J; Urry, M; Vignali, C; Wright, N J

    2012-01-01

    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.9 deg^2 of the COSMOS field down to limiting depths of 1.9 10^-16 erg cm^-2 s-1 in the 0.5-2 keV band, 7.3 10^-16 erg cm^-2 s^-1 in the 2-10 keV band, and 5.7 10^-16 erg cm^-2 s-1 in the 0.5-10 keV band. In this paper we report the i, K and 3.6micron identifications of the 1761 X-ray point sources. We use the likelihood ratio technique to derive the association of optical/infrared counterparts for 97% of the X-ray sources. For most of the remaining 3%, the presence of multiple counterparts or the faintness of the possible counterpart prevented a unique association. For only 10 X-ray sources we were not able to associate a counterpart, mostly due to the presence of a very bright field source close by. Only 2 sources are truly empty fields. Making use of the large number of X-ray sources, we update the "classic locus" of AGN and define a new locus containing 90% of the AGN in the survey with full band luminosi...

  3. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    Science.gov (United States)

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  4. The 172 ks Chandra Exposure of the LALA Bootes Field: X-Ray Source Catalog

    Science.gov (United States)

    Wang, J. X.; Malhotra, S.; Rhoads, J. E.; Brown, M. J. I.; Dey, A.; Heckman, T. M.; Jannuzi, B. T.; Norman, C. A.; Tiede, G. P.; Tozzi, P.

    2004-01-01

    We present an analysis of a deep, 172 ks Chandra observation of the Large Area Lyman Alpha survey (LALA) Bootes field, obtained with the Advanced CCD Imaging Spectrometer (ACIS-I) on board the Chandra X-Ray Observatory. This is one of the deepest Chandra images of the extragalactic sky; only the 2 Ms Chandra Deep Field North (CDF-N) and 1 Ms Chandra Deep Field South (CDF-S) are substantially deeper. In this paper we present the X-ray source catalog obtained from this image, along with an analysis of source counts and optical identifications. The X-ray image is composed of two individual observations obtained in 2002 and reaches 0.5-2.0 and 2.0-10.0 keV flux limits of 1.5×10-16 and 1.0×10-15 ergs cm-2 s-1, respectively, for point sources near the aim point. A total of 168 X-ray sources were detected: 160 in the 0.5-7.0 keV band, 132 in the 0.5-2.0 keV band, and 111 in the 2.0-7.0 keV band. The X-ray source counts were derived and compared with those from other Chandra deep surveys; the hard X-ray source density of the LALA Bootes field is 33% higher than that of CDF-S at the flux level of 2.0×10-15 ergs cm-2 s-1, confirming the field-to-field variances of the hard-band source counts reported by previous studies. The deep exposure resolves >~72% of the 2.0-10.0 keV X-ray background. Our primary optical data are R-band imaging from the NOAO Deep Wide-Field Survey (NDWFS), with a limiting magnitude of R=25.7 (Vega, 3 σ, and 4" diameter aperture). We have found optical counterparts for 152 of the 168 Chandra sources (90%); 144 of these are detected in the R-band image, and eight have optical counterparts in other bands (either BW, V, I, or z'). Among the R-band nondetected sources, not more than 11 of them can possibly be at z>5, based on the hardness ratios of their X-ray emission and nondetections in bluer bands (BW, V). The majority (~76%) of the X-ray sources are found to have log(fX/fR) within 0.0+/-1 these are believed to be AGNs. Most of the X-ray

  5. Soft x-ray imaging with incoherent sources

    Science.gov (United States)

    Wachulak, P.; Torrisi, A.; Ayele, M.; Bartnik, A.; Czwartos, J.; Wegrzyński, Ł.; Fok, T.; Parkman, T.; Vondrová, Š.; Turnová, J.; Odstrcil, M.; Fiedorowicz, H.

    2017-05-01

    In this work we present experimental, compact desk-top SXR microscope, the EUV microscope which is at this stage a technology demonstrator, and finally, the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources, employing a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths, respectively, are capable of imaging nanostructures with a sub-50 nm spatial resolution with relatively short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range, to produce an imprint of the internal structure of the sample in a thin layer of SXR light sensitive photoresist. Applications of such desk-top EUV and SXR microscopes for studies of variety of different samples - test objects for resolution assessment and other objects such as carbon membranes, DNA plasmid samples, organic and inorganic thin layers, diatoms, algae and carcinoma cells, are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.

  6. Location of the Norma transient with the HEAO 1 scanning modulation collimator. [X ray source in Norma Constellation

    Science.gov (United States)

    Fabbiano, G.; Gursky, H.; Schwartz, D. A.; Schwarz, J.; Bradt, H. V.; Doxsey, R. E.

    1978-01-01

    A precise position has been obtained for an X-ray transient source in Norma. The location uncertainty includes a variable star previously suggested to be the optical counterpart. This transient is associated with the steady X-ray source MX 1608-52 and probably with an X-ray burst source. A binary system containing a low-mass primary and a neutron-star or black-hole secondary of a few solar masses is consistent with the observations.

  7. Location of the Norma transient with the HEAO 1 scanning modulation collimator. [X ray source in Norma Constellation

    Science.gov (United States)

    Fabbiano, G.; Gursky, H.; Schwartz, D. A.; Schwarz, J.; Bradt, H. V.; Doxsey, R. E.

    1978-01-01

    A precise position has been obtained for an X-ray transient source in Norma. The location uncertainty includes a variable star previously suggested to be the optical counterpart. This transient is associated with the steady X-ray source MX 1608-52 and probably with an X-ray burst source. A binary system containing a low-mass primary and a neutron-star or black-hole secondary of a few solar masses is consistent with the observations.

  8. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  9. X-ray emission from the giant molecular clouds in the Galactic Center region and the discovery of new X-ray sources

    CERN Document Server

    Sidoli, L; Treves, A; Parmar, A N; Turolla, R; Favata, F

    2001-01-01

    We report the results of X-ray (2-10 keV) observations of the giant molecular clouds SgrB, SgrC and SgrD in the Galactic Center region, together with the discovery of the point-like source SAXJ1748.2-2808. The data have been obtained with the MECS instrument on the BeppoSAX satellite. The core of SgrB2 has an X-ray luminosity of 6x10^34 erg/s and its spectrum is characterized by a strong Fe emission line at 6.5 keV with an equivalent width of 2 keV. Faint diffuse X-ray emission is detected from SgrC and from the SNR G1.05-0.15 (SgrD). A new, unresolved source with a strong Fe line has been discovered in the SgrD region. This source, SAXJ1748.2-2808, is probably associated with a SiO and OH maser source at the Galactic Center distance. If so, its luminosity is 10^34 erg/s. We propose that the X-ray emission from SAX J1748.2-2808 is produced either by protostars or by a giant molecular cloud core. Emission from sources similar to SAX J1748.2-2808 could have an impact on the expected contribution on the observed...

  10. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources

    CERN Document Server

    Pinto, Ciro; Fabian, Andrew C

    2016-01-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies with an X-ray luminosity above 3x10^39 erg/s, thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, stellar-mass black holes ( 5 sigma, and blueshifted (~0.2c) absorption lines (5 sigma) in the high-resolution X-ray spectrum of the ultraluminous X-ray source NGC 1313 X-1. In a similar source, NGC 5408 X-1, we also detect emission lines at rest and blueshifted absorption. The blueshifted absorption lines must occur in a fast outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object is surrounded by powerful winds with an outflow velocity of about 0.2c as predicted by models of accreting supermassive black holes and hyper-accreting stellar mass black holes.

  11. X-ray Spectra and Pulse Frequency Changes in SAX J2103.5+4545

    CERN Document Server

    Baykal, A; Swank, J H

    2002-01-01

    The November 1999 outburst of the transient pulsar SAX J2103.5+4545 was monitored with the large area detectors of the Rossi X-Ray Timing Explorer until the pulsar faded after a year. The 358 s pulsar was spun up for 150 days, at which point the flux dropped quickly by a factor of 7, the frequency saturated and, as the flux continued to decline, a weak spin-down began. The pulses remained strong during the decay and the spin-up/flux correlation can be fit to the Ghosh and Lamb derivations for the spin-up caused by accretion from a thin, pressure-dominated disk, for a distance 3.2 kpc and a surface magnetic field 1.2 10^{13} Gauss. During the bright spin-up part of the outburst, the flux was subject to strong orbital modulation, peaking 3 days after periastron of the eccentric 12.68 day orbit, while during the faint part, there was little orbital modulation. The X-ray spectra were typical of accreting pulsars, describable by a cut-off power-law, with an emission line near the 6.4 keV of K alpha fluorescence fr...

  12. Rapid excited state structural reorganization captured by pulsed x-rays.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L. X.; Jennings, G.; Liu, T.; Gosztola, D. J.; Hessler, J. P.; Scaltrito, D. V.; Meyer, G. J.; Johns Hopkins Univ.

    2002-09-11

    Visible light excitation of [CuI(dmp)2](BArF), where dmp is 2,9-dimethyl-1,10-phenanthroline and BArF is tetrakis(3,5-bis(trifluoromethylphenyl))borate, in toluene produces a photoluminescent, metal-to-ligand charge-transfer (MLCT) excited state with a lifetime of 98 {+-} 5 ns. Probing this state within 14 ns after photoexcitation with pulsed X-rays establishes that a CuII center, borne in a CuI geometry, binds an additional ligand to form a five-coordinate complex with increased bond lengths and a coordination geometry of distorted trigonal bipyramid. The average Cu-N bond length increases in the excited state by 0.07 Angstroms. The transiently formed five-coordinate MLCT state is photoluminescent under the condition studied, indicating that the absorptive and emissive states have distinct geometries. The data represent the first X-ray characterization of a molecular excited state in fluid solution on a nanosecond time scale.

  13. Demonstration of the self-magnetic-pinch diode as an X-ray source for flash core-punch radiography.

    Energy Technology Data Exchange (ETDEWEB)

    Cordova, Steve Ray; Rovang, Dean Curtis; Portillo, Salvador; Oliver, Bryan Velten; Bruner, Nichelle Lee (Voss Scientific, Albuquerque, NM); Ziska, Derek Raymond (K-Tech Corporation, Albuquerque, NM)

    2007-10-01

    Minimization of the radiographic spot size and maximization of the radiation dose is a continuing long-range goal for development of electron beam driven X-ray radiography sources. In collaboration with members of the Atomic Weapons Establishment(AWE), Aldermaston UK, the Advanced Radiographic Technologies Dept. 1645 is conducting research on the development of X-ray sources for flash core-punch radiography. The Hydrodynamics Dept. at AWE has defined a near term radiographic source requirement for scaled core-punch experiments to be 250 rads{at}m with a 2.75 mm source spot-size. As part of this collaborative effort, Dept. 1645 is investigating the potential of the Self-Magnetic-Pinched (SMP) diode as a source for core-punch radiography. Recent experiments conducted on the RITS-6 accelerator [1,2] demonstrated the potential of the SMP diode by meeting and exceeding the near term radiographic requirements established by AWE. During the demonstration experiments, RITS-6 was configured with a low-impedance (40 {Omega}) Magnetically Insulated Transmission Line (MITL), which provided a 75-ns, 180-kA, 7.5-MeV forward going electrical pulse to the diode. The use of a low-impedance MITL enabled greater power coupling to the SMP diode and thus allowed for increased radiation output. In addition to reconfiguring the driver (accelerator), geometric changes to the diode were also performed which allowed for an increase in dose production without sacrificing the time integrated spot characteristics. The combination of changes to both the pulsed power driver and the diode significantly increased the source x-ray intensity.

  14. Discrete X-Ray Source Populations and Star-Formation History in Nearby Galaxies

    Science.gov (United States)

    Zezas, Andreas

    2004-01-01

    This program aims in understanding the connection between the discrete X-ray source populations observed in nearby galaxies and the history of star-formation in these galaxies. The ultimate goal is to use this knowledge in order to constrain X-ray binary evolution channels. For this reason although the program is primarily observational it has a significant modeling component. During the first year of this study we focused on the definition of a pilot sample of galaxies with well know star-formation histories. A small part of this sample has already been observed and we performed initial analysis of the data. However, the majority of the objects in our sample either have not been observed at all, or the detection limit of the existing observations is not low enough to probe the bulk of their young X-ray binary populations. For this reason we successfully proposed for additional Chandra observations of three targets in Cycle-5. These observations are currently being performed. The analysis of the (limited) archival data for this sample indicated that the X-ray luminosity functions (XLF) of the discrete sources in these galaxies may not have the same shape as is widely suggested. However, any solid conclusions are hampered by the small number of detected sources. For this reason during the second year of this study, we will try to extend the sample in order to include more objects in each evolutionary stage. In addition we are completing the analysis of the Chandra monitoring observations of the Antennae galaxies. The results from this work, apart from important clues on the nature of the most luminous sources (Ultra-luminous X-ray sources; ULXs) provide evidence that source spectral and/or temporal variability does not significantly affect the shape of their X-ray luminosity functions. This is particularly important for comparisons between the XLFs of different galaxies and comparisons with predictions from theoretical models. Results from this work have been

  15. The missing link between ultraluminous X-ray sources and metallicity

    CERN Document Server

    Mapelli, M

    2013-01-01

    The nature of ultraluminous X-ray sources (ULXs) is still debated. Recent studies show that metal-poor massive stars can collapse into massive stellar black holes (MSBHs), that is black holes with mass > 25 Msun. Such MSBHs are sufficiently massive to explain most ULXs without requiring substantial violations of the Eddington limit. The recent finding of an anti-correlation between metallicity of the environment and number of ULXs per galaxy supports this hypothesis. We present the results of recent N-body simulations, including metallicity dependent stellar evolution, and we discuss the main pathways to produce X-ray binaries powered by MSBHs.

  16. Scanning soft X-ray spectromicroscopy at the Pohang Light Source: commissioning results

    CERN Document Server

    Shin, H J

    2001-01-01

    A scanning spectromicroscopy facility has been installed at the undulator radiation beamline at the Pohang Light Source. The spectromicroscopy is operational in both the scanning transmission X-ray microscopy (STXM) and the scanning photoelectron microscopy (SPEM) modes. Currently, the measured X-ray spot size on the sample is about 0.4 mu m. The effective photon energy range of the STXM is 250-1000 eV and that of the SPEM is 400-1000 eV. The performance of the facility is presented in this report.

  17. Carbon nanotubes as electron source in an x-ray tube

    OpenAIRE

    H., Sugie; Masaki, Tanemura; V., Filip; K., Iwata; K., Takahashi; F., Okuyama

    2001-01-01

    Field emitters comprised of aligned carbon nanotubes are shown to be promising as a primary electron source in an x-ray tube working in a nonultrahigh vacuum ambience. At a pressure of 2×10-7Torr, the nanotube emitters continue to emit electrons for more than 1 h, and yield better resolved x-ray images than do thermionic emitters, independently of whether the sample is biological or nonbiological. The near-uniformity in energy distribution of electrons emitted from carbon nanotubes might be r...

  18. Condenser for Koehler-like illumination in transmission x-ray microscopes at undulator sources

    Science.gov (United States)

    Vogt, Ulrich; Lindblom, Magnus; Charalambous, Pambos; Kaulich, Burkhard; Wilhein, Thomas

    2006-05-01

    We report on a novel condenser for full-field transmission x-ray microscopes that use synchrotron radiation from an undulator source. The condenser produces a Koehler-like homogeneous intensity distribution in the sample plane and eliminates object illumination problems connected with the high degree of spatial coherence in an undulator beam. The optic consists of a large number of small linear diffraction gratings and is therefore relatively easy to manufacture. First imaging experiments with a prototype condenser were successfully performed with the Twinmic x-ray microscope at the Elettra synchrotron facility in Italy.

  19. Condenser for Koehler-like illumination in transmission x-ray microscopes at undulator sources.

    Science.gov (United States)

    Vogt, Ulrich; Lindblom, Magnus; Charalambous, Pambos; Kaulich, Burkhard; Wilhein, Thomas

    2006-05-15

    We report on a novel condenser for full-field transmission x-ray microscopes that use synchrotron radiation from an undulator source. The condenser produces a Koehler-like homogeneous intensity distribution in the sample plane and eliminates object illumination problems connected with the high degree of spatial coherence in an undulator beam. The optic consists of a large number of small linear diffraction gratings and is therefore relatively easy to manufacture. First imaging experiments with a prototype condenser were successfully performed with the Twinmic x-ray microscope at the Elettra synchrotron facility in Italy.

  20. Diamond planar refractive lenses for third- and fourth-generation X-ray sources.

    Science.gov (United States)

    Nöhammer, Bernd; Hoszowska, Joanna; Freund, Andreas K; David, Christian

    2003-03-01

    The fabrication and testing of planar refractive hard X-ray lenses made from bulk CVD diamond substrates is reported. The lens structures were generated by electron-beam lithography and transferred by reactive-ion etching into the diamond. Various lens designs were fabricated and tested at 12.4 and 17.5 keV photon energy. Efficiencies of up to 71% and gains of up to 26 were achieved. A line focus of 3.2 micro m (FWHM) was measured. These lenses should be able to withstand the extreme flux densities expected at the planned fourth-generation X-ray sources.