WorldWideScience

Sample records for pulse tube cryocooler

  1. Raytheon Stirling/pulse Tube Cryocooler Development

    Science.gov (United States)

    Kirkconnell, C. S.; Hon, R. C.; Kesler, C. H.; Roberts, T.

    2008-03-01

    The first generation flight-design Stirling/pulse tube "hybrid" two-stage cryocooler has entered initial performance and environmental testing. The status and early results of the testing are presented. Numerous improvements have been implemented as compared to the preceding brassboard versions to improve performance, extend life, and enhance launch survivability. This has largely been accomplished by incorporating successful flight-design features from the Raytheon Stirling one-stage cryocooler product line. These design improvements are described. In parallel with these mechanical cryocooler development efforts, a third generation electronics module is being developed that will support hybrid Stirling/pulse tube and Stirling cryocoolers. Improvements relative to the second generation design relate to improved radiation hardness, reduced parts count, and improved vibration cancellation capability. Progress on the electronics is also presented.

  2. Study of low vibration 4 K pulse tube cryocoolers

    Science.gov (United States)

    Xu, Mingyao; Nakano, Kyosuke; Saito, Motokazu; Takayama, Hirokazu; Tsuchiya, Akihiro; Maruyama, Hiroki

    2012-06-01

    Sumitomo Heavy Industries, Ltd. (SHI) has been continuously improving the efficiency and reducing the vibration of a 4 K pulse tube cryocooler. One advantage of a pulse tube cryocooler over a GM cryocooler is low vibration. In order to reduce vibration, both the displacement and the acceleration have to be reduced. The vibration acceleration can be reduced by splitting the valve unit from the cold head. One simple way to reduce vibration displacement is to increase the wall thickness of the tubes on the cylinder. However, heat conduction loss increases while the wall thickness increases. To overcome this dilemma, a novel concept, a tube with non-uniform wall thickness, is proposed. Theoretical analysis of this concept, and the measured vibration results of an SHI lowvibration pulse tube cryocooler, will be introduced in this paper.

  3. A high efficiency hybrid stirling-pulse tube cryocooler

    Directory of Open Access Journals (Sweden)

    Xiaotao Wang

    2015-03-01

    Full Text Available This article presented a hybrid cryocooler which combines the room temperature displacers and the pulse tube in one system. Compared with a traditional pulse tube cryocooler, the system uses the rod-less ambient displacer to recover the expansion work from the pulse tube cold end to improve the efficiency while still keeps the advantage of the pulse tube cryocooler with no moving parts at the cold region. In the meantime, dual-opposed configurations for both the compression pistons and displacers reduce the cooler vibration to a very low level. In the experiments, a lowest no-load temperature of 38.5 K has been obtained and the cooling power at 80K was 26.4 W with an input electric power of 290 W. This leads to an efficiency of 24.2% of Carnot, marginally higher than that of an ordinary pulse tube cryocooler. The hybrid configuration herein provides a very competitive option when a high efficiency, high-reliability and robust cryocooler is desired.

  4. Air liquide's space pulse tube cryocooler systems

    Science.gov (United States)

    Trollier, T.; Tanchon, J.; Buquet, J.; Ravex, A.

    2017-11-01

    Thanks to important development efforts completed with ESA funding, Air Liquide Advanced Technology Division (AL/DTA), is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as Meteosat Third Generation (MTG), SIFTI, etc… The Miniature Pulse Tube Cooler (MPTC) is lifting up to 2.47W@80K with 50W compressor input power and 10°C rejection temperature. The weight is 2.8 kg. The Large Pulse Tube Cooler (LPTC) is providing 2.3W@50K for 160W input power and 10°C rejection temperature. This product is weighing 5.1 kg. The two pulse tube coolers thermo-mechanical units are qualified against environmental constraints as per ECSS-E-30. They are both using dual opposed pistons flexure bearing compressor with moving magnet linear motors in order to ensure very high lifetime. The associated Cooler Drive Electronics is also an important aspect specifically regarding the active control of the cooler thermo-mechanical unit during the launch phase and the active reduction of the vibrations induced by the compressor (partly supported by the French Agency CNES). This paper details the presentation of the two Pulse Tube Coolers together with the Cooler Drive Electronics aspects.

  5. A miniature pulse tube cryocooler used in a superspectral imager

    Science.gov (United States)

    Jiang, Zhenhua; Wu, Yinong

    2017-05-01

    In this paper, we describe a hihg0 frequency pulse tube cryocooler used in a superspectral imager to be launched in 2020. The superspectral imager is a field-dividing optical imaging system and uses 14 sets of integrated IR detector cryocooler dewar assembly. For the requirements of less heat loss an smaller size, each set is highly integrated by directly mounting the IR dectector's sapphire substrate on the pulse tube's cold tip, and welding the dewar's housing to the flange of the cold finger. Driven by a pair of moving magnet linear motors, the dual-opposed piston compressor of the croycooler is running at 120Hz. Filled with customized stainless screens in the regenerator, the cryolooler reaches 8.1% carnot efficiency at the cooling power of 1W@80K with 34Wac input power.

  6. A pulse tube cryocooler with a cold reservoir

    Science.gov (United States)

    Zhang, X. B.; Zhang, K. H.; Qiu, L. M.; Gan, Z. H.; Shen, X.; Xiang, S. J.

    2013-02-01

    Phase difference between pressure wave and mass flow is decisive to the cooling capacity of regenerative cryocoolers. Unlike the direct phase shifting using a piston or displacer in conventional Stirling or GM cryocoolers, the pulse tube cyocooler (PTC) indirectly adjusts the cold phase due to the absence of moving parts at the cold end. The present paper proposed and validated theoretically and experimentally a novel configuration of PTC, termed cold reservoir PTC, in which a reservoir together with an adjustable orifice is connected to the cold end of the pulse tube. The impedance from the additional orifice to the cold end helps to increase the mass flow in phase with the pressure wave at the cold end. Theoretical analyses with the linear model for the orifice and double-inlet PTCs indicate that the cooling performance can be improved by introducing the cold reservoir. The preliminary experiments with a home-made single-stage GM PTC further validated the results on the premise of minor opening of the cold-end orifice.

  7. Development of Pulse Tube Cryocoolers at SITP for Space Application

    Science.gov (United States)

    Zhang, Ankuo; Wu, Yinong; Liu, Shaoshuai; Yu, Huiqin; Yang, Baoyu

    2018-05-01

    Over the last 10 years, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, has developed very high-efficiency pulse tube cryocoolers (PTCs) for aerospace applications. These PTCs can provide cooling power from milliwatt scale to tens of watts over a range of temperatures from 30 to 170 K and can be used to cool a variety of detectors in space applications (such as quantum interference devices, radiometers and ocean color sensors) that must operate at a specific cryogenic temperature to increase the signal-to-noise ratio, sensitivity and optical resolution. This paper reviews the development of single-stage PTCs over a range of weights from 1.6 to 12 kg that offer cooling powers at the cold temperature range from 40 to 170 K. In addition, a two-stage 30 K-PTC is under development.

  8. Design and test of the Stirling-type pulse tube cryocooler

    Science.gov (United States)

    Hong, Yong-Ju; Ko, Junseok; Kim, Hyo-Bong; Yeom, Han-Kil; In, Sehwan; Park, Seong-Je

    2017-12-01

    Stirling type pulse tube cryocoolers are very attractive for cooling of diverse application because it has it has several inherent advantages such as no moving part in the cold end, low manufacturing cost and long operation life. To develop the Stirling-type pulse tube cryocooler, we need to design a linear compressor to drive the pulse tube cryocooler. A moving magnet type linear motor of dual piston configuration is designed and fabricated, and this compressor could be operated with the electric power of 100 W and the frequency up to 60 Hz. A single stage coaxial type pulse tube cold finger aiming at over 1.5 W at 80K is built and tested with the linear compressor. Experimental investigations have been conducted to evaluate their performance characteristics with respect to several parameters such as the phase shifter, the charging pressure and the operating frequency of the linear compressor.

  9. Influence of minor geometric features on Stirling pulse tube cryocooler performance

    Science.gov (United States)

    Fang, T.; Spoor, P. S.; Ghiaasiaan, S. M.; Perrella, M.

    2017-12-01

    Minor geometric features and imperfections are commonly introduced into the basic design of multi-component systems to simplify or reduce the manufacturing expense. In this work, the cooling performance of a Stirling type cryocooler was tested in different driving powers, cold-end temperatures and inclination angles. A series of Computational Fluid Dynamics (CFD) simulations based on a prototypical cold tip was carried out. Detailed CFD model predictions were compared with the experiment and were used to investigate the impact of such apparently minor geometric imperfections on the performance of Stirling type pulse tube cryocoolers. Predictions of cooling performance and gravity orientation sensitivity were compared with experimental results obtained with the cryocooler prototypes. The results indicate that minor geometry features in the cold tip assembly can have considerable negative effects on the gravity orientation sensitivity of a pulse tube cryocooler.

  10. Ultra-low-vibration pulse-tube cryocooler system - cooling capacity and vibration

    Science.gov (United States)

    Ikushima, Yuki; Li, Rui; Tomaru, Takayuki; Sato, Nobuaki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira

    2008-09-01

    This report describes the development of low-vibration cooling systems with pulse-tube (PT) cryocoolers. Generally, PT cryocoolers have the advantage of lower vibrations in comparison to those of GM cryocoolers. However, cooling systems for the cryogenic laser interferometer observatory (CLIO), which is a gravitational wave detector, require an operational vibration that is sufficiently lower than that of a commercial PT cryocooler. The required specification for the vibration amplitude in cold stages is less than ±1 μm. Therefore, during the development of low-vibration cooling systems for the CLIO, we introduced advanced countermeasures for commercial PT cryocoolers. The cooling performance and the vibration amplitude were evaluated. The results revealed that 4 K and 80 K PT cooling systems with a vibration amplitude of less than ±1 μm and cooling performance of 4.5 K and 70 K at heat loads of 0.5 W and 50 W, respectively, were developed successfully.

  11. Analysis and comparison of different phase shifters for Stirling pulse tube cryocooler

    DEFF Research Database (Denmark)

    Lei, Tian; Pfotenhauer, John M.; Zhou, Wenjie

    2016-01-01

    Investigations of phase shifters and power recovery mechanisms are of sustainable interest for developing Stirling pulse tube cryocoolers (SPTC) with higher power density, more compact design and higher efficiency. This paper investigates the phase shifting capacity and the applications of four...

  12. Recent development status of stirling type pulse tube cryocooler for HTS

    International Nuclear Information System (INIS)

    Hiratsuka, Y; Nakano, K; Kato, T

    2014-01-01

    Sumitomo Heavy Industries, Ltd. (SHI) has been developing a high power stirling type pulse tube cryocooler. For the purpose of cooling high-temperature superconductor (HTS) devices, such as superconductor motor, SMES and current fault limiter, requested specifications from the devices to a cryocooler are compact size, light weight, high efficiency and high reliability. Especially, the cryocooler must be demanded COP > 0.1 in the efficiency. The experimental results of prototype pulse tube cryocooler were reported in June 2012 [1]. For an In-line type expander, the cooling capacity was 210 W at 77 K and the minimum temperature was 37 K when the compressor input power was 3.8 kW and the operating frequency was 49 Hz. Accordingly, COP was about 0.055. Moreover, for miniaturization a U type expander was tested and the performance is about 10 % less than that of an In-line type expander. After that, we have estimated that the cooling performance is influenced by the environment such as the effect of the pulse-tube inclination, the temperature and the flowing quantity of cooling water. The detailed results are reported in this paper.

  13. High efficiency, low frequency linear compressor proposed for Gifford-McMahon and pulse tube cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Höhne, Jens [Pressure Wave Systems GmbH, Häberlstr. 8, 80337 Munich (Germany)

    2014-01-29

    In order to reduce the amount of greenhouse gas emissions, which are most likely the cause of substantial global warming, a reduction of overall energy consumption is crucial. Low frequency Gifford-McMahon and pulse tube cryocoolers are usually powered by a scroll compressor together with a rotary valve. It has been theoretically shown that the efficiency losses within the rotary valve can be close to 50%{sup 1}. In order to eliminate these losses we propose to use a low frequency linear compressor, which directly generates the pressure wave without using a rotary valve. First results of this development will be presented.

  14. A cryogenic tensile testing apparatus for micro-samples cooled by miniature pulse tube cryocooler

    International Nuclear Information System (INIS)

    Chen, L B; Liu, S X; Gu, K X; Zhou, Y; Wang, J J

    2015-01-01

    This paper introduces a cryogenic tensile testing apparatus for micro-samples cooled by a miniature pulse tube cryocooler. At present, tensile tests are widely applied to measure the mechanical properties of materials; most of the cryogenic tensile testing apparatus are designed for samples with standard sizes, while for non-standard size samples, especially for microsamples, the tensile testing cannot be conducted. The general approach to cool down the specimens for tensile testing is by using of liquid nitrogen or liquid helium, which is not convenient: it is difficult to keep the temperature of the specimens at an arbitrary set point precisely, besides, in some occasions, liquid nitrogen, especially liquid helium, is not easily available. To overcome these limitations, a cryogenic tensile testing apparatus cooled by a high frequency pulse tube cryocooler has been designed, built and tested. The operating temperatures of the developed tensile testing apparatus cover from 20 K to room temperature with a controlling precision of ±10 mK. The apparatus configurations, the methods of operation and some cooling performance will be described in this paper. (paper)

  15. Study on the flow nonuniformity in a high capacity Stirling pulse tube cryocooler

    Science.gov (United States)

    You, X.; Zhi, X.; Duan, C.; Jiang, X.; Qiu, L.; Li, J.

    2017-12-01

    High capacity Stirling-type pulse tube cryocoolers (SPTC) have promising applications in high temperature superconductive motor and gas liquefaction. However, with the increase of cooling capacity, its performance deviates from well-accepted one-dimensional model simulation, such as Sage and Regen, mainly due to the strong field nonuniformity. In this study, several flow straighteners placed at both ends of the pulse tube are investigated to improve the flow distribution. A two-dimensional model of the pulse tube based on the computational fluid dynamics (CFD) method has been built to study the flow distribution of the pulse tube with different flow straighteners including copper screens, copper slots, taper transition and taper stainless slot. A SPTC set-up which has more than one hundred Watts cooling power at 80 K has been built and tested. The flow straighteners mentioned above have been applied and tested. The results show that with the best flow straightener the cooling performance of the SPTC can be significantly improved. Both CFD simulation and experiment show that the straighteners have impacts on the flow distribution and the performance of the high capacity SPTC.

  16. High efficiency 40 K single-stage Stirling-type pulse tube cryocooler

    Science.gov (United States)

    Wu, X. L.; Chen, L. B.; Pan, C. Z.; Cui, C.; Wang, J. J.; Zhou, Y.

    2017-12-01

    A high efficiency single-stage Stirling-type coaxial pulse tube cryocooler (SPTC) operating at around 40 K has been designed, built and tested. The double-inlet and the inertance tubes together with the gas reservoir were adopted as the phase shifters. Under the conditions of 2.5 MPa charging pressure and 30 Hz operating frequency, the prototype has achieved a no-load temperature of 23.8 K with 330 W of electric input power at a rejection temperature of 279 K. When the input power increases to 400 W, it can achieve a cooling capacity of 4.7 W/40 K while rejecting heat at 279 K yielding an efficiency of 7.02% relative to Carnot. It achieves a cooling capacity of 5 W/40 K with an input power of 450 W. It takes 10 minutes for the SPTC to cool to its no-load temperature of 40 K from 295 K.

  17. The study on a gas-coupled two-stage stirling-type pulse tube cryocooler

    Science.gov (United States)

    Wu, X. L.; Chen, L. B.; Zhu, X. S.; Pan, C. Z.; Guo, J.; Wang, J. J.; Zhou, Y.

    2017-12-01

    A two-stage gas-coupled Stirling-type pulse tube cryocooler (SPTC) driven by a linear dual-opposed compressor has been designed, manufactured and tested. Both of the stages adopted coaxial structure for compactness. The effect of a cold double-inlet at the second stage on the cooling performance was investigated. The test results show that the cold double-inlet will help to achieve a lower cooling temperature, but it is not conducive to achieving a higher cooling capacity. At present, without the cold double-inlet, the second stage has achieved a no-load temperature of 11.28 K and a cooling capacity of 620 mW/20 K with an input electric power of 450 W. With the cold double-inlet, the no-load temperature is lowered to 9.4 K, but the cooling capacity is reduced to 400 mW/20 K. The structure of the developed cryocooler and the influences of charge pressure, operating frequency and hot end temperature will also be introduced in this paper.

  18. Investigation of a high frequency pulse tube cryocooler driven by a standing wave thermoacoustic engine

    International Nuclear Information System (INIS)

    Boroujerdi, A.A.; Ziabasharhagh, M.

    2014-01-01

    Highlights: • A nonlinear numerical model of a high frequency TADPTC has been developed. • The finite volume method has been used for discretization of governing equations. • The self-excitation process has been simulated very well. • The effects of APAT on the performance of the device have been investigated. • Lagrangian approach has been used to trace the thermodynamic cycle of gas parcels. - Abstract: In this work, a typical thermoacoustically driven pulse tube cooler as a no-moving part device has been investigated by a numerical method. A standing wave thermoacoustic engine as a prime mover in coupled with an inertance tube pulse tube cryocooler has been modeled. Nonlinear equations of unsteady one-dimensional compressible flow have been solved by the finite volume method. The model presents an important step towards the development of nonlinear simulation tools for the high amplitude thermoacoustic systems that are needed for practical use. The results of the computations show that the self-excited oscillations are well accompanied by the increasing of the pressure amplitude. The necessity of implementation of a nonlinear model to investigate such devices has been proven. The effect of APAT length as an amplifier coupler on the performance of the cooler has been investigated. Furthermore, by using Lagrangian approach, thermodynamic cycle of gas parcels has been attained

  19. Characterization of a low frequency magnetic noise from a two stage pulse tube cryocooler

    International Nuclear Information System (INIS)

    Eshraghi, Mohamad Javad; Sasada, Ichiro; Kim, Jin Mok; Lee, Yong Ho

    2008-01-01

    Magnetic noise of a two stage pulse tube cryocooler(PT) has been measured by a fundamental mode orthogonal fluxgate magnetometer and by a LTS SQUID gradiometer. The magnetometer was installed in a Dewar made of aluminum at 12 cm apart from a section containing magnetic regenerative materials of the PT. The magnetic noise shows a clear peak at 1.8 Hz which is the fundamental frequency of the He gas pumping rate. The 1.8 Hz magnetic noise took a peak, during the cooling process, when the cold stage temperature was at (or close to) 12 K, which resembles the variation of the temperature of the second cold stage of 1.8 Hz. Hence we attributed the main source of this magnetic noise to the temperature dependency of magnetic susceptibility of magnetic regenerative materials such as Er3Ni and HoCu2 used at the second stage. We pointed out that the superconducting magnetic shield by lead sheets reduced the interfering magnetic noise generated from this part. With this scheme, the magnetic noise amplitude measured with the first order gradiometer DROS, mounted in the vicinity of the magnetic regenerator, when the noise amplitude is minimum, which could be found from the fluxgate measurement results, was less than 500 pT peak to peak. Whereas without lead shielding the noise level was higher than the dynamic range of SQUID instrumentations which is around ±10nT. (author)

  20. Operating characteristics of a three-stage Stirling pulse tube cryocooler operating around 5 K

    Science.gov (United States)

    Qiu, L. M.; Cao, Q.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Yu, Y. B.; Liu, Y.; Zhang, X. J.; Pfotenhauer, J. M.

    2012-07-01

    A Stirling pulse tube cryocooler (SPTC) operating at the liquid-helium temperatures represents an excellent prospect for satisfying the requirements of space applications because of its compactness, high efficiency and reliability. However, the working mechanism of a 4 K SPTC is more complicated than that of the Gifford McMahon (GM) PTC that operates at the relatively low frequency of 1-2 Hz, and has not yet been well understood. In this study, the primary operating parameters, including frequency, charge pressure, input power and precooling temperature, are systematically investigated in a home-developed separate three-stage SPTC. The investigation demonstrates that the frequency and precooling temperature are closely coupled via phase shift. In order to improve the cooling capacity it is important to lower the frequency and the precooling temperature simultaneously. In contrast to the behavior predicted by previous studies, the pressure dependence of the gas properties results in an optimized pressure that decreases significantly as the temperature is lowered. The third stage reaches a lowest temperature of 4.97 K at 29.9 Hz and 0.91 MPa. A cooling power of 25 mW is measured at 6.0 K. The precooling temperature is 23.7 K and the input power is 100 W.

  1. CFD modeling and experimental verification of oscillating flow and heat transfer processes in the micro coaxial Stirling-type pulse tube cryocooler operating at 90-170 Hz

    Science.gov (United States)

    Zhao, Yibo; Yu, Guorui; Tan, Jun; Mao, Xiaochen; Li, Jiaqi; Zha, Rui; Li, Ning; Dang, Haizheng

    2018-03-01

    This paper presents the CFD modeling and experimental verifications of oscillating flow and heat transfer processes in the micro coaxial Stirling-type pulse tube cryocooler (MCSPTC) operating at 90-170 Hz. It uses neither double-inlet nor multi-bypass while the inertance tube with a gas reservoir becomes the only phase-shifter. The effects of the frequency on flow and heat transfer processes in the pulse tube are investigated, which indicates that a low enough frequency would lead to a strong mixing between warm and cold fluids, thereby significantly deteriorating the cooling performance, whereas a high enough frequency would produce the downward sloping streams flowing from the warm end to the axis and almost puncturing the gas displacer from the warm end, thereby creating larger temperature gradients in radial directions and thus undermining the cooling performance. The influence of the pulse tube length on the temperature and velocity when the frequencies are much higher than the optimal one are also discussed. A MCSPTC with an overall mass of 1.1 kg is worked out and tested. With an input electric power of 59 W and operating at 144 Hz, it achieves a no-load temperature of 61.4 K and a cooling capacity of 1.0 W at 77 K. The changing tendencies of tested results are in good agreement with the simulations. The above studies will help to thoroughly understand the underlying mechanism of the inertance MCSPTC operating at very high frequencies.

  2. Design of a large heat lift 40 K to 80 K pulse tube cryocooler for space applications

    NARCIS (Netherlands)

    Trollier, T.; Tanchon, J.; Buquet, J.; Ravex, A.; Charles, I.; Coynel, A.; Duband, L.; Ercolani, E.; Guillemet, L.; Mullié, J.; Dam, J.A.M.; Benschop, T.; Linder, M.; Miller, S.D.; Ross, Jr. R.G.

    2007-01-01

    A Large heat lift Pulse Tube Cooler (LPTC) is under development in partnership with AL/ DTA, CEA/SBT and THALES Cryogenics. The engineering model is expected to provide 2.3 W at 50 K at a 10 °C rejection temperature and 160 watts of electrical input power to the compressor. The split coaxial design

  3. Experimental study on a co-axial pulse tube cryocooler driven by a small thermoacoustic stirling engine

    Science.gov (United States)

    Chen, M.; Ju, L. Y.; Hao, H. X.

    2014-01-01

    Small scale thermoacoustic heat engines have advantages in fields like space exploration and domestic applications considering small space occupation and ease of transport. In the present paper, the influence of resonator diameter on the general performance of a small thermoacoustic Stirling engine was experimentally investigated using helium as the working gas. Reducing the diameter of the resonator appropriately is beneficial for lower onset heating temperature, lower frequency and higher pressure amplitude. Based on the pressure distribution in the small thermoacoustic engine, an outlet for the acoustic work transmission was made to combine the engine and a miniature co-axial pulse tube cooler. The cooling performance of the whole refrigeration system without any moving part was tested. Experimental results showed that further efforts are required to optimize the engine performance and its match with the co-axial pulse tube cooler in order to obtain better cooling performance, compared with its original operating condition, driven by a traditional electrical linear compressor.

  4. Effect of Low Temperature on a 4 W/60 K Pulse-Tube Cryocooler for Cooling HgCdTe Detector

    Science.gov (United States)

    Zhang, Ankuo; Liu, Shaoshuai; Wu, Yinong

    2018-04-01

    Temperature is an extremely important parameter for the material of the space-borne infrared detector. To cool an HgCdTe-infrared detector, a Stirling-type pulse-tube cryocooler (PTC) has been developed based on a great deal of numerical simulations, which are performed to investigate the thermodynamic behaviors of the PTC. The effects of different low temperatures are presented to analyze different energy flows, losses, phase shifts, and impedance matching of the PTC at a temperature range of 40-120 K, where woven wire screens are used. Finally, a high-efficiency coaxial PTC has been designed, built, and tested, operating around 60 K after a number of theoretical and experimental studies. The PTC can offer a no-load refrigeration temperature of 40 K with an input electric power of 150 W, and a cooling power of 4 W at 60 K is obtained with Carnot efficiency of 12%. In addition, a comparative study of simulation and experiment has been carried out, and some studies on reject temperatures have been presented for a thorough understanding of the PTC system.

  5. Advances in single- and multi-stage Stirling-type pulse tube cryocoolers for space applications in NLIP/SITP/CAS

    Science.gov (United States)

    Dang, Haizheng; Tan, Jun; Zha, Rui; Li, Jiaqi; Zhang, Lei; Zhao, Yibo; Gao, Zhiqian; Bao, Dingli; Li, Ning; Zhang, Tao; Zhao, Yongjiang; Zhao, Bangjian

    2017-12-01

    This paper presents a review of recent advances in single- and multi-stage Stirling-type pulse tube cryocoolers (SPTCs) for space applications developed at the National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (NLIP/SITP/CAS). A variety of single-stage SPTCs operating at 25-150 K have been developed, including several mid-sized ones operating at 80-110 K. Significant progress has been achieved in coolers operating at 30-40 K which use common stainless steel meshes as regenerator matrices. Another important advance is the micro SPTCs with an overall mass of 300-800 g operating at high frequencies varying from 100 Hz to 400 Hz. The main purpose of developing two-stage SPTCs is to simultaneously acquire cooling capacities at both stages, obviating the need for auxiliary precooling in various applications. The three-stage SPTCs are developed mainly for applications at around 10 K, which are also used for precooling the J-T coolers to achieve further lower temperatures. The four-stage SPTCs are developed to directly achieve the liquid helium temperature for cooling space low-Tc superconducting devices and for the deep space exploration as well. Several typical development programs are described and an overview of the cooler performances is presented.

  6. Thermodynamical aspects of pulse tubes

    NARCIS (Netherlands)

    Waele, de A.T.A.M.; Steijaert, P.P.; Gijzen, J.

    1997-01-01

    The cooling power of cryocoolers is determined by the work done by the compressor and the entropy produced by the irreversible processes in the various components of the system. In this paper we discuss the thermodynamics of pulse tubes, but many of the relationships are equally valid for other

  7. Theoretical and experimental investigations on the cooling capacity distributions at the stages in the thermally-coupled two-stage Stirling-type pulse tube cryocooler without external precooling

    Science.gov (United States)

    Tan, Jun; Dang, Haizheng

    2017-03-01

    The two-stage Stirling-type pulse tube cryocooler (SPTC) has advantages in simultaneously providing the cooling powers at two different temperatures, and the capacity in distributing these cooling capacities between the stages is significant to its practical applications. In this paper, a theoretical model of the thermally-coupled two-stage SPTC without external precooling is established based on the electric circuit analogy with considering real gas effects, and the simulations of both the cooling performances and PV power distribution between stages are conducted. The results indicate that the PV power is inversely proportional to the acoustic impedance of each stage, and the cooling capacity distribution is determined by the cold finger cooling efficiency and the PV power into each stage together. The design methods of the cold fingers to achieve both the desired PV power and the cooling capacity distribution between the stages are summarized. The two-stage SPTC is developed and tested based on the above theoretical investigations, and the experimental results show that it can simultaneously achieve 0.69 W at 30 K and 3.1 W at 85 K with an electric input power of 330 W and a reject temperature of 300 K. The consistency between the simulated and the experimental results is observed and the theoretical investigations are experimentally verified.

  8. 8th International Cryocooler Conference

    CERN Document Server

    1995-01-01

    The last few years have witnessed a substantial maturing of long life Stirling-cycle cryocoolers built upon the heritage of the flexure-bearing cryocoolers from Oxford University, and have seen the emergence of mature pulse tube cryocoolers competing head-to-head with the Stirling cryocoolers. Hydrogen sorption cryocoolers, Gifford-McMahon cryocoolers with rare earth regenerators, and helium Joule-Thomson cryocoolers have also made tremendous progress in opening up applications in the 4 K to 10 K temperature range. Tactical Stirling cryocoolers, now commonplace in the defense industry, are finding application in a number of cost­ constrained commercial applications and space missions, and are achieving ever longer lives as they move to linear-drive, clearance-seal compressors. Building on this expanding availability of commercially viable cryocoolers, numerous new applications are being enabled; many of these involve infrared imaging systems, and high­ temperature superconductors in the medical and ...

  9. The development of a low vibration, long life pulse tube employing flexural bearings

    International Nuclear Information System (INIS)

    Olson, D.B.; Riggle, P.; Gedeon, D.

    1992-01-01

    This paper reports on a 1/3 watt, 80 K Technology Demonstration Model (TDM) pulse tube cryocooler which has been developed by Stirling Technology Company (STC). The pulse tube expander has no moving parts, making it simpler, more reliable, lower in cost, and lower in vibration than a Stirling expander. The pulse tube expander was designed, built, and tested with SBIR Phase I funding from NASA Ames Research Center. The pulse tube expander was driven using an existing dual opposed compressor module from a TDM Stirling cryocooler. Two numerical models were developed for pulse tube cryocoler design, evaluation, and analysis

  10. Acoustic cryocooler

    International Nuclear Information System (INIS)

    Swift, G.W.; Martin, R.A.; Radebaugh, R.

    1990-01-01

    This patent describes an acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effect to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15--60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintain a cooling load of 5 W at 80 K

  11. Suppression of acoustic streaming in tapered pulse tubes

    International Nuclear Information System (INIS)

    Olson, J.R.; Swift, G.W.

    1998-01-01

    In a pulse tube cryocooler, the gas in the pulse tube can be thought of as an insulating piston, transmitting pressure and velocity from the cold heat exchanger to the hot end of the pulse tube. Unfortunately, convective heat transfer can carry heat from the hot end to the cold end and reduce the net cooling power. Here, the authors discuss one driver of such convection: steady acoustic streaming as generated by interactions between the boundary and the oscillating pressure, velocity, and temperature. Using a perturbation method, they have derived an analytical expression for the streaming in a tapered pulse tube with axially varying mean temperature in the acoustic boundary layer limit. The calculations showed that the streaming depends strongly on the taper angle, the ratio of velocity and pressure amplitudes, and the phase between the velocity and pressure, but it depends only weakly on the mean temperature profile and is independent of the overall oscillatory amplitude. With the appropriate tapering of the tube, streaming can be eliminated for a particular operating condition. Experimentally, the authors have demonstrated that an orifice pulse tube cryocooler with the calculated zero-streaming taper has more cooling power than one with either a cylindrical tube or a tapered pulse tube with twice the optimum taper angle

  12. Thermal Analysis of Cryocooler-Cooled Bi2223 Pulsed Coil

    International Nuclear Information System (INIS)

    Miyazaki, H; Chigusa, S; Tanaka, I; Iwakuma, M; Funaki, K; Hayashi, H; Tomioka, A

    2006-01-01

    We fabricated a cryocooler-cooled Bi2223 superconducting pulsed coil and experimentally studied thermal runaway in dc or ac operation. We carried out numerical simulation of thermal properties of the coil in order to explain thermal runaway of the coil. Firstly, we analyzed the total heat generation of flux-flow loss and ac loss inside the winding from the experimental results of the external field losses and the E-J characteristics for the Bi2223 strands. Secondly, we numerically simulated the thermal properties by using 2- dimensional heat conduction equation with axial symmetry. The numerical simulation shows the relation between the initiation of thermal runaway and the temperature distribution with highly concentrated heat source in the winding. We have a semi-quantitative agreement between the numerical results and the experimental ones for the condition of the thermal runaway

  13. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    International Nuclear Information System (INIS)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models

  14. Method for estimating off-axis pulse tube losses

    Science.gov (United States)

    Fang, T.; Mulcahey, T. I.; Taylor, R. P.; Spoor, P. S.; Conrad, T. J.; Ghiaasiaan, S. M.

    2017-12-01

    Some Stirling-type pulse tube cryocoolers (PTCs) exhibit sensitivity to gravitational orientation and often exhibit significant cooling performance losses unless situated with the cold end pointing downward. Prior investigations have indicated that some coolers exhibit sensitivity while others do not; however, a reliable method of predicting the level of sensitivity during the design process has not been developed. In this study, we present a relationship that estimates an upper limit to gravitationally induced losses as a function of the dimensionless pulse tube convection number (NPTC) that can be used to ensure that a PTC would remain functional at adverse static tilt conditions. The empirical relationship is based on experimental data as well as experimentally validated 3-D computational fluid dynamics simulations that examine the effects of frequency, mass flow rate, pressure ratio, mass-pressure phase difference, hot and cold end temperatures, and static tilt angle. The validation of the computational model is based on experimental data collected from six commercial pulse tube cryocoolers. The simulation results are obtained from component-level models of the pulse tube and heat exchangers. Parameter ranges covered in component level simulations are 0-180° for tilt angle, 4-8 for length to diameter ratios, 4-80 K cold tip temperatures, -30° to +30° for mass flow to pressure phase angles, and 25-60 Hz operating frequencies. Simulation results and experimental data are aggregated to yield the relationship between inclined PTC performance and pulse tube convection numbers. The results indicate that the pulse tube convection number can be used as an order of magnitude indicator of the orientation sensitivity, but CFD simulations should be used to calculate the change in energy flow more accurately.

  15. Numerical simulation of tubes-in-tube heat exchanger in a mixed refrigerant Joule-Thomson cryocooler

    Science.gov (United States)

    Damle, R. M.; Ardhapurkar, P. M.; Atrey, M. D.

    2017-02-01

    Mixed refrigerant Joule-Thomson (MRJT) cryocoolers can produce cryogenic temperatures with high efficiency and low operating pressures. As compared to the high system pressures of around 150-200 bar with nitrogen, the operational pressures with non-azeotropic mixtures (e.g., nitrogen-hydrocarbons) come down to 10-25 bar. With mixtures, the heat transfer in the recuperative heat exchanger takes place in the two-phase region. The simultaneous boiling and condensation of the cold and hot gas streams lead to higher heat transfer coefficients as compared to single phase heat exchange. The two-phase heat transfer in the recuperative heat exchanger drastically affects the performance of a MRJT cryocooler. In this work, a previously reported numerical model for a simple tube-in-tube heat exchanger is extended to a multi tubes-in-tube heat exchanger with a transient formulation. Additionally, the J-T expansion process is also considered to simulate the cooling process of the heat exchanger from ambient temperature conditions. A tubes-in-tube heat exchanger offers more heat transfer area per unit volume resulting in a compact design. Also, the division of flow in multiple tubes reduces the pressure drop in the heat exchanger. Simulations with different mixtures of nitrogen-hydrocarbons are carried out and the numerical results are compared with the experimental data.

  16. Analysis of DC control in double-inlet GM type pulse tube refrigerators for detectors

    Science.gov (United States)

    Du, B. Y.

    2016-10-01

    Pulse tube refrigerators have demonstrated many advantages with respect to temperature stability, vibration, reliability and lifetime among cryo-coolers for detectors. Double-inlet type pulse tube refrigerators are popular in GM type pulse tube refrigerators. The single double-inlet valve may introduce DC flow in refrigerator, which deteriorates the performance of pulse tube refrigerator. One new type of DC control mode is introduced in this paper. Two parallel-placed needle valves with opposite direction named double-valve configuration, instead of single double-inlet valve, are used in our experiment to reduce the DC flow. With two double-inlet operating, the lowest cold end temperature of 18.1K and a coolant of 1.2W@20K have been obtained. It has proved that this method is useful for controlling DC flow of the pulse tube refrigerators, which is very important to understand the characters of pulse tube refrigerators for detectors.

  17. Cryocooler With Cold Compressor for Deep Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The unique built-in design features of the proposed mini pulse tube cryocooler avoid all thermal expansion issues enabling it to operate within a cold, 150 K...

  18. Computational Investigation on the performance of thermo-acoustically driven pulse tube refrigerator

    Science.gov (United States)

    Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.; Kasthurirengan, S.; Behera, Upendra

    2017-02-01

    A Thermoacoustic Pulse Tube Refrigeration (TAPTR) system employs a thermo acoustic engine as the pressure wave generator instead of mechanical compressor. Such refrigeration systems are highly reliable due to the absence of moving components, structural simplicity and the use of environmental friendly working fluids. In the present work, a traveling wave thermoacoustic primmover (TWTAPM) has been developed and it is coupled to a pulse tube cryocooler. The performance of TAPTR depends on the operating and working fluid parameters. Simulation studies of the system has been performed using ANSYS Fluent and compared with experimental results.

  19. CFD study of a simple orifice pulse tube cooler

    Science.gov (United States)

    Zhang, X. B.; Qiu, L. M.; Gan, Z. H.; He, Y. L.

    2007-05-01

    Pulse tube cooler (PTC) has the advantages of long-life and low vibration over the conventional cryocoolers, such as G-M and Stirling coolers because of the absence of moving parts in low temperature. This paper performs a two-dimensional axis-symmetric computational fluid dynamic (CFD) simulation of a GM-type simple orifice PTC (OPTC). The detailed modeling process and the general results such as the phase difference between velocity and pressure at cold end, the temperature profiles along the wall as well as the temperature oscillations at cold end with different heat loads are presented. Emphases are put on analyzing the complicated phenomena of multi-dimensional flow and heat transfer in the pulse tube under conditions of oscillating pressure. Swirling flow pattern in the pulse tube is observed and the mechanism of formation is analyzed in details, which is further validated by modeling a basic PTC. The swirl causes undesirable mixing in the thermally stratified fluid and is partially responsible for the poor overall performance of the cooler, such as unsteady cold-end temperature.

  20. Thermodynamic analysis of a pulse tube engine

    International Nuclear Information System (INIS)

    Moldenhauer, Stefan; Thess, André; Holtmann, Christoph; Fernández-Aballí, Carlos

    2013-01-01

    Highlights: ► Numerical model of the pulse tube engine process. ► Proof that the heat transfer in the pulse tube is out of phase with the gas velocity. ► Proof that a free piston operation is possible. ► Clarifying the thermodynamic working principle of the pulse tube engine. ► Studying the influence of design parameters on the engine performance. - Abstract: The pulse tube engine is an innovative simple heat engine based on the pulse tube process used in cryogenic cooling applications. The working principle involves the conversion of applied heat energy into mechanical power, thereby enabling it to be used for electrical power generation. Furthermore, this device offers an opportunity for its wide use in energy harvesting and waste heat recovery. A numerical model has been developed to study the thermodynamic cycle and thereby help to design an experimental engine. Using the object-oriented modeling language Modelica, the engine was divided into components on which the conservation equations for mass, momentum and energy were applied. These components were linked via exchanged mass and enthalpy. The resulting differential equations for the thermodynamic properties were integrated numerically. The model was validated using the measured performance of a pulse tube engine. The transient behavior of the pulse tube engine’s underlying thermodynamic properties could be evaluated and studied under different operating conditions. The model was used to explore the pulse tube engine process and investigate the influence of design parameters.

  1. Numerical simulation of pulse-tube refrigerators

    NARCIS (Netherlands)

    Lyulina, I.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2004-01-01

    A new numerical model has been introduced to study steady oscillatory heat and mass transfer in the tube section of a pulse-tube refrigerator. Conservation equations describing compressible gas flow in the tube are solved numerically, using high resolution schemes. The equation of conservation of

  2. Optimizing the Thermoacoustic Pulse Tube Refrigerator Performances

    Directory of Open Access Journals (Sweden)

    E. V. Blagin

    2014-01-01

    Full Text Available The article deals with research and optimization of the thermoacoustic pulse tube refrigerator to reach a cryogenic temperature level. The refrigerator is considered as a thermoacoustic converter based on the modified Stirling cycle with helium working fluid. A sound pressure generator runs as a compressor. Plant model comprises an inner heat exchanger, a regenerative heat exchanger, a pulse tube, hot and cold heat exchangers at its ends, an inertial tube with the throttle, and a reservoir. A model to calculate the pulse tube thermoacoustic refrigerator using the DeltaEC software package has been developed to be a basis for calculation techniques of the pulse tube refrigerator. Momentum, continuity, and energy equations for helium refrigerant are solved according to calculation algorithm taking into account the porosity of regenerator and heat exchangers. Optimization of the main geometric parameters resulted in decreasing temperature of cold heat exchanger by 41,7 K. After optimization this value became equal to 115,01 K. The following parameters have been optimized: diameters of the feeding and pulse tube and heat exchangers, regenerator, lengths of the regenerator and pulse and inertial tubes, as well as initial pressure. Besides, global minimum of temperatures has been searched at a point of local minima corresponding to the optimal values of abovementioned parameters. A global-local minima difference is 0,1%. Optimized geometric and working parameters of the thermoacoustic pulse tube refrigerator are presented.

  3. A novel method to hit the limit temperature of Stirling-type cryocooler

    Science.gov (United States)

    Wang, Jue; Pan, Changzhao; Zhang, Tong; Luo, Kaiqi; Zhou, Yuan; Wang, Junjie

    2018-02-01

    The Stirling-type cryocooler with its compact size and high efficiency is always expected to obtain its temperature limit of below 3 K. However, the pressure drop losses caused by high-frequency oscillation create large obstacles for this objective. This paper reports a novel thermal-driven Stirling-type cryocooler to obtain the lowest temperature of a Stirling-type cryocooler. The advantages of a thermal-driven cryocooler (Vuilleumier cryocooler) and pulse tube cryocooler are combined with a new type of cryocooler, called the Vuilleumier gas-coupling pulse tube hybrid cryocooler (VM-PT). A prototype of the VM-PT was recently developed and optimized in our laboratory. By using helium-4 as the working gas and magnetic regenerative materials (HoCu2 and Er3Ni), the lowest temperature of 2.5 K was obtained, which can be regarded as an important breakthrough for the Stirling-type cryocooler to achieve its limit temperature of below 3 K. It can supply >30 mW cooling power at 4.2 K and >500 mW cooling power at 20 K simultaneously. Theoretically, it is feasible to use this VM-PT for cooling the superconducting devices in space applications.

  4. Development of High Capacity Split Stirling Cryocooler for HTS

    Science.gov (United States)

    Yumoto, Kenta; Nakano, Kyosuke; Hiratsuka, Yoshikatsu

    Sumitomo Heavy Industries, Ltd. (SHI) developed a high-power Stirling-type pulse tube cryocooler for cooling high-temperature superconductor (HTS) devices, such as superconductor motors, superconducting magnetic energy storage (SMES), and fault current limiters. The experimental results of a prototype pulse tube cryocooler were reported in September 2013. For a U-type expander, the cooling capacity was 151 W at 70 K with a compressor input power of 4 kW. Correspondingly, the coefficient of performance (COP) was about 0.038. However, the efficiency of the cryocooler is required to be COP > 0.1 and it was found that, theoretically, it is difficult to further improve the efficiency of a pulse tube cryocooler because the workflow generated at the hot end of the pulse tube cannot be recovered. Therefore, it was decided to change the expander to a free-piston type from a pulse tube type. A prototype was developed and preliminary experiments were conducted. A cooling capacity of 120 W at 70 K with a compressor input power of 2.15 kW with corresponding COP of 0.056, was obtained. The detailed results are reported in this paper.

  5. Performance of a tapered pulse tube

    International Nuclear Information System (INIS)

    Swift, G.; Allen, M.; Woolan, J.J.

    1998-02-01

    In a well instrumented pulse tube refrigerator having 1,500 W of cooling power at 125 K, the authors have measured the figure of merit of a tapered pulse tube at several operating points. At operating points near the operating point for which the taper was designed, the figure of merit is 0.96. This is close to the theoretical optimum figure of merit 0.97 calculated for this pulse tube considering only two loss mechanisms: heat conduction in the metal pulse tube wall and ordinary thermoacoustic heat transport in the gas within a few thermal penetration depths of the wall. At operating points farther from the design operating point, the measured figure of merit is much lower, as streaming driven convection adds a third loss mechanism

  6. Raytheon's next generation compact inline cryocooler architecture

    International Nuclear Information System (INIS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  7. Raytheon's next generation compact inline cryocooler architecture

    Science.gov (United States)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  8. Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Billard, J.; De Jesus, M.; Juillard, A. [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622 Villeurbanne (France); Leder, A. [Massachussets Institute of Technology, Laboratory for Nuclear Science, 77 Massachusetts Avenue Cambridge, MA 02139-4307 (United States)

    2017-06-21

    Dry Dilution Refrigerators (DDR) based on pulse tube cryo-coolers have started to replace Wet Dilution Refrigerators (WDR) due to the ease and low cost of operation. However these advantages come at the cost of increased vibrations, induced by the pulse tube. In this work, we present the vibration measurements performed on three different commercial DDRs. We describe in detail the vibration measurement system we assembled, based on commercial accelerometers, conditioner and DAQ, and examined the effects of the various damping solutions utilized on three different DDRs, both in the low and high frequency regions. Finally, we ran low temperature, pseudo-massive (30 and 250 g) germanium bolometers in the best vibration-performing system under study and report on the results.

  9. Computational Fluid Dynamic Investigation of Loss Mechanisms in a Pulse-Tube Refrigerator

    International Nuclear Information System (INIS)

    Martin, K; Esguerra, J; Dodson, C; Razani, A

    2015-01-01

    In predicting Pulse-Tube Cryocooler (PTC) performance, One-Dimensional (1-D) PTR design and analysis tools such as Gedeon Associates SAGE® typically include models for performance degradation due to thermodynamically irreversible processes. SAGE®, in particular, accounts for convective loss, turbulent conductive loss and numerical diffusion “loss” via correlation functions based on analysis and empirical testing.In this study, we compare CFD and SAGE® estimates of PTR refrigeration performance for four distinct pulse-tube lengths. Performance predictions from PTR CFD models are compared to SAGE® predictions for all four cases. Then, to further demonstrate the benefits of higher-fidelity and multidimensional CFD simulation, the PTR loss mechanisms are characterized in terms of their spatial and temporal locations. (paper)

  10. Advances in a high efficiency commercial pulse tube cooler

    Science.gov (United States)

    Zhang, Yibing; Li, Haibing; Wang, Xiaotao; Dai, Wei; Yang, Zhaohui; Luo, Ercang

    2017-12-01

    The pulse tube cryocooler has the advantage of no moving part at the cold end and offers a high reliability. To further extend its use in commercial applications, efforts are still needed to improve efficiency, reliability and cost effectiveness. This paper generalizes several key innovations in our newest cooler. The cooler consists of a moving magnet compressor with dual-opposed pistons, and a co-axial cold finger. Ambient displacers are employed to recover the expansion work to increase cooling efficiency. Inside the cold finger, the conventional flow straightener screens are replaced by a tapered throat between the cold heat exchanger and the pulse tube to strengthen its immunity to the working gas contamination as well as to simplify the manufacturing processes. The cold heat exchanger is made by copper forging process which further reduces the cost. Inside the compressor, a new gas bearing design has brought in assembling simplicity and running reliability. Besides the cooler itself, electronic controller is also important for actual application. A dual channel and dual driving mode control mechanism has been selected, which reduces the vibration to a minimum, meanwhile the cool-down speed becomes faster and run-time efficiency is higher. With these innovations, the cooler TC4189 reached a no-load temperature of 44 K and provided 15 W cooling power at 80K, with an input electric power of 244 W and a cooling water temperature of 23 ℃. The efficiency reached 16.9% of Carnot at 80 K. The whole system has a total mass of 4.3 kg.

  11. Role of size on the relative importance of fluid dynamic losses in linear cryocoolers

    Science.gov (United States)

    Kirkconnell, Carl; Ghavami, Ali; Ghiaasiaan, S. Mostafa; Perrella, Matthew

    2017-12-01

    Thermodynamic modeling results for a novel small satellite (SmallSat) Stirling Cryocooler, capable of delivering over 200 mW net cooling power at 80 K for less than 6 W DC input power, are used in this paper as the basis for related pulse tube computational fluid dynamics (CFD) analysis. Industry and government requirements for SmallSat infrared sensors are driving the development of ever-more miniaturized cryocooler systems. Such cryocoolers must be extremely compact and lightweight, a challenge met by this research team through operating a Stirling cryocooler at a frequency of approximately 300 Hz. The primary advantage of operating at such a high frequency is that the required compression and expansion swept volumes are reduced relative to linear coolers operating at lower frequencies, which evidently reduces the size of the motor mechanisms and the thermodynamic components. In the case of a pulse tube cryocooler, this includes a reduction in diameter of the pulse tube itself. This unfortunately leads to high boundary layer losses, as the presented results demonstrate. Using a Stirling approach with a mechanical moving expander piston eliminates this small pulse tube loss mechanism, but other challenges are introduced, such as maintaining very tight clearance gaps between moving and stationary elements. This paper focuses on CFD modelling results for a highly miniaturized pulse tube cooler.

  12. Pulse tube coolers for Meteosat third generation

    International Nuclear Information System (INIS)

    Butterworth, James; Aigouy, Gérald; Chassaing, Clement; Debray, Benoît; Huguet, Alexandre

    2014-01-01

    Air Liquide's Large Pulse Tube Coolers (LPTC) will be used to cool the focal planes of the Infrared Sounder (IRS) and Flexible Combined Imager (FCI) instruments aboard the ESA/Eumetsat satellites Meteosat Third Generation (MTG). This cooler consists of an opposed piston linear compressor driving a pulse tube cold head and the associated drive electronics including temperature regulation and vibration cancellation algorithms. Preparations for flight qualification of the cooler are now underway. In this paper we present results of the optimization and qualification activities as well as an update on endurance testing

  13. Tube welding by the pulsed tig method

    International Nuclear Information System (INIS)

    Dick, N.T.

    1973-01-01

    During the construction of the helical wound boiler pods for the AGR stations at Hartlepool and Heysham, automatic TIG-welding techniques were used. In some cases limited access excluded the use of wire feed techniques and autogenous techniques had to be used. To resolve the problem of excessive concavity which occurred when using constant current autogenous techniques on 14.5 mm OD mild steel tubes of 1.8 mm thickness, pulsed-TIG welding was applied. By modifying the trailing edge of the pulse to produce a crater fill with each pulse, susceptibility to porosity and solidification cracking was reduced. The incorporation of digital counter permitted pulse duration, background duration, and electrode indexing distance to be monitored. (U.K.)

  14. Useful scaling parameters for the pulse tube

    International Nuclear Information System (INIS)

    Lee, J.M.; Kittel, P.; Timmerhaus, K.D.

    1996-01-01

    A set of dimensionless scaling parameters for use in correlating performance data for Pulse Tube Refrigerators is presented. The dimensionless groups result after scaling the mass and energy conservation equations, and the equation of motion for an axisymmetric, two-dimensional ideal gas system. Allowed are viscous effects and conduction heat transfer between the gas and the tube wall. The scaling procedure results in reducing the original 23 dimensional variables to a set of 11 dimensionless scaling groups. Dimensional analysis is used to verify that the 11 dimensionless groups obtained is the minimum number needed to describe the system. The authors also examine 6 limiting cases which progressively reduce the number of dimensionless groups from 11 to 3. The physical interpretation of the parameters are described, and their usefulness is outlined for understanding how heat transfer and mass streaming affect ideal enthalpy flow

  15. Experimental study and modelisation of a pulse tube refrigerator

    International Nuclear Information System (INIS)

    Ravex, A.; Rolland, P.; Liang, J.

    1992-01-01

    A test bench for pulse tube refrigerator characterization has been built. In various configurations (basic pulse tube, orifice pulse tube and double inlet pulse tube), the ultimate temperature and the cooling power have been measured as a function of pressure wave amplitude and frequency for various geometries. A lowest temperature of 28 K has been achieved in a single staged double inlet configuration. A modelisation taking into account wall heat pumping, enthalpy flow and regenerator inefficiency is under development. Preliminary calculation results are compared with experimental data

  16. Raytheon's next generation compact inline cryocooler architecture

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. [Raytheon Space and Airborne Systems, 2000 E. El Segundo Blvd., El Segundo, CA 90245 (United States)

    2014-01-29

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  17. The pulsed-gas tube, statement and perspectives; Le tube a gaz pulse, bilan et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Domblides, J P; Neveau, P; Castaing-Lasvignottes, J [Laboratoire du froid du CNAM, 75 - Paris (France)

    1998-12-31

    The pulsed-gas tube has several advantages with respect to the other types of cryo-refrigerating machineries classically used to reach very low temperatures: no mobile parts moving at very low temperatures and no vibrations. However, this system discovered in 1963 is handicapped by its lack of power and by its low energy efficiency. Todays researches about pulsed-gas tubes concern: the technical adaptation of existing systems to applications where its simplicity makes it competitive, the improvement of its energetic performances (refrigerating power and range of temperatures of use), and the development of numerical models in order to better understand the functioning of the system and to optimize it. (J.S.) 19 refs.

  18. The pulsed-gas tube, statement and perspectives; Le tube a gaz pulse, bilan et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Domblides, J.P.; Neveau, P.; Castaing-Lasvignottes, J. [Laboratoire du froid du CNAM, 75 - Paris (France)

    1997-12-31

    The pulsed-gas tube has several advantages with respect to the other types of cryo-refrigerating machineries classically used to reach very low temperatures: no mobile parts moving at very low temperatures and no vibrations. However, this system discovered in 1963 is handicapped by its lack of power and by its low energy efficiency. Todays researches about pulsed-gas tubes concern: the technical adaptation of existing systems to applications where its simplicity makes it competitive, the improvement of its energetic performances (refrigerating power and range of temperatures of use), and the development of numerical models in order to better understand the functioning of the system and to optimize it. (J.S.) 19 refs.

  19. Advanced cryocooler electronics for space

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, D.; Danial, A.; Godden, J.; Jackson, M.; McCuskey, J.; Valenzuela, P. [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Davis, T. [Air Force Research Lab., Albuquerque, NM (United States)

    2004-08-01

    Space pulse-tube cryocoolers require electronics to control the cooling temperature and self-induced vibration. Other functions include engineering diagnostics, telemetry and safety protection of the unit against extreme environments and operational anomalies. The electronics must survive the harsh conditions of launch and orbit, and in some cases severe radiation environments for periods exceeding 10 years. A number of our current generation high reliability radiation hardened electronics units have been launched and others are in various stages of assembly or integration on a number of space flight programs. This paper describes the design features and performance of our next generation flight electronics designed for the STSS payloads. The electronics provides temperature control with better than +/-50 mK short-term stability. Self-induced vibration is controlled to low levels on all harmonics up to the 16th. A unique active power filter limits peak-to-peak reflected ripple current on the primary power bus to less than 3% of the average DC current. The 3 kg unit is capable of delivering 180 W continuous to NGST's high-efficiency cryocooler (HEC). (author)

  20. Status of pulse tube development at CEA/SBT

    International Nuclear Information System (INIS)

    Ravex, A.; Rolland, P.

    1994-01-01

    Interest in the pulse tube comes from its potential for high reliability and low level of induced vibration. A numerical model has been developed to provide a tool for practical design. It has been successfully validated against the experimental results obtained with a single stage double inlet pulse tube which has achieved a temperature of 28 K at a frequency of a few Hz. Further developments have demonstrated the capability of operating a pulse tube at higher frequencies in association with a Stirling pressure oscillator. Current projects include coaxial geometry for miniature pulse tubes with linear resonant pressure oscillators. A 4 K multistaged pulse tube is also in development. (authors). 5 figs., 12 refs

  1. CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator

    Science.gov (United States)

    Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.

    2010-04-01

    Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.

  2. Two-stage high frequency pulse tube refrigerator with base temperature below 10 K

    Science.gov (United States)

    Chen, Liubiao; Wu, Xianlin; Liu, Sixue; Zhu, Xiaoshuang; Pan, Changzhao; Guo, Jia; Zhou, Yuan; Wang, Junjie

    2017-12-01

    This paper introduces our recent experimental results of pulse tube refrigerator driven by linear compressor. The working frequency is 23-30 Hz, which is much higher than the G-M type cooler (the developed cryocooler will be called high frequency pulse tube refrigerator in this paper). To achieve a temperature below 10 K, two types of two-stage configuration, gas coupled and thermal coupled, have been designed, built and tested. At present, both types can achieve a no-load temperature below 10 K by using only one compressor. As to gas-coupled HPTR, the second stage can achieve a cooling power of 16 mW/10K when the first stage applied a 400 mW heat load at 60 K with a total input power of 400 W. As to thermal-coupled HPTR, the designed cooling power of the first stage is 10W/80K, and then the temperature of the second stage can get a temperature below 10 K with a total input power of 300 W. In the current preliminary experiment, liquid nitrogen is used to replace the first coaxial configuration as the precooling stage, and a no-load temperature 9.6 K can be achieved with a stainless steel mesh regenerator. Using Er3Ni sphere with a diameter about 50-60 micron, the simulation results show it is possible to achieve a temperature below 8 K. The configuration, the phase shifters and the regenerative materials of the developed two types of two-stage high frequency pulse tube refrigerator will be discussed, and some typical experimental results and considerations for achieving a better performance will also be presented in this paper.

  3. 100J-level nanosecond pulsed Yb:YAG cryo-cooled DPSSL amplifier

    Science.gov (United States)

    Smith, J. M.; Butcher, T. J.; Mason, P. D.; Ertel, K.; Phillips, P. J.; Banerjee, S.; De Vido, M.; Chekhlov, O.; Divoky, M.; Pilar, J.; Shaikh, W.; Hooker, C.; Lucianetti, A.; Hernandez Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.

    2018-02-01

    We report on the successful demonstration of the world's first kW average power, 100 Joule-class, high-energy, nanosecond pulsed diode-pumped solid-state laser (DPSSL), DiPOLE100. Results from the first long-term test for amplification will be presented; the system was operated for 1 hour with 10 ns duration pulses at 10 Hz pulse repetition rate and an average output energy of 105 J and RMS energy stability of approximately 1%. The laser system is based on scalable cryogenic gas-cooled multi-slab ceramic Yb:YAG amplifier technology. The DiPOLE100 system comprises three major sub-systems, a spatially and temporally shaped front end, a 10 J cryo-amplifier and a 100 J cryo-amplifier. The 10 J cryo-amplifier contain four Yb:YAG ceramic gain media slabs, which are diode pumped from both sides, while a multi-pass architecture configured for seven passes enables 10 J of energy to be extracted at 10 Hz. This seeds the 100 J cryo-amplifier, which contains six Yb:YAG ceramic gain media slabs with the multi-pass configured for four passes. Our future development plans for this architecture will be introduced including closed-loop pulse shaping, increased energy, higher repetition rates and picosecond operation. This laser architecture unlocks the potential for practical applications including new sources for industrial materials processing and high intensity laser matter studies as envisioned for ELI [1], HiLASE [2], and the European XFEL [3]. Alternatively, it can be used as a pump source for higher repetition rate PW-class amplifiers, which can themselves generate high-brightness secondary radiation and ion sources leading to new remote imaging and medical applications.

  4. Low temperature high frequency coaxial pulse tube for space application

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc [SBT, UMR-E CEA / UJF-Grenoble 1, INAC, 17, rue des Martyrs, Grenoble, F-38054 (France); Daniel, Christophe [CNES, 18, avenue Edouard Belin, Toulouse, F-31401 (France)

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  5. A blind test on the pulse tube refrigerator model (PTRM)

    International Nuclear Information System (INIS)

    Yuan, S.W.K.; Radebaugh, R.

    1996-01-01

    The Stirling Refrigerator Performance Model (SRPM) has been validated extensively against the Lockheed built Stirling Coolers and various units in the literature. This model has been modified to predict the performance of the Pulse Tube Coolers (PTCs). It was successfully validated against a Lockheed in-house-built PTC. The results are to be published elsewhere. In this paper, the validation of PTRM against a NIST (National Institute of Standards and Technology) orifice pulse tube cooler is reported. Dimensions and operating condition of the PTC were obtained from NIST without prior knowledge of the performance. In other words, this is a open-quote blind test close-quote on the PTRM with the help of the National Institute of Standards and Technology. Good correlation was found between the test data and the prediction. PTRM is a generic model that gives accurate performance prediction of the pulse tube coolers

  6. Performance characterization of the TRW 35K pulse tube cooler

    International Nuclear Information System (INIS)

    Collins, S.A.; Johnson, D.L.; Smedley, G.T.; Ross, R.G. Jr.

    1996-01-01

    The TRW 35K pulse tube cooler is configured as an integral cooler, with the pulse tube attached perpendicular to a pair of compressors operating into a common compression chamber. The cooler was optimized for 35K operation and has a nominal cooling capacity of 850 mW at 35 K with a cooler input power of 200 W. It also provides 2 W of cooling at 60 K for 90 W of input power. The cooler was extensively characterized by JPL, measuring the thermal performance and the cooler-generated vibration and EMI as a function of piston stroke and offset position. The thermal performance was found to be quite sensitive to the piston offset position. The pulse tube parasitic conduction levels were also measured and shown to have a strong angular dependence relative to gravity. Magnetic shielding studies were performed to examine radiated magnetic emission levels from compressors with and without shielding

  7. A compact nanosecond pulse generator for DBD tube characterization

    Science.gov (United States)

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  8. A 4-Kelvin Pulse-Tube/Reverse-Brayton Hybrid Cryocooler, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's ability to perform cutting edge space science, including lunar and planetary exploration, requires the use of cryogenically cooled detectors and sensors for...

  9. Two-Stage, 20 K Pulse Tube Cryocooler for Space Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — American competitiveness and success are directly correlated with technological innovation and scientific research. NASA is known for its advanced concepts and...

  10. Miniature Turbine for Pulse-Tube/Reverse-Brayton Hybrid Cryocooler, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Many future advances in NASA's ability to perform cutting edge space science will require improvements in cryogenic system technology, including the development of...

  11. Displacer Diameter Effect in Displacer Pulse Tube Refrigerator

    Science.gov (United States)

    Zhu, Shaowei

    2017-12-01

    Gas driving displacer pulse tube refrigerators are one of the work recovery type of pulse tube refrigerators whose theoretical efficiency is the same as Stirling refrigerators'. Its cooling power is from the displacement of the displacer. Displace diameter, rod diameter and pressure drop of the regenerator influence the displacement, which are investigated by numerical simulation. It is shown that the displacement ratio of the displacer over the piston is almost not affected by the displacer diameter at the same rod diameter ratio, or displacer with different diameters almost has the same performance.

  12. Ideal pulse-tube refrigerators with real gases

    NARCIS (Netherlands)

    Will, M.E.; Waele, de A.T.A.M.

    2005-01-01

    The factor of 100 difference between experiments and theory in the coefficient of performance (COP) of pulse-tube refrigerators is always attributed to the nonideal behavior of these devices. We show that the thermodynamic properties of the nonideal working fluid have a profound influence on the

  13. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  14. Analytical Approximation of Spectrum for Pulse X-ray Tubes

    International Nuclear Information System (INIS)

    Vavilov, S; Fofanof, O; Koshkin, G; Udod, V

    2016-01-01

    Among the main characteristics of the pulsed X-ray apparatuses the spectral energy characteristics are the most important ones: the spectral distribution of the photon energy, effective and maximum energy of quanta. Knowing the spectral characteristics of the radiation of pulse sources is very important for the practical use of them in non-destructive testing. We have attempted on the analytical approximation of the pulsed X-ray apparatuses spectra obtained in the different experimental papers. The results of the analytical approximation of energy spectrum for pulse X-ray tube are presented. Obtained formulas are adequate to experimental data and can be used by designing pulsed X-ray apparatuses. (paper)

  15. Development of a miniature Stirling cryocooler for LWIR small satellite applications

    Science.gov (United States)

    Kirkconnell, C. S.; Hon, R. C.; Perella, M. D.; Crittenden, T. M.; Ghiaasiaan, S. M.

    2017-05-01

    The optimum small satellite (SmallSat) cryocooler system must be extremely compact and lightweight, achieved in this paper by operating a linear cryocooler at a frequency of approximately 300 Hz. Operation at this frequency, which is well in excess of the 100-150 Hz reported in recent papers on related efforts, requires an evolution beyond the traditional Oxford-class, flexure-based methods of setting the mechanical resonance. A novel approach that optimizes the electromagnetic design and the mechanical design together to simultaneously achieve the required dynamic and thermodynamic performances is described. Since highly miniaturized pulse tube coolers are fundamentally ill-suited for the sub-80K temperature range of interest because the boundary layer losses inside the pulse tube become dominant at the associated very small pulse tube size, a moving displacer Stirling cryocooler architecture is used. Compact compressor mechanisms developed on a previous program are reused for this design, and they have been adapted to yield an extremely compact Stirling warm end motor mechanism. Supporting thermodynamic and electromagnetic analysis results are reported.

  16. On random pressure pulses in the turbine draft tube

    Science.gov (United States)

    Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2017-04-01

    The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.

  17. Pressure heat pumping in the orifice pulse-tube refrigerator

    International Nuclear Information System (INIS)

    Boer, P.C.T. de

    1996-01-01

    The mechanism by which heat is pumped as a result of pressure changes in an orifice pulse-tube refrigerator (OPTR) is analyzed thermodynamically. The thermodynamic cycle considered consists of four steps: (1) the pressure is increased by a factor π 1 due to motion of a piston in the heat exchanger at the warm end of the regenerator; (2) the pressure is decreased by a factor π 2 due to leakage out of the orifice; (3) the pressure is further decreased due to motion of the piston back to its original position; (4) the pressure is increased to its value at the start of the cycle due to leakage through the orifice back into the pulse tube. The regenerator and the heat exchangers are taken to be perfect. The pressure is assumed to be uniform during the entire cycle. The temperature profiles of the gas in the pulse tube after each step are derived analytically. Knowledge of the temperature at which gas enters the cold heat exchanger during steps 3 and 4 provides the heat removed per cycle from this exchanger. Knowledge of the pressure as a function of piston position provides the work done per cycle by the piston. The pressure heat pumping mechanism considered is effective only in the presence of a regenerator. Detailed results are presented for the heat removed per cycle, for the coefficient of performance, and for the refrigeration efficiency as a function of the compression ratio π 1 and the expansion ratio π 2 . Results are also given for the influence on performance of the ratio of specific heats. The results obtained are compared with corresponding results for the basic pulse-tube refrigerator (BPTR) operating by surface heat pumping

  18. Miniature PT Cryocooler Activated by Resonant Piezoelectric Compressor and Passive Warm Expander

    Science.gov (United States)

    Sobol, S.; Grossman, G.

    2017-12-01

    A novel type of PZT-based compressor operating at mechanical resonance, suitable for pneumatically-driven Stirling-type cryocoolers, was presented at CEC-ICMC 2015. The detailed concept, analytical model and the test results on the preliminary prototype were reported earlier and presented at ICC17. Despite some mismatch between the impedances and insufficient structural stiffness, this compressor demonstrated the feasibility to drive our miniature Pulse Tube cryocooler MTSa, operating at 103 Hz and requiring an average PV power of 11 W, filling pressure of 40 Bar and a pressure ratio of 1.3. At ICC19 the prototype of a miniature passive warm expander (WE) was presented. The WE mechanism included a phase shifting piston suspended on a silicone diaphragm, a mass element, and a viscous damping system. Several technical drawbacks prevented perfect matching between the WE and MTSa; however, the presented prototype proved the ability to create any flow-to-pressure phase appropriate for a PT cryocooler. This paper concentrates on integration of the MTSa cryocooler with the recently modified PZT compressor operating at corrected mechanical resonance and the modified WE, which was also updated recently to match the MTSa requirements.

  19. A pulse-tube refrigerator using variable-resistance orifice

    Science.gov (United States)

    Huang, B. J.; Sun, B. W.

    2003-01-01

    In the present study, we propose a new design of orifice pulse-tube refrigerator (VROPT) using a variable-resistance valve to replace the conventional orifice. The variable-resistance orifice (VRO) is basically a high-speed solenoidal valve similar to the fuel jet device widely used in automobile engines. By changing the frequency and periods of ON and OFF of the valve through an electronic device, we can change the flow resistance of the VRO. This thus provides a possibility for an OPT to be controlled on-line during operation. From the results obtained in the present study, we have shown that VROPT is able to achieve on-line control by regulating the duty cycle d or frequency fv of the VRO. We also show that VROPT will not loss its thermal performance as compared to conventional OPT.

  20. One-dimensional numerical simulation of the Stirling-type pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2007-01-01

    Change of title: One-dimensional numerical simulation of the Stirling-type pulse-tube cooler. Pulse-tube refrigeration (PTR) is a new technology for cooling down to extremely low temperatures. In this paper a particular type, the so-called Stirling single-stage refrigerator, is considered. A

  1. Eddy-current inspection of ferromagnetic tubing using pulsed magnetic saturation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, C V; Deeds, W E

    1986-07-01

    A pulsed eddy-current system has been designed and developed for nondestructive evaluation of 2.25Cr-1Mo steam generator tubing from the bore side. Since the tubing is ferromagnetic, a large current pulse is sent through a driver coil to produce magnetic saturation all the way through the tube wall. A pickup coil produces an output pulse that is dependent upon the tube properties as well as the driving pulse. The output pulse heights at selected times are used as data that are computer-correlated with calibration data taken from machined standards. Performance data, circuit diagrams, and computer programs are given for the system, which has been demonstrated to detect small flaws located near the outside of a thick ferromagnetic tube.

  2. Low-Cost High-Performance Cryocoolers for In-Situ Propellant Production

    Science.gov (United States)

    Martin, J. L.; Corey, J. A.; Peters, T. A.

    1999-01-01

    A key feature of many In-Situ Resource Utilization (ISRU) schemes is the production of rocket fuel and oxidizer from the Martian atmosphere. Many of the fuels under consideration will require cryogenic cooling for efficient long-term storage. Although significant research has been focused on the techniques for producing the fuels from Martian resources, little effort has been expended on the development of cryocoolers to efficiently liquefy these fuels. This paper describes the design of a pulse tube liquefier optimized for liquefying oxygen produced by an In-Situ Propellant Production (ISPP) plant on Mars.

  3. Research and simulation of intense pulsed beam transfer in electrostatic accelerate tube

    International Nuclear Information System (INIS)

    Li Chaolong; Shi Haiquan; Lu Jianqin

    2012-01-01

    To study intense pulsed beam transfer in electrostatic accelerate tube, the matrix method was applied to analyze the transport matrixes in electrostatic accelerate tube of non-intense pulsed beam and intense pulsed beam, and a computer code was written for the intense pulsed beam transporting in electrostatic accelerate tube. Optimization techniques were used to attain the given optical conditions and iteration procedures were adopted to compute intense pulsed beam for obtaining self-consistent solutions in this computer code. The calculations were carried out by using ACCT, TRACE-3D and TRANSPORT for different beam currents, respectively. The simulation results show that improvement of the accelerating voltage ratio can enhance focusing power of electrostatic accelerate tube, reduce beam loss and increase the transferring efficiency. (authors)

  4. International Cryocooler Conference

    CERN Document Server

    Cryocoolers 13

    2005-01-01

    This is the 13th volume in the conference series. Over the years the International Cryocoolers Conference has become the preeminent worldwide conference for the presentation of the latest developments and test experiences with cryocoolers. The typical applications of this technology include cooling space and terrestrial infrared focal plane arrays, space x-ray detectors, medical applications, and a growing number of high-temperature super-capacitor applications.

  5. Linear Resonance Compressor for Stirling-Type Cryocoolers Activated by Piezoelectric Stack-Type Elements

    International Nuclear Information System (INIS)

    Sobol, S; Grossman, G

    2015-01-01

    A novel type of a PZT- based compressor operating at mechanical resonance, suitable for pneumatically-driven Stirling-type cryocoolers was developed theoretically and built practically during this research. A resonance operation at relatively low frequency was achieved by incorporating the piezo ceramics into the moving part, and by reducing the effective piezo stiffness using hydraulic amplification. The detailed concept, analytical model and the test results of the preliminary prototype were reported earlier and presented at ICC17 [2]. A fine agreement between the simulations and experiments spurred development of the current actual compressor designed to drive a miniature Pulse Tube cryocooler, particularly our MTSa model, which operates at 103 Hz and requires an average PV power of 11 W, filling pressure of 40 Bar and a pressure ratio of 1.3. The paper concentrates on design aspects and optimization of the governing parameters. The small stroke to diameter ratio (about 1:10) allows for the use of a composite diaphragm instead of a clearance-seal piston. The motivation is to create an adequate separation between the working fluid and the buffer gas of the compressor, thus preventing possible contamination in the cryocooler. Providing efficiency and power density similar to those of conventional linear compressors, the piezo compressor may serve as a good alternative for cryogenic applications requiring extreme reliability and absence of magnetic field interference. (paper)

  6. Numerical simulation of a three-stage Stirling-type pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.A.

    2011-01-01

    The pulse-tube refrigerator (PTR) is a rather new device for cooling down to extremely low temperatures, i.e. below 4 K. The PTR works by the cyclic compression and expansion of helium that flows through a regenerator made of porous material, a cold heat exchanger, a tube, a hot heat exchanger and

  7. An efficient cooling loop for connecting cryocooler to a helium reservoir

    International Nuclear Information System (INIS)

    Taylor, C.E.; Abbott, C.S.R.; Leitner, D.; Leitner, M.; Lyneis, C.M.

    2003-01-01

    The magnet system of the VENUS ECR Ion Source at LBNL has two 1.5-watt cryocoolers suspended in the cryostat vacuum. Helium vapor from the liquid reservoir is admitted to a finned condenser bolted to the cryocooler 2nd stage and returns as liquid via gravity. Small-diameter flexible tubes allow the cryocoolers to be located remotely from the reservoir. With 3.1 watts load, the helium reservoir is maintained at 4.35 K, 0.05K above the cryocooler temperature. Design, analysis, and performance are presented

  8. 17th International Cryocooler Conference

    CERN Document Server

    Ross, Ronald G

    2012-01-01

    Cryocoolers 17 archives developments and performance measurements in the field of cryocoolers based on the contributions of leading international experts at the 17th International Cryocooler Conference that was held in Los Angeles, California, on July 9-12, 2012. The program of this conference consisted of 94 papers; of these, 71 are published here. Over the years the International Cryocoolers Conference has become the preeminent worldwide conference for the presentation of the latest developments and test experiences with cryocoolers. The typical applications of this technology include cooling space and terrestrial infrared focal plane arrays, space x-ray detectors, medical applications, and a growing number of high-temperature superconductor applications.

  9. 16th International Cryocooler Conference

    CERN Document Server

    Ross, Ronald G

    2011-01-01

    Cryocoolers 16 archives developments and performance measurements in the field of cryocoolers based on the contributions of leading international experts at the 16th International Cryocooler Conference that was held in Atlanta, Georgia, on May 17-20, 2010. The program of this conference consisted of 116 papers; of these, 89 are published here. Over the years the International Cryocoolers Conference has become the preeminent worldwide conference for the presentation of the latest developments and test experiences with cryocoolers. The typical applications of this technology include cooling space and terrestrial infrared focal plane arrays, space x-ray detectors, medical applications, and a growing number of high-temperature superconductor applications.

  10. Some characteristics of the digitization pulses from high pressure neon-helium flash tubes

    International Nuclear Information System (INIS)

    Chan, D.S.K.; Leung, S.K.; Ng, L.K.

    1979-01-01

    Characteristics of the digitization output pulses from high pressure neon-helium flash tubes were studied under various operation conditions using square ultra-high voltage pulses. Properties reported by previous workers were compared. Two discharge mechanisms, the Townsend avalanche discharge and the streamer discharge, were observed to occur in sequence in some events. The output waveforms for both discharge mechanisms were studied in detail. The charge induced on a detecting probe was also estimated from the measured data. (Auth.)

  11. 18th International Cryocooler Conference

    CERN Document Server

    Ross, Ronald G

    2014-01-01

    Cryocoolers 18 Cryocoolers 18 archives developments and performance measurements in the field of cryocoolers based on the contributions of leading international experts at the 18th International Cryocooler Conference that was held in Syracuse, New York, on June 9-12, 2014. The program of this conference lead to the 76 peer-reviewed papers that are published here. Over the years the International Cryocoolers Conference has become the preeminent worldwide conference for the presentation of the latest developments and test experiences with cryocoolers. The typical applications of this technology include cooling space and terrestrial infrared focal plane arrays, space x-ray detectors, medical applications, and a growing number of high-temperature superconductor applications.

  12. Production and guide tube transmission of very cold neutrons from pulsed cold source

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Okumura, Kiyoshi

    1982-01-01

    The intensity and the energy spectra of Very Cold Neutrons (VCN) transmitted through a curved guide tube were measured by using the time-of-flight method of VCN. In the measurements, the curved guide tube having a characteristic neutron velocity of about 70 m/s is combined to a pulsed cold source of an electron linac in an internal target geometry. A space dependence of the VCN spectra was observed on the radial positions of a detector at the guide tube exit. A simple theoretical analysis on the transmission of VCN in the curved guide tube is also presented with taking into consideration about the effects of a finite size and a finite distance of the VCN-emitting source, and simple analytical formulas for the exit spectra of the guide tube are given. Comparisons between the experimental results and the theoretical calculations show good agreements, and the satisfactory performance of the present VCN guide tube assembly was ascertained. These results present also instructive features for understanding the structures and the space dependence of the exit spectra of a neutron guide tube. The VCN spectra at the guide tube exit can be divided into a few energy regions according to the transmission processes of VCN. Thus, the present study provides useful informations for the preparations of a VCN source with a curved guide tube. (author)

  13. Development of a fluorescent cryocooler

    International Nuclear Information System (INIS)

    Edwards, B.C.; Buchwald, M.I.; Epstein, R.I.; Gosnell, T.R.; Mungan, C.E.

    1995-01-01

    Recent work at Los Alamos National Laboratory has demonstrated the physical principles for a new type of solid-state cryocooler based on anti-Stokes fluorescence. Design studies indicate that a vibration-free, low-mass ''fluorescent cryocooler'' could operate for years with efficiencies and cooling powers comparable to current commercial systems. This paper presents concepts for a fluorescent cryocooler, design considerations and expected performance

  14. 10th International Cryocooler Conference

    CERN Document Server

    2002-01-01

    Cryocoolers 10 is the premier archival publication of the latest advances and performance of small cryogenic refrigerators designed to provide localized cooling for military, space, semi-conductor, medical, computing, and high-temperature superconductor cryogenic applications in the 2-200 K temperature range. Composed of papers written by leading engineers and scientists in the field, Cryocoolers 10 reports the most recent advances in cryocooler development, contains extensive performance test results and comparisons, and relates the latest experience in integrating cryocoolers into advanced applications.

  15. Development of miniature moving magnet cryocooler SX040

    Science.gov (United States)

    Rühlich, I.; Mai, M.; Rosenhagen, C.; Schreiter, A.; Möhl, C.

    2011-06-01

    State of the art high performance cooled IR systems need to have more than just excellent E/O performance. Minimum size weight and power (SWaP) are the design goals to meet our forces' mission requirements. Key enabler for minimum SWaP of IR imagers is the operation temperature of the focal plane array (FPA) employed. State of the art MCT or InAsSb nBn technology has the potential to rise the FPA temperature from 77 K to 130-150 K (high operation temperature HOT) depending on the specific cut-off wavelength. Using a HOT FPA will significantly lower SWaP and keep those parameters finally dominated by the employed cryocooler. Therefore compact high performance cryocoolers are mandatory. For highest MTTF life AIM developed its Flexure Bearing Moving Magnet product family "SF". Such coolers achieve more than 20000 h MTTF with Stirling type expander and more than 5 years MTTF life with Pulse Tube coldfinger (like for Space applications). To keep the high lifetime potential but to significantly improve SWaP AIM is developing its "SX" type cooler family. The new SX040 cooler incorporates a highly efficient dual piston Moving Magnet driving mechanism resulting in very compact compressor of less than 100mm length. The cooler's high lifetime is also achieved by placing the coils outside the helium vessel as usual for moving magnet motors. The mating ¼" expander is extremely compact with less than 63 mm length. This allows a total dewar length from optical window to expander warm end of less than 100 mm even for large cold shields. The cooler is optimized for HOT detectors with operating temperatures exceeding 95 K. While this kind of cooler is the perfect match for many applications, handheld sights or targeting devices for the dismounted soldier are even more challenging with respect to SWaP. AIM therefore started to develop an even smaller cooler type with single piston and balancer. This paper gives an overview on the development of this new compact cryocooler. Technical

  16. One-dimensional simulation of a stirling three-stage pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2009-01-01

    A one-dimensional mathematical model is derived for a three-stage pulse-tube refrigerator (PTR) that is based on the conservation laws and the ideal gas law. The three-stage PTR is regarded as three separate single-stage PTRs that are coupled via proper junction conditions. At the junctions there

  17. One-dimensional simulation of a Stirling three-stage pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.

    2009-01-01

    A one-dimensional mathematical model is derived for a three-stage pulse-tube refrigerator (PTR) that is based on the conservation laws and the ideal gas law. The three-stage PTR is regarded as three separate single-stage PTRs that are coupled via proper junction conditions. At the junctions there

  18. Optimization of a Two Stage Pulse Tube Refrigerator for the Integrated Current Lead System

    Science.gov (United States)

    Maekawa, R.; Matsubara, Y.; Okada, A.; Takami, S.; Konno, M.; Tomioka, A.; Imayoshi, T.; Hayashi, H.; Mito, T.

    2008-03-01

    Implementation of a conventional current lead with a pulse tube refrigerator has been validated to be working as an Integrated Current Lead (ICL) system for the Superconducting Magnetic Energy Storage (SMES). Realization of the system is primarily accounted for the flexibility of a pulse tube refrigerator, which does not posses any mechanical piston and/or displacer. As for an ultimate version of the ICL system, a High Temperature Superconducting (HTS) lead links a superconducting coil with a conventional copper lead. To ensure the minimization of heat loads to the superconducting coil, a pulse tube refrigerator has been upgraded to have a second cooling stage. This arrangement reduces not only the heat loads to the superconducting coil but also the operating cost for a SMES system. A prototype two-stage pulse tube refrigerator, series connected arrangement, was designed and fabricated to satisfy the requirements for the ICL system. Operation of the first stage refrigerator is a four-valve mode, while the second stage utilizes a double inlet configuration to ensure its confined geometry. The paper discusses the optimization of second stage cooling to validate the conceptual design

  19. Comparison of pulsed fluoroscopy by direct control using a grid-controlled x-ray tube with pulsed fluoroscopy by primary control

    International Nuclear Information System (INIS)

    Chida, Koichi; Zuguchi, Masayuki; Ito, Daisuke; Sato, Kunihiko; Shimura, Hirotaka; Sasaki, Masatoshi

    2001-01-01

    Interventional radiology (IVR) procedures may involve high radiation doses that are potentially harmful to the patient. In IVR procedures, pulsed fluoroscopy can greatly decrease the radiation that the physician and patient receive. There are two types of pulsed fluoroscopy: direct control and primary (indirect) control. The purpose of this study was to compare pulsed fluoroscopy by direct control, using a grid-controlled x-ray tube, with pulsed fluoroscopy using primary control. For both types of pulsed fluoroscopy, we measured the waveforms (x-ray tube voltage, x-ray tube current, and x-ray output) and the relative radiation dose. In addition, we compared the decrease in radiation during pulsed fluoroscopy using a care filter. The studies were performed using a Siemens Bicor Plus x-ray System (direct control) and a Siemens Multistar Plus x-ray System (primary control). Using primary pulse control, a 50% decrease in the x-ray output waveform took approximately 0.5-1.0 msec, or longer with a lower x-ray tube current. Using direct pulse control, a 50% decrease in the x-ray output waveform took approximately 0.1 msec, and was independent of x-ray tube current. The rate of radiation reduction with primary pulse control using the care filter with a lower x-ray tube current had a slope exceeding 10%. Pulsed fluoroscopy by direct control using a grid-controlled x-ray tube permits an optimal radiation dose. To decrease the radiation in primary pulse control, a care filter must be used, particularly with a lower x-ray tube current. (author)

  20. Development of a 100 KV 10 a pulse generator on the basis of electron tubes for plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Kaur, Mandeep; Barve, D.N.; Chakravarthy, D.P.

    2006-01-01

    The design of a high-voltage pulsing system on the basis of hard tube of hard tube for a plasma immersion ion implantation (PIII) facility is presented. A list of requirements, which have to be fulfilled by a high-voltage pulse generator to get best results and an optimum operation of the PIII system, is given. The requirement for the pulse generator can be fulfilled well using a pulse generator design, which employs a hard tube switch. The pulse generator design presented is optimized for PIII systems. The hard tube control can produce nearly rectangular pulses of any duration and repetition frequencies and is especially optimized for obtaining voltage rise times as short as possible. (author)

  1. Progress with the slotted-tube pulsed microwiggler

    International Nuclear Information System (INIS)

    Warren, R.W.

    1991-01-01

    A pulsed microwiggler can produce a wiggler field of unusually short period and high strength. A period of a few millimeters and a field of 5 appear possible. A satisfactory design is hard to realize, however, for many reasons: the high current, the current nonuniformities caused by the skin effect, thermal stresses in the parts, the high precision, etc. In addition, measuring the field with adequate resolution in the time domain, as well as in all three spatial coordinates, is challenging, particularly inside the small bore of a microwiggler. This paper presents recent design modifications that illustrate new solutions to these problems, and details of the construction, testing, and performance of wigglers already built. 6 refs., 5 figs

  2. Regression analysis of pulsed eddy current signals for inspection of steam generator tube support structures

    International Nuclear Information System (INIS)

    Buck, J.; Underhill, P.R.; Mokros, S.G.; Morelli, J.; Krause, T.W.; Babbar, V.K.; Lepine, B.

    2015-01-01

    Nuclear steam generator (SG) support structure degradation and fouling can result in damage to SG tubes and loss of SG efficiency. Conventional eddy current technology is extensively used to detect cracks, frets at supports and other flaws, but has limited capabilities in the presence of multiple degradation modes or fouling. Pulsed eddy current (PEC) combined with principal components analysis (PCA) and multiple linear regression models was examined for the inspection of support structure degradation and SG tube off-centering with the goal of extending results to include additional degradation modes. (author)

  3. Evaluation of machine learning tools for inspection of steam generator tube structures using pulsed eddy current

    Science.gov (United States)

    Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2017-02-01

    Degradation of nuclear steam generator (SG) tubes and support structures can result in a loss of reactor efficiency. Regular in-service inspection, by conventional eddy current testing (ECT), permits detection of cracks, measurement of wall loss, and identification of other SG tube degradation modes. However, ECT is challenged by overlapping degradation modes such as might occur for SG tube fretting accompanied by tube off-set within a corroding ferromagnetic support structure. Pulsed eddy current (PEC) is an emerging technology examined here for inspection of Alloy-800 SG tubes and associated carbon steel drilled support structures. Support structure hole size was varied to simulate uniform corrosion, while SG tube was off-set relative to hole axis. PEC measurements were performed using a single driver with an 8 pick-up coil configuration in the presence of flat-bottom rectangular frets as an overlapping degradation mode. A modified principal component analysis (MPCA) was performed on the time-voltage data in order to reduce data dimensionality. The MPCA scores were then used to train a support vector machine (SVM) that simultaneously targeted four independent parameters associated with; support structure hole size, tube off-centering in two dimensions and fret depth. The support vector machine was trained, tested, and validated on experimental data. Results were compared with a previously developed artificial neural network (ANN) trained on the same data. Estimates of tube position showed comparable results between the two machine learning tools. However, the ANN produced better estimates of hole inner diameter and fret depth. The better results from ANN analysis was attributed to challenges associated with the SVM when non-constant variance is present in the data.

  4. 4th International Cryocoolers Conference

    CERN Document Server

    Patton, George; Knox, Margaret

    1987-01-01

    The Cryocoolers 4 proceedings archives the contributions of leading international experts at the 4th International Cryocooler Conference that was held in Easton, Maryland on September 25-26, 1986. About 170 people attended the conference representing 11 countries, 14 universities, 21 government laboratories and 60 industrial companies. Thirty-one papers were presented describing advancements and applications of cryocoolers in the temperature range below 80K. This year's conference was sponsored by the David Taylor Naval Ship Research and Development Center of Annapolis, Maryland, and the conference proceedings reproduced here was published by them.

  5. Study on pulsed-operation of the drift tube quadrupole magnets

    International Nuclear Information System (INIS)

    Mutou, M.

    1982-01-01

    The heavy ion linac for NUMATRON project is designed not only as a injector for a synchrotron but also as a supplier of heavy ion beams for experiments with linac beam. In one repetition cycle of the synchrotron (1sec), the linac injects nearly 25 beam pulses with pulse width of 300 μsec and pulse interval of 30 msec. And the ion species can be varied every repetition. On the other hand, when it is off duty of injection to the synchrotron, the linac accelerates the beams that are directly used for the experiments. Also in this case, the ion species should be varied according to the requests of the experiments, for instance every 1 sec. Therefore, the quadrupole magnets installed in the drift tubes of the linac must be excited with pulse mode. The power supply of the quadrupole magnets will consists of two parts, namely pulse-excitation and dc-excitation power sources. The report describes the posibilities on the pulse-operation of the quadrupole magnets with the field gradient of asymptotically equals 10 KG/cm, and the analysis of the power supply of the quadrupole magnets. (author)

  6. High-power stirling-type pulse tube cooler for power engineering applications of high temperature superconductivity; Hochleistungspulsrohrkuehler vom Stirling-Typ fuer energietechnische Anwendungen der Hochtemperatursupraleitung

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Marc

    2015-12-15

    For the cooling of high temperature superconducting 4 MVA machines (motors or generators), a single-stage Stirling-type pulse-tube cryocooler was built. The cooling power, which the cryocooler was aimed for, is 80 - 100 W at 30 K with an electrical input power of 10 kW (8 kW pV-power). The advantages of this cooler type compared to traditional cooling concepts are an increased reliability and long maintenance intervals. While single-stage Stirling-type pulse-tube cryocoolers for the temperature range of liquid nitrogen (77 K) are already commercially available, there exist currently no commercial systems for the temperature range near 30 K, which is the important range for applications of high-temperature superconductivity. The experimental setup consisted of a 10 kW linear compressor, type 2S297W, from CFIC Inc. which was used as the pressure wave generator. The compressor was operated by a Micromaster 440 frequency inverter from Siemens, which was controlled by a custom-made computer program. The cold head was made in inline configuration, in order to avoid deflection losses. During the first cool-downs tests a temperature inhomogeneity occurred in the regenerator at low temperature and high pV-power, which was attributed to a constant mass flow (circular dc-flow) within the regenerator. This firstly observed dc-flow, generates a net energy flow from the hot end to the cold end of the regenerator, which reduces the cooling capacity considerably and hence the minimum attainable temperature is severely increased. For the design and optimization of the cold-head, a cryocooler model was initially created using the commercial simulation software Sage, which did not include the regenerator inhomogeneity seen in the experiment. For the modeling of the observed streaming inhomogeneity caused by the dc-flow, the regenerator was replaced by two identical parallel regenerators with variable transverse thermal coupling. In the inhomogeneous case (without dc-flow) the

  7. 15th International Cryocooler Conference

    CERN Document Server

    Ross, Ronald G

    2009-01-01

    This is the 15th volume in the conference series. Over the years the International Cryocooler Conference has become the preeminent worldwide conference for the presentation of the latest developments and test experiences with cryocoolers. The typical applications of this technology include cooling space and terrestrial infrared focal plane arrays, space x-ray detectors, medical applications, and a growing number of high-temperature superconductor applications.

  8. 14th International Cryocooler Conference

    CERN Document Server

    Ross, Ronald G

    2007-01-01

    This is the 14th volume in the conference series. Over the years the International Cryocoolers Conference has become the preeminent worldwide conference for the presentation of the latest developments and test experiences with cryocoolers. The typical applications of this technology include cooling space and terrestrial infrared focal plane arrays, space x-ray detectors, medical applications, and a growing number of high-temperature superconductor applications.

  9. Building the better cryocooler

    International Nuclear Information System (INIS)

    Radebaugh, R.

    1992-01-01

    This article focuses on the present and future status of small cryocoolers that may be useful for cooling superconducting electronics or magnets no larger than those of Magnetic Resonance Imaging (MRI) systems. In a few cases superconductors have found their way into a large market. The best example is superconducting Super Collider (SSC) and other accelerators use an enormous amount of superconducting wire and require large liquid helium plants for cooling. The costs of these large accelerator systems greatly restricts the number of such installations. Thin film superconducting electronic devices have the potential of being made relatively inexpensively and have a performance advantage over conventional electronic systems. The possible market size for superconducting electronics could be extremely large is one serious problem would simply disappear

  10. Radial-pulse propagation and impedance characteristics of optically shuttered channel intensifier tubes

    International Nuclear Information System (INIS)

    Detch, J.L. Jr.; Noel, B.W.

    1981-01-01

    Electrically gated proximity-focused channel intensifier tubes are often used as optical shutters. Optimum nanosecond shuttering requires both understanding the electrical pulse propagation across the device structure and proper impedance matching. A distributed-transmission-line model is developed that describes analytically the voltage- and current-wave propagation characteristics as functions of time for any point on the surface. The optical gain's spatial uniformity and shutter-open times are shown to depend on the electrical pulse width and amplitude, and on the applied bias. The driving-point impedance is derived from the model and is expressed as a function of an infinite sum of terms in the complex frequency. The synthesis in terms of lumped-constant network elements is realized in first- and second-Foster equivalent circuits. Experimental impedance data are compared with the model's predictions and deviations from the ideal model are discussed

  11. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    International Nuclear Information System (INIS)

    Ginzburg, N. S.; Zaslavsky, V. Yu.; Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-01-01

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam

  12. Bruce and Darlington power pulse and pressure tube integrity programs -status 1995

    Energy Technology Data Exchange (ETDEWEB)

    Field, G J [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Wylie, J [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A

    1996-12-31

    The optimum solution to pressure tube fretting at the inlet of the Bruce and Darlington channels, a concern which became very serious following inspections in early 1992, is to remove the inlet bundle and operate with a 12 fuel bundle channel. During analysis of this operating mode a `power pulse` was identified which could occur during an inlet header break where all the fuel in the channel moved rapidly to the inlet of the channel. The pulse was unacceptable and the units were derated until solutions could be implemented. A number of solutions were identified and each station has begun implementation of their specific solution. Implementation has not been without problems and this paper provides a status report on the progress to date of the long bundle implementation solution for Bruce B and Darlington and the fuelling with the flow solution being implemented at Bruce A. Both types of solution have a significant impact on the original concern, fretting of the pressure tube. (author). 1 ref., 6 figs.

  13. Multi-pulsed intense electron beam emission from velvet, carbon fibers, carbon nano-tubes and dispenser cathodes

    International Nuclear Information System (INIS)

    Xia Liansheng; Yang Anmin; Chen Yi; Zhang Huang; Liu Xingguang; Li Jin; Jiang Xiaoguo; Zhang Kaizhi; Shi Jinshui; Deng Jianjun; Zhang Linwen

    2010-01-01

    The experimental results of studies of four kinds of cathode emitting intense electron beams are demonstrated under multi-pulsed mode based on an experimental setup including two multi-pulse high voltage sources. The tested cathodes include velvet, carbon fibers, carbon nano-tubes (CNTs) and dispenser cathodes. The results indicate that all four are able to emit multi-pulsed beams. For velvet, carbon fiber and CNTs, the electron induced cathode plasma emission may be the main process and this means that there are differences in beam parameters from pulse to pulse. For dispenser cathodes tested in the experiment, although there is a little difference from pulse to pulse for some reason, thermal-electric field emission may be the main process. (authors)

  14. Design of a high-pressure single pulse shock tube for chemical kinetic investigations

    International Nuclear Information System (INIS)

    Tranter, R. S.; Brezinsky, K.; Fulle, D.

    2001-01-01

    A single pulse shock tube has been designed and constructed in order to achieve extremely high pressures and temperatures to facilitate gas-phase chemical kinetic experiments. Postshock pressures of greater than 1000 atmospheres have been obtained. Temperatures greater than 1400 K have been achieved and, in principle, temperatures greater than 2000 K are easily attainable. These high temperatures and pressures permit the investigation of hydrocarbon species pyrolysis and oxidation reactions. Since these reactions occur on the time scale of 0.5--2 ms the shock tube has been constructed with an adjustable length driven section that permits variation of reaction viewing times. For any given reaction viewing time, samples can be withdrawn through a specially constructed automated sampling apparatus for subsequent species analysis with gas chromatography and mass spectrometry. The details of the design and construction that have permitted the successful generation of very high-pressure shocks in this unique apparatus are described. Additional information is provided concerning the diaphragms used in the high-pressure shock tube

  15. Corrosion/erosion detection of boiler tubes utilizing pulsed infrared imaging

    Science.gov (United States)

    Bales, Maurice J.; Bishop, Chip C.

    1995-05-01

    This paper discusses a new technique for locating and detecting wall thickness reduction in boiler tubes caused by erosion/corrosion. Traditional means for this type of defect detection utilizes ultrasonics (UT) to perform a point by point measurement at given intervals of the tube length, which requires extensive and costly shutdown or `outage' time to complete the inspection, and has led to thin areas going undetected simply because they were located in between the sampling points. Pulsed infrared imaging (PII) can provide nearly 100% inspection of the tubes in a fraction of the time needed for UT. The IR system and heat source used in this study do not require any special access or fixed scaffolding, and can be remotely operated from a distance of up to 100 feet. This technique has been tried experimentally in a laboratory environment and verified in an actual field application. Since PII is a non-contact technique, considerable time and cost savings should be realized as well as the ability to predict failures rather than repairing them once they have occurred.

  16. Numerical simulation of a three-stage stirling-type pulse-tube refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Etaati, M.A.

    2011-06-22

    The pulse-tube refrigerator (PTR) is a rather new device for cooling down to extremely low temperatures, i.e. below 4 K. The PTR works by the cyclic compression and expansion of helium that flows through a regenerator made of porous material, a cold heat exchanger, a tube, a hot heat exchanger and an orifice, in series. In a Stirling-type PTR compression and expansion are generated by a piston. The compression increases the temperature of the helium in the tube and makes it flow towards the orifice; the expansion decreases the temperature and makes the helium flow backwards to the regenerator. The net effect of warmer helium flowing in one direction and colder helium in the opposite direction is that of cooling power at the cold heat exchanger. Three PTRs are inter-connected aiming to obtain the desired 4 K lowest temperature. The conservation laws of mass, momentum and energy, and an equation of state, are simplified using asymptotic analysis based on low Mach-numbers. The regenerator is modelled one-dimensionally with Darcy's law for flow resistance. The tube is modelled either one-dimensionally without resistance or two-dimensionally with axisymmetric laminar viscous flow. The heat transfer in the porous medium of the regenerator and in the solid tube wall is taken into account. The gas can be either ideal or real. All the material properties, including viscosity and conductivity, are taken temperature and pressure dependent. Three single-stage PTRs are connected with the regenerators in series and the tubes in parallel and six flow possibilities at the junctions are considered. Three by-passes (double-inlets) are used to enhance and tune the performance. The governing equations are numerically solved with a finite-difference method of nominally second-order accuracy in space and time. Pressure correction, flux limiter, 1D-2D connections and domain decomposition are the keywords here. Special attention is paid to suitable initial conditions, high resolution

  17. Numerical study on transverse asymmetry in the temperature profile of a regenerator in a pulse tube cooler

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Dietrich, M.; Carlsen, Henrik

    2007-01-01

    Transverse asymmetry in the temperature profile of the regenerator in a Stirling-type pulse tube cooler as observed in experiments was analysed in a numerical study. The asymmetry was reproduced using a one-dimensional model of the cooler where the regenerator was modelled using two identical...

  18. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    International Nuclear Information System (INIS)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.

    2014-01-01

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators

  19. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    Science.gov (United States)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.

    2014-02-01

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.

  20. 5th International Conference on Cryocoolers

    CERN Document Server

    1989-01-01

    The Cryocoolers 5 proceedings archives the contributions of leading international experts at the 5th International Cryocooler Conference that was held in Monterey, California on August 18-19, 1988. The authors submitted twenty six papers describing advancements and applications of cryocoolers in the temperature range below 80K. This year's conference was hosted by the U.S. Naval Postgraduate School in Monterey, California, and the conference proceedings reproduced here were published by the Wright-Patterson AFB in Ohio.

  1. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  2. Engineering model cryocooler test results

    International Nuclear Information System (INIS)

    Skimko, M.A.; Stacy, W.D.; McCormick, J.A.

    1992-01-01

    This paper reports that recent testing of diaphragm-defined, Stirling-cycle machines and components has demonstrated cooling performance potential, validated the design code, and confirmed several critical operating characteristics. A breadboard cryocooler was rebuilt and tested from cryogenic to near-ambient cold end temperatures. There was a significant increase in capacity at cryogenic temperatures and the performance results compared will with code predictions at all temperatures. Further testing on a breadboard diaphragm compressor validated the calculated requirement for a minimum axial clearance between diaphragms and mating heads

  3. MODELLING AND FAILURE ANALYSIS OF FLEXURE SPRINGS FOR A STIRLING CRYOCOOLER

    Directory of Open Access Journals (Sweden)

    RAJESH V. R.

    2017-04-01

    Full Text Available In the range of milliwatt to a few watts cooling capacity, Stirling cycle and pulse tube coolers are most suitable for producing cryogenic temperatures owing to their eco-friendliness, high efficiency, cooling capacity to mass ratio etc. The compressor of a Stirling cooler is powered by a linear motor. The power piston of the cooler is held in position and moves to and fro with the support of so called flexure springs or flexure bearings. Flexures avoid direct contact between moving parts of the compressor of the cooler. Thus, if designed adequately to withstand fatigue, flexure bearings can easily outlast rolling element bearings and slider bearings. In this work, a computational analysis is used to study the performance of flexure spring by varying the geometrical parameters. Three of the most common spring materials namely, SS304, beryllium copper and spring steel are considered for analysis. The analysis was made by varying the parameters like spiral sweep angle, slot width, number of spirals and disc thickness. The influence of each of these parameters on the fatigue life of the spring has been investigated. The results suggest that flexure springs of three spiral arms would be the ideal choice for the selected cryocooler. The variation of stress developed with respect to different design parameters and fatigue damage factor are presented graphically.

  4. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    Science.gov (United States)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  5. Nitrogen heat pipe for cryocooler thermal shunt

    International Nuclear Information System (INIS)

    Prenger F.C.; Hill, D.D.; Daney, D.E.

    1996-01-01

    A nitrogen heat pipe was designed, built and tested for the purpose of providing a thermal shunt between the two stages of a Gifford-McMahan (GM) cryocooler during cooldown. The nitrogen heat pipe has an operating temperature range between 63 and 123 K. While the heat pipe is in this temperature range during the system cooldown, it acts as a thermal shunt between the first and second stage of the cryocooler. The heat pipe increases the heat transfer to the first stage of the cryocooler, thereby reducing the cooldown time of the system. When the heat pipe temperature drops below the triple point, the nitrogen working fluid freezes, effectively stopping the heat pipe operation. A small heat leak between cryocooler stages remains because of axial conduction along the heat pipe wall. As long as the heat pipe remains below 63 K, the heat pipe remains inactive. Heat pipe performance limits were measured and the optimum fluid charge was determined

  6. Small-sized accelerating tube for electron acceleration to 500 keV at pulse duration of 2 ns

    International Nuclear Information System (INIS)

    Pavlovskaya, N.G.; Ehl'yash, S.L.; Dron', N.A.; Sloeva, G.N.

    1978-01-01

    The design and characteristics (current, voltage, current density, electron beam structure, energy spectrum, and dose rate) of a soldered small-size two-electrode 600 kV accelerating tube are considered. A six-stage Arkadiev-Marx generator is the pulse high-voltage supply of nanosecond duration. When using a cathode (diameter of 8 mm) made of tantalum foil 0.02 mm thick and with interelectrode gap of 10 mm, the amplitude of the electron beam current beyond the beryllium anode equals to 1040 A under maximum voltage of 490 kV, current pulse duration of 2 ns, number of electrons is 10 13 . The increased electron density on the anode in a spot of 4 mm in diameter is observed; the current density in the spot reaches 1 kA/cm 2 . The electron energy in the beam beyond the anode is as much as 0.6-0.8 J per pulse, and the dose rate near the outer surface of the outlet window is 10 14 -10 15 rad/s. The use of an intensifying oil spark gap is shown to increase radiation hardness. The accelerating tube provides more than 10 5 shots in a single-switching mode

  7. Hydrodynamic parameters of micro porous media for steady and oscillatory flow: Application to cryocooler regenerators

    Science.gov (United States)

    Cha, Jeesung Jeff

    Pulse Tube Cryocoolers (PTC) are a class of rugged and high-endurance refrigeration systems that operate without a moving part at their low temperature ends, and are capable of easily reaching 120°K. These devices can also be configured in multiple stages to reach temperatures below 10 °K. PTCs are particularly suitable for applications in space, missile guiding systems, cryosurgery, medicine preservation, superconducting electronics, magnetic resonance imaging, weather observation, and liquefaction of nitrogen. Although various designs of PTCs have been in use for a few decades, they represent a dynamic and developmental field. PTCs ruggedness comes at the price of relatively low efficiency, however, and thus far they have been primarily used in high-end applications. They have the potential of extensive use in consumer products, however, should sufficiently higher efficiencies be achieved. Intense research competition is underway worldwide, and newer designs are continuously introduced. Some of the fundamental processes that are responsible for their performance are at best not fully understood, however, and consequently systematic modeling of PTC systems is difficult. Among the challenges facing the PTC research community, besides improvement in terms of system efficiency, is the possible miniaturization (total fluid volume of few cubic centimeters (cc)) of these systems. The operating characteristics of a PTC are significantly different from the conventional refrigeration cycles. A PTC implements the theory of oscillatory compression and expansion of the gas within a closed volume to achieve desired refrigeration. Regenerators and pulse tubes are often viewed as the two most complex and essential components in cryocoolers. An important deficiency with respect to the state of art models dealing with PTCs is the essentially total lack of understanding about the directional hydrodynamic and thermal transport parameters associated with periodic flow in

  8. Review of the Oxford Cryocooler

    International Nuclear Information System (INIS)

    Davey, G.

    1990-01-01

    The Oxford Cryocooler incorporates a linear drive compressor operating close to resonance. All dynamic seals are noncontacting clearance seals maintained by mounting the piston and displacer on mechanical suspension systems with infinite fatigue life. The displacer is pneumatically driven but controlled by a miniature linear motor. The cooler is therefore nonwearing and performance can be maintained even in adverse environments by servo control of piston and displacer strokes and relative phase. Split and integral, single- and two-stage coolers have been produced with operating temperatures between 30 K and 200 K, refrigeration powers between 50 mW and several watts and capable of operating in ambient temperatures from -40 C to 70 C. A current project aims to extend the refrigeration power to 500 watts at 80 K. Experimental optimisation techniques have been devised for rapid development of high efficiency coolers

  9. A prototype detector using the neutron image intensifier and multi-anode type photomultiplier tube for pulsed neutron imaging

    International Nuclear Information System (INIS)

    Ishikawa, Hirotaku; Sato, Hirotaka; Hara, Kaoru Y.; Kamiyama, Takashi

    2016-01-01

    We developed a neutron two-dimensional (2-D) detector for pulsed neutron imaging as a prototype detector, which was composed of a neutron image intensifier and a multi-anode type photomultiplier tube. A neutron transmission spectrum of α-Fe plate was measured by the prototype detector, and compared with the one measured by a typical neutron 2-D detector. The spectrum was in reasonable agreement with the one measured by the typical detector in the neutron wavelength region above 0.15 nm. In addition, a neutron transmission image of a cadmium indicator was obtained by the prototype detector. The usefulness of the prototype detector for pulsed neutron imaging was demonstrated. (author)

  10. The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube.

    Science.gov (United States)

    Painter, Page R

    2008-07-29

    The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV). The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC) for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for more than fifty years is analyzed and shown to yield

  11. Tube Inner Coating of Non-Conductive Films by Pulsed Reactive Coaxial Magnetron Plasma with Outer Anode

    Directory of Open Access Journals (Sweden)

    Musab Timan Idriss Gasab

    2018-03-01

    Full Text Available The double-ended coaxial magnetron pulsed plasma (DCMPP method with auxiliary outer anode was introduced in order to achieve the uniform coating of non-conductive thin films on the inner walls of insulator tubes. In this study, titanium (Ti was employed as a cathode (sputtering target, and a glass tube was used as a substrate. In an argon (Ar and oxygen (O2 gas mixture, magnetron plasma was generated. Oxygen gas was introduced to deposit a titanium oxide (TiO2 film. A comparison between films coated with and without an auxiliary outer anode was made. As a result, it was clearly shown that the DCMPP method using an auxiliary outer anode enhanced the uniformity of the deposited non-conductive film compared to the conventional DCMPP method. Moreover, the optimum conditions under which the thin TiO2 film was deposited on the inner wall of the glass tube were revealed. From the results, it was supposed that the auxiliary outer anode contributed to the uniformity of the distributions of deposited negative charge on the non-conductive film and consequently the electric field and the plasma density uniform.

  12. Design and array signal suggestion of array type pulsed eddy current probe for health monitoring of metal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Kil [Dept. of Electrical Engineering, Kunsan National University, Kunsan (Korea, Republic of)

    2015-10-15

    An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.

  13. Transthoracic Doppler echocardiography to predict optimal tube pulsing window for coronary artery CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gang, E-mail: cjr.sungang@vip.163.com [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Li, Min, E-mail: limin22000@yahoo.com.cn [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Jiang, Xiang-sen, E-mail: jiangxiangsen123@126.com [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Li, Li, E-mail: leely1976@yahoo.com.cn [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Peng, Zhao-hui, E-mail: zhaohuipeng_R@163.com [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Mu, Nan-nan, E-mail: munannan22000@sohu.com [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China)

    2012-09-15

    Rationale and objective: To evaluate the feasibility of transthoracic Doppler echocardiography to determine the optimal pulsing windows for CT coronary angiography to narrow the pulsing windows further, especially in higher heart rate. Materials and methods: Doppler was performed on 135 patients before CT scanning. For Doppler, the intervals with minimal motion were evaluated during both systole and diastole integrating electrocardiogram (ECG) intervals. For CT scanning, the retrospective ECG-gating was applied and the optimal reconstruction intervals were determined. The accuracy of Doppler analysis to predict the optimal reconstruction intervals was tested. The predicted length of pulsing windows was compared between Doppler analysis and traditional prospective ECG-gating protocol (heart rate ≦ 65 bpm, 60–76%; 66–79 bpm, 30–77%; ≧80 bpm, 31–47%). Results: According to Doppler analysis, the mean length of intervals with minimal motion in systole was 106.4 ± 39.2 ms and 125.2 ± 92.0 ms in diastole. When the intervals with minimal motion during diastole > 90 ms, the optimal reconstruction intervals were located at diastole; otherwise, at systole (P < 0.001). The optimal reconstruction intervals in 93.8% (132/135) patients could be predicted accurately by Doppler analysis. If the optimal reconstruction intervals predicted by Doppler were applied as the exposure windows, the mean length of pulsing windows should has been 105.2 ± 69.4 ms (range: 26.9–510.3 ms), which was significantly shorter than that of traditional prospective ECG-gating protocol (232.0 ± 120.2 ms, range: 93.2–427.3 ms, P < 0.001). Conclusion: Doppler can help detecting the optimal pulsing windows accurately. Prospective ECG-gating incorporating Doppler analysis may narrow pulsing windows significantly while maintaining image quality.

  14. Transthoracic Doppler echocardiography to predict optimal tube pulsing window for coronary artery CT angiography

    International Nuclear Information System (INIS)

    Sun, Gang; Li, Min; Jiang, Xiang-sen; Li, Li; Peng, Zhao-hui; Mu, Nan-nan

    2012-01-01

    Rationale and objective: To evaluate the feasibility of transthoracic Doppler echocardiography to determine the optimal pulsing windows for CT coronary angiography to narrow the pulsing windows further, especially in higher heart rate. Materials and methods: Doppler was performed on 135 patients before CT scanning. For Doppler, the intervals with minimal motion were evaluated during both systole and diastole integrating electrocardiogram (ECG) intervals. For CT scanning, the retrospective ECG-gating was applied and the optimal reconstruction intervals were determined. The accuracy of Doppler analysis to predict the optimal reconstruction intervals was tested. The predicted length of pulsing windows was compared between Doppler analysis and traditional prospective ECG-gating protocol (heart rate ≦ 65 bpm, 60–76%; 66–79 bpm, 30–77%; ≧80 bpm, 31–47%). Results: According to Doppler analysis, the mean length of intervals with minimal motion in systole was 106.4 ± 39.2 ms and 125.2 ± 92.0 ms in diastole. When the intervals with minimal motion during diastole > 90 ms, the optimal reconstruction intervals were located at diastole; otherwise, at systole (P < 0.001). The optimal reconstruction intervals in 93.8% (132/135) patients could be predicted accurately by Doppler analysis. If the optimal reconstruction intervals predicted by Doppler were applied as the exposure windows, the mean length of pulsing windows should has been 105.2 ± 69.4 ms (range: 26.9–510.3 ms), which was significantly shorter than that of traditional prospective ECG-gating protocol (232.0 ± 120.2 ms, range: 93.2–427.3 ms, P < 0.001). Conclusion: Doppler can help detecting the optimal pulsing windows accurately. Prospective ECG-gating incorporating Doppler analysis may narrow pulsing windows significantly while maintaining image quality

  15. Thermal characterization of rods, tubes and spheres using pulsed infrared thermography

    International Nuclear Information System (INIS)

    Apinaniz, E; Mendioroz, A; Madariaga, N; Oleaga, A; Celorrio, R; Salazar, A

    2008-01-01

    In this work we analyse the accuracy of an extension of the flash method to measure the thermal diffusivity of rods, tubes and spheres, which was recently proposed by the authors. We have performed measurements in a wide set of calibrated samples of different sizes and we have found that a lower limiting size of the radius can be established for the validity of the method. On the other hand, a procedure to retrieve the thermal conductivity of tubes, based on filling them with a contrast liquid (water), is proposed. Moreover, the thermal contact resistance between the two layers of coated cylinders is also obtained. Measurements on calibrated samples confirm the validity of the two latest methods

  16. The Experimental Study about the Effect of Operating Conditions on Multi-tube Pulse Detonation Engine Performance

    Science.gov (United States)

    Kim, Jung-Min; Han, Hyung-Seok; Choi, Jeong-Yeol

    2018-04-01

    This study examines a multi-tube pulse detonation engine (PDE) which has a type of constant volume combustion. We designed and made the multi-tube PDE and then conducted an experiment in various operating frequencies and equivalence ratios. First, experiments with operating frequencies of 40, 80, 120, 160, and 200 Hz resulted in an average thrust and specific impulse 23.14 N and 42.34 s. The next experiment resulted in the equivalence ratio varying from 0.81 to 1.38, which resulted in an average thrust and specific impulse 22.36 N and 40.11 s. The average detonation velocity was 8% lower than that calculated according to C-J theory. The incidence ratios of the detonation wave were stable with the exception of the operating frequency of 200 Hz. However, at 200 Hz, the incidence ratio was less than 50%. We assumed that a low fill fraction occurred for this problem. The thrust of the PDE increased with the operating frequency. However, the thrust increase was at a lower rate than in previous studies, because of a lost thrust output result from the slow response time of the load cell amplifier.

  17. Multi-objective parametric optimization of Inertance type pulse tube refrigerator using response surface methodology and non-dominated sorting genetic algorithm

    Science.gov (United States)

    Rout, Sachindra K.; Choudhury, Balaji K.; Sahoo, Ranjit K.; Sarangi, Sunil K.

    2014-07-01

    The modeling and optimization of a Pulse Tube Refrigerator is a complicated task, due to its complexity of geometry and nature. The aim of the present work is to optimize the dimensions of pulse tube and regenerator for an Inertance-Type Pulse Tube Refrigerator (ITPTR) by using Response Surface Methodology (RSM) and Non-Sorted Genetic Algorithm II (NSGA II). The Box-Behnken design of the response surface methodology is used in an experimental matrix, with four factors and two levels. The diameter and length of the pulse tube and regenerator are chosen as the design variables where the rest of the dimensions and operating conditions of the ITPTR are constant. The required output responses are the cold head temperature (Tcold) and compressor input power (Wcomp). Computational fluid dynamics (CFD) have been used to model and solve the ITPTR. The CFD results agreed well with those of the previously published paper. Also using the results from the 1-D simulation, RSM is conducted to analyse the effect of the independent variables on the responses. To check the accuracy of the model, the analysis of variance (ANOVA) method has been used. Based on the proposed mathematical RSM models a multi-objective optimization study, using the Non-sorted genetic algorithm II (NSGA-II) has been performed to optimize the responses.

  18. Quantitative Evaluation of Defect in Stainless Steel 304 Tube Using Pulsed Eddy Current Technique

    International Nuclear Information System (INIS)

    Nurul Ain Ahmad Latif; Ilham Mukriz Zainal Abidin; Nurul Ain Ahmad Latif; Nordin Jamaludin; Zaredah Hashim; Norhayati Ramli

    2016-01-01

    Pulsed eddy current (PEC) is an advanced non-destructive testing (NDT) technique that operates based on electromagnetic principle. The excitation consists of broad frequency spectrum leading to be a potential in detecting defects that are deeply buried inside the specimen. In this paper, the experiment and simulation were conducted on stainless steel plate 304 fabricated with open surface defects having a different defect depth as an investigation towards the correlation between extracted signal feature and defect depth. Two common features; time to peak and peak value that corresponds to the location depth of defect and size of defect were used for signals analysis and evaluation. The results that acquired through finite element method (FEM) simulation were compared with experimental results for the signals evaluation and defect quantification. (author)

  19. The local response of elastic tubes and shells to spherical pressure pulse loading

    International Nuclear Information System (INIS)

    Thompson, J.J.; Holy, Z.J.

    1977-01-01

    This paper develops a formulation and numerical solution technique for calculating the peak transient stresses developed in tubes or shells with external and internal acoustic media, as a result of shock loadings which may be represented as originating from external or internal point symmetric or dipole sources. The field of application is intended to be the local peak response of the cylindrical fuel cans, core barrels, pressure vessels, pipes and containment shells of Nuclear Reactor Technology, subjected to transient pressure shock loadings for a variety of operational or accident conditions, which cannot adequately be described as one dimensional plane shocks, for which elastic shell responses have been presented by other workers. The work reported here concerns the basic problem of an infinite static fluid filled hollow cylinder of arbitrary thickness, in an infinite static fluid medium, with a source at an arbitrary internal or external radial location. An acoustic model is used, with acoustic damping due to radiation as the only possible damping mechanism. The formulation and solution technique is based on the availability of the multi-dimensional Fast Fourier Transform algorithm. The basic result is the representation, in cylindrical co-ordinates, of the two dimensional (time and axial co-ordinate) Fourier Transform of the infinite medium frequency response function for outgoing waves from a point symmetrical source, as a series of azimuthal Fourier harmonics, from which the result for a dipole source of arbitrary orientation follows. Where possible numerical results will be presented

  20. Automated Cryocooler Monitor and Control System Software

    Science.gov (United States)

    Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad

    2011-01-01

    This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.

  1. Temperature oscillation suppression of GM cryocooler

    Science.gov (United States)

    Okidono, K.; Oota, T.; Kurihara, H.; Sumida, T.; Nishioka, T.; Kato, H.; Matsumura, M.; Sasaki, O.

    2012-12-01

    GM cryocooler is a convenient refrigerator to achieve low temperatures about 4 K, while it is not suitable for precise measurements because of the large temperature oscillation of typically about 0.3 K. To resolve this problem, we have developed an adapter (He-pot) with a simple structure as possible. From the thermodynamic consideration, both heat capacity and thermal conductance should be large in order to reduce the temperature oscillation without compromising cooling power. Optimal structure of the He-pot is a copper cylinder filled with high pressure He-gas at room temperature. This can reduce the temperature oscillation to less than 10 mK below a certain temperature TH without compromising cooling power. TH are 3.8 and 4.5 for filled He-gas pressures of 90 and 60 atm, respectively. By using this He-pot, GM cryocooler can be applied to such as precise physical property measurements and THz detection.

  2. Lifetime prediction and reliability estimation methodology for Stirling-type pulse tube refrigerators by gaseous contamination accelerated degradation testing

    Science.gov (United States)

    Wan, Fubin; Tan, Yuanyuan; Jiang, Zhenhua; Chen, Xun; Wu, Yinong; Zhao, Peng

    2017-12-01

    Lifetime and reliability are the two performance parameters of premium importance for modern space Stirling-type pulse tube refrigerators (SPTRs), which are required to operate in excess of 10 years. Demonstration of these parameters provides a significant challenge. This paper proposes a lifetime prediction and reliability estimation method that utilizes accelerated degradation testing (ADT) for SPTRs related to gaseous contamination failure. The method was experimentally validated via three groups of gaseous contamination ADT. First, the performance degradation model based on mechanism of contamination failure and material outgassing characteristics of SPTRs was established. Next, a preliminary test was performed to determine whether the mechanism of contamination failure of the SPTRs during ADT is consistent with normal life testing. Subsequently, the experimental program of ADT was designed for SPTRs. Then, three groups of gaseous contamination ADT were performed at elevated ambient temperatures of 40 °C, 50 °C, and 60 °C, respectively and the estimated lifetimes of the SPTRs under normal condition were obtained through acceleration model (Arrhenius model). The results show good fitting of the degradation model with the experimental data. Finally, we obtained the reliability estimation of SPTRs through using the Weibull distribution. The proposed novel methodology enables us to take less than one year time to estimate the reliability of the SPTRs designed for more than 10 years.

  3. MODIL cryocooler producibility demonstration project results

    International Nuclear Information System (INIS)

    Cruz, G.E.; Franks, R.M.

    1993-01-01

    The production of large quantities of spacecraft needed by SDIO will require a cultural change in design and production practices. Low rates production and the need for exceedingly high reliability has driven the industry to custom designed, hand crafted, and exhaustively tested satellites. These factors have mitigated against employing design and manufacturing cost reduction methods commonly used in tactical missile production. Additional challenges to achieving production efficiencies are presented by the SDI spacecraft mission requirement. IR sensor systems, for example, are comprised of subassemblies and components that require the design, manufacture, and maintenance of ultra precision tolerances over challenging operational lifetimes. These IR sensors demand the use of reliable, closed loop, cryogenic refrigerators or active cryocoolers to meet stringent system acquisition and pointing requirements. The authors summarize some spacecraft cryocooler requirements and discuss observations regarding Industry's current production capabilities of cryocoolers. The results of the Lawrence Livermore National Laboratory (LLNL) Spacecraft Fabrication and Test (SF and T) MODIL's Phase I producibility demonstration project is presented

  4. A 4 K tactical cryocooler using reverse-Brayton machines

    Science.gov (United States)

    Zagarola, M.; Cragin, K.; McCormick, J.; Hill, R.

    2017-12-01

    Superconducting electronics and spectral-spatial holography have the potential to revolutionize digital communications, but must operate at cryogenic temperatures, near 4 K. Liquid helium is undesirable for military missions due to logistics and scarcity, and commercial low temperature cryocoolers are unable to meet size, weight, power, and environmental requirements for many missions. To address this need, Creare is developing a reverse turbo-Brayton cryocooler that provides refrigeration at 4.2 K and rejects heat at 77 K to an upper-stage cryocooler or through boil-off of liquid nitrogen. The cooling system is predicted to reduce size, weight, and input power by at least an order of magnitude as compared to the current state-of-the-art 4.2 K cryocooler. For systems utilizing nitrogen boil-off, the boil-off rate is reasonable. This paper reviews the design of the cryocooler, the key components, and component test results.

  5. Estimation of Pulse Transit Time as a Function of Blood Pressure Using a Nonlinear Arterial Tube-Load Model.

    Science.gov (United States)

    Gao, Mingwu; Cheng, Hao-Min; Sung, Shih-Hsien; Chen, Chen-Huan; Olivier, Nicholas Bari; Mukkamala, Ramakrishna

    2017-07-01

    pulse transit time (PTT) varies with blood pressure (BP) throughout the cardiac cycle, yet, because of wave reflection, only one PTT value at the diastolic BP level is conventionally estimated from proximal and distal BP waveforms. The objective was to establish a technique to estimate multiple PTT values at different BP levels in the cardiac cycle. a technique was developed for estimating PTT as a function of BP (to indicate the PTT value for every BP level) from proximal and distal BP waveforms. First, a mathematical transformation from one waveform to the other is defined in terms of the parameters of a nonlinear arterial tube-load model accounting for BP-dependent arterial compliance and wave reflection. Then, the parameters are estimated by optimally fitting the waveforms to each other via the model-based transformation. Finally, PTT as a function of BP is specified by the parameters. The technique was assessed in animals and patients in several ways including the ability of its estimated PTT-BP function to serve as a subject-specific curve for calibrating PTT to BP. the calibration curve derived by the technique during a baseline period yielded bias and precision errors in mean BP of 5.1 ± 0.9 and 6.6 ± 1.0 mmHg, respectively, during hemodynamic interventions that varied mean BP widely. the new technique may permit, for the first time, estimation of PTT values throughout the cardiac cycle from proximal and distal waveforms. the technique could potentially be applied to improve arterial stiffness monitoring and help realize cuff-less BP monitoring.

  6. AIM cryocooler developments for HOT detectors

    Science.gov (United States)

    Rühlich, I.; Mai, M.; Withopf, A.; Rosenhagen, C.

    2014-06-01

    Significantly increased FPA temperatures for both Mid Wave and Long Wave IR detectors, i.e. HOT detectors, which have been developed in recent years are now leaving the development phase and are entering real application. HOT detectors allowing to push size weight and power (SWaP) of Integrated Detectors Cooler Assemblies (IDCA's) to a new level. Key component mainly driving achievable weight, volume and power consumption is the cryocooler. AIM cryocooler developments are focused on compact, lightweight linear cryocoolers driven by compact and high efficient digital cooler drive electronics (DCE) to also achieve highest MTTF targets. This technology is using moving magnet driving mechanisms and dual or single piston compressors. Whereas SX030 which was presented at SPIE in 2012 consuming less 3 WDC to operate a typical IDCA at 140K, next smaller cooler SX020 is designed to provide sufficient cooling power at detector temperature above 160K. The cooler weight of less than 200g and a total compressor length of 60mm makes it an ideal solution for all applications with limited weight and power budget, like in handheld applications. For operating a typical 640x512, 15μm MW IR detector the power consumption will be less than 1.5WDC. MTTF for the cooler will be in excess of 30,000h and thus achieving low maintenance cost also in 24/7 applications. The SX020 compressor is based on a single piston design with integrated passive balancer in a new design achieves very low exported vibration in the order of 100mN in the compressor axis. AIM is using a modular approach, allowing the chose between 5 different compressor types for one common Stirling expander. The 6mm expander with a total length of 74mm is now available in a new design that fits into standard dewar bores originally designed for rotary coolers. Also available is a 9mm coldfinger in both versions. In development is an ultra-short expander with around 35mm total length to achieve highest compactness. Technical

  7. Experimental Investigation of a Multi-Cycle Single-Tube Pulse Detonation Rocket Engine with a Coaxial Rotary Valve

    Science.gov (United States)

    Matsuoka, Ken; Esumi, Motoki; Ikeguchi, Ken Bryan; Kasahara, Jiro; Matsuo, Akiko; Funaki, Ikkoh

    We developed a novel coaxial rotary valve for a multi-tube PDE. Since this single valve can supply three different gases (fuel, oxidizer and purge gas) into a combustor, the unification of the valve systems for three different gases is possible by using our newly designed valve. A PDRE system can be simple and lightweight by using this valve, and thus its thrust-weight ratio can be increased. We proposed the design of a multi-tube rotary-valved PDRE system by this rotary valve. Moreover, in preparation for a multi-tube rotary-valved PDRE, we carried out the multi-cycle operation experiment by the single-tube rotary-valved PDRE system. The combustion wave velocity was measured to confirm the operation of the PDRE system. Deflagration-to-detonation transition (DDT) was confirmed and DDT distance decreased under the condition of high operation frequency. In addition, a maximum operation frequency was 159 Hz.

  8. Applications concepts of small regenerative cryocoolers in superconducitng magnet systems

    NARCIS (Netherlands)

    van der Laan, M.T.G.; van der Laan, M.T.G.; Tax, R.B.; ten Kate, Herman H.J.

    1992-01-01

    Superconducting magnets are in growing use outside laboratories for example MRI scanners in hospitals. Other applications under development are magnet systems for separation, levitated trains and ship propulsion. The application of cryocoolers can make these systems more practical. Interfacing these

  9. Low-T, Low-Q Cryocoolers for Science Instruments

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the planned research is to advance the current space science instruments through the development of light weight and low power cryocoolers. Currently,...

  10. Highly Effective Thermal Regenerator for Low Temperature Cryocoolers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future missions to investigate the structure and evolution of the universe require highly efficient, low-temperature cryocoolers for low-noise detector systems. We...

  11. Performance Characterization of the Astrium 10k Developmental Cryocooler

    National Research Council Canada - National Science Library

    Bruninghaus, C. H; Kallman, J. P; Tomlinson, B. J., Jr; Myrick, E

    2002-01-01

    .... Under the technology development program, Astrium (formerly Matra Marconi Space) in Stevenage, United Kingdom, developed a Stirling cycle cryocooler with four Oxford flexure compressors and a two-stage expansion cold end...

  12. Dose reduction in multi-slice CT of the heart by use of ECG-controlled tube current modulation (''ECG pulsing''): phantom measurements

    International Nuclear Information System (INIS)

    Poll, L.W.; Cohnen, M.; Brachten, S.; Moedder, U.; Ewen, K.

    2002-01-01

    To evaluate the effect of ECG-controlled tube current modulation on radiation exposure in retrospectively-ECG-gated multislice CT (MSCT) of the heart. Material and methods: Three different cardiac MSCT protocols with different slice collimation (4 x 1, and 4 x 2.5 mm), and a pitch-factor of 1.5 and 1.8 were investigated at a multi-slice CT scanner Somatom Volume Zoom, Siemens. An anthropomorphic Alderson-Rando phantom was equipped with LiF-Thermoluminescence dosimeters at several organ sites, and effective doses were calculated using ICRP-weighting factors. Scan protocols were performed with ECG-controlled tube current modulation ('ECG pulsing') at two different heart rates (60 and 80 bpm). These data were compared to previous data from MSCT of the heart without use of 'ECG pulsing'. Results: Radiation exposure with (60 bpm) and without tube current modulation using a 2.5 mm collimation was 1.8 mSv and 2.9 mSv for females, and 1.5 mSv and 2.4 mSv for males, respectively. For protocols using a 1 mm collimation with a pitch-factor of 1.5 (1.8), radiation exposure with and without tube current modulation was 5.6 (6.3) mSv and 9.5 (11.2) mSv for females, and 4.6 (5.2) mSv and 7.7 (9.2) mSv for males, respectively. At higher heart rates (80 bpm) radiation exposure is increased from 1.5-1.8 mSv to 1.8-2.1 mSv, using the 2.5 mm collimation, and from 4.6-5.6 mSv to 5.9-7.2 mSv, for protocols using 1 mm collimation. Conclusions: The ECG-controlled tube current modulation allows a dose reduction of 37% to 44% when retrospectively ECG-gated MSCT of the heart is performed. The tube current - as a function over time - and therefore the radiation exposure is dependent on the heart rate. (orig.) [de

  13. Cryocooler applications for high-temperature superconductor magnetic bearings

    International Nuclear Information System (INIS)

    Niemann, R. C.

    1998-01-01

    The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of the HTS magnetic bearings and rotational magnetic suspension are presented. HTS cooling can be by liquid cryogen bath immersion or by direct conduction, and thus there are various applications and integration issues for cryocoolers. Among the numerous cryocooler aspects to be considered are installation; operating temperature; losses; and vacuum pumping

  14. Miniature Joule-Thomson cryocooling principles and practice

    CERN Document Server

    Maytal, Ben-Zion

    2013-01-01

    This book is the first in English being entirely dedicated to Miniature Joule-Thomson Cryocooling. The category of Joule-Thomson (JT) cryocoolers takes us back to the roots of cryogenics, in 1895, with figures like Linde and Hampson. The "cold finger" of these cryocoolers is compact, lacks moving parts, and sustains a large heat flux extraction at a steady temperature. Potentially, they cool down unbeatably fast. For example, cooling to below 100 K (minus 173 Celsius) might be accomplished within only a few seconds by liquefying argon. A level of about 120 K can be reached almost instantly with krypton. Indeed, the species of coolant plays a central role dictating the size, the intensity and the level of cryocooling. It is the JT effect that drives these cryocoolers and reflects the deviation of the "real" gas from the ideal gas properties. The nine chapters of the book are arranged in five parts. • The Common Principle of Cyrocoolers shared across the broad variety of cryocooler types • Theoretical Aspec...

  15. Exploring the polymerization of bioactive nano-cones on the inner surface of an organic tube by an atmospheric pressure pulsed micro-plasma jet

    Science.gov (United States)

    Xu, H. M.; Yu, J. S.; Chen, G. L.; Qiu, X. P.; Hu, W.; Chen, W. X.; Bai, H. Y.

    2015-12-01

    In this paper, the successful deposition of acrylic acid polymer (PAA) nano-cones on the inner surface of a polyvinyl chloride (PVC) tube using an atmospheric pressure pulsed plasma jet (APPJ) with acrylic acid (AA) monomer is presented. Optical emission spectroscopy (OES) measurements indicated that various reactive radicals, such as rad OH and rad O, existed in the plasma jet. Moreover, the pulsed current proportionally increased with the increase in the applied voltage. The strengthened stretching vibration of the carbonyl group (Cdbnd O) at 1700 cm-1, shown in the ATR-FTIR spectra, clearly indicated that the PAA was deposited on the PVC surface. The maximum height of the PAA nano-cones deposited by this method ranged from 150 to 200 nm. FTIR and XPS results confirmed the enhanced exposure of the carboxyl groups on the modified PVC surface, which was considered highly beneficial for successfully immobilizing a high density of biomolecules. The XPS data showed that the carbon ratios of the Csbnd OH/R and COOH/R groups increased from 7.03% and 2.6% to 18.69% and 6.81%, respectively (more than doubled) when an Ar/O2 plasma with AA monomer was applied to treat the inner surface of the PVC tube. Moreover, the enhanced attachment density of MC3T3-E1 bone cells was observed on the PVC inner surface coated with PAA nano-cones.

  16. Cryogenic Thermal Absorptance Measurements on Small-Diameter Stainless Steel Tubing

    Science.gov (United States)

    Tuttle, James; Jahromi, Amir; Canavan, Edgar; DiPirro, Michael

    2015-01-01

    The Mid Infrared Instrument (MIRI) on the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 Kelvin operating temperature. The coolant gas flows through several meters of small-diameter stainless steel tubing, which is exposed to thermal radiation from its environment. Over much of its length this tubing is gold-plated to minimize the absorption of this radiant heat. In order to confirm that the cryocooler will meet MIRI's requirements, the thermal absorptance of this tubing was measured as a function of its environment temperature. We describe the measurement technique and present the results.

  17. Outgas analysis of mechanical cryocoolers for long lifetime

    Science.gov (United States)

    Sato, Yoichi; Shinozaki, Keisuke; Sawada, Kenichiro; Sugita, Hiroyuki; Mitsuda, Kazuhisa; Yamasaki, Noriko Y.; Nakagawa, Takao; Tsunematsu, Shoji; Otsuka, Kiyomi; Kanao, Kenichi; Yoshida, Seiji; Narasaki, Katsuhiro

    2017-12-01

    Mechanical cryocoolers for space applications are required to have high reliability to achieve long-term operation in orbit. ASTRO-H (Hitomi), the 6th Japanese X-ray astronomy mission, has a major scientific instrument onboard-the Soft X-ray Spectrometer (SXS) with several 20K-class two-stage Stirling (2ST) coolers and a 4K-class Joule Thomson (JT) cooler, which must operate for 3 years to ensure the lifetime of liquid helium as a cryogen for cooling of its detectors [1,2]. Other astronomical missions such as SPICA [3,4], LiteBIRD [5], and Athena [6] also have top requirements for these mechanical cryocoolers, including a 1K-class JT cooler to be operated for more than 3-5 years with no cryogen system. The reliability and lifetime of mechanical cryocoolers are generally understood to depend on (1) mechanical wear of the piston seal and valve seal, and (2) He working gas contaminated by impurity outgases, mainly H2O and CO2 released from the materials in the components of the cryocoolers. The second factor could be critical relative to causing blockage in the JT heat exchanger plumbing and the JT orifice or resulting in blockage in the Stirling regenerator and thereby degrading its performance. Thus, reducing the potential for outgassing in the cryocooler design and fabrication process, and predicting the total amount of outgases in the cryocooler are very important to ensure cryocooler lifetime and cooling performance in orbit. This paper investigates the outgas analysis of the 2ST and the 1K/4K-JT coolers for achieving a long lifetime. First, gas analysis was conducted for the materials and components of the mechanical cryocoolers, focusing on non-metallic materials as impurity gas sources. Then gas analysis of the mechanical wear effect of the piston seal materials and linear ball bearings was investigated. Finally, outgassing from a fully assembled cryocooler was measured to evaluate whether the outgas reduction process works properly to meet the requirement

  18. High-intensity subpicosecond laser pulse propagation in a 1-cm capillary tube and fast ignitor experiments

    Energy Technology Data Exchange (ETDEWEB)

    Malka, G.; Courtois, C.; Cros, B.; Matthieussent, G. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Gaz et des Plasmas; Blanchot, N.; Bonnaud, G.; Busquet, M.; Canaud, B.; Desenne, D.; Diskier, L.; Garconnet, J.P.; Louis-Jacquet, M.; Lefebvre, E.; Lours, L.; Mens, A.; Miquel, J.L.; Peyrusse, O.; Rousseaux, C. [CEA/Limeil Valenton, 94 - Villeneuve Saint Georges (France); Borghesi, M.; Gaillard, R.; Mackinnon, A.J.; Willi, O. [Imperial Coll., Plasma Physics Groups, London (United Kingdom); Danson, C.; Neely, D. [Rutherford Appleton Lab., Chilton (United Kingdom); Altenberd, D.; Feurer, T.; Forster, E.; Gibbon, P.; Sauerbray, R.; Teubner, U.; Theobald, W.; Uschmann, I. [Institut fur Optik und Quantenelektronik, Jena (Germany); Amiranoff, F.; Baton, S.; Gremillet, L.; Fuchs, J.; Marques, J.R. [Ecole Polytechnique, Lab. d' Utilisation de Lasers Intenses, CNRS-CEA, 91 - Palaiseau (France); Gallant, P.; Kieffer, J.C.; Pepin, H. [INRS Energie et Materiaux, Quebec (Canada); Adam, J.C.; Heron, A.; Laval, G.; Mora, P. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique

    2000-07-01

    We present an abstract of ultra short and intense laser plasma interaction experiments which were performed with the 100 TW P102 laser facility at CEA/Limeil-Valenton. Laser interaction at relativistic regime (I>10{sup 18} W/cm{sup 2}) has been investigated with different 'targets': overdense plasma, underdense plasma, free electrons and capillary tube. These experiments are of great interests for the Fast Ignitor concept and the Laser Particle Accelerator. (authors)

  19. High-intensity subpicosecond laser pulse propagation in a 1-cm capillary tube and fast ignitor experiments

    International Nuclear Information System (INIS)

    Malka, G.; Courtois, C.; Cros, B.; Matthieussent, G.; Borghesi, M.; Gaillard, R.; Mackinnon, A.J.; Willi, O.; Danson, C.; Neely, D.; Altenberd, D.; Feurer, T.; Forster, E.; Gibbon, P.; Sauerbray, R.; Teubner, U.; Theobald, W.; Uschmann, I.; Amiranoff, F.; Baton, S.; Gremillet, L.; Fuchs, J.; Marques, J.R.; Gallant, P.; Kieffer, J.C.; Pepin, H.; Adam, J.C.; Heron, A.; Laval, G.; Mora, P.

    2000-01-01

    We present an abstract of ultra short and intense laser plasma interaction experiments which were performed with the 100 TW P102 laser facility at CEA/Limeil-Valenton. Laser interaction at relativistic regime (I>10 18 W/cm 2 ) has been investigated with different 'targets': overdense plasma, underdense plasma, free electrons and capillary tube. These experiments are of great interests for the Fast Ignitor concept and the Laser Particle Accelerator. (authors)

  20. Tactical versus space cryocoolers: a comparision

    Science.gov (United States)

    Arts, R.; Mullié, J.; Leenders, H.; de Jonge, G.; Benschop, T.

    2017-05-01

    In recent years, several space cryocooler developments have been performed in parallel at Thales Cryogenics. On one end of the spectrum are research programmes such as the ESA-funded 30-50 K system developed in cooperation with CEA and Absolut System and the LPT6510 cooler developed in cooperation with Absolut System. On the other end of the spectrum are commercial designs adapted for space applications, such as the LPT9310 commercial coolers delivered for JPL's ECOSTRESS instrument and the LSF9199/30 SADA-compatible cooler delivered for various space programmes at Sofradir. In this paper, an overview is presented of the latest developments regarding these coolers. Initial performance results of the 30-50K cooler are discussed, pending developments for the LPT6510 cooler are presented, and the synergies between COTS and space are reviewed, such as design principles from space coolers being applied to an upgraded variant of the COTS LPT9310, as well as design principles from COTS coolers being applied to the LPT6510 for improved manufacturability.

  1. CFD analysis of a diaphragm free-piston Stirling cryocooler

    Science.gov (United States)

    Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan

    2016-10-01

    This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm's large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.

  2. Fatigue stress detection of VIRTIS cryocoolers on board Rosetta

    Science.gov (United States)

    Giuppi, Stefano; Politi, Romolo; Capria, Maria Teresa; Piccioni, Giuseppe; De Sanctis, Maria Cristina; Erard, Stéphane; Tosi, Federico; Capaccioni, Fabrizio; Filacchione, Gianrico

    Rosetta is a planetary cornerstone mission of the European Space Agency (ESA). It is devoted to the study of minor bodies of our solar system and it will be the first mission ever to land on a comet (the Jupiter-family comet 67P/Churyumov-Gerasimenko). VIRTIS-M is a sophisticated imaging spectrometer that combines two data channels in one compact instrument, respectively for the visible and the infrared range (0.25-5.0 μm). VIRTIS-H is devoted to infrared spectroscopy (2.5-5.0 μm) with high spectral resolution. Since the satellite will be inside the tail of the comet during one of the most important phases of the mission, it would not be appropriate to use a passive cooling system, due to the high flux of contaminants on the radiator. Therefore the IR sensors are cooled by two Stirling cycle cryocoolers produced by RICOR. Since RICOR operated life tests only on ground, it was decided to conduct an analysis on VIRTIS onboard Rosetta telemetries with the purpose of study possible differences in the cryocooler performancies. The analysis led to the conclusion that cryocoolers, when operating on board, are subject to a fatigue stress not present in the on ground life tests. The telemetries analysis shows a cyclic variation in cryocooler rotor angular velocity when -M or -H or both channel are operating (it has been also noted an influence of -M channel operations in -H cryocooler rotor angular velocity and vice versa) with frequencies mostly linked to operational parameters values. The frequencies have been calculated for each mission observation applying the Fast Fourier Transform (FFT). In order to evaluate possible hedge effects it has been also applied the Hanning window to compare the results. For a more complete evaluation of cryocoolers fatigue stress, for each mission observation the angular acceleration and the angular jerk have been calculated.

  3. Recent development status of compact 2 K GM cryocoolers

    Science.gov (United States)

    Bao, Q.; Xu, M. Y.; Tsuchiya, A.; Li, R.

    2015-12-01

    To meet the growing demand for a compact cooling solution for superconducting electronic devices, we developed a two-stage 2 K GM cryocooler and a cryostat system, which can reach 46.3 K / 2.2 K on the first and second stages under no-load conditions. Nevertheless, with several innovative technologies applied, the total length of the expander cylinder is reduced to under 70% of the smallest conventional 4 K GM cryocooler. In this paper we will present the design method, including material selection and structure design with detailed explanation, which has been confirmed by both simulation and experiment.

  4. A nonproprietary, nonsecret program for calculating Stirling cryocoolers

    Science.gov (United States)

    Martini, W. R.

    1985-01-01

    A design program for an integrated Stirling cycle cryocooler was written on an IBM-PC computer. The program is easy to use and shows the trends and itemizes the losses. The calculated results were compared with some measured performance values. The program predicts somewhat optimistic performance and needs to be calibrated more with experimental measurements. Adding a multiplier to the friction factor can bring the calculated rsults in line with the limited test results so far available. The program is offered as a good framework on which to build a truly useful design program for all types of cryocoolers.

  5. A free-piston Stirling cryocooler using metal diaphragms

    Science.gov (United States)

    Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan

    2016-12-01

    A novel concept for a free-piston Stirling cryocooler has been proposed. The concept uses a pair of metal diaphragms to seal and suspend the displacer of a free-piston Stirling cryocooler. The diaphragms allow the displacer to move without rubbing or moving seals, potentially resulting in a long-life mechanism. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicates the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. Sage predicted the macroscopic behaviour of the prototype well but did not provide sufficient insights to improve performance significantly. This paper presents details of the development, modelling and testing of the proof-of-concept prototype and a second, improved prototype.

  6. Application of a Cryocooler in the Superconducting Magnet Cooling System

    International Nuclear Information System (INIS)

    Kowalczyk, W.; Malinowski, H.

    1998-01-01

    The application of the cryocooler working with a OGMS separator was suggested. It is very important to decrease the heat leak into the electromagnet. It was discussed how to reduce the heat leak into the separator's coils. The use of a high temperature superconducting current leads is proposed and calculated. (author)

  7. Operating single quantum emitters with a compact Stirling cryocooler.

    Science.gov (United States)

    Schlehahn, A; Krüger, L; Gschrey, M; Schulze, J-H; Rodt, S; Strittmatter, A; Heindel, T; Reitzenstein, S

    2015-01-01

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g((2))(0) Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g((2))(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  8. Operating single quantum emitters with a compact Stirling cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Schlehahn, A.; Krüger, L.; Gschrey, M.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T., E-mail: tobias.heindel@tu-berlin.de; Reitzenstein, S. [Institute of Solid State Physics, Technische Universität Berlin, 10623 Berlin (Germany)

    2015-01-15

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g{sup (2)}(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g{sup (2)}(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  9. Automated Cryocooler Monitor and Control System

    Science.gov (United States)

    Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.

    2011-01-01

    A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and

  10. Kinetics of the Thermal Decomposition of Tetramethylsilane behind the Reflected Shock Waves in a Single Pulse Shock Tube (SPST) and Modeling Study

    Science.gov (United States)

    Parandaman, A.; Sudhakar, G.; Rajakumar, B.

    Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.

  11. Stirling cryocooler test results and design model verification

    International Nuclear Information System (INIS)

    Shimko, M.A.; Stacy, W.D.; McCormick, J.A.

    1990-01-01

    This paper reports on progress in developing a long-life Stirling cycle cryocooler for space borne applications. It presents the results from tests on a preliminary breadboard version of the cryocooler used to demonstrate the feasibility of the technology and to validate the regenerator design code used in its development. This machine achieved a cold-end temperature of 65 K while carrying a 1/2 Watt cooling load. The basic machine is a double-acting, flexure-bearing, split Stirling design with linear electromagnetic drives for the expander and compressors. Flat metal diaphragms replace pistons for both sweeping and sealing the machine working volumes. In addition, the double-acting expander couples to a laminar-channel counterflow recuperative heat exchanger for regeneration. A PC compatible design code was developed for this design approach that calculates regenerator loss including heat transfer irreversibilities, pressure drop, and axial conduction in the regenerator walls

  12. Multimodal tuned dynamic absorber for split Stirling linear cryocooler

    Science.gov (United States)

    Veprik, A.; Tuito, A.

    2017-02-01

    Forthcoming low size, weight, power and price split Stirling linear cryocoolers may rely on electro-dynamically driven single-piston compressors and pneumatically driven expanders interconnected by the configurable transfer line. For compactness, compressor and expander units may be placed in a side-by-side manner, thus producing tonal vibration export comprising force and moment components. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber (MTDA), having one translational and two tilting modes essentially tuned to the driving frequency. The dynamic reactions (force and moment) produced by such a MTDA are simultaneously counterbalancing force and moment vibration export produced by the cryocooler. The authors reveal the design details, the method of fine modal tuning and outcomes of numerical simulation on attainable performance.

  13. Space Stirling Cryocooler Contamination Lessons Learned and Recommended Control Procedures

    Science.gov (United States)

    Glaister, D. S.; Price, K.; Gully, W.; Castles, S.; Reilly, J.

    The most important characteristic of a space cryocooler is its reliability over a lifetime typically in excess of 7 years. While design improvements have reduced the probability of mechanical failure, the risk of internal contamination is still significant and has not been addressed in a consistent approach across the industry. A significant fraction of the endurance test and flight units have experienced some performance degradation related to internal contamination. The purpose of this paper is to describe and assess the contamination issues inside long life, space cryocoolers and to recommend procedures to minimize the probability of encountering contamination related failures and degradation. The paper covers the sources of contamination, the degradation and failure mechanisms, the theoretical and observed cryocooler sensitivity, and the recommended prevention procedures and their impact. We begin with a discussion of the contamination sources, both artificial and intrinsic. Next, the degradation and failure mechanisms are discussed in an attempt to arrive at a contaminant susceptibility, from which we can derive a contamination budget for the machine. This theoretical sensitivity is then compared with the observed sensitivity to illustrate the conservative nature of the assumed scenarios. A number of lessons learned on Raytheon, Ball, Air Force Research Laboratory, and NASA GSFC programs are shared to convey the practical aspects of the contamination problem. Then, the materials and processes required to meet the proposed budget are outlined. An attempt is made to present a survey of processes across industry.

  14. Dynamic Simulation of a Periodic 10 K Sorption Cryocooler

    Science.gov (United States)

    Bhandari, P.; Rodriguez, J.; Bard, S.; Wade, L.

    1994-01-01

    A transient thermal simulation model has been developed to simulate the dynamic performance of a multiple-stage 10 K sorption cryocooler for spacecraft sensor cooling applications that require periodic quick-cooldown (under 2 minutes) , negligible vibration, low power consumption, and long life (5 to 10 years). The model was specifically designed to represent the Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), but it can be adapted to represent other sorption cryocooler systems as well. The model simulates the heat transfer, mass transfer, and thermodynamic processes in the cryostat and the sorbent beds for the entire refrigeration cycle, and includes the transient effects of variable hydrogen supply pressures due to expansion and overflow of hydrogen during the cooldown operation. The paper describes model limitations and simplifying assumptions, with estimates of errors induced by them, and presents comparisons of performance predictions with ground experiments. An important benefit of the model is its ability to predict performance sensitivities to variations of key design and operational parameters. The insights thus obtained are expected to lead to higher efficiencies and lower weights for future designs.

  15. Performance degradation of space Stirling cryocoolers due to gas contamination

    Science.gov (United States)

    Liu, Xin-guang; Wu, Yi-nong; Yang, Shao-hua; Zhang, Xiao-ming; Lu, Guo-hua; Zhang, Li

    2011-08-01

    With extensive application of infrared detective techniques, Stirling cryocoolers, used as an active cooling source, have been developed vigorously in China. After the cooler's cooling performance can satisfy the mission's request, its reliability level is crucial for its application. Among all the possible failure mechanisms, gas contamination has been found to be the most notorious cause of cooler's performance degradation by failure analyses. To analyze the characteristic of gas contamination, some experiments were designed and carried out to quantitatively analyze the relationship between failure and performance. Combined with the test results and the outgassing characteristic of non-metal materials in the cryocooler, a degradation model of cooling performance was given by T(t)=T0+A[1-exp(-t/B)] under some assumptions, where t is the running time, T is the Kelvin cooling temperature, and T0, A, B are model parameters, which can be given by the least square method. Here T0 is the fitting initial cooling temperature, A is the maximum range of performance degradation, and B is the time dependent constant of degradation. But the model parameters vary when a cryocooler is running at different cooling temperature ranges, or it is treated by different cleaning process. In order to verify the applicability of the degradation model, data fit analysis on eight groups of cooler's lifetime test was carried out. The final work indicated this model fit well with the performance degradation of space Stirling cryocoolers due to gas contamination and this model could be used to predict or evaluation the cooler's lifetime. Gaseous contamination will not arouse severe performance degradation until the contaminants accumulate to a certain amount, but it could be fatal when it works. So it is more serious to the coolers whose lifetime is more than 10,000 h. The measures taken to control or minimize its damage were discussed as well. To the long-life cryocooler, internal materials

  16. Neutron generator tube ion source control

    International Nuclear Information System (INIS)

    Bridges, J.R.

    1982-01-01

    A system is claimed for controlling the output of a neutron generator tube of the deuterium-tritium accelerator type and having an ion source to produce sharply defined pulses of neutrons for well logging use. It comprises: means for inputting a relatively low voltage input control pulse having a leading edge and a trailing edge; means, responsive to the input control pulse, for producing a relatively high voltage ion source voltage pulse after receipt of the input pulse; and means, responsive to the input control pulse, for quenching, after receipt of the input pulse, the ion source control pulse, thereby providing a sharply time defined neutron output from the generator tube

  17. Design of a Two-stage High-capacity Stirling Cryocooler Operating below 30K

    Science.gov (United States)

    Wang, Xiaotao; Dai, Wei; Zhu, Jian; Chen, Shuai; Li, Haibing; Luo, Ercang

    The high capacity cryocooler working below 30K can find many applications such as superconducting motors, superconducting cables and cryopump. Compared to the GM cryocooler, the Stirling cryocooler can achieve higher efficiency and more compact structure. Because of these obvious advantages, we have designed a two stage free piston Stirling cryocooler system, which is driven by a moving magnet linear compressor with an operating frequency of 40 Hz and a maximum 5 kW input electric power. The first stage of the cryocooler is designed to operate in the liquid nitrogen temperature and output a cooling power of 100 W. And the second stage is expected to simultaneously provide a cooling power of 50 W below the temperature of 30 K. In order to achieve the best system efficiency, a numerical model based on the thermoacoustic model was developed to optimize the system operating and structure parameters.

  18. Performance analysis on free-piston Stirling cryocooler based on an idealized mathematical model

    Science.gov (United States)

    Guo, Y. X.; Chao, Y. J.; Gan, Z. H.; Li, S. Z.; Wang, B.

    2017-12-01

    Free-piston Stirling cryocoolers have extensive applications for its simplicity in structure and decrease in mass. However, the elimination of the motor and the crankshaft has made its thermodynamic characteristic different from that of Stirling cryocoolers with displacer driving mechanism. Therefore, an idealized mathematical model has been established, and with this model, an attempt has been made to analyse the thermodynamic characteristic and the performance of free-piston Stirling cryocooler. To certify this mathematical model, a comparison has been made between the model and a numerical model. This study reveals that due to the displacer damping force necessary for the production of cooling capacity, the free-piston Stirling cryocooler is inherently less efficient than Stirling cryocooler with displacer driving mechanism. Viscous flow resistance and incomplete heat transfer in the regenerator are the two major causes of the discrepancy between the results of the idealized mathematical model and the numerical model.

  19. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA; Poole, Brian R [Tracy, CA

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  20. Effects of cyclic mean pressure of helium gas on performance of integral crank driven stirling cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yong Ju; Ko, Jun Seok; Kim, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Changwon (Korea, Republic of)

    2016-09-15

    An integral crank driven Stirling cryocooler is solidly based on concepts of direct IR detector mounting on the cryocooler's cold finger, and the integral construction of the cryocooler and Dewar envelope. Performance factors of the cryocooler depend on operating conditions of the cryocooler such as a cyclic mean pressure of the working fluid, a rotational speed of driving mechanism, a thermal environment, a targeted operation temperature and etc.. At given charging condition of helium gas, the cyclic mean pressure of helium gas in the cryocooler changes with temperatures of the cold end and the environment. In this study, effects of the cyclic mean pressure of helium gas on performances of the Stirling cryocooler were investigated by numerical analyses using the Sage software. The simulation model takes into account thermodynamic losses due to an inefficiency of regenerator, a pressure drop, a shuttle heat transfer and solid conductions. Simulations are performed for the performance variation according to the cyclic mean pressure induced by the temperature of the cold end and the environment. This paper presents P-V works in the compression and expansion space, cooling capacity, contribution of losses in the expansion space.

  1. Effects of cyclic mean pressure of helium gas on performance of integral crank driven stirling cryocooler

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Ko, Jun Seok; Kim, Hyo Bong; Park, Seong Je

    2016-01-01

    An integral crank driven Stirling cryocooler is solidly based on concepts of direct IR detector mounting on the cryocooler's cold finger, and the integral construction of the cryocooler and Dewar envelope. Performance factors of the cryocooler depend on operating conditions of the cryocooler such as a cyclic mean pressure of the working fluid, a rotational speed of driving mechanism, a thermal environment, a targeted operation temperature and etc.. At given charging condition of helium gas, the cyclic mean pressure of helium gas in the cryocooler changes with temperatures of the cold end and the environment. In this study, effects of the cyclic mean pressure of helium gas on performances of the Stirling cryocooler were investigated by numerical analyses using the Sage software. The simulation model takes into account thermodynamic losses due to an inefficiency of regenerator, a pressure drop, a shuttle heat transfer and solid conductions. Simulations are performed for the performance variation according to the cyclic mean pressure induced by the temperature of the cold end and the environment. This paper presents P-V works in the compression and expansion space, cooling capacity, contribution of losses in the expansion space

  2. Air Force Research Laboratory Spacecraft Cryocooler Endurance Evaluation Facility Closing Report

    Science.gov (United States)

    Armstrong, J.; Martin, K. W.; Fraser, T.

    2015-12-01

    The Air Force Research Laboratory (AFRL) Spacecraft Component Thermal Research Group has been devoted to evaluating lifetime performance of space cryocooler technology for over twenty years. Long-life data is essential for confirming design lifetimes for space cryocoolers. Continuous operation in a simulated space environment is the only accepted method to test for degradation. AFRL has provided raw data and detailed evaluations to cryocooler developers for advancing the technology, correcting discovered deficiencies, and improving cryocooler designs. At AFRL, units of varying design and refrigeration cycles were instrumented in state-of-the-art experiment stands to provide spacelike conditions and were equipped with software data acquisition to track critical cryocooler operating parameters. This data allowed an assessment of the technology's ability to meet the desired lifetime and documented any long-term changes in performance. This paper will outline a final report of the various flight cryocoolers tested in our laboratory. The data summarized includes the seven cryocoolers tested during 2014-2015. These seven coolers have a combined total of 433,326 hours (49.5 years) of operation.

  3. Magnet/cryocooler integration for thermal stability in conduction-cooled systems

    Science.gov (United States)

    Chang, H.-M.; Kwon, K. B.

    2002-05-01

    The stability conditions that take into accounts the size of superconducting magnets and the refrigeration capacity of cryocoolers are investigated for the conduction-cooled systems without liquid cryogens. The worst scenario in the superconducting systems is that the heat generation in the resistive state exceeds the refrigeration, causing a rise in the temperature of the magnet winding and leading to burnout. It is shown by an analytical solution that in the continuously resistive state, the temperature may increase indefinitely or a stable steady state may be reached, depending upon the relative size of the magnet with respect to the refrigeration capacity of the cryocooler. The stability criteria include the temperature-dependent properties of the magnet materials and the refrigeration characteristics of the cryocooler. A useful graphical scheme is presented and the design of the stable magnet/cryocooler interface is demonstrated.

  4. Air Force Research Laboratory Spacecraft Cryocooler Endurance Evaluation Update: FY98-99

    National Research Council Canada - National Science Library

    Tomlinson, B

    1999-01-01

    The need for long term endurance evaluation data on space cryocoolers has long been an issue due to the 10-year plus design life of this technology and the absence of any accepted accelerated testing methodology...

  5. Development of a 77K Reverse-Brayton Cryocooler with Multiple Coldheads, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — RTI will design and optimize an 80 W, 77K cryocooler based on the reverse turbo Brayton cycle (RTBC) with four identical coldheads for distributed cooling. Based on...

  6. An experimental study for the phase shift between piston and displacer in the Stirling cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. J.; Hong, Y. J.; Kim, H. B. [Korea Institute of Machinery and Materials, Taejon (Korea, Republic of); Son, H. K.; Yu, B. K. [Wooyoung Co., Ltd., Seoul (Korea, Republic of)

    2002-07-01

    The small cryocooler is being widely applied to the areas of infrared detector, superconductor filter, satellite communication, and cryopump. The cryocooler working on the Stirling cycle are characterized by small size, lightweight, low power consumption and high reliability. For these reasons, FPFD (Free Piston Free Displacer) Stirling cryocooler is widely used not only tactical infrared imaging camera but also medical diagnostic apparatus. In this study, Stirling cryocooler actuated by the dual linear motor is designed and manufactured. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of the displacer is measured by laser optic method, and phase shift between piston and displacer is discussed. Finally, when the phase shift between displacements of the piston and displacer is 45 .deg., operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance.

  7. An experimental study for the phase shift between piston and displacer in the Stirling cryocooler

    International Nuclear Information System (INIS)

    Park, S. J.; Hong, Y. J.; Kim, H. B.; Son, H. K.; Yu, B. K.

    2002-01-01

    The small cryocooler is being widely applied to the areas of infrared detector, superconductor filter, satellite communication, and cryopump. The cryocooler working on the Stirling cycle are characterized by small size, lightweight, low power consumption and high reliability. For these reasons, FPFD (Free Piston Free Displacer) Stirling cryocooler is widely used not only tactical infrared imaging camera but also medical diagnostic apparatus. In this study, Stirling cryocooler actuated by the dual linear motor is designed and manufactured. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of the displacer is measured by laser optic method, and phase shift between piston and displacer is discussed. Finally, when the phase shift between displacements of the piston and displacer is 45 .deg., operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance

  8. Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-life, high-capacity cryocoolers are a critical need for future space systems utilizing stored cryogens. The cooling requirements for planetary and...

  9. Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-life, high-capacity cryocoolers are a critical need for future space systems utilizing stored cryogens. The cooling requirements for planetary and...

  10. Development of New Cryocooler Regenerator Materials-Ductile Intermetallic Compounds

    International Nuclear Information System (INIS)

    Gschneidner, K.A.; Pecharsky, A.O.; Pecharsky, V.K.

    2004-01-01

    The volumetric heat capacities of a number of binary and ternary Er- and Tm-based intermetallic compounds, which exhibited substantial ductilities, were measured from ∼3 to ∼350 K. They have the RM stoichiometry (where R = Er or Tm, and M is a main group or transition metal) and crystallize in the CsCl-type structure. The heat capacities of the Tm-based compounds are in general larger than the corresponding Er-based materials. Many of them have heat capacities which are significantly larger than those of the low temperature ( 2 , Er 3 Ni and ErNi. Utilization of the new materials as regenerators in the various cryocoolers should improve the performance of these refrigeration units for cooling below 15 K

  11. The effect of low temperature cryocoolers on the development of low temperature superconducting magnets

    International Nuclear Information System (INIS)

    Green, Michael A.

    2000-01-01

    The commercial development of reliable 4 K cryocoolers improves the future prospects for magnets made from low temperature superconductors (LTS). The hope of the developers of high temperature superconductors (HTS) has been to replace liquid helium cooled LTS magnets with HTS magnets that operate at or near liquid nitrogen temperature. There has been limited success in this endeavor, but continued problems with HTS conductors have greatly slowed progress toward this goal. The development of cryocoolers that reliably operate below 4 K will allow magnets made from LTS conductor to remain very competitive for many years to come. A key enabling technology for the use of low temperature cryocoolers on LTS magnets has been the development of HTS leads. This report describes the characteristics of LTS magnets that can be successfully melded to low-temperature cryocoolers. This report will also show when it is not appropriate to consider the use of low-temperature cryocoolers to cool magnets made with LTS conductor. A couple of specific examples of LTS magnets where cryocoolers can be used are given

  12. The Ricor K508 cryocooler operational experience on Mars

    International Nuclear Information System (INIS)

    Johnson, Dean L.; Lysek, Mark J.; Morookian, John Michael

    2014-01-01

    The Mars Science Laboratory (Curiosity) landed successfully on Mars on August 5, 2012, eight months after launch. The chosen landing site of Gale Crater, located at 4.5 degrees south latitude, 137.4 degrees east longitude, has provided a much more benign environment than was originally planned for during the critical design and integration phases of the MSL Project when all possible landing sites were still being considered. The expected near-surface atmospheric temperatures at the Gale Crater landing site during Curiosity's primary mission (1 Martian year or 687 Earth days) are from −90°C to 0°C. However, enclosed within Curiosity's thermal control fluid loops the Chemistry and Mineralogy (CheMin) instrument is maintained at approximately +20°C. The CheMin instrument uses X-ray diffraction spectroscopy to make precise measurements of mineral constituents of Mars rocks and soil. The instrument incorporated the commercially available Ricor K508 Stirling cycle cryocooler to cool the CCD detector. After several months of brushing itself off, stretching and testing out its subsystems, Curiosity began the exploration of the Mars surface in October 2012. The CheMin instrument on the Mars Science Laboratory (MSL) received its first soil sample from Curiosity on October 24, and successfully analyzed its first soil sample. After a brief review of the rigorous Ricor K508 cooler qualification tests and life tests based on the original MSL environmental requirements this paper presents final pre-launch instrument integration and testing results, and details the operational data of the CheMin cryocooler, providing a snapshot of the resulting CheMin instrument analytical data

  13. The Ricor K508 cryocooler operational experience on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dean L.; Lysek, Mark J.; Morookian, John Michael [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-01-29

    The Mars Science Laboratory (Curiosity) landed successfully on Mars on August 5, 2012, eight months after launch. The chosen landing site of Gale Crater, located at 4.5 degrees south latitude, 137.4 degrees east longitude, has provided a much more benign environment than was originally planned for during the critical design and integration phases of the MSL Project when all possible landing sites were still being considered. The expected near-surface atmospheric temperatures at the Gale Crater landing site during Curiosity's primary mission (1 Martian year or 687 Earth days) are from −90°C to 0°C. However, enclosed within Curiosity's thermal control fluid loops the Chemistry and Mineralogy (CheMin) instrument is maintained at approximately +20°C. The CheMin instrument uses X-ray diffraction spectroscopy to make precise measurements of mineral constituents of Mars rocks and soil. The instrument incorporated the commercially available Ricor K508 Stirling cycle cryocooler to cool the CCD detector. After several months of brushing itself off, stretching and testing out its subsystems, Curiosity began the exploration of the Mars surface in October 2012. The CheMin instrument on the Mars Science Laboratory (MSL) received its first soil sample from Curiosity on October 24, and successfully analyzed its first soil sample. After a brief review of the rigorous Ricor K508 cooler qualification tests and life tests based on the original MSL environmental requirements this paper presents final pre-launch instrument integration and testing results, and details the operational data of the CheMin cryocooler, providing a snapshot of the resulting CheMin instrument analytical data.

  14. Vibration-free stirling cryocooler for high definition microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2009-12-01

    The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi

  15. Pulsed neutron generator

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.

    1986-03-01

    The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig

  16. Laser plasma generation of hydrogen-free diamond-like carbon thin films on Zr-2.5Nb CANDU pressure tube materials and silicon wafers with a pulsed high-power CO2 laser

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Mouris, J.F.; Hoffmann, C.R.J.; Davis, R.W.

    1995-06-01

    We report the first experiments on the laser plasma deposition of hydrogen-free, diamond-like carbon (DLC) films on Zr-2.5Nb CANDU pressure-tube materials and silicon substrates, using the short-pulse, high-power, CO 2 laser in the High-Power Laser Laboratory at Chalk River Laboratories. The films were (AFM). The thin films show the characteristic signature of DLC films in the Raman spectra obtained using a krypton-ion (Kr + ) laser. The Vickers ultra-low-load microhardness tests show hardness of the coated surface of approximately 7000 Kg force mm -2 , which is consistent with the hardness associated with DLC films. AFM examination of the film morphology shows diamond-like crystals distributed throughout the film, with film thicknesses of up to 0.5 μm generated with 50 laser pulses. With significantly more laser pulses, it is expected that very uniform diamond-like films would be produced. These experiments suggest that it should be possible to deposit hydrogen-free, diamond-like films of relevance to nuclear reactor components with a high-power and high-repetition-rate laser facility. (author). 7 refs., 2 tabs., 15 figs

  17. Tube plug

    International Nuclear Information System (INIS)

    Zafred, P. R.

    1985-01-01

    The tube plug comprises a one piece mechanical plug having one open end and one closed end which is capable of being inserted in a heat exchange tube and internally expanded into contact with the inside surface of the heat exchange tube for preventing flow of a coolant through the heat exchange tube. The tube plug also comprises a groove extending around the outside circumference thereof which has an elastomeric material disposed in the groove for enhancing the seal between the tube plug and the tube

  18. Design of a cryo-cooled artificial channel-cut crystal monochromator for the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiaohao, E-mail: xiaohao.dong@xfel.eu; Sinn, Harald, E-mail: harald.sinn@xfel.eu [European XFEL GmbH, Hamburg, D-22761 (Germany); Shu, Deming, E-mail: shu@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439, U.S.A (United States)

    2016-07-27

    An artificial channel-cut crystal monochromator for the hard X-Ray beamlines of SASE 1&2, cryogenically cooled by the so-called pulse tube cooler (cryorefrigerator), is currently under development at the European XFEL ( http://www.xfel.eu/ ). The fabrication is on-going. We present here the crystal optical consideration and the novel cooling configuration, according to the X-Ray FEL pulses proprieties. The mechanical design improvements are pointed out as well to implement such kind of monochromator based on the previous similar design.

  19. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... any of these problems: a dislodged tube a blocked or clogged tube any signs of infection (including redness, swelling, or warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain lasting ...

  20. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  1. Cryocooled superconducting magnets for high magnetic fields at the HFLSM and future collaboration with the TML

    International Nuclear Information System (INIS)

    Watanabe, K; Nishijima, G; Awaji, S; Koyama, K; Takahashi, K; Kobayashi, N; Kiyoshi, T

    2006-01-01

    A hybrid magnet needs a large amount of liquid helium for operation. In order to make an easy-to-operate hybrid magnet system, we constructed a cryocooled 28 T hybrid magnet, consisting of an outer cryocooled 10 T superconducting magnet and an inner traditional water-cooled 19 T resistive magnet. As a performance test, the cryocooled hybrid magnet generated 27.5 T in a 32 mm room temperature experimental bore. As long as Nb3Sn superconducting wires are employed, the expected maximum high field generation in the cryocooled superconducting magnet will be 17 T at 5 K. We adopted the high temperature superconducting insert coil, employing Ag-sheathed Bi 2 Sr 2 Ca 2 Cu 3 O 10 superconducting tape. In combination with the low temperature 16.5 T back-up coil with a 174 mm cold bore, the cryocooled high temperature superconducting magnet successfully generated the total central field of 18.1 T in a 52 mm room temperature bore. As a next step, we start the collaboration with the National Institute for Materials Science for the new developmental works of a 30 T high temperature superconducting magnet and a 50 T-class hybrid magnet

  2. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Park, Chan Woo; Yang, Hyung Suk; Hwang, Si Dole

    2014-01-01

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1˜3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system.

  3. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    International Nuclear Information System (INIS)

    Chang, Ho-Myung; Park, Chan Woo; Yang, Hyung Suk; Hwang, Si Dole

    2014-01-01

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1∼3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system

  4. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho-Myung; Park, Chan Woo [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Yang, Hyung Suk; Hwang, Si Dole [KEPCO Research Institute, Daejeon, 305-760 (Korea, Republic of)

    2014-01-29

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1∼3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system.

  5. Development of 1 kW Stirling cryocooler using a linear compressor

    International Nuclear Information System (INIS)

    Ko, J; Kim, H; Hong, Y J; Yeom, H; In, S; Park, S J

    2015-01-01

    Cryogenic cooling systems for HTS electric power devices require a reliable and efficient high-capacity cryocooler. A Striling cryocooler with a linear compressor can be a good candidate. It has advantages of low vibration and long maintenance cycle compared with a kinematic-driven Stirling cryocooler. In this study, we developed a dual-opposed linear compressor of 12 kW electric input power with two 6 kW linear motors. Electrical performance of the fabricated linear compressor is verified by experimental measurement of thrust constant. The developed Stirling cryocooler has a gamma-type configuration. The piston and displacer are supported with a flexure spring. A slit-type heat exchanger is adopted for the cold and warm-end, and the generated heat is rejected by cooling water. In the cooling performance test, waveforms of voltage, current, displacement and pressure are obtained and their amplitude and phase difference are analysed. The developed cryocooler reaches 47.8 K within 23.4 min. with no-load. Heat load tests shows a cooling capacity of 440 W at 78.1 K with 6.45 kW of electric input power and 19.4 of % Carnot COP. (paper)

  6. Sealed ion accelerator tubes (survey)

    International Nuclear Information System (INIS)

    Voitsik, L.R.

    1985-01-01

    The first publications on developing commercial models of small-scale sealed accelerator tubes in which neutrons are generated appeared in the foreign press in 1954 to 1957; they were very brief and were advertising-oriented. The tubes were designed for neutron logging of oil wells instead of ampule neutron sources (Po + Be, Ra + Be). Later, instruments of this type began to be called neutron tubes from the resulting neutron radiation that they gave off. In Soviet Union a neutron tube was developed in 1958 in connection with the development of the pulsed neutron-neutron method of studying the geological profile of oil wells. At that time the tube developed was intended, in the view of its inventors, to replace standard isotope sources with constant neutron yield. A fairly detailed survey of neutron tubes was made in the studies. 8 refs., 8 figs

  7. Operating characteristics of a single-stage Stirling cryocooler capable of providing 700 W cooling power at 77 K

    Science.gov (United States)

    Xu, Ya; Sun, Daming; Qiao, Xin; Yu, Yan S. W.; Zhang, Ning; Zhang, Jie; Cai, Yachao

    2017-04-01

    High cooling capacity Stirling cryocooler generally has hundreds to thousands watts of cooling power at liquid nitrogen temperature. It is promising in boil-off gas (BOG) recondensation and high temperature superconducting (HTS) applications. A high cooling capacity Stirling cryocooler driven by a crank-rod mechanism was developed and studied systematically. The pressure and frequency characteristics of the cryocooler, the heat rejection from the ambient heat exchanger, and the cooling performance are studied under different charging pressure. Energy conversion and distribution in the cryocooler are analyzed theoretically. With an electric input power of 10.9 kW and a rotating speed of 1450 r/min of the motor, a cooling power of 700 W at 77 K and a relative Carnot efficiency of 18.2% of the cryocooler have been achieved in the present study, and the corresponding pressure ratio in the compression space reaches 2.46.

  8. New application of plate-fin heat exchanger with regenerative cryocoolers

    Science.gov (United States)

    Chang, Ho-Myung; Gwak, Kyung Hyun

    2015-09-01

    A design idea is newly proposed and investigated for the application of plate-fin heat exchanger (PFHX) with regenerative cryocoolers. The role of this heat exchanger is to effectively absorb heat from the stream of coolant and deliver it to the cold-head of a cryocooler. While various types of tubular HX's have been developed so far, a small PFHX could be more useful for this purpose by taking advantage of compactness and design flexibility. In order to confirm the feasibility and effectiveness, a prototype of aluminum-brazed PFHX is designed, fabricated, and tested with a single-stage GM cryocooler in experiments for subcooling liquid nitrogen from 78 K to 65-70 K. The results show that the PFHX is 30-50% more effective in cooling rate than the tubular HX's. Several potential applications of PFHX are presented and discussed with specific design concepts.

  9. Streak tube development

    International Nuclear Information System (INIS)

    Hinrichs, C.K.; Estrella, R.M.

    1979-01-01

    A research program for the development of a high-speed, high-resolution streak image tube is described. This is one task in the development of a streak camera system with digital electronic readout, whose primary application is for diagnostics in underground nuclear testing. This program is concerned with the development of a high-resolution streak image tube compatible with x-ray input and electronic digital output. The tube must be capable of time resolution down to 100 psec and spatial resolution to provide greater than 1000 resolution elements across the cathode (much greater than presently available). Another objective is to develop the capability to make design changes in tube configurations to meet different experimental requirements. A demountable prototype streak tube was constructed, mounted on an optical bench, and placed in a vacuum system. Initial measurements of the tube resolution with an undeflected image show a resolution of 32 line pairs per millimeter over a cathode diameter of one inch, which is consistent with the predictions of the computer simulations. With the initial set of unoptmized deflection plates, the resolution pattern appeared to remain unchanged for static deflections of +- 1/2-inch, a total streak length of one inch, also consistent with the computer simulations. A passively mode-locked frequency-doubled dye laser is being developed as an ultraviolet pulsed light source to measure dynamic tube resolution during streaking. A sweep circuit to provide the deflection voltage in the prototype tube has been designed and constructed and provides a relatively linear ramp voltage with ramp durations adjustable between 10 and 1000 nsec

  10. Estimation of Freezing Point of Hydrocarbon and Hydrofluorocarbon Mixtures for Mixed Refrigerant jt Cryocooler

    Science.gov (United States)

    Hwang, G.; Lee, J.; Jeong, S.

    2010-04-01

    Estimating the freezing point of refrigerant is an essential part in designing an MR JT (Mixed refrigerant Joule-Thomson) cryocooler to prevent itself from clogging and to operate with stability. There were researches on estimating freezing point, but some of them resulted in the wrong prediction of clogging. In this paper, the freezing point of the MR is precisely estimated with caution of clogging. The solubility of HC (hydrocarbon) and HFC (hydrofluorocarbon) mixture components are obtained with their activity coefficients, which represent the molecular interaction among the components. The freezing points of the MR JT cryocooler are systematically investigated in the operating temperature range from 70 K to 90 K.

  11. Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse

    International Nuclear Information System (INIS)

    Kılınç, Ersin; Bakırdere, Sezgin; Aydın, Fırat; Ataman, O. Yavuz

    2012-01-01

    Sensitivity of flame atomic absorption spectrometry (FAAS) for Bi determination was improved by slotted quartz tube (SQT) that was used also for atom trapping (AT). The trapped analyte was released by aspirating a small volume of organic solvent after a reasonable analyte collection time. Sensitivity was improved by 2.9 times by SQT-FAAS and 256 times by SQT-AT-FAAS with respect to FAAS. Optimum trapping period was found to be 6.0 min (36.0 mL of solution). Limit of detection (LOD) for SQT-AT-FAAS was found to be 1.6 ng mL −1 . %RSD was calculated as 4.0% for five replicate measurements of 7.5 ng mL −1 Bi by SQT-AT-FAAS. Accuracy of the method developed was checked by analyzing a standard reference material of simulated fresh water (NIST 1643e) and result found was in good agreement with the certified one. The method can be applied in any laboratory equipped with a flame AA spectrometer. The consumption of time and sample volume is fairly low and application is simple and easy.

  12. Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse

    Energy Technology Data Exchange (ETDEWEB)

    K Latin-Small-Letter-Dotless-I l Latin-Small-Letter-Dotless-I nc, Ersin, E-mail: ekilinc@dicle.edu.tr [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbak Latin-Small-Letter-Dotless-I r (Turkey); Bak Latin-Small-Letter-Dotless-I rdere, Sezgin [Y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I z Technical University, Faculty of Education, Department of Science Education, TR 34210 Esenler-Istanbul (Turkey); Ayd Latin-Small-Letter-Dotless-I n, F Latin-Small-Letter-Dotless-I rat [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbak Latin-Small-Letter-Dotless-I r (Turkey); Ataman, O. Yavuz [Middle East Technical University, Faculty of Arts and Sciences, Department of Chemistry, 06800 Ankara (Turkey)

    2012-07-15

    Sensitivity of flame atomic absorption spectrometry (FAAS) for Bi determination was improved by slotted quartz tube (SQT) that was used also for atom trapping (AT). The trapped analyte was released by aspirating a small volume of organic solvent after a reasonable analyte collection time. Sensitivity was improved by 2.9 times by SQT-FAAS and 256 times by SQT-AT-FAAS with respect to FAAS. Optimum trapping period was found to be 6.0 min (36.0 mL of solution). Limit of detection (LOD) for SQT-AT-FAAS was found to be 1.6 ng mL{sup -1}. %RSD was calculated as 4.0% for five replicate measurements of 7.5 ng mL{sup -1} Bi by SQT-AT-FAAS. Accuracy of the method developed was checked by analyzing a standard reference material of simulated fresh water (NIST 1643e) and result found was in good agreement with the certified one. The method can be applied in any laboratory equipped with a flame AA spectrometer. The consumption of time and sample volume is fairly low and application is simple and easy.

  13. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  14. Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K

    Science.gov (United States)

    Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Dai, Wei; Li, Ke; Pang, Xiaomin; Yu, Guoyao; Luo, Ercang

    2016-12-01

    This paper presents a two-stage high-capacity free-piston Stirling cryocooler driven by a linear compressor to meet the requirement of the high temperature superconductor (HTS) motor applications. The cryocooler system comprises a single piston linear compressor, a two-stage free piston Stirling cryocooler and a passive oscillator. A single stepped displacer configuration was adopted. A numerical model based on the thermoacoustic theory was used to optimize the system operating and structure parameters. Distributions of pressure wave, phase differences between the pressure wave and the volume flow rate and different energy flows are presented for a better understanding of the system. Some characterizing experimental results are presented. Thus far, the cryocooler has reached a lowest cold-head temperature of 27.6 K and achieved a cooling power of 78 W at 40 K with an input electric power of 3.2 kW, which indicates a relative Carnot efficiency of 14.8%. When the cold-head temperature increased to 77 K, the cooling power reached 284 W with a relative Carnot efficiency of 25.9%. The influences of different parameters such as mean pressure, input electric power and cold-head temperature are also investigated.

  15. A 1 T, 0.33 m bore superconducting magnet operating with cryocoolers at 12 K

    NARCIS (Netherlands)

    van der Laan, M.T.G.; van der Laan, M.T.G.; Tax, R.B.; ten Kate, Herman H.J.; van de Klundert, L.J.M.

    1992-01-01

    The application of small cryocoolers to cooling a superconducting magnet at 12 K has important advantages, especially for small and medium-size magnets. Simple construction and a helium-free magnet system were obtained. The demonstration magnet developed is a six-coil system with a volume of 75 L

  16. Modified-Collins cryocooler for zero-boiloff storage of cryogenic fuels in space

    Science.gov (United States)

    Hannon, Charles L.; Krass, Brady; Hogan, Jake; Brisson, John

    2012-06-01

    Future lunar and planetary explorations will require the storage of cryogenic propellants, particularly liquid oxygen (LOX) and liquid hydrogen (LH2), in low earth orbit (LEO) for periods of time ranging from days to months, and possibly longer. Without careful thermal management, significant quantities of stored liquid cryogens can be lost due to boil-off. Boil-off can be minimized by a variety of passive means including insulation, sun shades and passive radiational cooling. However, it has been shown that active cooling using space cryocoolers has the potential to result in Zero Boil-Off (ZBO) and the launch-mass savings using active cooling exceeds that of passive cooling of LOX for mission durations in LEO of less than 1 week, and for LH2 after about 2 months in LEO. Large-scale DC-flow cryogenic refrigeration systems operate at a fraction of the specific power levels required by small-scale AC-flow cryocoolers. The efficiency advantage of DC-flow cryogenic cycles motivates the current development of a cryocooler based on a modification of the Collins Cycle. The modified Collins cycle design employs piston type expanders that support high operating pressure ratios, electromagnetic valves that enable "floating pistons", and recuperative heat transfer. This paper will describe the design of a prototype Modified-Collins cryocooler for ZBO storage of cryogenic fuels in space.

  17. Small size neutron tube UNG-1

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Mints, A.Z.; Shkol'nikov, A.S.

    A tube UNG-1 (universal neutron gas-filled) is designed for the use in the well neutron generators IGN-1 and IGN-1-M (a pulse neutron generator). Their serial production in the USSR has been started in 1963. At the same year, the serial production of the tubes UNG-1 has been started. Thus, this tube is the first serial logging accelerating tube in the USSR. A Penning source, equipped with a hot cathode, was selected as an ion source of the tube

  18. Thermal properties of a large-bore cryocooled 10 T superconducting magnet for a hybrid magnet

    International Nuclear Information System (INIS)

    Ishizuka, M.; Hamajima, T.; Itou, T.; Sakuraba, J.; Nishijima, G.; Awaji, S.; Watanabe, K.

    2010-01-01

    A cryocooled 10 T superconducting magnet with a 360 mm room temperature bore has been developed for a hybrid magnet. The superconducting magnet cooled by four Gifford-McMahon cryocoolers has been designed to generate a magnetic field of 10 T. Since superconducting wires composed of coils were subjected to large hoop stress over 150 MPa and Nb 3 Sn superconducting wires particularly showed a low mechanical strength due to those brittle property, Nb 3 Sn wires strengthened by NbTi-filaments were developed for the cryocooled superconducting magnet. We have already reported that the hybrid magnet could generate the resultant magnetic field of 27.5 T by adding 8.5 T from the superconducting magnet and 19 T from a water-cooled Bitter resistive magnet, after the water-cooled resistive magnet was inserted into the 360 mm room temperature bore of the cryocooled superconducting magnet. When the hybrid magnet generated the field of 27.5 T, it achieved the high magnetic-force field (B x ∂Bz/∂z) of 4500 T 2 /m, which was useful for magneto-science in high fields such as materials levitation research. In this paper, we particularly focus on the cause that the cryocooled superconducting magnet was limited to generate the designed magnetic field of 10 T in the hybrid magnet operation. As a result, it was found that there existed mainly two causes as the limitation of the magnetic field generation. One was a decrease of thermal conductive passes due to exfoliation from the coil bobbin of the cooling flange. The other was large AC loss due to both a thick Nb 3 Sn layer and its large diameter formed on Nb-barrier component in Nb 3 Sn wires.

  19. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  20. Ceramic accelerating tube of the improved construction

    International Nuclear Information System (INIS)

    Vasserman, S.B.; Kazarezov, I.V.; Pokhlebenin, E.I.; Shirokov, V.V.

    1976-01-01

    An improved ceramic accelerating tube is designed. The electrodes are made of copper and covar which provides for maintaining the geometry of the electrodes at thermal-compression welding and obviates the need for machanical treatment of the envelope after welding. Employment of the insulators with a finned surface from the vacuum side by two times increases the electric strength of the accelerating tube, as compared to the insulators with a smooth surface. The accelerating tube envelope can withstand the pulsed voltages of 1.5 MV at a pulse duration of 6 μs and a repetition rate of 100 Hz within two hours

  1. Steam generator tube extraction

    International Nuclear Information System (INIS)

    Delorme, H.

    1985-05-01

    To enable tube examination on steam generators in service, Framatome has now developed a process for removing sections of steam generator tubes. Tube sections can be removed without being damaged for treating the tube section expanded in the tube sheet

  2. Thermodynamic design of 10 kW Brayton cryocooler for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Park, C. W.; Yang, H. S.; Sohn, Song Ho; Lim, Ji Hyun; Oh, S. R.; Hwang, Si Dole

    2012-06-01

    Thermodynamic design of Brayton cryocooler is presented as part of an ongoing governmental project in Korea, aiming at 1 km HTS power cable in the transmission grid. The refrigeration requirement is 10 kW for continuously sub-cooling liquid nitrogen from 72 K to 65 K. An ideal Brayton cycle for this application is first investigated to examine the fundamental features. Then a practical cycle for a Brayton cryocooler is designed, taking into account the performance of compressor, expander, and heat exchangers. Commercial software (Aspen HYSYS) is used for simulating the refrigeration cycle with real fluid properties of refrigerant. Helium is selected as a refrigerant, as it is superior to neon in thermodynamic efficiency. The operating pressure and flow rate of refrigerant are decided with a constraint to avoid the freezing of liquid nitrogen

  3. Calorimetric thermal-vacuum performance characterization of the BAe 80K space cryocooler

    International Nuclear Information System (INIS)

    Kotsubo, V.Y.; Johnson, D.L.; Ross, R.G. Jr.

    1992-01-01

    This paper on a comprehensive characterization program which is underway at JPL to generate test data on long-life, miniature Stirling-cycle cryocoolers for space application. The key focus of this paper is on the thermal performance of the British Aerospace (BAe) 80K split-Stirling-cycle cryocooler as measured in a unique calorimetric thermal-vacuum test chamber that accurately simulates the heat-transfer interfaces of space. Two separate cooling fluid loops provide precis individual control of the compressor and displacer heatsink temperatures. In addition, heatflow transducers enable calorimetric measurements of the heat rejected separately by the compressor and displacer. Cooler thermal performance has been mapped for coldtip temperatures ranging from below 45 K to above 150 K, for heat-sink temperatures ranging from 280 K to 320 K, and for a wide variety of operational variables including compressor-displacer phase, compressor-displacer stoke, drive frequency, and piston-displacer dc offset

  4. Photomultiplier tubes for Low Level Cerenkov Detectors

    International Nuclear Information System (INIS)

    Strindehag, O.

    1965-03-01

    Tube backgrounds of several 2-inch photomultiplier types having S11, 'S' , S13 and S20 cathodes are compared by measuring signal and background pulse height distributions at pulse heights corresponding to a few photo-electrons. The reference signal is generated by means of a β-source and a plexiglass radiator. It is found that comparatively good results are obtained with selected tubes of the EMI types 6097B and 9514B having equivalent dark current dc values down to 10 -12 input lumens. Special interest is devoted to the correlation between the measured tube backgrounds and the dark current dc values of the tubes, as a good correlation between these parameters simplifies the selection of photomultiplier tubes. The equivalent dark currents of the tested tubes extend over the range 10 -12 to 10 -9 input lumens. Although the investigation deals with photomultiplier tubes intended for use in low level Cerenkov detectors it is believed that the results could be valuable in other fields where photomultiplier tubes are utilized for the detection of weak light pulses

  5. Photomultiplier tubes for Low Level Cerenkov Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O

    1965-03-15

    Tube backgrounds of several 2-inch photomultiplier types having S11, 'S' , S13 and S20 cathodes are compared by measuring signal and background pulse height distributions at pulse heights corresponding to a few photo-electrons. The reference signal is generated by means of a {beta}-source and a plexiglass radiator. It is found that comparatively good results are obtained with selected tubes of the EMI types 6097B and 9514B having equivalent dark current dc values down to 10{sup -12} input lumens. Special interest is devoted to the correlation between the measured tube backgrounds and the dark current dc values of the tubes, as a good correlation between these parameters simplifies the selection of photomultiplier tubes. The equivalent dark currents of the tested tubes extend over the range 10{sup -12} to 10{sup -9} input lumens. Although the investigation deals with photomultiplier tubes intended for use in low level Cerenkov detectors it is believed that the results could be valuable in other fields where photomultiplier tubes are utilized for the detection of weak light pulses.

  6. Simulation of thermal processes in superconducting pancake coils cooled by GM cryocooler

    International Nuclear Information System (INIS)

    Lebioda, M; Rymaszewski, J; Korzeniewska, E

    2014-01-01

    This article presents the thermal model of a small scale superconducting magnetic energy storage system with the closed cycle helium cryocooler. The authors propose the use of contact-cooled coils with maintaining the possibility of the system reconfiguring. The model assumes the use of the second generation superconducting tapes to make the windings in the form of flat discs (pancakes). The paper presents results for a field model of the single pancake coil and the winding system consisting of several coils.

  7. Thermal analysis of the cryocooled superconducting magnet for the liquid helium-free hybrid magnet

    International Nuclear Information System (INIS)

    Ishizuka, Masayuki; Hamajima, Takataro; Itou, Tomoyuki; Sakuraba, Junji; Nishijima, Gen; Awaji, Satoshi; Watanabe, Kazuo

    2010-01-01

    The liquid helium-free hybrid magnet, which consists of an outer large bore cryocooled superconducting magnet and an inner water-cooled resistive magnet, was developed for magneto-science in high fields. The characteristic features of the cryogen-free outsert superconducting magnet are described in detail in this paper. The superconducting magnet cooled by Gifford-McMahon cryocoolers, which has a 360 mm room temperature bore in diameter, was designed to generate high magnetic fields up to 10 T. The hybrid magnet has generated the magnetic field of 27.5 T by combining 8.5 T generation of the cryogen-free superconducting magnet with 19 T generation of the water-cooled resistive magnet. The superconducting magnet was composed of inner Nb 3 Sn coils and outer NbTi coils. In particular, inner Nb 3 Sn coils were wound using high-strength CuNi-NbTi/Nb 3 Sn wires in consideration of large hoop stress. Although the cryocooled outsert superconducting magnet achieved 9.5 T, we found that the outsert magnet has a thermal problem to generate the designed maximum field of 10 T in the hybrid magnet operation. This problem is associated with unexpected AC losses in Nb 3 Sn wires.

  8. Linear-drive cryocoolers for the Department of Defense standard advanced dewar assembly (SADA)

    Science.gov (United States)

    Tate, Garin S.

    2005-05-01

    The Standard Advanced Dewar Assembly (SADA) is the critical module in the Department of Defense (DoD) standardization of scanning second-generation thermal imaging systems. The DoD has established a family of SADAs to fulfill a range of performance requirements for various platforms. The SADA consists of the Infrared Focal Plane Array (IRFPA), Dewar, Command & Control Electronics (C&CE), and the cryogenic cooler, and is used in platforms such as the Apache helicopter, the M1A2 Abrams main battle tank, the M2 Bradley Infantry Fighting Vehicle, and the Javelin Command Launch Unit (CLU). In support of the family of SADAs, the DoD defined a complementary family of tactical linear drive cryocoolers. The Stirling cycle linear drive cryocoolers are utilized to cool the Infrared Focal Plane Arrays (IRFPAs) in the SADAs. These coolers are required to have low input power, a quick cool-down time, low vibration output, low audible noise, and a higher reliability than currently fielded rotary coolers. These coolers must also operate in a military environment with its inherent high vibration level and temperature extremes. This paper will (1) outline the characteristics of each cryocooler, (2) present the status and results of qualification tests, (3) present the status of production efforts, and (4) present the status of efforts to increase linear drive cooler reliability.

  9. RMs1: qualification results of the rotary miniature Stirling cryocooler at Thales Cryogenics

    Science.gov (United States)

    Martin, Jean-Yves; Seguineau, Cédric; Van-Acker, Sébastien; Sacau, Mikel; Le Bordays, Julien; Etchanchu, Thierry; Vasse, Christophe; Abadie, Christian; Laplagne, Gilles; Benschop, Tonny

    2017-05-01

    The trend for miniaturized Integrated Dewar and Cooler Assemblies (IDCA) has been confirmed over the past few years with several mentions of a new generation of IR detector working at High Operating Temperature (HOT). This key technology enables the use of cryocooler with reduced needs of cryogenics power. As a consequence, miniaturized IDCA are the combination of a HOT IR detector coupled with a low-size, low-weight and low-power (SWaP) cryocooler. Thales Cryogenics has developed his own line of SWaP products. Qualification results on linear solution where shown last year. The current paper focuses on the latest results obtained on RMs1 prototypes, the new rotary SWaP cryocooler from Thales Cryogenics. Cryogenic performances and induced vibrations are presented. In a second part, progress is discussed on compactness and weight on one side, and on power consumption on the other side. It shows how the trade-off made between weight and power consumption could lead to an optimized solution at system level. At least, an update is made on the qualification status.

  10. Ear Tubes

    Science.gov (United States)

    ... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...

  11. Methods for tube attachment in a heat exchange equipment

    International Nuclear Information System (INIS)

    Shilin, O.V.; Vasil'ev, V.B.

    1984-01-01

    Two main ways of attaching tubes to tube panels in heat exchange equipment are analyzed: expanding and pulse method (by explosion, for instance). Labour-consumption and cost price for the fastening of brass, perlitic and corrosion-resistant tubes for both of the methods are presented. The extent of fitting out with equipment for tube fixing and ways of testing the joints for attachment are evaluated. Measures for improving the joint quality and introduction of the advanced technology are suggested

  12. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    Science.gov (United States)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  13. Electron tube

    Science.gov (United States)

    Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  14. Chest tube insertion

    Science.gov (United States)

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Be careful there are no kinks in your tube. The drainage system should always sit upright and be placed ...

  15. Pulsed rf operation analysis

    International Nuclear Information System (INIS)

    Puglisi, M.; Cornacchia, M.

    1981-01-01

    The need for a very low final amplifier output impedance, always associated with class A operation, requires a very large power waste in the final tube. The recently suggested pulsed rf operation, while saving a large amount of power, increases the inherent final amplifier non linearity. A method is presented for avoiding the large signal non linear analysis and it is shown how each component of the beam induced voltage depends upon all the beam harmonics via some coupling coefficients which are evaluated

  16. Pulsed electron beam generation with fast repetitive double pulse system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Surender Kumar; Deb, Pankaj; Shyam, Anurag, E-mail: surender80@gmail.com [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Visakhapatnam (India); Sharma, Archana [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Longer duration high voltage pulse (∼ 100 kV, 260 ns) is generated and reported using helical pulse forming line in compact geometry. The transmission line characteristics of the helical pulse forming line are also used to develop fast repetition double pulse system with very short inter pulse interval. It overcomes the limitations caused due to circuit parameters, power supplies and load characteristics for fast repetitive high voltage pulse generation. The high voltage double pulse of 100 kV, 100 ns with an inter pulse repetition interval of 30 ns is applied across the vacuum field emission diode for pulsed electron beam generation. The electron beam is generated from cathode material by application of negative high voltage (> 100 kV) across the diode by explosive electron emission process. The vacuum field emission diode is made of 40 mm diameter graphite cathode and SS mesh anode. The anode cathode gap was 6 mm and the drift tube diameter was 10 cm. The initial experimental results of pulsed electron beam generation with fast repetitive double pulse system are reported and discussed. (author)

  17. Neutron generator tube ion source control apparatus

    International Nuclear Information System (INIS)

    Bridges, J.R.

    1982-01-01

    A pulsed neutron well logging system includes a neutron generator tube of the deuterium-tritium accelerator type and an ion source control apparatus providing extremely sharply time-defined neutron pulses. A low voltage control pulse supplied to an input by timing circuits turns a power FET on via a buffer-driver whereby a 2000 volt pulse is produced in the secondary of a pulse transformer and applied to the ion source of the tube. A rapid fall in this ion source control pulse is ensured by a quenching circuit wherein a one-shot responds to the falling edge of the control pulse and produces a 3 microsecond delay to compensate for the propagation delay. A second one-shot is triggered by the falling edge of the output of the first one-shot and gives an 8 microsecond pulse to turn on the power FET which, via an isolation transformer turns on a series-connected transistor to ground the secondary of the pulse transformer and the ion source. (author)

  18. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  19. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  20. Pulse Generator

    Science.gov (United States)

    Greer, Lawrence (Inventor)

    2017-01-01

    An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.

  1. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    Energy Technology Data Exchange (ETDEWEB)

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 (China); Zhang, M. M.; Xu, D. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China)

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  2. Titanium condenser tubes--problems and their solutions for wider application to large surface condensers

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Sugiyama, Y; Nagata, K; Namba, K; Shimono, M

    1978-01-01

    To meet the demand for high reliability condensers for thermal and nuclear power plants, especially for PWR plants, the condensers installed entirely with titanium tubes have been investigated and used. Some difficulties from conventional copper alloy tubes exist. Further investigations are necessary on three items: (1) tube vibration; (2) joining tubes to tube plate; (3) fouling (bio-fouling) control. Literature survey on the tube vibration suggests that the probability of tube vibration due to decreased stiffness of titanium tubes in comparison with conventional copper alloy tubes can be decreased by designing the proper span length between supports. Experiments on seal welding of tubes to a tube plate have successfully proved that pulsed TIG arc welding is applicable to get reliable and strong joints, even on site, by suitable countermeasures. Experiments on the fouling (bio-fouling) of titanium tubes in marine application reveal that the increased fouling of titanium tubes could be controlled by proper application of sponge ball cleaning.

  3. Numerical Simulation of Magnetic Field Effect on Cryocooler Regenerators: Temperature Distribution

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar

    2017-01-01

    Full Text Available Regenerative types of cryogenic refrigerators (or cryocoolers employ magnetic intermetallic compounds of 3d and 4f elements to work well below 10 K. This paper presents the analysis of temperature distribution in regenerators of such cryocoolers under the influence of magnetic fields of 1 T, 3 T, and 4.3 T. Commercial code of finite element analysis (FEA package, ANSYS (APDL 14.5, is used to investigate the temperature distribution under above-mentioned fields. Er3Ni is selected as regenerator material and the criteria for its selection are discussed in detail. The cold end temperature is varied from 4.2 K to 10 K and hot end temperature is fixed at 20 K. The values obtained from FEA clearly show that the ineffectiveness of Er3Ni is at 8 K and 10 K at 3 T and 4.3 T.

  4. Validation of accelerated ageing of Thales rotary Stirling cryocoolers for the estimation of MTTF

    Science.gov (United States)

    Seguineau, C.,; Cauquil, J.-M.; Martin, J.-Y.; Benschop, T.

    2016-05-01

    The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. The current market needs tend to reliability figures higher than 15,000hrs in "standard conditions". Field returns are hardly useable mostly because of the uncertain environmental conditions of use, or the differences in user profiles. A previous paper explains how Thales Cryogenics has developed an approach based on accelerated ageing and statistical analysis [1]. The aim of the current paper is to compare results obtained on accelerated ageing on one side, and on the other side, specific field returns where the conditions of use are well known. The comparison between prediction and effective failure rate is discussed. Moreover, a specific focus is done on how some new applications of cryocoolers (continuous operation at a specific temperature) can increase the MTTF. Some assumptions are also exposed on how the failure modes, effects and criticality analysis evolves for continuous operation at a specific temperature and compared to experimental data.

  5. Study of reverse Brayton cryocooler with Helium-Neon mixture for HTS cable

    Science.gov (United States)

    Dhillon, A. K.; Ghosh, P.

    2017-12-01

    As observed in the earlier studies, helium is more efficient than neon as a refrigerant in a reverse Brayton cryocooler (RBC) from the thermodynamic point of view. However, the lower molecular weight of helium leads to higher refrigerant inventory as compared to neon. Thus, helium is suitable to realize the high thermodynamic efficiency of RBC whereas neon is appropriate for the compactness of the RBC. A binary mixture of helium and neon can be used to achieve high thermodynamic efficiency in the compact reverse Brayton cycle (RBC) based cryocooler. In this paper, an attempt has been made to analyze the thermodynamic performance of the RBC with a binary mixture of helium and neon as the working fluid to provide 1 kW cooling load for high temperature superconductor (HTS) power cables working with a temperature range of 50 K to 70 K. The basic RBC is simulated using Aspen HYSYS V8.6®, a commercial process simulator. Sizing of each component based on the optimized process parameters for each refrigerant is performed based on a computer code developed using Engineering Equation Solver (EES-V9.1). The recommendation is provided for the optimum mixture composition of the refrigerant based on the trade-off factors like thermodynamic efficiency such as the exergy efficiency and equipment considerations. The outcome of this study may be useful for recommending a suitable refrigerant for the RBC operating at a temperature level of 50 K to 70 K.

  6. Studies of cryocooler based cryosorption pump with activated carbon panels operating at 11K

    International Nuclear Information System (INIS)

    Kasthurirengan, S; Behera, Upendra; Gangradey, Ranjana; Udgata, Swarup; Krishnamoorthy, V

    2012-01-01

    Cryosorption pump is the only solution for pumping helium and hydrogen in fusion reactors. It is chosen because it offers highest pumping speed as well as the only suitable pump for the harsh environments in a tokamak. Towards the development of such cryosorption pumps, the optimal choice of the right activated carbon panels is essential. In order to characterize the performance of the panels with indigenously developed activated carbon, a cryocooler based cryosorption pump with scaled down sizes of panels is experimented. The results are compared with the commercial cryopanel used in a CTI cryosorption (model: Cryotorr 7) pump. The cryopanel is mounted on the cold head of the second stage GM cryocooler which cools the cryopanel down to 11K with first stage reaching about ∼50K. With no heat load, cryopump gives the ultimate vacuum of 2.1E-7 mbar. The pumping speed of different gases such as nitrogen, argon, hydrogen, helium are tested both on indigenous and commercial cryopanel. These studies serve as a bench mark towards the development of better cryopanels to be cooled by liquid helium for use with tokamak.

  7. Application of smart structure concepts to vibration suppression of a cryocooler coldfinger

    International Nuclear Information System (INIS)

    Glaser, R.J.; Kuo, Chinpo, Garba, J.A.

    1993-01-01

    A flight experiment demonstrating vibration suppression using smart structure technology is being flown on a small British satellite in late 1993. Piezo actuators are used to suppress motion of the tip of a cryocooler coldfinger in three dimensions. Two actuation methods are being demonstrated: low voltage piezo translators and applique ceramics. The applique ceramics stretch the coldfinger to cancel the tip motion and is discussed in detail in a companion paper. Commercially available piezo translators displace the entire cryocooler to cancel the motion of the tip of the coldfinger as measured by three eddy current transducers. Two types of control systems are being demonstrated: a real time analog control system using position feedback, and a digital feed forward controller that updates it's waveform every second or so. The flight experiment is a technology demonstration. The coldfinger is not being used to cool an operational sensor. Instead, the cooler vibration experiment will demonstrate that this class of hardware can be flown successfully. This includes qualification of the piezos for launch, and for the space environment; the design and qualification of low-power flight piezo drivers; and design and implementation of the control systems

  8. Opposed piston linear compressor driven two-stage Stirling Cryocooler for cooling of IR sensors in space application

    Science.gov (United States)

    Bhojwani, Virendra; Inamdar, Asif; Lele, Mandar; Tendolkar, Mandar; Atrey, Milind; Bapat, Shridhar; Narayankhedkar, Kisan

    2017-04-01

    A two-stage Stirling Cryocooler has been developed and tested for cooling IR sensors in space application. The concept uses an opposed piston linear compressor to drive the two-stage Stirling expander. The configuration used a moving coil linear motor for the compressor as well as for the expander unit. Electrical phase difference of 80 degrees was maintained between the voltage waveforms supplied to the compressor motor and expander motor. The piston and displacer surface were coated with Rulon an anti-friction material to ensure oil less operation of the unit. The present article discusses analysis results, features of the cryocooler and experimental tests conducted on the developed unit. The two-stages of Cryo-cylinder and the expander units were manufactured from a single piece to ensure precise alignment between the two-stages. Flexure bearings were used to suspend the piston and displacer about its mean position. The objective of the work was to develop a two-stage Stirling cryocooler with 2 W at 120 K and 0.5 W at 60 K cooling capacity for the two-stages and input power of less than 120 W. The Cryocooler achieved a minimum temperature of 40.7 K at stage 2.

  9. Theoretical study of effect of working fluid on the performance of 77–100 K adsorption cryocooler

    International Nuclear Information System (INIS)

    Luo, B.J.; Wang, Z.L.; Yan, T.; Hong, G.T.; Li, Y.L.; Liang, J.T.

    2015-01-01

    Highlights: • Investigate the effects of nitrogen, argon and oxygen on the performance of adsorption cryocooler in the range 77–100 K. • A model of adsorption compressor with a two-stage adsorption compressor is constructed and optimized with genetic algorithm. • Working fluid has larger effects on the adsorption compressor than on the cold stage. • The best selection of working fluid depends on the operating parameters. - Abstract: The aim of this study is to investigate the effects of working fluid (nitrogen, argon and oxygen) on the performance of adsorption cryocooler in the range 77–100 K. A thermodynamic model of adsorption cryocooler with two-stage compressor has been constructed. The model is based on quasi-static conditions without considering the temperature profiles and pressure drops across the compressor. It is then analyzed with an optimization toolbox to determine the optimum operating conditions to obtain the optimum performance of adsorption cryocooler. The Coefficient of Performance (COP) for each working fluid in the range 77–100 K is obtained and compared. It is found that working fluid has larger effects on adsorption compressor than on cold stage, and the optimum selection of working fluid depends on the operating parameters

  10. Eustachian tube patency

    Science.gov (United States)

    Eustachian tube patency refers to how much the eustachian tube is open. The eustachian tube runs between the middle ear and the throat. It controls the pressure behind the eardrum and middle ear space. This helps keep ...

  11. Feeding tube - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  12. Tube holding system

    International Nuclear Information System (INIS)

    Cunningham, R.C.

    1978-01-01

    A tube holding rig is described for the lateral support of tubes arranged in tight parcels in a heat exchanger. This tube holding rig includes not less than two tube supporting assemblies, with a space between them, located crosswise with respect to the tubes, each supporting assembly comprising a first set of parallel components in contact with the tubes, whilst a second set of components is also in contact with the tubes. These two sets of parts together define apertures through which the tubes pass [fr

  13. Chemical kinetics studies at high temperatures using shock tubes

    OpenAIRE

    Rajakumar, B; Anandraj, D; Reddy, KPJ; Arunan, E

    2002-01-01

    Shock tube is an unique facility to create temperature gradients exceeding million degrees Kelvin per second. We have established two shock tubes for measuring the kinetic reaction rates at high temperatures with two different but complementary detection techniques. The first one is a single pulse shock tube, in which the reflected shock is used to heat the molecules. The equilibrated products are analyzed by gas chromatograph and infrared spectrometer. The second one uses laser-schlieren sys...

  14. Impulse generation by detonation tubes

    Science.gov (United States)

    Cooper, Marcia Ann

    Impulse generation with gaseous detonation requires conversion of chemical energy into mechanical energy. This conversion process is well understood in rocket engines where the high pressure combustion products expand through a nozzle generating high velocity exhaust gases. The propulsion community is now focusing on advanced concepts that utilize non-traditional forms of combustion like detonation. Such a device is called a pulse detonation engine in which laboratory tests have proven that thrust can be achieved through continuous cyclic operation. Because of poor performance of straight detonation tubes compared to conventional propulsion systems and the success of using nozzles on rocket engines, the effect of nozzles on detonation tubes is being investigated. Although previous studies of detonation tube nozzles have suggested substantial benefits, up to now there has been no systematic investigations over a range of operating conditions and nozzle configurations. As a result, no models predicting the impulse when nozzles are used exist. This lack of data has severely limited the development and evaluation of models and simulations of nozzles on pulse detonation engines. The first experimental investigation measuring impulse by gaseous detonation in plain tubes and tubes with nozzles operating in varying environment pressures is presented. Converging, diverging, and converging-diverging nozzles were tested to determine the effect of divergence angle, nozzle length, and volumetric fill fraction on impulse. The largest increases in specific impulse, 72% at an environment pressure of 100 kPa and 43% at an environment pressure of 1.4 kPa, were measured with the largest diverging nozzle tested that had a 12° half angle and was 0.6 m long. Two regimes of nozzle operation that depend on the environment pressure are responsible for these increases and were first observed from these data. To augment this experimental investigation, all data in the literature regarding

  15. Methodology of Accelerated Life-Time Tests For Stirling-Type "Bae-Co"-Made Cryocoolers Against Displacer-Blockage by Cryo-Pollutant Deposits

    National Research Council Canada - National Science Library

    Getmanits, Vladimir

    2000-01-01

    ...: The contractor will investigate techniques for accelerated testing of cryocooler technology. During this phase of the effort the contractor will perform a detailed design of the equipment needed to conduct accelerated testing...

  16. Microcrystallography, high-pressure cryocooling and BioSAXS at MacCHESS

    Energy Technology Data Exchange (ETDEWEB)

    Englich, Ulrich, E-mail: ue22@cornell.edu; Kriksunov, Irina A. [MacCHESS (Macromolecular Diffraction Facility at CHESS), Cornell University, Ithaca, NY 14853 (United States); Cerione, Richard A. [MacCHESS (Macromolecular Diffraction Facility at CHESS), Cornell University, Ithaca, NY 14853 (United States); Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Cook, Michael J.; Gillilan, Richard [MacCHESS (Macromolecular Diffraction Facility at CHESS), Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Field of Biophysics, Cornell University, Ithaca, NY 14853 (United States); Physics Department, Cornell University, Ithaca, NY 14853 (United States); Huang, Qingqui; Kim, Chae Un; Miller, William; Nielsen, Soren; Schuller, David; Smith, Scott; Szebenyi, Doletha M. E. [MacCHESS (Macromolecular Diffraction Facility at CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2011-01-01

    Three research initiatives pursued by the Macromolecular Diffraction Facility at the Cornell High Energy Synchrotron Source (MacCHESS) are presented. The Macromolecular Diffraction Facility at the Cornell High Energy Synchrotron Source (MacCHESS) is a national research resource supported by the National Center for Research Resources of the US National Institutes of Health. MacCHESS is pursuing several research initiatives designed to benefit both CHESS users and the wider structural biology community. Three initiatives are presented in further detail: microcrystallography, which aims to improve the collection of diffraction data from crystals a few micrometers across, or small well diffracting regions of inhomogeneous crystals, so as to obtain high-resolution structures; pressure cryocooling, which can stabilize transient structures and reduce lattice damage during the cooling process; and BioSAXS (small-angle X-ray scattering on biological solutions), which can extract molecular shape and other structural information from macromolecules in solution.

  17. Cycle Design of Reverse Brayton Cryocooler for HTS Cable Cooling Using Exergy Analysis

    Science.gov (United States)

    Gupta, Sudeep Kumar; Ghosh, Parthasarathi

    2017-02-01

    The reliability and price of cryogenic refrigeration play an important role in the successful commercialization of High Temperature Superconducting (HTS) cables. For cooling HTS cable, sub-cooled liquid nitrogen (LN2) circulation system is used. One of the options to maintain LN2 in its sub-cooled state is by providing refrigeration with the help of Reverse Brayton Cryo-cooler (RBC). The refrigeration requirement is 10 kW for continuously sub-cooling LN2 from 72 K to 65 K for cooling 1 km length of HTS cable [1]. In this paper, a parametric evaluation of RBC for sub-cooling LN2 has been performed using helium as a process fluid. Exergy approach has been adopted for this analysis. A commercial process simulator, Aspen HYSYS® V8.6 has been used for this purpose. The critical components have been identified and their exergy destruction and exergy efficiency have been obtained for a given heat load condition.

  18. Three-stage linear, split-Stirling cryocooler for 1 to 2K magnetic cold stage

    International Nuclear Information System (INIS)

    Longsworth, R.C.

    1993-08-01

    A long-life, linear, high efficiency 8K split Stirling cycle cryocooler was designed, built, and tested. The refrigerator is designed for cooling a 50 mW, 1.5K magnetic cold stage. Dual opposed piston compressors are driven by moving-coil linear motors. The three stage expander, although not completed, is also driven by a linear motor and is designed to produce 1 SW at 60K, 4W at 16K, and 1.2W at 8K. The cold regenerator employs a parallel gap construction for high efficiency. The key technology areas addressed include warm and cold flexible suspension bearings and a new cold regenerator geometry for high efficiency at 8K

  19. Observation of quantized vortices by cryocooler-based scanning Hall probe microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Y.; Konishi, Y.; Tokunaga, M.; Tamegai, T

    2004-10-01

    We have developed a scanning Hall probe microscope (SHPM) system utilizing closed-cycle cryocooler. The Hall probe used in this system is fabricated from a GaAs/GaAlAs two-dimensional electron gas. A stepping-motor-driven XYZ translator is used with a resolution better than 0.1 {mu}m and maximum scan range of 20 x 20 mm{sup 2}. The spatial resolution of the system is about 5 {mu}m and magnetic resolution is about 100 mG. By using this system, we have successfully resolved the quantized vortices on the cleaved surface of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} single crystal.

  20. Cryocooled wideband digital channelizing radio-frequency receiver based on low-pass ADC

    International Nuclear Information System (INIS)

    Vernik, Igor V; Kirichenko, Dmitri E; Dotsenko, Vladimir V; Miller, Robert; Webber, Robert J; Shevchenko, Pavel; Talalaevskii, Andrei; Gupta, Deepnarayan; Mukhanov, Oleg A

    2007-01-01

    We have demonstrated a digital receiver performing direct digitization of radio-frequency signals over a wide frequency range from kilohertz to gigahertz. The complete system, consisting of a cryopackaged superconductor all-digital receiver (ADR) chip followed by room-temperature interface electronics and a field programmable gate array (FPGA) based post-processing module, has been developed. The ADR chip comprises a low-pass analog-to-digital converter (ADC) delta modulator with phase modulation-demodulation architecture together with digital in-phase and quadrature mixer and a pair of digital decimation filters. The chip is fabricated using a 4.5 kA cm -2 process and is cryopackaged using a commercial-off-the-shelf cryocooler. Experimental results in HF, VHF, UHF and L bands and their analysis, proving consistent operation of the cryopackaged ADR chip up to 24.32 GHz clock frequency, are presented and discussed

  1. Comparative simulation of Stirling and Sibling cycle cryocoolers with two codes

    International Nuclear Information System (INIS)

    Mitchell, M.P.; Wilson, K.J.; Bauwens, L.

    1989-01-01

    The authors present a comparative analysis of Stirling and Sibling Cycle cryocoolers conducted with two different computer simulation codes. One code (CRYOWEISS) performs an initial analysis on the assumption of isothermal conditions in the machines and adjusts that result with decoupled loss calculations. The other code (MS*2) models fluid flows and heat transfers more realistically but ignores significant loss mechanisms, including flow friction and heat conduction through the metal of the machines. Surprisingly, MS*2 is less optimistic about performance of all machines even though it ignores losses that are modelled by CRYOWEISS. Comparison between constant-bore Stirling and Sibling machines shows that their performance is generally comparable over a range of temperatures, pressures and operating speeds. No machine was consistently superior or inferior according to both codes over the whole range of conditions studied

  2. Bender/Coiler for Tubing

    Science.gov (United States)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  3. Development of bipolar pulse accelerator for intense pulsed ion beam acceleration

    International Nuclear Information System (INIS)

    Fujioka, Y.; Mitsui, C.; Kitamura, I.; Takahashi, T.; Masugata, K.; Tanoue, H.; Arai, K.

    2003-01-01

    To improve the purity of an intense pulsed ion beams a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' was proposed. In the accelerator purity of the beam is expected. To confirm the principle of the accelerator experimental system was developed. The system utilizes B y type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun placed in the grounded anode was used as an ion source, and source plasma (nitrogen) of current density approx. = 25 A/cm 2 , duration approx. = 1.5 μs was injected into the acceleration gap. The ions are successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 180 kV, duration 60 ns to the drift tube. Pulsed ion beam of current density approx. = 40 A/cm 2 , duration approx. 60 ns was obtained at 42 mm downstream from the anode surface. (author)

  4. Long-pulse applications of pulse-forming lines for high-power linac application

    International Nuclear Information System (INIS)

    Hoeberling, R.F.; Tallerico, P.J.

    1981-01-01

    The ever present demands for high efficiency in the RF power stations for particle accelerators have caused increased interest in longer RF pulses (ten's of microseconds) for linacs such as the Pion Generator for Medical Irradiation (PIGMI) and Free Electron Laser (FEL). For either RF power station, a fundamental decision is whether to use a modulating anode/hard-tube driver or pulsed cathode/line-type pulser configuration. The choices in the extremes of low power for very long pulses or for very-high-power, short pulses are, respectively, a modulated anode/hard tube modulator and pulsed cathode/pulse forming line. However, the demarcation between these two extremes is not clearcut. The criteria (cost, flexibility performance, reliability, efficiency) that resulted in the RF station definition of these two specific systems will be described

  5. Longitudinally excited CO2 laser with multiple laser tubes

    Science.gov (United States)

    Uno, Kazuyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2016-11-01

    We developed a longitudinally excited CO2 laser system that was constituted of two or three laser tubes and a single driving circuit. The multiple laser tubes simultaneously produced almost the same short laser pulses with a spike pulse width of about 164 ns and a pulse tail length of about 74 μs with a single driving circuit. The double-tube system was constituted of two 30 cm-long laser tubes with inner diameters of 13 mm and 16 mm and a single driving circuit with an input energy of 2.18 J. The output energy of the 13 mm-tube was 23.3 mJ, and that of the 16 mm-tube was 21.9 mJ at a gas pressure of 4.2 kPa (CO2:N2:He = 1:1:2). The triple-tube system was constituted of three 30 cm-long laser tubes with inner diameters of 9 mm, 13 mm, and 16 mm and a single driving circuit with an input energy of 2.18 J. The output energy of the 9 mm tube was 15.9 mJ, that of the 13 mm tube was 24.1 mJ, and that of the 16 mm tube was 19.2 mJ at a gas pressure of 4.2 kPa. With the same driving circuit and the same input energy, the total output energies of the multitube laser systems were higher than the output energy of a single-tube system.

  6. Development of a discharge-heated plasma tube

    International Nuclear Information System (INIS)

    Cha, Byung Heon; Jin, J. T.; Nam, S. M.; Lee, S. M.; Choi, H. L.; Ko, D. K.; Kim, S. H.; Lee, Y. B.; Choi, Y. S.; Lee, J. M.; Lee, C. K.; Lee, H. G.; Lee, H. C.; Jung, S. M.; Kim, Y. J.; Choi, G. S.; Son, N. G.

    1999-12-01

    A discharge-heated type plasma tube was designed and constructed. The structure of the laser plasma tube was designed to be easy in maintenance. The inside plasma tube was made of a high purity alumina and the thermal insulator tube was made of a porous alumina. The electrode made of tungsten was chosen for the endurance of high discharge voltage. AR coated windows were used as laser windows. A proto-type laser plasma tube was tested with a pulse modulator. An average laser output power was 32 W at the discharge voltage of 28 kV, the electric input power of 4.6 kW, and the pulse repetition rates of 10 kHz. (author)

  7. Improvements in or relating to pulsed X-ray units

    International Nuclear Information System (INIS)

    Bichenkov, E.I.; Klypin, V.V.; Palchikov, E.I.

    1983-01-01

    A pulsed X-ray unit comprises a pulsed X-ray tube connected to a discharge capacitor. The discharge capacitor comprises two coaxially arranged cylinders. One cylinder of the discharge capacitor is connected to the X-ray tube and to the high-voltage end of the secondary winding of the pulsed transformer which is shaped as a truncated cone, and is arranged internally of this winding coaxially therewith. The other cylinder of the discharge capacitor is also connected to the X-ray tube and to the low-voltage end of the secondary winding of the pulsed transformer, and is arranged intermediate this winding and the primary winding of the pulsed transformer which is shaped as a hollow cylinder, and connected to the charging device. The cylinders of the discharge capacitor have ports made therein for the passage therethrough of the magnetic flux produced by the windings of the pulsed transformer. (author)

  8. The 4 K Stirling cryocooler demonstration. Final report No. 8, 1 May 1990-30 April 1992

    International Nuclear Information System (INIS)

    Stacy, W.D.

    1992-09-01

    This report briefly summarizes the results and conclusions from an SBIR program intended to demonstrate an innovative Stirling cycle cryocooler concept for efficiently lifting heat from 4 K. Refrigeration at 4 K, a temperature useful for superconductors and sensitive instruments, is beyond the reach of conventional regenerative thermodynamic cycles due to the rapid loss of regenerator matrix heat capacity at temperatures below about 20 K. To overcome this fundamental limit, the cryocooler developed under this program integrated three unique features: recuperative regeneration between the displacement gas flow streams of two independent Stirling cycles operating at a 180 degree phase angle, tailored distortion of the two expander volume waveforms from sinusoidal to perfectly match the instantaneous regenerator heat flux from the two cycles and thereby unload the regenerator, and metal diaphragm working volumes to promote near isothermal expansion and compression processes. Use of diaphragms also provides unlimited operating life potential and eliminates bearings and high precision running seals. A phase 1 proof-of-principle experiment demonstrated that counterflow regenerator operation between 77 K and 4 K increases regenerator effectiveness by minimizing metal temperature transient cycling. In phase 2, a detailed design package for a breadboard cryocooler was completed. Fabrication techniques were successfully developed for manufacturing high precision miniature parallel plate recuperators, and samples were produced and inspected. Process development for fabricating suitably flat diaphragms proved more difficult and expensive than anticipated, and construction of the cryocooler was suspended at a completion level of approximately 75%. Subsequent development efforts on other projects have successfully overcome diaphragm fabrication difficulties

  9. X-ray tube transformer

    International Nuclear Information System (INIS)

    1980-01-01

    An X-ray generator is described which comprises a transmission line transformer including an electrical conductor with a cavity and a second electrical conductor including helical windings disposed along a longitudinal axis within the cavity of the first conductor. The windings have a pitch which varies per unit length along the axis. There is dielectric material in the cavity for insulation and to couple electromagnetically the two conductors in response to an electric current flowing through the conductors, which have an impedance between them; this varies with distance along the axis of the helix of the second conductor. An X-ray tube is disposed along the longitudinal axis within the cavity, for radiating X-rays. The invention increases the voltage of applied voltage pulses at the remote tube-head with a transformer formed by using a spiral delay line geometry to give a tapered-impedance coaxial high voltage multiplier for pulse voltage operation. This transformer is smaller and lighter than previous designs for the same high peak voltage and power ratings. This is important because the penetration capabilities of Flash X-ray equipment increase with voltage, particularly in heavy materials such as steel. (U.K.)

  10. Design of High Voltage Electrical Breakdown Strength measuring system at 1.8K with a G-M cryocooler

    Science.gov (United States)

    Li, Jian; Huang, Rongjin; Li, Xu; Xu, Dong; Liu, Huiming; Li, Laifeng

    2017-09-01

    Impregnating resins as electrical insulation materials for use in ITER magnets and feeder system are required to be radiation stable, good mechanical performance and high voltage electrical breakdown strength. In present ITER project, the breakdown strength need over 30 kV/mm, for future DEMO reactor, it will be greater than this value. In order to develop good property insulation materials to satisfy the requirements of future fusion reactor, high voltage breakdown strength measurement system at low temperature is necessary. In this paper, we will introduce our work on the design of this system. This measuring system has two parts: one is an electrical supply system which provides the high voltage from a high voltage power between two electrodes; the other is a cooling system which consists of a G-M cryocooler, a superfluid chamber and a heat switch. The two stage G-M cryocooler pre-cool down the system to 4K, the superfluid helium pot is used for a container to depress the helium to superfluid helium which cool down the sample to 1.8K and a mechanical heat switch connect or disconnect the cryocooler and the pot. In order to provide the sufficient time for the test, the cooling system is designed to keep the sample at 1.8K for 300 seconds.

  11. Performance of the hybrid photomultiplier tube (HPMT)

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, R.J. [B.V. Delft Electronische Producten, Roden (Netherlands)

    1995-12-31

    The HPMT, which may be an alternative for PhotoMultiplier Tubes (PMT`s) in many applications, is a vacuum tube in which the latest technologies of photocathodes and photodiodes are combined. Photo-electrons are accelerated and bombarding a reversely biased PIN diode, where they create many electron-hole-pairs. The resulting charge pulse can be amplified and further processed. The HPMT shows many superior characteristics compared to regular PMT`s, because it does not suffer the statistical fluctuations common for electron multiplication processes. An energy resolution of up to 14 photo-electrons will be presented, together with striking figures for dynamic range and timing behavior.

  12. Ultrasonic inspection of inpile tubes

    International Nuclear Information System (INIS)

    Boyd, D.M.; Bossi, H.

    1985-01-01

    The in-service inspection (ISI) of inpile tubes can be performed accurately and safely with a semiautomatic ultrasonic inspection system. The ultrasonic technique uses a set of multiple transducers to detect and size cracks, voids, and laminations radially and circumferentially. Welds are also inspected for defects. The system is designed to inspect stainless steel and Inconel tubes ranging from 53.8 mm (2.12 in.) to 101.6 mm (4 in.) inner diameter with wall thickness on the order of 5 mm. The inspection head contains seven transducers mounted in a surface-following device. Six angle-beam transducers generate shear waves in the tubes. Two of the six are oriented to detect circumferential cracks, and two detect axial cracks. Although each of these four transducers is used in the pulse-echo mode, they are oriented in aligned sets so pitch-catch operation is possible if desired. The remaining angle-beam transducers are angulated to detect flaws that are off axial or circumferential orientation. The seventh transducer is used for longitudinal inspection and detects and sizes laminar-type defects

  13. Cryogenic Thermal Emittance Measurements on Small-Diameter Stainless Steel Tubing

    Science.gov (United States)

    Jahromi, Amir E.; Tuttle, James G.; Canavan, Edgar R.

    2017-01-01

    The Mid Infrared Instrument aboard the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of 2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by running a warm gas through the lines to sublimate the frozen water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the absorptance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 280 K. These values lead to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.

  14. X-ray tubes

    International Nuclear Information System (INIS)

    Young, R.W.

    1979-01-01

    A form of x-ray tube is described which provides satisfactory focussing of the electron beam when the beam extends for several feet from gun to target. Such a tube can be used for computerised tomographic scanning. (UK)

  15. Pressure tube type reactors

    International Nuclear Information System (INIS)

    Komada, Masaoki.

    1981-01-01

    Purpose: To increase the safety of pressure tube type reactors by providing an additional ECCS system to an ordinary ECCS system and injecting heavy water in the reactor core tank into pressure tubes upon fractures of the tubes. Constitution: Upon fractures of pressure tubes, reduction of the pressure in the fractured tubes to the atmospheric pressure in confirmed and the electromagnetic valve is operated to completely isolate the pressure tubes from the fractured portion. Then, the heavy water in the reactor core tank flows into and spontaneously recycles through the pressure tubes to cool the fuels in the tube to prevent their meltdown. By additionally providing the separate ECCS system to the ordinary ECCS system, fuels can be cooled upon loss of coolant accidents to improve the safety of the reactors. (Moriyama, K.)

  16. Gastrostomy feeding tube - bolus

    Science.gov (United States)

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... KEY, 3 to 8 weeks after surgery. These feedings will help your child grow strong and healthy. ...

  17. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  18. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  19. Drift Tube Linac Conditioning of Tank1

    CERN Document Server

    Shafqat, N; Toor, W A

    2014-01-01

    Tank1 of the Drift Tube Linac (DTL) of the Linac4 has been conditioned at the Linac4 tunnel. The tank was tuned for resonance at 352.2 MHz, and stable operation has been achieved with 725 µs long RF pulses at a repetition rate of 1 Hz. The maximum RF level that has been reached is 810 kW with a pulse width of 600 µs. Since this was the first RF structure exclusively conditioned in the Linac4 tunnel with the operation and control software of Linac4, some related issues and limitations had to be taken into account.

  20. New model of universal gas-filled neutron tube

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bessarabskii, I.G.; Voitsik, L.R.; Mints, A.Z.

    1985-01-01

    The UNG-1 gas-filled neutron tube is serially produced. In type UNG neutron generators, the tube operates in the pulsed mode in the high voltage doubling circuit arrangement. During extended operation, its advantages were discovered: long operating time, fairly stable neutron yield, and simplicity of use and operation. However, the mean neutron yield (approx.10 7 s -1 ) generated by the tube in the optimal mode at the present time proved to be inadequate in solving numerous geophysical problems. So a model of a neutron tube, model UNG-2, was designed, ensuring an enhanced neutron yield of 10 8 s -1 in the continuous-operating mode. When the tube is connected to the high voltage doubling circuit, the mean neutron yield is only somewhat in excess of the neutron yield from the UNG-1 tube

  1. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into a...

  2. Heat exchanger tube tool

    International Nuclear Information System (INIS)

    Gugel, G.

    1976-01-01

    Certain types of heat-exchangers have tubes opening through a tube sheet to a manifold having an access opening offset from alignment with the tube ends. A tool for inserting a device, such as for inspection or repair, is provided for use in such instances. The tool is formed by a flexible guide tube insertable through the access opening and having an inner end provided with a connector for connection with the opening of the tube in which the device is to be inserted, and an outer end which remains outside of the chamber, the guide tube having adequate length for this arrangement. A flexible transport hose for internally transporting the device slides inside of the guide tube. This hose is long enough to slide through the guide tube, into the heat-exchanger tube, and through the latter to the extent required for the use of the device. The guide tube must be bent to reach the end of the heat-exchanger tube and the latter may be constructed with a bend, the hose carrying anit-friction elements at interspaced locations along its length to make it possible for the hose to negotiate such bends while sliding to the location where the use of the device is required

  3. Cryocooler-cooled 10 T superconducting magnet; Reitoki chokurei hoshiki no 10T chodendo jishaku

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, T.; Yamamoto, K.; Urata, M. [Toshiba Corp., Tokyo (Japan)

    1995-09-01

    A superconducting magnet totally free of such cooling agents as liquefied helium has been developed, which can be cooled by a cryocooler alone in a direct cooler cooled method, and a success was attained when a 10T magnetic field was generated in a vacancy 10cm in diameter. The value is the highest in the world realized by a system not using a cooling medium (only 7.7T attained before this). The coil comprises a coil of an NbTi superconducting lead and a coil of Nb3Sn superconducting lead, and is impregnated with epoxy resin for reduction in size. It is cooled only by heat conduction thanks to a thermally coupled 4K cooler in vacuum, and necessitates the insertion of indium between the coil and a copper made cooling board which combination is further tightened up by a stainless steel wire. Furthermore, a superconducting oxide lead has been developed, with its performance not lowered even in an intensive magnetic field, for the supply of power to the coil, and this suppresses the infiltration of conduction caused heat and the generation of Joule heat. The magnet is designed small and light with dimensions 650{times}500{times}490mm (height), and can be operated by mere manipulation of a switch. 6 refs., 6 figs.

  4. Development of a hermetically sealed brushless DC motor for a J-T cryocooler

    Science.gov (United States)

    Joscelyn, Edwin; Hochler, Irwin; Ferri, Andrew; Rott, Heinz; Soukaris, Ted

    1996-01-01

    This development was sponsored by Ball Aerospace for the Cryogenic On-Orbit LongLife Active Refrigerator (COOLLAR) program. The cryocooler is designed to cool objects to 65 K and operate in space for at least 7 years. The system also imports minimal impact to the spacecraft in terms of vibration and heat. The basic Joule-Thompson cycle involves compressing a working fluid, nitrogen in this case, at near-constant temperature from 17.2 KPa to 6.89 MPa. The nitrogen is then expanded through a Joule-Thompson valve. The pure nitrogen gas must be kept clean; therefore, any contamination from motor organic materials must be eliminated. This requirement drove the design towards sealing of the motor within a titanium housing without sacrificing motor performance. It is estimated that an unsealed motor would have contributed 1.65 g of contaminants, due to the organic insulation and potting materials, over the 7-year life. This paper describes the motor electrical and mechanical design, as well as the sealing difficulties encountered, along with their solutions.

  5. A space-qualified experiment integrating HTS digital circuits and small cryocoolers

    International Nuclear Information System (INIS)

    Silver, A.; Akerling, G.; Auten, R.

    1996-01-01

    High temperature superconductors (HTS) promise to achieve electrical performance superior to that of conventional electronics. For application in space systems, HTS systems must simultaneously achieve lower power, weight, and volume than conventional electronics, and meet stringent space qualification and reliability requirements. Most effort to date has focused on passive RF/microwave applications. However, incorporation of active microwave components such as amplifiers, mixers, and phase shifters, and on-board high data rate digital signal processing is limited by the power and weight of their spacecraft electronic and support modules. Absence of data on active HTS components will prevent their utilization in space. To validate the feasibility in space of HTS circuits and components based on Josephson junctions, one needs to demonstrate HTS circuits and critical supporting technologies, such as space-qualified packaging and interconnects, closed-cycle cryocooling, and interface electronics. This paper describes the packaging, performance, and space test plan of an integrated, space-qualified experimental package consisting of HTS Josephson junction circuits and all the supporting components for NRL's high temperature superconductor space experiment (HTSSE-II). Most of the technical challenges and approaches are equally applicable to passive and active RF/microwave and digital electronic components, and this experiment will provide valuable validation data

  6. Development of a linear compressor for compact 2 K Gifford- McMahon cryocoolers

    International Nuclear Information System (INIS)

    Hiratsuka, Y

    2015-01-01

    Recently, a new, compact Gifford-McMahon (GM) cryocooler for cooling superconducting single photon detectors (SSPD) has been developed at Sumitomo Heavy Industries, Ltd. (SHI) [1, 2]. The objective is to reduce the total height of the expander by 33% relative to the existing RDK-101 GM expander and to reduce the total volume of the compressor unit by 50% relative to the existing CNA-11 compressor. In addition, considering the targeted cooling application, we set the design temperature targets of the first and the second stages to 1 W and 20 mW of heat load at 60 K and 2.3 K, respectively. Although optimization of the internal components is one way to miniaturize the volume of the compressor unit, major design changes are required because the volume of the adsorber and the oil separator is almost the same as the volume of the compressor capsule. Thus, one approach is to develop a non-lubricated compressor, such as a valved linear compressor. An experimental unit of a valved linear compressor was designed and built, and preliminary experiments were conducted. Under no-load condition, a low temperature of 2.19 K has been achieved. With 1 W and 14 mW heat load, the temperature is 48 K at the first stage and 2.3 K at the second stage, with an input power of about 1.2 KW. The detailed experimental results will be discussed in this paper. (paper)

  7. PERFORMANCE ENHANCEMENT OF A MINIATURE STIRLING CRYOCOOLER WITH A MULTI MESH REGENERATOR DESIGN

    Directory of Open Access Journals (Sweden)

    KISHOR KUMAR V. V.

    2017-06-01

    Full Text Available A parametric study has been carried out using the software REGEN 3.3 to optimize the regenerator of a miniature Stirling cryocooler operating with a warm end temperature of 300 K and cold end temperature of 80 K. Regenerator designs which produce the maximum coefficient of performance (COP of the system is considered as an optimized regenerator. The length and diameter of the regenerator were fixed from the cooler system requirements. Single mesh regenerators made of 200, 250, 300, 400 and 450 Stainless Steel wire meshes were considered and the optimum phase angle and mesh size were obtained. A maximum COP of 0.1475 was obtained for 300 mesh regenerator at 70° phase angle. Then multi mesh regenerators were considered with finer mesh on the cold end and coarser mesh on the hot end. The optimum size and length of each mesh in the multi mesh regenerator and the optimum phase angle were calculated. The maximum COP of 0.156 was obtained for 200 300-400 multi mesh regenerator at 70° phase angle. The COP and net refrigeration obtained for an optimized multi mesh regenerator was found to be significantly higher than that of a single mesh regenerator. Thus a multi mesh regenerator design with a proper combination of regenerator mesh size and length can enhance the regenerator effectiveness.

  8. How to manage MTTF larger than 30,000hr on rotary cryocoolers

    Science.gov (United States)

    Cauquil, Jean-Marc; Seguineau, Cédric; Martin, Jean-Yves; Van-Acker, Sébastien; Benschop, Tonny

    2017-05-01

    The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. Indeed, Stirling coolers are mechanical systems where wear occurs on millimetric mechanisms. The exponential law classically used in electronics for Mean Time to Failure (MTTF) calculation cannot be directly used for mechanical devices. With new applications for thermal sensor like border surveillance, an increasing reliability has become mandatory for rotary cooler. The current needs are above several tens of thousands of continuous hour of cooling. Thales Cryogenics made specific development on that topic, for both linear and rotary applications. The time needed for validating changes in processes through suited experimental design is hardly affordable by following a robust and rigorous standard scientific approach. The targeted Mean Time to Failure (MTTF) led us to adopt an innovative approach to keep development phases in line with expected time to market. This innovative approach is today widespread on all of Thales Cryogenics rotary products and results in a proven increase of MTTF for RM2, RM3 and recently RM1. This paper will then focused on the current MTTF figures measured on RM1, RM2 and RM3. After explaining the limit of a conventional approach, the paper will then describe the current method. At last, the authors will explain how these principles are taken into account for the new SWaP rotary cooler of Thales Cryogénie SAS.

  9. Intercostal drainage tube or intracardiac drainage tube?

    Directory of Open Access Journals (Sweden)

    N Anitha

    2016-01-01

    Full Text Available Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  10. Intercostal drainage tube or intracardiac drainage tube?

    Science.gov (United States)

    Anitha, N; Kamath, S Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  11. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... YouTube Videos » NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration ... Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: ...

  12. Wave propagation in spatially modulated tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ziepke, A., E-mail: ziepke@itp.tu-berlin.de; Martens, S.; Engel, H. [Institut für Theoretische Physik, Hardenbergstraße 36, EW 7-1, Technische Universität Berlin, 10623 Berlin (Germany)

    2016-09-07

    We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube’s modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.

  13. Pediatric cuffed endotracheal tubes

    Directory of Open Access Journals (Sweden)

    Neerja Bhardwaj

    2013-01-01

    Full Text Available Endotracheal intubation in children is usually performed utilizing uncuffed endotracheal tubes for conduct of anesthesia as well as for prolonged ventilation in critical care units. However, uncuffed tubes may require multiple changes to avoid excessive air leak, with subsequent environmental pollution making the technique uneconomical. In addition, monitoring of ventilatory parameters, exhaled volumes, and end-expiratory gases may be unreliable. All these problems can be avoided by use of cuffed endotracheal tubes. Besides, cuffed endotracheal tubes may be of advantage in special situations like laparoscopic surgery and in surgical conditions at risk of aspiration. Magnetic resonance imaging (MRI scans in children have found the narrowest portion of larynx at rima glottides. Cuffed endotracheal tubes, therefore, will form a complete seal with low cuff pressure of <15 cm H 2 O without any increase in airway complications. Till recently, the use of cuffed endotracheal tubes was limited by variations in the tube design marketed by different manufacturers. The introduction of a new cuffed endotracheal tube in the market with improved tracheal sealing characteristics may encourage increased safe use of these tubes in clinical practice. A literature search using search words "cuffed endotracheal tube" and "children" from 1980 to January 2012 in PUBMED was conducted. Based on the search, the advantages and potential benefits of cuffed ETT are reviewed in this article.

  14. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  15. Experimental studies on twin PTCs driven by dual piston head linear compressor

    Science.gov (United States)

    Gour, Abhay S.; Joy, Joewin; Sagar, Pankaj; Sudharshan, H.; Mallappa, A.; Karunanithi, R.; Jacob, S.

    2017-02-01

    An experimental study on pulse tube cryocooler is presented with a twin pulse tube configuration. The study is conducted with a dual piston head linear compressor design which is developed indigenously. The two identical pulse tube cryocoolers are operated by a single linear motor which generates 1800 out of phase dual pressure waves. The advantages of the configuration being the reduction in fabrication cost and the increased cooling power. The compressor is driven at a frequency of 48 Hz using indigenously developed PWM based power supply. The CFD study of pulse tube cryocooler is discussed along with the experimental cool down results. A detailed experimental and FEM based studies on the fabrication procedure of heat exchangers is conducted to ensure better heat transfer in the same.

  16. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  17. Categorising YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube......’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition...... and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within...

  18. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1983-08-01

    A review of the performance of steam generator tubes in 110 water-cooled nuclear power reactors showed that tubes were plugged at 46 (42 percent) of the reactors. The number of tubes removed from service increased from 1900 (0.14 percent) in 1980 to 4692 (0.30 percent) in 1981. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that used all-volatile treatment since start-up. At one reactor a large number of degraded tubes were repaired by sleeving which is expected to become an important method of tube repair in the future

  19. Digital pulse shape discrimination

    International Nuclear Information System (INIS)

    Miller, L. F.; Preston, J.; Pozzi, S.; Flaska, M.; Neal, J.

    2007-01-01

    Pulse-shape discrimination (PSD) has been utilised for about 40 years as a method to obtain estimates for dose in mixed neutron and photon fields. Digitizers that operate close to GHz are currently available at a reasonable cost, and they can be used to directly sample signals from photomultiplier tubes. This permits one to perform digital PSD rather than the traditional, and well-established, analogous techniques. One issue that complicates PSD for neutrons in mixed fields is that the light output characteristics of typical scintillators available for PSD, such as BC501A, vary as a function of energy deposited in the detector. This behaviour is more easily accommodated with digital processing of signals than with analogous signal processing. Results illustrate the effectiveness of digital PSD. (authors)

  20. Life-test results on the Zetatron tube, transformer and the tube-transformer assembly

    International Nuclear Information System (INIS)

    Shope, L.A.

    1983-01-01

    In the development of the PFN probe it became evident that some considerable life testing of the neutron tube, high-voltage pulse transformer, and the tube-transformer assembly (TTA) were needed to (1) identify life limiting mechanisms, (2) estimate performance degradation, and (3) provide a data base for end-of-life predictions. Initial results had shown clearly that testing monitored by technicians would be much too costly. Consequently, a computer-controlled and monitored test was developed. This paper describes the test, summarizes the records, and discusses the results. Also presented are early results of actual probe life testing now underway

  1. Rectangular drift tube characteristics

    International Nuclear Information System (INIS)

    Denisov, D.S.; Musienko, Yu.V.

    1985-01-01

    Results on the study of the characteristics of a 50 x 100 mm aluminium drift tube are presented. The tube was filled with argon-methane and argon-isobutane mixtures. With 16 per cent methane concentration the largest deviation from a linear relation between the drift time and the drift path over 50 mm is less than 2 mm. The tube filled with argon-isobutane mixture is capable of operating in a limited streamer mode

  2. Categorising YouTube

    OpenAIRE

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a...

  3. Pressure tube reactor

    International Nuclear Information System (INIS)

    Susuki, Akira; Murata, Shigeto; Minato, Akihiko.

    1993-01-01

    In a pressure tube reactor, a reactor core is constituted by arranging more than two units of a minimum unit combination of a moderator sealing pipe containing a calandria tube having moderators there between and a calandria tube and moderators. The upper header and a lower header of the calandria tank containing moderators are communicated by way of the moderator sealing tube. Further, a gravitationally dropping mechanism is disposed for injecting neutron absorbing liquid to a calandria gas injection portion. A ratio between a moderator volume and a fuel volume is defined as a function of the inner diameter of the moderator sealing tube, the outer diameter of the calandria tube and the diameter of fuel pellets, and has no influence to intervals of a pressure tube lattice. The interval of the pressure tube lattice is enlarged without increasing the size of the pressure tube, to improve production efficiency of the reactor and set a coolant void coefficient more negative, thereby enabling to improve self controllability and safety. Further, the reactor scram can be conducted by injecting neutron absorbing liquid. (N.H.)

  4. Heated Tube Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  5. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1984-10-01

    A review of the performance of steam generator tubes in 116 water-cooled nuclear power reactors showed that tubes were plugged at 54 (46 percent) of the reactors. The number of tubes removed from service decreased from 4 692 (0.30 percent) in 1981 to 3 222 (0.20 percent) in 1982. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that have used only volatile treatment, with or without condensate demineralization

  6. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Tapping, R.L.; Stipan, L.

    1992-03-01

    A survey of steam generator operating experience for 1986 has been carried out for 184 pressurized water and pressurized heavy-water reactors, and 1 water-cooled, graphite-moderated reactor. Tubes were plugged at 75 of the reactors (40.5%). In 1986, 3737 tubes were plugged (0.14% of those in service) and 3148 tubes were repaired by sleeving. A small number of reactors accounted for the bulk of the plugged tubes, a phenomenon consistent with previous years. For 1986, the available tubesheet sludge data for 38 reactors has been compiled into tabular form, and sludge/deposit data will be incorporated into all future surveys

  7. Multiobjective optimizations of a novel cryocooled dc gun based ultrafast electron diffraction beam line

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2016-09-01

    Full Text Available We present the results of multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for three different sample radii: 50, 100, and 200  μm, for two final bunch charges: 10^{5} electrons (16 fC and 10^{6} electrons (160 fC. Example optimal solutions are analyzed, and the effects of disordered induced heating estimated. In particular, a relative coherence length of L_{c,x}/σ_{x}=0.27  nm/μm was obtained for a final bunch charge of 10^{5} electrons and final bunch length of σ_{t}≈100  fs. For a final charge of 10^{6} electrons the cryogun produces L_{c,x}/σ_{x}≈0.1  nm/μm for σ_{t}≈100–200  fs and σ_{x}≥50  μm. These results demonstrate the viability of using genetic algorithms in the design and operation of ultrafast electron diffraction beam lines.

  8. Analysis of defect tubes of fast reactor heat exchanger

    International Nuclear Information System (INIS)

    Rukhlyada, N.Ya.

    2014-01-01

    The experimental Auger electron spectroscopy and X-ray diffraction microanalysis data of laboratory investigations of defect tubes of heat exchanger with sodium coolant are presented. Element distribution through depth of corrosion layers form on the side of coolant (sodium) and on the surface contacting with steam in heat exchanger tube is studied. Sodium presence through all thickness of the tube is determined. It is shown that treatment of 12Cr18N9 steel surface by plasma pulses decreases intergranular corrosion susceptibility. It is related with structural changes of surface layer (∼ 20 μm), its enrichment by chromium and formation of chromium oxide protective film [ru

  9. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  10. Determination of pseudo multi-pulse production rate in GM counters by correlation analysis between signal pulses

    International Nuclear Information System (INIS)

    Hashimoto, Kengo; Ueda, Taizou

    1996-01-01

    A technique, based on the correlation analysis of signal pulses in time sequence, is proposed to determine the production rate of the pseudo multi-pulse in Geiger-Mueller (GM) counter. With a multi-channel scaler initiated by a signal pulse, subsequent pulses are recorded in sequence. The production of the multi-pulse increases the counting probability immediately after the initiation. By examining the deviation of the measured probability from the ideal counting probability, the production rate and the average lag time to produce the multi-pulse can be determined. By the use of the present technique, the production rate and the average lag time were obtained for the various GM tubes. These results indicate that the consumption of the quench gas results in a significant increase in the production rate but little variation in the lag time, and that the lag time strongly depends on the tube diameter. (author)

  11. Pulsed neutron generator for mass flow measurement using the pulsed neutron activation technique

    International Nuclear Information System (INIS)

    Rochau, G.E.; Hornsby, D.R.; Mareda, J.F.; Riggan, W.C.

    1980-01-01

    A high-output, transportable neutron generator has been developed to measure mass flow velocities in reactor safety tests using the Pulsed Neutron Activation (PNA) Technique. The PNA generator produces >10 10 14 MeV D-T neutrons in a 1.2 millisecond pulse. The Millisecond Pulse (MSP) Neutron Tube, developed for this application, has an expected operational life of 1000 pulses, and it limits the generator pulse repetition rate to 12 pulses/minute. A semiconductor neutron detector is included in the generator package to monitor the neutron output. The control unit, which can be operated manually or remotely, also contains a digital display with a BCD output for the neutron monitor information. The digital logic of the unit controls the safety interlocks and rejects transient signals which could accidently fire the generator

  12. Method for shaping polyethylene tubing

    Science.gov (United States)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  13. Pyrotechnic Tubing Connector

    Science.gov (United States)

    Graves, Thomas J.; Yang, Robert A.

    1988-01-01

    Tool forms mechanical seal at joint without levers or hydraulic apparatus. Proposed tool intended for use in outer space used on Earth by heavily garbed workers to join tubing in difficult environments. Called Pyrotool, used with Lokring (or equivalent) fittings. Piston slides in cylinder when pushed by gas from detonating pyrotechnic charge. Impulse of piston compresses fittings, sealing around butting ends of tubes.

  14. SLAC pulsed X-ray facility

    Science.gov (United States)

    Ipe, N. E.; McCall, R. C.; Baker, E. D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the RF power for the accelerator. Hence, a pulsed X-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The X-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminum 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ms. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the X-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility.

  15. SLAC pulsed x-ray facility

    International Nuclear Information System (INIS)

    Ipe, N.E.; McCall, R.C.; Baker, E.D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the rf power for the accelerator. Hence, a pulsed x-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The x-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminium 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 μs. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the x-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility. 3 refs., 5 figs

  16. Influence of tube volume on measurement uncertainty of GM counters

    Directory of Open Access Journals (Sweden)

    Stanković Koviljka Đ.

    2010-01-01

    Full Text Available GM counters are often used in radiation detection since they generate a strong signal which can be easily detected. The working principal of a GM counter is based on the interaction of ionizing radiation with the atoms and molecules of the gas present in the counter's tube. Free electrons created as a result of this interaction become initial electrons, i. e. start an avalanche process which is detected as a pulse of current. This current pulse is independent of the energy imparted on the gas, that being the main difference between a GM counter and the majority of other radiation detectors. In literature, the dependence on the incidence of radiation energy, tube's orientation and characteristics of the reading system are quoted as the main sources of measurement uncertainty of GM counters. The aim of this paper is to determine the dependence of measurement uncertainty of a GM counter on the volume of its counter's tube. The dependence of the pulse current on the size of the counter's tube has, therefore, been considered here, both in radial and parallel geometry. The initiation and expansion of the current pulse have been examined by means of elementary processes of electrical discharge such as the Markov processes, while the changes in the counter's tube volume were put to test by the space - time enlargement law. The random variable known as the 'current pulse in the counter's tube' (i. e. electrical breakdown of the electrode configuration has also been taken into account and an appropriate theoretical distribution statistically determined. Thus obtained theoretical results were then compared to corresponding experimental results established in controlled laboratory conditions.

  17. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  18. Pulsed power

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The key element of our pulsed power program is concentration of power in time and space by suppression of breakdown in dielectrics and in vacuum. Magnetically insulated vacuum transmission lines and magnetic suppression of insulator flashover have continued as the main reserch directions. Vacuum insulated line studies at Physics International have been expanded and a test bed at Sandia, called MITE (Magnetically Insulated Transmission Experiment), is under development. The choice for the baseline EBFA design will depend on the outcome of these studies and should be made in July 1977. The slow and intermediate speed pulsed power approaches to EBFA will be based on Proto I and Proto II results and several of the projected EBFA subsystems are presently being tested in Proto II. A further stage of power concentration, within the vacuum diode itself, would considerably ease the burden on dielectrics; methods of power multiplication involving magnetically imploded plasmas are being considered and tests have begun using the Ripple III apparatus

  19. Modelling of a stirling cryocooler regenerator under steady and steady - periodic flow conditions using a correlation based method

    Science.gov (United States)

    Kishor Kumar, V. V.; Kuzhiveli, B. T.

    2017-12-01

    The performance of a Stirling cryocooler depends on the thermal and hydrodynamic properties of the regenerator in the system. CFD modelling is the best technique to design and predict the performance of a Stirling cooler. The accuracy of the simulation results depend on the hydrodynamic and thermal transport parameters used as the closure relations for the volume averaged governing equations. A methodology has been developed to quantify the viscous and inertial resistance terms required for modelling the regenerator as a porous medium in Fluent. Using these terms, the steady and steady - periodic flow of helium through regenerator was modelled and simulated. Comparison of the predicted and experimental pressure drop reveals the good predictive power of the correlation based method. For oscillatory flow, the simulation could predict the exit pressure amplitude and the phase difference accurately. Therefore the method was extended to obtain the Darcy permeability and Forchheimer’s inertial coefficient of other wire mesh matrices applicable to Stirling coolers. Simulation of regenerator using these parameters will help to better understand the thermal and hydrodynamic interactions between working fluid and the regenerator material, and pave the way to contrive high performance, ultra-compact free displacers used in miniature Stirling cryocoolers in the future.

  20. Preliminary test Results for a 25K Sorption Cryocooler Designed for the UCSB Long Duration Balloon Cosmic Microwave Background Radiation Experiment

    Science.gov (United States)

    Wade, L. A.; Levy, A. R.

    1996-01-01

    A continuous operation, vibration-free, long-life 25K sorption cryocooler has been built and is now in final integration and performance testing. This cooler wil be flown on the University of California at Santa Barbara (UCSB) Long Duration Balloon (LDB) Cosmic Microwave Background Radiation Experiment.

  1. Automation in tube finishing bay

    International Nuclear Information System (INIS)

    Bhatnagar, Prateek; Satyadev, B.; Raghuraman, S.; Syama Sundara Rao, B.

    1997-01-01

    Automation concept in tube finishing bay, introduced after the final pass annealing of PHWR tubes resulted in integration of number of sub-systems in synchronisation with each other to produce final cut fuel tubes of specified length, tube finish etc. The tube finishing bay which was physically segregated into four distinct areas: 1. tube spreader and stacking area, 2. I.D. sand blasting area, 3. end conditioning, wad blowing, end capping and O.D. wet grinding area, 4. tube inspection, tube cutting and stacking area has been studied

  2. Water nucleation : wave tube experiments and theoretical considerations

    NARCIS (Netherlands)

    Holten, V.

    2009-01-01

    This work is an experimental and theoretical study of the condensation of water. Condensation consists of nucleation – the formation of droplets – and the subsequent growth of those droplets. In our expansion tube setup, these processes are separated in time with the nucleation pulse principle, in

  3. Optimized autonomous operations of a 20 K space hydrogen sorption cryocooler

    Science.gov (United States)

    Borders, J.; Morgante, G.; Prina, M.; Pearson, D.; Bhandari, P.

    2004-06-01

    A fully redundant hydrogen sorption cryocooler is being developed for the European Space Agency Planck mission, dedicated to the measurement of the temperature anisotropies of the cosmic microwave background radiation with unprecedented sensitivity and resolution [Advances in Cryogenic Engineering 45A (2000) 499]. In order to achieve this ambitious scientific task, this cooler is required to provide a stable temperature reference (˜20 K) and appropriate cooling (˜1 W) to the two instruments on-board, with a flight operational lifetime of 18 months. During mission operations, communication with the spacecraft will be possible in a restricted time-window, not longer than 2 h/day. This implies the need for an operations control structure with the required robustness to safely perform autonomous procedures. The cooler performance depends on many operating parameters (such as the temperatures of the pre-cooling stages and the warm radiator), therefore the operation control system needs the capability to adapt to variations of these boundary conditions, while maintaining safe operating procedures. An engineering bread board (EBB) cooler was assembled and tested to evaluate the behavior of the system under conditions simulating flight operations and the test data were used to refine and improve the operation control software. In order to minimize scientific data loss, the cooler is required to detect all possible failure modes and to autonomously react to them by taking the appropriate action in a rapid fashion. Various procedures and schemes both general and specific in nature were developed, tested and implemented to achieve these goals. In general, the robustness to malfunctions was increased by implementing an automatic classification of anomalies in different levels relative to the seriousness of the error. The response is therefore proportional to the failure level. Specifically, the start-up sequence duration was significantly reduced, allowing a much faster

  4. Pulse radiolysis

    International Nuclear Information System (INIS)

    Greenshields, H.; Seddon, W.A.

    1982-03-01

    This supplement to two bibliographies published in 1970 and 1972 lists 734 references to the literature of pulse radiolysis, arranged under eight broad subject headings. The references were compiled by searching Biological Abstracts, Chemical Abstracts, Nuclear Science Abstracts and the Weekly List of Papers in Radiation Chemistry issued by the Radiation Chemistry Data Center of Notre Dame University. Full bibliographic data is given for papers published in the period 1971 to 1974. A personal author index listing more than 600 authors and a similar number of co-authors is included

  5. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  6. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1982-04-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1980. Tube defects occurred at 38% of the 97 reactors surveyed. This is a marginal improvement over 1979 when defects occurred at 41% of the reactors. The number of failed tubes was also lower, 0.14% of the tubes in service in 1980 compared with 0.20% of those in service in 1979. Analysis of the causes of these failures indicates that stress corrosion cracking was the leading failure mechanism. Reactors that used all-volatile treatment of secondary water, with or without full-flow condensate demineralization since start-up showed the lowest incidence of corrosion-related defects

  7. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  8. Fuel assembly guide tube

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    This invention is directed toward a nuclear fuel assembly guide tube arrangement which restrains spacer grid movement due to coolant flow and which offers secondary means for supporting a fuel assembly during handling and transfer operations

  9. Bull Moose Tube Company

    Science.gov (United States)

    The EPA is providing notice of a proposed Administrative Penalty Assessment against the Bull Moose Tube Company, a business located at 1819 Clarkson Road, Chesterfield, MO, 63017, for alleged violations at the facility located at 406 East Industrial Drive,

  10. Tracheostomy tube - eating

    Science.gov (United States)

    Trach - eating ... take your first bites. Certain factors may make eating or swallowing harder, such as: Changes in the ... easier to swallow. Suction the tracheostomy tube before eating. This will keep you from coughing while eating, ...

  11. Pulse pile-up. I: Short pulses

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1990-07-01

    The search for rare large pulses against an intense background of smaller ones involves consideration of pulse pile-up. Approximate methods are presented, based on ruin theory, by which the probability of such pile-up may be estimated for pulses of arbitrary form and of arbitrary pulse-height distribution. These methods are checked against cases for which exact solutions are available. The present paper is concerned chiefly with short pulses of finite total duration. (Author) (5 refs., 24 figs.)

  12. Researching YouTube

    OpenAIRE

    Arthurs, Jane; Drakopoulou, Sophia; Gandini, Alessandro

    2018-01-01

    ‘Researching YouTube’ introduces the special issue of Convergence which arose out of an international academic conference on YouTube that was held in London at Middlesex University in September 2016. The conference aimed to generate a robust overview of YouTube’s changing character and significance after its first ten years of development by creating a productive dialogue between speakers from different disciplines and cultures, and between YouTube-specific research and wider debates in media...

  13. Tubing crimping pliers

    Science.gov (United States)

    Lindholm, G.T.

    1981-02-27

    The disclosure relates to pliers and more particularly to pliers for crimping two or more pieces of copper tubing together prior to their being permanently joined by brazing, soldering or the like. A die containing spring-loaded pins rotates within a cammed ring in the head of the pliers. As the die rotates, the pins force a crimp on tubing held within the pliers.

  14. At site qualification of accelerating tube dynodes

    International Nuclear Information System (INIS)

    Rajan, Rehim N.; Dewangan, S.; Sharma, D.K.

    2015-01-01

    A dc electron beam accelerator rated for 3 MeV encountered numerous vacuum side discharges at terminal voltage levels of 1800 kV. The cumulative rating of the accelerating tube in the system is 3350 kV. Pulsed currents in the order of 50 mA has been observed at the beam collector during these events along with voltage dips in terminal voltage. As dynode to dynode arcing is suspected to be the primary cause of this behaviour, it is desired to test the voltage withstanding capacity of each pair of dynodes. The accelerating tubes are rated for 335 kV at 6 kg/cm 2 SF 6 environment. However working at these pressures and testing of individual pairs of dynodes are impractical for qualification of dynodes of the 10 sets of accelerating tubes mounted in the accelerator. This problem has been overcome by using atmospheric pressure SF 6 and solid dielectrics. Experience of at site testing of the accelerating tube dynodes are described in this paper. (author)

  15. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Masugata, Katsumi [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan)]. E-mail: masugata@eng.toyama-u.ac.jp; Shimizu, Yuichro [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Fujioka, Yuhki [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Kitamura, Iwao [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Tanoue, Hisao [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Arai, Kazuo [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan)

    2004-12-21

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator' was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density {approx}25A/cm2, duration {approx}1.5{mu}s was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240kV, duration 100ns to the drift tube. Pulsed ion beam of current density {approx}40A/cm2, duration {approx}50ns was obtained at 41mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness {approx}500nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  16. Pressure tube reactor

    International Nuclear Information System (INIS)

    Seki, Osamu; Kumasaka, Katsuyuki.

    1988-01-01

    Purpose: To remove the heat of reactor core using a great amount of moderators at the periphery of the reactor core as coolants. Constitution: Heat of a reactor core is removed by disposing a spontaneous recycling cooling device for cooling moderators in a moderator tank, without using additional power driven equipments. That is, a spontaneous recycling cooling device for cooling the moderators in the moderator tank is disposed. Further, the gap between the inner wall of a pressure tube guide pipe disposed through the vertical direction of a moderator tank and the outer wall of a pressure tube inserted through the guide pipe is made smaller than the rupture distortion caused by the thermal expansion upon overheating of the pressure tube and greater than the minimum gap required for heat shiels between the pressure tube and the pressure tube guide pipe during usual operation. In this way, even if such an accident as can not using a coolant cooling device comprising power driven equipment should occur in the pressure tube type reactor, the rise in the temperature of the reactor core can be retarded to obtain a margin with time. (Kamimura, M.)

  17. Tube spacer grid for a heat-exchanger tube bundle

    International Nuclear Information System (INIS)

    Scheidl, H.

    1976-01-01

    A tube spacer grid for a heat-exchanger tube bundle is formed by an annular grid frame having a groove formed in its inner surface in which the interspaced grid bars have their ends positioned and held in interspaced relationship by short sections of tubes passed through holes axially formed in the grid frame so that the tubes are positioned between the ends of the grid bars in the grooves. The tube sections may be cut from the same tubes used to form the tube bundle. 5 claims, 3 drawing figures

  18. 34 GHz, 45 MW pulsed magnicon

    International Nuclear Information System (INIS)

    Nezhevenko, Oleg A.; LaPointe, Michael A.; Yakovlev, Vyacheslav P.; Hirshfield, Jay L.; Serdobintsev, Gennady V.; Kuznetsov, Gennady I.; Persov, Boris Z.; Fix, Alexander

    2002-01-01

    A high efficiency, high power magnicon at 34.272 GHz has been designed and built as a microwave source to develop RF technology for a future multi-TeV electron-positron linear collider. The tube is designed to provide a peak output power of ∼45 MW in a 1 microsecond pulse, with a gain of 55 dB, using a 500 kV, 220 A, 1 mm-diameter electron beam. The status of the tube itself as well as the near-term experimental program is presented

  19. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home >> NEI YouTube Videos >> NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia Animations Blindness Cataract ...

  20. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home » NEI YouTube Videos » NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia Animations Blindness Cataract ...

  1. Computer analysis of an adiabatic Stirling cryocooler using a two-phase two-component working fluid

    International Nuclear Information System (INIS)

    Renfroe, D.A.; Cheung, C.M.

    1992-01-01

    This paper describes the performance and behavior of a Stirling cyrocooler incorporating a working fluid composed of helium and nitrogen. At the operating temperature of the cryocooler (80 K), the nitrogen component will condense in the freezer section. It is shown that the phase change in the working fluid increased the heat lifted for a given size and weight of machine and the coefficient of performance. The magnitude of these effects was dependent on the mass ratio of nitrogen to helium, phase angle between the compression and expansion processes, and the ratio of the compression space volume to the expansion space volume. The optimum heat lifted performance was obtained for a mass ratio of four parts of nitrogen to one part of helium, a phase angle of approximately 100 degrees, and a volume ratio of two which resulted in a heat lifted increase of 75% over the single phase, 90 degree phase angle configuration. The coefficient of performance showed a 20% improvement

  2. Maximization of bremsstrahlung and K-series production efficiencies in flash x-ray tubes

    International Nuclear Information System (INIS)

    Krehl, P.

    1986-01-01

    Historically, x-ray output of flash x-ray tubes was maximized empirically by changing the electrode geometry and varying the capacitance of the pulse generator. With the advent of high-voltage, low-impedance transmission lines, short-duration, high-current pulses could be generated with ease. An appropriate line scaling should assure that dose maximization is not reached at the expense of pulse prolongation which would reduce stop motion capability, but rather that dose rate should be maximized. Additionally, anode evaporation in the arc phase should be minimized to enhance tube life

  3. Quasi-static drift-tube accelerating structures for low-speed heavy ions

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1978-01-01

    A pulsed drift-tube accelerating structure for use in Heavy Ion Fusion applications is described. Possible arrangements of components in such a structure, the injector design needs, and the influence of the existing state of component technology on drift-tube structure design are considered. It is concluded that the major attractions of the pulsed drift tubes are that they are nonresonant structures and that they appear suitable for accelerating a very high current bunch at low energies. The mechanical tolerances of the nonresonant structure are very loose and the cost per meter should be low; the cost of the transport system is expected to be the major cost. The pulse-power modulators used to drive the drift tubes are inexpensive compared with rf sources of equivalent peak power. The longitudinal emittance of the beam emerging from the structure could be extremely low. (U.K.)

  4. Tube plug removal machine

    International Nuclear Information System (INIS)

    Hawkins, P.J.

    1987-01-01

    In a nuclear steam generator wherein some faulty tubes have been isolated by mechanical plugging, to remove a selected plug without damaging the associated tube, a plug removal machine is used. The machine drills into a plug portion with a tap drill bit having a drill portion a tap portion and a threaded portion, engaging that plug portion with the threaded portion after the drilled hole has been threaded by the tap portion thereof, and removing a portion of the plug in the tube with a counterbore drill bit mounted concentrically about the tap drill bit. A trip pin and trip spline disengage the tap drill bit from the motor. The counterbore drill bit is thereafter self-centered with respect to the tube and plug about the now stationary tap drill bit. After a portion of the plug has been removed by the counterbore drill bit, pulling on the top drill bit by grippers on slots will remove the remaining plug portion from the tube. (author)

  5. Categorising YouTube

    Directory of Open Access Journals (Sweden)

    Thomas Mosebo Simonsen

    2011-09-01

    Full Text Available This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC of YouTube. The article investigates the construction of navigationprocesses on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within the interacting relationship of new and old genres are discussed. It is argued that the utility of a conventional categorical system is primarily of analytical and theoretical interest rather than as a practical instrument.

  6. Measuring of tube expansion

    International Nuclear Information System (INIS)

    Vogeleer, J. P.

    1985-01-01

    The expansion of the primary tubes or sleeves of the steam generator of a nuclear reactor plant are measured while the tubes or sleeves are being expanded. A primary tube or sleeve is expanded by high pressure of water which flows through a channel in an expander body. The water is supplied through an elongated conductor and is introduced through a connector on the shank connected to the conductor at its outer end. A wire extends through the mandrel and through the conductor to the end of the connector. At its inner end the wire is connected to a tapered pin which is subject to counteracting forces produced by the pressure of the water. The force on the side where the wire is connected to the conductor is smaller than on the opposite side. The tapered pin is moved in the direction of the higher force and extrudes the wire outwardly of the conductor. The tapered surface of the tapered pin engages transverse captive plungers which are maintained in engagement with the expanding tube or sleeve as they are moved outwardly by the tapered pin. The wire and the connector extend out of the generator and, at its outer end, the wire is connected to an indicator which measures the extent to which the wire is moved by the tapered pin, thus measuring the expansion of the tube or sleeve as it progresses

  7. Advanced evacuated tube collectors

    Science.gov (United States)

    Schertz, W. W.; Hull, J. R.; Winston, R.; Ogallagher, J.

    1985-04-01

    The essence of the design concept for these new collectors is the integration of moderate levels of nonimaging concentration inside the evacuated tube itself. This permanently protects the reflection surfaces and allows the use of highly reflecting front surface mirrors with reflectances greater than 95%. Previous fabrication and long term testing of a proof-of-concept prototype has established the technical success of the concept. Present work is directed toward the development of a manufacturable unit that will be suitable for the widest possible range of applications. Design alternatives include scaling up the original prototype's tube diameter from 5 cm to 10 cm, using an internal shaped metal concentrating reflector, using a variety of profile shapes to minimize so-called gap losses and accommodate both single ended and double-ended flow geometries, and allowing the use of heat pipes for the absorber tube.

  8. Square through tube

    International Nuclear Information System (INIS)

    Akita, Junji; Honma, Toei.

    1975-01-01

    Object: To provide a square through tube involving thermal movement in pipelines such as water supply pump driving turbine exhaust pipe (square-shaped), which is wide in freedom with respect to shape and dimension thereof for efficient installation at site. Structure: In a through tube to be airtightly retained for purpose of decontamination in an atomic power plant, comprising a seal rubber plate, a band and a bolt and a nut for securing said plate, the seal rubber plate being worked into the desired shape so that it may be placed in intimate contact with the concrete floor surface by utilization of elasticity of rubber, thereby providing airtightness at a corner portion of the square tube. (Kamimura, M.)

  9. SG tube identification

    International Nuclear Information System (INIS)

    Hoogstraten, P. van

    1994-01-01

    A ''Tracker'' system is described which is designed to identify any tube in a reactor steam generator quickly and safely. Occupational radiation doses to maintenance workers are reduced by using a Tracker and emergency down times are shortened. The system employs a television camera and light source in a stainless steel box with a large window. Both the camera and spotlight can be panned and tilted to reach any point on the tubesheet and are remotely controlled. An operator at a safe working distance can identify any tube visible on a real time video by comparison with the tubesheet pattern stored earlier in the computer memory. The identified tube can then be spotlighted and dealt with quickly by a maintenance worker inside the channel head. (UK)

  10. Electron emitter pulsed-type cylindrical IEC

    International Nuclear Information System (INIS)

    Miley, G.H.; Gu, Y.; Stubbers, R.; Zich, R.; Anderl, R.; Hartwell, J.

    1997-01-01

    A cylindrical version of the single grid Inertial Electrostatic Confinement (IEC) device (termed the C-device) has been developed for use as a 2.5-MeV D-D fusion neutron source for neutron activation analysis. The C-device employs a hollow-tube type cathode with similar anodes backed up by ''reflector'' dishes. The resulting discharge differs from a conventional hollow cathode discharge, by creating an explicit ion beam which is ''pinched'' in the cathode region. Resulting fusion reactions generate ∼10 6 neutron/s. A pulsed version is under development for applications requiring higher fluxes. Several pulsing techniques are under study, including an electron emitter (e-emitter) assisted discharge in a thorated tungsten wire emitter located behind a slotted area in the reflector dishes. Pulsing is initiated after establishing a low power steady-state discharge by pulsing the e-emitter current using a capacitor switch type circuit. The resulting electron jet, coupled with the discharge by the biased slot array, creates a strong pulse in the pinched ion beam. The pulse length/repetition rate are controlled by the e-emitter pulse circuit. Typical parameters in present studies are ∼30micros, 10Hz and 1-amp ion current. Corresponding neutron measurements are an In-foil type activation counter for time averaged rates. Results for a wide variety of operating conditions are presented

  11. PRODUCTION OF URANIUM TUBING

    Science.gov (United States)

    Creutz, E.C.

    1958-04-15

    The manufacture of thin-walled uranium tubing by the hot-piercing techique is described. Uranium billets are preheated to a temperature above 780 d C. The heated billet is fed to a station where it is engaged on its external surface by three convex-surfaced rotating rollers which are set at an angle to the axis of the billet to produce a surface friction force in one direction to force the billet over a piercing mandrel. While being formed around the mandrel and before losing the desired shape, the tube thus formed is cooled by a water spray.

  12. Guide tube sleeve

    International Nuclear Information System (INIS)

    Attix, D.J.

    1983-01-01

    The invention increases the operating capacity of a nuclear reactor by causing a modification in the flow pattern of the coolant which enhances the coolant's effectiveness. The apparatus provides a thin-walled tubular sleeve closely surrounding but not attached to the exterior surface of a guide tube in a fuel assembly. The wall of the sleeve has tabs projecting outwardly into adjacent flow channels. The sleeve is attached to the wall of a cellular void through which passes the guide tube associated with said sleeve. The tabs increase the flow of water in the channel and thus increase the heat transfer

  13. High peak power tubes and gate effect Klystrons

    International Nuclear Information System (INIS)

    Gerbelot, N.; Bres, M.; Faillon, G.; Buzzi, J.M.

    1993-01-01

    The conventional microwave tubes such as TWTs, Magnetrons, Klystrons... deliver the very high peak powers which are required by radar transmitters but more especially by many particle accelerators. In the range of a few hundred MHz to about 10 GHz, some dozen of MWs per unit are currently obtained and commercially available, according to the frequency and the pulse lengths. But peak power requirements are ever increasing, especially for the expected new linear particle acceleratores, where several hundred MWs per tube would be necessary. Also some special military transmitters begin to request GW pulses, with short pulse lengths - of course - but at nonnegligible repetition rates. Therefore several laboratories and microwave vacuum tube manufacturers have engaged - for several years - studies and development in the field of very high peak microwave power (HPM) toward two main directions: extended operation and extrapolation of the conventional tubes and devices; development of new concepts, among which the most promising are likely the high-current relativistic klystrons - that are also referred to as gate effect klystrons

  14. Pressure tube type research reactor

    International Nuclear Information System (INIS)

    Ueda, Hiroshi.

    1976-01-01

    Object: To prevent excessive heat generation due to radiation of a pressure tube vessel. Structure: A pressure tube encasing therein a core comprises a dual construction comprising inner and outer tubes coaxially disposed. High speed cooling water is passed through the inner tube for cooling. In addition, in the outer periphery of said outer tube there is provided a forced cooling tube disposed coaxially thereto, into which cooling fluid, for example, such as moderator or reflector is forcibly passed. This forced cooling tube has its outer periphery surrounded by the vessel into which moderator or reflector is fed. By the provision of the dual construction of the pressure tube and the forced cooling tube, the vessel may be prevented from heat generation. (Ikeda, J.)

  15. Double wall steam generator tubing

    International Nuclear Information System (INIS)

    Padden, T.R.; Uber, C.F.

    1983-01-01

    Double-walled steam generator tubing for the steam generators of a liquid metal cooled fast breeder reactor prevents sliding between the surfaces due to a mechanical interlock. Forces resulting from differential thermal expansion between the outer tube and the inner tube are insufficient in magnitude to cause shearing of base metal. The interlock is formed by jointly drawing the tubing, with the inside wall of the outer tube being already formed with grooves. The drawing causes the outer wall of the inner tube to form corrugations locking with the grooves. (author)

  16. Tube-dwelling invertebrates

    NARCIS (Netherlands)

    Hölker, Franz; Vanni, Michael J.; Kuiper, Jan J.; Meile, Christof; Grossart, Hans Peter; Stief, Peter; Adrian, Rita; Lorke, Andreas; Dellwig, Olaf; Brand, Andreas; Hupfer, Michael; Mooij, Wolf M.; Nützmann, Gunnar; Lewandowski, Jörg

    2015-01-01

    There is ample evidence that tube-dwelling invertebrates such as chironomids significantly alter multiple important ecosystem functions, particularly in shallow lakes. Chironomids pump large water volumes, and associated suspended and dissolved substances, through the sediment and thereby compete

  17. Cladding tube manufacturing technology

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report A lloy Development for High Burnup Cladding . Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs

  18. Thoughts on accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1978-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  19. Tracheostomy tube - speaking

    Science.gov (United States)

    ... with others. However, you can learn how to speak with a tracheostomy tube. It just takes practice. There ... If it is hard to speak with a trach in place, special devices can help you learn to create sounds. One-way valves, called speaking valves, are placed ...

  20. Thoughts of accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  1. Cladding tube manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report 'Alloy Development for High Burnup Cladding.' Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs.

  2. L-band pulsed klystron for the JHP

    International Nuclear Information System (INIS)

    Fukuda, S.; Takeuchi, Y.; Hisamatsu, H.; Anami, S.; Kihara, M.; Takahashi, A.

    1994-01-01

    An L-band high-power klystron for the JHP (6 MW output power and 600 μsec pulse width) was designed at KEK. High-power tests of the test diodes were performed up to a beam voltage of 140 kV, a pulse width of 600 μsec and a repetition rate of 50 pps. The capability to meet the specifications of the gun and the collector was confirmed. High-power tests of the rf window were also performed up to rf powers of 4 MW (600 μsec pulse width) and 5 MW (375 μsec pulse width). We obtained good results for an rf window using high-purity alumina (99.7%). The design considerations and manufacturing process are also described. Manufacturing a prototype tube has been completed and the tube is undergoing the high-power tests. (author)

  3. Annular pulse column development studies

    International Nuclear Information System (INIS)

    Benedict, G.E.

    1980-01-01

    The capacity of critically safe cylindrical pulse columns limits the size of nuclear fuel solvent extraction plants because of the limited cross-sectional area of plutonium, U-235, or U-233 processing columns. Thus, there is a need to increase the cross-sectional area of these columns. This can be accomplished through the use of a column having an annular cross section. The preliminary testing of a pilot-plant-scale annular column has been completed and is reported herein. The column is made from 152.4-mm (6-in.) glass pipe sections with an 89-mm (3.5-in.) o.d. internal tube, giving an annular width of 32-mm (1.25-in.). Louver plates are used to swirl the column contents to prevent channeling of the phases. The data from this testing indicate that this approach can successfully provide larger-cross-section critically safe pulse columns. While the capacity is only 70% of that of a cylindrical column of similar cross section, the efficiency is almost identical to that of a cylindrical column. No evidence was seen of any non-uniform pulsing action from one side of the column to the other

  4. Effect of counter electric field during the irradiation of pulsed x-ray on the after-pulses of GM counter

    International Nuclear Information System (INIS)

    Igarashi, Ryuji; Narita, Yuichi; Ozawa, Yasutomo.

    1979-01-01

    The authors once made it clear by using pulsed radiation that the number of spurious discharge generation in organic gas-quenching type GM counters depends on the intensity of incident radiation. This spurious discharge is peculiar to the organic gas-quenching type GM counters, which the authors named after-pulses. The present study has been carried out to find the experimental conditions to verify the delayed generation mechanism of such after-pulses in bipolar GM tubes and the conditions to give the maximum number of after-pulses generation. For this purpose, a large low electric field region, whose field intensity is variable, should be provided in the tubes. Since it has been generally impossible in the bipolar GM tubes, the provision of that region transiently has been tried. The effect of the intensity of electric field in GM tubes during irradiation on the generation of after-pulses has been investigated by changing radiation intensity, anode voltage, and irradiated position. Consideration of the results has revealed that the number of after-pulse generation can be increased by forming transient low electric field region in the bipolar GM counters of organic gas-quenching type. It was the new knowledge that the transient anode voltage to maximize the after-pulse generating factor was several tens of negative voltage even if the conditions were varied. It seems that this fact depends upon the voltage giving the conditions to maximize the probability of forming after-pulse factors. (Wakatsuki, Y.)

  5. Drift tubes of Linac 2

    CERN Multimedia

    Photographic Service

    1977-01-01

    Being redied for installation, those at the right are for tank 1, those on the left for tank 2. Contrary to Linac 1, which had drift-tubes supported on stems, here the tubes are suspended, for better mechanical stability.

  6. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: Amblyopia ... *PDF files require the free Adobe® Reader® software for viewing. This website is maintained by the ...

  7. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  8. Prospects for stronger calandria tubes

    International Nuclear Information System (INIS)

    Ells, C.E.; Coleman, C.E.; Hosbons, R.R.; Ibrahim, E.F.; Doubt, G.L.

    1990-12-01

    The CANDU calandria tubes, made of seam welded and annealed Zircaloy-2, have given exemplary service in-reactor. Although not designed as a system pressure containment, calandria tubes may remain intact even in the face of pressure tube rupture. One such incident at Pickering Unit 2 demonstrated the economic advantage of such an outcome, and a case can be made for increasing the probability that other calandria tubes would perform in a similar fashion. Various methods of obtaining stronger calandria tubes are available, and reviewed here. When the tubes are internally pressurized, the weld is the weak section of the tube. Increasing the oxygen concentration in the starting sheet, and thickening the weld, are promising routes to a stronger tube

  9. Characterization of irradiated fuel rods using pulsed eddy current techniques

    International Nuclear Information System (INIS)

    Martin, M.R.; Francis, W.C.

    1975-11-01

    A number of irradiated fuel rods and unfueled zircaloy cladding tubes (''water tubes'') were obtained from the Saxton reactor through arrangements with the Westinghouse Electric Corporation for use in subsequent irradiation effects and fuel behavior programs. A comprehensive nondestructive and corroborative destructive characterization program was undertaken on these fuel rods and tubes by ANC to provide baseline data on their characteristics prior to further testing and for comparison against post-post data. This report deals primarily with one portion of the NDT program performed remotely in the hot cells. The portion of interest in this paper is the pulsed eddy current inspection used in the nondestructive phase of the work. 6 references

  10. Random pulse generator

    International Nuclear Information System (INIS)

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  11. Expansion lyre-shaped tube

    International Nuclear Information System (INIS)

    Andro, Jean.

    1973-01-01

    The invention relates the expansion lyre-shaped tube portions formed in dudgeoned tubular bundles between two bottom plates. An expansion lyre comprises at least two sets of tubes of unequal lengths coplanar and symmetrical with respect to the main tube axis, with connecting portions between the tubes forming said sets. The invention applies to apparatus such as heat exchangers, heaters, superheaters or breeders [fr

  12. The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array

    International Nuclear Information System (INIS)

    Hu, J. T.; Liu, X. Y.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Iza, F.; Kong, M. G.

    2012-01-01

    Here we compare the plasma plume propagation characteristics of a 3-channel pulsed RF plasma jet array and those of the same device operated by a pulsed dc source. For the pulsed-RF jet array, numerous long life time ions and metastables accumulated in the plasma channel make the plasma plume respond quickly to applied electric field. Its structure similar as “plasma bullet” is an anode glow indeed. For the pulsed dc plasma jet array, the strong electric field in the vicinity of the tube is the reason for the growing plasma bullet in the launching period. The repulsive forces between the growing plasma bullets result in the divergence of the pulsed dc plasma jet array. Finally, the comparison of 309 nm and 777 nm emissions between these two jet arrays suggests the high chemical activity of pulsed RF plasma jet array.

  13. Intense pulsed heavy ion beam technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi; Ito, Hiroaki

    2010-01-01

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm 2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm 2 was obtained. The beam consists of aluminum ions (Al (1-3)+ ) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89%. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were successively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm 2 was observed in the cathode, which suggests the bipolar pulse acceleration. (author)

  14. Programmable pulse generator

    International Nuclear Information System (INIS)

    Xue Zhihua; Lou Binqiao; Duan Xiaohui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  15. Chest tube insertion - series (image)

    Science.gov (United States)

    Chest tubes are inserted to drain blood, fluid, or air and allow full expansion of the lungs. The tube is placed in the pleural space. The area where the tube will be inserted is numbed (local anesthesia). The patient may also be sedated. The chest ...

  16. Tube Length and Water Flow

    Directory of Open Access Journals (Sweden)

    Ben Ruktantichoke

    2011-06-01

    Full Text Available In this study water flowed through a straight horizontal plastic tube placed at the bottom of a large tank of water. The effect of changing the length of tubing on the velocity of flow was investigated. It was found that the Hagen-Poiseuille Equation is valid when the effect of water entering the tube is accounted for.

  17. Tubing cutter for tight spaces

    Science.gov (United States)

    Girala, A. S.

    1980-01-01

    Cutter requires few short swings of handle to rotate its cutting edge full 360 around tube. It will cut tubing installed in confined space that prevents free movement of conventional cutter. Cutter is snapped onto tube and held in place by spring-loaded clamp. Screw ratchet advances cutting wheel.

  18. Heat Exchanger Tube to Tube Sheet Joints Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    M. Iancu

    2013-03-01

    Full Text Available Paper presents the studies made by the authors above the tube to tube sheet fittings of heat exchanger with fixed covers from hydrofining oil reforming unit. Tube fittings are critical zones for heat exchangers failures. On a device made from material tube and tube sheet at real joints dimensions were establish axial compression force and traction force at which tube is extracted from expanded joint. Were used two shapes joints with two types of fittings surfaces, one with smooth hole of tube sheet and other in which on boring surface we made a groove. From extracted expanded tube zones were made samples for corrosion tests in order to establish the corrosion rate, corrosion potential and corrosion current in working mediums such as hydrofining oil and industrial water at different temperatures. The corrosion rate values and the temperature influence are important to evaluate joints durability and also the results obtained shows that the boring tube sheet shape with a groove on hole tube shape presents a better corrosion behavior then the shape with smooth hole tube sheet.

  19. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1978-01-01

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  20. YouTube Physics

    Science.gov (United States)

    Riendeau, Diane

    2012-09-01

    To date, this column has presented videos to show in class, Don Mathieson from Tulsa Community College suggested that YouTube could be used in another fashion. In Don's experience, his students are not always prepared for the mathematic rigor of his course. Even at the high school level, math can be a barrier for physics students. Walid Shihabi, a colleague of Don's, decided to compile a list of YouTube videos that his students could watch to relearn basic mathematics. I thought this sounded like a fantastic idea and a great service to the students. Walid graciously agreed to share his list and I have reproduced a large portion of it below.

  1. Neutron image intensifier tubes

    International Nuclear Information System (INIS)

    Verat, M.; Rougeot, H.; Driard, B.

    1983-01-01

    The most frequently used techniques in neutron radiography employ a neutron converter consisting of either a scintillator or a thin metal sheet. The radiation created by the neutrons exposes a photographic film that is in contact with the converter: in the direct method, the film is exposed during the time that the object is irradiated with neutrons; in the transfer method, the film is exposed after the irradiation of the object with neutrons. In industrial non-destructive testing, when many identical objects have to be checked, these techniques have several disadvantages. Non-destructive testing systems without these disadvantages can be constructed around neutron-image intensifier tubes. A description and the operating characteristics of neutron-image intensifier tubes are given. (Auth.)

  2. Tube coupling device

    Science.gov (United States)

    Myers, William N. (Inventor); Hein, Leopold A. (Inventor)

    1987-01-01

    A first annular ring of a tube coupling device has a keyed opening sized to fit around the nut region of a male coupling, and a second annular ring has a keyed opening sized to fit around the nut of a female coupling. Each ring has mating ratchet teeth and these rings are biased together, thereby engaging these teeth and preventing rotation of these rings. This in turn prevents the rotation of the male nut region with respect to the female nut. For tube-to-bulkhead locking, one facet of one ring is notched, and a pin is pressed into an opening in the bulkhead. This pin is sized to fit within one of the notches in the ring, thereby preventing rotation of this ring with respect to the bulkhead.

  3. PEG Tube Placement

    Directory of Open Access Journals (Sweden)

    Saptarshi Biswas

    2014-01-01

    Full Text Available Percutaneous endoscopic gastrostomy (PEG has been used for providing enteral access to patients who require long-term enteral nutrition for years. Although generally considered safe, PEG tube placement can be associated with many immediate and delayed complications. Buried bumper syndrome (BBS is one of the uncommon and late complications of percutaneous endoscopic gastrostomy (PEG placement. It occurs when the internal bumper of the PEG tube erodes into the gastric wall and lodges itself between the gastric wall and skin. This can lead to a variety of additional complications such as wound infection, peritonitis, and necrotizing fasciitis. We present here a case of buried bumper syndrome which caused extensive necrosis of the anterior abdominal wall.

  4. Recurrent inspection of tubes

    International Nuclear Information System (INIS)

    Andersson, S.

    1984-01-01

    Recommendations concerning the selection of areas for the inspection of tubes have been outlined. The aim is to focus the control on the regions which are important for the safety and where damage is supposed to take place. The number of zones will depend on the risk factors as judged by experts. The localizing will be based upon probable damaging mechanisms. A certain number of areas should be chosen at random. (G.B.)

  5. Cathode ray tube screens

    International Nuclear Information System (INIS)

    Cockayne, B.; Robbins, D.J.; Glasper, J.L.

    1982-01-01

    An improved cathode ray tube screen is described which consists of a single- or a poly-crystalline slice of a material such as yttrium aluminium garnet in which dopants such as Tb 3 + , Eu 3 + , Ce 3 + or Tm 3 + are ion implanted to different depths or in different areas of the screen. Annealing the screen removes lattice damage caused by the ion implanting and assists the diffusion of the dopant into the crystal. (U.K.)

  6. Cathode ray tube

    International Nuclear Information System (INIS)

    1979-01-01

    A cathode ray tube comprises two electron lens means in combination to crossover the electron beam at a second crossover between the two electron lens means with one of the two lens means having a variable voltage applied thereto to control the location of the beam crossover in order to focus the beam onto a display screen at any location away from the screen center. (Auth.)

  7. Fabrication of seamless calandria tubes

    International Nuclear Information System (INIS)

    Saibaba, N.; Phanibabu, C.; Bhaskara Rao, C.V.; Kalidas, R.; Ganguly, C.

    2002-01-01

    Full text: Calandria tube is a large diameter, thin walled zircaloy-4 tube and is an important structural component of PHWR type of reactors. These tubes are lifetime components and remain during the full life of the reactor. Calandria tubes are classified as extremely thin walled tubes with a diameter to wall thickness ratio of around 96. Such thin walled tubes are conventionally produced by seam welded route comprising of extrusion of slabs followed by a series of hot and rolling passes, shaping into O-shape and eventual welding. An alternative and superior method of fabricating the calandria tubes, the seamless route, has been developed, which involves hot extrusion of mother blanks followed by three successive cold pilger reductions. Eccentricity correction of the extruded blanks is carried out on a special purpose grinding equipment to bring the wall thickness variation within permissible limits. Predominant wall thickness reductions are given during cold pilgering to ensure high Q-factor values. The texture in the finished tubes could be closely, controlled with an average f r value of 0.65. Pilgering parameters and tube guiding system have been specially designed to facilities rolling of thin walled tubes. Seamless calandria tubes have distinct advantages over welded tubes. In addition to the absence of weld, they are dimensionally more stable, lighter in weight and possess uniform grains with superior grain size. The cycle time from billet to finished product is substantially reduced and the product is amenable to high level of quality assurance. The most significant feature of the seamless route is its material recovery over welded route. Residual stresses measured in the tubes indicate that these are negligible and uniform along the length of the tube. In view of their superior quality, the first charge of seamless calandria tubes will be rolled into the first 500 MWe Pressurised Heavy Water Reactor at Tarapur

  8. Pulsed water jet generated by pulse multiplication

    Czech Academy of Sciences Publication Activity Database

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high- pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  9. CRL X-ray tube

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed. (authors)

  10. Microdischarges in DC accelerator tubes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Thorn, R.

    1978-07-01

    Voltage tests on the Daresbury ceramic/titanium accelerator tube have shown that microdischarges play an important role in the conditioning process. It has been found that the voltage onset for microdischarges in a tube is dependent on the surface contamination of the electrodes and the tube geometry (in particular the tube length). This geometrical effect can be related to the trajectories of secondary ions emitted from the electrode surfaces. Sensitive diagnostic techniques have been developed to study the mass and energy distribution of ions emitted along the axis of the tube during these predischarges. The energy distribution of protons (and H - ions) can be related to the origins of the discharges in the tube. Detailed results are presented for a particular tube geometry. (author)

  11. Ultrasonic inspection of tube to tube plate welds

    International Nuclear Information System (INIS)

    Telford, D.W.; Peat, T.S.

    1985-01-01

    To monitor the deterioration of a weld between a tube and tube plate which has been repaired by a repair sleeve inside the tube and brazed at one end to the tube, ultrasound from a crystal at the end of a rod is launched, in the form of Lamb-type waves, into the tube through the braze and allowed to travel along the tube to the weld and be reflected back along the tube. The technique may also be used for the type of heat exchanger in which, during construction, the tubes are welded to the tube plate via external sleeves in which case the ultrasound is used in a similar manner to inspect the sleeve/tube plate weld. an electromagnetic transducer may be used to generate the ultrasound. The ultrasonic head comprising the crystal and an acoustic baffle is mounted on a Perspex (RTM) rod which may be rotated by a stepping motor. Echo signals from the region of deterioration may be isolated by use of a time gate in the receiver. The device primarily detects circumferentially orientated cracks, and may be used in heat exchangers in nuclear power plants. (author)

  12. Liquid-Nitrogen Test for Blocked Tubes

    Science.gov (United States)

    Wagner, W. R.

    1984-01-01

    Nondestructive test identifies obstructed tube in array of parallel tubes. Trickle of liquid nitrogen allowed to flow through tube array until array accumulates substantial formation of frost from moisture in air. Flow stopped and warm air introduced into inlet manifold to heat tubes in array. Tubes still frosted after others defrosted identified as obstructed tubes. Applications include inspection of flow systems having parallel legs.

  13. Multi-channel recording of a pulse spectrum on the screen of a Williams tube used with a ferrite memory analyser; Enregistrement du spectre d'impulsion sur l'ecran d'un tube de Williams au moyen d'un analyseur multicanal a memoire en ferrite; Zapis' spektra impul'sov na ehkrane ehlektronno-luchevoj trubki mnogokanal'nogo analizatora s ferritovoj pamyat'yu; Registro multicanal del espectro de los impulsos en la pantalla del tubo electronico, en un analizador con memoria de ferrita

    Energy Technology Data Exchange (ETDEWEB)

    Rumler, Shtirad [Institut Yadernogo Issledovannya Chekhoslovatskoj Akldemii Nauk, Rzhezh Chekhoslovatskaya Sotsialisticheskaya Respublika (Czech Republic)

    1962-04-15

    The paper describes a block-diagram of programme circuits with which it is possible to obtain a multi-channel trace of an expanded pulse-spectrum analysis on the screen of a Williams tube used in combination with a static ferrite memory. The conventional methods of direct recording on a Williams tube are in some cases unsatisfactory with the type of analyser in question, the trace being insufficiently clear, especially for the analysis of intermittent pulse cascades with a low-repetition frequency and a small average number of pulses. This is because the information to be read is interpreted in the channel straight from the adding circuits and address circuits with direct recording on the screen. The direct recording is unsuitable owing to the small average number of pulses and the statistically intermittent distribution. In this regard, the method proposed is better. The quality of the recording depends neither on the shape of the spectrum nor on the pulse-counting rate. This method is used in a 256-channel analyser with a ferrite memory of dead-time 15 {mu}s. An oscillographic trace, with a period equal to that of the spectrum analysis cycle, is produced periodically at a frequency of 50 cycles per second. The period of the trace cycle is approximately 4 ms, i.e. 20% of the total duration of the working-cycle of the analyser. In the case of analysers with a smaller number of channels and with a memory of shorter dead-time, the time for the oscillographic recording is only a few percent of the duration of the working-cycle of the analyser. (author) [French] L'auteur decrit un bloc-diagrammes des circuits de programmation qui, associes a une memoire statique en ferrite, permettent l'enregistrement multicanal, sur l'ecran d'un tube a rayons cathodiques, du spectre forme par les impulsions a analyser. Il est apparu que dans certains cas, les procedes habituels d'enregistrement, direct sur un tube de ce genre sont imparfaits lorsqu'on utilise un selecteur du modele

  14. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  15. Theoretical modeling of a gas clearance phase regulation mechanism for a pneumatically-driven split-Stirling-cycle cryocooler

    Science.gov (United States)

    Zhang, Cun-quan; Zhong, Cheng

    2015-03-01

    The concept of a new type of pneumatically-driven split-Stirling-cycle cryocooler with clearance-phase-adjustor is proposed. In this implementation, the gap between the phase-adjusting part and the cylinder of the spring chamber is used, instead of dry friction acting on the pneumatically-driven rod to control motion damping of the displacer and to adjust the phase difference between the compression piston and displacer. It has the advantages of easy damping adjustment, low cost, and simplified manufacturing and assembly. A theoretical model has been established to simulate its dynamic performance. The linear compressor is modeled under adiabatic conditions, and the displacement of the compression piston is experimentally rectified. The working characteristics of the compressor motor and the principal losses of cooling, including regenerator inefficiency loss, solid conduction loss, shuttle loss, pump loss and radiation loss, are taken into account. The displacer motion was modeled as a single-degree-of-freedom (SDOF) forced system. A set of governing equations can be solved numerically to simulate the cooler's performance. The simulation is useful for understanding the physical processes occurring in the cooler and for predicting the cooler's performance.

  16. Design And Tests Of A Superconducting Magnet With A Cryocooler For The Ion Source Decris-sc

    CERN Document Server

    Datskov, V I; Bekhterev, V V; Bogomolov, S L; Bondarenko, P G; Dmitriev, S N; Drobin, V M; Efremov, A A; Iakovlev, B I; Leporis, M; Malinowski, H; Nikiforov, S A; Paschenko, S V; Seleznev, V V; Shishov, Yu A; Tsvineva, G P; Yazvitsky, N Yu

    2004-01-01

    A superconducting magnet system (SMS) for the multicharged ion source DECRIS-SC was designed and manufactured at the Joint Institute for Nuclear Research. Successful tests of the SMS were conducted in late 2003 - early 2004. The peculiarities of this system are stipulated by using of a cryocooler 1 W in power for the cryostabilization of the magnet, and also by a special configuration of the magnetic field demanded for the source of ions. Four coils ensure induction of a magnetic field on the axes of the source of up to 3T (the mirror ratio of ~6) which considerably extends possibilities of the ion source from the point of view of producing intense highly charged ion beams. The problem of compensating large forces of interaction between the coils and surrounding iron yoke in this magnet has been successfully solved, and a reliable suspension of the magnet in a cryostat realized. For compounding of the windings working in vacuum at indirect cryostabilization prepreg is used. There has been applied a new techno...

  17. High-intensity focused ultrasound ablation around the tubing.

    Science.gov (United States)

    Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.

  18. Polarizing beam-splitter device at a pulsed neutron source

    International Nuclear Information System (INIS)

    Itoh, Shinichi; Takeda, Masayasu.

    1996-01-01

    A polarizing beam-splitter device was designed using Fe/Si supermirrors in order to obtain two polarized neutron beam lines, from one unpolarized neutron beam line, with a practical beam size for investigating the properties of condensed matter. This device was mounted after a guide tube at a pulsed neutron source, and its performance was investigated. (author)

  19. Physical design of 9 MeV travelling wave electron linac accelerating tube

    International Nuclear Information System (INIS)

    Chen Huaibi; Ding Xiaodong; Lin Yuzheng

    2000-01-01

    An accelerating tube is described. It is a part of an accelerator used for inspection of vehicle cargoes in rail cars, trucks, shipping containers, or airplanes in customs. A klystron with power of 4 MW and frequency of 2856 MHz will be applied to supply microwave power. The electrons can be accelerated by a travelling wave in the accelerating tube about 220 cm long, with a buncher whose capture efficiency is more than 80%. Energy of electrons after travelling through the tube can reach 9 MeV (pulse current intensity 170 mA) or 6 MeV (pulse current intensity 300 mA). Physical design of the accelerating tube, including the calculations of longitudinal particle dynamics, structure parameter and working character is carried out

  20. Pulse to pulse klystron diagnosis system

    International Nuclear Information System (INIS)

    Nowak, J.; Davidson, V.; Genova, L.; Johnson, R.; Reagan, D.

    1981-03-01

    This report describes a system used to study the behavior of SLAC high powered klystrons operating with a twice normal pulse width of 5 μs. At present, up to eight of the klystrons installed along the accelerator can be operated with long pulses and monitored by this system. The report will also discuss some of the recent findings and investigations

  1. Tubing misconnections: normalization of deviance.

    Science.gov (United States)

    Simmons, Debora; Symes, Lene; Guenter, Peggi; Graves, Krisanne

    2011-06-01

    Accidental connection of an enteral system to an intravenous (IV) system frequently results in the death of the patient. Misconnections are commonly attributed to the presence of universal connectors found in the majority of patient care tubing systems. Universal connectors allow for tubing misconnections between physiologically incompatible systems. The purpose of this review of case studies of tubing misconnections and of current expert recommendations for safe tubing connections was to answer the following questions: In tubing connections that have the potential for misconnections between enteral and IV tubing, what are the threats to safety? What are patient outcomes following misconnections between enteral and IV tubing? What are the current recommendations for preventing misconnections between enteral and IV tubing? Following an extensive literature search and guided by 2 models of threats and errors, the authors analyzed case studies and expert opinions to identify technical, organizational, and human errors; patient-related threats; patient outcomes; and recommendations. A total of 116 case studies were found in 34 publications. Each involved misconnections of tubes carrying feedings, intended for enteral routes, to IV lines. Overwhelmingly, the recommendations were for redesign to eliminate universal connectors and prevent misconnections. Other recommendations were made, but the analysis indicates they would not prevent all misconnections. This review of the published case studies and current expert recommendations supports a redesign of connectors to ensure incompatibility between enteral and IV systems. Despite the cumulative evidence, little progress has been made to safeguard patients from tubing misconnections.

  2. Modeling fluid forces and response of a tube bundle in cross-flow induced vibrations

    International Nuclear Information System (INIS)

    Khushnood, Shahab; Khan, Zaffar M.; Malik, M. Afzaal; Koreshi, Zafarullah; Khan, Mahmood Anwar

    2003-01-01

    Flow induced vibrations occur in process heat exchangers, condensers, boilers and nuclear steam generators. Under certain flow conditions and fluid velocities, the fluid forces result in tube vibrations and possible damage of tube, tube sheet or baffle due to fretting and fatigue. Prediction of these forces is an important consideration. The characteristics of vibration depend greatly on the fluid dynamic forces and structure of the tube bundle. It is undesirable for the tube bundles to vibrate excessively under normal operating conditions because tubes wear and eventual leakage can occur leading to costly shutdowns. In this paper modeling of fluid forces and vibration response of a tube in a heat exchanger bundle has been carried out. Experimental validation has been performed on an existing refinery heat exchanger tube bundle. The target tube has been instrumented with an accelerometer and strain gages. The bundle has been studied for pulse, sinusoidal and random excitations. Natural frequencies and damping of the tubes have also been computed. Experimental fluid forces and response shows a reasonable agreement with the predictions. (author)

  3. Copper bromide vapour laser with an output pulse duration of up to 320 ns

    International Nuclear Information System (INIS)

    Gubarev, F A; Fedorov, K V; Evtushenko, G S; Fedorov, V F; Shiyanov, D V

    2016-01-01

    We report the development of a copper bromide vapour laser with an output pulse duration of up to 320 ns. To lengthen the pulse, the discharge current was limited using a compound switch comprising a pulsed hydrogen thyratron and a tacitron. This technique permits limiting the excitation of the working levels at the initial stage of the discharge development to lengthen the inversion lifetime. The longest duration of a laser pulse was reached in tubes 25 and 50 mm in diameter for a pulse repetition rate of 2 – 4 kHz. (lasers and laser beams)

  4. Study of general digital DC/pulse neutron generator

    International Nuclear Information System (INIS)

    Li Gang; Liu Zheng; Li Wensheng; Liu Hanlin; Liu Linmao

    2014-01-01

    Preliminary experimental results of digital DC/pulse neutron generator based on a ceramic drive-in target neutron tube for explosives detection are presented. The generator is a portable and on-off neutron source, and it can be controlled by remote PC. The generator can produce DC neutrons, pulse neutrons and multiple pulse neutrons. The maximum neutron yield is about 2 × 10"8 n/s, the minimum pulse width is 10 μs and the maximum pulse frequency is 10 kHz. Neutron yield and time-spectrum is measured in China Academy of Engineering Physics. The generator is suitable for explosive detection with PFTNA technology, and it can be used in other areas such as reactor measurements and on-line industrial test systems. (authors)

  5. Steam generator tube integrity program

    International Nuclear Information System (INIS)

    Dierks, D.R.; Shack, W.J.; Muscara, J.

    1996-01-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given

  6. Characterization of a pulsed x-ray source for fluorescent lifetime measurements

    International Nuclear Information System (INIS)

    Blankespoor, S.C.; Derenzo, S.E.; Moses, W.W.; Rossington, C.S.; Ito, M.; Oba, K.

    1994-01-01

    To search for new, fast, inorganic scintillators, the authors have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 μA maximum average cathode current. The laser produces 3 x 10 7 photons at 650 nm per ∼100 ps pulse, with up to 10 7 pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray energy at tube biases of 20, 25, and 30 kV is 9.4, 10.3, and 11.1 keV, respectively. The authors measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian, at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 x 10 6 and 3 x 10 6 photons/sec/steradian at biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented

  7. Free compression tube. Applications

    Science.gov (United States)

    Rusu, Ioan

    2012-11-01

    During the flight of vehicles, their propulsion energy must overcome gravity, to ensure the displacement of air masses on vehicle trajectory, to cover both energy losses from the friction between a solid surface and the air and also the kinetic energy of reflected air masses due to the impact with the flying vehicle. The flight optimization by increasing speed and reducing fuel consumption has directed research in the aerodynamics field. The flying vehicles shapes obtained through studies in the wind tunnel provide the optimization of the impact with the air masses and the airflow along the vehicle. By energy balance studies for vehicles in flight, the author Ioan Rusu directed his research in reducing the energy lost at vehicle impact with air masses. In this respect as compared to classical solutions for building flight vehicles aerodynamic surfaces which reduce the impact and friction with air masses, Ioan Rusu has invented a device which he named free compression tube for rockets, registered with the State Office for Inventions and Trademarks of Romania, OSIM, deposit f 2011 0352. Mounted in front of flight vehicles it eliminates significantly the impact and friction of air masses with the vehicle solid. The air masses come into contact with the air inside the free compression tube and the air-solid friction is eliminated and replaced by air to air friction.

  8. Tube leak detector

    International Nuclear Information System (INIS)

    Morita, Bunji; Takamura, Koichi; Matsuda, Shigehiro; Kiyosawa, Shun-ichi; Asami, Toru; Yamada, Hiroshi; Naruse, Shin-ichi.

    1995-01-01

    The device of the present invention detects occurrence of leakage in a steam generator, a steam heating tube, or a heat exchanger of a nuclear power plant. Namely, an vibration sensor is disposed at the rear end of a rod-like supersonic resonance member. A node portion for the vibrations of the resonance member is held by a holding member and attached to a wall surface of a can such as a boiler. With such a constitution, the resonance member is resonated by supersonic waves generated upon leakage of the tube. The vibrations are measured by the vibration sensor at the rear end. Presence of leakage is detected by utilizing one or more of resonance frequencies. Since the device adopts a resonance phenomenon, a conduction efficiency of the vibrations is high, thereby enabling to detect leakage at high sensitivity. In addition, the supersonic wave resonance member has its top end directly protruded into a pressure vessel such as a boiler by using a metal or a ceramic which is excellent in heat and pressure resistance. Accordingly, the sound of leak can be detected efficiently. (I.S.)

  9. Shock tube Multiphase Experiments

    Science.gov (United States)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  10. Pressure tube reactors

    International Nuclear Information System (INIS)

    Natori, Hisahide.

    1981-01-01

    Purpose: To improve the electrical power generation efficiency in a pressure tube reactor in which coolants and moderators are separated by feedwater heating with heat generated in heavy water and by decreasing the amount of steams to be extracted from the turbine. Constitution: A heat exchanger and a heavy water cooler are additionally provided to a conventional pressure tube reactor. The heat exchanger is disposed at the pre-stage of a low pressure feedwater heater series. High temperature heavy water heated in the core is passed through the primary side of the exchanger, while feedwater is passed through the secondary side. The cooler is disposed on the downstream of the heat exchanger in the flowing direction of the heavy water, in which heavy water from the heat exchanger is passed through the primary side and the auxiliary equipment cooling water is sent to the secondary side thereof. Accordingly, since extraction of heating steams is no more necessary, the steam can be used for the rotation of the turbine, and the electrical power generation efficiency can be improved. (Seki, T.)

  11. Application of the pulsed magnetic welding process to nuclear breeder reactor fuel pin end closures

    International Nuclear Information System (INIS)

    Brown, W.F.

    1984-01-01

    The pulsed magnetic welding process is a solid state welding process in which metallurgical bonding is effected by impacting metal or alloy parts against each other at high velocity by use of controlled high frequency, high intensity pulsed magnetic fields. This process is similar to the explosive welding process except that magnetic energy is used for impacting the parts together instead of using explosive energy. The pulsed magnetic welding (PMW) process is readily applied to the welding of cylindrical plugs to small diameter tubes. Although breeder reactor fuel pin design may vary in size, the application described here consisted of cladding tubes approximately 6.4 mm in diameter by 244 cm long with a wall thickness of 0.38 mm. After the cladding tubes are filled with fuel pellets and associated metal hardware, tapered end plugs are inserted into the end of the tubes and welded. A typical setup for PMW is described

  12. Binary rf pulse compression experiment at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here

  13. Quasi-static drift-tube accelerating structures for low-speed heavy ions

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1977-01-01

    The major attractions of the pulsed drift-tubes are that they are non-resonant structures and that they appear suitable for accelerating a very high current bunch at low energies. The mechanical tolerances of the non-resonant structure are very loose and the cost per meter should be low; the cost of the transport system is expected to be the major cost. The pulse power modulators used to drive the drift-tubes are inexpensive compared to r.f. sources with equivalent peak-power. The longitudinal emittance of the beam emerging from the structure could be extremely low

  14. Measurements of electrically exploded tubes

    International Nuclear Information System (INIS)

    Shearer, J.W.; Hartman, C.W.; Munger, R.H.; Gullickson, R.L.; Trimble, D.O.; Cheng, D.Y.

    1975-01-01

    The dynamics of electrically exploded tubes were investigated, principally by means of current measurements and flash x-ray pictures. The pinch effect was observed on the tube motion. Pileup of the imploding tube metal was seen on axis. An approximate analytical model can be roughly fitted to the data, but a more complete fit can be obtained with detailed numerical codes. Application of the results to the planning of future gas-embedded Z-pinch experiments is discussed. (U.S.)

  15. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power...... picosecond pulses. A novel fiber with 7 tubes and a core of 30 mu m was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 mu m and a 18 mu m core diameter photonic band gap hollow......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  16. Failure analysis of boiler tube

    International Nuclear Information System (INIS)

    Mehmood, K.; Siddiqui, A.R.

    2007-01-01

    Boiler tubes are energy conversion components where heat energy is used to convert water into high pressure superheated steam, which is then delivered to a turbine for electric power generation in thermal power plants or to run plant and machineries in a process or manufacturing industry. It was reported that one of the tubes of a fire-tube boiler used in a local industry had leakage after the formation of pits at the external surface of the tube. The inner side of the fire tube was working with hot flue gasses with a pressure of 10 Kg/cm/sup 2/ and temperature 225 degree C. The outside of the tube was surrounded by feed water. The purpose of this study was to determine the cause of pits developed at the external surface of the failed boiler tube sample. In the present work boiler tube samples of steel grade ASTM AI61/ASTM A192 were analyzed using metallographic analysis, chemical analysis, and mechanical testing. It was concluded that the appearance of defects on the boiler tube sample indicates cavitation type corrosion failure. Cavitation damage superficially resembled pitting, but surface appeared considerably rougher and had many closely spaced pits. (author)

  17. Radiation-resistant camera tube

    International Nuclear Information System (INIS)

    Kuwahata, Takao; Manabe, Sohei; Makishima, Yasuhiro

    1982-01-01

    It was a long time ago that Toshiba launched on manufacturing black-and-white radiation-resistant camera tubes employing nonbrowning face-plate glass for ITV cameras used in nuclear power plants. Now in compliance with the increasing demand in nuclear power field, the Company is at grips with the development of radiation-resistant single color-camera tubes incorporating a color-stripe filter for color ITV cameras used under radiation environment. Herein represented are the results of experiments on characteristics of materials for single color-camera tubes and prospects for commercialization of the tubes. (author)

  18. YouTube and 'psychiatry'.

    Science.gov (United States)

    Gordon, Robert; Miller, John; Collins, Noel

    2015-12-01

    YouTube is a video-sharing website that is increasingly used to share and disseminate health-related information, particularly among younger people. There are reports that social media sites, such as YouTube, are being used to communicate an anti-psychiatry message but this has never been confirmed in any published analysis of YouTube clip content. This descriptive study revealed that the representation of 'psychiatry' during summer 2012 was predominantly negative. A subsequent smaller re-analysis suggests that the negative portrayal of 'psychiatry' on YouTube is a stable phenomenon. The significance of this and how it could be addressed are discussed.

  19. Bacterial Biofilms in Jones Tubes.

    Science.gov (United States)

    Ahn, Eric S; Hauck, Matthew J; Kirk Harris, Jonathan; Robertson, Charles E; Dailey, Roger A

    To investigate the presence and microbiology of bacterial biofilms on Jones tubes (JTs) by direct visualization with scanning electron microscopy and polymerase chain reaction (PCR) of representative JTs, and to correlate these findings with inflammation and/or infection related to the JT. In this study, prospective case series were performed. JTs were recovered from consecutive patients presenting to clinic for routine cleaning or recurrent irritation/infection. Four tubes were processed for scanning electron microscopy alone to visualize evidence of biofilms. Two tubes underwent PCR alone for bacterial quantification. One tube was divided in half and sent for scanning electron microscopy and PCR. Symptoms related to the JTs were recorded at the time of recovery. Seven tubes were obtained. Five underwent SEM, and 3 out of 5 showed evidence of biofilms (60%). Two of the 3 biofilms demonstrated cocci and the third revealed rods. Three tubes underwent PCR. The predominant bacteria identified were Pseudomonadales (39%), Pseudomonas (16%), and Staphylococcus (14%). Three of the 7 patients (43%) reported irritation and discharge at presentation. Two symptomatic patients, whose tubes were imaged only, revealed biofilms. The third symptomatic patient's tube underwent PCR only, showing predominantly Staphylococcus (56%) and Haemophilus (36%) species. Two of the 4 asymptomatic patients also showed biofilms. All symptomatic patients improved rapidly after tube exchange and steroid antibiotic drops. Bacterial biofilms were variably present on JTs, and did not always correlate with patients' symptoms. Nevertheless, routine JT cleaning is recommended to treat and possibly prevent inflammation caused by biofilms.

  20. Grooved tube plug rolls in

    International Nuclear Information System (INIS)

    Krausser, P.

    1991-01-01

    The removable plugs used to date by the Power Generation Group (KWU) of Siemens to seal defective steam generator tubes have a good track record. Their sealing principle is based on the elastic tensioning of three seal disks against the inside wall of the tube. Now a further removable plug is available -a roll-in plug with a metal-coated surface. It is particularly suitable for use in the roller-expanded zone of the tubes at the tube sheet. The plugs can be used in both Siemens-KWU steam generators and in steam generators manufactured in compliance with the guidelines of the ASME Code. (author)

  1. Learning from YouTube [Video Book

    Science.gov (United States)

    Juhasz, Alexandra

    2011-01-01

    YouTube is a mess. YouTube is for amateurs. YouTube dissolves the real. YouTube is host to inconceivable combos. YouTube is best for corporate-made community. YouTube is badly baked. These are a few of the things Media Studies professor Alexandra Juhasz (and her class) learned about YouTube when she set out to investigate what actually happens…

  2. Tube to tube excursive instability - sensitivities and transients

    International Nuclear Information System (INIS)

    Brown, M.; Layland, M.W.

    1980-01-01

    A simple basic analysis of excursive instability in a boiler tube shows how it depends upon operating conditions and physical properties. A detailed mathematical model of an AGR boiler is used to conduct a steady state parameter sensitivity survey. It is possible from this basis to anticipate the effects of changes in operating conditions and changes in design parameters upon tube to tube stability. Dynamic responses of tubes operating near the stability threshold are examined using a mathematical model. Simulated excursions are triggered by imparting small abrupt pressure changes on the boiler inlet pressure. The influences of the magnitude of the pressure change, waterside friction factor and gas side coupling between tubes are examined. (author)

  3. Dynamic range studies of the RCA streak tube in the LLL streak camera

    International Nuclear Information System (INIS)

    Thomas, S.W.; Phillips, G.E.

    1979-01-01

    As indicated by tests on several cameras, the dynamic range of the Lawrence Livermore Laboratory streak-camera system appears to be about two orders of magnitude greater than those reported for other systems for 10- to 200-ps pulses. The lack of a fine mesh grid in the RCA streak tube used in these cameras probably contributes to a lower system dynamic noise and therefore raises the dynamic range. A developmental tube with a mesh grid was tested and supports this conjecture. Order-of-magnitude variations in input slit width do not affect the spot size on the phosphor or the dynamic range of the RCA tube. (author)

  4. Effects of previous ionization and excitation on the ionization wave propagation along the dielectric tube

    International Nuclear Information System (INIS)

    Xia, Yang; Liu, Dongping; Bi, Zhenhua; Wang, Xueyang; Niu, Jinhai; Ji, Longfei; Song, Ying; Qi, Zhihua; Wang, Wenchun

    2016-01-01

    In this paper, by using a high precision synchronization system, the ignition time, velocity, and propagation properties of the ionization waves (IWs) have been investigated in detail from the 1st high voltage (HV) pulse to the sequential ones over a large range of the pulse-off time. In order to clarify the effects of previous ionization and excitation on the IW propagation, the density of the residual charges are controlled by varying the pulse-off time from 199 μs to 15 μs. The results show that the formation and propagation of IWs can be strongly affected by previous discharge. For a longer pulse-off time (100 μs–190 μs), the propagation velocity of plasma bullets are decreased from the 1st to the 10th HV pulse, then increased after the 10th pulse, and finally become stable after about 500 pulses. When the pulse-off time is reduced to 15 μs, the propagation velocity of plasma bullets will rapidly increase and become stable after the 1st HV pulse. The ignition voltage is significantly reduced after the 1st HV pulse with the decrease in pulse-off time. Consequently, the generation and propagation of IWs in the tube are strongly affected by the accumulation of long-lived metastable helium (He) species and residual charges from previous discharges, which is important for understanding the plasma bullet behavior. (paper)

  5. Jose Cabrera (Zorita) tube examination

    International Nuclear Information System (INIS)

    Kuchirka, P.J.

    1986-01-01

    Jose Cabrera (Zorita) tube examination procedures are discussed. This plant continues to use phosphate water chemistry (sodium/phosphate ratio = 2.1). Three hot leg tube segments were pulled from the Jose Cabera (Zorita) plant in 1985. One tube had a field EC indication on the OD at the first tube support plate and the other two had field EC indications on their ID about 3 inches above the bottom of the tube sheet. All three tubes were initially sent to Battelle for preliminary NDE and decontamination. Segments of two tubes were sent to Westinghouse for destructive examination. The results of the laboratory eddy current and radiographic examinations are given. The results of the visual examinations are also given. The tube with OD indications was destructively examined and shallow intergranular pitting and intergranular attack, up to 2 mils deep, were found on the OD in the tube sheet region. Local areas of IGA, up to 5 mils deep, were found on the OD within the tube support plate region. A summary of this information together with supporting micrographs is given. It was hypothesized that a caustic crevice environment was the cause of this mild degradation. Shallow areas of thinning or wastage, up to 3 mils, were found just above the top of the tube sheet in the sludge pile region. Even more shallow wastage was found at the edges of support plate locations. This wastage is believed to be the remnant of early plant chemistry when a higher sodium/phosphate ratio and higher phosphate concentration were allowed

  6. Tube for irradiation equipment

    International Nuclear Information System (INIS)

    Goehrich, K.; Vogt, H.

    1979-01-01

    This patent describes a tube for irradiation equipment for limiting an emergent beam, with a baseplate, possessing a central aperture, intended for attaching to the equipment, as well as four carrier plates, each of which possesses a limiting edge and a sliding edge located at right angles thereto. The carrier plates are located parallel to the baseplate, the limiting edge of each carrier plate resting against the sliding edge of the adjacent carrier plate and each of the two mutually opposite pairs of carrier plates being displaceable, parallel to the direction of its sliding edges and symmetrically to the center of the transmission aperture, for the purpose of continuously varying the transmission aperture defined by the limiting edges, during which displacement each of the displaced carrier plates carries with it the carrier plate, resting against the limiting edge of the former plate, parallel to the direction of the limiting edge of the latter plate. 8 claims

  7. Primary Fallopian Tube Carcinoma

    Directory of Open Access Journals (Sweden)

    Prasad K Shetty

    2011-01-01

    Full Text Available Primary Fallopian Tube Carcinoma (PFTC is rare and accounts for about 0.3% of all gynecologic cancers. Less than 1500 cases have been reported in the literature. It arises in postmenopausal women and typically presents with abdominal pelvic pain, vaginal bleeding and watery discharge. However, a correct diagnosis is rarely achieved preoperative, and in many cases, the diagnosis is made after incidental surgery for unrelated conditions commonly being ovarian carcinoma . Compared with ovarian carcinoma, PFTC more often presents at early stages, but it has a worse prognosis. PFTC is usually managed in the same manner as ovarian cancer. We report a case of Left PFTC that presented as Left ovarian mass, and we briefly review the literature.

  8. Pressure tube reactor

    International Nuclear Information System (INIS)

    Matsumoto, Tomoyuki; Fujino, Michihira.

    1980-01-01

    Purpose: To equalize heavy water flow distribution by providing a nozzle for externally injecting heavy water from a vibration preventive plate to the upper portion to feed the heavy water in a pressure tube reactor and swallowing up heavy water in a calandria tank to supply the heavy water to the reactor core above the vibration preventive plate. Constitution: A moderator injection nozzle is mounted on the inner wall of a calandria tank. Heavy water is externally injected above the vibration preventive plate, and heavy water in the calandria tank is swallowed up to supply the heavy water to the core reactor above the vibration preventive plate. Therefore, the heavy water flow distribution can be equalized over the entire reactor core, and the distribution of neutron absorber dissolved in the heavy water is equalized. (Yoshihara, H.)

  9. A New Resonance Tube

    Science.gov (United States)

    Bates, Alan

    2017-12-01

    The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at the point where sound is perceived to have maximum loudness, or at the point where the amplitude of the standing wave has maximum value, namely an antinode. An antinode coincides with the position of the tuning fork, beyond the end of the air column, which consequently introduces an end correction. One way to minimize this end correction is to measure the distance between consecutive antinodes.

  10. Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field

    Directory of Open Access Journals (Sweden)

    N. V. Erkaev

    2002-01-01

    Full Text Available Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.

  11. Improper tube fixation causing a leaky cuff

    Directory of Open Access Journals (Sweden)

    Gupta Babita

    2010-01-01

    Full Text Available Leaking endotracheal tube cuffs are common problems in intensive care units. We report a case wherein the inflation tube was damaged by the adhesive plaster used for tube fixation and resulted in leaking endotracheal tube cuff. We also give some suggestions regarding the tube fixation and some remedial measures for damaged inflation system.

  12. Characterization of tube support alloys

    International Nuclear Information System (INIS)

    Vaia, A.R.

    1985-01-01

    The involvement and relationship of carbon steel corrosion products in the tube denting phenomenon promoted an intensive research effort to: 1) understand, reproduce, and arrest the denting process, and 2) evaluate alternative tube support materials to provide additional corrosion resistance. The paper summarizes a corrosion testing program for the verification of type 405 stainless steel under acid or all volatile treatment conditions

  13. Radioisotope study of Eustachian tube

    International Nuclear Information System (INIS)

    De Rossi, G.; Campioni, P.; Vaccaro, A.

    1988-01-01

    Radioisotope studies of Eustachian tube are suggested in the preoperative phase of tympanoplasty, in order to assess tubal drainage and secretion. The use of gamma camera fitted to a computer allowed the AA, to calculate some semi-quantitative parameters for an exact assessment of the radioactivity transit from the tympanic cass up to the pharyngeal cavity, throughout the Eustachian tube. (orig.) [de

  14. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia Animations Blindness Cataract Convergence ... is maintained by the NEI Office of Science Communications, Public Liaison, and Education. Technical questions about this ...

  15. Tubing Cutter is Activated Hydraulically

    Science.gov (United States)

    Mcsmith, D. G.; Richardson, J. I.

    1983-01-01

    Hydraulically-actuated tubing cutter severs tubing when operator squeezes handle grip. "Gooseneck" extension enables cutter to be used in areas where accessiblity is limited. Cutter has potential as flight-line tool and is useful in automobile and fire rescue work.

  16. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, A.; Verleur, R.

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  17. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... Amaurosis Low Vision Refractive Errors Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: Amblyopia NEI Home Contact Us A-Z Site Map NEI on Social Media Information in Spanish (Información en español) Website, ...

  18. Flowmeter with silicon flow tube

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Marcel; Haneveld, J.; Lötters, Joost Conrad

    2009-01-01

    A flowmeter comprising a system chip with a silicon substrate provided on a carrier, in an opening whereof at least one silicon flow tube is provided for transporting a medium whose flow rate is to be measured, said tube having two ends that issue via a wall of the opening into channels coated with

  19. Improved guide tube bulge tool

    International Nuclear Information System (INIS)

    Vaill, R.E.; Phillips, W.D.

    1979-01-01

    A guide tube bulge tool for securing control rod guide tubes to a fuel assembly grid, includes a cylinder having several flexible tines each of which is equipped with a semispherical radially outwardly extending projection. A tapered ram fits into the cylinder so as to force the tines outwardly when the ram is pulled into the cylinder while supporting the other tines. (UK)

  20. HF electronic tubes. Technologies, grid tubes and klystrons

    International Nuclear Information System (INIS)

    Lemoine, Th.

    2009-01-01

    This article gives an overview of the basic technologies of electronic tubes: cathodes, electronic optics, vacuum and high voltage. Then the grid tubes, klystrons and inductive output tubes (IOT) are introduced. Content: 1 - context and classification; 2 - electronic tube technologies: cathodes, electronic optics, magnetic confinement (linear tubes), periodic permanent magnet (PPM) focussing, collectors, depressed collectors; 3 - vacuum technologies: vacuum quality, surface effects and interaction with electrostatic and RF fields, secondary emission, multipactor effect, thermo-electronic emission; 4 - grid tubes: operation of a triode, tetrodes, dynamic operation and classes of use, 'common grid' and 'common cathode' operation, ranges of utilisation and limitations, operation of a tetrode on unadjusted load, lifetime of a tetrode, uses of grid tubes; 5 - klystrons: operation, impact of space charge, multi-cavity klystrons, interaction efficiency, extended interaction klystrons, relation between interaction efficiency, perveance and efficiency, ranges of utilization and power limitations, multi-beam klystrons and sheet beam klystrons, operation on unadjusted load, klystron band pass and lifetime, uses; 6 - IOT: principle of operation, ranges of utilisation and limitations, interaction efficiency and depressed collector IOT, IOT lifetime and uses. (J.S.)

  1. Pulsed eddy currents: principle and applications

    International Nuclear Information System (INIS)

    Bernard, A.; Coutanceau, N.

    1993-04-01

    Eddy currents are widely used as a non destructive testing technique specially for heat exchanger testing. The specificities of pulsed eddy current testing are analyzed in terms of probe design and signal processing. The specific applications are detailed. They are divided in two parts. First part, deals with the two main applications of the high peak energy supplied to the probe. One concerns the design of focused probes used for the detection of small defects in irradiated fuel rods. The other concerns the saturation of ferromagnetic materials in order to test the full thickness of the exchanger tubes. Second part, deals with applications of the wide and low frequency spectrum generated by the pulse source. It enables the testing of thick materials, and the detection of sub-surface defects. It has been tested on austenitic steel (nuclear pressure vessel nozzle), multilayered structures of aluminium alloys (aeronautics) and sleeved structures (nuclear pressure vessel head penetrations through thermal sleeves)

  2. Numerical investigation of transient behaviour of the recuperative heat exchanger in a MR J-T cryocooler using different heat transfer correlations

    Science.gov (United States)

    Damle, R. M.; Ardhapurkar, P. M.; Atrey, M. D.

    2016-12-01

    In J-T cryocoolers operating with mixed refrigerants (nitrogen-hydrocarbons), the recuperative heat exchange takes place under two-phase conditions. Simultaneous boiling of the low pressure stream and condensation of the high pressure stream results in higher heat transfer coefficients. The mixture composition, operating conditions and the heat exchanger design are crucial for obtaining the required cryogenic temperature. In this work, a one-dimensional transient algorithm is developed for the simulation of the two-phase heat transfer in the recuperative heat exchanger of a mixed refrigerant J-T cryocooler. Modified correlation is used for flow boiling of the high pressure fluid while different condensation correlations are employed with and without the correction for the low pressure fluid. Simulations are carried out for different mixture compositions and numerical predictions are compared with the experimental data. The overall heat transfer is predicted reasonably well and the qualitative trends of the temperature profiles are also captured by the developed numerical model.

  3. Water-storage-tube systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  4. Conditioning and breakdown phenomena in accelerator tubes

    International Nuclear Information System (INIS)

    Skorka, S.J.

    1979-01-01

    Important breakdown mechanisms in accelerator tubes are reviewed, and discharge phenomena in NEC tubes are deduced from the surface appearance of the electrodes and insulators of a used tube. Microphotos of these surfaces are shown

  5. Flux tubes at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cea, Paolo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Dipartimento di Fisica dell’Università di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cosmai, Leonardo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cuteri, Francesca; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria & INFN-Cosenza,Ponte Bucci, cubo 31C, I-87036 Rende (Cosenza) (Italy)

    2016-06-07

    The chromoelectric field generated by a static quark-antiquark pair, with its peculiar tube-like shape, can be nicely described, at zero temperature, within the dual superconductor scenario for the QCD confining vacuum. In this work we investigate, by lattice Monte Carlo simulations of the SU(3) pure gauge theory, the fate of chromoelectric flux tubes across the deconfinement transition. We find that, if the distance between the static sources is kept fixed at about 0.76 fm ≃1.6/√σ and the temperature is increased towards and above the deconfinement temperature T{sub c}, the amplitude of the field inside the flux tube gets smaller, while the shape of the flux tube does not vary appreciably across deconfinement. This scenario with flux-tube “evaporation” above T{sub c} has no correspondence in ordinary (type-II) superconductivity, where instead the transition to the phase with normal conductivity is characterized by a divergent fattening of flux tubes as the transition temperature is approached from below. We present also some evidence about the existence of flux-tube structures in the magnetic sector of the theory in the deconfined phase.

  6. Pressure tube reactor

    International Nuclear Information System (INIS)

    Kanazawa, Nobuhiro; Kaneto, Kunikazu.

    1979-01-01

    Purpose: To attain uniform fluid poison distribution in a calandria tank by downwardly projecting, at an equal distance to the reactor core, a spacer wall from the periphery of an anti-vibration plate in the vicinity of a heavy water flow passage in the periphery of the anti-vibration plate, thereby decrease the amount of heavy water flowing into the heavy water flow passage. Constitution: A projecting wall concentrical with a calandria tank is suspended vertically from the boundary side at the peripheral portion of an anti-vibration plate to a water heavy flow passage in the periphery of the anti-vibration plate. The projecting wall has such a vertical length as about equal to the width of the heavy water flow passage, prevents heavy water flowing through apertures of a control rod guide tube from entering into the heavy water passage and increases the ratio of heavy water that flows through the heavy water flow passage in the anti-vibration plate. Consequently, if the liquid poison density in heavy water is varied, the ununiform poison density in the calandria tank can be prevented. (Seki, T.)

  7. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  8. Internal heat exchange tubes for industrial furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-05-26

    This patent describes a method for cooling the work within an industrial furnace. It comprises providing a longitudinally extending outer tube which extends into the furnace having a closed axial end and an open axial end; providing a preformed inner tube open at both ends within the outer tube; injecting a coolant into the inner tube so that the coolant flows from one axial end of the tube out the opposite end adjacent the closed end of the outer tube, and from the closed end of the outer tube to the open end thereof; circulating a gas within the furnace against the outer tube to effect heat transfer therewith.

  9. Patient identification and tube labelling

    DEFF Research Database (Denmark)

    van Dongen-Lases, Edmée C; Cornes, Michael P; Grankvist, Kjell

    2016-01-01

    of phlebotomy procedures with the CLSI H3-A6 guideline was unacceptably low, and that patient identification and tube labelling are amongst the most critical steps in need of immediate attention and improvement. The process of patient identification and tube labelling is an essential safety barrier to prevent...... patient identity mix-up. Therefore, the EFLM Working Group aims to encourage and support worldwide harmonisation of patient identification and tube labelling procedures in order to reduce the risk of preanalytical errors and improve patient safety. With this Position paper we wish to raise awareness...... and provide recommendations for proper patient and sample identification procedures....

  10. PEG tubes: dealing with complications.

    Science.gov (United States)

    Malhi, Hardip; Thompson, Rosie

    A percutaneous endoscopic gastronomy tube can be used to deliver nutrition, hydration and medicines directly into the patient's stomach. Patients will require a tube if they are unable to swallow safely, putting them at risk of aspiration of food, drink and medicines into their lungs. It is vital that nurses are aware of the complications that may arise when caring for a patient with a PEG tube. It is equally important that nurses know how to deal with these complications or from where tc seek advice. This article provides a quick troubleshooting guide to help nurses deal with complications that can arise with PEG feeding.

  11. Applications of liquid scintillation tubes

    International Nuclear Information System (INIS)

    Broga, D.W.

    1977-01-01

    A new cocktail containing device for liquid scintillation counting, the scintillation tube, consists of a two-layered plastic bag which is heatsealed after the cocktail and sample have been placed in it. It is then placed in a carrying vial and counted in a conventional liquid scintillation counter. These tubes have proved to be a practical and economical alternative to vials. Some of their advantages are elimination of absorption problems, transparency, lower background and higher counting efficiency, low breakage danger and savings in waste disposal costs. Two applications for which the tubes are particularly suitable are the counting of laboratory swipes and urine analysis. (author)

  12. An efficient high-voltage power supply for a photomultiplier tube

    NARCIS (Netherlands)

    Ainutdinov, VM; Vonsovskii, NN; Kompaniets, KG; Kozyr, AI; Mikhailov, YV

    2003-01-01

    An adjustable power supply for a photomultiplier tube operating in the pulsed spectrometric mode with a wide range of linearity is described. The power consumed by the source is 50 mW. The output voltage is varied from 800 to 2000 V. The maximum ripple amplitude is 2.5 mV.

  13. Control of laser pulse waveform in longitudinally excited CO2 laser by adjustment of excitation circuit

    Science.gov (United States)

    Uno, Kazuyuki; Jitsuno, Takahisa

    2018-05-01

    In a longitudinally excited CO2 laser that had a 45 cm-long discharge tube with a 1:1:2 mixture of CO2/N2/He gas at a pressure of 3.0 kPa, we realized the generation of a short laser pulse with a spike pulse width of about 200 ns and a pulse tail length of several tens of microseconds, control of the energy ratio of the spike pulse part to the pulse tail part in the short laser pulse, the generation of a long laser pulse with a pulse width of several tens of microseconds, and control of the pulse width in the long laser pulse, by using four types of excitation circuits in which the capacitance was adjusted. In the short laser pulse, the energy ratio was in the range 1:14-1:112. In the long laser pulse, the pulse width was in the range 25.7-82.7 μs.

  14. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    International Nuclear Information System (INIS)

    VanHaaften, F.

    1992-01-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-μs pulse width driving a load of ∼100 Ω, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 Ω, up to a level of ∼650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of ∼100 Ω

  15. Condenser tube buckling within tube-tubesheet joints

    International Nuclear Information System (INIS)

    Willertz, L.E.; Kalnins, A.; Updike, D.P.

    1991-01-01

    The problem of the appearance of protrusions, or bumps, in the interior of roller-expanded tubes within a tubesheet is addressed. Such bumps have been observed in condensers of power plants. A brief history of the reported occurrences of the bumps is given. The hypothesis is advanced that the mechanics of the formation of the bumps is similar to a buckling problem that has 'bifurcation at infinity'. Following this hypothesis, a two-dimensional physical model is developed, and the application of this model to study a three-dimensional bump is proposed. It is proposed in this paper that an initial deviation from the circular shape of the tube required to produce a bump. It is shown that without such a deviation the tubes cannot buckle. An experiment with short tube segments has been performed that verifies some of the features of the observed condenser tube bumps. Exactly what force produced the initial deviation for the observed bumps is still unknown. Available evidence implicates the hydro-laser jet that is used in the cleaning of tubes and tubesheets. A scenario of how a bump could have been produced by the hydro-laser jet is proposed. (author)

  16. Vertical steam generator with slab-type tube-plate with even tube bundle washing

    International Nuclear Information System (INIS)

    Manek, O.; Masek, V.; Motejl, V.; Quitta, R.

    1980-01-01

    A shielding plate supporting the tubes attached to the tube plate of a vertical steam generator is mounted above the tube plate. Tube sleeves are designed with a dimensional tolerance relative to the heat transfer tubes and the sleeve end and the tube plate end. A separate space is thus formed above the tube plate in which circulation or feed water is introduced to flow between the branch and the heat transfer tube. This provides intensive washing of heat transfer tubes at a critical point and prevents deposit formation, thus excluding heat transfer tube failures. (J.B.)

  17. Development of a Gas-Fed Pulse Detonation Research Engine

    Science.gov (United States)

    Litchford, Ron J.; Hutt, John (Technical Monitor)

    2001-01-01

    In response to the growing need for empirical data on pulse detonation engine performance and operation, NASA Marshall Space Flight Center has developed and placed into operation a low-cost gas-fed pulse detonation research engine. The guiding design strategy was to achieve a simple and flexible research apparatus, which was inexpensive to build and operate. As such, the engine was designed to operate as a heat sink device, and testing was limited to burst-mode operation with run durations of a few seconds. Wherever possible, maximum use was made of standard off-the-shelf industrial or automotive components. The 5-cm diameter primary tube is about 90-cm long and has been outfitted with a multitude of sensor and optical ports. The primary tube is fed by a coaxial injector through an initiator tube, which is inserted directly into the injector head face. Four auxiliary coaxial injectors are also integrated into the injector head assembly. All propellant flow is controlled with industrial solenoid valves. An automotive electronic ignition system was adapted for use, and spark plugs are mounted in both tubes so that a variety of ignition schemes can be examined. A microprocessor-based fiber-optic engine control system was developed to provide precise control over valve and ignition timing. Initial shakedown testing with hydrogen/oxygen mixtures verified the need for Schelkin spirals in both the initiator and primary tubes to ensure rapid development of the detonation wave. Measured pressure wave time-of-flight indicated detonation velocities of 2.4 km/sec and 2.2 km/sec in the initiator and primary tubes, respectively. These values implied a fuel-lean mixture corresponding to an H2 volume fraction near 0.5. The axial distribution for the detonation velocity was found to be essentially constant along the primary tube. Time-resolved thrust profiles were also acquired for both underfilled and overfilled tube conditions. These profiles are consistent with previous time

  18. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... Eye Disease Dilated Eye Exam Dry Eye For Kids Glaucoma Healthy Vision Tips Leber Congenital Amaurosis Low Vision Refractive Errors Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded ...

  19. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... and Aging Program African American Program Training and Jobs Fellowships NEI Summer Intern Program Diversity In Vision ... DIVRO) Student Training Programs To search for current job openings visit HHS USAJobs Home >> NEI YouTube Videos >> ...

  20. Technique for joining metal tubing

    Science.gov (United States)

    Wright, H. W.

    1976-01-01

    Uniform wall thickness and uninterrupted heat transfer is achieved by using shaped metal insert as wall material for joint. Insert acts as support during brazing, after which excess material is ground away to bring joint to original tubing size.

  1. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... questions Clinical Studies Publications Catalog Photos and Images Spanish Language Information Grants and Funding Extramural Research Division ... Low Vision Refractive Errors Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video ...

  2. Cuffed endotracheal tubes in paediatrics

    African Journals Online (AJOL)

    cuffed endotracheal tubes (CETTs) in children who are younger than eight years old. Most paediatric ... the smallest functional part of the infant airway, because the ... During the 2003 severe acute respiratory syndrome (SARS) outbreak in ...

  3. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... Disease Education Program Glaucoma Education Program Low Vision Education Program Hispanic/Latino ... To search for current job openings visit HHS USAJobs Home » NEI YouTube ...

  4. Plasma immersion ion implantation (and deposition) inside metallic tubes of different dimensions and configurations

    Science.gov (United States)

    Ueda, M.; Silva, C.; Santos, N. M.; Souza, G. B.

    2017-10-01

    There is a strong need for developing methods to coat or implant ions inside metallic tubes for many practical contemporary applications, both for industry and science. Therefore, stainless steel tubes with practical diameters of 4, 11 and 16 cm, but short lengths of 20 cm, were internally treated by nitrogen plasma immersion ion implantation (PIII). Different configurations as tube with lid in one of the ends or both sides open were tested for better PIII performance, in the case of smallest diameter tube. Among these PIII tests in tubes, using the 4 cm diameter one with a lid, it was possible to achieve tube temperatures of more than 700 °C in 15 min and maintain it during the whole treatment time (typically 2 h). Samples made of different materials were placed at the interior of the tube, as the monitors for posterior analysis, and the tube was solely pulsed by high voltage pulser producing high voltage glow discharge and hollow cathode discharge both driven by a moderate power source. In this experiment, samples of SS 304, pure Ti, Ti6Al4V and Si were used for the tests of the above methods. Results on the analysis of the surface of these nitrogen PIII treated materials, as well as on their processing methods, are presented and discussed in the paper.

  5. Gas phase pulse radiolysis

    International Nuclear Information System (INIS)

    Jonah, C.D.; Andong Liu; Mulac, W.A.

    1987-01-01

    Gas phase pulse radiolysis, a technique which can be used to study many different phenomena in chemistry and physics, is discussed. As a source of small radicals, pulse radiolysis is important to the field of chemistry, particularly to combustion and atmospheric kinetics. The reactions of 1,3-butadiene, allene, ethylene and acetylene with OH are presented. 52 refs., 1 fig., 1 tab

  6. Pulse duration discriminator

    International Nuclear Information System (INIS)

    Kosakovskij, L.F.

    1980-01-01

    Basic circuits of a discriminator for discrimination of pulses with the duration greater than the preset one, and of a multifunctional discriminator allowing to discriminate pulses with the duration greater (tsub(p)>tsub(s)) and lesser (tsub(p) tsub(s) and with the duration tsub(p) [ru

  7. Sources of pulsed radiation

    International Nuclear Information System (INIS)

    Sauer, M.C. Jr.

    1981-01-01

    Characteristics of various sources of pulsed radiation are examined from the viewpoint of their importance to the radiation chemist, and some examples of uses of such sources are mentioned. A summary is given of the application of methods of physical dosimetry to pulsed sources, and the calibration of convenient chemical dosimeters by physical dosimetry is outlined. 7 figures, 1 table

  8. Eddy current tube testing unit

    International Nuclear Information System (INIS)

    Dufayet, J.P.; Duret, G.

    1975-01-01

    The unit described can check a wide variety of tubes in quick succession and its modular design gives it a high degree of versability. Suitably defined working conditions and specific fittings enable most of the faults encountered in the manufacture of a tube to be detected. By appropriate means of selection based on signal amplitude, phase and frequency analyses it is possible to adapt selection criteria to the seriousness of the different categories of defect [fr

  9. The YouTube reader

    OpenAIRE

    2009-01-01

    YouTube has come to epitomize the possibilities of digital culture. With more than seventy million unique users a month and approximately eighty million videos online, this brand-name video distribution platform holds the richest repository of popular culture on the Internet. As the fastest growing site in the history of the Web, YouTube promises endless new opportunities for amateur video, political campaigning, entertainment formats, and viral marketing—a clip culture that has seemed to out...

  10. Gasification in a revolving tube

    International Nuclear Information System (INIS)

    Speicher, R.F.

    1981-01-01

    The concept of a method for allothermal coal gasification is to refine raw lignite from the Rhine area to high-quality synthesis gas or reduction gas without extracting the water utilizing nuclear process heat in a heated revolving bundle of tubes. Computational models are described for the macroscopic course of events in parallel flow gasification. In the design of the test plant, the principle of drag-in and transport of the tube drier was applied. (DG) [de

  11. Electronics for proportional drift tubes

    International Nuclear Information System (INIS)

    Fremont, G.; Friend, B.; Mess, K.H.; Schmidt-Parzefall, W.; Tarle, J.C.; Verweij, H.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration); Geske, K.; Riege, H.; Schuett, J.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration); Semenov, Y.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration)

    1980-01-01

    An electronic system for the read-out of a large number of proportional drift tubes (16,000) has been designed. This system measures deposited charge and drift-time of the charge of a particle traversing a proportional drift tube. A second event can be accepted during the read-out of the system. Up to 40 typical events can be collected and buffered before a data transfer to a computer is necessary. (orig.)

  12. Tritium application: self-luminous glass tube(SLGT)

    International Nuclear Information System (INIS)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S.; Nam, G.J.

    2005-01-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4∝5 [μm], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  13. Tritium application: self-luminous glass tube(SLGT)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S. [Nuclear Power Lab., Korea Electric Power Research Inst. (KEPRI), Daejeon (Korea); Nam, G.J. [Engineering Information Technology Center, Inst. for Advanced Engineering (IAE), Kyonggi-do (Korea)

    2005-07-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4{proportional_to}5 [{mu}m], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  14. Ignitron long pulse testing

    International Nuclear Information System (INIS)

    Bronner, G.; Murray, J.G.; Duritt, S.P.

    1975-01-01

    Tests were performed on three types of ignitrons at current levels of from 2500 to 5000 Amperes and conduction periods of up to 5 seconds. Both mechanical deterioration and changes in certain electrical static characteristics were observed and used as criteria for test terminations. Significant results were the selection of a moderately priced tube type for the PLT ohmic heating system and the choice of a conductor connection arrangement which extends tube life. (auth)

  15. Bipolar pulse generator for intense pulsed ion beam accelerator

    International Nuclear Information System (INIS)

    Ito, H.; Igawa, K.; Kitamura, I.; Masugata, K.

    2007-01-01

    A new type of pulsed ion beam accelerator named ''bipolar pulse accelerator'' (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time

  16. Tube-in-shell heat exchangers

    International Nuclear Information System (INIS)

    Richardson, J.

    1976-01-01

    Tube-in-shell heat exchangers normally comprise a bundle of parallel tubes within a shell container, with a fluid arranged to flow through the tubes in heat exchange with a second fluid flowing through the shell. The tubes are usually end supported by the tube plates that separate the two fluids, and in use the tube attachments to the tube plates and the tube plates can be subject to severe stress by thermal shock and frequent inspection and servicing are required. Where the heat exchangers are immersed in a coolant such as liquid Na such inspection is difficult. In the arrangement described a longitudinally extending central tube is provided incorporating axially spaced cylindrical tube plates to which the opposite ends of the tubes are attached. Within this tube there is a tubular baffle that slidably seals against the wall of the tube between the cylindrical tube plates to define two co-axial flow ducts. These ducts are interconnected at the closed end of the tube by the heat exchange tubes and the baffle comprises inner and outer spaced walls with the interspace containing Ar. The baffle is easily removable and can be withdrawn to enable insertion of equipment for inspecting the wall of the tube and tube attachments and to facilitate plugging of defective tubes. Cylindrical tube plates are believed to be superior for carrying pressure loads and resisting the effects of thermal shock. Some protection against thermal shock can be effected by arranging that the secondary heat exchange fluid is on the tube side, and by providing a thermal baffle to prevent direct impingement of hot primary fluid on to the cylindrical tube plates. The inner wall of the tubular baffle may have flexible expansible region. Some nuclear reactor constructions incorporating such an arrangement are described, including liquid metal reactors. (U.K.)

  17. Pulse induction heating

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, A S; Kachanov, B Y; Kogan, B V

    1993-12-31

    Induction heating and three types of pulse processes were studied. It was found that in pulse processes the frequency and pulse duration of heat treatments do not remain constant. High frequency pulse heat treatments can be used on sprayed coatings; such treatments will result in stronger surfaces with no cracks. For induction hardening, the rate of specific power was 1 to 1.5 kW/sq.cm, for forging it was 0.2 to 0.3 kW/sq.cm and for melting it was 0.05 to 0.1 kW/sq.cm. The application of pulse heating will result in higher rates of specific power.

  18. Dermatology on YouTube.

    Science.gov (United States)

    Boyers, Lindsay N; Quest, Tyler; Karimkhani, Chante; Connett, Jessica; Dellavalle, Robert P

    2014-06-15

    YouTube, reaches upwards of six billion users on a monthly basis and is a unique source of information distribution and communication. Although the influence of YouTube on personal health decision-making is well established, this study assessed the type of content and viewership on a broad scope of dermatology related content on YouTube. Select terms (i.e. dermatology, sun protection, skin cancer, skin cancer awareness, and skin conditions) were searched on YouTube. Overall, the results included 100 videos with over 47 million viewers. Advocacy was the most prevalent content type at 24% of the total search results. These 100 videos were "shared" a total of 101,173 times and have driven 6,325 subscriptions to distinct YouTube user pages. Of the total videos, 35% were uploaded by or featured an MD/DO/PhD in dermatology or other specialty/field, 2% FNP/PA, 1% RN, and 62% other. As one of the most trafficked global sites on the Internet, YouTube is a valuable resource for dermatologists, physicians in other specialties, and the general public to share their dermatology-related content and gain subscribers. However, challenges of accessing and determining evidence-based data remain an issue.

  19. Evaluation of the adhesive layer of blast tube using ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joon Soo; Song, Sung Jin; Kim, Young Hwan; Cho, Hyun [Dept. of Machanical Engineering, Sungkyunkwan University, Seoul (Korea, Republic of); Lim, Soo Yong; Yun, Nam Gyun [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Jeong Ki [Korea Inspection and Engineering Co., Ltd, Seoul (Korea, Republic of); Park, Young Joo [Hankuk Fiber Group, Milyang (Korea, Republic of)

    2003-05-15

    Ultrasonic testing method has been developed to evaluate adhesive layers in blast tube for the reliability of the rocket. The main objective of the present work was to find debonding and uncharged state between steel and FRP layers. We distinguish the debonding and uncharged state using the resonance method in the adhesive layers. It was found that the higher magnitude of ultrasound is reflected for the uncharged area in frequency domain, and shown good agreements with experimental results. The traditional ultrasonic pulse-echo method offers good implements for the distinction debonding area. The nondestructive testing results were compared with the micrography of destructive testing. As results, ultrasonic testing could be utilized for the evaluation of adhesive layer in the blast tube.

  20. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  1. A high-voltage resonant converter for pulsed magnets

    International Nuclear Information System (INIS)

    Rafael, F.S.; Lira, A.C.; Apfelbaum, J.; Pomilio, J.A.

    1992-01-01

    A 500-W, 25-kV, parallel-loaded resonant converter has been built in order to feed the LNLS ring kicker magnets. The use of high frequency permits reduction of the transformer and filter sizes. The tank components are the transformer leakage inductance and winding capacitance. The switching frequency is 20 kHz, limited by the tank circuit characteristic. The load is an LC Pulse-Forming Network, which is discharged on the load by a thyratron tube. The current pulse rise and fall times are about 100 ns and the flat top is 200 ns, at 800 A. (author) 3 refs.; 7 figs

  2. Tubing vs. buckets: a cost comparison

    Science.gov (United States)

    Neil K. Huyler

    1975-01-01

    Equipment investment for tubing-vacuum systems was significantly less than that for bucket systems. Tubing-vacuum systems required about 22 percent less labor input, the major labor input being completed before sap-flow periods. Annual cost of operation was less for tubing-vacuum than the bucket system. Small tubing-vacuum operations showed more profit potential than...

  3. Expander for Thin-Wall Tubing

    Science.gov (United States)

    Pessin, R.

    1983-01-01

    Tool locally expands small-diameter tubes. Tube expander locally expands and deforms tube: Compressive lateral stress induced in elastomeric sleeve by squeezing axially between two metal tool parts. Adaptable to situations in which tube must have small bulge for mechanical support or flow control.

  4. Cross-talk in straw tube chambers

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, J. E-mail: janusz.marzec@ire.pw.edu.pl

    2003-05-11

    An analytical model of the signal transmission between neighboring straw tubes with resistive cathodes (cross-talk) is presented. The dependence of the cross-talk level on the cathode resistance, tube length, particle detection point, the distance of the tube from the shielding planes, and termination of the tube ends is analyzed.

  5. Cross-talk in straw tube chambers

    International Nuclear Information System (INIS)

    Marzec, J.

    2003-01-01

    An analytical model of the signal transmission between neighboring straw tubes with resistive cathodes (cross-talk) is presented. The dependence of the cross-talk level on the cathode resistance, tube length, particle detection point, the distance of the tube from the shielding planes, and termination of the tube ends is analyzed

  6. Management of in-tube projectiles using acoustic channel

    Science.gov (United States)

    Kostina, M. A.; Bortalevich, S. I.; Loginov, E. L.; Shinyakov, Y. A.; Sukhorukov, M. P.

    2018-03-01

    The article describes the method of measuring the distance from the operator's console installed outside the pipe to the in-tube projectile. A method for measuring distance in the absence of an echo signal is proposed. To do this, two identical ultrasonic locators operating at different frequencies were installed inside and outside the pipeline. The change in the duration of an acoustic pulse propagating in a circular waveguide with rigid walls is shown, which leads to a decrease in the data transfer rate.

  7. Signal propagation in straw tubes with resistive cathodes

    International Nuclear Information System (INIS)

    Marzec, J.; Zaremba, K.; Pawlowski, Z.; Konarzewski, B.

    2000-01-01

    The analysis presented in this paper is part of the research performed by the authors for the COMPASS experiment at CERN. They have developed a theoretical model of the signal transmission in a straw tube. In contrast to commonly used simplified models, their approach takes into account the energy losses in the cathode resistance. This model allows determination of the main electrical parameters, such as characteristic impedance and signal attenuation, as well as a detailed simulation of the pulse shape dependent on the point of the charge injection. Simulation results have been compared with the results of experimental measurements of different types of the straw detectors

  8. Signal propagation in straw tubes with resistive cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, J.; Zaremba, K.; Pawlowski, Z.; Konarzewski, B.

    2000-02-01

    The analysis presented in this paper is part of the research performed by the authors for the COMPASS experiment at CERN. They have developed a theoretical model of the signal transmission in a straw tube. In contrast to commonly used simplified models, their approach takes into account the energy losses in the cathode resistance. This model allows determination of the main electrical parameters, such as characteristic impedance and signal attenuation, as well as a detailed simulation of the pulse shape dependent on the point of the charge injection. Simulation results have been compared with the results of experimental measurements of different types of the straw detectors.

  9. Signal propagation in straw tubes with resistive cathode

    CERN Document Server

    Marzec, J; Pawlowski, Z; Konarzewski, B

    2000-01-01

    The analysis presented in this paper is part of the research performed by the authors for the COMPASS experiment at CERN. We have developed a theoretical model of the signal transmission in a straw tube. In contrast to commonly used simplified models, our approach takes into account the energy losses in the cathode resistance. This model allows determination of the main electrical parameters, such as characteristic impedance and signal attenuation, as well as a detailed simulation of the pulse shape dependent on the point of the charge injection. Simulation results have been compared with the results of experimental measurements of different types of the straw detectors. (7 refs).

  10. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    Science.gov (United States)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  11. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    International Nuclear Information System (INIS)

    Srivastava, Vishnu

    2012-01-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  12. Free Piston Double Diaphragm Shock Tube

    OpenAIRE

    OGURA, Eiji; FUNABIKI, Katsushi; SATO, Shunichi; ABE, Takashi; 小倉, 栄二; 船曳, 勝之; 佐藤, 俊逸; 安部, 隆士

    1997-01-01

    A free piston double diaphragm shock tube was newly developed for generation of high Mach number shock wave. Its characteristics was investigated for various operation parameters; such as a strength of the diaphragm at the end of the comparession tube, an initial pressure of low pressure tube, an initial pressure of medium pressure tube and the volume of compression tube. Under the restriction of fixed pressures for the driver high pressure tube (32×10^5Pa) and the low pressure tube (40Pa) in...

  13. PWR steam generator tubing sample library

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In order to compile the tubing sample library, two approaches were employed: (a) tubing sample replication by either chemical or mechanical means, based on field tube data and metallography reports for tubes already destructively examined; and (b) acquisition of field tubes removed from operating or retired steam generators. In addition, a unique mercury modeling concept is in use to guide the selection of replica samples. A compendium was compiled that summarizes field observations and morphologies of steam generator tube degradation types based on available NDE, destructive examinations, and field reports. This compendium was used in selecting candidate degradation types that were manufactured for inclusion in the tube library

  14. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  15. Repeated pulsed x-ray emission equipment

    International Nuclear Information System (INIS)

    Terauchi, Hikaru; Iida, Satoshi

    1982-01-01

    X-ray diffraction technique has been applied to determine the spatial positions of atoms which compose a material, and it is needless to say that the technique is a fundamental means regardless of the fields of research. However, the application of X-ray diffraction to the research on physical properties has been so far limited to know the spatial positions of atoms or molecules under thermal equilibrium condition. The addition of time element to the conventional technique, that is, the analysis of material structure including the time-varying processes under non-equilibrium conditions, is considered to approach the elucidation of the essence of materials. The authors call this dynamic structural analysis. The authors have planned to analyze X-ray diffraction intensity which has the resolution of about 10 -8 s in the real time which is conjugate with energy. However, present pulsed X-ray sources are not suitable for diffraction experiment because the pulse width is too long or X-ray wavelength is too short. Accordingly, the authors have made for trial a pulsed X-ray source for diffraction experiment. Its specifications are: diode voltage (X-ray tube voltage) from 200 to 300 kV, diode current from 2 to 5 kA, pulse width of about 30ns, maximum repetition frequency 10 pps, and X-ray focus size of 2 mm diameter. One of the features of this source is the repeated generation of pulsed X-ray. This is the first trial in the world, and is indispensable to the dynamic structural analysis described above. The quality of the emitted X-ray is also written. (Wakatsuki, Y.)

  16. Pump element for a tube pump

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction...... relative to the rod element so as to allow for a fluid flow in the tube through the first valve member, along the rod element, and through the second valve member. The tube comprises an at least partly flexible tube portion between the valve members such that a repeated deformation of the flexible tube...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...

  17. Managing a chest tube and drainage system.

    Science.gov (United States)

    Durai, Rajaraman; Hoque, Happy; Davies, Tony W

    2010-02-01

    Intercostal drainage tubes (ie, chest tubes) are inserted to drain the pleural cavity of air, blood, pus, or lymph. The water-seal container connected to the chest tube allows one-way movement of air and liquid from the pleural cavity. The container should not be changed unless it is full, and the chest tube should not be clamped unnecessarily. After a chest tube is inserted, a nurse trained in chest-tube management is responsible for managing the chest tube and drainage system. This entails monitoring the chest-tube position, controlling fluid evacuation, identifying when to change or empty the containers, and caring for the tube and drainage system during patient transport. This article provides an overview of indications, insertion techniques, and management of chest tubes. Copyright 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  18. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  19. Dynamic pulse difference circuit

    International Nuclear Information System (INIS)

    Erickson, G.L.

    1978-01-01

    A digital electronic circuit of especial use for subtracting background activity pulses in gamma spectrometry is disclosed which comprises an up-down counter connected to count up with signal-channel pulses and to count down with background-channel pulses. A detector responsive to the count position of the up-down counter provides a signal when the up-down counter has completed one scaling sequence cycle of counts in the up direction. In an alternate embodiment, a detector responsive to the count position of the up-down counter provides a signal upon overflow of the counter

  20. Coaxial pulse matching transformer

    International Nuclear Information System (INIS)

    Ledenev, V.V.; Khimenko, L.T.

    1986-01-01

    This paper describes a coaxial pulse matching transformer with comparatively simple design, increased mechanical strength, and low stray inductance. The transformer design makes it easy to change the turns ratio. The circuit of the device and an expression for the current multiplication factor are presented; experiments confirm the efficiency of the transformer. Apparatus with a coaxial transformer for producing high-power pulsed magnetic fields is designed (current pulses of 1-10 MA into a load and a natural frequency of 100 kHz)