WorldWideScience

Sample records for pulse techniques

  1. Optical pulses, lasers, measuring techniques

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology: Volume II: Optical Pulses - Lasers - Measuring Techniques focuses on the theoretical and engineering problems that result from the capacitor discharge technique.This book is organized into three main topics: light flash production from a capacitive energy storage; signal transmission and ranging systems by capacitor discharges and lasers; and impulse measuring technique. This text specifically discusses the air spark under atmospheric conditions, industrial equipment for laser flashing, and claims for light transmitting system. The application of light impulse sign

  2. Nanosecond Pulse Technique

    Science.gov (United States)

    1989-03-17

    tunnel diodes, to ferrites, etc.) and to the need for the review of the methods of formation and converting the pulses, to a considerable degree...4n3l) 0 1 + 4n 21)2 + (4n2l) (.84) _ 4 nf tl 5 (I - 4n12/) 2 - (4nil)’ (1.85) " ( - 2o) l - 4’n2% 2 I3 (I + 4n =2/)2 + ( 41a2 )’ -arg + 4ni,21. + j4na,tJ...recirculator is borrowed from the article of Yu. I. Neymark, Yu. K. Maklakov and L. P. Yelkins [105]. ENDFOOTNOTE. DOC = 88076720 PAGE d a) t l I t S6) t�t

  3. High-speed pulse techniques

    CERN Document Server

    Coekin, J A

    1975-01-01

    High-Speed Pulse Techniques covers the many aspects of technique in digital electronics and encompass some of the more fundamental factors that apply to all digital systems. The book describes the nature of pulse signals and their deliberate or inadvertent processing in networks, transmission lines and transformers, and then examines the characteristics and transient performance of semiconductor devices and integrated circuits. Some of the problems associated with the assembly of these into viable systems operating at ultra high speed are also looked at. The book examines the transients and w

  4. Nonlinear temporal pulse cleaning techniques and application

    Institute of Scientific and Technical Information of China (English)

    Yi; Xu; Jianzhou; Wang; Yansui; Huang; Yanyan; Li; Xiaomin; Lu; Yuxin; Leng

    2013-01-01

    Two different pulse cleaning techniques for ultra-high contrast laser systems are comparably analysed in this work.The first pulse cleaning technique is based on noncollinear femtosecond optical-parametric amplification(NOPA)and second-harmonic generation(SHG)processes.The other is based on cross-polarized wave(XPW)generation.With a double chirped pulse amplifier(double-CPA)scheme,although temporal contrast enhancement in a high-intensity femtosecond Ti:sapphire chirped pulse amplification(CPA)laser system can be achieved based on both of the techniques,the two different pulse cleaning techniques still have their own advantages and are suitable for different contrast enhancement requirements of different laser systems.

  5. Thermoluminescence measurement technique using millisecond temperature pulses.

    Science.gov (United States)

    Manfred, Michael E; Gabriel, Nicholas T; Yukihara, Eduardo G; Talghader, Joseph J

    2010-06-01

    A measurement technique, pulsed thermoluminescence, is described which uses short thermal pulses to excite trapped carriers leading to radiative recombination. The pulses are obtained using microstructures with approximately 500 micros thermal time constants. The technique has many of the advantages of pulsed optically stimulated luminescence without the need for optical sources and filters to isolate the luminescent signal. Charge carrier traps in alpha-Al(2)O(3):C particles on microheaters were filled using 205 nm light. Temperature pulses of 10 and 50 ms were applied to the heaters and compared with a standard thermoluminescence curve taken at a ramp rate of 5 K s(-1). This produced curves of intensity verses temperature similar to standard thermoluminescence except shifted to higher temperatures. The luminescence of single particles was read multiple times with negligible loss of population. The lower limit of the duration of useful pulses appears to be limited by particle size and thermal contact between the particle and heater.

  6. Pulse Compression Technique of Radio Fuze

    Institute of Scientific and Technical Information of China (English)

    HU Xiu-juan; DENG Jia-hao; SANG Hui-ping

    2006-01-01

    The advantages of using phase-coded pulse compression technique for radio fuze systems are evaluated. With building mathematical models a matched filter has be en implemented successfully. Various simulations for pulse compression waveform coding were done to evaluate the performance of fuze system under noisy environment. The results of the simulation and the data analysis show that the phase-coded pulse compression gets a good result in the signal identification of the radio fuze with matched filter. Simultaneously, a suitable sidelobe suppression filter is established by simulation, the suppressed sidelobe level is acceptable to radio fuze application.

  7. Pulsed thrust measurements using electromagnetic calibration techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tang Haibin; Shi Chenbo; Zhang Xin' ai; Zhang Zun; Cheng Jiao [School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)

    2011-03-15

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 {mu}N s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measured to give a 310 {mu}N s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 {mu}N s with 95% credibility.

  8. A simple technique for individual picosecond laser pulse duration measurements

    Science.gov (United States)

    Smith, W. L.; Bechtel, J. H.

    1976-01-01

    We describe here a simple nonlinear optic technique for the measurement of the duration of individual picosecond pulses. The accuracy and relative simplicity of the technique increase with the number of pulses measured. An experimental test of the basis of the technique is described.

  9. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    Science.gov (United States)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression

  10. Pulsed electrical discharges for medicine and biology techniques, processes, applications

    CERN Document Server

    Kolikov, Victor

    2015-01-01

    This book presents the application of pulsed electrical discharges in water and water dispersions of metal nanoparticles in medicine (surgery, dentistry, and oncology), biology, and ecology. The intensive electrical and shock waves represent a novel technique to destroy viruses and this way to  prepare anti-virus vaccines. The method of pulsed electrical discharges in water allows to decontaminate water from almost all known bacteria and spores of fungi being present in human beings. The nanoparticles used are not genotoxic and mutagenic. This book is useful for researchers and graduate students.

  11. Measurement of thermophysical properties by a pulse-heating technique

    Institute of Scientific and Technical Information of China (English)

    Peng Xiao; Jingmin Dai; Qingwei Wang

    2007-01-01

    A technique is described for the dynamic measurement of selected thermophysical properties of electrically conducting solids in the temperature range from 1100 K to the melting point. Based on rapid resistive self-heating of the specimen from room temperature to any desired high temperature in several seconds by the passage of an electical current pulse through it, this technique measures the pertinent quantities such as current, voltage, randiance temperature, with sub-millisecond time resolution. The pulse-heating technique is applied to strip specimens. The radiance temperature is measured by high-speed pyrometry,normal spectral emissivity of the strips is measured by integrating sphere reflectometry. The normal spectral emissivity results are used to compute the true temperature of the specimens. The heat capacity,electrical resistivity, total hemispherical emissivity are evaluated in the temperature range from 1100 K to the melting point.

  12. Comparison of three arterial pulse waveform classification techniques.

    Science.gov (United States)

    Allen, J; Murray, A

    1996-01-01

    Peripheral pulse waveforms can become stretched and damped with increasing severity of peripheral vascular disease (PVD) and hence could provide valuable diagnostic information. This study compares the diagnostic performance of 3 established classification techniques (a linear discriminant classifier, a k-nearest neighbour classifier, and an artificial neural network) for the detection of lower limb arterial disease from pulse waveforms obtained using photoelectric plethysmography (PPG). Pulse waveforms and pre- and post-exercise Doppler ultrasound ankle to brachial pressure indices (ABPI) were obtained from patients attending a vascular measurement laboratory. A single PPG pulse from each big toe was recorded direct to computer, pre-processed, and then used as classifier input data. The correct classifier outputs were the corresponding ABPI diagnostic classification. Pulse and ABPI measurements from 100 legs were used as training data for each classifier, and the computed classifications for pulses from a further 266 legs were then compared with their ABPI diagnoses. The diagnostic accuracy of the artificial neural network (80%; was higher than for the optimized k-nearest neighbour classifier (k = 27, accuracy 76% and the linear discriminant classifier (71%). The Kappa measure of agreement which excludes chance was highest for the artificial neural network (57%) and significantly higher than that of the linear discriminant classifier (Kappa 40%, p < 0.05). The value of Kappa for the optimized k-nearest neighbour classifier (k = 27) was intermediate at 47%. This study has shown that classifiers can be taught to discriminate between small, and perhaps subtle, differences in features. We have demonstrated that artificial neural networks can be used to classify arterial pulse waveforms, and can perform better overall than k-nearest neighbour or linear discriminant classifiers for this application.

  13. Redox transformations in peroxidases studied by pulse radiolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Gebicka, L.; Gebicki, J.L. (Lodz Univ. (Poland))

    1992-01-01

    By means of pulse radiolysis technique, redox processes in two heme enzymes, horseradish peroxidase (HRP) and lactoperoxidase (LPO) have been studied. It has been found that both hydrated electron and hydroxyl radical reduce HRP and LPO to their ferrous forms. The formation of compound III (an oxyform of the heme enzyme) in a two-step reaction of LPO and HRP with superoxide anion has been proposed. (author).

  14. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  15. Technique of pulse electrochemical finishing in molds and dies

    Institute of Scientific and Technical Information of China (English)

    LI Hong-you; LIU Xiao-mei; JIANG Kai-yong; WANG Hui; ZHOU Jin-jin

    2004-01-01

    Surface finishing is one of the most important processes in mould and die making. This process is necessary not only for smoothing the surface of die or mould, but also for removing the surface layer, which has been damaged by the preceding machining process and finally improve the performances and lifetime of moulds to a large extent. It has been reported that between 30% and 40% of the total time required to manufacture a die or mold is spent on finishing operations, most of which are performed by skilled workers employing traditional techniques. At present, key problems in mould and die finishing technology can improve the finishing efficiency, consistency and quality at reduced costs. A new and high efficiency unconventional finishing technology, pulse electrochemical finishing was introduced. Experiments were done in neutral nitrate electrolytes. The influence of electrolyte composition, intereletrode gap, finishing time, flow quality, current density, compositions of steel materials and pulse parameters on the resulting surface finishing was investigated. Results indicate that pulse parameters have important influence on operations finishing and the proper selection of pulse parameters can lead to both good smoothing efficiency and surface quality at low costs.

  16. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Science.gov (United States)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R. M.

    2015-05-01

    Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  17. Compressive spectrum sensing of radar pulses based on photonic techniques.

    Science.gov (United States)

    Guo, Qiang; Liang, Yunhua; Chen, Minghua; Chen, Hongwei; Xie, Shizhong

    2015-02-23

    We present a photonic-assisted compressive sampling (CS) system which can acquire about 10(6) radar pulses per second spanning from 500 MHz to 5 GHz with a 520-MHz analog-to-digital converter (ADC). A rectangular pulse, a linear frequency modulated (LFM) pulse and a pulse stream is respectively reconstructed faithfully through this system with a sliding window-based recovery algorithm, demonstrating the feasibility of the proposed photonic-assisted CS system in spectral estimation for radar pulses.

  18. Bioactive glass thin films synthesized by advanced pulsed laser techniques

    Science.gov (United States)

    Mihailescu, N.; Stan, George E.; Ristoscu, C.; Sopronyi, M.; Mihailescu, Ion N.

    2016-10-01

    Bioactive materials play an increasingly important role in the biomaterials industry, and are extensively used in a range of applications, including biodegradable metallic implants. We report on Bioactive Glasses (BG) films deposition by pulsed laser techniques onto biodegradable substrates. The BG coatings were obtained using a KrF* excimer laser source (λ= 248 nm, τFWHM ≤ 25 ns).Their thickness has been determined by Profilometry measurements, whilst their morphology has been analysed by Scanning Electron Microscopy (SEM). The obtained coatings fairly preserved the targets composition and structure, as revealed by Energy Dispersive X-Ray Spectroscopy, Grazing Incidence X-Ray Diffraction, and Fourier Transform Infra-Red Spectroscopy analyses.

  19. High-sensitive Optical Pulse-Shape Characterization using a Beating-Contrast-Measurement Technique

    CERN Document Server

    Roncin, Vincent; Millaud, Audrey; Cramer, Romain; Jaouën, Yves; Simon, Jean-Claude

    2014-01-01

    Ultrahigh-speed optical transmission technology, such as optical time domain multiplexing or optical signal processing is a key point for increasing the communication capacity. The system performances are strongly related to pulse properties. We present an original method dedicated to short pulse-shape characterization with high repetition rate using standard optical telecommunications equipments. Its principle is based on temporal measurement of the contrast produced by the beating of two delayed optical pulses in a high bandwidth photo detector. This technique returns firstly reliable information on the pulse-shape, such as pulse width, shape and pedestal. Simulation and experimental results evaluate the high-sensitivity and the high-resolution of the technique allowing the measurement of pulse extinction ratio up to 20 dB with typical timing resolution of about 100 fs. The compatibility of the technique with high repetition rate pulse measurement offers an efficient tool for short pulse analysis.

  20. Annular Pulse Shaping Technique for Large-Diameter Kolsky Bar Experiments on Concrete

    Science.gov (United States)

    2014-10-01

    lt ag e (V ) Time (microsecond) Fig. 5 Linear incident wave generated using an annular copper pulse shaper (O.D. = 25.4 mm, I.D. = 14.4 mm). Note that...AFRL-RW-EG-TP-2014-005 Annular Pulse Shaping Technique for Large- Diameter Kolsky Bar Experiments on Concrete...NUMBER (Include area code) 13-6-2014 Technical Publication October 2012 - February 2014 ANNULAR PULSE SHAPING TECHNIQUE FOR LARGE-DIAMETER KOLSKY BAR

  1. Investigation of phase explosion in aluminum induced by nanosecond double pulse technique

    Energy Technology Data Exchange (ETDEWEB)

    Jafarabadi, Marzieh Akbari; Mahdieh, Mohammad Hossein, E-mail: mahdm@iust.ac.ir

    2015-08-15

    Highlights: • Single and collinear double pulse configurations were used for laser ablation of aluminum target in air. • The 5, 10, 15 and 20 ns delay times between pre pulse and main pulse in double pulse arrangement was investigated. • In comparison between single and double pulse regimes, the phase explosion threshold fluence is decreased in double pulse configuration. • The plasma shielding effect reduces the crater depth in lower laser fluence in double pulse configuration rather that its in single pulse configuration. - Abstract: In this paper, the influence of double pulse technique on phase explosion threshold in laser ablation of an aluminum target is investigated. Single and double pulse laser ablation of aluminum target was performed by a high power Nd:YAG laser beam in ambient air. In the double pulse excitation, the two pulses were from a single laser source which separated by a delay time in the range of 5–20 ns. Measuring ablation depth and rate, the phase explosion threshold was estimated in double pulse configuration as well as in the single pulse regime. The results show that in comparison between single and double pulse regimes, the phase explosion threshold fluence is decreased in double pulse configuration. The lowest phase explosion threshold fluence of 0.9 J/cm{sup 2} was obtained at 5 ns delay time. The results also show that plasma shielding effect reduced crater depth at a laser fluence which depended on the laser ablation configuration (single pulse or double pulse). The reduction of crater depth occurs at lower laser fluences for double pulse regime.

  2. Vibration measurement based on the optical cross-correlation technique with femtosecond pulsed laser

    Science.gov (United States)

    Han, Jibo; Wu, Tengfei; Zhao, Chunbo; Li, Shuyi

    2016-10-01

    Two vibration measurement methods with femtosecond pulsed laser based on the optical cross-correlation technique are presented independently in this paper. The balanced optical cross-correlation technique can reflect the time jitter between the reference pluses and measurement pluses by detecting second harmonic signals using type II phase-matched nonlinear crystal and balanced amplified photo-detectors. In the first method, with the purpose of attaining the vibration displacement, the time difference of the reference pulses relative to the measurement pluses can be measured using single femtosecond pulsed laser. In the second method, there are a couple of femtosecond pulsed lasers with high pulse repetition frequency. Vibration displacement associated with cavity length can be calculated by means of precisely measuring the pulse repetition frequency. The results show that the range of measurement attains ±150μm for a 500fs pulse. These methods will be suited for vibration displacement measurement, including laboratory use, field testing and industrial application.

  3. High voltage magnetic pulse generation using capacitor discharge technique

    Directory of Open Access Journals (Sweden)

    M. Rezal

    2014-12-01

    Full Text Available A high voltage magnetic pulse is designed by applying an electrical pulse to the coil. Capacitor banks are developed to generate the pulse current. Switching circuit consisting of Double Pole Double Throw (DPDT switches, thyristor, and triggering circuit is developed and tested. The coil current is measured using a Hall-effect current sensor. The magnetic pulse generated is measured and tabulated in a graph. Simulation using Finite Element Method Magnetics (FEMM is done to compare the results obtained between experiment and simulation. Results show that increasing the capacitance of the capacitor bank will increase the output voltage. This technology can be applied to areas such as medical equipment, measurement instrument, and military equipment.

  4. Study on disinfestation of pulses using microwave technique

    OpenAIRE

    Singh, Ranjeet; Singh, K. K.; Kotwaliwale, N.

    2011-01-01

    Mortality of the pulse beetle (Callosobruchus chinensis L.) exposed, continuously, to microwave radiation (2450 MHz) was evaluated as a function of exposure time and percent power level, at adult stages. The microwave exposure time to attain 100% insect mortality at 100 %, 80%, 60%, 40%, and 20% power levels for Chickpea, Pigeon Pea and Green Gram was optimized. Effect of optimized microwave exposure time on viability, germination, cooking and milling characteristics of Chickpea, Pigeon Pea a...

  5. Advanced modeling techniques in application to plasma pulse treatment

    Science.gov (United States)

    Pashchenko, A. F.; Pashchenko, F. F.

    2016-06-01

    Different approaches considered for simulation of plasma pulse treatment process. The assumption of a significant non-linearity of processes in the treatment of oil wells has been confirmed. Method of functional transformations and fuzzy logic methods suggested for construction of a mathematical model. It is shown, that models, based on fuzzy logic are able to provide a satisfactory accuracy of simulation and prediction of non-linear processes observed.

  6. Interference Mitigation Technique for Coexistence of Pulse-Based UWB and OFDM

    Directory of Open Access Journals (Sweden)

    Tetsushi Ikegami

    2008-04-01

    Full Text Available Ultra-wideband (UWB is a useful radio technique for sharing frequency bands between radio systems. It uses very short pulses to spread spectrum. However, there is a potential for interference between systems using the same frequency bands at close range. In some regulatory systems, interference detection and avoidance (DAA techniques are required to prevent interference with existing radio systems. In this paper, the effect of interference on orthogonal frequency division multiplexing (OFDM signals from pulse-based UWB is discussed, and an interference mitigation technique is proposed. This technique focuses on the pulse repetition cycle of UWB. The pulse repetition interval is set the same or half the period of the OFDM symbol excluding the guard interval to mitigate interference. These proposals are also made for direct sequence (DS-UWB. Bit error rate (BER performance is illustrated through both simulation and theoretical approximations.

  7. Interference Mitigation Technique for Coexistence of Pulse-Based UWB and OFDM

    Directory of Open Access Journals (Sweden)

    Ohno Kohei

    2008-01-01

    Full Text Available Abstract Ultra-wideband (UWB is a useful radio technique for sharing frequency bands between radio systems. It uses very short pulses to spread spectrum. However, there is a potential for interference between systems using the same frequency bands at close range. In some regulatory systems, interference detection and avoidance (DAA techniques are required to prevent interference with existing radio systems. In this paper, the effect of interference on orthogonal frequency division multiplexing (OFDM signals from pulse-based UWB is discussed, and an interference mitigation technique is proposed. This technique focuses on the pulse repetition cycle of UWB. The pulse repetition interval is set the same or half the period of the OFDM symbol excluding the guard interval to mitigate interference. These proposals are also made for direct sequence (DS-UWB. Bit error rate (BER performance is illustrated through both simulation and theoretical approximations.

  8. Flat-top pulse generation by the optical Fourier transform technique for ultrahigh speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael;

    2009-01-01

    This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super-Gaussian sp......This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super......-Gaussian spectral intensity profile is mapped into a flat-top pulse resembling its spectrum by simple propagation in SMF. Theoretical and experimental descriptions are given on flat-top pulse generation, and an experimental validation of the systems performance of the pulses is carried out, demonstrating a benefit...

  9. Advanced Pulse Width Technique in Impedance Source Cascaded Multilevel Inverter with Asymmetric Topology

    Directory of Open Access Journals (Sweden)

    Rajnish Kumar Sharma

    2016-08-01

    Full Text Available In this research, a single phase Z-source cascading Multilevel Inverter, Nine-level inverter topologies with a trinary DC sources are offered. The recommended topologies are expanded by cascading a full bridge inverter with dissimilar DC sources. This paper recommends advanced pulse with modulation technique as a switching scheme. In this PWM technology, trapezoidal modulation technique is used as variable amplitude pulse width modulation. These topologies compromise reduced harmonics present in the output voltage and superior root mean square (RMS values of the output voltages linked with the traditional trapezoidal pulse width modulation. The simulation of proposed circuit is carried out by using MATLAB/SIMULINK.

  10. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

    OpenAIRE

    Alina Maria Holban; Valentina Grumezescu; Alexandru Mihai Grumezescu; Bogdan Ştefan Vasile; Roxana Truşcă; Rodica Cristescu; Gabriel Socol; Florin Iordache

    2014-01-01

    We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe3O4@EUG) nanospheres by matrix assisted pulsed laser evaporation (MAPLE). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) investigation proved that the homogenous Fe3O4@EUG nanoparticles have an average diameter of about 7 nm, while the PLA-CS-Fe3O4@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive ...

  11. Thickness Evaluation of Aluminium Plate Using Pulsed Eddy Current Technique

    Science.gov (United States)

    Singh, Gurpartap; Bapat, Harsh Madhukar; Singh, Bhanu Pratap; Bandyopadhyay, Manojit; Puri, Rakesh Kumar; Badodkar, Deepak Narayanrao

    2013-10-01

    This paper describes a pulsed eddy current (PEC) based non-destructive testing system used for detection of thickness variation in aluminium plate. A giant magneto-resistive sensor has been used instead of pick up coil for detecting resultant magnetic field. The PEC response signals obtained from 1 to 5 mm thickness change in aluminium plate were investigated. Two time domain features, namely peak value and time to peak, of PEC response were used for extracting information about thickness variation in aluminium plate. The variation of peak value and time to peak with thickness was compared. A program was developed to display the thickness variation of the tested sample.

  12. Study on disinfestation of pulses using microwave technique.

    Science.gov (United States)

    Singh, Ranjeet; Singh, K K; Kotwaliwale, N

    2012-08-01

    Mortality of the pulse beetle (Callosobruchus chinensis L.) exposed, continuously, to microwave radiation (2450 MHz) was evaluated as a function of exposure time and percent power level, at adult stages. The microwave exposure time to attain 100% insect mortality at 100 %, 80%, 60%, 40%, and 20% power levels for Chickpea, Pigeon Pea and Green Gram was optimized. Effect of optimized microwave exposure time on viability, germination, cooking and milling characteristics of Chickpea, Pigeon Pea and Green Gram was also evaluated. Adult stage study was characterized by a distinct dose-exposure curve. The mortality curve was following third degree polynomial equation. The seed viability and germination of Chickpea, Pigeon Pea and Green Gram was affected by microwave exposure time and power level. It was observed that as the power level is decreasing the germination and viability of all the pulses are increasing. The effect on cooking and milling characteristics are not affected by microwave exposure time and power level. The insects in the mobile state were observed to move towards the surface from inside the nutrient medium during microwave exposure. They also curled up and in some cases aggregation was observed.

  13. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique.

    Science.gov (United States)

    Holban, Alina Maria; Grumezescu, Valentina; Grumezescu, Alexandru Mihai; Vasile, Bogdan Ştefan; Truşcă, Roxana; Cristescu, Rodica; Socol, Gabriel; Iordache, Florin

    2014-01-01

    We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe3O4@EUG) nanospheres by matrix assisted pulsed laser evaporation (MAPLE). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) investigation proved that the homogenous Fe3O4@EUG nanoparticles have an average diameter of about 7 nm, while the PLA-CS-Fe3O4@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive nanosystems and exhibited a great antimicrobial effect by impairing the adherence and biofilm formation of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria strains. Moreover, the obtained nano-coatings showed a good biocompatibility and facilitated the normal development of human endothelial cells. These nanosystems may be used as efficient alternatives in treating and preventing bacterial infections.

  14. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

    Directory of Open Access Journals (Sweden)

    Alina Maria Holban

    2014-06-01

    Full Text Available We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe3O4@EUG nanospheres by matrix assisted pulsed laser evaporation (MAPLE. Transmission electron microscopy (TEM and scanning electron microscopy (SEM investigation proved that the homogenous Fe3O4@EUG nanoparticles have an average diameter of about 7 nm, while the PLA-CS-Fe3O4@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive nanosystems and exhibited a great antimicrobial effect by impairing the adherence and biofilm formation of Staphylococcus aureus (S. aureus and Pseudomonas aeruginosa (P. aeruginosa bacteria strains. Moreover, the obtained nano-coatings showed a good biocompatibility and facilitated the normal development of human endothelial cells. These nanosystems may be used as efficient alternatives in treating and preventing bacterial infections.

  15. Bismuth coatings deposited by the pulsed dc sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, M. F.; Olaya, J. J.; Alfonso, J. E., E-mail: jealfonsoo@unal.edu.co [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Ciencia de Materiales y Superficies, Carrera 45 No. 26-85, Edif. Uriel Gutierrez, Bogota D. C. (Colombia)

    2013-08-01

    In this work we present the results obtained from the deposition of nano-structured bismuth coatings through Dc pulsed unbalanced magnetron sputtering. The coatings were grown on two substrates: silicon and AISI steel 316 L. The microstructure of the Bi coatings grown on silicon and the corrosion resistance of the Bi coatings grown on AISI steel were evaluated. The microstructure was evaluated by X-ray diffraction and the corrosion resistance was characterized by means of polarization potentiodynamic and electrochemical impedance spectroscopy. Finally the morphology of the coatings was evaluated through scanning electronic microscopy. The X-ray diffraction analysis indicates that the coatings are polycrystalline; the corrosion resistance tests indicate that the films with better corrosion resistance were deposited at 40 khz. Scanning electron microscopy micrographs show that the coatings are grown as granular form. (Author)

  16. Investigation of a pulse compression technique for medical ultrasound: a simulation study.

    Science.gov (United States)

    Rao, N A

    1994-03-01

    Pulse compression techniques that are capable of producing a large signal-to-noise (SNR) enhancement, have been used successfully in many different fields. For medical applications, frequency-dependent attenuation in soft tissue can limit the usefulness of this method. In the paper, this issue is examined through model-simulation studies. Frequency-modulation (FM) chirp, considered in the study, is just one form of pulse coding technique. Pulse propagation effects in soft tissue are modelled as a linear zero phase filter. A method to perform simulations and estimate the effective time-bandwidth product K is outlined. K describes the SNR enhancement attainable under limitations imposed by the soft-tissue medium. An effective time-bandwidth product is evaluated as a function of soft-tissue linear attenuation coefficient alpha o, scatterer depth z and the bandwidth of the interrogating FM pulse, under realistic conditions. Results indicate that, under certain conditions, K can be significantly lower than its expected value in a non-attenuating medium. It is argued that although limitations exist, pulse compression techniques can still be used to improve resolution or increase penetrational depth. The real advantage over conventional short-pulse imaging comes from the possibility that these improvements can be accomplished without increasing the peak intensity of the interrogating pulse above any threshold levels set by possible bio-effect considerations.

  17. Ultrasound contrast imaging: influence of scatterer motion in multi-pulse techniques.

    Science.gov (United States)

    Lin, Fanglue; Cachard, Christian; Mori, Riccardo; Varray, Francois; Guidi, Francesco; Basset, Olivier

    2013-10-01

    In ultrasound contrast imaging, many techniques based on multiple transmissions have been proposed to increase the contrast-to-tissue ratio (CTR). They are generally based on the response of static scatterers inside the imaged region. However, scatterer motion, for example in blood vessels, has an inevitable influence on multi-pulse techniques, which can either enhance or degrade the technique involved. This paper investigates the response of static nonlinear media insonated by multi-pulses with various phase shifts, and the influence of scatterer motion on multi-pulse techniques. Simulations and experimental results from a single bubble and clouds of bubbles show that the phase shift of the echoes backscattered from bubbles is dependent on the transmissions' phase shift, and that the bubble motion influences the efficiency of multi-pulse techniques: fundamental and second-harmonic amplitudes of the processed signal change periodically, exhibiting maximum or minimum values, according to scatterer motion. Furthermore, experimental results based on the second-harmonic inversion (SHI) technique reveal that bubble motion can be taken into account to regulate the pulse repetition frequency (PRF). With the optimal PRF, the CTR of SHI images can be improved by about 12 dB compared with second-harmonic images.

  18. Flipped-Exponential Nyquist Pulse Technique to Optimize PAPR in Optical Direct-Detection OFDM Systems

    Institute of Scientific and Technical Information of China (English)

    Jiangnan Xiao; Zizheng Cao; Fan Li; Jin Tang; Lin Chen

    2012-01-01

    In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division multiplexing (DD-QFDM) system, The technique involves proper selection of the FE Nyquist pulses for shaping the different subcarriers of the OFDM. We apply this technique to a DD-OFDM transmission system to significantly reduce PAPR. We also investigate the sensitivity of a received OFDM signal with strong nonlinearity in a standard single-mode fiber (SMF).

  19. Evaluation of paint coating thickness variations based on pulsed Infrared thermography laser technique

    Science.gov (United States)

    Mezghani, S.; Perrin, E.; Vrabie, V.; Bodnar, J. L.; Marthe, J.; Cauwe, B.

    2016-05-01

    In this paper, a pulsed Infrared thermography technique using a homogeneous heat provided by a laser source is used for the non-destructive evaluation of paint coating thickness variations. Firstly, numerical simulations of the thermal response of a paint coated sample are performed. By analyzing the thermal responses as a function of thermal properties and thickness of both coating and substrate layers, optimal excitation parameters of the heating source are determined. Two characteristic parameters were studied with respect to the paint coating layer thickness variations. Results obtained using an experimental test bench based on the pulsed Infrared thermography laser technique are compared with those given by a classical Eddy current technique for paint coating variations from 5 to 130 μm. These results demonstrate the efficiency of this approach and suggest that the pulsed Infrared thermography technique presents good perspectives to characterize the heterogeneity of paint coating on large scale samples with other heating sources.

  20. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    Science.gov (United States)

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C.

  1. Sensitivity analysis of a pulse nutrient addition technique for estimating nutrient uptake in large streams

    Science.gov (United States)

    Laurence Lin; J.R. Webster

    2012-01-01

    The constant nutrient addition technique has been used extensively to measure nutrient uptake in streams. However, this technique is impractical for large streams, and the pulse nutrient addition (PNA) has been suggested as an alternative. We developed a computer model to simulate Monod kinetics nutrient uptake in large rivers and used this model to evaluate the...

  2. Pulse shaping techniques for a high-g shock tester based on collision principle

    Science.gov (United States)

    Duan, Zhengyong; Tang, Chuansheng; Li, Yang; Han, Junliang; Wu, Guoxiong

    2016-09-01

    Pulse shaping techniques are discussed in this paper for the practicability of a developed high-g shock tester. The tester is based on collision principle where there is a one-level velocity amplifier. A theoretical and experimental study of pulse shaping techniques is presented. A model was built and theoretical formulae were deduced for the shock peak acceleration and its duration. Then theoretical analysis and some experiments were conducted. The test results verify the validity of theoretical model and show that the shock tester can generate the expected high-g shock pulses by integrated usage of different impact velocities and pulse shapers made from different materials. This is important in practical applications where the items under test can be shown to excite specific resonances at predetermined acceleration levels using the shock tester.

  3. Pulsed dose rate brachytherapy (PDR): an analysis of the technique at 2 years

    Energy Technology Data Exchange (ETDEWEB)

    Thienpont, M. [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde; Van Eijkeren, M.; Van Hecke, H.; Boterberg, T.; De Neve, W.

    1995-12-01

    A total of 154 applications was analysed using a pulsed dose brachytherapy technique for 138 patients over a 2 year period with emphasis on technical aspects influencing the overall treatment time. Vaginal ovoids were used in 59 cases, plastic tubes in 52, a Fletcher-type in 18, vaginal cylinders in 14 and a perineal template in 11 cases. Pulses were given at hourly intervals with a median dose rate of 0.6 Gy per pulse (range 0.4 to 3 Gy). The number of pulses per application varied from 3 to 134 (median 32). The number of dwell positions varied from 1 to 542 over 1 to 18 catheters. Patient related problems were few. The room was entered almost every 77 minutes. We noted 561 status codes in 147 applications. Of the 25 different codes, the most frequent one was due to the door left open when a pulse had to be given (35%) or due to constriction of the plastic catheters at the transfer tube junction (26%). However, the median total treatment time was increased by only 5 minutes. With pulsed dose rate brachytherapy at hourly pulses we can treat our patients within the planned time despite frequent room entrance and occurrence of an appreciable number of status codes. This technique seems to fulfill its promise to replace low dose rate brachytherapy.

  4. Generation of high energy, 30 fs pulses at 527 nm by hollow-fiber compression technique.

    Science.gov (United States)

    Xia, J; Altucci, C; Amoruso, S; Bruzzese, R; Velotta, R; Wang, X

    2008-03-17

    The compression of 300-fs-long, chirp-free laser pulses at 527 nm down to 30 fs is reported. The laser pulses, originated from a frequency-doubled, mode-locked Nd:glass laser, were compressed by a 0.7-m-long, 150-microm-bore-diameter, argon-filled hollow fiber, and a pair of SF10 prisms with a final energy of 160 microJ. These are the shortest, high energy pulses ever produced by direct pulse compression at the central wavelength of 527 nm. The spectral broadening of the pulses propagating inside the hollow fiber was experimentally examined for various filling-gas pressures and input pulse energies. The spectral width of the pulses was broadened up to 25 nm, and 27 nm for argon- and krypton-filled hollow fiber, respectively, at a gas pressure lower than 2 bar. The physical limitations of the hollow-fiber pulse compression technique applied in the visible range are also studied.

  5. Pulse

    Science.gov (United States)

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the person's heart is pumping. Pulse ... rate gives information about your fitness level and health.

  6. Differential linear scan voltammetry: analytical performance in comparison with pulsed voltammetry techniques.

    Science.gov (United States)

    Sheth, Disha B; Gratzl, Miklós

    2013-06-01

    We report here on differential linear scan voltammetry, DLSV, that combines the working principles of linear scan voltammetry, LSV, and the numerous existing pulsed voltammetry techniques. DLSV preserves the information from continuous interrogation in voltage and high accuracy that LSV provides about electrochemical processes, and the much better sensitivity of differential pulsed techniques. DLSV also minimizes the background current compared to both LSV and pulsed voltammetry. An early version of DLSV, derivative stationary electrode polarography, DSEP, had been proposed in the 1960s but soon abandoned in favor of the emerging differential pulsed techniques. Relative to DSEP, DLSV takes advantage of the flexibility of discrete smoothing differentiation that was not available to early investigators. Also, DSEP had been explored in pure solutions and with reversible electrochemical reactions. DLSV is tested in this work in more challenging experimental contexts: the measurement of oxygen with a carbon fiber microelectrode in buffer, and with a gold microdisc electrode exposed to a live biological preparation. This work compares the analytical performance of DLSV and square wave voltammetry, the most popular pulsed voltammetry technique.

  7. Enhancement of Time Reversal Sub-wavelength Wireless Transmission Using Pulse Shaping Technique (submit/1139227)

    CERN Document Server

    Ding, Shuai; Zang, Rui; Zou, Lianfeng; Wang, Bing-Zhong; Caloz, Christophe

    2014-01-01

    A novel time-reversal subwavelength transmission technique, based on pulse shaping circuits (PSCs), is proposed. This technique removes the need for complex or electrically large electromagnetic structures by generating channel diversity via pulse shaping instead of angular spectrum transformation. It is shown that, compared to our previous time-reversal system based on chirped delay lines, the PSC approach offers greater flexibility and larger possible numbers of channels, i.e. ultimately higher transmission throughput. The PSC based time-reversal system is also demonstrated experimentally.

  8. A driving pulse edge modulation technique and its complex programming logic devices implementation

    Institute of Scientific and Technical Information of China (English)

    Xiao CHEN; Dong-chang QU; Yong GUO; Guo-zhu CHEN

    2015-01-01

    With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insulated gate bipolar transistors (IGBTs). By modulating the density and width of the pulse trains, without regulating the hardware circuit, the slope of the gate driving voltage is controlled to change the switching speed. This technique is used in the driving circuit based on complex programmable logic devices (CPLDs), and the switching voltage spike of IGBTs can be restrained through software, which is easier and more flexible to adjust. Experimental results demonstrate the effectiveness and practicability of the proposed method.

  9. Optimised NQR pulse technique for the effective detection of Heroin Base.

    Science.gov (United States)

    Rudakov, T N; Hayes, P A; Flexman, J H

    2008-03-01

    The nuclear quadrupole resonance (NQR) method has been applied to Heroin Base (HB) to find an optimised multi-pulse technique for effective detection of HB. Experimental results of applying the proposed spin-locking multi-pulse (SLMP) technique to nitrogen-14 NQR in this sample are presented and convincingly demonstrate as a path towards efficient detection. A detection using a sequence of this character could be achieved over real-world scan volumes for screening of goods. All experiments were carried out at room temperature.

  10. Energy iteration model research of DCM Buck converter with multilevel pulse train technique

    Science.gov (United States)

    Qin, Ming; Li, Xiang

    2017-08-01

    According as the essence of switching converter is the nature of energy, the energy iteration model of the Multilevel Pulse Train (MPT) technique is studied in this paper. The energy iteration model of DCM Buck converter with MPT technique can reflect the control law and excellent transient performance of the MPT technique. The iteration relation of energy transfer in switching converter is discussed. The structure and operation principle of DCM Buck converter with MPT technique is introduced and the energy iteration model of this converter is set up. The energy tracks of MPT-control Buck converter and PT converter is researched and compared to show that the ratio of steady-state control pulse satisfies the expectation for the MPT technique and the MPT-controlled switching converter has much lower output voltage ripple than the PT converter.

  11. Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.

    -numerical techniques suitable for Markov response problems such as moments equation, Petrov-Galerkin and cell-to-cell mapping techniques are briefly discussed. Usefulness of these techniques is limited by the fact that effectiveness of each of them depends on the mean rate of impulses. Another limitation is the size...... of the problem, i.e. the number of state variables of the dynamical systems. In contrast, the application of the simulation techniques is not limited to Markov problems, nor is it dependent on the mean rate of impulses. Moreover their use is straightforward for a large class of point processes, at least......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...

  12. Experimental analysis of pulsing techniques in a proton exchange fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Aquiles; Abtahi, Amir [Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431 (United States); Zilouchian, Ali [Department of Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431 (United States)

    2011-02-01

    The purpose of this study is to investigate the impact of pulsing reactant flows on the performance of a PEMFC at low current density. This study considers a full range of pulsing flows and their effect in voltage over time. The factors evaluated were voltage, pressure, and flow rates of each reactant flow over time. A specific current density was set for the experiments. The experiments were performed at lower flow rates and temperatures of reactants than in standard operating conditions. The experiments used constant temperature of reactants as well as constant relative humidity. Comparison made between continuous flow and several sets of pulsing flows for hydrogen and air were developed. Pulsing of reactants opens an opportunity as a practical water management procedure. In addition, this technique helps extending performance range on PEMFC when a limited amount of reactants is supplied. The data collected was presented in graphical form. (author)

  13. A Technique for Temperature and Ultimate Load Calculations of Thin Targets in a Pulsed Electron Beam

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Lundsager, Per

    1979-01-01

    A technique is presented for the calculation of transient temperature distributions and ultimate load of rotationally symmetric thin membranes with uniform lateral load and exposed to a pulsed electron beam from a linear accelerator. Heat transfer by conduction is considered the only transfer...

  14. Design of UWB pulse radio transceiver using statistical correlation technique in frequency domain

    Directory of Open Access Journals (Sweden)

    M. Anis

    2007-06-01

    Full Text Available In this paper, we propose a new technique to extract low power UWB pulse radio signals, near to noise level, using statistical correlation technique in frequency domain. The receiver consists of many narrow bandpass filters which extract energy either from transmitted UWB signal, interfering channels or noise. Transmitted UWB data can be eliminated by statistical correlation of multiple bandpass filter outputs. Super-regenerative oscillators, tuned within UWB spectrum, are designed as bandpass filters. Summers and comparators perform statistical correlation.

  15. Comparison Between Digital and Analog Pulse Shape Discrimination Techniques For Neutron and Gamma Ray Separation

    Energy Technology Data Exchange (ETDEWEB)

    R. Aryaeinejad; John K. Hartwell

    2005-11-01

    Recent advancement in digital signal processing (DSP) using fast processors and computer makes it possible to be used in pulse shape discrimination applications. In this study, we have investigated the feasibility of using a DSP to distinguish between the neutrons and gamma rays by the shape of their pulses in a liquid scintillator detector (BC501), and have investigated pulse shape-based techniques to improve the resolution performance of room-temperature cadmium zinc telluride (CZT) detectors. For the neutron/gamma discrimination, the advantage of using a DSP over the analog method is that in analog system two separate charge-sensitive ADC's are required. One ADC is used to integrate the beginning of the pulse risetime while the second ADC is for integrating the tail part. Using a DSP eliminates the need for separate ADCs as one can easily get the integration of two parts of the pulse from the digital waveforms. This work describes the performance of these DSP techniques and compares the results with the analog method.

  16. Pulse Sign Separation Technique for the Received Bits in Wireless Ultra-Wideband Combination Approach

    Directory of Open Access Journals (Sweden)

    Rashid A. Fayadh

    2014-01-01

    Full Text Available When receiving high data rate in ultra-wideband (UWB technology, many users have experienced multiple-user interference and intersymbol interference in the multipath reception technique. Structures have been proposed for implementing rake receivers to enhance their capabilities by reducing the bit error probability (Pe, thereby providing better performances by indoor and outdoor multipath receivers. As a result, several rake structures have been proposed in the past to reduce the number of resolvable paths that must be estimated and combined. To achieve this aim, we suggest two maximal ratio combiners based on the pulse sign separation technique, such as the pulse sign separation selective combiner (PSS-SC and the pulse sign separation partial combiner (PSS-PC to reduce complexity with fewer fingers and to improve the system performance. In the combiners, a comparator was added to compare the positive quantity of positive pulses and negative quantities of negative pulses to decide whether the transmitted bit was 1 or 0. The Pe was driven by simulation for multipath environments for impulse radio time-hopping binary phase shift keying (TH-BPSK modulation, and the results were compared with those of conventional selective combiners (C-SCs and conventional partial combiners (C-PCs.

  17. Characterization of a seeded pulsed molecular beam using the velocity map imaging technique

    Science.gov (United States)

    Lietard, Aude; Poisson, Lionel; Mestdagh, Jean-Michel; Gaveau, Marc-André

    2016-11-01

    An experimental study has been performed to characterize the density and the velocity distribution in a pulsed molecular beam generated by a source associating a pulsed valve and an oven placed just downstream. In its operating mode, the flow is alternatively in a supersonic and effusive regime. The Velocity Map Imaging (VMI) technique associated with laser ionization allows measuring the velocity distribution and the density of molecules as a function of time during the expansion. It gives us a very precise insight into the structure of the molecule bunch, and therefore into the nature of the expansion from which the molecular beam is extracted.

  18. Reliable Welding of HSLA Steels by Square Wave Pulsing Using an Advanced Sensing (EDAP) Technique.

    Science.gov (United States)

    1986-04-30

    situation is the result of welding on A710 steel . (A similar effect on welding on HY80 ?) The following is offered by Woods and Milner (Ref. 12): "The...AD-R69 762 RELIABLE MELDING OF HSLA STEELS BY SQUARE MAVE PULSING 1/2 USING AN ADV NCED.. (U) APPLIED FUSION TECHNOLOGIES INC FORT COLLINS CO C...6 p . 0 Report 0001 AZ AD-A 168 762 I "RELIABLE WELDING OF HSLA STEELS BY SQUARE WAVE PULSING USING AN ADVANCED SENSING (EDAP) TECHNIQUE- Preliminary

  19. Dynamic Voltage Restorer Based on Space Vector Pulse Width Modulation Technique

    Directory of Open Access Journals (Sweden)

    B.N S P Venkatesh

    2011-07-01

    Full Text Available Power Quality problems encompass a wide range of disturbances such as voltage sags, swells, flicker,harmonics distortion and interruptions. The strategic deployment of custom power devices has been proposed asone of the means to protect sensitive loads from power quality problems such as voltage sags and swells. The Dynamic Voltage Restorer (DVR is a power electronic device that is used to inject 3-phase voltage in series and in synchronism with the distribution feeder voltages in order to compensate voltage sag and similarly itreacts quickly to inject the appropriate voltage component (negative voltage magnitude in order to compensate voltage swell. The principal component of the DVR is a voltage source inverter that generates three phase voltages and provides the voltage support to a sensitive load during voltage sags and swells. Pulse Width Modulation Technique is very critical for proper control of DVR. Sinusoidal Pulse Width Modulation (SPWM and Space Vector Pulse Width Modulation (SVPWM control techniques are used for controlling the DVR. Inthis work, the operation of DVR is presented and the control technique used for voltage source inverter is Space Vector PWM technique. Space vector PWM can utilize the better dc voltage and generates the fewer harmonic in inverter output voltage than Sinusoidal PWM technique. This work describes the DVR based on Space Vector PWM which provides voltage support to sensitive loads and is simulated by using MATLAB/SIMULINK. Simulation results show that the control approach is able to compensate for any type of voltage sags and swells.

  20. On the effects of quantization on mismatched pulse compression filters designed using L-p norm minimization techniques

    CSIR Research Space (South Africa)

    Cilliers, Jacques E

    2007-10-01

    Full Text Available In [1] the authors introduced a technique for generating mismatched pulse compression filters for linear frequency chirp signals. The technique minimizes the sum of the pulse compression sidelobes in a p L –norm sense. It was shown that extremely...

  1. A single-shot nanosecond neutron pulsed technique for the detection of fissile materials

    Science.gov (United States)

    Gribkov, V.; Miklaszewski, R. A.; Chernyshova, M.; Scholz, M.; Prokopovicz, R.; Tomaszewski, K.; Drozdowicz, K.; Wiacek, U.; Gabanska, B.; Dworak, D.; Pytel, K.; Zawadka, A.

    2012-07-01

    A novel technique with the potential of detecting hidden fissile materials is presented utilizing the interaction of a single powerful and nanosecond wide neutron pulse with matter. The experimental system is based on a Dense Plasma Focus (DPF) device as a neutron source generating pulses of almost mono-energetic 2.45 MeV and/or 14.0 MeV neutrons, a few nanoseconds in width. Fissile materials, consisting of heavy nuclei, are detected utilizing two signatures: firstly by measuring those secondary fission neutrons which are faster than the elastically scattered 2.45 MeV neutrons of the D-D reaction in the DPF; secondly by measuring the pulses of the slower secondary fission neutrons following the pulse of the fast 14 MeV neutrons from the D-T reaction. In both cases it is important to compare the measured spectrum of the fission neutrons induced by the 2.45 MeV or 14 MeV neutron pulse of the DPF with theoretical spectra obtained by mathematical simulation. Therefore, results of numerical modelling of the proposed system, using the MCNP5 and the FLUKA codes are presented and compared with experimental data.

  2. A novel technique for the characterization of a HPGe detector response based on pulse shape comparison

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, F.C.L. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Camera, F. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)], E-mail: camera@mi.infn.it; Million, B.; Sassi, M.; Wieland, O.; Bracco, A. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)

    2008-08-11

    A novel technique for measuring the HPGe detector pulse shape as a function of the {gamma}-ray interaction position inside the detector volume is presented. This technique is based on a specific pulse shape comparison procedure. Its main feature is that it allows to characterize the 3D position response of a HPGe segmented detector in a much shorter time as compared with the standard coincidence techniques. The method was first validated using a GEANT simulation of a 36-fold HPGe AGATA detector realized taking into account the effects of the electronic chain response and electrical noise on the calculated signal shape. This procedure was then applied to extract experimentally the position response of a non-segmented coaxial HPGe detector along the radial direction, using a 438 MBq {sup 137}Cs collimated {gamma}-source. The results of this measurement show a dependence of the pulse shape as a function of {gamma}-ray interaction radial coordinate consistent with that obtained with calculations. The signal acquisition rate reached using this characterization technique allows to realize a full scan of a large volume highly segmented HPGe detector in less than a week.

  3. An Approximate Numerical Technique for Characterizing Optical Pulse Propagation in Inhomogeneous Biological Tissue

    Directory of Open Access Journals (Sweden)

    Chintha C. Handapangoda

    2008-01-01

    Full Text Available An approximate numerical technique for modeling optical pulse propagation through weakly scattering biological tissue is developed by solving the photon transport equation in biological tissue that includes varying refractive index and varying scattering/absorption coefficients. The proposed technique involves first tracing the ray paths defined by the refractive index profile of the medium by solving the eikonal equation using a Runge-Kutta integration algorithm. The photon transport equation is solved only along these ray paths, minimizing the overall computational burden of the resulting algorithm. The main advantage of the current algorithm is that it enables to discretise the pulse propagation space adaptively by taking optical depth into account. Therefore, computational efficiency can be increased without compromising the accuracy of the algorithm.

  4. A power ramped pulsed mode laser piercing technique for improved CO 2 laser profile cutting

    Science.gov (United States)

    Tirumala Rao, B.; Ittoop, M. O.; Kukreja, L. M.

    2009-11-01

    Laser piercing is one of the inevitable requirements of laser profile cutting process and it has a direct bearing on the quality of the laser cut profiles. We have developed a novel power ramped pulsed mode (PRPM) laser piercing technique to produce much finer pierced holes and to achieve a better control on the process parameters compared to the existing methodology based on normal pulsed mode (NPM). Experiments were carried out with both PRPM and NPM laser piercing on 1.5-mm-thick mild steel using an in-house developed high-power transverse flow continuous wave (CW)-CO 2 laser. Significant improvements in the spatter, circularity of the pierced hole and reproducibility were achieved through the PRPM technique. We studied, in detail, the dynamics of processes involved in PRPM laser piercing and compared that with those of the NPM piercing.

  5. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique

    OpenAIRE

    MARTÍNEZ GIL, PABLO; Laguarda Miró, Nicolás; Soto Camino, Juan; Masot Peris, Rafael

    2013-01-01

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in count...

  6. Online process control for directional solidification by ultrasonic pulse echo technique.

    Science.gov (United States)

    Drevermann, A; Pickmann, C; Tiefers, R; Zimmermann, G

    2004-04-01

    A method of controlling the actual growth velocity during directional solidification based on ultrasound has been developed. For this purpose a pulse echo technique is used to measure the actual solidification rate online. This quantity is used to control the furnace velocity. Solidification experiments with metallic alloys and constant furnace velocity often result in non-steady actual solidification rates. Experiments carried out with online process control demonstrate that a really steady-state solidification with a constant solidification rate is achieved.

  7. Characterisation of Pb thin films prepared by the nanosecond pulsed laser deposition technique for photocathode application

    OpenAIRE

    Lorusso, Antonella; Gontad, F.; Broitman, Esteban; Chiadroni, E.; Perrone, Walter

    2015-01-01

    Pb thin films were prepared by the nanosecond pulsed laser deposition technique on Si (100) and polycrystalline Nb substrates for photocathode application. As the photoemission performances of a cathode are strongly affected by its surface characteristics, the Pb films were grown at different substrate temperatures with the aim of modifying the morphology and structure of thin films. An evident morphological modification in the deposited films with the formation of spherical grains at higher ...

  8. Implementation of pulse interval modulation based on dualmapping technique for optical wireless communications

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tie-ying; WANG Hong-xing; HU Hao; CONG Pei-sheng

    2009-01-01

    Aiming at implementing the digital pulse interval modulation (DPIM) for optical wireless communications (OWC), a dual-mapping technique is presented. The scheme of DPIM train based upon the dual-mapping technique is given. Its slot error rate is derived for the avalanche photonic diode (APD) receiver model, and is compared with that of classical DPIM. Simulation results show that the dual-mapping DPIM (D-DPIM), which has a fixed slot length, only has marginally inferior error performance, but can solve waiting slots or buffer overflowing in comparison with DPIM. Hence, it is suitable for the optical wireless communication systems.

  9. New autocorrelation technique for the IR FEL optical pulse width measurements

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Brau, K.A.; Becker, C. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1995-12-31

    We have developed a new technique for the autocorrelation measurement of optical pulse width at the Vanderbilt University FEL center. This method is based on nonlinear absorption and transmission characteristics of semiconductors such as Ge, Te and InAs suitable for the wavelength range from 2 to over 6 microns. This approach, aside being simple and low cost, removes the phase matching condition that is generally required for the standard frequency doubling technique and covers a greater wavelength range per nonlinear material. In this paper we will describe the apparatus, explain the principal mechanism involved and compare data which have been acquired with both frequency doubling and two-photon absorption.

  10. Standoff detection of hazardous materials using a novel dual-laser pulse technique: theory and experiments

    Science.gov (United States)

    Ford, Alan; Waterbury, Robert D.; Rose, Jeremy; Dottery, Edwin L.

    2009-05-01

    The present work focuses on a new variant of double pulse laser induced breakdown spectroscopy (DP-LIBS) called Townsend effect plasma spectroscopy (TEPS) for standoff applications. In the TEPS technique, the atomic and molecular emission lines are enhanced by a factor on the order of 25 to 300 times over LIBS, depending upon the emission lines observed. As a result, it is possible to extend the range of laser induced plasma techniques beyond LIBS and DP-LIBS for the detection of CBRNE materials at distances of several meters.

  11. Simultaneous PIV and pulsed shadow technique in slug flow: a solution for optical problems

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, S. [Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, B-1640, Rhode Saint Genese (Belgium); Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); Sousa, R.G.; Pinto, A.M.F.R.; Campos, J.B.L.M. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); Riethmuller, M.L. [Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, B-1640, Rhode Saint Genese (Belgium)

    2003-12-01

    A recent technique of simultaneous particle image velocimetry (PIV) and pulsed shadow technique (PST) measurements, using only one black and white CCD camera, is successfully applied to the study of slug flow. The experimental facility and the operating principle are described. The technique is applied to study the liquid flow pattern around individual Taylor bubbles rising in an aqueous solution of glycerol with a dynamic viscosity of 113 x 10{sup -3} Pa s. With this technique the optical perturbations found in PIV measurements at the bubble interface are completely solved in the nose and in annular liquid film regions as well as in the rear of the bubble for cases in which the bottom is flat. However, for Taylor bubbles with concave oblate bottoms, some optical distortions appear and are discussed. The measurements achieved a spatial resolution of 0.0022 tube diameters. The results reported show high precision and are in agreement with theoretical and experimental published data. (orig.)

  12. W/Cu composites produced by pulse plasma sintering technique (PPS)

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, M. [Association EURATOM-IPPLM, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Fortuna, E. [Association EURATOM-IPPLM, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)], E-mail: elaf@inmat.pw.edu.pl; Michalski, A.; Pakiela, Z.; Kurzydlowski, K.J. [Association EURATOM-IPPLM, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

    2007-10-15

    W-Cu composites of various compositions were produced using the pulse plasma sintering (PPS) technique which applies pulsed high electric discharges to heat the powders subjected to pressing. Because the arc discharges between the powder particles clean their surfaces and intensify diffusion processes, the sintering time is reduced to a few minutes. The powder preparation processes, milling, mixing and reduction before sintering, and the sintering conditions were optimized by undertaking detailed investigations of the microstructure of powders and composites. Room temperature tensile strength, using small samples, hardness and the coefficients of thermal expansion were measured. The results prove that by using the PPS method a high density material having 98% of the theoretical density can be fabricated. It has also been shown that the PPS device can be used to join the composite material to a tungsten plate.

  13. Advanced Techniques and Antenna Design for Pulse Shaping in UWB Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Lise Safatly

    2012-01-01

    Full Text Available Spectrum scarcity has emerged as a primary problem in the communications technology. The combination of cognitive radio (CR and ultra-wideband impulse radio (UWB-IR has been proposed to solve the shortage problem by allowing smart and adaptive spectrum management, leading to UWB-CR. In a UWB-CR scheme, secondary users are supposed to ensure interference avoidance by adaptively selecting the portions of the spectrum not being used by primary users. In this paper, three different techniques for the generation of adaptive UWB pulses are studied. The Parks-McClellan algorithm is employed, a neural network is trained, and a reconfigurable band stop filter is designed to generate an adaptive waveform with nulls at specific frequencies. Simulations, measurements, and analysis show that each generated UWB pulse has remarkable advantages in the frequency utilization, spectrum avoidance, and hardware implementation.

  14. Electron-volt spectroscopy at a pulsed neutron source using a resonance detector technique

    CERN Document Server

    Andreani, C; Senesi, R; Gorini, G; Tardocchi, M; Bracco, A; Rhodes, N; Schooneveld, E M

    2002-01-01

    The effectiveness of the neutron resonance detector spectrometer for deep inelastic neutron scattering measurements has been assessed by measuring the Pb scattering on the eVS spectrometer at ISIS pulsed neutron source and natural U foils as (n,gamma) resonance converters. A conventional NaI scintillator with massive shielding has been used as gamma detector. A neutron energy window up to 90 eV, including four distinct resonance peaks, has been assessed. A net decrease of the intrinsic width of the 6.6 eV resonance peak has also been demonstrated employing the double difference spectrum technique, with two uranium foils of different thickness.

  15. Influence of Pulse Shaping Filters on PAPR Performance of Underwater 5G Communication System Technique: GFDM

    Directory of Open Access Journals (Sweden)

    Jinqiu Wu

    2017-01-01

    Full Text Available Generalized frequency division multiplexing (GFDM is a new candidate technique for the fifth generation (5G standard based on multibranch multicarrier filter bank. Unlike OFDM, it enables the frequency and time domain multiuser scheduling and can be implemented digitally. It is the generalization of traditional OFDM with several added advantages like the low PAPR (peak to average power ratio. In this paper, the influence of the pulse shaping filter on PAPR performance of the GFDM system is investigated and the comparison of PAPR in OFDM and GFDM is also demonstrated. The PAPR is restrained by selecting proper parameters and filters to make the underwater acoustic communication more efficient.

  16. Sliding mode pulse-width modulation technique for direct torque controlled induction motor drive

    Science.gov (United States)

    Bounadja, M.; Belarbi, A. W.; Belmadani, B.

    2010-05-01

    This paper presents a novel pulse-width modulation technique based sliding mode approach for direct torque control of an induction machine drive. Methodology begins with a sliding mode control of machine's torque and stator flux to generate the reference voltage vector and to reduce parameters sensitivity. Then, the switching control of the three-phase inverter is developed using sliding mode concept to make the system tracking reference voltage inputs. The main features of the proposed methodologies are the high tracking accuracy and the much easier implementation compared to the space vector modulation. Simulations are carried out to confirm the effectiveness of proposed control algorithms.

  17. Pulsed transthrombotic fibrinolysis: technique and results in the management of occluded lower limb bypass grafts.

    Science.gov (United States)

    Payelle, G; Maiza, D; Coffin, O; Alachkar, F; Alweis, S; Courtheoux, P; Khayat, M C; Gérard, J L; Théron, J

    1997-03-01

    Between March 1987 and March 1993 we used pulsed transthrombotic fibrinolysis to treat 58 symptomatic thrombotic occlusions of lower limb bypass grafts in 45 patients. There were 17 suprainguinal grafts and 28 infrainguinal grafts. Treatment consisted of pulsed infusion of fibrinolytic agents into the thrombus followed by continuous infusion using an electric pump. Minor percutaneous or surgical procedures were often associated. The mean delay to treatment was 7 days. The mean duration of treatment was 150 +/- 66 minutes. Immediate patency was achieved in 88% of cases with no significant difference between suprainguinal and infrainguinal grafts. The clinical success rate was 55%. Actuarial patency at 1 year was 54% +/- 11% for suprainguinal grafts and 26% +/- 7% for infrainguinal grafts. The probability of patency was much lower in patients whose grafts had been implanted within 3 months before occlusion and in patients in whom an adjuvant procedure had not been performed. This study demonstrates that, in cases not requiring immediate surgery, pulsed transthrombotic fibrinolysis can achieve durable patency by treating both the bypass and distal arterial network. This technique allows identification of lesions causing thrombosis and adaptation of treatment specifically to these lesions.

  18. Organic Scintillators in Nonproliferation Applications With a Hybridized Double-Pulse Rejection Technique

    Science.gov (United States)

    Bourne, Mark Mitchell

    Alternative detection technologies are crucial to meeting demand for neutron detectors, for the current production of He-3, which has been the classical neutron choice, is insufficient. Organic scintillators are a strong candidate as a He-3 alternative due to their high efficiency, fast timing properties, and capabilities for separately identifying gamma-rays and neutrons through pulse shape discrimination (PSD). However, the use of organic scintillators in environments with numerous gamma rays can be limited because overlapping gamma-ray events can be misclassified as neutron events during PSD. To solve this problem, a new, hybridized double-pulse cleaning technique, consisting of three separate cleaning algorithms, was developed. The technique removes gamma-ray double pulses while preserving as many neutron pulses as possible. This technique was applied to separate experiments of Cf-252 and a gamma-ray source when measuring at a 100-kHz count rate and a field of 1000 incident gamma rays per incident neutron. It was found that stilbene scintillators were capable of intrinsic neutron efficiencies between 15-19% when measuring bare Cf-252 and 13-17% when exposed to the gamma-ray field. Misclassification rates ranged from 10-6-10-5, a factor-of-5 better than both the EJ-309 liquid and BB3-5 plastic. Next, plutonium experiments were performed with stilbene to determine which cleaning algorithm was best for each sample. A clear correlation was found that related the correct method of cleaning to the measured gamma ray-to-neutron ratio. When the measured gamma ray-to-neutron ratio is 10 or below, the template cleaning algorithm is preferred, while the fractional and hybrid cleaning algorithms are preferred when the gamma ray-to-neutron ratio is 100 or greater. Discriminating neutron sources such as Cf-252 or AmLi from SNM samples such as plutonium is a top priority in nonproliferation. We demonstrate that time-correlated experiments, utilizing both PSD-capable plastic

  19. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications.

    Science.gov (United States)

    Ibrahim, El-Sayed H

    2011-07-28

    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this

  20. Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Sayed H

    2011-07-01

    Full Text Available Abstract Cardiovascular magnetic resonance (CMR tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR, scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1 Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM, delay alternating with nutations for tailored excitation (DANTE, and complementary SPAMM (CSPAMM; and 2 Advanced techniques, which include harmonic phase (HARP, displacement encoding with stimulated echoes (DENSE, and strain encoding (SENC. Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention

  1. Recurrent potential pulse technique for improvement of glucose sensing ability of 3D polypyrrole

    Science.gov (United States)

    Cysewska, Karolina; Karczewski, Jakub; Jasiński, Piotr

    2017-07-01

    In this work, a new approach for using a 3D polypyrrole (PPy) conducting polymer as a sensing material for glucose detection is proposed. Polypyrrole is electrochemically polymerized on a platinum screen-printed electrode in an aqueous solution of lithium perchlorate and pyrrole. PPy exhibits a high electroactive surface area and high electrochemical stability, which results in it having excellent electrocatalytic properties. The studies show that using the recurrent potential pulse technique results in an increase in PPy sensing stability, compared to the amperometric approach. This is due to the fact that the technique, under certain parameters, allows the PPy redox properties to be fully utilized, whilst preventing its anodic degradation. Because of this, the 3D PPy presented here has become a very good candidate as a sensing material for glucose detection, and can work without any additional dopants, mediators or enzymes.

  2. High efficiency WCDMA power amplifier with Pulsed Load Modulation (PLM) technique

    Science.gov (United States)

    Liao, Shu-Hsien

    In wireless communication, high data rate complex modulation is used for spectral efficiency. However, power efficiency of power amplifier degrades when complex modulation is applied. Therefore, efficiency enhancement is necessary to maintain the performance. However, conventional efficiency enhancement schemes are nonlinear and performance improvement can only be optimized over a small range of power level. In order to preserve linearity and power efficiency, we propose a new digital power amplification technique "Pulsed Load Modulation (PLM)" for high efficiency and linear amplification. The PLM technique realizes load impedance modulation in digital fashion which is insensitive to device nonlinearity. Furthermore, the optimum power efficiency can be maintained over a wide range of output power. In this work, a PLM power amplifier module has been fabricated and to demonstrate the ability of PLM to provide high efficiency and linear amplification.

  3. Limitations of the pulse-shape technique for particle discrimination in planar Si detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pausch, G.; Seidel, W. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany). Inst. fuer Kern- und Hadronenphysik; Moszynski, M.; Wolski, D. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland). Dept. of Nuclear Electronics; Bohne, W. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Festkoerperphysik; Cederkaell, J.; Klamra, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Physics; Grawe, H.; Schubart, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Lampert, M.O.; Rohr, P. [Eurisys Mesures, 67 - Tanneries (France)

    1996-11-01

    Limitations of the pulse-shape discrimination (PSD) technique - a promising method to identify the charged particles stopped in planar Si-detectors - have been investigated. The particle resolution turned out to be basically determined by resistivity fluctuations in the bulk silicon which cause the charge-collection time to depend on the point of impact. Detector maps showing these fluctuations have been measured and are discussed. Furthermore we present a simple method to test the performance of detectors with respect to PSD. Another limitation of the PSD technique is the finite energy threshold for particle identification. This threshold is caused by an unexpected decrease of the total charge-collection time for ions with a short range, in spite of the fact that the particle tracks are located in a region of very low electric field. (orig.)

  4. Concentration measurements in molecular gas mixtures with a two-pump pulse femtosecond polarization spectroscopy technique

    Science.gov (United States)

    Hertz, E.; Chaux, R.; Faucher, O.; Lavorel, B.

    2001-08-01

    Recently, we have demonstrated the ability of the Raman-induced polarization spectroscopy (RIPS) technique to accurately determine concentration or polarizability anisotropy ratio in low-pressure binary molecular mixtures [E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, J. Chem. Phys. 113, 6629 (2000)]. It has been also pointed out that macroscopic interference, occurring when two revivals associated to different molecules time overlap, can be used to achieve measurements with picosecond time resolution. The applicability of the technique is intrinsically limited to a concentration range where the signals of both molecules are of the same magnitude. In this paper, a two-pump pulse sequence with different intensities is used to overcome this limitation. The relative molecular responses are weighted by the relative laser pump intensities to give comparable signals. Furthermore, by tuning the time delay between the two-pump pulses, macroscopic interference can be produced regardless of the accidental coincidences between the two molecular temporal responses. The study is performed in a CO2-N2O gas mixture and the concentration is measured with and without macroscopic interference. Applications of the method in the field of noninvasive diagnostics of combustion media are envisaged.

  5. Characterisation of Pb thin films prepared by the nanosecond pulsed laser deposition technique for photocathode application

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, A., E-mail: antonella.lorusso@le.infn.it [Dipartimento di Matematica e Fisica “E. De Giorgi” and Istituto Nazionale di Fisica Nucleare, Università del Salento, Lecce 73100 (Italy); Gontad, F. [Dipartimento di Matematica e Fisica “E. De Giorgi” and Istituto Nazionale di Fisica Nucleare, Università del Salento, Lecce 73100 (Italy); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83 (Sweden); Chiadroni, E. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Frascati 00044 (Italy); Perrone, A. [Dipartimento di Matematica e Fisica “E. De Giorgi” and Istituto Nazionale di Fisica Nucleare, Università del Salento, Lecce 73100 (Italy)

    2015-03-31

    Pb thin films were prepared by the nanosecond pulsed laser deposition technique on Si (100) and polycrystalline Nb substrates for photocathode application. As the photoemission performances of a cathode are strongly affected by its surface characteristics, the Pb films were grown at different substrate temperatures with the aim of modifying the morphology and structure of thin films. An evident morphological modification in the deposited films with the formation of spherical grains at higher temperatures has been observed. X-ray diffraction measurements showed that a preferred orientation of Pb (111) normal to the substrate was achieved at 30 °C while the Pb (200) plane became strongly pronounced with the increase in the substrate temperature. Finally, a Pb thin film deposited on Nb substrate at 30 °C and tested as the photocathode showed interesting results for the application of such a device in superconducting radio frequency guns. - Highlights: • Pb thin films obtained by the nanosecond pulsed laser deposition technique at different substrate temperature. • The substrate temperature modifies the morphology and structure of Pb films. • Pb thin film was deposited at room temperature for photocathode application. • The Pb thin film photocathode was tested and the quantum efficiency of the device improved after laser cleaning treatment of the film surface.

  6. Pulsed remote field eddy current technique applied to non-magnetic flat conductive plates

    Science.gov (United States)

    Yang, Binfeng; Zhang, Hui; Zhang, Chao; Zhang, Zhanbin

    2013-12-01

    Non-magnetic metal plates are widely used in aviation and industrial applications. The detection of cracks in thick plate structures, such as multilayered structures of aircraft fuselage, has been challenging in nondestructive evaluation societies. The remote field eddy current (RFEC) technique has shown advantages of deep penetration and high sensitivity to deeply buried anomalies. However, the RFEC technique is mainly used to evaluate ferromagnetic tubes. There are many problems that should be fixed before the expansion and application of this technique for the inspection of non-magnetic conductive plates. In this article, the pulsed remote field eddy current (PRFEC) technique for the detection of defects in non-magnetic conducting plates was investigated. First, the principle of the PRFEC technique was analysed, followed by the analysis of the differences between the detection of defects in ferromagnetic and non-magnetic plain structures. Three different models of the PRFEC probe were simulated using ANSYS. The location of the transition zone, defect detection sensitivity and the ability to detect defects in thick plates using three probes were analysed and compared. The simulation results showed that the probe with a ferrite core had the highest detecting ability. The conclusions derived from the simulation study were also validated by conducting experiments.

  7. Simulation and experiments of stacks of high temperature superconducting coated conductors magnetized by pulsed field magnetization with multi-pulse technique

    Science.gov (United States)

    Zou, Shengnan; Zermeño, Víctor M. R.; Baskys, A.; Patel, A.; Grilli, Francesco; Glowacki, B. A.

    2017-01-01

    High temperature superconducting bulks or stacks of coated conductors (CCs) can be magnetized to become trapped field magnets (TFMs). The magnetic fields of such TFMs can break the limitation of conventional magnets (low cost. However, due to the heat generation during the magnetization, the trapped field and flux acquired by PFM usually cannot achieve the full potential of a sample (acquired by the field cooling or zero field cooling method). The multi-pulse technique was found to effectively improve the trapped field by PFM in practice. In this work, a systematic study on the PFM with successive pulses is presented. A 2D electromagnetic-thermal coupled model with comprehensive temperature dependent parameters is used to simulate a stack of CCs magnetized by successive magnetic pulses. An overall picture is built to show how the trapped field and flux evolve with different pulse sequences and the evolution patterns are analyzed. Based on the discussion, an operable magnetization strategy of PFM with successive pulses is suggested to provide more trapped field and flux. Finally, experimental results of a stack of CCs magnetized by typical pulse sequences are presented for demonstration.

  8. Pulse-power integrated-decay technique for the measurement of thermal conductivity

    Science.gov (United States)

    Kharalkar, Nachiket M.; Hayes, Linda J.; Valvano, Jonathan W.

    2008-07-01

    A pulse-power integrated-decay technique for the measurement of thermal conductivity of biological tissues is presented. A self-heated thermistor probe is used to deliver heat and also to measure the temperature response. Three-dimensional finite element analyses are used in this paper to design and optimize the technique. The thermal conductivity measurements from the computer simulations were in close accordance with the experimental data. An empirical calibration process, performed in glycerol and agar-gelled water, provides accurate thermal conductivity measurements. An accuracy analysis evaluated multiple experimental protocols using three solutions of known thermal properties. The results indicate that the thermal decay technique protocol had better accuracy than the constant temperature heating techniques. In vitro measurements demonstrate the variability of tissue thermal conductivity, and the need to perform direct measurements for tissues of interest. The factors that may introduce error in the experimental data are (i) poor thermal/physical contact between the thermistor probe and tissue sample, (ii) water loss from tissue during the course of experimentation and (iii) temperature stability.

  9. Transient and time-resolved four-wave mixing with collinear pump and probe pulses using the heterodyne technique

    DEFF Research Database (Denmark)

    Mecozzi, A.; Mørk, Jesper

    1998-01-01

    We review the recently proposed heterodyne technique for four-wave mixing experiments with collinear and co-polarized pulses. We discuss issues related to the parameters of the nonlinear dynamics of the sample that can be extracted by this technique....

  10. Simulation and experiments of Stacks of High Temperature Superconducting Coated Conductors Magnetized by Pulsed Field Magnetization with Multi-Pulse Technique

    CERN Document Server

    Zou, Shengnan; Baskys, A; Patel, A; Grilli, Francesco; Glowacki, B A

    2016-01-01

    High temperature superconducting (HTS) bulks or stacks of coated conductors (CCs) can be magnetized to become trapped field magnets (TFMs). The magnetic fields of such TFMs can break the limitation of conventional magnets (<2 T), so they show potential for improving the performance of many electrical applications that use permanent magnets like rotating machines. Towards practical or commercial use of TFMs, effective in situ magnetization is one of the key issues. The pulsed field magnetization (PFM) is among the most promising magnetization methods in virtue of its compactness, mobility and low cost. However, due to the heat generation during the magnetization, the trapped field and flux acquired by PFM usually cannot achieve the full potential of a sample (acquired by the field cooling or zero field cooling method). The multi-pulse technique was found to effectively improve the trapped field by PFM in practice. In this work, a systematic study on the PFM with successive pulses is presented. A 2D electrom...

  11. Flow measurement by pulsed-neutron activation techniques at the PKL facility at Erlangen (Germany). [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kehler, P.

    1982-03-01

    Flow velocities in the downcomer at the PKL facility (in Erlangen, Germany) were measured by the Pulsed-Neutron Activation (PNA) techniques. This was the first time that a fully automated PNA system, incorporating a dedicated computer for on-line data reduction, was used for flow measurements. A prototype of a portable, pulsed, high-output neutron source, developed by the Sandia National Laboratories for the US Nuclear Regulatory Commission, was also successfully demonstrated during this test. The PNA system was the primary flow-measuring device used at the PKL, covering the whole range of velocities of interest. In this test series, the PKL simulated small-break accidents similar to the one that occurred at TMI. The flow velocities in the downcomer were, therefore, very low, ranging between 0.03 and 0.35 m/sec. Two additional flow-measuring methods were used over a smaller range of velocities. Wherever comparison was possible, the PNA-derived velocity values agreed well with the measurements performed by the two more conventional methods.

  12. An Improved Clutter Suppression Method for Weather Radars Using Multiple Pulse Repetition Time Technique

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    2017-01-01

    Full Text Available This paper describes the implementation of an improved clutter suppression method for the multiple pulse repetition time (PRT technique based on simulated radar data. The suppression method is constructed using maximum likelihood methodology in time domain and is called parametric time domain method (PTDM. The procedure relies on the assumption that precipitation and clutter signal spectra follow a Gaussian functional form. The multiple interleaved pulse repetition frequencies (PRFs that are used in this work are set to four PRFs (952, 833, 667, and 513 Hz. Based on radar simulation, it is shown that the new method can provide accurate retrieval of Doppler velocity even in the case of strong clutter contamination. The obtained velocity is nearly unbiased for all the range of Nyquist velocity interval. Also, the performance of the method is illustrated on simulated radar data for plan position indicator (PPI scan. Compared with staggered 2-PRT transmission schemes with PTDM, the proposed method presents better estimation accuracy under certain clutter situations.

  13. Energy calibration of CsI(Tl) scintillator in pulse-shape identification technique

    CERN Document Server

    Avdeichikov, V; Golubev, P; Jakobsson, B; Colonna, N

    2003-01-01

    A batch of 16 CsI(Tl) scintillator crystals, supplied by the Bicron Company, has been studied with respect to precise energy calibration in pulse-shape identification technique. The light corresponding to pulse integration within the time interval 1.6-4.5 mu s (long gate) and 0.0-4.5 mu s (extra-long gate) exhibits a power law relation, L(E,Z,A)=a1(Z,A)E sup a sup 2 sup ( sup Z sup , sup A sup ) , for sup 1 sup , sup 2 sup , sup 3 H isotopes in the measured energy range 5-150 MeV. For the time interval 0.0-0.60 mu s (short gate), a significant deviation from the power law relation is observed, for energy greater than approx 30 MeV. The character of the a2(p)-a2(d) and a2(p)-a2(t) correlations for protons, deuterons and tritons, reveals 3 types of crystals in the batch. These subbatches differ in the value of the extracted parameter a2 for protons, and in the value of the spread of a2 for deuterons and tritons. This may be explained by the difference in the energy dependence of the fast decay time component an...

  14. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    Science.gov (United States)

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid.

  15. An exploding foil shockwave technique for magnetic flux compression and high voltage pulse generation

    CERN Document Server

    Goh, S E

    2002-01-01

    This thesis describes a novel electromagnetic shockwave technique for use in compressing magnetic flux and to serve as the basis for a new approach to producing fast-rising voltage pulses with amplitudes of several hundred kV. The shockwave is produced by an exploding foil driven electric gun that accelerates a Mylar flyer to impact with a sample of aluminium powder. Both Japanese and Russian researchers have previously published experimental results for shockwave magnetic flux compression using an explosive driver. The present research considers replacing the explosive energy of this driver by the electrostatic energy stored in a capacitor bank, thereby enabling experiments to be performed in a laboratory environment. Differences in performance that arise from the use of explosive and electrical driver are examined. A conventional electric gun system in planar geometry is developed to study the insulator-to-metallic transition in shock-compressed aluminium powder. This provides data on the conducting shock f...

  16. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique

    Science.gov (United States)

    Lorusso, A.; Gontad, F.; Solombrino, L.; Chiadroni, E.; Broitman, E.; Perrone, A.

    2016-11-01

    In this work Magnesium (Mg) and Yttrium (Y) thin films have been deposited on Copper (Cu) polycrystalline substrates by the pulsed laser ablation technique for photocathode application. Such metallic materials are studied for their interesting photoemission properties and are proposed as a good alternative to the Cu photocathode, which is generally used in radio-frequency guns. Mg and Y films were uniform with no substantial differences in morphology; a polycrystalline structure was found for both of them. Photoemission measurements of such cathodes based on thin films were performed, revealing a quantum efficiency higher than Cu bulk. Photoemission theory according to the three-step model of Spicer is invoked to explain the superior photoemission performance of Mg with respect to Y.

  17. Progress of Space Charge Research on Oil-Paper Insulation Using Pulsed Electroacoustic Techniques

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2016-01-01

    Full Text Available This paper focuses on the space charge behavior in oil-paper insulation systems used in power transformers. It begins with the importance of understanding the space charge behavior in oil-paper insulation systems, followed by the introduction of the pulsed electrostatic technique (PEA. After that, the research progress on the space charge behavior of oil-paper insulation during the recent twenty years is critically reviewed. Some important aspects such as the environmental conditions and the acoustic wave recovery need to be addressed to acquire more accurate space charge measurement results. Some breakthroughs on the space charge behavior of oil-paper insulation materials by the research team at the University of Southampton are presented. Finally, future work on space charge measurement of oil-paper insulation materials is proposed.

  18. Implementations of artificial neural networks using current-mode pulse width modulation technique.

    Science.gov (United States)

    El-Masry, E I; Yang, H K; Yakout, M A

    1997-01-01

    The use of a current-mode pulse width modulation (CM-PWM) technique to implement analog artificial neural networks (ANNs) is presented. This technique can be used to efficiently implement the weighted summation operation (WSO) that are required in the realization of a general ANN. The sigmoidal transformation is inherently performed by the nonlinear transconductance amplifier, which is a key component in the current integrator used in the realization of WSO. The CM-PWM implementation results in a minimum silicon area, and therefore is suitable for very large scale neural systems. Other pronounced features of the CM-PWM implementation are its easy programmability, electronically adjustable gains of neurons, and modular structures. In this paper, all the current-mode CMOS circuits (building blocks) required for the realization of CM-PWM ANNs are presented and simulated. Four modules for modular design of ANNs are introduced. Also, it is shown that the CM-PWM technique is an efficient method for implementing discrete-time cellular neural networks (DT-CNNs). Two application examples are given: a winner-take-all circuit and a connected component detector.

  19. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm{sup −2} is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm{sup −2} and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm{sup −2}. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  20. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    Science.gov (United States)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1-10 Hz) at various laser fluences ranging from 0.2 to 11 J cm-2 is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He-Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm-2 and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm-2. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  1. Experimental sensitivity analysis of a linearly stable thermoacoustic system via a pulsed forcing technique

    Science.gov (United States)

    Jamieson, Nicholas P.; Juniper, Matthew P.

    2017-09-01

    In this paper, we present the results of an experimental sensitivity analysis on a vertical electrically heated Rijke tube. We examine the shift in linear decay rates and frequencies of thermoacoustic oscillations, with and without control devices. To measure the decay rate, we wait for the system to reach a steady state and then excite it with an acoustic pulse from a loudspeaker. We identify the range of amplitudes over which the amplitude decays exponentially with time. In this range, the rate of change of the amplitude is linearly proportional to the amplitude, and we calculate the constant of proportionality, the linear decay rate, which can be compared with model predictions. The aim of this work is (i) to improve the experimental techniques implemented by Rigas et al. (J Fluid Mech 787, 2016), Jamieson et al. (Int J Spray Combust Dyn, 2016), using a technique inspired by Mejia et al. (Combust Flame 169:287-296, 2016), and (ii) to provide experimental data for future comparison with adjoint-based sensitivity analysis. Our experimental setup is automated and we can obtain thousands of decay rates in 1/12 the time of our previous method.

  2. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    Science.gov (United States)

    Liu, Yang; Chen, Wen-Li; Bond, Leonard J.; Hu, Hui

    2014-02-01

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost 300, heavy wet snow removal can cost 3,000 and removal of accumulated frozen/freezing rain can cost close to 10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  3. Identification of slow relaxing spin components by pulse EPR techniques in graphene-related materials

    Directory of Open Access Journals (Sweden)

    Antonio Barbon

    2017-01-01

    Full Text Available Electron Paramagnetic Resonance (EPR is a powerful technique that is suitable to study graphene-related materials. The challenging ability requested to the spectroscopy is its capability to resolve the variety of structures, relatively similar, that are obtained in materials produced through different methods, but that also coexist inside a single sample. In general, because of the intrinsic inhomogeneity of the samples, the EPR spectra are therefore a superposition of spectra coming from different structures. We show that by pulse EPR techniques (echo-detected EPR, ESEEM and Mims ENDOR we can identify and characterize species with slow spin relaxing properties. These species are generally called molecular states, and are likely small pieces of graphenic structures of limited dimensions, thus conveniently described by a molecular approach. We have studied commercial reduced graphene oxide and chemically exfoliated graphite, which are characterized by different EPR spectra. Hyperfine spectroscopies enabled us to characterize the molecular components of the different materials, especially in terms of the interaction of the unpaired electrons with protons (number of protons and hyperfine coupling constants. We also obtained useful precious information about extent of delocalization of the molecular states.

  4. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, R. de la [University of Leon, Escuela de Ingenieria Industrial, Leon 24071 (Spain); Celis, B. de [University of Leon, Escuela de Ingenieria Industrial, Leon 24071 (Spain)], E-mail: bcelc@unileon.es; Canto, V. del; Lumbreras, J.M. [University of Leon, Escuela de Ingenieria Industrial, Leon 24071 (Spain); Celis, Alonso B. de [King' s College London, IoP, De Crespigny Park, SE58AF (United Kingdom); Martin-Martin, A. [Laboratorio LIBRA, Edificio I-D, Paseo Belen 3. 47011 Valladolid (Spain); Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias. Po Prado de la Magdalena, s/n. 47005 Valladolid (Spain)], E-mail: alonsomm@libra.uva.es; Gutierrez-Villanueva, J.L. [Laboratorio LIBRA, Edificio I-D, Paseo Belen 3. 47011 Valladolid (Spain); Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias. Po Prado de la Magdalena, s/n. 47005 Valladolid (Spain)], E-mail: joselg@libra.uva.es

    2008-10-15

    A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for {alpha}/{beta}/{gamma}-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of {alpha}/{beta} particles and X-rays/{gamma} particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by {alpha}/{gamma} coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg{sup -1} for 0.1 kg of soil and 1000 min counting.

  5. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Hu, Hui [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Chen, Wen-Li [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090 (China); Bond, Leonard J. [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, 151 ASC II, Ames, IA 50011 (United States)

    2014-02-18

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  6. Pulse-driven LED circuit with transformer-based current balance technique

    Science.gov (United States)

    Kwak, S.-S.

    2014-12-01

    Light emitting diodes (LEDs) have been gradually used for backlight modules for liquid crystal display as a substitute for cold cathode fluorescent lamps. In most of LED applications, it is required to connect several LED strings in parallel to limit the dc voltage level to be applied to the single LED string. Due to considerable current variations through each LED string with inevitable parameter deviations as well as temperature and ageing effects, techniques to balance currents flowing through LED strings are required for LED drivers. This article proposes a pulse-driven LED circuit with transformer-based current balancing scheme, which can simply regulate currents through the LED strings. The transformers are placed in series with the LED strings in such a way that the LED currents are automatically balanced. Since the developed current sharing technique employs no dissipative resistors and no linear-mode transistors, the proposed driver has high efficiency, low power dissipation and reduced thermal problems. In addition, the presented driver with no additional semiconductor devices and no additional controllers can provide a simple and a cost-effective current balancing solution, compared to conventional approaches. Thus, the proposed LED driver can feature a simple, highly efficient, reliable and cost-effective method. The presented LED driver is verified with experimental results.

  7. Characterization of nanosecond pulse electrical field shock waves using imaging techniques

    Science.gov (United States)

    Mimun, L. Chris; Ibey, Bennett L.; Roth, Caleb C.; Barnes, Ronald A.; Sardar, Dhiraj K.; Beier, Hope T.

    2015-03-01

    Nanosecond pulsed electric fields (nsPEF) cause the formation of small pores, termed nanopores, in the membrane of cells. Current nanoporation models treat nsPEF exposure as a purely electromagnetic phenomenon, but recent publications showing pressure transients, ROS production, temperature gradients, and pH waves suggest the stimulus may be physically and chemically multifactorial causing elicitation of diverse biological conditions and stressors. Our research group's goal is to quantify the breadth and participation of these stressors generated during nsPEF exposure and determine their relative importance to the observed cellular response. In this paper, we used advanced imaging techniques to identify a possible source of nsPEF-induced acoustic shock waves. nsPEFs were delivered in an aqueous media via a pair of 125 μm tungsten electrodes separated by 100 μm, mirroring our previously published cellular exposure experiments. To visualize any pressure transients emanating from the electrodes or surrounding medium, we used the Schlieren imaging technique. Resulting images and measurements confirmed that mechanical pressure waves and electrode-based stresses are formed during nsPEF, resulting in a clearer understanding of the whole exposure dosimetry. This information will be used to better quantify the impact of nsPEF-induced acoustic shock waves on cells, and has provided further evidence of non-electrical-field induced exposures for elicitation of bioieffects.

  8. Pulse-shape discrimination techniques for the COBRA double beta-decay experiment at LNGS

    Science.gov (United States)

    Zatschler, S.; COBRA collaboration

    2017-09-01

    In modern elementary particle physics several questions arise from the fact that neutrino oscillation experiments have found neutrinos to be massive. Among them is the so far unknown nature of neutrinos: either they act as so-called Majorana particles, where one cannot distinguish between particle and antiparticle, or they are Dirac particles like all the other fermions in the Standard Model. The study of neutrinoless double beta-decay (0νββ-decay), where the lepton number conservation is violated by two units, could answer the question regarding the underlying nature of neutrinos and might also shed light on the mechanism responsible for the mass generation. So far there is no experimental evidence for the existence of 0νββ-decay, hence, existing experiments have to be improved and novel techniques should be explored. One of the next-generation experiments dedicated to the search for this ultra-rare decay is the COBRA experiment. This article gives an overview of techniques to identify and reject background based on pulse-shape discrimination.

  9. Synthesis of Electrical Conductive Silica Nanofiber/Gold Nanoparticle Composite by Laser Pulses and Sputtering Technique

    Science.gov (United States)

    Hamza, Sarah; Ignaszak, Anna; Kiani, Amirkianoosh

    2017-06-01

    Biocompatible-sensing materials hold an important role in biomedical applications where there is a need to translate biological responses into electrical signals. Increasing the biocompatibility of these sensing devices generally causes a reduction in the overall conductivity due to the processing techniques. Silicon is becoming a more feasible and available option for use in these applications due to its semiconductor properties and availability. When processed to be porous, it has shown promising biocompatibility; however, a reduction in its conductivity is caused by its oxidization. To overcome this, gold embedding through sputtering techniques are proposed in this research as a means of controlling and further imparting electrical properties to laser induced silicon oxide nanofibers. Single crystalline silicon wafers were laser processed using an Nd:YAG pulsed nanosecond laser system at different laser parameters before undergoing gold sputtering. Controlling the scanning parameters (e.g., smaller line spacings) was found to induce the formation of nanofibrous structures, whose diameters grew with increasing overlaps (number of laser beam scanning through the same path). At larger line spacings, nano and microparticle formation was observed. Overlap (OL) increases led to higher light absorbance's by the wafers. The gold sputtered samples resulted in greater conductivities at higher gold concentrations, especially in samples with smaller fiber sizes. Overall, these findings show promising results for the future of silicon as a semiconductor and a biocompatible material for its use and development in the improvement of sensing applications.

  10. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique.

    Science.gov (United States)

    Lesparre, Fabien; Gomes, Jean Thomas; Délen, Xavier; Martial, Igor; Didierjean, Julien; Pallmann, Wolfgang; Resan, Bojan; Druon, Frederic; Balembois, François; Georges, Patrick

    2016-04-01

    A two-stage master-oscillator power-amplifier (MOPA) system based on Yb:YAG single-crystal-fiber (SCF) technology and designed for high peak power is studied to significantly increase the pulse energy of a low-power picosecond laser. The first SCF amplifier has been designed for high gain. Using a gain medium optimized in terms of doping concentration and length, an optical gain of 32 dB has been demonstrated. The second amplifier stage designed for high energy using the divided pulse technique allows us to generate a recombined output pulse energy of 2 mJ at 12.5 kHz with a pulse duration of 6 ps corresponding to a peak power of 320 MW. Average powers ranging from 25 to 55 W with repetition rates varying from 12.5 to 500 kHz have been demonstrated.

  11. 脉冲涡流测厚技术%Thickness Measurement Technique by Pulsed Eddy Current

    Institute of Scientific and Technical Information of China (English)

    吴鑫; 李方奇; 石坤; 谢基龙; 李浩

    2009-01-01

    脉冲涡流检测技术具有频谱宽、信号穿透能力强以及精确度好等优点.对脉冲涡流测厚技术进行了仿真,即针对脉冲涡流测厚系统,建立了有限元分析模型,仿真分析了检测线圈上的电压的衰减规律,得到了检测线圈上的电压随被测体厚度的变化规律,确定了两者之间的定量关系.分析了提离距离、检测线圈参数和脉冲涡流频率对检测结果的影响.该研究为将来进行脉冲涡流测厚仪的研制提供了理论依据和数学模型.%Pulsed eddy current technique had quite a few advantages such as wide spectrum, strong penetration,high accuracy. The experiment was carried out to study the metal thickness measurement of PEC, and a finite element model for the system of the metal thickness measurement of PEC was established. Based on the finite element model established, this thesis analyzed the attenuation law of the voltage in receiving coil By changing the thickness of tested bodies, the relationship between the voltage of receiving coil and the thickness of the testedbodies was analyzed, and also the factors that affected the measuring results such as lift-off distance, parameters of testing coil and frequency of pulsed eddy current were analyzed in detail It provided a theoretical basis and mathematical models for the future development of the PEC gage.

  12. Phase-coded multi-pulse technique for ultrasonic high-order harmonic imaging of biological tissues in vitro.

    Science.gov (United States)

    Ma, Qingyu; Zhang, Dong; Gong, Xiufen; Ma, Yong

    2007-04-07

    Second or higher order harmonic imaging shows significant improvement in image clarity but is degraded by low signal-noise ratio (SNR) compared with fundamental imaging. This paper presents a phase-coded multi-pulse technique to provide the enhancement of SNR for the desired high-order harmonic ultrasonic imaging. In this technique, with N phase-coded pulses excitation, the received Nth harmonic signal is enhanced by 20 log(10)N dB compared with that in the single-pulse mode, whereas the fundamental and other order harmonic components are efficiently suppressed to reduce image confusion. The principle of this technique is theoretically discussed based on the theory of the finite amplitude sound waves, and examined by measurements of the axial and lateral beam profiles as well as the phase shift of the harmonics. In the experimental imaging for two biological tissue specimens, a plane piston source at 2 MHz is used to transmit a sequence of multiple pulses with equidistant phase shift. The second to fifth harmonic images are obtained using this technique with N = 2 to 5, and compared with the images obtained at the fundamental frequency. Results demonstrate that this technique of relying on higher order harmonics seems to provide a better resolution and contrast of ultrasonic images.

  13. Validity and reproducibility of arterial pulse wave velocity measurement using new device with oscillometric technique: A pilot study

    Directory of Open Access Journals (Sweden)

    Patnaik Amar

    2005-08-01

    Full Text Available Abstract Background Availability of a range of techniques and devices allow measurement of many variables related to the stiffness of large or medium sized arteries. There is good evidence that, pulse wave velocity is a relatively simple measurement and is a good indicator of changes in arterial properties. The pulse wave velocity calculated from pulse wave recording by other methods like doppler or tonometry is tedious, time-consuming and above all their reproducibility depends on the operator skills. It requires intensive resource involvement. For epidemiological studies these methods are not suitable. The aim of our study was to clinically evaluate the validity and reproducibility of a new automatic device for measurement of pulse wave velocity that can be used in such studies. Methods In 44 subjects including normal healthy control and patients with coronary artery disease, heart brachial, heart ankle, brachial ankle and carotid femoral pulse wave velocities were recorded by using a new oscillometric device. Lead I and II electrocardiogram and pressure curves were simultaneously recorded. Two observers recorded the pulse wave velocity for validation and one observer recorded the velocity on two occasions for reproducibility. Results and Discussion Pulse wave velocity and arterial stiffness index were recorded in 24 control and 20 coronary artery disease patients. All the velocities were significantly high in coronary artery disease patients. There was highly significant correlation between the values noted by the two observers with low standard deviation. The Pearson's correlation coefficient for various velocities ranged from (r = 0.88–0.90 with (p Conclusion The new device "PeriScope" based on oscillometric technique has been found to be a simple, non-invasive and reproducible device for the assessment of pulse wave velocity and can be used to determine arterial stiffness in large population based studies.

  14. Comparison of pulse wave velocity assessed by three different techniques: Arteriograph, Complior, and Echo-tracking.

    Science.gov (United States)

    Mihalcea, Diana J; Florescu, Maria; Suran, Berenice M C; Enescu, Oana A; Mincu, Raluca I; Magda, Stefania; Patrascu, Natalia; Vinereanu, Dragos

    2016-04-01

    Arterial stiffness estimated by pulse wave velocity (PWV) is an independent predictor of cardiovascular morbidity and mortality. Although recommended by the current guidelines, clinical applicability of this parameter is difficult, due to differences between the various techniques used to measure it and to biological variability. Our aim was to compare PWV assessed by 3 different commercially available systems. 100 subjects (51 ± 16 years, 45 men) were evaluated using the 3 methods: an oscillometric technique (Arteriograph, PWV-A); a piezo-electric method (Complior, PWV-C); and an high-resolution ultrasound technique implemented with an Echo-tracking system (Aloka, PWV-E). Conventional biological markers were measured. Correlations of PWV measured by the 3 methods were poor (r = 0.39, r = 0.39, and r = 0.31 for PWV-A vs. PWV-C, PWV-A vs. PWV-E, and PWV-C vs. PWV-E, respectively, all p < 0.05). By Bland-Altman analysis, mean difference (±SD) of PWV-A vs. PWV-C was -1.9 ± 2.0 m/s, of PWV-A vs. PWV-E -3.6 ± 1.9 m/s, and of PWV-C vs. PWV-E -2.7 ± 1.9 m/s, with a wide coefficient of variation (22.3, 25.7, and 25.7 %, respectively). As expected, PWV-A, PWV-C, and PWV-E correlated with other arterial stiffness parameters, such as intima-media thickness (r = 0.22, r = 0.22, and r = 0.36, respectively), E p (r = 0.37, r = 0.26, and r = 0.94, respectively), and augmentation index measured by Arteriograph method (r = 0.66, r = 0.35, and r = 0.26, respectively); all p < 0.05. Assessment of PWV is markedly dependent on the technique used to measure it, related to various methods for measuring traveled distance of the arterial wave. Our results suggest the urgent need to establish reference values of PWV for each of these techniques, separately, to be used in routine clinical practice.

  15. Study of deep level characteristics in the neutrons irradiated Si structures by combining pulsed and steady-state spectroscopy techniques

    Science.gov (United States)

    Gaubas, E.; Kalendra, V.; Ceponis, T.; Uleckas, A.; Tekorius, A.; Vaitkus, J.; Velicka, A.

    2012-11-01

    The standard methods, such as capacitance deep level transient spectroscopy (C-DLTS) and thermally stimulated current (TSC) techniques are unsuitable for the analysis of heavily irradiated devices. In this work, therefore, several steady-state and pulsed techniques have been combined to comprehensively evaluate parameters of radiation defects and functional characteristics of the irradiated Si pin detectors. In order to understand defects created by radiation and evaluate their evolution with fluence, C-DLTS and TSC techniques have been employed to make a baseline identification of the radiation induced traps after irradiation with a rather small neutron fluence of 1012 cm-2. The steady-state photo-ionization spectroscopy (PIS) technique has been involved to correlate thermal- and photo- activation energies for definite radiation defects. A contactless technique for simultaneous measurements of the carrier lifetime and the parameters of deep levels based on microwave probed pulsed photo-conductivity (MW-PC) spectroscopy has been applied to correlate carrier capture cross-sections and densities of the identified different radiation defects. A technique for spectroscopy of deep levels in junction structures (BELIV) based on measurements of barrier capacitance charging current transient changes due to additional spectrally resolved pulsed illumination has been applied to evaluate the functional characteristics of the irradiated diodes. Pulsed spectroscopic measurements were implemented by combining the analysis of generation current and of barrier capacitance charging transients modified by a single fs pulse of illumination generated by an optical parametric oscillator of varied wavelength in the range from 0.5 to 10 μm. Several deep levels with activation energy in the range of 0.18-0.8 eV have been resolved from spectral analysis in the samples of Si grown by magnetic field applied Czochralski (MCz) technology.

  16. Swarming Speed Control for DC Permanent Magnet Motor Drive via Pulse Width Modulation Technique and DC/DC Converter

    Directory of Open Access Journals (Sweden)

    A.S. Oshaba

    2013-05-01

    Full Text Available This study presents an approach for the speed control of a permanent magnet DC motor drive via Pulse Width Modulation (PWM technique and a DC/DC converter. The Particle Swarm Optimization (PSO technique is used to minimize a time domain objective function and obtain the optimal controller parameters. The performance of the proposed technique has been evaluated using various types of disturbances including load torque variations. Simulation results illustrate clearly the robustness of the controller and validity of the design technique for controlling the speed of permanent magnet motors.

  17. The Measurement of cloud velocity using the pulsed laser and image tracking technique

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seong-Ouk; Baik, Seung-Hoon; Park, Seung-Kyu; Park, Nak-Gyu; Kim, Dong-lyul; Ahn, Yong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The height of the clouds is also important for the three dimensional radiative interaction of aerosols and clouds, since the radiative effects vary strongly depending whether the cloud is above, below or even embedded in an aerosol layer. Clouds play an important role in climate change, in the prediction of local weather, and also in aviation safety when instrument assisted flying is unavailable. Presently, various ground-based instruments used for the measurements of the cloud base height or velocity. Lidar techniques are powerful and have many applications in climate studies, including the clouds' temperature measurement, the aerosol particle properties, etc. Otherwise, it is very circumscribed in cloud velocity measurements In this paper, we propose a new method to measure the cloud velocity. In this paper, we presented a method for the measurement of the cloud altitude and velocity using lidar's range detection and the tracking system. For the lidar system, we used an injection-seeded pulsed Nd:YAG laser as the transmitter to measure the distance to the target clouds. We used the DIC system to track the cloud image and calculate the actual displacement per unit time. The configured lidar system acquired the lidar signal of clouds at a distance of about 4 km. The developed fast correlation algorithm of the tracking, which is used to track the fast moving cloud relatively, was efficient for measuring the cloud velocity in real time. The measurement values had a linear distribution.

  18. XPS analysis and luminescence properties of thin films deposited by the pulsed laser deposition technique

    Science.gov (United States)

    Dolo, J. J.; Swart, H. C.; Coetsee, E.; Terblans, J. J.; Ntwaeaborwa, O. M.; Dejene, B. F.

    2010-04-01

    This paper presents the effect of substrate temperature and oxygen partial pressure on the photoluminescence (PL) intensity of the Gd2O2S:Tb3 + thin films that were grown by using pulsed laser deposition (PLD). The PL intensity increased with an increase in the oxygen partial pressure and substrate temperature. The thin film deposited at an oxygen pressure of 900 mTorr and substrate temperature of 900°C was found to be the best in terms of the PL intensity of the Gd2O2S:Tb3 + emission. The main emission peak due to the 5D4-7F5 transition of Tb was measured at a wavelength of 545 nm. The stability of these thin films under prolonged electron bombardment was tested with a combination of techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Cathodoluminescence (CL) spectroscopy. It was shown that the main reason for the degradation in luminescence intensity under electron bombardment is the formation of a non-luminescent Gd2O3 layer, with small amounts of Gd2S3, on the surface.

  19. Evaluation of Various Pulse-Decay Laboratory Permeability Measurement Techniques for Highly Stressed Coals

    Science.gov (United States)

    Feng, Ruimin; Harpalani, Satya; Pandey, Rohit

    2017-02-01

    The transient technique for laboratory permeability measurement, proposed by Brace et al. (J Geophys Res 73:2225-2236, 1968) and widely used for conventional gas reservoir rocks, is the preferred method when testing low-permeability rocks in the laboratory. However, Brace et al.'s solution leads to considerable errors since it does not take into account compressive storage and sorption effect when applied to sorptive rocks, such as, coals and shales. To verify the applicability of this solution when used to characterize fluid flow behavior of coal, an in-depth investigation of permeability evolution for flow of helium and methane depletion was conducted for San Juan coals using the pressure pulse-decay method under best replicated in situ conditions. Three permeability solutions, Brace et al.'s (1968), Dicker and Smits's (International meeting on petroleum engineering, Society of Petroleum Engineers, 1988) and Cui et al.'s (Geofluids 9:208-223, 2009), were utilized to establish the permeability trends. Both helium and methane permeability results exhibited very small difference between the Brace et al.'s solution and Dicker and Smits's solution, indicating that the effect of compressive storage is negligible. However, methane permeability enhancement at low pressures due to coal matrix shrinkage resulting from gas desorption can be significant and this was observed in pressure response plots and the estimated permeability values using Cui et al.'s solution only. Therefore, it is recommended that Cui et al.'s solution be employed to correctly include the sorption effect when testing coal permeability using the transient technique. A series of experiments were also carried out to establish the stress-dependent permeability trend under constant effective stress condition, and then quantify the sole contribution of the sorption effect on permeability variation. By comparison with the laboratory data obtained under in situ stress/strain condition, it was verified that

  20. Micro-beam and pulsed laser beam techniques for the micro-fabrication of diamond surface and bulk structures

    Energy Technology Data Exchange (ETDEWEB)

    Sciortino, S. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Bellini, M. [European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Istituto Nazionale di Ottica (INO-CNR), Largo Enrico Fermi 6, 50125 Firenze (Italy); Bosia, F. [Physics Department and “Nanostructured Interfaces and Surfaces” Inter-departmental Centre, University of Torino, via P. Giuria 1, 10125 Torino (Italy); INFN Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Calusi, S. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Corsi, C. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Czelusniak, C. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Gelli, N. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); and others

    2015-04-01

    Micro-fabrication in diamond is applicable in a wide set of emerging technologies, exploiting the exceptional characteristics of diamond for application in bio-physics, photonics and radiation detection. Micro ion-beam irradiation and pulsed laser irradiation are complementary techniques, which permit the implementation of complex geometries, by modification and functionalization of surface and/or bulk material, modifying the optical, electrical and mechanical characteristics of the material. In this article we summarize the work done in Florence (Italy), concerning ion beam and pulsed laser beam micro-fabrication in diamond.

  1. NONCONTACT MEASUREMENT OF ULTRASONIC VELOCITY IN LIQUID USING PULSED PHOTOACOUSTIC TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    王钦华; 黄孟才

    1993-01-01

    Based on the theory of the pulsed photoacoustic signal in liquid generated by a pulsed laser, a novel, optically noncontact, fast and accurate method for temperature-dependent ultrasonic velocities for ethanol and water has been demonstrated. The experiment results are in good agreemerit with literature values.

  2. Forward voltage short-pulse technique for measuring high power laser array junction temperature

    Science.gov (United States)

    Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

    2012-01-01

    The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

  3. Imaging of the magnetic field structure in megagauss plasmas by combining pulsed polarimetry with an optical Kerr effect shutter technique.

    Science.gov (United States)

    Smith, R J

    2010-10-01

    Pulsed polarimetry in combination with a high speed photographic technique based on the optical Kerr effect is described. The backscatter in a pulsed polarimeter is directed through a scattering cell and photographed using an ∼1 ps shutter, essentially freezing the intensity pattern. The image provides both the local electron density and magnetic field distributions along and transverse to the laser sightline. Submillimeter spatial resolution is possible for probing wavelengths in the visible due to the high densities and strong optical activity. Pulsed polarimetry is thereby extended to centimeter-sized plasmas with n(e)>10(19)-10(20) cm(-3) and B>20-100 T (MG) produced by multiterawatt, multimega-ampere electrical drivers, wire Z pinches, and liner imploded magnetized plasmas.

  4. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    Science.gov (United States)

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  5. Validity and reproducibility of arterial pulse wave velocity measurement using new device with oscillometric technique: a pilot study.

    Science.gov (United States)

    Naidu, Madireddy Umamaheshwar Rao; Reddy, Budda Muralidhar; Yashmaina, Sridhar; Patnaik, Amar Narayana; Rani, Pingali Usha

    2005-08-23

    Availability of a range of techniques and devices allow measurement of many variables related to the stiffness of large or medium sized arteries. There is good evidence that, pulse wave velocity is a relatively simple measurement and is a good indicator of changes in arterial properties. The pulse wave velocity calculated from pulse wave recording by other methods like doppler or tonometry is tedious, time-consuming and above all their reproducibility depends on the operator skills. It requires intensive resource involvement. For epidemiological studies these methods are not suitable. The aim of our study was to clinically evaluate the validity and reproducibility of a new automatic device for measurement of pulse wave velocity that can be used in such studies. In 44 subjects including normal healthy control and patients with coronary artery disease, heart brachial, heart ankle, brachial ankle and carotid femoral pulse wave velocities were recorded by using a new oscillometric device. Lead I and II electrocardiogram and pressure curves were simultaneously recorded. Two observers recorded the pulse wave velocity for validation and one observer recorded the velocity on two occasions for reproducibility. Pulse wave velocity and arterial stiffness index were recorded in 24 control and 20 coronary artery disease patients. All the velocities were significantly high in coronary artery disease patients. There was highly significant correlation between the values noted by the two observers with low standard deviation. The Pearson's correlation coefficient for various velocities ranged from (r = 0.88-0.90) with (p wave velocity were also significantly correlated (r = 0.71-0.98) (P wave velocity was found to correlate significantly with heart brachial, heart ankle, brachial ankle pulse wave velocity and arterial stiffness index values. Reproducibility of our method was good with very low variability in both interobserver and interperiod analysis. The new device "Peri

  6. A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.

    Science.gov (United States)

    Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D

    2015-01-01

    X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.

  7. PULSED ELECTROCHEMICAL TECHNIQUE FOR MONITORING ANTIBODY-ANTIGEN REACTIONS AT INTERFACES. (R825323)

    Science.gov (United States)

    AbstractThe mechanism of pulsed potential waveform for monitoring antibody¯antigen interactions at immunosensor interfaces is discussed. Some examples of antibody¯antigen interactions at quartz crystal microbalance and polymer-modified ...

  8. Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: comparison of techniques

    Directory of Open Access Journals (Sweden)

    Shaffer Jean M

    2010-05-01

    Full Text Available Abstract Background The assessment of arterial stiffness is increasingly used for evaluating patients with different cardiovascular diseases as the mechanical properties of major arteries are often altered. Aortic stiffness can be noninvasively estimated by measuring pulse wave velocity (PWV. Several methods have been proposed for measuring PWV using velocity-encoded cardiovascular magnetic resonance (CMR, including transit-time (TT, flow-area (QA, and cross-correlation (XC methods. However, assessment and comparison of these techniques at high field strength has not yet been performed. In this work, the TT, QA, and XC techniques were clinically tested at 3 Tesla and compared to each other. Methods Fifty cardiovascular patients and six volunteers were scanned to acquire the necessary images. The six volunteer scans were performed twice to test inter-scan reproducibility. Patient images were analyzed using the TT, XC, and QA methods to determine PWV. Two observers analyzed the images to determine inter-observer and intra-observer variabilities. The PWV measurements by the three methods were compared to each other to test inter-method variability. To illustrate the importance of PWV using CMR, the degree of aortic stiffness was assessed using PWV and related to LV dysfunction in five patients with diastolic heart failure patients and five matched volunteers. Results The inter-observer and intra-observer variability results showed no bias between the different techniques. The TT and XC results were more reproducible than the QA; the mean (SD inter-observer/intra-observer PWV differences were -0.12(1.3/-0.04(0.4 for TT, 0.2(1.3/0.09(0.9 for XC, and 0.6(1.6/0.2(1.4 m/s for QA methods, respectively. The correlation coefficients (r for the inter-observer/intra-observer comparisons were 0.94/0.99, 0.88/0.94, and 0.83/0.92 for the TT, XC, and QA methods, respectively. The inter-scan reproducibility results showed low variability between the repeated

  9. DETECTING TECHNIQUE OF WEAK PERIODIC PULSE SIGNAL VIA SYNTHESIS OF CROSS-CORRELATION AND CHAOTIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Li Yue; Yang Baojun; Lu Peng; Li Shizhe

    2003-01-01

    In this letter, with the synthesis of usual cross-correlation detecting method andchaotic detecting method, a new detecting system for the weak periodic pulse signal is constituted,in which the two methods can play respective preponderance. Theoretical analyses and simulationstudies have shown that the detecting system is very sensitive to the periodic pulse signal understrong noise background and has exceedingly powerful capability of suppressing complex noise.

  10. Modulation techniques for deep-space pulse-position modulation (PPM) optical communication

    Science.gov (United States)

    Rayman, Marc D.; Robinson, Deborah L.

    1988-01-01

    The extremely energy-efficient pulse-position modulation (PPM) format is being actively developed as a basis for optical communications with deep-space probes. Attention is presently given to different modulation schemes for the efficient production of laser pulses over a broad range of repetition rates. Both Q-switching and cavity dumping modulation methods are available for the envisioned diode-pumped Nd:YAG laser source. Numerical calculation results are presented for cavity-dumping.

  11. Single photon detection based devices and techniques for pulsed time-of-flight applications

    OpenAIRE

    Hallman, L. (Lauri)

    2015-01-01

    Abstract In this thesis, a new type of laser diode transmitter using enhanced gain-switching suitable for use with a single photon avalanche diode (SPAD) detector was developed and tested in the pulsed time-of-flight laser range finding (lidar) application. Several laser diode versions were tested and the driving electronics were developed. The driving electronics improvements enabled a pulsing frequency of up to 1 MHz, while the maximum laser output power was about 5–40 W depending on...

  12. Nonlinear imaging techniques for the observation of cell membrane perturbation due to pulsed electric field exposure

    Science.gov (United States)

    Moen, Erick K.; Beier, Hope T.; Thompson, Gary L.; Roth, Caleb C.; Ibey, Bennett L.

    2014-03-01

    Nonlinear optical probes, especially those involving second harmonic generation (SHG), have proven useful as sensors for near-instantaneous detection of alterations to orientation or energetics within a substance. This has been exploited to some success for observing conformational changes in proteins. SHG probes, therefore, hold promise for reporting rapid and minute changes in lipid membranes. In this report, one of these probes is employed in this regard, using nanosecond electric pulses (nsEPs) as a vehicle for instigating subtle membrane perturbations. The result provides a useful tool and methodology for the observation of minute membrane perturbation, while also providing meaningful information on the phenomenon of electropermeabilization due to nsEP. The SHG probe Di- 4-ANEPPDHQ is used in conjunction with a tuned optical setup to demonstrate nanoporation preferential to one hemisphere, or pole, of the cell given a single square shaped pulse. The results also confirm a correlation of pulse width to the amount of poration. Furthermore, the polarity of this event and the membrane physics of both hemispheres, the poles facing either electrode, were tested using bipolar pulses consisting of two pulses of opposite polarity. The experiment corroborates findings by other researchers that these types of pulses are less effective in causing repairable damage to the lipid membrane of cells.

  13. Synthesis of Corrosion-resistant Nanocrystalline Nickle-copper Alloy Coatings by Pulse-plating Technique

    Directory of Open Access Journals (Sweden)

    S.K. Ghosh

    2005-01-01

    Full Text Available Bright and smooth nanocrystalline Monel-type Ni-Cu alloy gets deposited from complex citrate electrolyte by pulse electrolysis. Transmission electron microscopy studies have revealedthat the deposited Ni-Cu alloy was nanocrystalline in nature and it comprised a two-phase (fcc+Ll, mixture. The presence of twins could be seen in the nanocrystals. The Ni-Cu alloysprepared by pulse electrolysis were finer grained (- 2.5-28.5 nm than those deposited by direct current method. Nelson-Riley function has been used to calculate the lattice parameters for both the pulse current-plated and direct current-plated alloys from x-ray diffraction analysis. The microhardness values for pulse current-plated alloys were higher than for the direct currentplated alloys. The internal stresses of both the pulse current-deposited and the direct currentdeposited alloys have also been measured; the values were lower for pulse current-plated alloys. Potentiodynamic polarisation studies were carried out in aerated and deaerated neutral 3.0 Wt per cent NaCl solution and instantaneous corrosion current density of the plated alloy was determined and compared with the Monel-400 alloy. It was found that nanocrystalline pulse current-N,-35 8 Wt p;r cent copper alloy uxh~bitedlo wer instantaneous value of corros~onc urrent densirv than that of soeclrnens with direct current method and Monel-400 allov The d~ssolut~on ~ ~~~~-~ behaviour ofthe deposited nanocrystalline material was found to be more like general corrosion rather than localised corrosion as in the case of Monel-400 alloy.

  14. Measurements of electron drift velocity in isobutane using the pulsed Townsend technique

    Energy Technology Data Exchange (ETDEWEB)

    Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept. de Fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2010-07-01

    Full text. The electron drift velocity characterizes the electric conductivity of weakly ionized gases and is one of the most important transport parameters for simulation and modeling of radiation detectors and plasma discharges. This work presents the results of electron drift velocity as a function of the reduced electric field obtained in nitrogen and isobutane by the Pulsed Townsend technique. Due to its excellent timing properties, isobutane is a common component of standard mixtures used in RPCs (Resistive Plate Chambers), however, at moderate electric fields strength (50 Td <= E/N <= 200 Td), there are insufficient data available in literature for this gas. In our experimental apparatus, electrons are liberated from an aluminum cathode (40mm diameter) due to the incidence of a nitrogen laser beam (MNL202-LD LTB) and are accelerated by the applied electric field toward the anode, made of a high resistivity glass (2 x 10{sup 10} {Omega}{center_dot}m). The fast electric signals generated is amplified and were digitalized in a 1 GHz bandwidth oscilloscope to measure the electrons transit time and to calculate the electron drift velocity in different gaps between anode and cathode. As the timing information presented in the fast electric signal originated in the anode is significant in our application, the amplifier circuit had to hold special features in order to preserve the signal shape. The linear amplifier used, based on the BGM1013 integrated circuit (Philips R), reaches up to 2.1 GHz bandwidth with 35.5 dB gain and was developed and built at Laboratory of Instrumentation and Experimental Particles Physics/Portugal. In order to validate this method, measurements were initially carried out in pure nitrogen, in reduced electric fields ranging from 148 to 194 Td. These results showed good agreement with those found in the literature for this largely investigated gas. The measurements of electron drift velocities in pure isobutane were performed as a function

  15. Design and Simulation of Control Technique for Permanent Magnet Synchronous Motor Using Space Vector Pulse Width Modulation

    Science.gov (United States)

    Khan, Mansoor; Yong, Wang; Mustafa, Ehtasham

    2017-07-01

    After the rapid advancement in the field of power electronics devices and drives for last few decades, there are different kinds of Pulse Width Modulation techniques which have been brought to the market. The applications ranging from industrial appliances to military equipment including the home appliances. The vey common application for the PWM is three phase voltage source inverter, which is used to convert DC to AC in the homes to supply the power to the house in case electricity failure, usually named as Un-interrupted Power Supply. In this paper Space Vector Pulse Width Modulation techniques is discussed and analysed under the control technique named as Field Oriented Control. The working and implementation of this technique has been studied by implementing on the three phase bridge inverter. The technique is used to control the Permanente Magnet Synchronous Motor. The drive system is successfully implemented in MATLAB/Simulink using the mathematical equation and algorithm to achieve the satisfactory results. PI type of controller is used to tuned ers of the motothe parametr i.e. torque and current.

  16. The Overlapped Triple Circle Pulse Technique with Nd:YAG Laser for Refractory Hand Warts.

    Science.gov (United States)

    Bingol, Ugur Anil; Cömert, Asuman; Cinar, Can

    2015-06-01

    Inadvertent superficial treatment of hand warts causes recurrence, whereas aggressive treatment can lead to tissue defects resulting in hand dysfunction. This study aimed to determine the effectiveness of a novel laser treatment modality for recalcitrant hand warts. The study included 51 patients who were treated for 146 recalcitrant hand warts using 1064 nm long-pulsed Nd:YAG laser between 2011 and 2014. The laser treatment method is novel because each treated wart was aligned at the intersection point of the circles of 3 laser pulses per session. Among the 146 hand warts, 88.35% were successfully treated with one session and 100% of those that required a second treatment session were treated successfully, based on the 12 month follow-up examination. Long-pulsed Nd:YAG laser treatment was observed to be a safe, rapid, and effective method for treating recalcitrant hand warts.

  17. Applications of the pulsed gas stripper technique at the GSI UNILAC

    Science.gov (United States)

    Scharrer, P.; Barth, W.; Bevcic, M.; Düllmann, Ch. E.; Gerhard, P.; Groening, L.; Horn, K. P.; Jäger, E.; Khuyagbaatar, J.; Krier, J.; Vormann, H.; Yakushev, A.

    2017-08-01

    In the frame of an upgrade program for the GSI UNILAC, preparing it for the use as an injector system for FAIR, a pulsed gas stripper cell was developed. It utilizes the required low duty cycle by applying a pulsed gas injection instead of a continuous gas inlet. The resulting lower gas consumption rate enables the use of low-Z gas targets over a wide range of stripper target thicknesses. The setup enables an increased flexibility for the accelerator by allowing the gas stripper to be used in time-sharing beam operation matching the capabilities of the GSI UNILAC like the acceleration of different ion beams in quasi-parallel operation. Measured charge state distributions of 238U, 50Ti, and CH3 beams on H2 and N2 gas highlight the benefits of the pulsed gas stripper cell for the accelerator operation and performance.

  18. Comparative Study of Different Pulse Artifact Correction Techniques during Concurrent EEG-FMRI using FMRIB

    Directory of Open Access Journals (Sweden)

    Md Belayat Hossain

    2016-08-01

    Full Text Available In this work, a comparative study of three pulse artifact (PA correction methods –optimal basis set (OBS, simple mean (AAS and Gaussian-weighted mean (GWM – along with standard parameters setting for both gradient artefact (GA and pulse artefact (PA correction, using open source Functional MRI of Brain (FMRIB tool-box, in combined EEG-fMRI, is reported. It has been found that, of these three methods, OBS is better in preserving bio-signal while removing PA successfully.

  19. MONO-PULSE RADAR 3-D IMAGING TECHNIQUES FOR TARGET IN STEPPED TRACKING MODE

    Institute of Scientific and Technical Information of China (English)

    Zhang Tao; Ma Changzheng; Zhang Qun; Zhang Shouhong

    2002-01-01

    A method for mono-pulse radar 3-D imaging in stepped tracking mode is presented and the amplitude linear modulation of error signals in stepped tracking mode is analyzed with its compensation method followed, so the problem of precisely tracking of target is solved. Finally the validity of these methods is proven by the simulation results.

  20. MONO-PULSE RADAR 3-D IMAGING TECHNIQUES FOR TARGET IN STEPPED TRACKING MODE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A method for mono-pulse radar 3-D imaging in stepped tracking mode is presented and the amplitude linear modulation of error signals in stepped tracking mode is analyzed with its compensation method followes,so the problem of precisely tracking of target is solved.Finally the validity of these methods is proven by the simulation results.

  1. A Pulsed Coding Technique Based on Optical UWB Modulation for High Data Rate Low Power Wireless Implantable Biotelemetry

    Directory of Open Access Journals (Sweden)

    Andrea De Marcellis

    2016-10-01

    Full Text Available This paper reports on a pulsed coding technique based on optical Ultra-wideband (UWB modulation for wireless implantable biotelemetry systems allowing for high data rate link whilst enabling significant power reduction compared to the state-of-the-art. This optical data coding approach is suitable for emerging biomedical applications like transcutaneous neural wireless communication systems. The overall architecture implementing this optical modulation technique employs sub-nanosecond pulsed laser as the data transmitter and small sensitive area photodiode as the data receiver. Moreover, it includes coding and decoding digital systems, biasing and driving analogue circuits for laser pulse generation and photodiode signal conditioning. The complete system has been implemented on Field-Programmable Gate Array (FPGA and prototype Printed Circuit Board (PCB with discrete off-the-shelf components. By inserting a diffuser between the transmitter and the receiver to emulate skin/tissue, the system is capable to achieve a 128 Mbps data rate with a bit error rate less than 10−9 and an estimated total power consumption of about 5 mW corresponding to a power efficiency of 35.9 pJ/bit. These results could allow, for example, the transmission of an 800-channel neural recording interface sampled at 16 kHz with 10-bit resolution.

  2. Antibacterial efficacy of advanced silver-amorphous carbon coatings deposited using the pulsed dual cathodic arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Endrino, J L; Anders, A; Albella, J M; Horton, J A; Horton, T H; Ayyalasomayajula, P R; Allen, M, E-mail: jlendrino@icmm.csic.es

    2010-11-01

    Amorphous carbon (a-C) also referred as diamond-like carbon (DLC) films are well known to be a biocompatible material with good chemical in ertness; this makes it a strong candidate to be used as a matrix that embeds metallic elements with an antimicrobial effect. We have deposited as et of a-C:Ag films using a dual-cathode pulsed filtered cathodic arc source, the arc pulse frequency of the silver and graphite cathodes was controlled in order to obtain samples with various silver contents. In this study, we show the deposition of silver and carbon ions using this technique and analyze the advantages of incorporating silver into a-C by studying the antimicrobial properties against staphylococcus of samples deposited on Ti{sub 6}Al{sub 4}V coupons and evaluated using 24-well tissue culture plates.

  3. Multi-frequency, multi-technique pulsed EPR investigation of the copper binding site of murine amyloid β peptide.

    Science.gov (United States)

    Kim, Donghun; Bang, Jeong Kyu; Kim, Sun Hee

    2015-01-26

    Copper-amyloid peptides are proposed to be the cause of Alzheimer's disease, presumably by oxidative stress. However, mice do not produce amyloid plaques and thus do not suffer from Alzheimer's disease. Although much effort has been focused on the structural characterization of the copper- human amyloid peptides, little is known regarding the copper-binding mode in murine amyloid peptides. Thus, we investigated the structure of copper-murine amyloid peptides through multi-frequency, multi-technique pulsed EPR spectroscopy in conjunction with specific isotope labeling. Based on our pulsed EPR results, we found that Ala2, Glu3, His6, and His14 are directly coordinated with the copper ion in murine amyloid β peptides at pH 8.5. This is the first detailed structural characterization of the copper-binding mode in murine amyloid β peptides. This work may advance the knowledge required for developing inhibitors of Alzheimer's disease.

  4. Measuring normal spectral emissivities of niobium by a pulse-heating technique: 1000 K to the melting point

    Institute of Scientific and Technical Information of China (English)

    Qingwei Wang; Peng Xiao; Jintao Yu; Jingmin Dai

    2006-01-01

    The normal spectral emissivity of niobium strip specimen is measured using a new pulse-heating reflectometric technique. The hemispherical spectral reflectivity of the surface of a strip tangent to an integrating sphere is determined by a high-speed lock-in technique. At the same time, the radiance temperature of the strip is measured by the multi-wavelength high-speed pyrometer from approximately 1000K to the melting point. Details of the measurement method and of the related calibration techniques are reported. Results of the normal spectral emissivity of niobium at 633, 753, 827, and 905 nm from room temperature to its melting point are presented. The accuracy of spectral emissivities is estimated better than 5%.

  5. Comparison of the properties of Pb thin films deposited on Nb substrate using thermal evaporation and pulsed laser deposition techniques

    Science.gov (United States)

    Perrone, A.; Gontad, F.; Lorusso, A.; Di Giulio, M.; Broitman, E.; Ferrario, M.

    2013-11-01

    Pb thin films were prepared at room temperature and in high vacuum by thermal evaporation and pulsed laser deposition techniques. Films deposited by both the techniques were investigated by scanning electron microscopy to determine their surface topology. The structure of the films was studied by X-ray diffraction in θ-2θ geometry. The photoelectron performances in terms of quantum efficiency were deduced by a high vacuum photodiode cell before and after laser cleaning procedures. Relatively high quantum efficiency (>10-5) was obtained for all the deposited films, comparable to that of corresponding bulk. Finally, film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Weak and strong points of these two competitive techniques are illustrated and discussed.

  6. Optimal space communication techniques. [a discussion of delta modulation, pulse code modulation, and phase locked systems

    Science.gov (United States)

    Schilling, D. L.

    1975-01-01

    Encoding of video signals using adaptive delta modulation (DM) was investigated, along with the error correction of DM encoded signals corrupted by thermal noise. Conversion from pulse code modulation to delta modulation was studied; an expression for the signal to noise ratio of the DM signal derived was achieved by employing linear, 2-sample, interpolation between sample points. A phase locked loop using a nonlinear processor in lieu of a loop filter is discussed.

  7. Techniques and physical properties of 10MHz short pulse focused ultrasonic transducer

    Institute of Scientific and Technical Information of China (English)

    ZHU Guozhen; YANG Yong; LU Kean

    2004-01-01

    A focused ultrasonic transducer used for biomedical purposes with a fundamental frequency of 10MHz and a pulse width of one and a half periods is described in this paper. Its physical properties are given including (1) focused acoustic field recorded by an optical means, (2) electric waveform for triggering the transducer and the corresponding waveform of the wave received by another transducer, and (3) result of tests on a sample object.

  8. Probing of Fast Chemical Dynamics at High Pressures and Temperatures using Pulsed Laser Techniques

    Science.gov (United States)

    2014-12-17

    Goncharov. Hydrogen (deuterium) vibron frequency as a pressure comparison gauge at multi-Mbar pressures, Journal of Applied Physics, (08 2013): 73505...V. Struzhkin, Innokenty Kantor, Mark L. Rivers , D. Allen Dalton. X-ray diffraction in the pulsed laser heated diamond anvil cell, Review of...few-layered two-dimensional MoS2 in collaboration with Avinash Nayak and Professor Jung-Fu Lin at the University of Texas at Austin

  9. Cloaking a metal object from an electromagnetic pulse: A comparison between various cloaking techniques

    CERN Document Server

    Alitalo, Pekka; Tretyakov, Sergei

    2009-01-01

    Electromagnetic cloaks are devices that can be used to reduce the total scattering cross section of various objects. An ideal cloak removes all scattering from an object and thus makes this object "invisible" to the electromagnetic fields that impinge on the object. However, ideal cloaking appears to be possible only at a single frequency. To study cloaking from an electromagnetic pulse we consider propagation of a pulse inside a waveguide with a cloaked metal object inside. There are several ways to achieve cloaking and in this paper we study three such methods, namely, the coordinate-transformation cloak, the transmission-line cloak, and the metal-plate cloak. In the case of the two last cloaks, pulse propagation is studied using experimental data whereas the coordinate-transformation cloak is studied with numerical simulations. The results show that, at least in the studied cases where the cloaked object's diameter is smaller than the wavelength, the cloaks based on transmission-line meshes and metal plate...

  10. Comparison of the properties of Pb thin films deposited on Nb substrate using thermal evaporation and pulsed laser deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Perrone, A., E-mail: alessio.perrone@unisalento.it [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); INFN-Istituto Nazionale di Fisica Nucleare e Università del Salento, 73100 Lecce (Italy); Gontad, F. [INFN-Istituto Nazionale di Fisica Nucleare e Università del Salento, 73100 Lecce (Italy); Lorusso, A.; Di Giulio, M. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Ferrario, M. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati (Italy)

    2013-11-21

    Pb thin films were prepared at room temperature and in high vacuum by thermal evaporation and pulsed laser deposition techniques. Films deposited by both the techniques were investigated by scanning electron microscopy to determine their surface topology. The structure of the films was studied by X-ray diffraction in θ–2θ geometry. The photoelectron performances in terms of quantum efficiency were deduced by a high vacuum photodiode cell before and after laser cleaning procedures. Relatively high quantum efficiency (>10{sup −5}) was obtained for all the deposited films, comparable to that of corresponding bulk. Finally, film to substrate adhesion was also evaluated using the Daimler–Benz Rockwell-C adhesion test method. Weak and strong points of these two competitive techniques are illustrated and discussed. -- Highlights: •Comparison of Pb thin films deposited on Nb substrate by thermal evaporation and pulsed laser deposition (PLD). •Photoelectron performances of Pb thin films. •Good quality of adhesion strength of Pb films deposited by PLD.

  11. Analysis and Minimization of Output Current Ripple for Discontinuous Pulse-Width Modulation Techniques in Three-Phase Inverters

    Directory of Open Access Journals (Sweden)

    Gabriele Grandi

    2016-05-01

    Full Text Available This paper gives the complete analysis of the output current ripple in three-phase voltage source inverters considering the different discontinuous pulse-width modulation (DPWM strategies. In particular, peak-to-peak current ripple amplitude is analytically evaluated over the fundamental period and compared among the most used DPWMs, including positive and negative clamped (DPWM+ and DPWM−, and the four possible combinations between them, usually named as DPWM0, DPWM1, DPWM2, and DPWM3. The maximum and the average values of peak-to-peak current ripple are estimated, and a simple method to correlate the ripple envelope with the ripple rms is proposed and verified. Furthermore, all the results obtained by DPWMs are compared to the centered pulse-width modulation (CPWM, equivalent to the space vector modulation to identify the optimal pulse-width modulation (PWM strategy as a function of the modulation index, taking into account the different average switching frequency. In this way, the PWM technique providing for the minimum output current ripple is identified over the whole modulation range. The analytical developments and the main results are experimentally verified by current ripple measurements with a three-phase PWM inverter prototype supplying an induction motor load.

  12. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti.

    Science.gov (United States)

    Oléron Evans, Thomas P; Bishop, Steven R

    2014-08-01

    We present a simple mathematical model to replicate the key features of the sterile insect technique (SIT) for controlling pest species, with particular reference to the mosquito Aedes aegypti, the main vector of dengue fever. The model differs from the majority of those studied previously in that it is simultaneously spatially explicit and involves pulsed, rather than continuous, sterile insect releases. The spatially uniform equilibria of the model are identified and analysed. Simulations are performed to analyse the impact of varying the number of release sites, the interval between pulsed releases and the overall volume of sterile insect releases on the effectiveness of SIT programmes. Results show that, given a fixed volume of available sterile insects, increasing the number of release sites and the frequency of releases increases the effectiveness of SIT programmes. It is also observed that programmes may become completely ineffective if the interval between pulsed releases is greater that a certain threshold value and that, beyond a certain point, increasing the overall volume of sterile insects released does not improve the effectiveness of SIT. It is also noted that insect dispersal drives a rapid recolonisation of areas in which the species has been eradicated and we argue that understanding the density dependent mortality of released insects is necessary to develop efficient, cost-effective SIT programmes.

  13. Three-dimensional compositional mapping using double-pulse micro-laser-induced breakdown spectroscopy technique

    Science.gov (United States)

    Grassi, R.; Grifoni, E.; Gufoni, S.; Legnaioli, S.; Lorenzetti, G.; Macro, N.; Menichetti, L.; Pagnotta, S.; Poggialini, F.; Schiavo, C.; Palleschi, V.

    2017-01-01

    In this communication, we present the development of the first double-pulse micro-LIBS (DP-μLIBS) instrument for three-dimensional compositional mapping of materials. The system allows for high-resolution three-dimensional scanning of materials; its advantages with respect to conventional single-pulse micro-LIBS systems are described and discussed. As a test example, we analyzed three Euro coins to show the performances of the system on homogeneous samples (20 Eurocents), heterogeneous samples (1 Euro) and layered samples (5 Eurocents). DP-μLIBS cannot provide isotopic information and has, typically, limits of detection for the elements of interest much higher with respect to Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). However, when the isotopic information and the extreme sensitivity to trace elements is not be necessary, the results obtained show that DP-μLIBS can be a viable alternative to LA-ICP-MS for the acquisition of high resolution three-dimensional compositional maps.

  14. Use of optical fibers in the pulsed time-of-flight laser rangefinding technique

    Science.gov (United States)

    Nissilae, Seppo M.; Kostamovaara, Juha T.; Myllylae, Risto A.

    1990-08-01

    The problems associated with the fibres used in pulsed time-of-flight rangefinders were studied, and particularly errors due to the transit time disturbances of step and graded index fibres as a function of fibre length, input numerical aperture and temperature. The cladding modes and leaky modes ofa fibre can affect the transit time oflight pulses under suitable conditions, so that fibres become sensitive to environmental effects. The effect of temperature is smaller and more linear for acryl-coated fibres than for nylon-coated ones. The main reason for the non-linear effect of temperature on a nylon fibre is the non-linear Young's modulus of nylon as a function of temperature. The increasing transit time of hard clad silica (HCS) fibres at lower temperatures (below +20°C), contrary to glass fibres, can be explained by the different thermal coefficient of the core and cladding, leading to increased non-homogenities on the core-cladding interface.

  15. Paediatric pelvic imaging: optimisation of dose and technique using digital grid-controlled pulsed fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, R.; McCarty, M. [Div. of Radiology, South Cleveland Hospital, South Tees Acute Hospitals NHS Trust, Marton Road, Middlesbrough, Cleveland (United Kingdom); McCallum, H.M. [Regional Medical Physics Dept., South Cleveland Hospital, Middlesbrough (United Kingdom); Montgomery, R. [Dept. of Orthopaedics, South Tees Hospitals NITS Trust, Middlesbrough (United Kingdom); Aszkenasy, M. [Tees and North East Yorkshire NHS Trust, West Lane Hospital, Middlesbrough (United Kingdom)

    2001-05-01

    Background. An audit of paediatric pelvic radiographs identified deficiencies in gonad shield placement and radiographic technique. Objective. A technique using grid-controlled fluoroscopy (GCF), with hard copy images in frame grab and digital spot image (DSI) format was evaluated to optimise gonad shield placement and reduce the dose given to children with Perthes disease and Developmental Hip Dysplasia (DDH) attending for pelvic radiography. Materials and methods. Phantom and patient dose surveys of conventional and fluoroscopic techniques were carried out. Image quality and radiation dose were compared for the frame grab and DSI techniques. Retrospective evaluation was undertaken to compare their clinical acceptability. Results. Both fluoroscopic techniques gave considerably less radiation than conventional non-grid radiography (67-83 %, P < 0.05). The frame grab technique gave less radiation than DSI (P < 0.05). There was no significant difference in the clinical acceptability scores of the DSI and frame grab images. Conclusion. Fluoroscopy acquired images are now used since the fluoroscopic techniques give much less dose than conventional radiography and provide images of sufficient quality for clinical assessment. Indeed, as there was no significant difference in clinical usefulness between the frame grab and DSI techniques, it is planned to use frame grab alone, thus gaining additional dose saving. (orig.)

  16. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests

    Science.gov (United States)

    Forquin, Pascal; Zinszner, Jean-Luc

    2017-01-01

    Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the `wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, `wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  17. Hysteresis in Lanthanide Zirconium Oxides Observed Using a Pulse CV Technique and including the Effect of High Temperature Annealing

    Directory of Open Access Journals (Sweden)

    Qifeng Lu

    2015-07-01

    Full Text Available A powerful characterization technique, pulse capacitance-voltage (CV technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111 substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD. The results indicated that: (1 more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrOx; (2 the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N2 ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 1012 cm−2 for as-deposited sample to 4.55 × 1012 cm−2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10−6 A/cm2 at Vg = +0.5 V for the as-deposited sample to 10−3 A/cm2 at Vg = +0.5 V for the 900 °C annealed one.

  18. Burst design and signal processing for the speed of sound measurement of fluids with the pulse-echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Dubberke, Frithjof H.; Baumhögger, Elmar; Vrabec, Jadran, E-mail: jadran.vrabec@upb.de [Lehrstuhl für Thermodynamik und Energietechnik, Universität Paderborn, Warburger Straße 100, 33098 Paderborn (Germany)

    2015-05-15

    The pulse-echo technique determines the propagation time of acoustic wave bursts in a fluid over a known propagation distance. It is limited by the signal quality of the received echoes of the acoustic wave bursts, which degrades with decreasing density of the fluid due to acoustic impedance and attenuation effects. Signal sampling is significantly improved in this work by burst design and signal processing such that a wider range of thermodynamic states can be investigated. Applying a Fourier transformation based digital filter on acoustic wave signals increases their signal-to-noise ratio and enhances their time and amplitude resolutions, improving the overall measurement accuracy. In addition, burst design leads to technical advantages for determining the propagation time due to the associated conditioning of the echo. It is shown that the according operation procedure enlarges the measuring range of the pulse-echo technique for supercritical argon and nitrogen at 300 K down to 5 MPa, where it was limited to around 20 MPa before.

  19. Chalcogenide-based thin film sensors prepared by pulsed laser deposition technique

    Science.gov (United States)

    Schubert, J.; Schöning, M. J.; Schmidt, C.; Siegert, M.; Mesters, St.; Zander, W.; Kordos, P.; Lüth, H.; Legin, A.; Mourzina, Yu. G.; Seleznev, B.; Vlasov, Yu. G.

    One advantage of the pulsed laser deposition (PLD) method is the stoichiometric transfer of multi-component target material to a given substrate. This advantage of the PLD determined the choice to prepare chalco-genide-based thin films with an off-axis geometry PLD. Ag-As-S and Cu-Ag-As-Se-Tetargets were used to deposit thin films on Si substrates for an application as a heavy metal sensing device. The films were characterized by means of Rutherford backscattering spectrometry (RBS), transmission electron microscopy (TEM), and electrochemical measurements. The same stoichiometry of the films and the targets was confirmed by RBS measurements. We observed a good long-term stability of more than 60 days and a nearly Nernstian sensitivity towards Pb and Cu, which is comparable to bulk sensors.

  20. Building a Pulse Detector using the Frequency Resolved Optical Gating Technique

    Energy Technology Data Exchange (ETDEWEB)

    Vallin, J

    2004-02-05

    We show how to construct a diagnostic optical layout known as Frequency Resolved Optical Gating (FROG) for an ir mode-locked laser by using the nonlinear effect known as second harmonic generation (SHG). In this paper, we explain the principle of operation and the theory upon which this diagnostic is based. Moreover, we described the procedure used to measure the duration and frequency components of a pulse. This process consists of calibrating the scales of a two-dimensional image, time delay vs. frequency, known as FROG spectrogram or FROG trace. This calibration of the time delay scale yields the correspondence between a pixel and time delay. Similarly, the calibration of the frequency scale yields the correspondence between a pixel, and frequency.

  1. Harmonics Reduction of Multilevel Inverter Drive Using Sine Carrier Pulse Width Modulation Techniques

    Directory of Open Access Journals (Sweden)

    S. Ebanezar Pravin

    2016-11-01

    Full Text Available The main objective of this paper is to control the speed of an induction motor by using seven level diode clamped multilevel inverter and improve the high quality sinusoidal output voltage with reduced harmonics. The presented scheme for diode clamped multilevel inverter is sine carrier Pulse Width Modulation control. An open loop speed control can be achieved by using V/ƒ method. This method can be implemented by changing the supply voltage and frequency applied to the three phase induction motor at constant ratio. The presented system is an effective replacement for the conventional method which has high switching losses, its result ends in a poor drive performance. The simulation result portrays the effective control in the motor speed and an enhanced drive performance through reduction in total harmonic distortion (THD. The effectiveness of the system is verified through simulation using PSIM6.1 Simulink package.

  2. [Application of three heat pulse technique-based methods to determine the stem sap flow].

    Science.gov (United States)

    Wang, Sheng; Fan, Jun

    2015-08-01

    It is of critical importance to acquire tree transpiration characters through sap flow methodology to understand tree water physiology, forest ecology and ecosystem water exchange. Tri-probe heat pulse sensors, which are widely utilized in soil thermal parameters and soil evaporation measurement, were applied to implement Salix matsudana sap flow density (Vs) measurements via heat-ratio method (HRM), T-Max method (T-Max) and single-probe heat pulse probe (SHPP) method, and comparative analysis was conducted with additional Grainer's thermal diffusion probes (TDP) measured results. The results showed that, it took about five weeks to reach a stable measurement stage after TPHP installation, Vs measured with three methods in the early stage after installation was 135%-220% higher than Vs in the stable measurement stage, and Vs estimated via HRM, T-Max and SHPP methods were significantly linearly correlated with Vs estimated via TDP method, with R2 of 0.93, 0.73 and 0.91, respectively, and R2 for Vs measured by SHPP and HRM reached 0.94. HRM had relatively higher precision in measuring low rates and reverse sap flow. SHPP method seemed to be very promising to measure sap flow for configuration simplicity and high measuring accuracy, whereas it couldn' t distinguish directions of flow. T-Max method had relatively higher error in sap flow measurement, and it couldn' t measure sap flow below 5 cm3 · cm(-2) · h(-1), thus this method could not be used alone, however it could measure thermal diffusivity for calculating sap flow when other methods were imposed. It was recommended to choose a proper method or a combination of several methods to measure stem sap flow, based on specific research purpose.

  3. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    Science.gov (United States)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  4. Observation of cold Rb{sub 2} molecules trapped in an optical dipole trap using a laser-pulse-train technique

    Energy Technology Data Exchange (ETDEWEB)

    Menegatti, Carlos R.; Marangoni, Bruno S.; Marcassa, Luis G. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 369, 13560-970, Sao Carlos, SP (Brazil)

    2011-11-15

    In this work, we have developed and characterized a laser-pulse-train technique to observe cold Rb{sub 2} molecules trapped in an optical dipole trap. The molecules are produced in a magneto-optical trap, and then loaded into a crossed optical dipole trap. The time evolution of the molecular population is obtained by applying a laser pulse train, which photoionizes the ground-state molecules through intermediate molecular bands. Our results show that this technique allows us to obtain a faster data acquisition rate of the time evolution of the molecule population than other techniques.

  5. 3D visualization using pulsed and CW digital holographic tomography techniques (Invited Paper)

    Institute of Scientific and Technical Information of China (English)

    G. Nehmetallah; P. P. Banerjee; D. Ferree; R. Kephart; S. Praharaj

    2011-01-01

    We outline the use of digital holographic tomography to determine the three-dimensional (3D) shapes of falling and static objects, such as lenslets and water droplets. Reconstruction of digitally recorded inline holograms is performed using multiplicative and Radon transform techniques to reveal the exact 3D shapes of the objects.%We outline the use of digital holographic tomography to determine the three-dimensional (3D) shapes of falling and static objects,such as lenslets and water droplets.Reconstruction of digitally recorded inline holograms is performed using multiplicative and Radon transform techniques to reveal the exact 3D shapes of the objects.

  6. Pulsed Photonuclear Assessment (PPA) Technique: CY 04 Year-end Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    J.L. Jones; W.Y. Yoon; K.J. Haskell; D.R. Norman; J.M. Zabriskie; J.W. Sterbentz; S.M. Watson; J.T. Johnson; B.D. Bennett; R.W. Watson; K. L. Folkman

    2005-05-01

    Idaho National Laboratory (INL), along with Los Alamos National Laboratory (LANL) and Idaho State University’s Idaho Accelerator Center (IAC), are developing an electron accelerator-based, photonuclear inspection technology for the detection of smuggled nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This CY04 report describes the latest developments and progress with the development of the Pulsed, Photonuclear Assessment (PPA) nuclear material inspection ystem, such as: (1) the identification of an optimal range of electron beam energies for interrogation applications, (2) the development of a new “cabinet safe” electron accelerator (i.e., Varitron II) to assess “cabinet safe-type” operations, (3) the numerical and experimental validation responses of nuclear materials placed within selected cargo configurations, 4) the fabrication and utilization of Calibration Pallets for inspection technology performance verification, 5) the initial technology integration of basic radiographic “imaging/mapping” with induced neutron and gamma-ray detection, 6) the characterization of electron beam-generated photon sources for optimal performance, 7) the development of experimentallydetermined Receiver-Operator-Characterization curves, and 8) several other system component assessments. This project is supported by the Department of Homeland Security and is a technology component of the Science & Technology Active Interrogation Portfolio entitled “Photofission-based Nuclear Material Detection and Characterization.”

  7. Digital pulse-timing technique for the neutron detector array NEDA

    Energy Technology Data Exchange (ETDEWEB)

    Modamio, V., E-mail: victor.modamio@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Valiente-Dobón, J.J. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Jaworski, G. [Faculty of Physics, Warsaw University of Technology, 00-662 Warszawa (Poland); Heavy Ion Laboratory, University of Warsaw, 02-093 Warszawa (Poland); Hüyük, T. [Instituto de Física Corpuscular, CSIC-Universitat de València, E-46980 Valencia (Spain); Triossi, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Egea, J. [Instituto de Física Corpuscular, CSIC-Universitat de València, E-46980 Valencia (Spain); Department of Electronic Engineering, Universitat de València, E-46100 Burjassot (Spain); Di Nitto, A. [Johannes Gutenberg-Universität Mainz, D-55099 Mainz (Germany); Söderström, P.-A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Agramunt Ros, J. [Instituto de Física Corpuscular, CSIC-Universitat de València, E-46980 Valencia (Spain); Angelis, G. de [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); France, G. de [GANIL, CEA/DSAM and CNRS/IN2P3, F-14076 Caen (France); Erduran, M.N. [Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303 Istanbul (Turkey); and others

    2015-03-01

    A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in. diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in. by 5 in. BC501A liquid scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CFD algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes.

  8. Thermal NDE of thick GRP panels by means of a Pulse Modulated Lock-In Thermography technique

    Directory of Open Access Journals (Sweden)

    Pitarresi G.

    2010-06-01

    Full Text Available This work describes the development and implementation of an infrared thermal NDE procedure for the evaluation of subsurface defects. The approach is called Pulse-Modulated Lock-In Thermography (PMLT and is based on the analysis of the frequency response of the measured temperature and comparison with the carrier frequencies launched by the external heat delivering source. The heat deposited on the object is in particular modulated as a train of square waves. This is easily achieved by periodically shuttering the heat source. The temperature is then sampled throughout the deposition of a few square waves. A lock-in algorithm is then implemented able to selectively filter out components at the main carrier frequencies of the heating signal and evaluate the phase information. Defected areas at different depths can be marked based on phase contrast, by using data from a single experiment as in Pulsed-Phase Thermography. An artificially defected thick GRP panel typical of naval monolithic hull structures, is investigated to validate the proposed technique. Experimental data have confirmed the potentials of PMLT as a flexible IR NDT approach, and its ability to be implemented by means of low cost heating and IR equipments.

  9. Study of acoustic fingerprinting of nitromethane and some triazole derivatives using UV 266 nm pulsed photoacoustic pyrolysis technique

    Science.gov (United States)

    Rao, K. S.; Chaudhary, A. K.; Yehya, F.; Kumar, A. Sudheer

    2015-08-01

    We report a comparative study of acoustic fingerprints of nitromethane, nitrobenzene and some nitro rich triazole derivatives using pulsed photoacoustic technique. UV 266 nm wavelength i.e. Fourth harmonic of Q-switched Nd: YAG laser having pulse duration 7 ns and 10 Hz repetition rate is employed to record the time resolved PA spectrum. The PA fingerprint is produced due to absorption of incident UV light by molecule itself and photo dissociation of nitromethane and nitrobenzene at room temperature while in case of triazole it is attributed to the combination of thermal and photo-dissociation process. The entire dissociation process follows the root of cleavage of C-NO2 bond to produce free NO, NO2 and other by product gases due to π∗ ← n excitation. In addition, we have studied the thermal stability criteria of nitro rich triazoles based on the quality factor of acoustic resonance frequencies of the PA cavity. We have also studied the effect of data acquisition time to ascertain the decay behavior of HEMs samples.

  10. Thermomechanical and Photophysical Properties of Crystal-Violet-Dye/H2O Based Dissolutions via the Pulsed Laser Photoacoustic Technique

    Directory of Open Access Journals (Sweden)

    Vicente Torres-Zúñiga

    2014-01-01

    Full Text Available Different thermoelastic parameters, for example, the acoustic attenuation and the speed of sound, are fundamental for instrumental calibration and quantitative characterization of organic-based dissolutions. In this work, these parameters as functions of the concentration of an organic dye (crystal-violet: CV in distillated water (H2O based dissolutions are investigated. The speed of sound was measured by the pulsed-laser photoacoustic technique (PLPA, which consists in the generation of acoustic-waves by the optical absorption of pulsed light in a given material (in this case a liquid sample. The thermally generated sound-waves traveling through a fluid are detected with two piezoelectric sensors separated by a known distance. An appropriate processing of the photoacoustic signals allows an adequate data analysis of the generated waves within the system, providing an accurate determination of the speed of sound as function of the dye-concentration. The acoustic attenuation was calculated based on the distance of the two PZT-microphones to an acoustic-source point and performing linear-fitting of the experimental data (RMS-amplitudes as function of the dye-concentration. An important advantage of the PLPA-method is that it can be implemented with poor or null optical transmitting materials permitting the characterization of the mechanical and concentration/aggregate properties of dissolved organic compounds.

  11. Quantification of Virus Particles Using Nanopore-Based Resistive-Pulse Sensing Techniques

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2016-09-01

    Full Text Available Viruses have drawn much attention in recent years due to increased recognition of their important roles in virology, immunology, clinical diagnosis, and therapy. Because the biological and physical properties of viruses significantly impact their applications, quantitative detection of individual virus particles has become a critical issue. However, due to various inherent limitations of conventional enumeration techniques such as infectious titer assays, immunological assays, and electron microscopic observation, this issue remains challenging. Thanks to significant advances in nanotechnology, nanostructure-based electrical sensors have emerged as promising platforms for real-time, sensitive detection of numerous bioanalytes. In this paper, we review recent progress in nanopore-based electrical sensing, with particular emphasis on the application of this technique to the quantification of virus particles. Our aim is to provide insights into this novel nanosensor technology, and highlight its ability to enhance current understanding of a variety of viruses.

  12. Optimal inter-stimulus interval for interpolated twitch technique when using double pulse stimulation

    OpenAIRE

    Karimpour, Rana

    2013-01-01

    Interpolated twitch technique is a method frequently used to assess voluntary activa- tion. This method uses electrically evoked twitch superimposed on the voluntary activi- ty and its comparison with the twitch in rested muscle i.e. control twitch, to evaluate completeness of muscle activation. The purpose of this study was to investigate the ef- fect of interval in paired stimulation on control twitch in young and elderly individuals with bent and flexed knee positions. Supramaximal electri...

  13. N-doped ZnO films grown from hybrid target by the pulsed laser deposition technique

    Science.gov (United States)

    Martín-Tovar, E. A.; Chan y Díaz, E.; Acosta, M.; Castro-Rodríguez, R.; Iribarren, A.

    2016-10-01

    ZnO thin films were grown by the pulsed laser deposition technique on glass substrate using a hybrid target composed of ZnO powder embedded into a poly(ethyl cyanoacrylate) matrix. The resulting thin film presented ZnO wurtzite structure with very low stress and diffractogram very similar to that of the powder pattern. From comparing with ZnO thin films grown from traditional sintered target, it is suggested that the use of this hybrid target with a soft matrix led to ejection of ZnO clusters that conveniently disposed and adhered to substrate and previous deposited layers. Chemical measurements showed the presence of Zn-N bonds, besides Zn-O ones. Optical absorption profile confirmed the presence of low-polymerized zinc oxynitride molecular subunits, besides ZnO.

  14. Thermophysical properties of solid phase ruthenium measured by the pulse calorimetry technique over a wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, Nenad; Nikolic, Ivana [Belgrade Univ. (Serbia). Vinca Institute of Nuclear Sciences

    2015-04-15

    This paper presents experimental results on four thermophysical properties of pure polycrystalline ruthenium samples over a wide temperature range. Specific heat capacity and specific electrical resistivity were measured from 250 to 2 500 K, while hemispherical total emissivity and normal spectral emissivity at 900 nm were measured from 1 300 to 2 500 K. All the properties were obtained by using the pulse calorimetry technique. The 200 mm long specimens were in the form of a thin rod, of about 3 mm in diameter. For necessary corrections, literature data on thermal linear expansion were applied. The results are compared with available literature data and discussed. The specific heat capacity and specific electrical resistivity measurements did not indicate any allotropic transformation of the samples over the entire temperature range.

  15. A streak camera based fiber optic pulsed polarimetry technique for magnetic sensing to sub-mm resolution

    Science.gov (United States)

    Smith, R. J.; Weber, T. E.

    2016-11-01

    The technique of fiber optic pulsed polarimetry, which provides a distributed (local) measurement of the magnetic field along an optical fiber, has been improved to the point where, for the first time, photocathode based optical detection of backscatter is possible with sub-mm spatial resolutions. This has been realized through the writing of an array of deterministic fiber Bragg gratings along the fiber, a so-called backscatter-tailored optical fiber, producing a 34 000-fold increase in backscatter levels over Rayleigh. With such high backscatter levels, high repetition rate lasers are now sufficiently bright to allow near continuous field sensing in both space and time with field resolutions as low as 0.005 T and as high as 170 T over a ˜mm interval given available fiber materials.

  16. Photoluminescence and diode characteristic of ZnO thin films/junctions fabricated by pulsed laser deposition (PLD) technique

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Kazuhiro; Komiyama, Takao; Chonan, Yasunori; Yamaguchi, Hiroyuki; Aoyama, Takashi [Department of Electronics and Information Systems, Akita Prefectural University, 84-4 Ebinokuchi, Tsuchiya, Yuri-honjo, Akita 015-0055 (Japan)

    2010-02-15

    ZnO:Ga and ZnO:P films were grown by a pulsed laser deposition (PLD) technique changing the dopant concentrations, and their photoluminescence (PL) spectra were obtained. Then, ZnO:P/ZnO:Ga junctions were fabricated and their junction characteristics were evaluated. As the Ga concentration increased in the films, the PL intensity was decreased while as the P concentration increased, the PL intensity was increased. The maximum PL intensities were obtained for the films of 0.5%(Ga) and 7.0% (P), respectively. Rectifying junction characteristics were observed only for the combination of 0.5-1.0% (Ga) and 5.0% (P) films. Mutual dopant diffusion is supposed to explain the relation between the PL and the junction characteristics. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. IMPLEMENTATION OF SPACE VECTOR PULSE WIDTH MODULATION TECHNIQUE WITH GENETIC ALGORITHM TO OPTIMIZE UNIFIED POWER QUALITY CONDITIONER

    Directory of Open Access Journals (Sweden)

    M. Shankar

    2014-01-01

    Full Text Available This study proposes a novel control design of Unified Power Quality Conditioner (UPQC. This design is enabled by a control framework that employs Genetic Algorithm which determines optimum points and angle for filtering and Space Vector Pulse Width Modulation Technique (SVPWM to offer significant flexibility to optimize waveform. In addition the same framework integrates the major functions of the UPQC with ease to unify the treatments of several power quality problems including system harmonics in the supply voltage and load current, sags/swells in the supply voltage, variations in the load demands and poor power factor at the supply side. Simulation studies on a three phase power distribution system are used to verify the performance and implementation of this control design with the UPQC.

  18. Temporal isolation of surface-acoustic-wave-driven luminescence from a lateral p n junction using pulsed techniques

    Science.gov (United States)

    Gell, J. R.; Ward, M. B.; Atkinson, P.; Bremner, S. P.; Anderson, D.; Norman, C. E.; Kataoka, M.; Barnes, C. H. W.; Jones, G. A. C.; Shields, A. J.; Ritchie, D. A.

    2008-04-01

    The authors report surface-acoustic-wave-driven luminescence from a lateral p-n junction formed by molecular-beam epitaxy regrowth of a modulation doped GaAs/AlGaAs quantum well on a patterned GaAs substrate. Pulsed techniques are used to isolate the surface-acoustic-wave-driven emission from any emission due to pick-up of the free-space electromagnetic wave. The luminescence provides a fast probe of the signals arriving at the p-n junction allowing the response of the junction to the surface-acoustic-wave to be studied in the time domain. Oscillations in the surface-acoustic-wave-driven component of the light intensity are resolved at the resonant frequency of the transducer, suggesting that the surface-acoustic-wave is transporting electrons across the junction in packets.

  19. An investigation of localised surface plasmon resonance (LSPR) of Ag nanoparticles produced by pulsed laser deposition (PLD) technique

    Science.gov (United States)

    Gezgin, Serap Yiǧit; Kepceoǧlu, Abdullah; Kılıç, Hamdi Şükür

    2017-02-01

    Noble metal nano-structures such as Ag, Cu, Au are used commonly to increase power conversion efficiency of the solar cell by using their surface plasmons. The plasmonic metal nanoparticles of Ag among others that have strong LSPR in near UV range. They increase photon absorbance via embedding in the active semiconductor of the solar cell. Thin films of Ag are grown in the desired particle size and interparticle distance easily and at low cost by PLD technique. Ag nanoparticle thin films were grown on micro slide glass at 25-36 mJ laser pulse energies under by PLD using ns-Nd:YAG laser. The result of this work have been presented by carrying out UV-VIS and AFM analysis. It was concluded that a laser energy increases, the density and size of Ag-NPs arriving on the substrate increases, and the interparticle distance was decreases. Therefore, LSPR wavelength shifts towards to longer wavelength region.

  20. A streak camera based fiber optic pulsed polarimetry technique for magnetic sensing to sub-mm resolution.

    Science.gov (United States)

    Smith, R J; Weber, T E

    2016-11-01

    The technique of fiber optic pulsed polarimetry, which provides a distributed (local) measurement of the magnetic field along an optical fiber, has been improved to the point where, for the first time, photocathode based optical detection of backscatter is possible with sub-mm spatial resolutions. This has been realized through the writing of an array of deterministic fiber Bragg gratings along the fiber, a so-called backscatter-tailored optical fiber, producing a 34 000-fold increase in backscatter levels over Rayleigh. With such high backscatter levels, high repetition rate lasers are now sufficiently bright to allow near continuous field sensing in both space and time with field resolutions as low as 0.005 T and as high as 170 T over a ∼mm interval given available fiber materials.

  1. A novel biphasic-current-pulse calibration technique for electrical neural stimulation.

    Science.gov (United States)

    Maohua Ren; Jinyong Zhang; Lei Wang; Zhenyu Wang

    2014-01-01

    One of the major challenge in neural prosthetic device design is to ensure charge-balanced stimulation. This paper presents a new calibration technique to minimize the mismatch between anodic and cathodic current amplitudes. The proposed circuit mainly consists of a digital and an analog calibration, where a successive approximation register (SAR) logic and a comparator are used in digital calibration while a source follower is adopted in analog calibration. With a 0.18 μm high voltage CMOS process, the simulation shows that the maximum current mismatch is 45 nA (<0.05%).

  2. Pulse mitigation and heat transfer enhancement techniques. Volume 4: Transient behavior of heat pipe with thermal energy storage under pulse heat loads

    Science.gov (United States)

    Chow, L. C.; Chang, M. J.

    1992-08-01

    A novel design of a high-temperature axially grooved heat pipe (HP), which utilizes thermal energy storage (TES) to mitigate pulse heat loads, was presented. Phase-change material (PCM) encapsulated in cylindrical containers was used for thermal energy storage. The transient responses of the HP/TES system under two types of pulse heat loads were studied numerically. The first type is pulse heat loads applied at the heat pipe evaporator; the second type is reversed-pulse heat loads applied at the condenser. The transient response of three different HP/TES configurations were compared: (1) a heat pipe with a large empty cylinder installed in the vapor core, (2) a heat pipe with a large PCM cylinder, and (3) a heat pipe with six small PCM cylinders. It was found that the PCM is very effective in mitigating the adverse effect of pulse heat loads. The six small PCM cylinders are more efficient than the large PCM cylinder in relaxing the heat pipe temperature increase under pulse heat loads.

  3. Les écoulements par RMN à gradient pulsé Pulsed Gradient Nmr Techniques for Studying Flows

    Directory of Open Access Journals (Sweden)

    Lebon L.

    2006-12-01

    Full Text Available Nous présentons ici les techniques de RMN à gradient pulsé qui permettent d'étudier les écoulements multiphasiques en canalisation ou en milieu poreux. Les principaux avantages sont de pouvoir travailler sur des milieux non transparents et d'accéder à des échelles de longueurs faibles. On montre qu'il est possible d'obtenir des informations locales sur l'écoulement, telles que le profil de vitesse et ses fluctuations dans les écoulements diphasiques, ou les cartes de distribution des probabilités de déplacement dans des échantillons poreux hétérogènes. Pulsed gradient NMR techniques are presented here. They allow the study of multiphase flow in pipes as well as porous media. The main advantages are the possibilities of studying non transparent media at small length scales. We show that it is possible to obtain local information on the fluid flow, such as velocity profiles in two phase systems, or maps of distribution of displacement probabilities in heterogeneous porous media.

  4. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique.

    Science.gov (United States)

    Huang, Y S; Huang, Y P; Huang, K N; Young, M S

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40 kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39 degrees C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  5. Time scaling with efficient time-propagation techniques for atoms and molecules in pulsed radiation fields

    CERN Document Server

    Hamido, Aliou; Madroñero, Javier; Mota-Furtado, Francisca; O'Mahony, Patrick; Frapiccini, Ana Laura; Piraux, Bernard

    2011-01-01

    We present an ab initio approach to solve the time-dependent Schr\\"odinger equation to treat electron and photon impact multiple ionization of atoms or molecules. It combines the already known time scaled coordinate method with a new high order time propagator based on a predictor-corrector scheme. In order to exploit in an optimal way the main advantage of the time scaled coordinate method namely that the scaled wave packet stays confined and evolves smoothly towards a stationary state the modulus square of which being directly proportional to the electron energy spectra in each ionization channel, we show that the scaled bound states should be subtracted from the total scaled wave packet. In addition, our detailed investigations suggest that multi-resolution techniques like for instance, wavelets are the most appropriate ones to represent spatially the scaled wave packet. The approach is illustrated in the case of the interaction of an one-dimensional model atom as well as atomic hydrogen with a strong osci...

  6. Trapped field characteristics on {phi}65 mm GdBaCuO bulk by modified multi-pulse technique with stepwise cooling (MMPSC)

    Energy Technology Data Exchange (ETDEWEB)

    Fujishiro, H. [Faculty of Engineering, Iwate University, 3-4-5 Ueda, Morioka, Iwate 020-8551 (Japan)], E-mail: fujishiro@iwate-u.ac.jp; Tateiwa, T.; Kakehata, K.; Hiyama, T.; Naito, T. [Faculty of Engineering, Iwate University, 3-4-5 Ueda, Morioka, Iwate 020-8551 (Japan); Yanagi, Y. [IMRA Material R and D Co., Ltd., 5-50 Hachiken-cho, Kariya 448-0021 (Japan)

    2008-09-15

    A large GdBaCuO superconducting bulk 65 mm in diameter has been magnetized by a two-stage pulse field magnetization method named as a modified multi-pulse technique with stepwise cooling (MMPSC). The trapped field B{sub T}{sup P} of 3.0 T was achieved at the bulk center at 40 K by optimizing the trapped field profile at the first stage of the MMPSC method, on which the maximum B{sub T}{sup P} was as low as 1.9 T at 40 K for the single pulsed field application. A magnetic gradient along the radius direction larger than that estimated by a Bean's model is realized at the ascending stage of the magnetic pulse field at the second stage, and a large amount of magnetic fluxes staying at the bulk periphery flow to the bulk center at the descending stage.

  7. Factors affecting the superconductivity in the process of depositing Nd1.85Ce0.15CuO4-δ by the pulsed electron deposition technique

    Institute of Scientific and Technical Information of China (English)

    GUO; YanFeng

    2007-01-01

    On SrTiO3 single crystal substrate, by using the pulsed electron deposition technique, the high-quality electron doped Nd1.85Ce0.15CuO4-δsuperconducting film was successfully fabricated. After careful study on the R-T curves of the obtained samples deposited with different substrate temperatures, thicknesses, annealing methods and pulse frequencies, the effects of them on the superconductivity of the films were found, and the reasons were also analyzed. Additionally, by using the same model of the pulsed laser deposition technique, the relation between the target-to-substrate distance and the deposition pressure was drawn out as a quantitative one.  ……

  8. Excimer Laser Pulse Compress With Pulse Feedback

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>To attain a shorter laser pulse, a compressing technique called pulse feedback was developed from the saturation gain switch applied to the amplification in a discharge pumping excimer laser cavity. It can

  9. Correlation of acoustic emission with normal zone occurrence in epoxy-impregnated windings: An application of acoustic emission diagnostic technique to pulse superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, O.; Iwasa, Y.

    1984-05-01

    We report results of experiments correlating acoustic emission (AE) data to the presence of normal zones in epoxy-impregnated windings. The results suggest the feasibility of using AE sensors to determine whether or not a superconducting magnet has been driven normal after a rapid discharge. This AE diagnostic technique may be particularly valuable in application to pulse magnets.

  10. Note: Large area deposition of Rh single and Rh/W/Cu multilayer thin films on stainless steel substrate by pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mostako, A. T. T.; Khare, Alika, E-mail: alika@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India)

    2014-04-15

    Mirror like thin films of single layer Rh and multilayer Rh/W/Cu are deposited on highly polished 50 mm diameter stainless steel substrate by Pulsed Laser Deposition (PLD) technique for first mirror application in fusion reactors. For this, the conventional PLD technique has been modified by incorporating substrate rastering stage for large area deposition via PLD. Process optimization to achieve uniformity of deposition as estimated from fringe visibility and thickness is also discussed.

  11. Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air.

    Science.gov (United States)

    Ding, Su; Jiu, Jinting; Tian, Yanhong; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki

    2015-12-14

    Copper nanowire transparent electrodes have received increasing interest due to the low price and nearly equal electrical conductivity compared with other TEs based on silver nanowires and indium tin oxide (ITO). However, a post-treatment at high temperature in an inert atmosphere or a vacuum environment was necessary to improve the conductivity of Cu NW TEs due to the easy oxidation of copper in air atmosphere, which greatly cancelled out the low price advantage of Cu NWs. Here, a high intensity pulsed light technique was introduced to sinter and simultaneously deoxygenate these Cu NWs into a highly conductive network at room temperature in air. The strong light absorption capacity of Cu NWs enabled the welding of the nanowires at contact spots, as well as the removal of the thin layer of residual organic compounds, oxides and hydroxide of copper even in air. The Cu NW TE with a sheet resistance of 22.9 Ohm sq(-1) and a transparency of 81.8% at 550 nm has been successfully fabricated within only 6 milliseconds exposure treatment, which is superior to other films treated at high temperature in a hydrogen atmosphere. The HIPL process was simple, convenient and fast to fabricate easily oxidized Cu NW TEs in large scale in an air atmosphere, which will largely extend the application of cheap Cu NW TEs.

  12. Microstructural, nanomechanical, and microtribological properties of Pb thin films prepared by pulsed laser deposition and thermal evaporation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Broitman, Esteban, E-mail: esbro@ifm.liu.se [Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping (Sweden); Flores-Ruiz, Francisco J. [Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping, Sweden and Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Querétaro, Querétaro 76230 (Mexico); Di Giulio, Massimo [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Gontad, Francisco; Lorusso, Antonella; Perrone, Alessio [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce, Italy and INFN-Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy)

    2016-03-15

    In this work, the authors compare the morphological, structural, nanomechanical, and microtribological properties of Pb films deposited by thermal evaporation (TE) and pulsed laser deposition (PLD) techniques onto Si (111) substrates. Films were investigated by scanning electron microscopy, surface probe microscopy, and x-ray diffraction in θ-2θ geometry to determine their morphology, root-mean-square (RMS) roughness, and microstructure, respectively. TE films showed a percolated morphology with densely packed fibrous grains while PLD films had a granular morphology with a columnar and tightly packed structure in accordance with the zone growth model of Thornton. Moreover, PLD films presented a more polycrystalline structure with respect to TE films, with RMS roughness of 14 and 10 nm, respectively. Hardness and elastic modulus vary from 2.1 to 0.8 GPa and from 14 to 10 GPa for PLD and TE films, respectively. A reciprocal friction test has shown that PLD films have lower friction coefficient and wear rate than TE films. Our study has demonstrated for first time that, at the microscale, Pb films do not show the same simple lubricious properties measured at the macroscale.

  13. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    Science.gov (United States)

    Hutcheson, A.; Angell, C. T.; Becker, J. A.; Boswell, M.; Crowell, A. S.; Dashdorj, D.; Fallin, B.; Fotiades, N.; Howell, C. R.; Karwowski, H. J.; Kelley, J. H.; Kiser, M.; Macri, R. A.; Nelson, R. O.; Pedroni, R. S.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Weisel, G. J.; Wilhelmy, J. B.

    2007-08-01

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on 235,238U and 241Am using pulsed and monoenergetic neutron beams with En = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt γ rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  14. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheson, A. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States)]. E-mail: hutch@tunl.duke.edu; Angell, C.T. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Becker, J.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Boswell, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Crowell, A.S. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Dashdorj, D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Fallin, B. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Fotiades, N. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Howell, C.R.; Karwowski, H.J.; Kelley, J.H.; Kiser, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Macri, R.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Nelson, R.O. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pedroni, R.S. [NC A and T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); Tonchev, A.P.; Tornow, W. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Vieira, D.J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Weisel, G.J. [Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601 (United States); Wilhelmy, J.B. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2007-08-15

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on {sup 235,238}U and {sup 241}Am using pulsed and monoenergetic neutron beams with E {sub n} = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt {gamma} rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  15. "Pulse pair technique in high resolution NMR" a reprint of the historical 1971 lecture notes on two-dimensional spectroscopy.

    Science.gov (United States)

    Jeener, Jean; Alewaeters, Gerrit

    2016-05-01

    The review articles published in "Progress in NMR Spectroscopy" are usually invited treatments of topics of current interest, but occasionally the Editorial Board may take an initiative to publish important historical material that is not widely available. The present article represents just such a case. Jean Jeener gave a lecture in 1971 at a summer school in Basko Polje, in what was then called Yugoslavia. As is now widely known, Jean Jeener laid down the foundations in that lecture of two - and higher - dimensional NMR spectroscopy by proposing the homonuclear COSY experiment. Jeener realized that the new proposal would open the door towards protein NMR and molecular structure determinations, but he felt that useful versions of such experiments could not be achieved with the NMR, computer and electronics technology available at that time, so that copies of the lecture notes were circulated (the Basko Polje lecture notes by J. Jeener and G. Alewaeters), but no formal publication followed. Fortunately, Ernst, Freeman, Griffin, and many others were more far-sighted and optimistic. An early useful extension was Ernst's proposal to replace the original projection/reconstruction technique of MRI by the widely adopted Fourier transform method inspired by the Basko Polje lecture. Later, the pulse method spread over many fields of spectroscopy as soon as the required technology became available. Jean Jeener, Emeritus professor, Université Libre de Bruxelles. Geoffrey Bodenhausen, Ecole Normale Supérieure, Paris.

  16. Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques

    Science.gov (United States)

    Jackson, F. C.

    1979-01-01

    Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.

  17. [Determination of 10 sedative-hypnotics in human plasma using pulse splitless injection technique and gas chromatography-mass spectrometry].

    Science.gov (United States)

    Chang, Qing; Ma, Hongying; Wang, Fangjie; Ou, Honglian; Zou, Ming

    2011-11-01

    A simple, precise and sensitive gas chromatography-mass spectrometry (GC-MS) method coupled with pulse splitless injection technique was developed for the determination of 10 sedative-hypnotics (barbital, amobarbital, phenobarbital, oxazepam, diazepam, nitrazepam, clonazepam, estazolam, alprazolam, triazolam) in human plasma. The drugs spiked in plasma were extracted with ethyl acetate after alkalization with 0.1 mol/L NaOH solution. The organic solvent was evaporated under nitrogen stream, and the residues were redissolved by ethyl acetate. The separation was performed on an HP-5MS column (30 m x 250 microm x 0.25 microm). The analytes were determined and identified using selected ion monitoring (SIM) mode and scan mode, respectively. The internal standard method was used for the determination. The target analytes were well separated from each other on their SIM chromatograms and also on the total ion current (TIC) chromatograms. The blank extract from human plasma gave no peaks that interfered with all the analytes on the chromatogram. The calibration curves for 10 sedative-hypnotics showed excellent linearity. The correlation coefficients of all the drugs were higher than 0.9954. The recoveries of the drugs spiked in human plasma ranged from 92.28% to 111.7%, and the relative standard deviations (RSDs) of intra-day and inter-day determinations were from 4.09% to 14.26%. The detection limits ranged from 2 to 20 microg/L. The method is simple, reliable, rapid and sensitive for the determination and the quantification of 10 sedative-hypnotics in human plasma and seems to be useful in the practice of clinical toxicological cases.

  18. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-05-06

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to the signal initiating a process in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe schemes for achieving accurate timing of femtosecond x-ray synchrotron radiation pulses relative to a pump laser, where x-rays pulses of <100 fs duration are generated from the proposed LUX source based on a recirculating superconducting linac. We present a description of the timing signal generation and distribution systems to minimize timing jitter of the x-rays relative to the experimental lasers.

  19. Numerical simulation of super-short pulsed discharge in helium with particle-in-cell Monte Carlo collisions technique

    Institute of Scientific and Technical Information of China (English)

    Shi Feng; Zhang Li-Li; Wang De-Zhen

    2009-01-01

    This paper reports that a simulation of glow discharge in pure helium gas at the pressure of 1.333×103 Pa under a high-voltage nanosecond pulse is performed by using a one-dimensional particle-in-cell Monte Carlo collisions (PIC-MCC) model. Numerical modelling results show that the cathode sheath is much thicker than that of anode during the pulse discharge, and that there exists the phenomenon of field reversal at relative high pressures near the end of the pulse, which results from the cumulative positive charges due to their finite mobility during the cathode sheath expansion. Moreover, electron energy distribution function (EEDF) and ion energy distribution function (IEDF) have been also observed. In the early stage of the pulse, a large amount of electrons can be accelerated above the ionization threshold energy. However, in the second half of the pulse, as the field in bulk plasma decreases and thereafter the reverse field forms due to the excessive charges in cathode sheath, although the plasma density grows, the high energy part of EEDF decreases. It concludes that the large volume non-equilibrium plasmas can be obtained with high-voltage nanosecond pulse discharges.

  20. Particle identification using the ΔE-E technique and pulse shape discrimination with the silicon detectors of the FAZIA project

    Science.gov (United States)

    Carboni, S.; Barlini, S.; Bardelli, L.; Le Neindre, N.; Bini, M.; Borderie, B.; Bougault, R.; Casini, G.; Edelbruck, P.; Olmi, A.; Pasquali, G.; Poggi, G.; Rivet, M. F.; Stefanini, A. A.; Baiocco, G.; Berjillos, R.; Bonnet, E.; Bruno, M.; Chbihi, A.; Cruceru, I.; Degerlier, M.; Dueñas, J. A.; Galichet, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lopez, O.; Marchi, T.; Martel, I.; Morelli, L.; Parlog, M.; Petrascu, H.; Rosato, E.; Seredov, V.; Vient, E.; Vigilante, M.; Alba, R.; Santonocito, D.; Maiolino, C.; Fazia Collaboration

    2012-02-01

    The response of silicon-silicon-CsI(Tl) and silicon-CsI(Tl) telescopes to fragments produced in nuclear interactions has been studied. The telescopes were developed within the FAZIA collaboration. The capabilities of two methods are compared: (a) the standard ΔE-E technique and (b) the digital Pulse Shape Analysis technique (for identification of nuclear fragments stopped in a single Si-layer). In a test setup, nuclear fragments covering a large range in nuclear charge, mass and energy were detected. They were produced in nuclear reactions induced by a 35A MeV beam of 129Xe impinging on various targets. It was found that the ΔE-E correlations allow the identification of all isotopes up to Z˜25. With the digital Pulse Shape Analysis it is possible to fully distinguish the charge of stopped nuclei up to the maximum available Z (slightly over that of the beam, Z=54).

  1. Particle identification using the {Delta}E-E technique and pulse shape discrimination with the silicon detectors of the FAZIA project

    Energy Technology Data Exchange (ETDEWEB)

    Carboni, S., E-mail: carboni@fi.infn.it [University of Florence (Italy); INFN Florence (Italy); Barlini, S.; Bardelli, L. [University of Florence (Italy); INFN Florence (Italy); Le Neindre, N. [Laboratoire de Physique Corpusculaire, IN2P3-CNRS/ENSICAEN/Universite, F-14050 Caen cedex (France); Bini, M. [University of Florence (Italy); INFN Florence (Italy); Borderie, B. [Institut de Physique Nucleaire, CNRS/IN2P3 and University of Paris-Sud XI, Orsay (France); Bougault, R. [Laboratoire de Physique Corpusculaire, IN2P3-CNRS/ENSICAEN/Universite, F-14050 Caen cedex (France); Casini, G. [INFN Florence (Italy); Edelbruck, P. [Institut de Physique Nucleaire, CNRS/IN2P3 and University of Paris-Sud XI, Orsay (France); Olmi, A. [INFN Florence (Italy); Pasquali, G.; Poggi, G. [University of Florence (Italy); INFN Florence (Italy); Rivet, M.F. [Institut de Physique Nucleaire, CNRS/IN2P3 and University of Paris-Sud XI, Orsay (France); Stefanini, A.A. [University of Florence (Italy); INFN Florence (Italy); Baiocco, G. [INFN (Italy); University of Bologna (Italy); Berjillos, R. [Huelva University (Spain); Bonnet, E. [GANIL Caen (France); Bruno, M. [INFN (Italy); University of Bologna (Italy); Chbihi, A. [GANIL Caen (France); Cruceru, I. [Horia Hulubei National Institute of Physics and Nuclear Engineering, RO-077125 Bucharest (Romania); and others

    2012-02-01

    The response of silicon-silicon-CsI(Tl) and silicon-CsI(Tl) telescopes to fragments produced in nuclear interactions has been studied. The telescopes were developed within the FAZIA collaboration. The capabilities of two methods are compared: (a) the standard {Delta}E-E technique and (b) the digital Pulse Shape Analysis technique (for identification of nuclear fragments stopped in a single Si-layer). In a test setup, nuclear fragments covering a large range in nuclear charge, mass and energy were detected. They were produced in nuclear reactions induced by a 35A MeV beam of {sup 129}Xe impinging on various targets. It was found that the {Delta}E-E correlations allow the identification of all isotopes up to Z{approx}25. With the digital Pulse Shape Analysis it is possible to fully distinguish the charge of stopped nuclei up to the maximum available Z (slightly over that of the beam, Z=54).

  2. Re-evaluation of the H+/site ratio of mitochondrial electron transport with the oxygen pulse technique.

    Science.gov (United States)

    Brand, M D; Reynafarje, B; Lehninger, A L

    1976-09-25

    The number of protons ejected per pair of electrons passing each energy-conserving site in the electron transport chain (the H+/site ratio) has been investigated in rat liver mitochondria by means of the oxygen pulse technique introduced by Mitchell and Moyle (1967) (Biochem. J. 105, 1147-1162). The usual H+/site values of 2.0 observed by this method were found to be substantially underestimated as a result of the influx of phosphate into the mitochondria. This was shown by three different kinds of experiments. 1. Addition of N-ethylmaleimide or mersalyl, inhibitors of mitochondrial phosphate transport, increased the H+/site ratio from 2.0 to 3.0. The dependence of this effect on the concentration of either inhibitor was identical with that for inhibition of phosphate transport. Added phosphate diminished the H+/site ratio to values below 2.0 in the absence of N-ethylmaleimide. N-Ethylmaleimide protected the elevated H+/site ratio of 3.0 against the deleterious effect of added phosphate, but did not prevent a lowering effect of weak acid anions such as 3-hydroxybutyrate. 2. Prior washing of mitochondria to remove the endogenous phosphate that leaks out during the anaerobic preincubation led to H+/site ratios near 3.0, which were not increased by N-ethylmaleimide. Addition of low concentrations of phosphate to such phosphate-depleted mitochondria decreased the H+/site ratio to 2.0; addition of N-ethylmaleimide returned the ratio to 3.0. 3. Lowering the temperature to 5 degrees, which slows down phosphate transport, led to H+/site values of 3.0 even in the absence of N-ethylmaleimide. The H+/site ratio of 3.0 observed in the absence of phosphate movements was not dependent on any narrowly limited set of experimental conditions. It occurred with either Ca2+ or K+ (in the presence of valinomycin) as mobile permeant cation. It was independent of the concentration of succinate, oxygen, mitochondria, or rotenone, additions of Ca2+, Li+, or Na+ and was independent of

  3. Early detection of corrosion of reinforcement: Potential field measurement and galvano-static pulse technique. Frueherkennung von Bewehrungskorrosion: Potentialfeldmessung und galvanostatische Impulstechnik

    Energy Technology Data Exchange (ETDEWEB)

    Boehni, H.; Elsener, B. (ETH Zurich (Switzerland))

    1991-01-01

    Early detection of corrosion damage in reinforced concrete buildings is not only with regard to savety of great importance but also economically. Electrochemical methods largely comply with the requirements. The focus is put on potential field measurements as nondestructive method for locating corroded areas of reinforcement in theory and with concrete examples of application. Galvanostatic pulse techniques can be used as valuable complement to potential measurements. (BWI).

  4. Review of neon-like and nickel-like ions lasing on the J = 0 {r_arrow} 1 line using the prepulse and multiple pulse techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, J.; Moreno, J.C.; Da Silva, L.B.; Barbee, T.W. Jr. [Lawrence Livermore National Lab., CA (United States); Li, Y.; Lu, P.; Fill, E.E. [Max-Planck-Inst. fuer Quantenoptik, Garching (Germany); Fiedorowicz, H.; Bartnik, A. [Military Univ. of Technology, Warsaw (Poland). Inst. of Optoelectronics

    1995-11-01

    The authors discuss the use of a prepulse technique to achieve lasing in low-Z neon-like ions on the 3p {r_arrow} 3s(J = 0 {r_arrow} 1) transition. Lasing has now been observed on this transitions for neon-like ions from chlorine to selenium with wavelengths ranging from 528 {angstrom} to 182 {angstrom}. For the germanium targets they present two dimensional space resolves images of the laser output with magnification of ten. Using a gas puff target as an alternative to the prepulse technique, they observe lasing at 469 {angstrom} in neon-like argon. Using a series of 100 ps pulses 400 ps apart to illuminate germanium and selenium plasmas they present results which now show the 3p {r_arrow} 3s(J = 0 {r_arrow} 1) transition to dominate the other laser lines even for selenium. Applying the multiple pulse technique to nickel-like ions they observed lasing at 79 {angstrom} on the 4d {r_arrow} 4p(J = 0 {r_arrow} 1) transition in nickel-like neodymium (Z = 60) when a series of 100--150 ps pulses which are 400--500 ps apart are used to illuminate slab targets of neodymium. To maximize the laser output for neodymium they combine the advantages of coupling two slab targets, using the traveling wave geometry, and curving the target surface.

  5. Calcium Phosphate Coating on Al2 O3 Ceramics by a Biomimetic Method Using Electric Pulse Technique

    Institute of Scientific and Technical Information of China (English)

    JIN Zhengguo; SHI Yong; GUO Wenli; WANG Ying; QIU Jijun

    2005-01-01

    The preparation of calcium phosphate (CP) coating on alumina ceramics using electric pulse stimulating method has been investigated. The cup-shaped alumina ceramics were soaked in a simulated body fluid (SBF), and a square pulse potential with frequency of 1 Hz and voltage of 110 V was applied between the inner and outer surfaces of the alumina cup. Surface morphology of CP coatings during different deposition periods was observed by a Philips XL-30 scanning electron microscope (SEM). Compositional analysis was examined by EDAX. The mechanism of nucleation and growth of CP coating was discussed. SEM result indicates that the coating comprises of a large number of tiny needle-like grains and has a porous microstructure. There is a strong bond between the deposited layer and Al2O3 substrate, which may be due to the gentle growth of the biomimetic method. The EDAX analysis indicates that main composition of the coating is calcium and phosphor. The formation of CP coating may be contributed to the stimulation of electric pulse and the high ions concentration which is 1.5 times of the concentration of SBF solution (1.5SBF solution). Such surface functionalization method by electric pulse potential can be used to prepare CP coating on various electric-insulating bioinert materials for improving their bioactive character.

  6. Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film

    DEFF Research Database (Denmark)

    Schou, Jørgen

    2009-01-01

    The physical processes of pulsed laser deposition (PLD) change strongly from the initial light absorption in a target to the final deposition and growth of a film. One of the primary advantages of PLD is the stoichiometric transfer of material from target to a film on a substrate. Even for a stoi...

  7. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, an anthropomorfized archive of a past intimacy and an all-encompassing immersive environment modulating continuously in real space-time....

  8. Management of pudendal neuralgia using ultrasound-guided pulsed radiofrequency: a report of two cases and discussion of pudendal nerve block techniques.

    Science.gov (United States)

    Hong, Myong-Joo; Kim, Yeon-Dong; Park, Jeong-Ki; Hong, Hyon-Joo

    2016-04-01

    Pudendal neuralgia is characterized by chronic pain or discomfort in the area innervated by the pudendal nerve, with no obvious cause. A successful pudendal nerve block is crucial for the diagnosis of pudendal neuralgia. Blind or fluoroscopy-guided pudendal nerve blocks have been conventionally used for diagnosis and treatment; however, ultrasound-guided pudendal nerve blocks were also reported recently. With regard to the achievement of long-term effects, although pulsed radiofrequency performed under fluoroscopic guidance has been reported, that performed under ultrasound guidance is not well reported. This report describes two cases of pudendal neuralgia that were successfully managed using ultrasound-guided pulsed radiofrequency and presents a literature review of pudendal nerve block techniques. However, in the management of chronic neuropathic pain, physicians should keep in mind that the placebo effect related to invasive approaches must not be neglected.

  9. Triple-Pulse Integrated Path Differential Absorption Lidar for Carbon Dioxide Measurement - Novel Lidar Technologies and Techniques with Path to Space

    Science.gov (United States)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  10. Investigating the intersystem crossing rate and triplet quantum yield of Protoporphyrin IX by means of pulse train fluorescence technique

    Science.gov (United States)

    Gotardo, Fernando; Cocca, Leandro H. Z.; Acunha, Thiago V.; Longoni, Ana; Toldo, Josene; Gonçalves, Paulo F. B.; Iglesias, Bernardo A.; De Boni, Leonardo

    2017-04-01

    Photophysical investigations of PPIX were described in order to determine the triplet conversion efficiency. Time resolved fluorescence and pulse train fluorescence were employed to characterize the main mechanism responsible for deactivation of the first singlet excited state (excited singlet and triplet states). Single pulse and Z-Scan analysis were employed to measure the singlet excited state absorption cross-sections. Theoretical calculations were performed in order to get some properties of PPIX in ground state, first singlet and triplet excited state. A TD-DFT result shows a great possibility of ISC associated to out-of-plane distortions in porphyrinic ring. Furthermore, the B and Q bands in the calculated spectrum are assigned to the four frontier molecular orbitals as proposed by Gouterman for free-based porphyrins.

  11. The Study of State-Selected Ion-Molecule Reactions using the Vacuum Ultraviolet Pulsed Field Ionization-Photoion Technique

    Science.gov (United States)

    2006-01-01

    challenges of improving the kinetic energy resolu- Very recently, high-level time-dependent quantum mechani - tion in ion-molecule collisional experiments...2006) Copyright 2006 American Institute of Physics 14. ABSTRACT This paper presents the methodology to generate beams of ions in single quantum states...in single quantum states for bimolecular ion-molecule reaction dynamics studies using pulsed field ionization (PFI) of atoms or molecules in high-n

  12. Development of a 2-micron Pulsed Differential Absorption Lidar for Atmospheric CO2 Concentration Measurement by Direct Detection Technique

    Science.gov (United States)

    Yu, J.; Singh, U. N.; Petros, M.; Bai, Y.

    2011-12-01

    Researchers at NASA Langley Research Center are developing a 2-micron Pulsed Differential Absorption Lidar instrument for ground and airborne measurements via direct detection method. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capbility by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. A key component of the CO2 DIAL system, transceiver, is an existing, airborne ready, robust hardware which can provide 250mJ at 10Hz with double pulse format specifically designed for DIAL instrument. The exact wavelengths of the transceiver are controlled by well defined CW seed laser source to provide the required injection source for generating on-and-off line wavelength pulses sequentially. The compact, rugged, highly reliable transceiver is based on the unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. They are designed to be adjustable and lockable and hardened to withstand vibrations that can occur in airborne operation. For the direct detection lidar application, a large primary mirror size is preferred. A 14 inch diameter telescope will be developed for this program. The CO2 DIAL/IPDA system requires many electronic functions to operate. These include diode, RF, seed laser, and PZT drivers; injection seeding detection and control; detector power supplies; and analog inputs to sample various sensors. Under NASA Laser Risk Reduction Program (LRRP), a control unit Compact Laser Electronics (CLE), is developed for the controlling the coherent wind lidar transceiver. Significant modifications and additions are needed to update it for CO2 lidar controls. The data acquisition system was built for ground CO2 measurement demonstration. The software will be updated for

  13. $\\beta$-decay study of neutron-rich Tl, Pb, and Bi by means of the pulsed-release technique and resonant laser ionisation

    CERN Multimedia

    Lettry, J

    2002-01-01

    It is proposed to study new neutron-rich nuclei around the Z = 82 magic shell closure, with major relevance for understanding the evolution of nuclear structure at extreme isospin values. Following the IS354 experiment, $\\beta$-decay studies of neutron-rich thallium, lead and bismuth isotopes will be performed for 215 $\\leqslant$ A $\\leqslant$ 219. To this purpose the pulsed-release technique, which was pioneered at ISOLDE, will be optimised. It will be complemented with the higher element selectivity that can be obtained by the unique features of resonant laser ionisation, available at ISOLDE from the RILIS source.

  14. Determination of the apparent porosity level of refractory concrete during a sintering process using an ultrasonic pulse velocity technique and image analysis

    Directory of Open Access Journals (Sweden)

    LJUBICA M. PAVLOVIĆ

    2010-03-01

    Full Text Available Concrete which undergoes a thermal treatment before (pre-casted concrete blocks and during (concrete embedded in-situ its life-service can be applied in plants operating at high temperature and as thermal insulation. Sintering is a process which occurs within a concrete structure in such conditions. Progression of sintering process can be monitored by the change of the porosity parameters determined with a nondestructive test method - ultrasonic pulse velocity and computer program for image analysis. The experiment has been performed on the samples of corundum and bauxite concrete composites. The apparent porosity of the samples thermally treated at 110, 800, 1000, 1300 and 1500 C was primary investigated with a standard laboratory procedure. Sintering parameters were calculated from the creep testing. The loss of strength and material degradation occurred in concrete when it was subjected to the increased temperature and a compressive load. Mechanical properties indicate and monitor changes within microstructure. The level of surface deterioration after the thermal treatment was determined using Image Pro Plus program. Mechanical strength was estimated using ultrasonic pulse velocity testing. Nondestructive ultrasonic mea¬surement was used as a qualitative description of the porosity change in specimens which is the result of the sintering process. The ultrasonic pulse velocity technique and image analysis proved to be reliable methods for monitoring of micro-structural change during the thermal treatment and service life of refractory concrete.

  15. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality......“Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...

  16. Pulse transient hot strip technique adapted for slab sample geometry to study anisotropic thermal transport properties of μm-thin crystalline films.

    Science.gov (United States)

    Ma, Y; Gustavsson, J S; Haglund, A; Gustavsson, M; Gustafsson, S E

    2014-04-01

    A new method based on the adaptation of the Pulse Transient Hot Strip technique to slab sample geometry has been developed for studying thermal conductivity and thermal diffusivity of anisotropic thin film materials (conductivity in the 0.01-100 W/mK range, deposited on thin substrates (i.e., wafers). Strength of this technique is that it provides a well-controlled thermal probing depth, making it possible to probe a predetermined depth of the sample layer and thereby avoiding the influence from material(s) deeper down in the sample. To verify the technique a series of measurements were conducted on a y-cut single crystal quartz wafer. A Hot Strip sensor (32-μm wide, 3.2-mm long) was deposited along two orthogonal crystallographic (x- and z-) directions and two independent pulse transients were recorded. Thereafter, the data was fitted to our theoretical model, and the anisotropic thermal transport properties were determined. Using a thermal probing depth of only 30 μm, we obtained a thermal conductivity along the perpendicular (parallel) direction to the z-, i.e., optic axis of 6.48 (11.4) W/mK, and a thermal diffusivity of 3.62 (6.52) mm(2)/s. This yields a volumetric specific heat of 1.79 MJ/mK. These values agree well with tabulated data on bulk crystalline quartz supporting the accuracy of the technique, and the obtained standard deviation of less than 2.7% demonstrates the precision of this new measurement technique.

  17. New digital techniques applied to A and Z identification using pulse shape discrimination of silicon detector current signals

    Energy Technology Data Exchange (ETDEWEB)

    Barlini, S. [LPC Caen, ENSICAEN, University of Caen, CNRS/IN2P3, Caen (France)], E-mail: barlini@fi.infn.it; Bougault, R.; Laborie, Ph.; Lopez, O.; Mercier, D. [LPC Caen, ENSICAEN, University of Caen, CNRS/IN2P3, Caen (France); Parlog, M. [LPC Caen, ENSICAEN, University of Caen, CNRS/IN2P3, Caen (France); NIPNE, RO-76900 Bucharest (Romania); Tamain, B.; Vient, E. [LPC Caen, ENSICAEN, University of Caen, CNRS/IN2P3, Caen (France); Chevallier, E.; Chbihi, A.; Jacquot, B. [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Kravchuk, V.L. [INFN-LNL, I-35020 Legnaro, Padova (Italy)

    2009-03-11

    Extending pulse shape discrimination (PSD) to digitized signals is one of the most promising methods to identify particles stopped in a detector. Using the CIME accelerator in the GANIL laboratory, a measurement campaign was done to collect data corresponding to different charges, masses and energies of implanted ions. These data are used to develop an algorithm capable to discriminate the different particles both in mass and charge. In this experiment, a 300{mu}m n-TD reverse mounted Si detector was used. These studies on PSD are part of the FAZIA R and D, a research and development project aiming at building a new 4{pi} array for isospin nuclear physics.

  18. 软开关脉宽调制变频技术%Soft-Switching Technique in Pulse Width Modulation Inverters

    Institute of Scientific and Technical Information of China (English)

    陈国呈; 谷口胜则; 中村博人

    2000-01-01

    In this paper, a new soft-switching inverter using a minimum number of devices, and a new PWM (pulse-width modulation)method suitable for 3-phase soft-switching inverters are proposed. The circuit is used as an interface between the DC supply and the conventional voltage source of a PWM inverter. The number of switching operations can be reduced by using the PWM strategy. Increasing the amplitude of the fundamental component contained in the output waveform results in an effective utilization of the DC supply, a reduction of nominated capacity of the inverter elements, and a reduction of switching loss in the switching devices.

  19. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Ghiyas Ud Din [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences -PIEAS, P.O Nilore, Islamabad (Pakistan); Isotope Application Division, Pakistan Institute of Nuclear Science and Technology - PINSTECH, P.O Nilore, Islamabad (Pakistan)], E-mail: fac192@pieas.edu.pk; Imran Rafiq Chughtai; Mansoor Hameed Inayat [Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences - PIEAS, P.O Nilore, Islamabad (Pakistan); Iqbal Hussain Khan [Isotope Application Division, Pakistan Institute of Nuclear Science and Technology - PINSTECH, P.O Nilore, Islamabad (Pakistan)

    2009-07-15

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and {sup 99m}Tc in the form of sodium pertechnetate eluted from a {sup 99}Mo/{sup 99m}Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer {sup 99m}Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  20. Pulsed carbon dioxide laser for cartilage vaporization and subchondral bone perforation in horses. Part I: Technique and clinical results.

    Science.gov (United States)

    Roth, J E; Nixon, A J; Gantz, V A; Meyer, D; Mohammed, H

    1991-01-01

    A carbon dioxide laser, used in a rapidly pulsed mode, was evaluated for intra-articular use in horses. Under arthroscopic guidance, a lensed 5 mm laser probe attached directly to a hand-held carbon dioxide laser was inserted into one intercarpal joint of eight horses. In four horses, a cartilage crater 1 cm in diameter was created to the level of the subchondral bone of the articular surface of the third carpal bone. In four horses, the laser was directed perpendicular to the articular surface of the third carpal bone and activated to penetrate the cartilage and subchondral bone. The intercarpal joint of the opposite carpus in each horse was subjected to arthroscopic examination and insertion of the laser probe for an equivalent time. The laser was not activated and these joints served as sham operated controls. The horses were evaluated clinically for 8 weeks, then euthanatized, and the joints were examined radiographically, grossly, and histologically. Pulsed carbon dioxide laser vaporized cartilage readily but penetrated bone poorly. Cartilage vaporization resulted in no greater swelling, heat, pain on flexion, lameness, or synovial fluid reaction than the sham procedure. Laser drilling resulted in a shallow, charred hole with a tenacious carbon residue, and in combination with the thermal damage to deeper bone, resulted in increased swelling, mild lameness and a low-grade, but persistent synovitis. The carbon dioxide laser is a useful intra-articular instrument for removal of cartilage and has potential application in inaccessible regions of diarthrodial joints. It does not penetrate bone sufficiently to have application in subchondral drilling.

  1. Thermal stability and thermal expansion behaviour of ZrO{sub 2}/Y{sub 2}O{sub 3} multilayers deposited by pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Maneesha, E-mail: pkigcar@gmail.com [Materials Synthesis and Structural Characterisation Division, Physical Metallurgy Group, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kuppusami, P. [Centre for Nanoscience and Nanotechnology, Sathyabama University, Chennai, 600119 Tamil Nadu (India); Murugesan, S.; Ghosh, Chanchal; Divakar, R.; Singh, Akash; Mohandas, E. [Materials Synthesis and Structural Characterisation Division, Physical Metallurgy Group, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2015-07-15

    Multilayers of ZrO{sub 2}/Y{sub 2}O{sub 3} were prepared by pulsed laser deposition technique with variation in the ZrO{sub 2} layer thickness from 5 to 30 nm keeping the Y{sub 2}O{sub 3} layer thickness constant (∼10 nm). The stability, phase evolution and thermal expansion behaviour of the multilayers were analyzed by high temperature x-ray diffraction technique, in the temperature range of 300–1373 K. Unlike the single layer of ZrO{sub 2} film, which shows a mixture of tetragonal and monoclinic phase, the ZrO{sub 2} layers in multilayers show tetragonal phase in case of all the multilayers investigated in the present work. The values of coefficient of thermal expansion (CTE) decrease with increase in the ZrO{sub 2} layer thickness. The CTE of both ZrO{sub 2} and Y{sub 2}O{sub 3} are found to be influenced by their mutual solubility as well as due to interdiffusion of these oxides taking place along the interfaces of the multilayers, especially during high temperature heat-treatment. - Highlights: • ZrO{sub 2}/Y{sub 2}O{sub 3} multilayers were deposited by pulsed laser deposition technique. • Formation of tetragonal phase of ZrO{sub 2} and cubic phase of Y{sub 2}O{sub 3} were observed. • The multilayers films show good thermal stability upto temperature 1373 K. • The coefficient of thermal expansion (CTE) of t-ZrO{sub 2} decreases with increase in ZrO{sub 2} layer thickness.

  2. High-speed clock recovery and demodulation using short pulse sources and phase-locked loop techniques

    DEFF Research Database (Denmark)

    Zibar, Darko

    2007-01-01

    We present a modelling technique and noise analysis of a clock recovery scheme based on an optoelectronic phase-locked loop. We treat the prob- lem using techniques from stochastic processes and stochastic differential equations. A set of stochastic differential (Langevin) equations describing......-locked loop with noise at a bit-rate of 160 Gb/s. It has been shown that it is important to reduce the time delay in the loop since it results in the increased timing jitter of the recovered clock signal. We also investigate the requirement for the free-running timing jitter of the local electrical......, optoelectronic phase-locked loop based clock recovery operating at 320 Gb/s is demonstrated. Optical regenerator with clock recovery, based on an optoelectronic phase- locked loop, is also described using techniques from stochastic calculus. An analytical expression for the power spectral density of the retimed...

  3. SU-E-T-558: An Exploratory RF Pulse Sequence Technique Used to Induce Differential Heating in Tissues Containing Iron Oxide Nanoparticles for a Possible Hyperthermic Adjuvant Effect to Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yee, S; Ionascu, D; Wilson, G [William Beaumont Hospital, Royal Oak, MI (United States); Thapa, R [Oakland University, Rochester, MI (United States)

    2014-06-01

    Purpose: In pre-clinical trials of cancer thermotherapy, hyperthermia can be induced by exposing localized super-paramagnetic iron oxide nanoparticles (SPION) to external alternating magnetic fields generated by a solenoid electrical circuit (Zhao et al., Theranostics 2012). Alternatively, an RF pulse technique implemented in a regular MRI system is explored as a possible hyperthermia induction technique . Methods: A new thermal RF pulse sequence was developed using the Philips pulse programming tool for the 3T Ingenia MRI system to provide a sinusoidal magnetic field alternating at the frequency of 1.43 kHz (multiples of sine waves of 0.7 ms period) before each excitation RF pulse for imaging. The duration of each thermal RF pulse routine was approximately 3 min, and the thermal pulse was applied multiple times to a phantom that contains different concentrations (high, medium and low) of SPION samples. After applying the thermal pulse each time, the temperature change was estimated by measuring the phase changes in the T1-weighted inversion-prepared multi-shot turbo field echo (TFE) sequence (TR=5.5 ms, TE=2.7 ms, inversion time=200 ms). Results: The phase values and relative differences among them changed as the number of applied thermal RF pulses increased. After the 5th application of the thermal RF pulse, the relative phase differences increased significantly, suggesting the thermal activation of the SPION. The increase of the phase difference was approximately linear with the SPION concentration. Conclusion: A sinusoidal RF pulse from the MRI system may be utilized to selectively thermally activate tissues containing super-paramagnetic iron oxide nanoparticles.

  4. Dynamic measurements of thermophysical properties of metals and alloys at high temperatures by subsecond pulse heating techniques

    Science.gov (United States)

    Cezairliyan, Ared

    1993-01-01

    Rapid (subsecond) heating techniques developed at the National Institute of Standards and Technology for the measurements of selected thermophysical and related properties of metals and alloys at high temperatures (above 1000 C) are described. The techniques are based on rapid resistive self-heating of the specimen from room temperature to the desired high temperature in short times and measuring the relevant experimental quantities, such as electrical current through the specimen, voltage across the specimen, specimen temperature, length, etc., with appropriate time resolution. The first technique, referred to as the millisecond-resolution technique, is for measurements on solid metals and alloys in the temperature range 1000 C to the melting temperature of the specimen. It utilizes a heavy battery bank for the energy source, and the total heating time of the specimen is typically in the range of 100-1000 ms. Data are recorded digitally every 0.5 ms with a full-scale resolution of about one part in 8000. The properties that can be measured with this system are as follows: specific heat, enthalpy, thermal expansion, electrical resistivity, normal spectral emissivity, hemispherical total emissivity, temperature and energy of solid-solid phase transformations, and melting temperature (solidus). The second technique, referred to as the microsecond-resolution technique, is for measurements on liquid metals and alloys in the temperature range 1200 to 6000 C. It utilizes a capacitor bank for the energy source, and the total heating time of the specimen is typically in the range 50-500 micro-s. Data are recorded digitally every 0.5 micro-s with a full-scale resolution of about one part in 4000. The properties that can be measured with this system are: melting temperature (solidus and liquidus), heat of fusion, specific heat, enthalpy, and electrical resistivity. The third technique is for measurements of the surface tension of liquid metals and alloys at their melting

  5. High Pitch Delay Resolution Technique for Tonal Language Speech Coding Based on Multi-Pulse Based Code Excited Linear Prediction Algorithm

    Directory of Open Access Journals (Sweden)

    Suphattharachai Chomphan

    2011-01-01

    Full Text Available Problem statement: In spontaneous speech communication, speech coding is an important process that should be taken into account, since the quality of coded speech depends on the efficiency of the speech coding algorithm. As for tonal language which tone plays important role not only on the naturalness and also the intelligibility of the speech, tone must be treated appropriately. Approach: This study proposes a modification of flexible Multi-Pulse based Code Excited Linear Predictive (MP-CELP coder with multiple bitrates and bitrate scalabilities for tonal language speech in the multimedia applications. The coder consists of a core coder and bitrate scalable tools. The High Pitch Delay Resolutions (HPDR are applied to the adaptive codebook of core coder for tonal language speech quality improvement. The bitrate scalable tool employs multi-stage excitation coding based on an embedded-coding approach. The multi-pulse excitation codebook at each stage is adaptively produced depending on the selected excitation signal at the previous stage. Results: The experimental results show that the speech quality of the proposed coder is improved above the speech quality of the conventional coder without pitch-resolution adaptation. Conclusion: From the study, it is a strong evidence to further apply the proposed technique in the speech coding systems or other speech processing technologies.

  6. Crystalline nanostructured Cu doped ZnO thin films grown at room temperature by pulsed laser deposition technique and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Qasem A. [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Rao, Saleem G.; Yamani, Zain H. [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, Mohammed A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2013-04-01

    We report structural and optical properties of Cu doped ZnO (ZnO:Cu) thin films deposited on glass substrate at room temperature by pulsed laser deposition (PLD) method without pre and post annealing contrary to all previous reports. For preparation of (ZnO:Cu) composites pure Zn and Cu targets in special geometrical arrangements were exposed to 248 nm radiations generated by KrF exciter laser. The laser energy was 200 mJ with 10 Hz frequency and 20 ns pulse width. The effect of Cu concentration on crystal structure, morphology, and optical properties were investigated by XRD, FESEM and photoluminescence spectrometer respectively. A systematic shift in ZnO (0 0 2) peak with Cu concentration observed in XRD spectra demonstrated that Cu ion has been incorporated in ZnO lattice. Uniform film with narrow size range grains were observed in FESEM images. The photoluminescence (PL) spectra measured at room temperature revealed a systematic red shift in ZnO emission peak and decrease in the band gap with the increase in Cu concentration. These results entail that PLD technique can be realized to deposit high quality crystalline ZnO and ZnO:Cu thin films without pre and post heat treatment which is normally practiced worldwide for such structures.

  7. Pulsed Field Gel Electrophoresis (PFGE: a DNA finger printing technique to study the genetic diversity of blood disease bacterium of banana

    Directory of Open Access Journals (Sweden)

    HADIWIYONO

    2011-01-01

    Full Text Available Hadiwiyono, Widada J, Subandiyah S, Fegan F (2011 Pulsed Field Gel Electrophoresis (PFGE: a DNA finger printing technique to study the genetic diversity of blood disease bacterium of banana. Biodiversitas 12: 12-16. Blood disease bacterium (BDB is the most important pathogen of bananas in Indonesia. In some field, the disease incidence reaches over 80%. Epidemiologically, the disease is similar to moko disease in South America and bugtok disease in the Philippines caused by Ralstonia solanacearum race 2. However, BDB is different in phenotype and genotype from the two diseases. Previously BDB was limited in South Sulawesi since 1920s – 1980s and recently was reported in 27 of 30 provinces in Indonesia. Pulsed-Field Gel Electrophoresis (PFGE is a genomic DNA fingerprinting method, which employs rare cutting restriction endonucleases to digest genome prior to electrophoresis using specialized condition to separate of large DNA fragments. The results showed that PFGE analysis was a discriminative tool to study the genetic diversity of BDB. Based on the PFGE analysis, BDB isolates obtained from different localities in Yogyakarta and Central Java were quit diverse.

  8. Phase transition of TiO{sub 2} thin films detected by the pulsed laser photoacoustic technique

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Pacheco, A.; Castaneda-Guzman, R.; Oliva Montes de Oca, C.; Esparza-Garcia, A. [Universidad Nacional Autonoma de Mexico, CCADET-UNAM, Laboratorio de Fotofisica y Peliculas Delgadas, Cd. Universitaria, A.P. 70-186, Mexico D.F. (Mexico); Perez Ruiz, S.J. [CCADET-UNAM, Acustica y Vibraciones, Mexico D.F. (Mexico)

    2011-03-15

    In this work, we present characterization of titanium oxide thin films by photoacoustic measurements to determine the ablation threshold and phase transitions from amorphous to crystalline states. The important advantages of this method are that it does not require amplification at the detection stage and that it is a non-destructive technique. The correlation analysis of the photoacoustic signals allows us to visualize the ablation threshold and the phase transitions with enhanced sensitivity. This correlation analysis clearly exhibits the changes in the thin-film morphology due to controlled variations of the fluence (energy/area) and the temperature of the surrounding medium. This is particularly important for those cases where the crystalline changes caused by temperature variations need to be monitored. The thin-film samples were prepared by the sputtering technique at room temperature in the amorphous state. The phase transformations were induced by controlled temperature scanning and then corroborated with Raman spectroscopy measurements. (orig.)

  9. Data acquisition techniques for exploiting the uniqueness of the time-of-flight mass spectrometer: Application to sampling pulsed gas systems

    Science.gov (United States)

    Lincoln, K. A.

    1980-01-01

    Mass spectra are produced in most mass spectrometers by sweeping some parameter within the instrument as the sampled gases flow into the ion source. It is evident that any fluctuation in the gas during the sweep (mass scan) of the instrument causes the output spectrum to be skewed in its mass peak intensities. The time of flight mass spectrometer (TOFMS) with its fast, repetitive mode of operation produces spectra without skewing or varying instrument parameters and because all ion species are ejected from the ion source simultaneously, the spectra are inherently not skewed despite rapidly changing gas pressure or composition in the source. Methods of exploiting this feature by utilizing fast digital data acquisition systems, such as transient recorders and signal averagers which are commercially available are described. Applications of this technique are presented including TOFMS sampling of vapors produced by both pulsed and continuous laser heating of materials.

  10. First observation of the beta decay of neutron-rich $^{218}Bi$ by the pulsed-release technique and resonant laser ionization

    CERN Document Server

    De Witte, H; Borzov, I N; Caurier, E; Cederkäll, J; De Smet, A; Eckhaudt, S; Fedorov, D V; Fedosseev, V; Franchoo, S; Górska, M; Grawe, H; Huber, G; Huyse, M; Janas, Z; Köster, U; Kurcewicz, W; Kurpeta, J; Plochocki, A; Van Duppen, P; Van de Vel, K; Weissman, L

    2004-01-01

    The neutron-rich isotope /sup 218/Bi has been produced in proton- induced spallation of a uranium carbide target at the ISOLDE facility at CERN, extracted from the ion source by the pulsed-release technique and resonant laser ionization, and its beta decay is studied for the first time. A half-life of 33(1)s was measured and is discussed in the self-consistent continuum-quasi particle-random- phase approximation framework that includes Gamow-Teller and first- forbidden transitions. A level scheme was constructed for /sup 218 /Po, and a deexcitation pattern of stretched E2 transitions 8/sup +/ to 6/sup +/ to 4/sup +/ to 2/sup +/ to 0/sup +/ to the ground state is suggested. Shell-model calculations based on the Kuo-Herling interaction reproduce the experimental results satisfactorily. (28 refs).

  11. XANES and EXAFS study of the TiN Thin films grown by the pulsed DC sputtering technique assisted by balanced magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Duarte M, A.; Esparza P, H.; Gonzalez V, C. [Centro de Investigacion en Materiales Avanzados, S. C., Miguel de Cervantes 120, Complejo Industrial Chihuahua Chihuahua, Chih. 31109 (Mexico); Yocupicio, I. [Universidad de Sonora, Unidad Regional Sur Lazaro Cardenas No. 100 Col. Fco. Villa, Navojoa, Sonora (Mexico)

    2007-07-01

    A series of different Ti{sub x}N{sub y} thin films were grown by the DC-sputtering technique. The purpose for this work was to study through XAS interpretation, how the different amounts of N{sub 2} during growing thin TiN thin films, affects the stoichiometry of the TiN deposited. Also the results obtained determinate how to interpret the spectra to see the different valences of Ti in TiN, are working. The results were supported with the EXAFS and XANES analysis. This work concludes the adequate conditions for this experiment to obtain TiN as thin film by the DC sputtering assisted by pulsed balanced magnetron at room temperature and concludes which XANES spectra are the finger print for valences of Ti. (Author)

  12. Caracterização de cepas de referência de Leptospira sp utilizando a técnica de pulsed field gel electrophoresis Characterization of Leptospira sp reference strains using the pulsed field gel electrophoresis technique

    Directory of Open Access Journals (Sweden)

    Lívia Machry

    2010-04-01

    Full Text Available INTRODUÇÃO: A leptospirose é uma zoonose endêmica, mundialmente distribuída, causada por bactérias do gênero Leptospira. Este gênero compreende espécies patogênicas e saprofíticas, com mais de 200 sorovares distintos, dificultando sua caracterização. A técnica de pulsed field gel electrophoresis tem sido empregada como uma ferramenta para auxiliar nesta caracterização. Os objetivos deste trabalho foram padronizar a técnica de PFGE, determinar os perfis moleculares das cepas de referência utilizadas pelo Laboratório de Referência Nacional para Leptospirose/Centro Colaborador da Organização Mundial de Saúde para Leptospirose e criar um banco de dados com estes perfis. MÉTODOS: Foram analisadas, por PFGE, dezenove cepas utilizando a enzima de restrição NotI. RESULTADOS: Cada cepa apresentou um perfil único que pode ser considerado como uma identidade genômica específica, com exceção dos sorovares Icterohaemorrhagiae e Copenhageni, cujos perfis foram indistinguíveis. CONCLUSÕES: Dessa forma, foi possível a criação de um banco de perfis moleculares que está sendo utilizado no Laboratório para a comparação e identificação de cepas isoladas de quadros clínicos.INTRODUCTION: Leptospirosis is an endemic zoonosis of worldwide distribution, caused by bacteria of the genus Leptospira. This genus includes pathogenic and saprophytic species, with more than 200 different serovars, thus making it difficult to characterize. The technique of pulsed field gel electrophoresis has been used as a tool to aid in this characterization. The aims of this study were to standardize the PFGE technique, determine the molecular profiles of reference strains used at the National Reference Laboratory for Leptospirosis/World Health Organization Collaborating Center for Leptospirosis and create a database with these profiles. METHODS: Nineteen strains were analyzed by means of PFGE, using the restriction enzyme NotI. RESULTS: Each strain

  13. An Inductorless Cascaded Phase-Locked Loop with Pulse Injection Locking Technique in 90 nm CMOS

    Directory of Open Access Journals (Sweden)

    Sang-yeop Lee

    2013-01-01

    area: 0.11 mm2 by adopting 90 nm Si CMOS technology. The proposed circuit is configured with two cascaded PLLs; one of them is a reference PLL that generates reference signals to the other one from low-frequency external reference signals. The other is a main PLL that generates high-frequency output signals. A high-frequency half-integral subharmonic locking technique was used to decrease the phase noise characteristics. For a 50 MHz input reference signal, without injection locking, the 1 MHz offset phase noise was −88 dBc/Hz at a PLL output frequency of 7.2 GHz (= 144 × 50 MHz; with injection locking, the noise was −101 dBc/Hz (spur level: −31 dBc; power consumption from a 1.0 V power supply: 25 mW.

  14. Structural studies of some phospho-borate glasses using ultrasonic pulse-echo technique, DSC and IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gaafar, M.S., E-mail: mohamed_s_gaafar@hotmail.co [Ultrasonic Laboratory, National Institute for Standards, Tersa Street, P.O. Box 136, El-Haram, El-Giza 12211 (Egypt); Afifi, H.A. [Ultrasonic Laboratory, National Institute for Standards, Tersa Street, P.O. Box 136, El-Haram, El-Giza 12211 (Egypt); Mekawy, M.M. [Thermometry Laboratory, National Institute for Standards, Tersa Street, P.O. Box 136, El-Haram, El-Giza 12211 (Egypt)

    2009-06-01

    Glasses in the system (95-x) [0.25 Na{sub 2}O-0.75 B{sub 2}O{sub 3}]-x P{sub 2}O{sub 5}-5 Fe{sub 2}O{sub 3} (0<=x<=15 mol%), have been prepared by the melt quenching technique. Elastic properties and FT-IR spectroscopic studies have been employed to study the role of P{sub 2}O{sub 5} on the structure of the glass system. Elastic properties Poisson's ratio, micro-hardness and Debye temperature have been investigated using sound wave velocity measurements at 4 MHz (both longitudinal and shear) at room temperature. The results showed that the density and the molar volume increase as both sound velocities and the determined glass transition temperatures decrease with increasing the contents of P{sub 2}O{sub 5}. Infrared spectra of the glasses reveal that the borate network consists of diborate units and is affected by the increase in the concentration of P{sub 2}O{sub 5} content as a second network former. These results are interpreted in terms of the replacement of the diborate units with B-O-B bridges by phosphate units with non-bridging oxygens (NBOs). Therefore, the elastic moduli are observed to decrease with the increase in P{sub 2}O{sub 5} content.

  15. X-ray spectroscopic technique for energetic electron transport studies in short-pulse laser/plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tutt, T.E.

    1994-12-01

    When a solid target is irradiated by a laser beam, the material is locally heated to a high temperature and a plasma forms. The interaction of the laser with plasma can produce energetic electrons. By observing the behavior of these {open_quotes}hot{close_quotes} electrons, we hope to obtain a better understanding of Laser/Plasma Interactions. In this work we employ a layered-fluorescer technique to study the transport, and therefore the energetics, of the electrons. The plasma forms on a thin foil of metallic Pd which is bonded to thin layer of metallic Sn. Electrons formed from the plasma penetrate first the Pd and then the Sn. In both layers the energetic electrons promote inner (K) shell ionization of the metallic atoms which leads to the emission of characteristic K{sub {alpha}} x-rays of the fluorescers. By recording the x-ray spectrum emitted by the two foils, we can estimate the energy-dependent range of the electrons and their numbers.

  16. Pulse measurement apparatus and method

    Science.gov (United States)

    Marciante, John R.; Donaldson, William R.; Roides, Richard G.

    2011-10-25

    An embodiment of the invention is directed to a pulse measuring system that measures a characteristic of an input pulse under test, particularly the pulse shape of a single-shot, nano-second duration, high shape-contrast optical or electrical pulse. An exemplary system includes a multi-stage, passive pulse replicator, wherein each successive stage introduces a fixed time delay to the input pulse under test, a repetitively-gated electronic sampling apparatus that acquires the pulse train including an entire waveform of each replica pulse, a processor that temporally aligns the replicated pulses, and an averager that temporally averages the replicated pulses to generate the pulse shape of the pulse under test. An embodiment of the invention is directed to a method for measuring an optical or an electrical pulse shape. The method includes the steps of passively replicating the pulse under test with a known time delay, temporally stacking the pulses, and temporally averaging the stacked pulses. An embodiment of the invention is directed to a method for increasing the dynamic range of a pulse measurement by a repetitively-gated electronic sampling device having a rated dynamic range capability, beyond the rated dynamic range of the sampling device; e.g., enhancing the dynamic range of an oscilloscope. The embodied technique can improve the SNR from about 300:1 to 1000:1. A dynamic range enhancement of four to seven bits may be achieved.

  17. Search for the neutrinoless double β-decay in GERDA phase I using a pulse shape discrimination technique

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Andrea

    2014-07-09

    The Germanium Detector Array (Gerda) experiment, located underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy, deploys high-purity germanium detectors to search for the neutrinoless double β-decay (0νββ) of {sup 76}Ge. An observation of this lepton number violating process, which is expected by many extensions of the Standard Model, would not only generate a fundamental shift in our understanding of particle physics, but also unambiguously prove the neutrino to have a non-vanishing Majorana mass component. A first phase of data recording lasted from November 2011 to May 2013 - resulting in a total exposure (defined as the product of detector mass and measurement time) of 21.6 kg.yr. Within this thesis a thorough study of this data with special emphasis on the development and scrutiny of an active background suppression technique by means of a signal shape analysis has been performed. Among several investigated multivariate approaches, particularly a selection algorithm based on an artificial neural network is found to yield the best performance; i.a. the background index close to the Q-value of the 0νββ-decay could be suppressed by 45% to 1.10{sup -2} cts/(keV.kg.yr), while still retaining a considerably high signal survival fraction of (83±3)% leading to a significant improvement of the experimental sensitivity. The efficiency is derived by a simulation and further validated by substantiated consistency checks availing themselves of measurements taken with different calibration sources and physics data. No signal is observed and a new lower limit of T{sup 0ν}{sub 1/2} (90%C.L.)> 2.2. 10{sup 25} yr for the half-life of neutrinoless double β-decay of {sup 76}Ge is established.

  18. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  19. The Relationship Between Multi-Frequency and Pulsed Eddy Current Testing Techniques%浅析多频涡流与脉冲涡流检测技术间的关系

    Institute of Scientific and Technical Information of China (English)

    林俊明

    2012-01-01

    对多频涡流与脉冲涡流两种不同的电磁无损检测技术的基本原理分别进行了介绍,进而从脉冲涡流的傅里叶展开式中分析了两者间的关系。指出脉冲涡流检测技术本质上等同于一种衰减型的多频涡流检测技术,而多频涡流可以认为是高频加权的脉冲涡流形式。对这两种涡流检测技术在实际生产中的应用进行了简单介绍。随着涡流检测理论的深入研究,电子技术与计算机技术的迅速发展,多频涡流和脉冲涡流检测技术将成为涡流检测的重要组成部分。%The basic principles of two different eddy current testing techniques, the multi-frequency eddy current and pulsed eddy current testing techniques, are introduced and the relationship between them is presented from the Fourier series of the pulsed input signal. It is indicated that the pulsed eddy current testing technique is equal an attenuation type of multi-frequency eddy current testing in nature. Whereas the multi-frequency eddy current testing could be regard as a high frequency weighted pulsed eddy current testing. Some industry applications of these two eddy current testing techniques are shown. With the developments of eddy current theories and the electronic and computer techniques, the multi-frequency eddy current and pulsed eddy current testing techniques will play more and more important roles in eddy current testing.

  20. Development of graded Ni-YSZ composite coating on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory.

    Science.gov (United States)

    Sengupta, Pranesh; Rogalla, Detlef; Becker, Hans Werner; Dey, Gautam Kumar; Chakraborty, Sumit

    2011-08-15

    Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt.

  1. Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: Punicalagin and hydroxybenzoic acids.

    Science.gov (United States)

    Kazemi, Milad; Karim, Roselina; Mirhosseini, Hamed; Abdul Hamid, Azizah

    2016-09-01

    Pomegranate peel is a rich source of phenolic compounds (such as punicalagin and hydroxybenzoic acids). However, the content of such bioactive compounds in the peel extract can be affected by extraction type and condition. It was hypothesized that the optimization of a pulsed ultrasound-assisted extraction (PUAE) technique could result in the pomegranate peel extract with higher yield and antioxidant activity. The main goal was to optimize PUAE condition resulting in the highest yield and antioxidant activity as well as the highest contents of punicalagin and hydroxybenzoic acids. The operation at the intensity level of 105W/cm(2) and duty cycle of 50% for a short time (10min) had a high efficiency for extraction of phenolics from pomegranate peel. The application of such short extraction can save the energy and cost of the production. Punicalagin and ellagic acid were the most predominant phenolic compounds quantified in the pomegranate peel extract (PPE) from Malas variety. PPE contained a minor content of gallic acid.

  2. An experimental study on the characteristics of wind-driven surface water film flows by using a multi-transducer ultrasonic pulse-echo technique

    Science.gov (United States)

    Liu, Yang; Chen, Wen-Li; Bond, Leonard J.; Hu, Hui

    2017-01-01

    An experimental study was conducted to investigate the characteristics of surface water film flows driven by boundary layer winds over a test plate in order to elucidate the underlying physics pertinent to dynamic water runback processes over ice accreting surfaces of aircraft wings. A multi-transducer ultrasonic pulse-echo (MTUPE) technique was developed and applied to achieve non-intrusive measurements of water film thickness as a function of time and space to quantify the transient behaviors of wind-driven surface water film flows. The effects of key controlling parameters, including freestream velocity of the airflow and flow rate of the water film, on the dynamics of the surface water runback process were examined in great details based on the quantitative MTUPE measurements. While the thickness of the wind-driven surface water film was found to decrease rapidly with the increasing airflow velocity, various surface wave structures were also found to be generated at the air/water interface as the surface water runs back. The evolution of the surface wave structures, in the terms of wave shape, frequency and propagation velocity of the surface waves, and instability modes (i.e., well-organized 2-D waves vs. 3-D complex irregular waves), was found to change significantly as the airflow velocity increases. Such temporally synchronized and spatially resolved measurements are believed to be very helpful to elucidate the underlying physics for improved understanding of the dynamics of water runback process pertinent to aircraft icing phenomena.

  3. Role of target-substrate distance on the growth of CuInSe{sub 2} thin films by pulsed laser ablation technique

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, Kusum; Dhruvashi [Department of Electronics, Zakir Husain Delhi College, University of Delhi, Delhi, 110002 (India); Department of Electronic Science, University of Delhi South Campus, Delhi 110021 (India); Shishodia, P. K., E-mail: shishodiaprem@gmail.com [Department of Electronics, Zakir Husain Delhi College, University of Delhi, Delhi, 110002 (India)

    2016-05-06

    CuInSe{sub 2} thin films have been deposited on corning glass substrates by pulsed laser ablation technique. The chamber pressure and substrate temperature was maintained at 1 × 10{sup −6} torr and 550°C respectively during deposition of the films. The influence of target to substrate (T-S) distance on the structural and optical properties of thin films have been investigated by grazing incidence x-ray diffraction, Raman spectroscopy, scanning electron microscope and UV-Vis-NIR spectroscopy. The study reveals that thin films crystallized in a chalcopyrite structure with highly preferential orientation along (112) plane. Optimum T-S distance has been attained for the growth of thin films with large grain size. An intense Raman peak at 174 cm{sup −1} corresponding to dominant A{sub 1} vibration mode is gradually shifted to smaller wavenumber with the increase in T-S distance. The optical bandgap energy of the films was evaluated and found to vary with the T-S distance. The bandgap tailing was observed to obey the Urbach rule and the Urbach energy was also calculated for the films. Scanning electron micrographs depicts uniform densely packed grains and EDAX studies revealed the elemental composition of CuInSe{sub 2} thin films.

  4. Interface description using computational methods and tribological characteristic of Ti N/Ti C films prepared by reactive pulse arc evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Devia N, D. M. [Universidad Nacional de Colombia, Sede Manizales, Campus La Nubia, Manizales, Caldas (Colombia); Gonzalez C, J. M.; Ruden M, A., E-mail: dmdevian@utp.edu.co [Universidad del Valle, Edificio 349, espacio 1003, Ciudad Universitaria Melendez, Cali (Colombia)

    2013-10-01

    The Ti N/Ti C bilayers have been deposited by Plasma Assisted Physical Vapor Deposition Technique - Reactive Pulsed Arc. The coatings were analyzed by X-ray photoelectron spectroscopy (XP S) and X-ray diffraction (XRD). From the signal treatment of the narrow XP S spectra and the XRD diffraction patterns, the formation of Ti N (titanium nitride), Ti C (titanium carbide) and Ti CN (titanium carbonitride) was confirmed, with fm-3m spatial group, corresponding to the Fcc phase of the synthesized compounds. The multilayer was simulated using Density Functional Theory (DFT) by the Unrestricted Hartree Fock method. Charge distributions and electron total density were obtained; finding bond formation at the interphase, electrical neutrality and system stability. Anomalies in the corners of the structures due to edge effect, simulation ideality and the no internal tension inclusion, intrinsic to the growing, are observed. The ball on disc tribometer was used to measure the friction and wear coefficient to verify the interface formation. (Author)

  5. A new technique to study transient conductivity under pulsed monochromatic light in Cr-doped GaAs using acoustoelectric voltage measurement

    Science.gov (United States)

    Tabib-Azar, Massood

    1991-01-01

    The transient conductivity of high-resistivity Bridgman-grown Cr-doped GaAs under pulsed monochromatic light is monitored using transverse acoustoelectric voltage (TAV) at 83 K. Keeping the photon flux constant, the height and transient time constant at the TAV are used to calculate the energy dependence of the trap density and its cross section, respectively. Two prominent trap profiles with peak trap densities of approximately 10 to the 17th/cu cm eV near the valence and the conduction bands are detected. These traps have very small capture cross sections in the range of 10 to the -23 to 10 to the -21st cm sq. A phenomenon similar to the persistent photoconductivity with transient time constants in excess of a few seconds in high-resistivity GaAs at T = 83 K is also detected using this technique. These long relaxation times are readily explained by the spatial separation of the photo-excited electron-hole pairs and the small capture cross section and large density of trap distribution near the conduction band.

  6. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Science.gov (United States)

    Gondal, M. A.; Ilyas, A. M.; Baig, Umair

    2016-08-01

    Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO2) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet-visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  7. Effect of zinc doping on the structural and magnetic properties of nickel ferrite thin films fabricated by pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Raghavender, A.T., E-mail: raghavi9@gmail.com [Nanomagnetism Laboratory, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Hoa Hong, Nguyen, E-mail: nguyenhong@snu.ac.kr [Nanomagnetism Laboratory, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Chikoidze, Ekaterina; Dumont, Yves [Laboratoire GeMAC, UMR 8635 CNRS—Université de Versailles, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France); Kurisu, Makio [Department of Physics, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan)

    2015-03-15

    Zinc, as known as non-magnetic element, has been doped into nickel ferrite under thin film form to modify its structural and magnetic properties. Laser ablated Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0≤x≤0.5) thin films grown on R-cut Al{sub 2}O{sub 3} (0001) substrates using pulsed laser deposition (PLD) technique are single phase with (l l l) orientation, and they are strongly room temperature ferromagnetic. Compared to other Ni–Zn ferrite thin films we observed the enhancement in coercivity H{sub c}. Higher H{sub c} thin films can be used as potential candidates for modern miniaturization of electronic devices. - Highlights: • Laser ablated ferrite thin films. • Enhanced structural and magnetic properties of Ni–Zn ferrite thin films. • Ni–Zn Ferrite films are strongly room temperature ferromagnetic. • Higher coercivity in fabricated films.

  8. Pulsed radiofrequency of the composite nerve supply to the knee joint as a new technique for relieving osteoarthritic pain: a preliminary report.

    Science.gov (United States)

    Vas, Lakshmi; Pai, Renuka; Khandagale, Nishigandha; Pattnaik, Manorama

    2014-01-01

    We report a new technique for pulsed radiofrequency (PRF) of the entire nerve supply of the knee as an option in treating osteoarthritis (OA) of knee. We targeted both sensory and motor nerves supplying all the structures around the knee: joint, muscles, and skin to address the entire nociception and stiffness leading to peripheral and central sensitization in osteoarthritis. Ten patients with pain, stiffness, and loss of function in both knees were treated with ultrasonography (USG) guided PRF of saphenous, tibial, and common peroneal nerves along with subsartorial, peripatellar, and popliteal plexuses. USG guided PRF of the femoral nerve was also done to address the innervation of the quadriceps muscle. Assessment of pain (Numerical Rating Scale [NRS], pain DETECT, knee function [Western Ontario and McMaster Universities Osteoarthritis Index- WOMAC]) were documented pre and post PRF at 3 and 6 months. Knee radiographs (Kellgren-Lawrence [K-L] grading) were done before PRF and one week later. All the patients showed a sustained improvement of NRS, pain DETECT, and WOMAC at 3 and 6 months. The significant improvement of patellar position and tibio-femoral joint space was concordant with the patient's reporting of improvement in stiffness and pain. The sustained pain relief and muscle relaxation enabled the patients to optimize physiotherapy thereby improving endurance training to include the daily activities of life. We conclude that OA knee pain is a product of neuromyopathy and that PRF of the sensory and motor nerves appeared to be a safe, effective, and minimally invasive technique. The reduction of pain and stiffness improved the knee function and probably reduced the peripheral and central sensitization.

  9. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2016-08-15

    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  10. SNMR pulse sequence phase cycling

    Science.gov (United States)

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  11. Ferromagnetic Tubes Testing Based Pulsed Remote Field Eddy Current Technique%基于脉冲远场涡流的管道内检测技术

    Institute of Scientific and Technical Information of China (English)

    杨理践; 王赓; 高松巍

    2012-01-01

    针对传统远场涡流检测方法对铁磁性管道内外壁缺陷灵敏度相同,无法有效区分缺陷在管道内壁还是管道外表面的问题,提出了采用具有丰富频率成分的脉冲激励信号取代传统的远场涡流中正弦信号激励的方法.采用小波去噪方法滤除检测数据中的信号噪声;研究了将检测线圈分别置于近场区、过渡区和远场区时的信号时域特性与管壁伤的关系;进行了针对管道管壁内外相同宽度不同深度缺陷的检测试验,结果表明采用脉冲激励作为激励源并综合运用过渡区的检测信号的幅值和过零时间特征能够有效地区分管壁内外全周向的缺陷.%In view of the traditional remote field eddy current technique for ferromagnetic tube having the same sensitivity of inner and outside walls defect,unable to distinguish the defects in the inner wall or in the outer surface,this paper adopt with abundant frequency components of the pulse signal to replace the traditional remote field eddy current sinusoidal excitation signal. Using the methods of wavelet denoising to filter acquired signal and process the data. This paper studied the relationship between the tube wall defects and signal time-domain characteristics when the detector coil was placed in the direct zone, transition zone and remote field zone. Conduct experiments to acquire data about different depth defects in the inside or outside of the walls, the results show that using the pulse signal as excitation source and characteristics about the detect signal amplitude and zero-crossing time can effectively distinguish between the inner and outer circumferential direction tube wall defects.

  12. Predictive modeling, simulation, and optimization of laser processing techniques: UV nanosecond-pulsed laser micromachining of polymers and selective laser melting of powder metals

    Science.gov (United States)

    Criales Escobar, Luis Ernesto

    One of the most frequently evolving areas of research is the utilization of lasers for micro-manufacturing and additive manufacturing purposes. The use of laser beam as a tool for manufacturing arises from the need for flexible and rapid manufacturing at a low-to-mid cost. Laser micro-machining provides an advantage over mechanical micro-machining due to the faster production times of large batch sizes and the high costs associated with specific tools. Laser based additive manufacturing enables processing of powder metals for direct and rapid fabrication of products. Therefore, laser processing can be viewed as a fast, flexible, and cost-effective approach compared to traditional manufacturing processes. Two types of laser processing techniques are studied: laser ablation of polymers for micro-channel fabrication and selective laser melting of metal powders. Initially, a feasibility study for laser-based micro-channel fabrication of poly(dimethylsiloxane) (PDMS) via experimentation is presented. In particular, the effectiveness of utilizing a nanosecond-pulsed laser as the energy source for laser ablation is studied. The results are analyzed statistically and a relationship between process parameters and micro-channel dimensions is established. Additionally, a process model is introduced for predicting channel depth. Model outputs are compared and analyzed to experimental results. The second part of this research focuses on a physics-based FEM approach for predicting the temperature profile and melt pool geometry in selective laser melting (SLM) of metal powders. Temperature profiles are calculated for a moving laser heat source to understand the temperature rise due to heating during SLM. Based on the predicted temperature distributions, melt pool geometry, i.e. the locations at which melting of the powder material occurs, is determined. Simulation results are compared against data obtained from experimental Inconel 625 test coupons fabricated at the National

  13. Measurement of pulse lengthening with pulse energy increase in picosecond Nd:YAG laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Cutolo, A.; Zeni, L.; Berardi, V.; Bruzzese, R.; Solimeno, S.; Spinelli, N.

    1989-03-15

    Taking advantage of a new technique, we have monitored the relative variations of time duration and mode size as a function of the pulse energy for 30-ps-long Nd:YAG laser pulses. In particular, by carrying out a statistical analysis, we have observed that the pulse time duration is an increasing function of the pulse energy, according to the theoretical modeling of passively mode-locked lasers. The measurements can be easily extended to the femtosecond regime.

  14. A 0.76-pJ/Pulse 0.1-1 Gpps Microwatt IR-UWB CMOS Pulse Generator with Adaptive PSD Control Using A Limited Monocycle Precharge Technique

    DEFF Research Database (Denmark)

    Shen, Ming; Yin, Ying-Zheng; Jiang, Hao

    2015-01-01

    This brief presents an ultra-wideband pulse generator topology featuring adaptive control of power spectral density for a broad range of applications with different data rate requirements. The adaptivity is accomplished by employing a limited monocycle precharge approach to control the energy use...

  15. Dethrombosis of the lower extremity arteries using the power-pulse spray technique in patients with recent onset thrombotic occlusions: results of the DETHROMBOSIS Registry.

    Science.gov (United States)

    Shammas, Nicolas W; Dippel, Eric J; Shammas, Gail; Gayton, Laura; Coiner, Denise; Jerin, Mike

    2008-10-01

    To assess the presence of thrombus using intravascular ultrasound (IVUS) and evaluate the feasibility of combined thrombolysis [power-pulse spray (P-PS)] and rheolytic thrombectomy (RT) in patients with recent-onset limb ischemia (<6 months) due to total occlusion of at least 1 infrainguinal vessel. Seventeen patients (12 women; mean age 68.3+/-10.7 years) enrolled in a prospective registry underwent IVUS imaging at baseline, after treatment with P-PS using tissue plasminogen activator and RT (AngioJet), and prior to definitive treatment of the vessel. The primary safety endpoints were major bleeding, distal embolization, vascular access complications, and renal failure. Effectiveness outcomes were (1) procedural success with a residual stenosis <30%, (2) IVUS-documented resolution of the thrombus, and (3) the combined clinical endpoint of procedure-related death, stroke, unplanned amputation, and unplanned urgent revascularization of the treated limb. At baseline, the majority of patients (16, 94.1%) had a definite thrombus identified by IVUS; in the remaining patient (6.3%), thrombus was likely to be present according to the IVUS scan. By angiography, 2 (11.8%) patients had a definite grade 3 thrombus and 5 (29.4%) patients had a grade 1 thrombus (modified TIMI scale) at baseline. IVUS data were available pre and post P-PS/RT in 16 (94.1%) patients. In 10 (62.5%), the thrombus was partially resolved; in 5 (31.25%), there was no apparent change. The thrombus appeared to have completely resolved in only 1 (6.3%) patient. Embolization occurred in 3 (17.6%) patients with no adverse clinical sequelae. The combined clinical endpoint was met in 1 (5.9%) of 17 patients. After final definitive treatment of the vessel, acute procedural success was 100%, with no angiographic filling defects seen. Thrombus is present in most if not all patients with a recent history of limb ischemia who are found to have an occluded culprit vessel. The application of the P-PS/RT led to

  16. A new technique to generate 100 GW-level attosecond X-ray pulses from the X-ray SASE FELs

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2004-01-01

    We propose a scheme for generation of single 100 GW 300-as pulse in the X-ray free electron laser with the use of a few cycles optical pulse from Ti:sapphire laser system. Femtosecond optical pulse interacts with the electron beam in the two-period undulator resonant to 800 nm wavelength and produces energy modulation within a slice of the electron bunch. Following the energy modulator the electron beam enters the first part of the baseline gap-adjustable X-ray undulator and produces SASE radiation with 100 MW-level power. Due to energy modulation the frequency is correlated to the longitudinal position within the few-cycle-driven slice of the SASE radiation pulse. The largest frequency offset corresponds to a single-spike pulse in the time domain which is confined to one half-oscillation period near the central peak electron energy. After the first undulator the electron beam is guided through a magnetic delay which we use to position the X-ray spike with the largest frequency offset at the "fresh" part of t...

  17. Fabrication of a nanostructure thin film on the gold electrode using continuous pulsed-potential technique and its application for the electrocatalytic determination of metronidazole

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, B., E-mail: rezaei@cc.iut.ac.i [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Damiri, S. [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2010-02-01

    This paper demonstrates a new and simple approach based on a continuous pulsed-potential (CPP) method for the preparation of reproducible nanostructure and nanoporous thin film on the polycrystalline gold electrodes. The fabrication process involves pulsed electrochemical oxidation and reduction of gold electrode in the sulfuric acid solution without using additional reagents. Effect of various parameters including pulse height, pulse time, pulse number and relaxation time on the enhancing of hexacyanoferrate (HCF) redox behaviour, as a probe, were investigated and optimized. Electrochemical, scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies show the formation of a nanoporous thin film and sharp nanostructure edges on the gold electrode that considerably enhances electrocatalysis of HCF and provides useful conditions for the electroanalysis by the modified electrode. In addition, the electrocatalytic behaviour of this modified electrode was exploited as a sensitive detection system for the determination of metronidazole in pharmaceutical and human urine samples, by using cyclic voltammetry (CV) and hydrodynamic methods. Under optimized conditions, this method shows linear dynamic ranges of 0.5-10.0 and 20.0-800.0 muM with the calculated detection limit (S/N = 3) of 0.15 muM and a precision of <5%.

  18. Fabrication of FeAl-WC composite and metal/metal joint using pulse current sintering technique; Pulse tsudenshoketsu gijutsu wo riyoshita FEAl-WC fukugozai narabini kinzoku setsugotaino sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, A.; Kobayashi, K.; Nishio, T.; Ozaki, K.; Sugiyama, A.; Kamiya, A.; Asahina, T. [National Industrial Research Institute of Nagoya,Nagoya (Japan)

    2000-10-25

    Fe-40at%Al+0 {approx} 5at%B powder mixtures were milled in a planetary ball mill under argon atmosphere. The size of the particles decreased with increasing the B content. The mechanical properties such as transverse rupture strength and vickers hardness for Fe-40at%Al+3at%B compacts prepared by pulse current sintering were improved relative to Fe-40at%Al compacts. FeAl{sub 3}-0 {approx} 65vol%WC composites were prepared by using pulse current sintering in vacuum at the sintering temperature of 1,373 - 1,473K. The B added FeAl composites with 50vol% WC exhibited a transverse rupture strength of 1.7GPa and vickers hardness of 1,240. These values were 1.2 {approx} 1.5 times higher than those of FeAl-50vol%WC composites. A novel process for diffusion joining, a combination of pulse current sintering with pseudo-hot isostatic pressing (PHIP-PCS), was proposed. The joining between iron and aluminium tablets using PHIP-PCS process was successfully performed. (author)

  19. The coherent artifact in modern pulse measurements

    CERN Document Server

    Ratner, Justin; Wong, Tsz Chun; Bartels, Randy; Trebino, Rick

    2012-01-01

    We simulate multi-shot intensity-and-phase measurements of unstable ultrashort-pulse trains using frequency-resolved-optical-gating (FROG) and spectral phase interferometry for direct electric-field reconstruction (SPIDER). Both techniques fail to reveal the pulse structure. FROG yields the average pulse duration and suggests the instability by exhibiting disagreement between measured and retrieved traces. SPIDER under-estimates the average pulse duration but retrieves the correct average pulse spectral phase. An analytical calculation confirms this behavior.

  20. A 3-10 GHz IR-UWB CMOS Pulse Generator With 6-mW Peak Power Dissipation Using A Slow-Charge Fast-Discharge Technique

    DEFF Research Database (Denmark)

    Shen, Ming; Yin, Ying-Zheng; Jiang, Hao

    2014-01-01

    This letter proposes a UWB pulse generator topology featuring low peak power dissipation for applications with stringent instantaneous power requirements. This is accomplished by employing a new slow-charge fast-discharge approach to extend the time duration of the generator's peak current so...

  1. Pulse subtraction Doppler

    Science.gov (United States)

    Mahue, Veronique; Mari, Jean Martial; Eckersley, Robert J.; Caro, Colin G.; Tang, Meng-Xing

    2010-01-01

    Recent advances have demonstrated the feasibility of molecular imaging using targeted microbubbles and ultrasound. One technical challenge is to selectively detect attached bubbles from those freely flowing bubbles and surrounding tissue. Pulse Inversion Doppler is an imaging technique enabling the selective detection of both static and moving ultrasound contrast agents: linear scatterers generate a single band Doppler spectrum, while non-linear scatterers generate a double band spectrum, one being uniquely correlated with the presence of contrast agents and non-linear tissue signals. We demonstrate that similar spectrums, and thus the same discrimination, can be obtained through a Doppler implementation of Pulse Subtraction. This is achieved by reconstructing a virtual echo using the echo generated from a short pulse transmission. Moreover by subtracting from this virtual echo the one generated from a longer pulse transmission, it is possible to fully suppress the echo from linear scatterers, while for non-linear scatterers, a signal will remain, allowing classical agent detection. Simulations of a single moving microbubble and a moving linear scatterer subject to these pulses show that when the virtual echo and the long pulse echo are used to perform pulsed Doppler, the power Doppler spectrum allows separation of linear and non-linear moving scattering. Similar results are obtained on experimental data acquired on a flow containing either microbubble contrast agents or linear blood mimicking fluid. This new Doppler method constitutes an alternative to Pulse Inversion Doppler and preliminary results suggest that similar dual band spectrums could be obtained by the combination of any non-linear detection technique with Doppler demodulation.

  2. Intense ultrashort terahertz pulses: generation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Matthias C [Max Planck Research Department for Structural Dynamics, University of Hamburg, CFEL, 22607 Hamburg (Germany); Fueloep, Jozsef Andras, E-mail: matthias.c.hoffmann@mpsd.cfel.de, E-mail: fulop@fizika.ttk.pte.hu [Department of Experimental Physics, University of Pecs, Ifjusag u. 6, 7624 Pecs (Hungary)

    2011-03-02

    Ultrashort terahertz pulses derived from femtosecond table-top sources have become a valuable tool for time-resolved spectroscopy during the last two decades. Until recently, the pulse energies and field strengths of these pulses have been generally too low to allow for the use as pump pulses or the study of nonlinear effects in the terahertz range. In this review article we will describe methods of generation of intense single cycle terahertz pulses with emphasis on optical rectification using the tilted-pulse-front pumping technique. We will also discuss some applications of these intense pulses in the emerging field of nonlinear terahertz spectroscopy. (topical review)

  3. Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses.

    Science.gov (United States)

    Nguyen, Dat; Piracha, Mohammad Umar; Mandridis, Dimitrios; Delfyett, Peter J

    2011-06-20

    Self-phase modulation in fiber amplifiers can significantly degrade the quality of compressed pulses in chirped pulse amplification systems. Parabolic pulses with linear frequency chirp are suitable for suppressing nonlinearities, and to achieve high peak power pulses after compression. In this paper, we present an active time domain technique to generate parabolic pulses for chirped pulse amplification applications. Pulses from a mode-locked laser are temporally stretched and launched into an amplitude modulator, where the drive voltage is designed using the spectral shape of the input pulse and the transfer function of the modulator, resulting in the generation of parabolic pulses. Experimental results of pulse shaping with a pulse train from a mode-locked laser are presented, with a residual error of less than 5%. Moreover, an extinction ratio of 27 dB is achieved, which is ideal for chirped pulse amplification applications.

  4. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    Science.gov (United States)

    Spencer, B. F.; Smith, W. F.; Hibberd, M. T.; Dawson, P.; Beck, M.; Bartels, A.; Guiney, I.; Humphreys, C. J.; Graham, D. M.

    2016-05-01

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 1012 cm-2 and 9000 cm2 V-1 s-1 at 77 K. The in-plane electron effective mass at the band edge was determined to be 0.228 ± 0.002m0.

  5. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  6. Pulse-Based Fast Battery IoT Charger Using Dynamic Frequency and Duty Control Techniques Based on Multi-Sensing of Polarization Curve

    Directory of Open Access Journals (Sweden)

    Meng Di Yin

    2016-03-01

    Full Text Available The pulse-based charging method for battery cells has been recognized as a fast and efficient way to overcome the shortcoming of a slow charging time in distributed battery cells, which is regarded as a connection of cells such as the Internet of Things (IoT. The pulse frequency for controlling the battery charge duration is dynamically controlled within a certain range in order to inject the maximum charge current into the battery cells. The optimal frequency is determined in order to minimize battery impedance. The adaptation of the proposed pulse duty and frequency decreases the concentration of the polarization by sensing the runtime characteristics of battery cells so that it guarantees a certain level of safety in charging the distributed battery cells within the operating temperature range of 5–45 °C. The sensed terminal voltage and temperature of battery cells are dynamically monitored while the battery is charging so as to adjust the frequency and duty of the proposed charging pulse method, thereby preventing battery degradation. The evaluation results show that a newly designed charging algorithm for the implemented charger system is about 18.6% faster than the conventional constant-current (CC charging method with the temperature rise within a reasonable range. The implemented charger system, which is based on the proposed dynamic frequency and duty control by considering the cell polarization, charges to about 80% of its maximum capacity in less than 56 min and involves a 13 °C maximum temperature rise without damaging the battery.

  7. 一种用于低重复频率窄脉冲的脉冲稳偏技术%A Novel Technique Applied to Low Repetition Narrow Band Pulse Polarization Stabilization

    Institute of Scientific and Technical Information of China (English)

    王建军; 许党朋; 李明中; 林宏奂; 张锐; 邓颖; 谭敬; 孙力军; 周寿桓

    2011-01-01

    新一代高功率固体激光装置前端系统大多采用了先进的全光纤全固化技术路线,为了实现单模光纤系统长期稳定输出,需要对系统中的偏振态有针对性地进行控制.提出一种主动偏振控制实现单模光纤系统低重复频率窄脉冲偏振稳定的方法.利用该技术开发的脉冲稳偏器在重复频率大于100 Hz,脉冲宽度大于1.5 ns的情况下,系统输出稳定性可控制在均方根(RMS)为1%和峰谷值(PV)为7%左右.所开发的脉冲稳偏器成功应用于我国第二代高功率固体激光装置前端系统中,输出稳定性指标优于国家点火装置(NIF).该技术可广泛应用于窄脉冲和低重复频率系统中实现偏振态的主动控制.%The all-fiber and all-solidified technique was installed to the front end of the next generation high power laser system. Appropriate control to the polarization was required to maintain the stabilization of the fiber system. In order to maintain low repetition narrow band pulses' polarization stabilization, a novel active control technique applied to single mode fiber laser system which worked with low repetition narrow band pulses was proposed. A root-meansquare of 1% and a peak to valley ratio of 7 % stability were achieved, when the pulse polarization stabilizer based on this novel technique was used to 1.5 ns pulses at repetition above 100 Hz. The new polarization stabilizer was applied to fiber front end of the second generation high power laser system. The performance index was better than national ignition facility (NIF), and this technique could be used to control the polarization of the narrow-band and lowrepetition system actively.

  8. 脉冲交变磁场测量技术缺陷识别与定量评估%Pulsed Alternating Current Field Measurement Technique for Defect Identification and Quantification

    Institute of Scientific and Technical Information of China (English)

    胡祥超; 罗飞路; 何赟泽; 唐莺

    2011-01-01

    传统的交变磁场测量(Alternating current field measurement,ACFM)技术具有缺陷定量准确、无需接触等优点,但是不能检测深层缺陷;脉冲涡流检测技术(Pulsed eddy current testing,PECT)具有较好的深层缺陷检测能力,但由于采用瞬态响应信号分析方法,容易受到提离效应干扰,工程实际应用较为困难,并且定量能力弱于ACFM技术.结合ACFM和PECT的优势,提出了脉冲交变磁场测量技术(Pulsed alternating current field measurement,PACFM).该技术采用脉冲周期信号作为激励信号源,基于瞬态脉冲响应信号,采用三维场量测量和瞬态信号分析相结合的方法实现缺陷识别与定量评估.对瞬态响应信号中能够表征磁场变化规律的特征量进行提取,通过研究发现PACFM不仅具有与ACFM等同的表面缺陷检测能力,而且具有优异的深层缺陷识别与定最评估能力,抗干扰能力强,具有较高的应用价值和前景.%Traditional alternating current field measurement (ACFM) technique has advantages of quantitative defect detection and noncontact, but poor detective performances on deep-layer defects. Pulsed eddy current testing (PECT) has a better detectability in deep-layer defect, but poorer quantitative performances than ACFM, and moreover, it is easily interfered by lift-off due to using transient response signal analysis method so it is difficult to be applied practically. A method of alternating current filed measurement with pulsed signal excitation is proposed, which implements defect detection and quantitative evaluation by approach of transient signal analysis combined with 3D magnetic filed measurement based on pulsed response signal. Characteristics in the transient response signal which can reflect the variation law of magnetic field are extracted. Through the study it is found that the pulsed alternating current field measurement has not only the same detectability of surface defects as ACFM, but also an

  9. Direct observation of the critical relaxation of polarization clusters in BaTiO3 using a pulsed x-ray laser technique.

    Science.gov (United States)

    Namikawa, K; Kishimoto, M; Nasu, K; Matsushita, E; Tai, R Z; Sukegawa, K; Yamatani, H; Hasegawa, H; Nishikino, M; Tanaka, M; Nagashima, K

    2009-11-06

    We have developed a new method to investigate the relaxation time of the dipole moment in polarization clusters in BaTiO3. Time correlation of speckle intensities was measured by the use of a double pulsed soft x-ray laser. The evolution of the relaxation time of the dipole moment near the Curie temperature (T(C)) was investigated. The maximum relaxation time (approximately 90 ps) is shown to appear at a temperature of 4.5 K above the T(C), being coincident with the one where the maximum polarization takes place. This method is widely applicable to any other critical decay processes at phase transitions.

  10. Pulse Voltammetry.

    Science.gov (United States)

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  11. Pulsed Electron Holography

    CERN Document Server

    Germann, Matthias; Escher, Conrad; Fink, Hans-Werner

    2013-01-01

    A technique of pulsed low-energy electron holography is introduced that allows for recording highly resolved holograms within reduced exposure times. Therefore, stacks of holograms are accumulated in a pulsed mode with individual acquisition times as short as 50 {\\mu}s. Subsequently, these holograms are aligned and finally superimposed. The resulting holographic record reveals previously latent high-order interference fringes and thereby pushing interference resolution into the sub-nanometer regime. In view of the non-damaging character of low-energy electrons, the method is of particular interest for structural analysis of fragile biomolecules.

  12. Temporal resolution beyond the average pulse duration in shaped noisy-pulse transient absorption spectroscopy.

    Science.gov (United States)

    Meyer, Kristina; Müller, Niklas; Liu, Zuoye; Pfeifer, Thomas

    2016-12-20

    In time-resolved spectroscopy, it is a widespread belief that the temporal resolution is determined by the laser pulse duration. Recently, it was observed and shown that partially coherent laser pulses as they are provided by free-electron-laser (FEL) sources offer an alternative route to reach a temporal resolution below the average pulse duration. Here, we demonstrate the generation of partially coherent light in the laboratory like we observe it at FELs. We present the successful implementation of such statistically fluctuating pulses by using the pulse-shaping technique. These pulses exhibit an average pulse duration about 10 times larger than their bandwidth limit. The shaped pulses are then applied to transient-absorption measurements in the dye IR144. Despite the noisy characteristics of the laser pulses, features in the measured absorption spectra occurring on time scales much faster than the average pulse duration are resolved, thus proving the universality of the described noisy-pulse concept.

  13. Inspection Principle and Defect Quantitative Estimation of Pulsed Remote Field Eddy Current Technique%基于脉冲激励的远场涡流检测机理及缺陷定量评估技术

    Institute of Scientific and Technical Information of China (English)

    杨宾峰; 张辉; 荆毅飞; 李龙军; 崔文岩

    2012-01-01

    Remote field eddy current (RFEC) technique has been widely used for the inspection of ferromagnetic pipes and it's not restricted by the skin-depth effect. However, the technique under the sinusoidal excitation needs a long probe and a high power dissipation, which restricts the application of RFEC in real inspection. The pulse exciting signal has the advantages of rich frequency components, the disadvantages of the traditional RFEC can be overcome by using pulse excitation instead of sinusoidal excitation. On the basis of analyzing the principle of pulsed RFEC, the distributions of the magnetic field and eddy current a-round the pipeline and exciting coil are simulated and analyzed, the changing rule of transient state detecting signals in different field regions is studied and obtained with finite element simulation method, then, the remote field region is confirmed. The zero-crossing time and negative peak value are extracted as the eigenvectors for defect quantification. Finally, the performances of quantifying the axial defect length and depth by the pulsed RFEC are verified by performing an experiment, the result shows that this technique can be used to realize the quantitative estimation of the defect.%脉冲激励信号包含非常丰富的频谱成分,以脉冲激励代替传统的正弦激励为克服远场涡流技术的不足提供了新的解决途径.在分析了脉冲激励下远场涡流检测机理的基础上,仿真分析了激励线圈和管道周围磁场和涡流的分布,得到了检测线圈处于不同场区时瞬态检测信号的变化规律,确定了远场区的范围.并从检测信号中提取了过零时间作为缺陷定量的特征量.最后,采用实验的方法验证了脉冲激励下的远场涡流技术对管道中轴向裂纹缺陷长度和深度的定量检测能力,实验结果表明该技术可以很好的实现对缺陷的定量评估.

  14. Third Harmonic Imaging using a Pulse Inversion

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...

  15. A Method for Distinguishing Attosecond Single Pulse from Attosecond Pulse Train

    Institute of Scientific and Technical Information of China (English)

    HUO Yi-Ping; ZENG Zhi-Nan; LI Ru-Xin; XU Zhi-Zhan

    2004-01-01

    @@ The driving laser field assisted attosecond soft-extreme-ultraviolet (XUV) photo-ionization was used successfully to measure the duration of the attosecond pulse based on the cross-correlation method. However, this method in principle cannot distinguish a single attosecond pulse from the attosecond pulse train. We propose a technique for directly distinguishing attosecond single pulse from attosecond pulse train based on the photo-ionization of atoms by attosecond XUV pulse in the presence of a two-colour strong laser pulse.

  16. Pulsed Artificial Electrojet Generation

    Science.gov (United States)

    Papadopoulos, K.

    2008-12-01

    Traditional techniques for generating low frequency signals in the ULF/ELF range (.1-100 Hz) and rely on ground based Horizontal Electric Dipole (HED) antennas. It is, furthermore, well known that a Vertical Electric Dipole (VED) is by more than 50 dB more efficient than a HED with the same dipole current moment. However, the prohibitively long length of VED antennas in the ELF/ULF range coupled with voltage limitations due to corona discharge in the atmosphere make them totally impracticable. In this paper we discuss a novel concept, inspired by the physics of the equatorial electrojet, that allows for the conversion of a ground based HED to a VED in the E-region of the equatorial ionosphere with current moment comparable to the driving HED. The paper focuses in locations near the dip-equator, where the earth's magnetic is in predominantly in the horizontal direction. The horizontal electric field associated with a pulsed HED drives a large Hall current in the ionospheric E-region, resulting in a vertical current. It is shown that the pulsed vertical current in the altitude range 80-130 km, driven by a horizontal electric field of, approximately, .1 mV/m at 100 km altitude, is of the order of kA. This results in a pulsed VED larger than 106 A-m. Such a pulsed VED will drive ELF/ULF pulses with amplitude in excess of .1 nT at a lateral range larger than few hundred kilometers. This is by three orders of magnitude larger than the one expected by a HED with comparable current moment. The paper will conclude with the description of a sneak-through technique that allows for creating pulsed electric fields in the ionosphere much larger than expected from steady state oscillatory HED antennas.

  17. Exawatt-Zettawatt Pulse Generation and Applications

    OpenAIRE

    Mourou, G. A.; Fisch, N. J.; Malkin, V. M.; Toroker, Z.; Khazanov, E. A.; Sergeev, A. M.; TAJIMA, T.

    2011-01-01

    A new amplification method, weaving the three basic compression techniques, Chirped Pulse Amplification (CPA), Optical Parametric Chirped Pulse Amplification (OPCPA) and Plasma Compression by Backward Raman Amplification (BRA) in plasma, is proposed. It is called C3 for Cascaded Conversion Compression. It has the capability to compress with good efficiency kilojoule to megajoule, nanosecond laser pulses into femtosecond pulses, to produce exawatt and beyond peak power. In the future, C3 could...

  18. Nonlinear optics with stationary pulses of light

    OpenAIRE

    Andre, A.; Bajcsy, M.; Zibrov, A. S.; Lukin, M. D.

    2004-01-01

    We show that the recently demonstrated technique for generating stationary pulses of light [Nature {\\bf 426}, 638 (2003)] can be extended to localize optical pulses in all three spatial dimensions in a resonant atomic medium. This method can be used to dramatically enhance the nonlinear interaction between weak optical pulses. In particular, we show that an efficient Kerr-like interaction between two pulses can be implemented as a sequence of several purely linear optical processes. The resul...

  19. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  20. 脉冲涡流无损检测提离效应研究%Study of Lift - Off Effects for Pulsed Eddy Current Nondestructive Testing Technique

    Institute of Scientific and Technical Information of China (English)

    曹海霞; 王畅; 杨宾峰; 张军潮; 张辉

    2011-01-01

    In the course of pulsed eddy current testing, the incline of the probe or the roughness of the surface of the tested object will lead to the lift - off effects, which have a bad influence on the result of pulsed eddy current (PEC) nondestructive testing.Based on the analysis of the operating principle of PEC, two different simulation models with the excitation coils of columniform and rectangle structures are established by ANSYS finite element simulation software and the simulations on the specimen of ferromagnetic and non -ferromagnetic materials are done respectively.Through the analysis of the eddy current and rotated magnetic field, the influence effect of response signal with the variation of the lift - off distance and the reason is given.Finally, the results of simulation are verified by experiment methods.The results of the experimental work confirm the correctness of simulation, which will lay the foundation for the elimination of lift - off effects.%在脉冲涡流检测过程中,由于探头倾斜或被测对象表面不光滑会产生提离效应,提离效应严重影响着脉冲涡流无损检测的结果.本文在分析脉冲涡流检测技术工作原理的基础上,采用ANSYS有限元仿真软件建立了激励线圈为圆柱形和矩形两种结构的模型,并分别针对有裂纹缺陷的铁磁性(钢)和非铁磁性(铝)试件进行了仿真研究,通过分析试件中感应涡流和扰动磁场的变化,给出了不同情况下检测信号随提离变化的规律,并从原理上给出了解释.最后,通过实验的方法对仿真结果进行了验证,实验结果表明了仿真结果的正确性,从而为进一步的消除提离效应提供了有价值的参考依据.

  1. Effect of ZnO doping on the structural and optical properties of BaWO 4 thin films prepared using pulsed laser ablation technique

    Indian Academy of Sciences (India)

    N Venugopalan Pillai; R Vinodkumar; V Ganesan; Peter Koshy; V P Mahadevan Pillai

    2010-12-01

    BaWO4 doped with ZnO (2, 3, 5, 7 and 10 wt%) nanostructured films are prepared on quartz substrates by pulsed laser ablation. The films are post annealed at 900°C. GIXRD analysis of the post-annealed films reveal the change of orientation of scheelite tetragonal crystal growth from 1 1 2 reflection plane to 0 0 4 planes when doping concentration is more than 3 wt%. The AFM images show that film with 7 wt% ZnO doping concentration has good ceramic pattern with surface features giving a minimum value of rms surface roughness suitable for optoelectronic device applications. The optical transmittance and band-gap energy of the films are found to decrease considerably on post-annealing which can be due to the increase in grain size of the crystallites on annealing. Thus doping with ZnO improves the surface features of the films and increases the optical band-gap energy.

  2. Study of diffusion in cartilage by the ''PFG'' (pulsed-field-gradient) NMR technique; Studium der Diffusion im Knorpel mit der ''PFG'' (pulsed-field-gradient)-NMR-Technik

    Energy Technology Data Exchange (ETDEWEB)

    Naji, L.; Trampel, R.; Ngwa, W.; Knauss, R.; Schiller, J.; Arnold, K. [Leipzig Univ. (Germany). Inst. fuer Medizinische Physik und Biophysik

    2001-07-01

    Since cartilage does not contain any blood vessels, diffusion is the most important mechanism for its supply. Although several methods are available for the measurement of diffusion, this study focuses exclusively on NMR methods. Besides the ''classic'' water diffusion, the diffusion behaviour of ions and polymers in cartilage is also described. In all cases, and at short observation times, diffusion is mostly determined by the water content of the sample. However, the variation of the observation time allows to obtain information also on the internal structure of cartilage. In addition, it is discussed to which extent the individual techniques allow conclusions with respect to degenerative joint diseases, and under which in vivo conditions they can be applied. (orig.) [German] Das Fehlen von Blutgefaessen im Knorpel macht die Diffusion zum wichtigsten Transportmechanismus fuer die Versorgung des Knorpels. Obwohl unterschiedliche Methoden zur Messung von Diffusionsprozessen eingesetzt werden koennen, beschraenken wir uns hie ausschliesslich auf NMR-Methoden. Neben der ''klassischen'' Wasserdiffusion werden auch die Diffusion von Ionen und die Polymerdiffusion in Knorpel beschrieben. In allen Faellen gilt, dass ueber kurze Beobachtungszeiten das Diffusionsverhalten im wesentlichen durch den Wassergehalt bestimmt wird. Jedoch werden durch Variation der Beobachtungszeit auch Informationen ueber die innere Struktur des Knorpels erhalten. Es wird ausserdem dargelegt, inwieweit Techniken Rueckschluesse auf degenerative Gelenkveraenderungen zugelassen und wie sie unter In-vivo-Bedingungen genutzt werden koennten. (orig.)

  3. 带包覆层铁磁性管道腐蚀脉冲涡流检测技术%Pulsed Eddy Current Inspection Technique in for Corrosion under Insulation in Ferromagnetic Tubes

    Institute of Scientific and Technical Information of China (English)

    康小伟; 付跃文

    2011-01-01

    In this paper, we applied pulsed eddy current(PEC} inspection technique to detect ferromagnetic tubes corrosion under insulation. By detecting corrosion of different thickness insulation and different defect areas and deepness, variation of detection sensitivity was analyzed. It was proved that as for corrosion defect with a large area, pulsed eddy current had a very good ability in testing under appropriate inspection parameters, even with a thick insulation.%应用脉冲涡流检测技术,对带包覆层的铁磁性管道腐蚀进行了检测。对不同厚度的包覆层、不同面积和深度的腐蚀缺陷进行了试验,分析检测灵敏度的变化。试验结果表明,对于较大面积的腐蚀缺陷,即使包覆层较厚,在合适的检测参数下,脉冲涡流也具有很好的检测能力。

  4. Nonparametric estimation of ultrasound pulses

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Leeman, Sidney

    1994-01-01

    An algorithm for nonparametric estimation of 1D ultrasound pulses in echo sequences from human tissues is derived. The technique is a variation of the homomorphic filtering technique using the real cepstrum, and the underlying basis of the method is explained. The algorithm exploits a priori...

  5. Topical report on subsurface fracture mapping from geothermal wellbores. Phase I. Pulsed radar techniques. Phase II. Conventional logging methods. Phase III. Magnetic borehole ranging

    Energy Technology Data Exchange (ETDEWEB)

    Hartenbaum, B.A.; Rawson, G.

    1980-09-01

    To advance the state-of-the-art in Hot Dry Rock technology, an evaluation is made of (i) the use of radar to map far-field fractures, (ii) the use of more than twenty different conventional well logging tools to map borehole-fracture intercepts, and (iii) the use of magnetic dipole ranging to determine the relative positions of the injection well and the production well within the fractured zone. It is found that according to calculations, VHF backscatter radar has the potential for mapping fractures within a distance of 50 +- 20 meters from the wellbore. A new technique for improving fracture identification is presented. Analyses of extant data indicate that when used synergistically the (1) caliper, (2) resistivity dipmeter, (3) televiewer, (4) television, (5) impression packer, and (6) acoustic transmission are useful for mapping borehole-fracture intercepts. Improvements in both data interpretation techniques and high temperature operation are required. The surveying of one borehole from another appears feasible at ranges of up to 200 to 500 meters by using a low frequency magnetic field generated by a moderately strong dipole source (a solenoid) located in one borehole, a sensitive B field detector that traverses part of the second borehole, narrow band filtering, and special data inversion techniques.

  6. Application of Pulse-Inversion Technique and Wavelet Transform for Nonlinear Ultrasonic Nondestructive Testing%脉冲反转和小波变换在非线性超声检测中的应用

    Institute of Scientific and Technical Information of China (English)

    江念; 王召巴; 陈友兴

    2015-01-01

    Based on correlation of the multi-level wavelet coefficients, a new algorithm combined with pulse-inversion tech-nique was proposed to improve the accuracy and robustness of defects for nonlinear ultrasonic nondestructive testing.The pulse-in-version technique was used to inhibit the odd harmonics due to nonlinearity of the input instrumentation.By employing the wavelet transform method, adhesive joints tested ultrasonic signal were de-noising processed.The experimental results show that proposed method can efficiently extract the pure second harmonic and enhance ability to characterize the adhesive strength by ultrasonic non-linear coefficient.%为提高非线性超声检测技术的准确性和鲁棒性,文中将脉冲反转技术和信号小波系数相关性滤波算法结合用于处理非线性超声检测信号。利用脉冲反转技术抑制实验仪器产生的奇数次谐波信号,再根据信号小波系数相关性算法滤除噪声。实验结果表明:上述信号处理方法能有效提取频率纯净的二次谐波,提高了超声非线性系数表征试件粘接强度的能力。

  7. Developing classification indices for Chinese pulse diagnosis

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    Aim: To develop classification criteria for Chinese pulse diagnosis and to objectify the ancient diagnostic technique. Methods: Chinese pulse curves are treated as wave signals. Multidimensional variable analysis is performed to provide the best curve fit between the recorded Chinese pulse waveforms and the collective Gamma density functions. Results: Chinese pulses can be recognized quantitatively by the newly-developed four classification indices, that is, the wave length, the relative phase difference, the rate parameter, and the peak ratio. The new quantitative classification not only reduces the dependency of pulse diagnosis on Chinese physician's experience, but also is able to interpret pathological wrist-pulse waveforms more precisely. Conclusions: Traditionally, Chinese physicians use fingertips to feel the wrist-pulses of patients in order to determine their health conditions. The qualitative theory of the Chinese pulse diagnosis is based on the experience of Chinese physicians for thousands of year...

  8. Pulsed thermoelectricity

    Science.gov (United States)

    Apostol, M.; Nedelcu, M.

    2010-07-01

    A special mechanism of thermoelectric transport is described, consisting of pulses of charge carriers which "fly" periodically through the external circuit from the hot end of the sample to the cold end, with a determined duration of the "on" and "off" times of the electric contacts, while maintaining continuously the thermal contacts. It is shown that such a "resonant" ideal thermogenerator may work cyclically, with the same efficiency quotient as the ideal efficiency quotient of the thermoelectric devices operated in the usual stationary transport regime but the electric flow and power are increased, as a consequence of the concentration of the charge carriers on pulses of small spatial extent. The process is reversible, in the sense that it can be operated either as a thermoelectric generator or as an electrothermal cooler.

  9. PRS前沿判别法抗三点源诱偏性能研究%Countering Performance of PRS's Pulse Leading-Edge Distinguishing Technique to Three-Source Decoy Radar System

    Institute of Scientific and Technical Information of China (English)

    许端; 董文锋; 齐秀青; 王正国; 王欢

    2013-01-01

    Aiming at the problem that the tradition passive radar seeker ( PRS) can hardly counter multi-source decoy radar system effectively,we proposed a pulse leading-edge distinguishing technique based on time discrimination technique and wavelet analysis .PRS uses fixed strobe gate to sample the pulse leading-edge,and wavelet analysis and feature extraction are made to the signals obtained .After the analysis result verifies that the sample includes only single radiation source,the PRS can measure the sample signal direction and its frequency,track the sample signal,and attack the source target .Taking three-source decoy radar system with triangular deployment as an example,the usability of this technique was simulated and analyzed .It is verified that the PRS can track the early arriving decoy signal in most position of the airspace,which verifies that this technique can effectively counter three-source decoy radar system .%针对采用传统测向方法的被动雷达导引头( PRS)对抗多点源诱偏系统效果不理想的情况,提出了一种基于时域鉴别技术和小波分析的前沿判别法。由PRS使用固定波门对辐射源脉冲前沿进行采样,对所得信号作小波分析和特征提取,当判定采样信号内为单辐射源信号时对其进行测频、测向、跟踪和打击。以正三角形布阵的三点源诱偏系统为例,仿真分析了该方法的可用性,结果表明在大部分空域中,PRS总能跟踪提前到达的诱饵信号,从而验证了该方法能够有效对抗三点源诱偏系统。

  10. Thickness Effect of Pulse Shaper on Dynamic Stress Equilibrium and Dynamic Deformation Behavior in the Polycarbonate Using SHPB Technique%波形整形器厚度对SHPB实验中聚碳酸酯试件的动应力平衡和变形行为的影响

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behaviors under high strain rate loading condition. Attempts to apply the Split Hopkison Pressure Bar in measurement on polymeric materials suffer from limitations on the maximum achievable strain and from high noise to signal ratios. This paper introduces a Split Hopkinson Pressure Bar technique, to overcome these limitations. The proposed method uses aluminum pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials, thus providing both data having a low noise to signal ratio and a longer input pulse at higher maximum strain. In addition, a pulse shaper technique was used for increasing the rise time of the incident pulse to ensure stress equilibrium and homogeneous deformation in the specimen under dynamic compression. A pulse shaper is utilized to lengthen the rising time of the incident pulse to ensure stress equilibrium and homogeneous deformation of polycarbonate. The dynamic deformation behaviors of Polymeric material under compressive high strain rate are evaluated using the modified SHPB technique.

  11. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus

    2010-02-09

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  12. Non-contrast-enhanced MR angiography using time-spin labelling inversion pulse technique for detecting crossing renal vessels in children with symptomatic ureteropelvic junction obstruction: comparison with surgical findings.

    Science.gov (United States)

    Brucher, Nicolas; Vial, Julie; Baunin, Christiane; Labarre, David; Meyrignac, Olivier; Juricic, Michel; Bouali, Ourdia; Abbo, Olivier; Galinier, Philippe; Sans, Nicolas

    2016-08-01

    Investigate the feasibility and evaluate the accuracy of non-contrast-enhanced MR angiography (NC-MRA) using time-spin labelling inversion pulse (time-SLIP)to identify crossing renal vessels (CRVs) in children requiring surgical treatment of ureteropelvic junction (UPJ) obstructionand compare to laparoscopic findings. Nineteen children ranging from 6 to 16 years of age underwent NC-MRA using the time-SLIP technique before surgery. Two independent readers analysed the MRA images. Number of renal arteries and presence or absence of CRVs were identified and compared with surgicalfindings. Image quality was assessed, as well as the presence of CRVs and measurement of renal pelvis diameter. Intra and inter-reader agreement was calculated using Cohen's kappa coefficient and Bland-Altman plots. The overall image quality was fair or good in 88% of cases. NC-MRA demonstrated CRVs at the level of the obstruction in 10 children and no CRV in 9 children. All were confirmed intra-operatively except in one of the nine children. Sensitivity, specificity, NPV, PPV for predicting CRVs were 92%, 100%, 100% and 87.5%, respectively, for both readers. NC-MRA is a good alternative to contrast-enhanced MRA and CT scanning for identifying CRVs in children with symptomatic UPJ. • Time-SLIP technique offers acceptable imaging quality for identifying crossing renal vessel. • Time-SLIP technique is easy to apply to the renal MRA examination. • Time-SLIP technique is an alternative to contrast-enhanced MRA and CT scanning.

  13. Magnetic Pulse Welding Technology

    Directory of Open Access Journals (Sweden)

    Ahmad K. Jassim

    2011-12-01

    Full Text Available In this paper, the benefits of using Magnetic Pulse machine which is belong to Non-conventional machine instead of conventional machine. Magnetic Pulse Technology is used for joining dissimilar metals, and for forming and cutting metals. It is a non contact technique. Magnetic field is used to generate impact magnetic pressure for welding and forming the work piece by converted the electrical energy to mechanical energy. It is enable us to design previously not possible by welding dissimilar materials and allowing to welds light and stronger materials together. It can be used to weld metallic with non metallic materials to created mechanical lock on ceramics, polymers, rubbers and composites. It is green process; there is no heat, no radiation, no gas, no smoke and sparks, therefore the emissions are negligible.

  14. Behaviour of total surface charge in SiO{sub 2}-Si system under short-pulsed ultraviolet irradiation cycles characterised by surface photo voltage technique

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ban-Hong [Material Characterization Department, Shin Etsu Handotai (M) Sdn. Bhd., Ulu Klang, Selangor (Malaysia); Lee, Wah-Pheng [Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya, 63100 Selangor (Malaysia); Yow, Ho-Kwang, E-mail: hkyow@mmu.edu.my [Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya, 63100 Selangor (Malaysia); Tou, Teck-Yong [Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya, 63100 Selangor (Malaysia)

    2009-04-15

    Effects of time-accumulated ultraviolet (UV) irradiation and surface treatment on thermally oxidized p-type silicon wafers were investigated by using the surface photo voltage (SPV) technique via the direct measurement of the total surface charge, Q{sub SC}. The rise and fall times of Q{sub sc} curves, as a function of accumulated UV irradiation, depended on the thermal oxide thickness. A simple model was proposed to explain the time-varying characteristics of Q{sub sc} based on the UV-induced bond breaking of SiOH and SiH, and photoemission of bulk electrons to wafer surface where O{sub 2}{sup -} charges were formed. While these mechanisms resulted in charge variations and hence in Q{sub sc}, these could be removed by rinsing the silicon wafers in de-ionized water followed by spin-dry or blow-dry by an ionizer fan. Empirical parameters were used in the model simulations and curve-fitting of Q{sub SC}. The simulated results suggested that initial changes in the characteristic behaviour of Q{sub sc} were mainly due to the net changes in the positive and negative charges, but subsequently were dominated by the accumulation of O{sub 2}{sup -} during the UV irradiation.

  15. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  16. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    Energy Technology Data Exchange (ETDEWEB)

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-04-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 {micro}m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  17. Influences of finite probe property on soil thermal property estimated by heat pulse technique%探针有限特性对热脉冲技术测定土壤热特性的影响

    Institute of Scientific and Technical Information of China (English)

    付永威; 卢奕丽; 任图生

    2014-01-01

    Soil thermal properties, including volumetric heat capacity, thermal diffusivity, and thermal conductivity, are basic physical parameters for determining the change rate of soil temperature, heat storage and transfer. The heat pulse technique, with the advantages of relative easy operation, minimal soil disturbance, and making repeated and automatic readings, has been used widely for measuring in-situ soil thermal properties. A heat pulse is emitted from a line source enclosed in a stainless heating needle and the temperature rises with time at a shorter distance from the heater are recorded for a few minutes. Soil thermal properties are then estimated from the temperature change by time data. For simplicity, the heat pulse probe is normally considered as a line source with infinitesimal probe radius and zero heat capacity when soil thermal properties are calculated. In reality, the finite properties of the probe itself, including finite heat capacity and finite probe radius, can lead to biased thermal property estimations. In this study, we compared the results of soil thermal property estimations with the PILS (pulsed-infinite-line-source) theory and ICPC (identical cylindrical perfect conductors) theory, to evaluate the influences of finite properties of the probe on soil thermal property estimations. The heat pulse probe consist of 3 needles with a diameter of 2 mm and a length of 40 mm. Heat pulse measurements were conducted on a sand soil with water content varied from air dry condition to field capacity, and soil heat capacity, thermal diffusivity, and thermal conductivity were estimated with both the PILS and ICPC methods. In addition, heat capacity estimates with the de Vries model were used to evaluate the accuracy of heat capacity measurements. The results indicated that compared with the PILS theory, the ICPC solution significantly reduced the errors in soil thermal property estimations from the temperature change-by-time curves. For water content

  18. MRI of the wrist: Comparison of high resolution pulse sequences and different fat-suppression techniques; Magnetresonanztomographie des Handgelenks - Vergleich hochaufloesender Pulssequenzen und unterschiedlicher Fettsignalunterdrueckungen an Leichenpraeparaten

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, A.; Spieker, A.; Bonel, H.; Glaser, C.; Reiser, M. [Klinikum Grosshadern, Muenchen (Germany). Inst. fuer Radiologische Diagnostik; Schrank, C.; Putz, R. [Muenchen Univ. (Germany). Anatomische Anstalt; Petsch, R. [Siemens AG, Erlangen (Germany). Unternehmensbereich Medizinische Technik

    2000-02-01

    Purpose: To evaluate high resolution sequences with and without fat-suppression techniques for MR imaging of the wrist. Results: The highest homogeneity and the least artifacts were achieved by the T{sub 1}-w SE sequence. For the STIR and PD-FS TSE sequence high rankings were found for the detection of free water. The PD FS sequence had high ranking also for visualization of the SL ligament and the triangular fibrocartilage. The best sequence for the assessment of hyaline cartilage was the FLASH-FS sequence. For detailed analysis of bony structures the CISS sequence performed best. Conclusion: The isolated use of a PD-FS-TSE sequence enables for evaluation of all clinically relevant structures at the wrist. Dedicated questions for hyaline cartilage are answered best by the use of a FLASH 3D-FS sequence. Selective water excitation reduces acquisition time to 60%, nevertheless FS sequences are still diagnostically superior to WE sequences. (orig./AJ) [German] Ziel: Beurteilung der Wertigkeit hochaufloesender MRT-Sequenzen ohne und mit Fettsignalunterdrueckung (FS) und selektiver Wasseranregung (WE) fuer Untersuchungen des Handgelenkes. Ergebnisse: SE-T{sub 1} zeigte die hoechste Signalhomogenitaet bei geringsten Artefakten. Die STIR und PD FS-Sequenz stellten Signal von freiem Wasser am besten dar. Die beste Knorpeldarstellung erreicht die FLASH 3D-FS-Sequenz. Die Kortikalis und die Spongiosa konnten am besten mit der CISS-Sequenz beurteilt werden. Die FS-Sequenzen waren den WE-Sequenzen diagnostisch ueberlegen. Schlussfolgerungen: Mit der PD FS TSE-Sequenz mit verlaengerter Echozeit ist eine gute Beurteilung aller klinisch wichtigen Strukturen moeglich. Die beste Darstellung des hyalinen Knorpels wird mit der FLASH-3D-FS-, des Knochens mit der CISS-Sequenz erreicht. Die selektive Wasseranregung bei FLASH- und DESS-Sequenzen reduziert die Aufnahmezeit, ohne die diagnostische Aussagekraft der FS-Sequenzen zu erreichen. (orig./AJ)

  19. A Study of New Pulse Auscultation System

    Directory of Open Access Journals (Sweden)

    Ying-Yun Chen

    2015-04-01

    Full Text Available This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine’s pulsing techniques, where pulse signals at places called “cun”, “guan” and “chi” of the left hand were measured during lifting (100 g, searching (125 g and pressing (150 g actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners’ objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  20. Generation And Measurement Of High Contrast Ultrashort Intense Laser Pulses

    CERN Document Server

    Konoplev, O A

    2000-01-01

    In this thesis, the generation and measurement of high contrast, intense, ultrashort pulses have been studied. Various factors affecting the contrast and pulse shape of ultrashort light pulses from a chirped pulse amplification (CPA) laser system are identified. The level of contrast resulting from influence of these factors is estimated. Methods for improving and controlling the pulse shape and increasing the contrast are discussed. Ultrahigh contrast, 1-ps pulses were generated from a CPA system with no temporal structure up to eleven orders of magnitude. This is eight orders of magnitude higher contrast than the original pulse. This contrast boost was achieved using two techniques. One is the optical pulse cleaning based on the nonlinear birefringence of the chirping fiber and applied to the pulses before amplification. The other is the fast saturable absorber. The fast saturable absorber was placed after amplification and compression of the pulse. The measurements of high-contrast, ultrashort pulse with h...

  1. A Brief Journey into the History of the Arterial Pulse

    OpenAIRE

    2011-01-01

    Objective. This paper illustrates the evolution of our knowledge of the arterial pulse from ancient times to the present. Several techniques for arterial pulse evaluation throughout history are discussed. Methods. Using databases including Worldcat, Pubmed, and Emory University Libraries' Catalogue, the significance of the arterial pulse is discussed in three historical eras of medicine: ancient, medieval, and modern. Summary. Techniques used over time to analyze arterial pulse and its charac...

  2. Research of reduced common-mode voltage technique with nonzero vector pulse width modulation for three-phase inverters%三相逆变器的无零矢量共模电压抑制技术研究

    Institute of Scientific and Technical Information of China (English)

    章勇高; 邝光健; 龙立中

    2013-01-01

    The common-mode suppression techniques with nonzero vector pulse width modulation (NZPWM) for three-phase inverters are studied. They are random state pulse width modulation (RSPWM), active zero state PWM1 (AZSPWM1), active zero state PWM3 (AZSPWM3) and near state PWM (NSPWM). Firstly, the operation areas of modulation factor and reference voltage vector with different modulation strategies are analyzed. The results show that RSPWM has a smaller operation area than other three NZPWM and is suitable for the application with lower modulation ratio. Secondly, the DC voltage utilization rate and output harmonic of different NZPWM are researched and compared with that of traditional space vector modulation (SVM) by using theoretical analysis and simulation. The results show that AZPWM1, AZPWM3 and NSPWM can not only suppress the common mode voltage of three-phase inverters efficiently, but also maintain high DC voltage utilization rate. However, three-phase inverters with NSPWM have the higher output harmonic comparing with the traditional SVM. The research results provide theoretical basis and instruction for the selection of common mode voltage suppression technique with NZPWM for three-phase inverters and its further study.%  研究了三相逆变器的 RSPWM、AZSPWM1、AZSPWM3和 NSPWM 无零矢量共模电压抑制技术。首先,分析了不同调制策略的调制因数和参考电压矢量的工作区间,说明了 RSPWM 的工作区间较小,适用于低调制比工作场合。再次,利用理论分析和仿真方法,研究了无零矢量调制策略的直流电压利用率和输出谐波特性,并与传统 SVM 调制策略比较。结果表明,AZSPWM1、AZSPWM3和 NSPWM 调制策略能够有效地抑制三相逆变器共模电压,同时保持了较高的直流电压利用率。但相对 SVM 调制策略,三相逆变器的输出谐波含量有所增大。研究结果为三相逆变器的无零矢量共模电压抑制技术的选用及进一步研究提供了理论依据和指导。

  3. One laser pulse generates two photoacoustic signals

    OpenAIRE

    Gao, Fei; Feng, Xiaohua; Bai, Linyi; Zhang, Ruochong; Liu, Siyu; Ding, Ran; Kishor, Rahul; Zhao, Yanli; Zheng, Yuanjin

    2016-01-01

    Photoacoustic sensing and imaging techniques have been studied widely to explore optical absorption contrast based on nanosecond laser illumination. In this paper, we report a long laser pulse induced dual photoacoustic (LDPA) nonlinear effect, which originates from unsatisfied stress and thermal confinements. Being different from conventional short laser pulse illumination, the proposed method utilizes a long square-profile laser pulse to induce dual photoacoustic signals. Without satisfying...

  4. Picosecond Pulse Laser Microstructuring of silicon

    Institute of Scientific and Technical Information of China (English)

    赵明; 尹钢; 朱京涛; 赵利

    2003-01-01

    We report the experimental results of picosecond pulse laser microstructuring (pulse duration 35ps, wavelength 1.06μm, repetition rate 10Hz) of silicon using the direct focusing technique. Arrays of sharp conical spikes located below the initial surface have been formed by cumulative picosecond pulsed laser irradiation of silicon in SF6. Irradiation of silicon surface in air, N2, or vacuum creates ripple-like patterns, but does not create the sharp conical spikes.

  5. Pulse Field Gel Electrophoresis.

    Science.gov (United States)

    Sharma-Kuinkel, Batu K; Rude, Thomas H; Fowler, Vance G

    2016-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments.

  6. Formation of CuInxGa1-xSe2 Films by Pulse -reverse Electrodeposition Technique%周期换向脉冲电沉积-硒化法制备铜铟镓硒薄膜

    Institute of Scientific and Technical Information of China (English)

    曹洁; 曲胜春; 刘孔; 王占国

    2011-01-01

    CuInxGa1-xSe2 polycrystalline thin films were synthesized on molybdenum substrate by the pulse- reverse electrodeposition technique in this study. CuInxGa1-xSe2 films were electrodeposited from aqueous solution, containing CuCl2 , InCl2, GaCl2, H2SeO2, Na - citric, and LiCl,on Mo/Glass substrate under pulse potentials with different amplitude and duration time. The electrodeposited films were characterized by × -ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive x- ray analysis (EDS). The results revealed that thin films fabricated by the pulse -reverse electrodeposition technique can fabricate a chalcopyrite structure, with dense and smooth morphological features; the proportion of metal ion In3+and crystallizability increase along with the increase of the reverse potential, and the films become stack and homogenous. Extending the annealed time of the CuInxGa1-x Se2 precursor is beneficial to get homogeneous films with higher light absorption as the absorber layer for solar cells.%采用周期换向脉冲电沉积法于Mo/玻璃及ITO/玻璃衬底上制备铜铟镓硒薄膜.Mo/玻璃或ITO/玻璃为工作电极,饱和甘汞(SCE)为参比电极,大面积铂片作为阳极构成三电极体系,以氯化铜,三氯化铟,三氯化镓和亚硒酸的水溶液为电解液,制备Cu-In-Ga-Se合金预制膜,随后在硒蒸气中进行硒化处理,得到了黄铜矿结构的GuInGaSe2(CIGS)薄膜.分别用SEM,XRD和UV -吸收分析了合金预制膜和CuInGaSe2薄膜的表面形貌、相组成及紫外-可见吸收特性.结果表明,周期换向脉冲电沉积法可以制备表面平整、均匀致密的Cu-In-Ga-Se合金薄膜;利用脉冲电压的占空比可以提高预制膜中的In元素的比例,且随着In含量的增加,CIGS薄膜的结晶性交好;适当延长硒化退火的时间,可以使薄膜晶粒大小均匀,减小内应力,使薄膜的光吸收率提高,以利于制备更高效率的CIGS薄膜太阳电池.

  7. High-speed drilling of metals with a long-pulse XeCl excimer laser

    NARCIS (Netherlands)

    Schoonderbeek, A.; Biesheuvel, C.A.; Hofstra, R.M.; Boller, Klaus J.; Meijer, J.; Phipps, Claude R.

    2002-01-01

    Studies of the influence of pulse length on material processing with different lasers have shown that a long pulse is beneficial for processing speed. In this paper a technique of pulse length variation is used in which the pulse length is the only varied parameter. Pulses between 5 and 150 ns lengt

  8. 空间矢量脉宽调制( SVPWM)技术的仿真与分析%Simulation and Analysis of Space Vector Pulse Width Modulation Technique

    Institute of Scientific and Technical Information of China (English)

    张成; 王心坚; 李良璋; 孙泽昌

    2012-01-01

      By analyzing the basic principle of flux tracking and voltage space vector synthesis , the DC voltage utilization ratio of space vector pulse width modulation (SVPWM) was analyzed theoretically.The PMSM speed regulating system model adopting SVPWM technique was built in Matlab /Simulink environment.And the simulation results show that SVPWM yields a circular magnetic field in motor space .The harmonics of output voltage distribute mainly around integer multiples of carrier frequency , and higher modulation index yields a low-er voltage total harmonic distortion.%  基于SVPWM的磁链跟踪和电压矢量合成原理,理论分析了SVPWM的直流电压利用率,在Matlab/Simulink中建立SVPWM及永磁同步电机调速系统的仿真模型。仿真结果表明, SVPWM可在电机空间实现圆形磁场,输出电压谐波集中在载波频率整数倍附近,较高的调制比可获得较小的电压谐波畸变。

  9. Pulsed Laser Ablation-Induced Green Synthesis of TiO2 Nanoparticles and Application of Novel Small Angle X-Ray Scattering Technique for Nanoparticle Size and Size Distribution Analysis

    Science.gov (United States)

    Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki

    2016-10-01

    This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO2: anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO2 nanoparticles.

  10. Pulsed Laser Ablation-Induced Green Synthesis of TiO2 Nanoparticles and Application of Novel Small Angle X-Ray Scattering Technique for Nanoparticle Size and Size Distribution Analysis.

    Science.gov (United States)

    Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki

    2016-12-01

    This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO2: anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO2 nanoparticles.

  11. Pulsed Optics

    Science.gov (United States)

    Hirlimann, C.

    Optics is the field of physics which comprises knowledge on the interaction between light and matter. When the superposition principle can be applied to electromagnetic waves or when the properties of matter do not depend on the intensity of light, one speaks of linear optics. This situation occurs with regular light sources such as light bulbs, low-intensity light-emitting diodes and the sun. With such low-intensity sources the reaction of matter to light can be characterized by a set of parameters such as the index of refraction, the absorption and reflection coefficients and the orientation of the medium with respect to the polarization of the light. These parameters depend only on the nature of the medium. The situation changed dramatically after the development of lasers in the early sixties, which allowed the generation of light intensities larger than a kilowatt per square centimeter. Actual large-scale short-pulse lasers can generate peak powers in the petawatt regime. In that large-intensity regime the optical parameters of a material become functions of the intensity of the impinging light. In 1818 Fresnel wrote a letter to the French Academy of Sciences in which he noted that the proportionality between the vibration of the light and the subsequent vibration of matter was only true because no high intensities were available. The intensity dependence of the material response is what usually defines nonlinear optics.

  12. Ultrashort Laser Pulses in Biology and Medicine

    CERN Document Server

    Braun, Markus; Zinth, Wolfgang

    2008-01-01

    Sources of ultrashort laser pulses are nowadays commercially available and have entered many areas of research and development. This book gives an overview of biological and medical applications of these laser pulses. The briefness of these laser pulses permits the tracing of the fastest processes in photo-active bio-systems, which is one focus of the book. The other focus is applications that rely on the high peak intensity of ultrashort laser pulses. Examples covered span non-linear imaging techniques, optical tomography, and laser surgery.

  13. Light Pulses to Photomultipliers from Extended Scintillators

    CERN Document Server

    Boemi, D; CERN. Geneva; Costa, S; Insolia, A; Panebianco, S; Potenza, R; Randazzo, N; Reito, S; Romanski, J; Russo, G V; Tuvé, C

    1994-01-01

    Light pulses received by photomultipliers coupled to scintillators are investigated in the cases of long scintillator slats or rods as well as large disc-shaped ones and compared with pulses from point-like scintillators. Results of experimental tests for the disc-shaped configuration performed with the single photon counting technique are presented and compared with numerical calculations. The calculations were done describing light pulse shape by means of a quite new general analytical method based on virtual light paths and images from geometrical optics. The associated electric pulses from the photomultipliers are then discussed and their dependence from source-photocathode distance are put in light.

  14. Pulse transit time differential measurement by fiber Bragg grating pulse recorder.

    Science.gov (United States)

    Umesh, Sharath; Padma, Srivani; Ambastha, Shikha; Kalegowda, Anand; Asokan, Sundarrajan

    2015-05-01

    The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity.

  15. Coherence control of pulse trains by spectral phase modulation

    Science.gov (United States)

    Ding, Chaoliang; Koivurova, Matias; Turunen, Jari; Setälä, Tero; Friberg, Ari T.

    2017-09-01

    We propose a technique to control the spectral and temporal coherence properties of pulsed beams of light via time-dependent manipulation of the spectral phase. Modulation schemes for the generation of partially coherent pulse trains from a train of fully coherent pulses are presented. The feasibility of experimental realization of the method is confirmed by numerical estimates.

  16. Spectral Analysis using Linearly Chirped Gaussian Pulse Stacking

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huan; WANG An-Ting; XU Li-Xin; MING Hai

    2009-01-01

    We analyze the spectrum of a stacked pulse with the technique of linearly chirped Gaussian pulse stacking.Our results show that there are modulation structures in the spectrum of the stacked pulse. The modulation frequencies are discussed in detail. By applying spectral analysis, we find that the intensity fluctuation cannot be smoothed by introducing an optical amplitude filter.

  17. Cryosurgery with pulsed electric fields.

    Science.gov (United States)

    Daniels, Charlotte S; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  18. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  19. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  20. A wide-band measurement method for transmission coefficients based on pulse compression technique%基于脉冲压缩技术的宽带透射系数测量方法

    Institute of Scientific and Technical Information of China (English)

    于盛齐; 黄益旺; 吴琼

    2013-01-01

    Transmission coefficient is one of the most significant parameters of underwater acoustic materials. In order to measure a transmission coefficient in a tank, a method based on pulse compression technique was proposed. With it, a directive wave was extracted from a compressed signal. The method could overcome unavoidable multi-path disturbance in tests, and easily obtain transmission coefficients for all the frequencies in the measured frequency band simultaneously, i. e. , a wide-band measurement was realized. This method was verified through comparison between the results of narrow and wide-band measurements of a glass box, they were conducted in the frequency range of 20 ~60 kHz in a tank.%透射系数是水声材料的一项重要声学参数,为在水池中对水声材料的透射系数进行测量,提出基于脉冲压缩技术的测量方法,对接收信号进行压缩提取直达波.该方法不仅能克服实验过程中经常遇到的多途干扰,且测量过程简单,可同时获得测量频带内所有频点的透射系数,实现对透射系数的宽带测量.在水池环境下,通过对20 ~60 kHz频率范围内玻璃缸的窄带测量与宽带测量结果比较,验证该方法的有效性.

  1. 90 mJ parametric chirped pulse amplification of 10 fs pulses.

    Science.gov (United States)

    Tavella, Franz; Marcinkevicius, Andrius; Krausz, Ferenc

    2006-12-25

    We demonstrate the amplification of broadband pulses from a Ti:Sapphire oscillator by non-collinear optical parametric chirped-pulse amplification technique in a type-I BBO crystal to energies of 90 mJ. Partial compression of the amplified pulses is demonstrated down to a 10 fs duration. These parameters come in combination with good spatial quality and focusability of the amplified beam.

  2. Programmable pulse generator

    CERN Document Server

    Xue Zhi Hua; Duan Xiao Hui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  3. Differential pulse voltammetry and additive differential pulse voltammetry with solvent polymeric membrane ion sensors.

    Science.gov (United States)

    Ortuño, J A; Serna, C; Molina, A; Gil, A

    2006-12-01

    The ion transfer across the water-solvent polymeric membrane interface is investigated by using a new device based on a modification of a commercial ion-selective electrode body that permits the accommodation of a platinum counter electrode inside the inner filling solution compartment and, therefore, use of a four-electrode potentiostat with ohmic drop compensation. This device is used here to apply two different double potential pulse techniques--differential pulse voltammetry and additive differential pulse voltammetry--which are more advantageous than other voltammetric techniques, such as normal pulse voltammetry or cyclic voltammetry, for the determination of the characteristic electrochemical parameters of the system. This is due to the concurrence of two factors in these double potential pulse techniques, the peak-shaped response together with a considerable reduction of undesirable current contributions.

  4. Pulse power for lasers II; Proceedings of the Meeting, Los Angeles, CA, Jan. 19, 20, 1989

    Science.gov (United States)

    Burkes, Tom R.; McDuff, Glen

    Various papers on pulse power for lasers are presented. Individual topics addressed include: preionization techniques for discharge lasers, X-ray preionization technology for high-pressure gas-discharge lasers, weight and volume scaling of pulse power for laser systems, method for rapidly terminating the current pulses applied to recombination lasers, high dV/dt spiker pulse generation using magnetic pulse sharpening techniques, multigap thyratrons for future laser applications, high-power thyratron-type switch for laser applications, model for the optically triggered pseudospark thyratron using local field and beam-bulk methods, capacitors for repetitively pulsed laser, fast pulse transformers in laser pulse power circuits, pulsed power topologies for laser applications, pulse power for the CHIRP XeCl laser, line type pulser for gas laser pumping, engineering aspects of long-pulse CO2 lasers using plasma discharge electrodes, high-pressure pulsed radial glow discharge CO2 laser.

  5. Interference Resilient Sigma Delta-Based Pulse Oximeter.

    Science.gov (United States)

    Shokouhian, Mohsen; Morling, Richard; Kale, Izzet

    2016-06-01

    Ambient light and optical interference can severely affect the performance of pulse oximeters. The deployment of a robust modulation technique to drive the pulse oximeter LEDs can reduce these unwanted effects and increases the resilient of the pulse oximeter against artificial ambient light. The time division modulation technique used in conventional pulse oximeters can not remove the effect of modulated light coming from surrounding environment and this may cause huge measurement error in pulse oximeter readings. This paper presents a novel cross-coupled sigma delta modulator which ensures that measurement accuracy will be more robust in comparison with conventional fixed-frequency oximeter modulation technique especially in the presence of pulsed artificial ambient light. Moreover, this novel modulator gives an extra control over the pulse oximeter power consumption leading to improved power management.

  6. Pulsed laser deposition: Prospects for commercial deposition of epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Muenchausen, R.E.

    1999-03-01

    Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique for the deposition of thin films. The vapor source is induced by the flash evaporation that occurs when a laser pulse of sufficient intensity (about 100 MW/cm{sup 2}) is absorbed by a target. In this paper the author briefly defines pulsed laser deposition, current applications, research directed at gaining a better understanding of the pulsed laser deposition process, and suggests some future directions to enable commercial applications.

  7. Optimised design of fibre-based pulse compressor for gain-switched DFB laser pulses at 1.5 µm

    OpenAIRE

    Barry, Liam P.; Thomsen, Benn C.; Dudley, John M.; Harvey, John D.

    1999-01-01

    An optical-fibre based pulse compressor for gain-switched DFB laser pulses has been optimised using a systematic procedure based on the initial complete characterisation of the laser pulses, followed by numerical simulations of the pulse propagation in different types of fibre to determine the required lengths for optimum compression. Using both linear and nonlinear compression techniques, an optimum compression factor of 12 is achieved.

  8. Ultrafast X-ray pulse measurement method

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2010-01-01

    In this paper we describe a measurement technique capable of resolving femtosecond X-ray pulses from XFEL facilities. Since these ultrashort pulses are themselves the shortest event available, our measurement strategy is to let the X-ray pulse sample itself. Our method relies on the application of a "fresh" bunch technique, which allows for the production of a seeded X-ray pulse with a variable delay between seed and electron bunch. The shot-to-shot averaged energy per pulse is recorded. It turns out that one actually measures the autocorrelation function of the X-ray pulse, which is related in a simple way to the actual pulse width. For implementation of the proposed technique, it is sufficient to substitute a single undulator segment with a short magnetic chicane. The focusing system of the undulator remains untouched, and the installation does not perturb the baseline mode of operation. We present a feasibility study and we make exemplifications with typical parameters of an X-ray FEL.

  9. Diode-Pumped Nanosecond Pulsed Laser with Pulse-Transmission-Mode Q-Switch

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; HUO Yu-Jing; HE Shu-Fang; FENG Li-Chun

    2001-01-01

    Q-switched pulses at 1.064μm with a peak power of 5.02kW and a pulse width of2.8ns were obtained which were pumped by a 1 W laser diode on the Nd:YVO4 microchip at the 1 kHz repetition rate. These values were achieved by combining the techniques of aconsto-optic Q-switching and electro-optic pulse-transmission-mode Q-switching. The temporal characteristics of the pulses were analysed numerically. The experimental results are shown to be in good agreement with theoretical predictions.

  10. Hollow-fiber compression of visible, 200 fs laser pulses to 40 fs pulse duration.

    Science.gov (United States)

    Procino, I; Velotta, R; Altucci, C; Amoruso, S; Bruzzese, R; Wang, X; Tosa, V; Sansone, G; Vozzi, C; Nisoli, M

    2007-07-01

    We demonstrate the use of a very simple, compact, and versatile method, based on the hollow-fiber compression technique, to shorten the temporal length of visible laser pulses of 100-300 fs to pulse durations shorter than approximately 50 fs. In particular, 200 fs, frequency-doubled, Nd:glass laser pulses (527 nm) were spectrally broadened to final bandwidths as large as 25 nm by nonlinear propagation through an Ar-filled hollow fiber. A compact, dispersive, prism-pair compressor was then used to produce as short as 40 fs, 150 microJ pulses. A very satisfactory agreement between numerical simulations and measurements is found.

  11. Generation of Low Jitter Laser Diode Pulse With External Pulse Injection

    Institute of Scientific and Technical Information of China (English)

    Wang Yuncai; Olaf Reimann; Dieter Huhse; Dieter Bimberg

    2003-01-01

    One gain-switched laser diode(LD) was used as external injection seeding source, to reduce the timing jitter of another gain-switched LD, This technique can generate low jitter, frequency-free and wavelength tunable laser pulse.

  12. Growing of YBaCo{sub 4}O{sub 7+δ} thin films on α-Al{sub 2}O{sub 3} and SrTiO{sub 3} substrates by means of the pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, A. [Universidad Nacional de Colombia, Campus Medellín, Facultad de Minas, Laboratorio de Caracterización de Materiales, A.A. 568, Medellín (Colombia); Fuchs, D. [Institute for Solid State Physics, Karlsruhe Institute of Technology, P. O. Box 3640, Karlsruhe Germany (Germany); Morán, O., E-mail: omoranc@unal.edu.co [Universidad Nacional de Colombia, Campus Medellín, Facultad de Ciencias, Departamento de Física, Laboratorio de Materiales Cerámicos y Vítreos, A.A. 568, Medellín (Colombia)

    2013-10-31

    Thin films of the layered cobaltate YBaCo{sub 4}O{sub 7+δ} were deposited by means of the pulsed laser deposition technique on c-axis oriented sapphire (α-Al{sub 2}O{sub 3}) and (001)-oriented SrTiO{sub 3} substrates. X-ray diffraction patterns of the YBaCo{sub 4}O{sub 7+δ} layers on sapphire substrates evidence a (001) and (101) oriented textured growth with a preferential out-of-plane orientation of the c-axis of the film. Since the lattice mismatch between film and substrate is fairly large, the observed texture is likely a consequence of the crystallographic anisotropy (c/a) of YBaCo{sub 4}O{sub 7+δ}. Films grown on SrTiO{sub 3} substrates show a reduced crystalline quality compared to those films grown on α-Al{sub 2}O{sub 3} and are usually affected by impurity phases. This might be caused by the poor lattice matching between cubic SrTiO{sub 3} and hexagonal YBaCo{sub 4}O{sub 7+δ}. The mosaic spread of the films, determined by the full width at half maximum of rocking curves, amounts to 2° and 3° for films grown on α-Al{sub 2}O{sub 3} and (001)-SrTiO{sub 3}, respectively. The atomic composition of the films with respect to the cations was evaluated via Rutherford backscattering spectroscopy and found to be close to the nominal one. The results show that textured YBaCo{sub 4}O{sub 7+δ} films can be easily obtained on commercially available substrates. - Highlights: • YBaCo{sub 4}O{sub 7+δ} thin films are successfully grown on α-Al{sub 2}O{sub 3} and SrTiO{sub 3} substrates. • YBaCo{sub 4}O{sub 7+δ} layers on sapphire evidence (001) and (101) oriented textured growth. • Films on SrTiO{sub 3} show reduced crystalline quality as compared to films on Al{sub 2}O{sub 3}.

  13. Imposed layer by layer growth by pulsed laser interval deposition

    NARCIS (Netherlands)

    Koster, Gertjan; Rijnders, Guus J.H.M.; Blank, Dave H.A.; Rogalla, Horst

    1999-01-01

    Pulsed laser deposition has become an important technique to fabricate novel materials. Although there is the general impression that, due to the pulsed deposition, the growth mechanism differs partially from continuous physical and chemical deposition techniques, it has hardly been used. Here, we w

  14. Applications of fiberoptic pulsed photothermal radiometry

    Science.gov (United States)

    Scharf, Vered; Eyal, Ophir; Katzir, Abraham

    1998-10-01

    Pulsed photothermal radiometry is a nondestructive technique for measurements of surface and subsurface thermal parameters of a wide variety of materials. A fiber optic pulsed photothermal radiometric system is constructed and its feasibility is demonstrated. The radiometric system includes a pulsed CO2 laser, an IR detector, and two IR transmitting silver halide optical fibers for delivering IR radiation to and from the sample. A weak laser pulse, absorbed by the sample, initially heats the sample surface. The time evolution of the transient emitted IR radiation is measured and analyzed. The results establish the feasibility of using the fiber optic pulsed photothermal radiometric system to measure coating thickness, to detect flaws, and to diagnose thermal damage in tissue. This fiber optic method would be useful for industrial and medical applications.

  15. Exawatt-Zettawatt Pulse Generation and Applications

    CERN Document Server

    Mourou, G A; Malkin, V M; Toroker, Z; Khazanov, E A; Sergeev, A M; Tajima, T

    2011-01-01

    A new amplification method, weaving the three basic compression techniques, Chirped Pulse Amplification (CPA), Optical Parametric Chirped Pulse Amplification (OPCPA) and Plasma Compression by Backward Raman Amplification (BRA) in plasma, is proposed. It is called C3 for Cascaded Conversion Compression. It has the capability to compress with good efficiency kilojoule to megajoule, nanosecond laser pulses into femtosecond pulses, to produce exawatt and beyond peak power. In the future, C3 could be used at large-scale facilities such as the National Ignition Facility (NIF) or the Laser Megajoule (LMJ) and open the way to zettawatt level pulses. The beam will be focused to a wavelength spot size with a f#1. The very small beam size, i.e. few centimeters, along with the low laser repetition rate laser system will make possible the use of inexpensive, precision, disposable optics. The resulting intensity will approach the Schwinger value, thus opening up new possibilities in fundamental physics.

  16. One laser pulse generates two photoacoustic signals

    CERN Document Server

    Gao, Fei; Zheng, Yuanjin

    2016-01-01

    Photoacoustic sensing and imaging techniques have been studied widely to explore optical absorption contrast based on nanosecond laser illumination. In this paper, we report a long laser pulse induced dual photoacoustic (LDPA) nonlinear effect, which originates from unsatisfied stress and thermal confinements. Being different from conventional short laser pulse illumination, the proposed method utilizes a long square-profile laser pulse to induce dual photoacoustic signals. Without satisfying the stress confinement, the dual photoacoustic signals are generated following the positive and negative edges of the long laser pulse. More interestingly, the first expansion-induced photoacoustic signal exhibits positive waveform due to the initial sharp rising of temperature. On the contrary, the second contraction-induced photoacoustic signal exhibits exactly negative waveform due to the falling of temperature, as well as pulse-width-dependent, signal amplitude which is caused by the concurrent heat accumulation and ...

  17. Clinical Comparison of Pulse and Chirp Excitation

    DEFF Research Database (Denmark)

    Pedersen, Morten Høgholm; Misaridis, T.; Jensen, Jørgen Arendt

    2002-01-01

    and short pulse excitation to simultaneously produce identical image sequences using both techniques. Nine healthy male volunteers were scanned in abdominal locations. All sequences were evaluated by 3 skilled medical doctors, blinded to each other and to the technique used. They assessed the depth (1...

  18. Radial pulse (image)

    Science.gov (United States)

    ... heart. The arteries are the vessels with the "pulse", a rhythmic pushing of the blood in the ... a refilling of the heart chamber. To determine heart rate, one feels the beats at a pulse point ...

  19. Wrist pulse (image)

    Science.gov (United States)

    To measure the pulse at the wrist, place the index and middle finger over the underside of the opposite wrist, below the base ... firmly with flat fingers until you feel the pulse in the radial artery.

  20. 基于实时数字脉冲处理技术的核谱仪研究%Study of Nuclear Spectrometer Based on Real-time Digital Pulse Process Technique

    Institute of Scientific and Technical Information of China (English)

    周建斌; 胡云川; 洪旭; 陈铁光; 陈宝; 岳爱忠; 何绪新

    2015-01-01

    A digital gamma ray spectrometer based on 80 M Hz ADC was presented .The system consists of NaI(Tl) detector ,front-end circuitry ,80 M Hz ADC and digital pulse process (DPP) unit .The FIR digital filtering ,pulse trapezoidal shaping ,pulse height discrimination and data communication were implemented in DPP .The pulse trapezoidal shaping algorithm was applied to obtain good energy resolution and throughout . In order to reduce the influence of noise introducing from the high-speed ADC ,the FIR digital filter was employed .The digital signal coming from ADC was smoothed by FIR filter firstly ,and then shaped as trapezoidal pulse for further processing . The analog signal was coupled by DC ,and the digital pulse width is 1.6 μs .The results show that the resolution for 137 Cs can reach 6.88% .%本文提出一种基于80 M Hz ADC的数字化γ能谱系统.系统由探测器、前端电路、ADC和数字处理单元组成.数字处理在FPGA中完成 ,主要包括FIR数字滤波、脉冲梯形成形、幅度甄别、数据通讯.为减小高速ADC在采集过程中引入的噪声信号 ,在数字处理单元实现FIR数字滤波 ,对数字脉冲信号先进行滤波处理 ,再进行脉冲梯形成形 ,得到高分辨率的能谱数据.测量系统中模拟信号全部采用直流耦合 ,数字脉冲宽度为1.6 μs ,对137Cs的能量分辨率达6.88% .

  1. Nondestructive analysis of the natural uranium mass through the measurement of delayed neutrons using the technique of pulsed neutron source; Analise nao destrutiva da massa de uranio natural atraves da medida de neutrons atrasados com o uso da tecnica de fonte pulsada de neutrons rapidos

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Paulo Rogerio Pinto

    1979-07-01

    This work presents results of non destructive mass analysis of natural uranium by the pulsed source technique. Fissioning is produced by irradiating the test sample with pulses of 14 MeV neutrons and the uranium mass is calculated on a relative scale from the measured emission of delayed neutrons. Individual measurements were normalised against the integral counts of a scintillation detector measuring the 14 MeV neutron intensity. Delayed neutrons were measured using a specially constructed slab detector operated in anti synchronism with the fast pulsed source. The 14 MeV neutrons were produced via the T(d,n) {sup 4}He reaction using a 400 kV Van de Graaff accelerated operated at 200 kV in the pulsed source mode. Three types of sample were analysed, namely: discs of metallic uranium, pellets of sintered uranium oxide and plates of uranium aluminium alloy sandwiched between aluminium. These plates simulated those of Material Testing Reactor fuel elements. Results of measurements were reproducible to within an overall error in the range 1.6 to 3.9%; the specific error depending on the shape, size and mass of the sample. (author)

  2. Pulse-Width Jitter Measurement for Laser Diode Pulses

    Institute of Scientific and Technical Information of China (English)

    TANG Jun-Hua; WANG Yun-Cai

    2006-01-01

    @@ Theoretical analysis and experimental measurement of pulse-width jitter of diode laser pulses are presented. The expression of pulse power spectra with all amplitude jitter, timing jitter and pulse-width jitter is deduced.

  3. Pulse-compression ghost imaging lidar via coherent detection

    CERN Document Server

    Deng, Chenjin; Han, Shensheng

    2016-01-01

    Ghost imaging (GI) lidar, as a novel remote sensing technique,has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which can dramatically improve the detection sensitivity and detection range.

  4. Pulse-compression ghost imaging lidar via coherent detection.

    Science.gov (United States)

    Deng, Chenjin; Gong, Wenlin; Han, Shensheng

    2016-11-14

    Ghost imaging (GI) lidar, as a novel remote sensing technique, has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which is helpful to improve the detection sensitivity and detection range.

  5. Development of a new picosecond pulse radiolysis system by using a femtosecond laser synchronized with a picosecond linac. A step to femtosecond pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoichi; Yamamoto, Tamotsu; Miki, Miyako; Seki, Shu; Okuda, Shuichi; Honda, Yoshihide; Kimura, Norio; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Ushida, Kiminori

    1997-03-01

    A new picosecond pulse radiolysis system by using a Ti sapphire femtosecond laser synchronized with a 20 ps electron pulse from the 38 MeV L-band linac has been developed for the research of the ultra fast reactions in primary processes of radiation chemistry. The timing jitter in the synchronization of the laser pulse with the electron pulse is less than several picosecond. The technique can be used in the next femtosecond pulse radiolysis. (author)

  6. Single-pulse stimulated Raman scattering spectroscopy

    CERN Document Server

    Frostig, Hadas; Natan, Adi; Silberberg, Yaron

    2010-01-01

    We demonstrate the acquisition of stimulated Raman scattering spectra with the use of a single femtosecond pulse. High resolution vibrational spectra are obtained by shifting the phase of a narrow band of frequencies in the broadband input pulse spectrum, using spectral shaping. The vibrational spectrum is resolved by examining the amplitude features formed in the spectrum after interaction with the sample. Using this technique, low frequency Raman lines (<100cm^-1) are resolved in a straightforward manner.

  7. Pulsed field gel electrophoresis a practical guide

    CERN Document Server

    Birren, Bruce

    1993-01-01

    Pulsed Field Gel Electrophoresis: A Practical Guide is the first laboratory manual to describe the theory and practice of this technique. Based on the authors' experience developing pulsed field gel instruments and teaching procedures, this book provides everything a researcher or student needs to know in order to understand and carry out pulsed field gel experiments. Clear, well-tested protocols assume only that users have a basic familiarity with molecular biology. Thorough coverage of useful data, theory, and applications ensures that this book is also a lasting resource for more adv

  8. Third Harmonic Imaging using a Pulse Inversion

    OpenAIRE

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd harmonic component for imaging on any ultrasound system capable of PI. PI was used to perform 3rd harmonic Bmode scans of a water-filled wire phantom on an experimental ultrasound system. The 3rd harmonic...

  9. Standardization of Rocket Engine Pulse Time Parameters

    Science.gov (United States)

    Larin, Max E.; Lumpkin, Forrest E.; Rauer, Scott J.

    2001-01-01

    Plumes of bipropellant thrusters are a source of contamination. Small bipropellant thrusters are often used for spacecraft attitude control and orbit correction. Such thrusters typically operate in a pulse mode, at various pulse lengths. Quantifying their contamination effects onto spacecraft external surfaces is especially important for long-term complex-geometry vehicles, e.g. International Space Station. Plume contamination tests indicated the presence of liquid phase contaminant in the form of droplets. Their origin is attributed to incomplete combustion. Most of liquid-phase contaminant is generated during the startup and shutdown (unsteady) periods of thruster pulse. These periods are relatively short (typically 10-50 ms), and the amount of contaminant is determined by the thruster design (propellant valve response, combustion chamber size, thruster mass flow rate, film cooling percentage, dribble volume, etc.) and combustion process organization. Steady-state period of pulse is characterized by much lower contamination rates, but may be lengthy enough to significantly conh'ibute to the overall contamination effect. Because there was no standard methodology for thruster pulse time division, plume contamination tests were conducted at various pulse durations, and their results do not allow quantifying contaminant amounts from each portion of the pulse. At present, the ISS plume contamination model uses an assumption that all thrusters operate in a pulse mode with the pulse length being 100 ms. This assumption may lead to a large difference between the actual amounts of contaminant produced by the thruster and the model predictions. This paper suggests a way to standardize thruster startup and shutdown period definitions, and shows the usefulness of this approach to better quantify thruster plume contamination. Use of the suggested thruster pulse time-division technique will ensure methodological consistency of future thruster plume contamination test programs

  10. Field mapping of ballistic pressure pulse sources

    Directory of Open Access Journals (Sweden)

    Rad Abtin Jamshidi

    2015-09-01

    Full Text Available Ballistic pressure pulse sources are used since late 1990s for the extracorporeal treatment of chronic Enthesitis. Newly indications are found in trigger-point-therapy for the treatment of musculoskeletal disorders. In both applications excellent results without relevant side effects were found in clinical trials. The technical principle of pressure pulse source is based on the same techniques used in air guns. A projectile is accelerated by pressurized air and hits the applicator with high kinetic energy. By this a compression wave travels through the material and induces a fast (4..5μs, almost singular pressure pulse of 2..10 MPa, which is followed by an equally short rarefaction phase of about the same amplitude. It is assumed that the pressure pulse accounts for the biomedical effects of the device. The slower inertial motion of the waveguide is damped by elastic stoppers, but still can be measured several micro seconds after the initial pressure pulse. In order to characterize the pressure pulse devices, field mapping is performed on several radial pressure pulse sources using the fiber optic hydrophone and a polyvinylidenfluorid (PVDF piezoelectric hydrophone. It could be shown that the current standard (IEC 61846 is not appropriate for characterization of ballistic pressure pulse sources.

  11. 频率分辨光学开关法测量飞秒脉冲的研究%Measurement of Femtosecond Laser Pulses Using Frequency-Resolved Optical Gating Technique

    Institute of Scientific and Technical Information of China (English)

    文汝红

    2012-01-01

    The theory and the algorithm of the frequency-resolved optical gating (FROG) method for retrieving amplitude and phase of ultrashort laser pulse are presented. Several types of FROG are numerically simulated. Then the amplitude and the phase of the pulse are retrieved for the free-noise and 20% random noise SHG-FROG traces. A measurement is presented with SHG-FROG. The characterization of Ti:sapphire pulse is measured with the apparatus. The pulse duration is in reasonable agreement with the measurement using interference autocorrelation.%在详细分析频率分辨光学开关法(FROG)的基础上,对几种类型的FROG迹线进行了模拟,并运用Matlab软件编制程序还原出脉冲信息.用二次谐波型频率分辨光学开关法(SHG-FROG)测量了KLM钛宝石激光器的输出脉冲,并运用算法进行了处理,得到脉冲的振幅和相位信息,与干涉自相关法的测量结果一致.

  12. A Self-Biasing Pulsed Depressed Collector

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A.; Jensen, Aaron; Neilson, Jeff; /SLAC

    2014-05-29

    Depressed collectors have been utilized successfully for many years to improve the electrical efficiency of vacuum electron devices. Increasingly, pulsed, high-peak power accelerator applications are placing a premium on electrical efficiency. As RF systems are responsible for a large percentage of the overall energy usage at accelerator laboratories, methods to improve upon the state-of-the-art in pulsed high-power sources are desired. This paper presents a technique for self-biasing the stages in a multistage depressed collector. With this technique, the energy lost during the rise and fall times of the pulse can be recovered, separate power supplies are not needed, and existing modulators can be retrofitted. Calculations show that significant cost savings can be realized with the implementation of this device in high-power systems. In this paper, the technique is described along with experimental demonstration. (auth)

  13. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay

    2014-06-01

    We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.

  14. Compact transient-grating self-referenced spectral interferometry for sub-nanojoule femtosecond pulses characterization

    CERN Document Server

    Shen, Xiong; Liu, Jun; Li, Ruxin

    2016-01-01

    The self-referenced spectral interferometry (SRSI) technique, which is usually used for microjoule-level femtosecond pulses characterization, is improved to characterize weak femtosecond pulses with nanojoule based on the transient-grating effect. Both femtosecond pulses from an amplifier with 3 nJ per pulse at 1 kHz repetition rates and femtosecond pulses from an oscillator with less than 0.5 nJ per pulse at 84 MHz repetition rates are successfully characterized. Furthermore, through a special design, the optical setup of the device is even smaller than a palm which will makes it simple and convenient during the application. These improvements extend the application of SRSI technique to the characterization of femtosecond pulses in a broad range. Not only pulses from an amplifier but also pulses from an oscillator or weak pulses used in ultrafast spectroscopy can be monitored with this SRSI method right now.

  15. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  16. PulseSoar

    Energy Technology Data Exchange (ETDEWEB)

    Carter, P.; Peglow, S.

    1992-07-21

    This paper is an introduction to the PulseSoar concept. PulseSoar is a hypervelocity airplane that uses existing airport facilities and current technologies to fly at the very edge of space. It will be shown that PulseSoar can fly between any two points on the globe in less than two hours with fuel efficiency exceeding current state of the art commercial airliners. In addition, it will be shown that PulseSoar avoids environmental issues concerning the ozone layer and sonic booms because of its unique flight profile. All of this can be achieved with current technology. PulseSoar does not require the development of enabling technology. It is a concept which can be demonstrated today. The importance of this idea goes beyond the technical significance`s of PulseSoar in terms of feasibility and performance. PulseSoar could provide a crucial economic advantage to America`s largest export market: commercial aircraft. PulseSoar is a breakthrough concept for addressing the emerging markets of long range and high speed aircraft. Application of PulseSoar to commercial transport could provide the US Aerospace industry a substantial lead in offering high speed/long range aircraft to the world`s airlines. The rapid emergence of a US developed high speed aircraft could also be important to our competitiveness in the Pacific Rim and South American economies. A quick and inexpensive demonstration vehicle is proposed to bang the concept to reality within two years. This discussion will address all the major technical subjects encompassed by PulseSoar and identifies several near-term, and low risk, applications which may be further explored with the initial demonstration vehicle. What is PulseSoar? PulseSoar could enable high speed, high altitude and long range flight without many of the difficulties encountered by traditional hypersonic vehicles.

  17. Optimizing the Thermoacoustic Pulse Tube Refrigerator Performances

    Directory of Open Access Journals (Sweden)

    E. V. Blagin

    2014-01-01

    Full Text Available The article deals with research and optimization of the thermoacoustic pulse tube refrigerator to reach a cryogenic temperature level. The refrigerator is considered as a thermoacoustic converter based on the modified Stirling cycle with helium working fluid. A sound pressure generator runs as a compressor. Plant model comprises an inner heat exchanger, a regenerative heat exchanger, a pulse tube, hot and cold heat exchangers at its ends, an inertial tube with the throttle, and a reservoir. A model to calculate the pulse tube thermoacoustic refrigerator using the DeltaEC software package has been developed to be a basis for calculation techniques of the pulse tube refrigerator. Momentum, continuity, and energy equations for helium refrigerant are solved according to calculation algorithm taking into account the porosity of regenerator and heat exchangers. Optimization of the main geometric parameters resulted in decreasing temperature of cold heat exchanger by 41,7 K. After optimization this value became equal to 115,01 K. The following parameters have been optimized: diameters of the feeding and pulse tube and heat exchangers, regenerator, lengths of the regenerator and pulse and inertial tubes, as well as initial pressure. Besides, global minimum of temperatures has been searched at a point of local minima corresponding to the optimal values of abovementioned parameters. A global-local minima difference is 0,1%. Optimized geometric and working parameters of the thermoacoustic pulse tube refrigerator are presented.

  18. Pulse Tube Refrigerator

    Science.gov (United States)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  19. A Brief Journey into the History of the Arterial Pulse

    Directory of Open Access Journals (Sweden)

    Nima Ghasemzadeh

    2011-01-01

    Full Text Available Objective. This paper illustrates the evolution of our knowledge of the arterial pulse from ancient times to the present. Several techniques for arterial pulse evaluation throughout history are discussed. Methods. Using databases including Worldcat, Pubmed, and Emory University Libraries' Catalogue, the significance of the arterial pulse is discussed in three historical eras of medicine: ancient, medieval, and modern. Summary. Techniques used over time to analyze arterial pulse and its characteristics have advanced from simple evaluation by touch to complex methodologies such as ultrasonography and plethysmography. Today's understanding of the various characteristics of the arterial pulse relies on our ancestors' observations and experiments. The pursuit of science continues to lead to major advancements in our knowledge of the arterial pulse and its application in diagnosis of atherosclerotic disease.

  20. A brief journey into the history of the arterial pulse.

    Science.gov (United States)

    Ghasemzadeh, Nima; Zafari, A Maziar

    2011-01-01

    Objective. This paper illustrates the evolution of our knowledge of the arterial pulse from ancient times to the present. Several techniques for arterial pulse evaluation throughout history are discussed. Methods. Using databases including Worldcat, Pubmed, and Emory University Libraries' Catalogue, the significance of the arterial pulse is discussed in three historical eras of medicine: ancient, medieval, and modern. Summary. Techniques used over time to analyze arterial pulse and its characteristics have advanced from simple evaluation by touch to complex methodologies such as ultrasonography and plethysmography. Today's understanding of the various characteristics of the arterial pulse relies on our ancestors' observations and experiments. The pursuit of science continues to lead to major advancements in our knowledge of the arterial pulse and its application in diagnosis of atherosclerotic disease.

  1. Application of pulse contour cardiac output monitoring technique in hemodynamic monitoring in critical patients%脉搏轮廓心排血量监测技术在危重病患者血流动力学监测中的应用

    Institute of Scientific and Technical Information of China (English)

    房贺; 郑兴锋; 夏照帆

    2014-01-01

    Pulse contour cardiac output (PiCCO) monitoring is a new type of invasive hemodynamic monitoring technology,which is more and more often applied in perioperative period and the patients suffering from multiple injuries,septic shock,and extensive burn.With PiCCO one is able to monitor patients' hemodynamic indexes safely,timely,accurately,and continuously to provide reference for judgment of patients' condition and proper quality and quantity of fluid administration.This technique has a good prospect in clinical application.

  2. Cavitation pulse extraction and centrifugal pump analysis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hong Lind Shaoran [University of Electronic Science and Technology of China, Chengdu (China); Yu, Bo; Qing, Biao [Xihua University, Chengdu (China)

    2017-03-15

    This study extracted cavitation pulses from hydrophone signals sampled in a centrifugal pump and analyzed their characteristics. The modified and simplified Empirical mode decomposition (EMD) algorithm was proposed for extracting cavitation pulses from strong background noise. Experimental results showed that EMD can effectively suppress noise and obtain clear cavitation pulses, facilitating the identification of the number of pulses associated with the degree of cavitation. The cavitation characteristics were modeled to predict the value of incipient cavitation. Then, we proposed a method for detecting the wear of the impeller surface. That is, the information on the impeller surface of the centrifugal pump, including the roughness of the impeller surface and its wear trends, were quantified based on the net positive suction head available of incipient cavitation. The findings indicate that the proposed technique is suitable for condition monitoring of the pump.

  3. Design of a finger base-type pulse oximeter

    Science.gov (United States)

    Lin, Bor-Shyh; Huang, Cheng-Yang; Chen, Chien-Yue; Lin, Jiun-Hung

    2016-01-01

    A pulse oximeter is a common medical instrument used for noninvasively monitoring arterial oxygen saturation (SpO2). Currently, the fingertip-type pulse oximeter is the prevalent type of pulse oximeter used. However, it is inconvenient for long-term monitoring, such as that under motion. In this study, a wearable and wireless finger base-type pulse oximeter was designed and implemented using the tissue optical simulation technique and the Monte Carlo method. The results revealed that a design involving placing the light source at 135°-165° and placing the detector at 75°-90° or 90°-105° yields the optimal conditions for measuring SpO2. Finally, the wearable and wireless finger base-type pulse oximeter was implemented and compared with the commercial fingertip-type pulse oximeter. The experimental results showed that the proposed optimal finger base-type pulse oximeter design can facilitate precise SpO2 measurement.

  4. Nonresonant Multiple-Pulse Control of Molecular Motions in Liquid

    Directory of Open Access Journals (Sweden)

    Nikiforov V.G.

    2015-01-01

    Full Text Available We propose the implementation of the multiple-pulse excitation for manipulation of the molecular contributions to the optically-heterodyne-detected optical-Kerr-effect. The key parameters controlling the specificity of the multiple-pulse excitation scenarios are the pulses durations, the delays between pulses, the relation between the pump pulses amplitudes and the pulses polarizations. We model the high-order optical responses and consider some principles of the scenarios construction. We show that it is possible to adjust the excitation scenario in such a way that the some responses can be removed from detected signal along with the enhancement of the interested response amplitude. The theoretical analysis and first experimental data reveal that the multiple-pulse excitation technique can be useful for the selective spectroscopy of the molecular vibrations and rotations in liquid.

  5. Picosecond pulse measurements using the active laser medium

    Science.gov (United States)

    Bernardin, James P.; Lawandy, N. M.

    1990-01-01

    A simple method for measuring the pulse lengths of synchronously pumped dye lasers which does not require the use of an external nonlinear medium, such as a doubling crystal or two-photon fluorescence cell, to autocorrelate the pulses is discussed. The technique involves feeding the laser pulses back into the dye jet, thus correlating the output pulses with the intracavity pulses to obtain pulse length signatures in the resulting time-averaged laser power. Experimental measurements were performed using a rhodamine 6G dye laser pumped by a mode-locked frequency-doubled Nd:YAG laser. The results agree well with numerical computations, and the method proves effective in determining lengths of picosecond laser pulses.

  6. Dependence of adiabatic population transfer on pulse profile

    Indian Academy of Sciences (India)

    S Dasgupta; T kushwaha; D Goswami

    2006-06-01

    Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant. We study the effect of ultrafast shaped pulses for two-level systems, by density-matrix approach. However, we find that adiabaticity depends simultaneously on pulse profile as well as the frequency modulation under non-resonant conditions.

  7. High Fidelity Single Qubit Operations using Pulsed EPR

    CERN Document Server

    Morton, J J L; Ardavan, A; Porfyrakis, K; Lyon, S A; Briggs, G A D; Morton, John J. L.; Tyryshkin, Alexei M.; Ardavan, Arzhang; Porfyrakis, Kyriakos

    2005-01-01

    The fidelity of quantum logic operations performed on electron spin qubits using simple RF pulses falls well below the threshold for the application of quantum algorithms. Using three independent techniques, we demonstrate the use of composite pulses to improve this fidelity by several orders of magnitude. The observed high-fidelity operations are limited by pulse phase errors, but nevertheless fall within the limits required for the application of quantum error correction algorithms.

  8. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  9. High-Precision Pulse Generator

    Science.gov (United States)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A document discusses a pulse generator with subnanosecond resolution implemented with a low-cost field-programmable gate array (FPGA) at low power levels. The method used exploits the fast carry chains of certain FPGAs. Prototypes have been built and tested in both Actel AX and Xilinx Virtex 4 technologies. In-flight calibration or control can be performed by using a similar and related technique as a time interval measurement circuit by measuring a period of the stable oscillator, as the delays through the fast carry chains will vary as a result of manufacturing variances as well as the result of environmental conditions (voltage, aging, temperature, and radiation).

  10. Measurement of pulse amplitude and phase distortion in a semiconductor optical amplifier: from pulse compression to breakup

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Borri, Paola; Langbein, Wolfgang Werner;

    2000-01-01

    We have performed extensive measurements of the propagation of ultrashort pulses in a semiconductor bulk amplifier using an ultrasensitive cross frequency-resolved optical gating technique. Pulses of 175-fs duration with energies from below 1 fJ to above 100 pJ are measured both in amplitude...... is biased for material transparency or absorption and to a pronounced pulse breakup in the gain regime....

  11. Pulsed Plasma Electron Sources

    Science.gov (United States)

    Krasik, Yakov

    2008-11-01

    Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).

  12. PULSE AMPLITUDE DISTRIBUTION RECORDER

    Science.gov (United States)

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  13. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    Florida State University is investigating the concept of pulsed electron beams for fly ash precipitation. This report describes the results and data on three of the subtasks of this project and preliminary work only on the remaining five subtasks. Described are the modification of precharger for pulsed and DC energization of anode; installation of the Q/A measurement system; and modification and installation of pulsed power supply to provide both pulsed and DC energization of the anode. The other tasks include: measurement of the removal efficiency for monodisperse simulated fly ash particles; measurement of particle charge; optimization of pulse energization schedule for maximum removal efficiency; practical assessment of results; and measurement of the removal efficiency for polydisperse test particles. 15 figs., 1 tab. (CK)

  14. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  15. Pulse doubling in zigzag-connected autotransformer-based 12-pulse ac-dc converter for power quality improvement

    Science.gov (United States)

    Abdollahi, Rohollah

    2012-12-01

    This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMDs) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse acdc converters each of them consisting of three-phase diode bridge rectifiers. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6-pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

  16. Laser sclerostomy by pulsed-dye laser and goniolens

    Energy Technology Data Exchange (ETDEWEB)

    Latina, M.A.; Dobrogowski, M.; March, W.F.; Birngruber, R. (Massachusetts General Hospital, Boston (USA))

    1990-12-01

    We describe an ab-interno laser sclerostomy procedure using the method termed dye-enhanced ablation with a slit-lamp delivery system and special goniolens such that only the laser light beam penetrates the anterior chamber. The procedure uses a microsecond-pulsed-dye laser emitting at 666 nm and iontophoresis of methylene blue dye (absorption of 668 nm) into the sclera at the limbus to enhance the absorption of the laser light. We compared the number of pulses needed to perforate excised human sclera at pulse durations of 1.5, 20, and 300 microseconds. Pulse durations of 1.5 and 20 microseconds required 20 pulses or fewer to perforate excised human sclera with pulse energies of 75 to 100 mJ. The ab-interno laser sclerostomy procedure was performed in 54 eyes of Dutch-belted rabbits with pulse durations of 1.5 or 20 microseconds and a 100- or 200-microns incident spot diameter delivered using a CGF goniolens. Full-thickness fistulas were successfully created at both pulse durations in approximately 80% of eyes treated. A range of three to 25 pulses was required to perforate sclera with slightly fewer pulses and lower pulse energies at 1.5 microseconds compared with 20 microseconds. There were no significant complications from the procedure. This technique could permit filtration surgery to be performed on an outpatient basis.

  17. Broadening and Amplification of an Infrared Femtosecond Pulse for Optical Parametric Chirped-Pulse Amplification

    Institute of Scientific and Technical Information of China (English)

    WANG He-Lin; YANG Ai-Jun; LENG Yu-Xin

    2011-01-01

    A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA).The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically.By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity,the pre-stretching pulse from an (O)ffner stretcher is further broadened to above 200ps,which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system.The bandwidth of the amplified pulse is 1.5 nm,and an output energy of 2mJ is achieved at a repetition rate of 10 Hz.Optical parametric chirped pulse amplification (OPCPA)[1-4] has attracted a great deal of attention as the most promising technique for generating ultrashort ultrahigh-peak-power laser pulses because of its very broad gain bandwidth,negligible thermal load on the nonlinear crystal,and extremely high singlepass gain as compared to amplifiers based on laser gain media.For efficient amplification and high fidelity of dispersion compensation in OPCPA,a femtosecond seed pulse is first stretched to several tens of picoseconds with a bulk grating stretcher or a fiber stretcher.%A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA). The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically. By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity, the pre-stretching pulse from an (O)finer stretcher is further broadened to above 200 ps, which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system. The bandwidth of the amplified pulse is 1.5 nm, and an

  18. Pulsed Electric Field treatment of packaged food

    NARCIS (Netherlands)

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal

  19. Covariance mapping techniques

    Science.gov (United States)

    Frasinski, Leszek J.

    2016-08-01

    Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.

  20. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  1. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90{sup o} Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated {approx} 300 fs, 30 keV (0.4 {angstrom}) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has

  2. Flue gas dry scrubbing using pulsed electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.

    1996-02-20

    Electron beam dry scrubbing is a technique for removing in a single step both nitrogen oxides (NO{sub x}) and sulfur dioxide (SO{sub 2}) from the off-gas generated by utilities burning high sulfur coal. The use of pulsed electron beams may provide the most cost-effective solution to the implementation of this technique. This paper presents the results of plasma chemistry calculations to study the effect of dose rate, pulse length and pulse repetition rate on pulsed electron beam processing of NO{sub x} and SO{sub 2} in flue gases. The main objective is to determine if the proposed combinations of dose rate, pulse length and pulse repetition rate would have any deleterious effect on the utilization of radicals for pollutant removal. For a dose rate of 2x10{sup 5} megarads per second and a pulse length of 30 nanoseconds, the average dose per pulse is sufficiently low to prevent any deleterious effect on process efficiency because of radical-radical recombination reactions. During each post-pulse period, the radicals are utilized in the oxidation of NO{sub x} and SO{sub 2} in a timescale of around 200 microseconds; thus, with pulse frequencies of around 5 kilohertz or less, the radical concentrations remain sufficiently low to prevent any significant competition between radical-pollutant and radical-radical reactions. The main conclusion is that a pulsed electron beam reactor, operating with a dose rate of 2x10{sup 5} megarads per second, pulse length of 30 ns and pulse repetition rate of up to around 5 kHz, will have the same plasma chemistry efficiency as an electron beam reactor operating with a very low dose rate in continuous mode.

  3. Pulsioximetría fetal. Nuevo método de control fetal intraparto: Estudio comparativo con técnicas invasivas acerca del bienestar fetal Fetal pulse oximetry. Intrapartum foetal hipoxia evaluation: Comparative study with invasive techniques concerning foetal welfare

    Directory of Open Access Journals (Sweden)

    I. Fernández Andrés

    2004-08-01

    Full Text Available Fundamento. La pulsioximetría, técnica que mide de forma continua la saturación de oxígeno en sangre (%SpO2, se ha convertido en un método de monitorización estándar en anestesia, cuidados intensivos, neonatología, etc., pudiendo llegar a ser útil a los obstetras en la monitorización del bienestar fetal durante el parto. Tiene la ventaja de ser mínimamente invasiva y fácil de usar. La saturación de hemoglobina fetal oxigenada es un buen parámetro para medir el contenido-déficit fetal de oxígeno. Una saturación menor del 30% durante un periodo de tiempo superior a 10 minutos se correlaciona con una pHmetría de micromuestra de cuero cabelludo fetal Pulse oximetry is a technique that continuously measures the blood oxygen saturation (%SpO2; it has become a standard monitoring method in Anaesthesia, Intensive Care, Neonatology, etc; and it can be helpful in Obstetrics during delivery to monitor foetal welfare. Its advantages are that it is minimally invasive and easy to use. Moreover, SpO2 is a good parameter for measuring oxygen carriage. A saturation below 30% during a time period over 10 minutes is correlated with an acid-base equilibrium (ABE of foetal scalp blood sample below 7.20, and it is predictive of worse perinatal outcomes. The objectives are: 1. The combined use of both techniques (foetal pulse oximetry and ABE, provides equivalent perinatal outcomes but decreases the Caesarean Intrapartum Rate due to suspicion of a loss of foetal welfare. 2. A correlation was found between foetal pulse oximetry and acid-base equilibrium data such as pH, pO2 and EB. Subjects and methods. Data was gathered on two groups of eighty patients. In the first group we carried out a follow up of delivery under serialized pH-metry, and in the other group, control of the foetuses was carried out in a combined form with pHmetry and pulse oximetry. Results. Statistically significant results were obtained concerning delivery in the comparative study

  4. Coherent optical pulse sequencer for quantum applications.

    Science.gov (United States)

    Hosseini, Mahdi; Sparkes, Ben M; Hétet, Gabriel; Longdell, Jevon J; Lam, Ping Koy; Buchler, Ben C

    2009-09-10

    The bandwidth and versatility of optical devices have revolutionized information technology systems and communication networks. Precise and arbitrary control of an optical field that preserves optical coherence is an important requisite for many proposed photonic technologies. For quantum information applications, a device that allows storage and on-demand retrieval of arbitrary quantum states of light would form an ideal quantum optical memory. Recently, significant progress has been made in implementing atomic quantum memories using electromagnetically induced transparency, photon echo spectroscopy, off-resonance Raman spectroscopy and other atom-light interaction processes. Single-photon and bright-optical-field storage with quantum states have both been successfully demonstrated. Here we present a coherent optical memory based on photon echoes induced through controlled reversible inhomogeneous broadening. Our scheme allows storage of multiple pulses of light within a chosen frequency bandwidth, and stored pulses can be recalled in arbitrary order with any chosen delay between each recalled pulse. Furthermore, pulses can be time-compressed, time-stretched or split into multiple smaller pulses and recalled in several pieces at chosen times. Although our experimental results are so far limited to classical light pulses, our technique should enable the construction of an optical random-access memory for time-bin quantum information, and have potential applications in quantum information processing.

  5. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  6. Intense pulsed neutron source

    Science.gov (United States)

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and 'in press' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  7. Transporting continuous quantum variables of individual light pulses.

    Science.gov (United States)

    Eto, Yujiro; Zhang, Yun; Hirano, Takuya

    2011-01-17

    We experimentally demonstrate transporting continuous quantum variables of individual light pulses at telecommunication wavelengths by using continuous-variable Bell measurements and post-processing displacement techniques. Time-domain pulsed homodyne detectors are used in the Bell measurements and the quantum variables of input light are transported pulse-by-pulse. Fidelity of F = 0.57±0.03 is experimentally achieved with the aid of entanglement, which is higher than the bound (F(c) = 0.5) of the classical case in the absence of entanglement.

  8. Direct determination of the hit locations from experimental HPGe pulses

    Energy Technology Data Exchange (ETDEWEB)

    Désesquelles, P., E-mail: Pierre.Desesquelles@in2p3.fr [Univ. Paris-Sud, CSNSM CNRS/IN2P3, 15 rue G. Clémenceau, 91405 Orsay (France); Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Dimmock, M.R. [Oliver Lodge Laboratory, The University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Ljungvall, J. [Univ. Paris-Sud, CSNSM CNRS/IN2P3, 15 rue G. Clémenceau, 91405 Orsay (France); Nelson, L. [Oliver Lodge Laboratory, The University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nga, D.-T. [Univ. Paris-Sud, CSNSM CNRS/IN2P3, 15 rue G. Clémenceau, 91405 Orsay (France); Nolan, P.J.; Rigby, S.V. [Oliver Lodge Laboratory, The University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Van-Oanh, N.-T. [Univ. Paris-Sud, LCP UMR8000 CNRS, 15 rue G. Clémenceau, 91405 Orsay (France)

    2013-11-21

    The gamma-tracking technique optimises the determination of the energy and emission angle of gamma-rays detected by modern segmented HPGe detectors. This entails the determination, using the delivered pulse shapes, of the interaction points of the gamma-ray within the crystal. The direct method presented here allows the localisation of the hits using only a large sample of pulses detected in the actual operating conditions. No external crystal scanning system or pulse shape simulation code is needed. In order to validate this method, it is applied to sets of pulses obtained using the University of Liverpool scanning system. The hit locations are determined by the method with good precision.

  9. Effect of High Frequency Pulsing on the Interfacial Structure of Anodised Aluminium-TiO2

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill;

    2015-01-01

    out using a high frequency pulse and pulse reverse pulse technique at a fixed frequency in a sulfuric acid bath. The structure of the composites and the anodized layer was studied using scanning and transmission electron microscopy. The pulse reverse pulse anodizing technique, using a negative...... potential on the low voltage cycle, showed extensive pore branching and pore generation at the TiO2 particle-anodic alumina matrix interface. However, the pulse anodizing technique using zero potential during the low voltage cycle showed no such features in the pore morphology, but only entrapment of TiO2...

  10. Efficient Pulsed Quadrupole

    CERN Document Server

    Petzenhauser, I.; Spiller, P.; Tenholt, C.

    2016-01-01

    In order to raise the focusing gradient in case of bunched beam lines, a pulsed quadrupole was designed. The transfer channels between synchrotrons as well as the final focusing for the target line are possible applications. The quadrupole is running in a pulsed mode, which means an immense saving of energy by avoiding standby operation. Still the high gradients demand high currents. Hence a circuit had to be developed which is able to recover a significant amount of the pulsing energy for following shots. The basic design of the electrical circuit of the quadrupole is introduced. Furthermore more energy efficient circuits are presented and the limits of adaptability are considered.

  11. Pulse joining cartridges

    Energy Technology Data Exchange (ETDEWEB)

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2016-08-23

    A pulsed joining tool includes a tool body that defines a cavity that receives an inner tubular member and an outer tubular member and a pulse joining cartridge. The tubular members are nested together with the cartridge being disposed around the outer tubular member. The cartridge includes a conductor, such as a wire or foil, that extends around the outer tubular member and is insulated to separate a supply segment from a return segment. A source of stored electrical energy is discharged through the conductor to join the tubular members with an electromagnetic force pulse.

  12. DogPulse

    DEFF Research Database (Denmark)

    Skovgaard, Christoffer; Thomsen, Josephine Raun; Verdezoto, Nervo;

    2015-01-01

    This paper presents DogPulse, an ambient awareness system to support the coordination of dog walking among family members at home. DogPulse augments a dog collar and leash set to activate an ambient shape-changing lamp and visualize the last time the dog was taken for a walk. The lamp gradually...... changes its form and pulsates its lights in order to keep the family members aware of the dog walking activity. We report the iterative prototyping of DogPulse, its implementation and its preliminary evaluation. Based on our initial findings, we present the limitations and lessons learned as well...

  13. Miniature, Rugged, Pulsed Laser Source for LIDAR Application Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Princeton Optronics proposes to develop a high energy pulsed laser source based on a novel approach. The approach consists of a technique to combine a large number...

  14. Next generation ultrashort pulse lasers: Terawatts to Petawatts

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P.; Gordon, C.L. III; Korn, G.; Lemoff, B.E.; Raksi, F.; Rose-Petruck, C.; Squier, J.; Wilson, K.R.; Yakovlev, V.V.; Yamakawa, K. [University of California, San Diego, Urey Hall, Mail Code 0339, La Jolla, California 92093-0339 (United States)

    1996-05-01

    Techniques for the control of femtosecond resolution phase and amplitude distortions during the amplification of 10-fs optical pulses to joule-level energies are discussed. {copyright} {ital 1996 American Institute of Physics.}

  15. Measurement of ultrashort pulses with a non-instantaneous nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, K.W.; Ladera, C.L.; Trebino, R. [Sandia National Labs., Livermore, CA (United States); Kohler, B.; Wilson, K.R. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Chemistry

    1995-02-01

    We show how non-instantaneous nonlinearities can be used to characterize an ultrashort pulse in an extension of the Frequency-Resolved Optical Gating technique. We demonstrate this principle using the Raman effect in fused silica.

  16. Pulse oximetry: fundamentals and technology update

    Directory of Open Access Journals (Sweden)

    Nitzan M

    2014-07-01

    Full Text Available Meir Nitzan,1 Ayal Romem,2 Robert Koppel31Department of Physics/Electro-Optics, Jerusalem College of Technology, Jerusalem, Israel; 2Pulmonary Institute, Shaare Zedek Medical Center, Jerusalem, Israel; 3Neonatal/Perinatal Medicine, Cohen Children's Medical Center of New York/North Shore-LIJ Health System, New Hyde Park, NY, United StatesAbstract: Oxygen saturation in the arterial blood (SaO2 provides information on the adequacy of respiratory function. SaO2 can be assessed noninvasively by pulse oximetry, which is based on photoplethysmographic pulses in two wavelengths, generally in the red and infrared regions. The calibration of the measured photoplethysmographic signals is performed empirically for each type of commercial pulse-oximeter sensor, utilizing in vitro measurement of SaO2 in extracted arterial blood by means of co-oximetry. Due to the discrepancy between the measurement of SaO2 by pulse oximetry and the invasive technique, the former is denoted as SpO2. Manufacturers of pulse oximeters generally claim an accuracy of 2%, evaluated by the standard deviation (SD of the differences between SpO2 and SaO2, measured simultaneously in healthy subjects. However, an SD of 2% reflects an expected error of 4% (two SDs or more in 5% of the examinations, which is in accordance with an error of 3%–4%, reported in clinical studies. This level of accuracy is sufficient for the detection of a significant decline in respiratory function in patients, and pulse oximetry has been accepted as a reliable technique for that purpose. The accuracy of SpO2 measurement is insufficient in several situations, such as critically ill patients receiving supplemental oxygen, and can be hazardous if it leads to elevated values of oxygen partial pressure in blood. In particular, preterm newborns are vulnerable to retinopathy of prematurity induced by high oxygen concentration in the blood. The low accuracy of SpO2 measurement in critically ill patients and newborns

  17. Generic Sensor Modeling Using Pulse Method

    Science.gov (United States)

    Helder, Dennis L.; Choi, Taeyoung

    2005-01-01

    Recent development of high spatial resolution satellites such as IKONOS, Quickbird and Orbview enable observation of the Earth's surface with sub-meter resolution. Compared to the 30 meter resolution of Landsat 5 TM, the amount of information in the output image was dramatically increased. In this era of high spatial resolution, the estimation of spatial quality of images is gaining attention. Historically, the Modulation Transfer Function (MTF) concept has been used to estimate an imaging system's spatial quality. Sometimes classified by target shapes, various methods were developed in laboratory environment utilizing sinusoidal inputs, periodic bar patterns and narrow slits. On-orbit sensor MTF estimation was performed on 30-meter GSD Landsat4 Thematic Mapper (TM) data from the bridge pulse target as a pulse input . Because of a high resolution sensor s small Ground Sampling Distance (GSD), reasonably sized man-made edge, pulse, and impulse targets can be deployed on a uniform grassy area with accurate control of ground targets using tarps and convex mirrors. All the previous work cited calculated MTF without testing the MTF estimator's performance. In previous report, a numerical generic sensor model had been developed to simulate and improve the performance of on-orbit MTF estimating techniques. Results from the previous sensor modeling report that have been incorporated into standard MTF estimation work include Fermi edge detection and the newly developed 4th order modified Savitzky-Golay (MSG) interpolation technique. Noise sensitivity had been studied by performing simulations on known noise sources and a sensor model. Extensive investigation was done to characterize multi-resolution ground noise. Finally, angle simulation was tested by using synthetic pulse targets with angles from 2 to 15 degrees, several brightness levels, and different noise levels from both ground targets and imaging system. As a continuing research activity using the developed sensor

  18. Laser pulse spectral shaping based on electro-optic modulation

    Institute of Scientific and Technical Information of China (English)

    Yanhai Wang; Jiangfeng Wang; You'en Jiang; Yan Bao; Xuechun Li; Zunqi Lin

    2008-01-01

    A new spectrum shaping method, based on electro-optic modulation, to alleviate gain narrowing in chirped pulse amplification (CPA) system, is described and numerically simulated. Near-Fourier transform-limited seed laser pulse is chirped linearly through optical stretcher. Then the chirped laser pulse is coupled into integrated waveguide electro-optic modulator driven by an aperture-coupled-stripline (ACSL) electricalwaveform generator, and the pulse shape and amplitude are shaped in time domain. Because of the directrelationship between frequency interval and time interval of the linearly chirped pulse, the laser pulse spectrum is shaped correspondingly. Spectrum-shaping examples are modeled numerically to determine the spectral resolution of this technique. The phase error introduced in this method is also discussed.

  19. Using electric fields for pulse compression and group velocity control

    CERN Document Server

    Li, Qian; Thuresson, Axel; Rippe, Lars; Kröll, Stefan

    2016-01-01

    In this article, we experimentally demonstrate a new way of controlling the group velocity of an optical pulse by using a combination of spectral hole burning, slow light effect and linear Stark effect in a rare-earth-ion-doped crystal. The group velocity can be changed continuously by a factor of 20 without significant pulse distortion or absorption of the pulse energy. With a similar technique, an optical pulse can also be compressed in time. Theoretical simulations were developed to simulate the group velocity control and the pulse compression processes. The group velocity as well as the pulse reshaping are solely controlled by external voltages which makes it promising in quantum information and quantum communication processes. It is also proposed that the group velocity can be changed even more in an Er doped crystal while at the same time having a transmission band matching the telecommunication wavelength.

  20. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  1. Four pulse recoupling

    Science.gov (United States)

    Khaneja, Navin; Kumar, Ashutosh

    2016-11-01

    The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called four pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π/2) 0 °(3π/2) ϕ°(π/2) 180 ° + ϕ°(3π/2) 180 ° where ϕ = π/n (ϕ° = 180°/n) , and n is number of blocks in a two rotor period. The heteronuclear recoupling pulse sequence consists of a building block (π/2) 0 °(3π/2) ϕ1 °(π/2) 180 ° +ϕ1 °(3π/2) 180 ° and (π/2) 0 °(3π/2) ϕ2 °(π/2) 180 ° +ϕ2 °(3π/2) 180 ° on channel I and S, where ϕ1 = 3π/2n, ϕ2 = π2/n and n is number of blocks in a two rotor period. The recoupling pulse sequences mix the y magnetization. We show that four pulse recoupling is more broadband compared to three pulse recoupling [1]. Experimental quantification of this method is shown for 13Cα-13CO, homonuclear recoupling in a sample of Glycine and 15N-13Cα, heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF).

  2. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Taguchi, Mitsumasa [Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Fukuda, Mitsuhiro [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2015-07-15

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.

  3. Systematic study on pulse parameters in fabricating porous silicon-layered structures by pulse electrochemical etching

    Science.gov (United States)

    Ge, J.; Yin, W. J.; Ma, L. L.; Obbard, E.; Ding, X. M.; Hou, X. Y.

    2007-08-01

    Pulse electrochemical etching was used to improve the quality of porous silicon (PS) layers. Although alternative PS layers of different porosities have been realized by this etching technique, there is no systematic study on the influence of different etching pulse parameters on PS during the etching process. We test various combinations of pulse parameters, including duty cycle and duration, in fabricating PS-layered structures. The optical thickness and actual thickness of the PS structures fabricated are investigated by means of reflectance spectroscopy and scanning electron microscopy. It is found that reducing the duty cycle and pulse duration of the pulse can promote the formation of PS layers with a large optical thickness and high refractive index. Meanwhile, the uniformity of PS is also improved. The duty cycle of 1:10-1:20 and pulse duration of 0.1-0.2 ms can result in the best uniformity and smoothness for the highly doped p-Si wafers. We believe that our work could set the foundation for further improvement of pulse electrochemical etching.

  4. Novel ultrasensitive plasmonic detector of terahertz pulses enhanced by femtosecond optical pulses

    Science.gov (United States)

    Shur, M.; Rudin, S.; Rupper, G.; Muraviev, A.

    2016-09-01

    Plasmonic Field Effect Transistor detectors (first proposed in 1996) have emerged as superior room temperature terahertz (THz) detectors. Recent theoretical and experimental results showed that such detectors are capable of subpicosecond resolution. Their sensitivity can be greatly enhanced by applying the DC drain-to-source current that increases the responsivity due to the enhanced non-linearity of the device but also adds 1/f noise. We now propose, and demonstrate a dramatic responsivity enhancement of these plasmonic THz pulse detectors by applying a femtosecond optical laser pulse superimposed on the THz pulse. The proposed physical mechanism links the enhanced detection to the superposition of the THz pulse field and the rectified optical field. A femtosecond pulse generates a large concentration of the electron-hole pairs shorting the drain and source contacts and, therefore, determining the moment of time when the THz induced charge starts discharging into the transmission line connecting the FET to an oscilloscope. This allows for scanning the THz pulse with the strongly enhanced sensitivity and/or for scanning the response waveform after the THz pulse is over. The experimental results obtained using AlGaAs/InGaAs deep submicron HEMTs are in good agreement with this mechanism. This new technique could find numerous imaging, sensing, and quality control applications.

  5. SHADOW: a new welding technique

    Science.gov (United States)

    Kramer, Thorsten; Olowinsky, Alexander M.; Durand, Friedrich

    2002-06-01

    The new welding technique 'SHADOW ' is introduced. SHADOW means the use of a single pulse to generate a quasi continuous weld of several millimeters in length. HET processing time is defined by the pulse duration of the pulsed laser. At present, a state-of-the-art laser is capable of a maximum pulse duration of 20 ms. The variation of the laser power depend on time is a vital capability of the pulsed laser to adapt the energy deposition into the workpiece. Laser beam welds of several watch components were successfully performed. Similar metals like crowns and axes made out of stainless steel have been welded using pulsed laser radiation. Applying a series of about 130 single pulses for the crown-axis combination the total energy accumulates to 19.5 J. The use of the SHADOW welding technique reduces the energy to 2.5 J. While welding dissimilar metals like stainless steel and bras, the SHADOW welding reduces drastically the contamination as well as the distortion. Laser beam welding of copper has a low process reliability due to the high reflection and the high thermal conductivity. SHADOW welds of 3.6 mm length were performed on 250 micrometers thick copper plates with very high reproducibility. As a result, a pilot plant for laser beam welding of copper plates has been set up. The work to be presented has partly been funded by the European Commission in a project under the contract BRPR-CT-0634.

  6. On the trade-off between mainlobe width and peak sidelobe level of mismatched pulse compression filters for linear chirp waveforms

    CSIR Research Space (South Africa)

    Cilliers, Jacques E

    2009-09-01

    Full Text Available In previous paper the authors introduced a technique for generating mismatched pulse compression filters for linear frequency chirp signals. The technique minimizes the sum of the pulse compression sidelobes in an Lp norm sense. It was shown...

  7. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  8. Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation.

    Science.gov (United States)

    Zeek, E; Bartels, R; Murnane, M M; Kapteyn, H C; Backus, S; Vdovin, G

    2000-04-15

    We demonstrate the use of a deformable-mirror pulse shaper, combined with an evolutionary optimization algorithm, to correct high-order residual phase aberrations in a 1-mJ, 1-kHz, 15-fs laser amplifier. Frequency-resolved optical gating measurements reveal that the output pulse duration of 15.2 fs is within our measurement error of the theoretical transform limit. This technique significantly reduces the pulse duration and the temporal prepulse energy of the pulse while increasing the peak intensity by 26%. It is demonstrated, for what is believed to be the first time, that the problem of pedestals in laser amplifiers can be addressed by spectral-domain correction.

  9. Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Zeek, E.; Bartels, R.; Murnane, M. M.; Kapteyn, H. C.; Backus, S.; Vdovin, G.

    2000-04-15

    We demonstrate the use of a deformable-mirror pulse shaper, combined with an evolutionary optimization algorithm, to correct high-order residual phase aberrations in a 1-mJ, 1-kHz, 15-fs laser amplifier. Frequency-resolved optical gating measurements reveal that the output pulse duration of 15.2 fs is within our measurement error of the theoretical transform limit. This technique significantly reduces the pulse duration and the temporal prepulse energy of the pulse while increasing the peak intensity by 26%. It is demonstrated, for what is believed to be the first time, that the problem of pedestals in laser amplifiers can be addressed by spectral-domain correction. (c) 2000 Optical Society of America.

  10. Pulse-Polarization Ranging for Space Situational Awareness

    Science.gov (United States)

    Tyler, D.; Stryjewsk, J.; Roggemann, M.; Hand, D.

    The proliferation of satellite technology and small ("nano-") satellite technology implies the need for a space situational awareness technique that doesn't depend on direct imaging with large telescopes. We present a technique to discriminate among different satellites or among different orientations ("poses") of a particular satellite by measuring laser pulses reflected by the satellite. Both the shape and the polarization state of the reflected pulses altered in a way characteristic of satellite orientation and material composition. In this overview, we present the major components of our concept study, including an innovative algorithm to map measured return pulse characteristics back to object parameters.

  11. Plasma-blueshift spectral shear interferometry for characterization of ultimately short optical pulses.

    Science.gov (United States)

    Verhoef, Aart J; Mitrofanov, Alexander; Zheltikov, Aleksei; Baltuska, Andrius

    2009-01-01

    We introduce a bandwidth-unlimited, dispersion- and shear-self-calibrated, timing-jitter-free pulse measurement technique based on a quasi-linear temporal phase modulation in a gas weakly ionized by a long pump pulse. Results of a 5 fs pulse characterization are reported.

  12. Pulse-Shape Control in an All Fiber Multi-Wavelength Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Töws Albert

    2016-01-01

    Full Text Available Pulse distortion during amplification in fiber amplifiers due to gain saturation and cross talk in a multi-wavelength Doppler lidar are discussed. We present a feedback control technique which is capable of adjusting any predefined pulse shape and show some examples of feedback controlled pulse shapes.

  13. Simulation of Femtosecond Pulse Propagation through Hollow Fibre Filled with Noble Gases of Gradient Temperature

    Institute of Scientific and Technical Information of China (English)

    SONG Zhen-Ming; ZHANG Guang-Xiao; CAO Shi-Ying; PANG Dong-Qing; CHAI Lu; WANG Qing-Yue; ZHANG Zhi-Gang

    2008-01-01

    We propose a novel technique for generating intense few to mono-cycle femtosecond pulses.The simulation demonstrate that for the temperature difference of 300K,the spectrum of the output pulses is increased by 67%and the transform limited pulse width is reduced almost by half,compared with those obtained with hollow fibres in uniform temperature.

  14. Using ultra-short pulses to determine particle size and density distributions

    NARCIS (Netherlands)

    Lee, Christopher James; van der Slot, Petrus J.M.; Boller, Klaus J.

    2007-01-01

    We analyze the time dependent response of strongly scattering media (SSM) to ultra-short pulses of light. A random walk technique is used to model the optical scattering of ultra-short pulses of light propagating through media with random shapes and various packing densities. The pulse spreading was

  15. Synthesis and characterization of electron doped La{sub 0.85}Te{sub 0.15}MnO{sub 3} thin film grown on LaAlO{sub 3} substrate by pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Irshad, E-mail: bhat.amu85@gmail.com; Husain, Shahid [Department of Physics, Aligarh Muslim University, Aliagrh-202002 (India); Patil, S. I. [Department of Physics, University of Pune, Ganeshkhind-411007, Pune (India); Khan, Wasi; Ali, S. Asad [Department of Applied Physics, Z. H. College of Engg. & Tech. Aligarh Muslim University, Aliagrh-202002 (India)

    2015-06-24

    We report the structural, morphological and magneto-transport properties of electron doped La{sub 0.85}Te{sub 0.15}MnO{sub 3} (LTMO) thin film grown on (001) LaAlO{sub 3} single crystal substrate by pulsed laser deposition (PLD). X-ray diffraction (XRD) results confirm that the film has good crystalline quality, single phase, and c-axis orientation. The atomic force microscopy (AFM) results have revealed that the film consists of grains with the average size in a range of 20–30 nm and root-mean square (rms) roughness of 0.27nm. The resistivity versus temperature measurement exhibits an insulator to metal transition (MIT). We have noticed a huge value of magnetoresistance (∼93%) close to MIT in presence of 8T field. X-ray photoemission spectroscopy confirms the electron doping and suggests that Te ions could be in the Te{sup 4+} state, while the Mn ions stay in the Mn{sup 2+} and Mn{sup 3+} valence state.

  16. Synthesis of silver nanoparticles by laser ablation in ethanol: A pulsed photoacoustic study

    Energy Technology Data Exchange (ETDEWEB)

    Valverde-Alva, M.A., E-mail: azbmiguel@gmail.com [Posgrado en Ciencia e Ingeniería de Materiales, Universidad Nacional Autónoma de México (UNAM), México D.F., C.P. 04510, México (Mexico); García-Fernández, T. [Universidad Autónoma de la Ciudad de México (UACM), Prolongación San Isidro 151, Col. San Lorenzo Tezonco, México D.F., C.P. 09790, México (Mexico); Villagrán-Muniz, M.; Sánchez-Aké, C.; Castañeda-Guzmán, R. [CCADET Universidad Nacional Autónoma de México (UNAM), México D.F., C.P. 04510, México (Mexico); Esparza-Alegría, E. [Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), México D.F., C.P. 04510, México (Mexico); Sánchez-Valdés, C.F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a sección, San Luis Potosí, S.L.P., C.P. 78216, México (Mexico); and others

    2015-11-15

    Graphical abstract: - Highlights: • Pulsed photoacoustic technique allowed to determine the production rate of NPs. • Pulsed photoacoustic technique allows to determine the Ag concentration in colloids. • The nanoparticles production rate drops quickly during the first laser pulses. • Nanoparticles production rate is almost constant after few hundreds of laser shots. • Photoacoustic signal amplitude was proportional to fluence on the target surface. - Abstract: The pulsed photoacoustic (PA) technique was used to study the synthesis by laser ablation of silver nanoparticles (Ag-NPs) in ethanol. PA technique allowed to determine the production rate per laser pulse and concentration of synthesized Ag-NPs. The samples were produced by using a pulsed Nd:YAG laser with 1064 nm of wavelength and 7 ns of pulse duration. The laser pulse energy varied from 10 to 100 mJ. Transmission electron microscopy micrographs demonstrated that the obtained nanoparticles were spherical with an average size close to 10 nm. The absorption spectra of the colloids showed a plasmon absorption peak around 400 nm. The PA analyses showed a significant reduction of the production rate of Ag-NPs during the first hundreds of laser pulses. For a higher number of pulses this rate was kept almost constant. Finally, we found that the root mean square (RMS) value of the PA signal was proportional to the laser pulse fluence on the target surface. Thus PA technique was useful to monitor the ablation process.

  17. Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband

    Science.gov (United States)

    Nekoogar, Faranak [San Ramon, CA; Dowla, Farid U [Castro Valley, CA

    2012-01-24

    The multi-pulse frequency shifted technique uses mutually orthogonal short duration pulses o transmit and receive information in a UWB multiuser communication system. The multiuser system uses the same pulse shape with different frequencies for the reference and data for each user. Different users have a different pulse shape (mutually orthogonal to each other) and different transmit and reference frequencies. At the receiver, the reference pulse is frequency shifted to match the data pulse and a correlation scheme followed by a hard decision block detects the data.

  18. High voltage pulse generator

    Science.gov (United States)

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  19. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  20. Fully automated system for pulsed NMR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, David Milton

    1977-01-01

    A system is described which places many of the complex, tedious operations for pulsed NMR experiments under computer control. It automatically optimizes the experiment parameters of pulse length and phase, and precision, accuracy, and measurement speed are improved. The hardware interface between the computer and the NMR instrument is described. Design features, justification of the choices made between alternative design strategies, and details of the implementation of design goals are presented. Software features common to all the available experiments are discussed. Optimization of pulse lengths and phases is performed via a sequential search technique called Uniplex. Measurements of the spin-lattice and spin-spin relaxation times and of diffusion constants are automatic. Options for expansion of the system are explored along with some of the limitations of the system.

  1. Compact inductive energy storage pulse power system.

    Science.gov (United States)

    K, Senthil; Mitra, S; Roy, Amitava; Sharma, Archana; Chakravarthy, D P

    2012-05-01

    An inductive energy storage pulse power system is being developed in BARC, India. Simple, compact, and robust opening switches, capable of generating hundreds of kV, are key elements in the development of inductive energy storage pulsed power sources. It employs an inductive energy storage and opening switch power conditioning techniques with high energy density capacitors as the primary energy store. The energy stored in the capacitor bank is transferred to an air cored storage inductor in 5.5 μs through wire fuses. By optimizing the exploding wire parameters, a compact, robust, high voltage pulse power system, capable of generating reproducibly 240 kV, is developed. This paper presents the full details of the system along with the experimental data.

  2. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  3. Velocity-selected molecular pulses produced by an electric guide

    CERN Document Server

    Sommer, Christian; Chervenkov, Sotir; van Buuren, Laurens D; Zeppenfeld, Martin; Pinkse, Pepijn W H; Rempe, Gerhard

    2010-01-01

    Electrostatic velocity filtering is a technique for the production of continuous guided beams of slow polar molecules from a thermal gas. We extended this technique to produce pulses of slow molecules with a narrow velocity distribution around a tunable velocity. The pulses are generated by sequentially switching the voltages on adjacent segments of an electric quadrupole guide synchronously with the molecules propagating at the desired velocity. This technique is demonstrated for deuterated ammonia (ND$_{3}$), delivering pulses with a velocity in the range of $20-100\\,\\rm{m/s}$ and a relative velocity spread of $(16\\pm 2)\\,%$ at FWHM. At velocities around $60\\,\\rm{m/s}$, the pulses contain up to $10^6$ molecules each. The data are well reproduced by Monte-Carlo simulations, which provide useful insight into the mechanisms of velocity selection.

  4. Structural, optical and ac conduction properties of Bi{sub 2}V{sub 1-x}Nb{sub x}O{sub 5.5} (0 {<=} x {<=} 0.4) thin films fabricated by pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Neelam [Materials Research Centre, Indian Institute of science, Bangalore 560012 (India)], E-mail: neelamkandwal@gmail.com; Varma, K.B.R. [Materials Research Centre, Indian Institute of science, Bangalore 560012 (India); Krupanidhi, S.B. [Materials Research Centre, Indian Institute of science, Bangalore 560012 (India)], E-mail: sbk@mrc.iisc.ernet.in

    2008-09-25

    Bi{sub 2}V{sub 1-x}Nb{sub x}O{sub 5.5} {l_brace}(x = 0, 0.1, 0.2, 0.3, 0.4), (BVN){r_brace} thin films were grown by pulsed laser deposition on (1 1 1) Pt/TiO{sub 2}/SiO{sub 2}/Si and Corning glass substrates and investigated systematically for their microstructural, optical and ac conduction properties. The undoped bismuth vanadate, Bi{sub 2}VO{sub 5.5} (BVO) thin films were highly textured and have been associated with the c-axis oriented grains of the layered perovskite structure, while the Nb doped films consisted of randomly oriented crystallites. The scanning electron microscopy of the films indicates that the grain size increases with increase in Nb content. The optical transmission studies carried out on the samples deposited on Corning glass substrates revealed that these films were nearly 80% transparent in the 400-900 nm range and the band gap of Nb doped BVO thin films was slightly higher (3.13 eV for x = 0.4) than that of the undoped (2.91 eV) films. The dielectric constant of the Nb doped films increased with increase in Nb content, while the dielectric loss decreased especially in the 3-100 kHz frequency range. At a particular frequency, the conductivity decreased with increase in Nb content in the BVN thin films. In the higher temperature range, the activation energy varied from 0.61 eV (x = 0.1) to 0.76 eV (x = 0.4) measured at 100 Hz. The frequency analysis of the dielectric and ac conduction properties of these films suggests the conduction process in these films to be via oxygen ion vacancy motion through various defect sites.

  5. Repetitive frequency electromagnetic pulse simulator based on inductive adding technique%基于感应叠加技术的重复频率电磁脉冲模拟器

    Institute of Scientific and Technical Information of China (English)

    于成大; 徐笑娟; 罗进; 何山红; 冯德仁

    2012-01-01

    The development and experiment of a small bounded wave simulator are introduced, including the development of the double exponential repetitive frequency pulse source based on the hydrogen thyratron inductive-adder, the design of output coaxial shielding structure, the calculation of the field distribution of the output transformer, the development of the small flat-plate radiator, and the calculation and simulation about the working space E-field of the radiator. The preliminary measurement results of the working space E-field of the radiator are also presented. The experiment results show that the E-field in the working space of the radiator space accords with the linear superposition principle, even if there are differences between the parameters of thyratrons and between the parameters of grid trigger clocks.%介绍了小型平板型有界波模拟器的研制和实验,包括基于氢闸流管感应叠加技术的双指数波重频脉冲源的研制、输出同轴屏蔽结构的设计与输出变压器磁场分布的计算、小型平板型辐射器的设计及工作区内电场的计算与仿真,给出了辐射器工作区内电场初步测量的结果.实验结果表明:即使在感应叠加单元的氢闸流管器件和栅极触发时钟的参数存在差异的情况下,辐射器的工作区内电场基本上符合线性叠加原则.

  6. Nonlinear and Dispersive Optical Pulse Propagation

    Science.gov (United States)

    Dijaili, Sol Peter

    In this dissertation, there are basically four novel contributions to the field of picosecond pulse propagation and measurement. The first contribution is the temporal ABCD matrix which is an analog of the traditional ABCD ray matrices used in Gaussian beam propagation. The temporal ABCD matrix allows for the easy calculation of the effects of linear chirp or group velocity dispersion in the time domain. As with Gaussian beams in space, there also exists a complete Hermite-Gaussian basis in time whose propagation can be tracked with the temporal ABCD matrices. The second contribution is the timing synchronization between a colliding pulse mode-locked dye laser and a gain-switched Fabry-Perot type AlGaAs laser diode that has achieved less than 40 femtoseconds of relative timing jitter by using a pulsed optical phase lock loop (POPLL). The relative timing jitter was measured using the error voltage of the feedback loop. This method of measurement is accurate since the frequencies of all the timing fluctuations fall within the loop bandwidth. The novel element is a broad band optical cross-correlator that can resolve femtosecond time delay errors between two pulse trains. The third contribution is a novel dispersive technique of determining the nonlinear frequency sweep of a picosecond pulse with relatively good accuracy. All the measurements are made in the time domain and hence there is no time-bandwidth limitation to the accuracy. The fourth contribution is the first demonstration of cross -phase modulation in a semiconductor laser amplifier where a variable chirp was observed. A simple expression for the chirp imparted on a weak signal pulse by the action of a strong pump pulse is derived. A maximum frequency excursion of 16 GHz due to the cross-phase modulation was measured. A value of 5 was found for alpha _{xpm} which is a factor for characterizing the cross-phase modulation in a similar manner to the conventional linewidth enhancement factor, alpha.

  7. LASER PLASMA: Experimental confirmation of the erosion origin of pulsed low-threshold surface optical breakdown of air

    Science.gov (United States)

    Min'ko, L. Ya; Chumakou, A. N.; Chivel', Yu A.

    1988-08-01

    Nanosecond kinetic spectroscopy techniques were used to identify the erosion origin of pulsed low-threshold surface optical breakdown of air as a result of interaction of microsecond neodymium and CO2 laser pulses with some metals (indium, lead).

  8. Pulse temporal compression by two-stage stimulated Brillouin scattering and laser-induced breakdown

    Science.gov (United States)

    Liu, Zhaohong; Wang, Yulei; Wang, Hongli; Bai, Zhenxu; Li, Sensen; Zhang, Hengkang; Wang, Yirui; He, Weiming; Lin, Dianyang; Lu, Zhiwei

    2017-06-01

    A laser pulse temporal compression technique combining stimulated Brillouin scattering (SBS) and laser-induced breakdown (LIB) is proposed in which the leading edge of the laser pulse is compressed using SBS, and the low intensity trailing edge of the laser pulse is truncated by LIB. The feasibility of the proposed scheme is demonstrated by experiments in which a pulse duration of 8 ns is compressed to 170 ps. Higher compression ratios and higher efficiency are expected under optimal experimental conditions.

  9. Pulsed Field Waveforms for Magnetization of HTS Gd-Ba-Cu-O Bulk Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ida, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Matsuzaki, H [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Morita, E [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Sakashita, H [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Harada, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Ogata, H [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Kimura, Y [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Miki, M [Kitano Seiki Co. Ltd., 7-13-7, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Kitano, M [Kitano Seiki Co. Ltd., 7-13-7, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan)

    2006-06-01

    Progress in pulse magnetization technique for high-temperature superconductor bulks of melt-textured RE-Ba-Cu-O with large diameter is important for the realization of power applications. We studied the pulsed power source and pulsed field waveforms to enhance to improve the magnetization properties for Gd-Ba-Cu-O bulk. The risetime and duration of pulse waveform effectively varied distribution of magnetic flux.

  10. Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses.

    Science.gov (United States)

    Ozeki, Yasuyuki; Umemura, Wataru; Sumimura, Kazuhiko; Nishizawa, Norihiko; Fukui, Kiichi; Itoh, Kazuyoshi

    2012-02-01

    We demonstrate a technique of hyperspectral imaging in stimulated Raman scattering (SRS) microscopy using a tunable optical filter, whose transmission wavelength can be varied quickly by a galvanometer mirror. Experimentally, broadband Yb fiber laser pulses are synchronized with picosecond Ti:sapphire pulses, and then spectrally filtered out by the filter. After amplification by fiber amplifiers, we obtain narrowband pulses with a spectral width of 225 cm(-1). By using these pulses, we accomplish SRS imaging of polymer beads with spectral information.

  11. Simultaneous multi-frequency single pulse observations of pulsars

    Science.gov (United States)

    Naidu, A.; Joshi, B. C.; Manoharan, P. K.; KrishnaKumar, M. A.

    2017-08-01

    Aims: We report on simultaneous multi-frequency single pulse observations of a sample of pulsars with previously reported, frequency dependent subpulse drift inferred from non-simultaneous and short observations. We aim to clarify if the frequency dependence is a result of multiple drift modes in these pulsars. Methods: We performed simultaneous observations at 326.5 MHz with the Ooty Radio Telescope and at 326, 610, and 1308 MHz with the Giant Meterwave Radio Telescope for a sample of 12 pulsars, where frequency dependent single pulse behaviour was reported. The single pulse sequences were analysed with three types of fluctuation analysis techniques, namely longitude-resolved fluctuation spectrum technique, two-dimensional fluctuation spectrum technique and sliding two-dimensional fluctuation spectrum technique. The first two techniques are sensitive to average fluctuation properties of the pulses, whereas the last technique is used for examining the temporal behaviour of the pulses. Results: We report subpulse drifting in PSR J0934-5249 for the first time. We also report pulse nulling measurements in PSRs J0934-5249, B1508+55, J1822-2256, B1845-19, and J1901-0906 for the first time. Our measurements of subpulse drifting and pulse nulling for the rest of the pulsars are consistent with previously reported values. Contrary to previous belief, we find no evidence for a frequency dependent drift pattern in PSR B2016+28 as reported in previous studies. In PSRs B1237+25, J1822-2256, J1901-0906, and B2045-16, our longer and more sensitive observations reveal multiple drift rates with distinct P3. We increase the sample of pulsars showing concurrent nulling across multiple frequencies by more than 100 percent, adding four more pulsars to this sample. Our results confirm and further strengthen the understanding that the subpulse drifting and pulse nulling are consistent in the broadband with previous studies and are closely tied to physics of polar gap.

  12. Discharge pulse phenomenology

    Science.gov (United States)

    Frederickson, A. R.

    1985-01-01

    A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.

  13. Pulsed ELDOR detected NMR

    Science.gov (United States)

    Schosseler, P.; Wacker, Th.; Schweiger, A.

    1994-07-01

    A pulsed EPR method for the determination of small hyperfine interactions in disordered systems is described. A selective preparation pulse of frequency ω mw(1) excites allowed and forbidden transitions, thereby burning spectral holes into the EPR line. The positions of the holes caused by the excitation of forbidden transitions correspond to the nuclear transition frequencies of the spin system. A selective detection pulse of frequency ω mw(2) creates an FID with integrated intensity proportional to the magnetization at frequency ω mw(2). The entire hole pattern is obtained by recording the integrated intensity of the FID while varying the frequency difference Δω mw=ω mw(1)-ω mw(2) step by step.

  14. Herophilus on pulse

    Directory of Open Access Journals (Sweden)

    Afonasin, Eugene

    2015-01-01

    Full Text Available The first detailed study of the pulse (sphygmology is associated in antiquity with Herophilus (the end of the 4th century BCE, an Alexandrian physician, renowned for his anatomical discoveries. The scholars also attribute to him a discovery of a portable and adjustable water-clock, used for measuring ‘natural’ and ‘unnatural’ pulse and, accordingly, temperature of the patient. In the article we translate the principal ancient evidences and comment upon them. We study both the practical aspects of ancient sphygmology and the theoretical speculations associated with it. Ancient theory of proportion and musical harmony allowed to build a classification of the pulses, but the medical experience did not fit well in the Procrustean bed of this rather simple theory.

  15. Two pulse recoupling

    Science.gov (United States)

    Khaneja, Navin; Kumar, Ashutosh

    2017-08-01

    The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called two pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π)ϕ(π) - ϕ where ϕ =π/4n, and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ(π) - ϕ(π) π + ϕ(π) π - ϕ . The heteronuclear recoupling pulse sequence consists of a building block (π)ϕ1(π)-ϕ1 and (π)ϕ2(π)-ϕ2 on channel I and S, where ϕ1 = 3π/8n, ϕ2 = π/8n and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ1(π)-ϕ1(π) π +ϕ1(π) π -ϕ1 and (π)ϕ2(π)-ϕ2(π) π +ϕ2(π) π -ϕ2 on two channels respectively. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for 13Cα-13CO homonuclear recoupling in a sample of Glycine and 15N-13Cα heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF). Compared to R-sequences (Levitt, 2002), these sequences are more robust to rf-inhomogeneity and give better sensitivity, as shown in Fig. 3.

  16. Laser Energy Monitor for Double-Pulsed 2-Micrometer IPDA Lidar Application

    Science.gov (United States)

    Refaat, Tamer F.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong; Singh, Upendra N.

    2014-01-01

    Integrated path differential absorption (IPDA) lidar is a remote sensing technique for monitoring different atmospheric species. The technique relies on wavelength differentiation between strong and weak absorbing features normalized to the transmitted energy. 2-micron double-pulsed IPDA lidar is best suited for atmospheric carbon dioxide measurements. In such case, the transmitter produces two successive laser pulses separated by short interval (200 microseconds), with low repetition rate (10Hz). Conventional laser energy monitors, based on thermal detectors, are suitable for low repetition rate single pulse lasers. Due to the short pulse interval in double-pulsed lasers, thermal energy monitors underestimate the total transmitted energy. This leads to measurement biases and errors in double-pulsed IPDA technique. The design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on a high-speed, extended range InGaAs pin quantum detectors suitable for separating the two pulse events. Pulse integration is applied for converting the detected pulse power into energy. Results are compared to a photo-electro-magnetic (PEM) detector for impulse response verification. Calibration included comparing the three detection technologies in single-pulsed mode, then comparing the pin and PEM detectors in double-pulsed mode. Energy monitor linearity will be addressed.

  17. The Monte Carlo Simulation of Pulsed Neutron-Fission Neutron Uranium Logging Technique%脉冲中子-裂变中子铀矿测井技术的蒙特卡罗模拟

    Institute of Scientific and Technical Information of China (English)

    王新光; 王国保; 张国光; 窦玉玲; 丰树强; 赵潇

    2013-01-01

    PNFN was a method for uranium exploration. Pulsed neutron source was used, prompt fission epithermal neutron or delayed fission thermal neutrons were detected by u-sing 3He neutron detector. Under the condition of different uranium content and porosity, the PNFN responses were simulated by using the MCNP code. The relationship between fission neutron and formation condition was studied. The obtained results showed that the larger the formation porosity, the lower the calculated uranium content. The precision of u-ranium content could be increased by the correction of scattering cross-section obtained by prompt fission epithermal or thermal neutron time decay spectrum method.%脉冲中子-裂变中子铀矿测井方法(PNFN)是采用脉冲式中子源,利用3He管中子探测器记录瞬发裂变超热中子或缓发裂变热中子,得到地层中铀矿含量信息的测井方法.利用MCNP程序模拟了不同铀含量、不同地层孔隙度地层条件下PNFN的响应,分析了瞬发裂变超热中子和缓发裂变热中子与地层铀含量和孔隙度的关系.结果表明,地层孔隙度对利用PNFN确定地层铀含量有影响,孔隙度越大,利用裂变中子直接计算得到的地层铀含量比真实含量越小.利用瞬发裂变超热中子或热中子时间衰减谱计算得到地层宏观俘获截面,对裂变中子进行校正,可以有效提高地层铀含量计算结果的准确度.

  18. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  19. Multiple frequency atmospheric radar techniques

    Science.gov (United States)

    Stitt, Gary Richard

    The use of multiple frequency coding to improve the vertical resolution of pulsed-Doppler very high frequency atmospheric radars, especially with regards to the two-frequency techniques known as frequency domain interferometry (FDI), is presented. This technique consists of transmitting alternate pulses on two distinct carrier frequencies. The two resulting time series are used to evaluate the normalized cross-correlation function, whose magnitude and phase are related to the thickness and position of a scattering layer. These same time series are also used to evaluate cross-spectra, which yield magnitude and phase values for each Doppler frequency component of the return signal.

  20. Acousto-optic pulse picking scheme with carrier-frequency-to-pulse-repetition-rate synchronization.

    Science.gov (United States)

    de Vries, Oliver; Saule, Tobias; Plötner, Marco; Lücking, Fabian; Eidam, Tino; Hoffmann, Armin; Klenke, Arno; Hädrich, Steffen; Limpert, Jens; Holzberger, Simon; Schreiber, Thomas; Eberhardt, Ramona; Pupeza, Ioachim; Tünnermann, Andreas

    2015-07-27

    We introduce and experimentally validate a pulse picking technique based on a travelling-wave-type acousto-optic modulator (AOM) having the AOM carrier frequency synchronized to the repetition rate of the original pulse train. As a consequence, the phase noise characteristic of the original pulse train is largely preserved, rendering this technique suitable for applications requiring carrier-envelope phase stabilization. In a proof-of-principle experiment, the 1030-nm spectral part of an 74-MHz, carrier-envelope phase stable Ti:sapphire oscillator is amplified and reduced in pulse repetition frequency by a factor of two, maintaining an unprecedentedly low carrier-envelope phase noise spectral density of below 68 mrad. Furthermore, a comparative analysis reveals that the pulse-picking-induced additional amplitude noise is minimized, when the AOM is operated under synchronicity. The proposed scheme is particularly suitable when the down-picked repetition rate is still in the multi-MHz-range, where Pockels cells cannot be applied due to piezoelectric ringing.

  1. Simulation of FEL pulse length calculation with THz streaking method

    Energy Technology Data Exchange (ETDEWEB)

    Gorgisyan, I., E-mail: ishkhan.gorgisyan@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne (Switzerland); Ischebeck, R.; Prat, E.; Reiche, S. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Rivkin, L. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne (Switzerland); Juranić, P., E-mail: ishkhan.gorgisyan@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2016-04-02

    Simulation of THz streaking of photoelectrons created by X-ray pulses from a free-electron laser and reconstruction of the free-electron laser pulse lengths. Having accurate and comprehensive photon diagnostics for the X-ray pulses delivered by free-electron laser (FEL) facilities is of utmost importance. Along with various parameters of the photon beam (such as photon energy, beam intensity, etc.), the pulse length measurements are particularly useful both for the machine operators to measure the beam parameters and monitor the stability of the machine performance, and for the users carrying out pump–probe experiments at such facilities to better understand their measurement results. One of the most promising pulse length measurement techniques used for photon diagnostics is the THz streak camera which is capable of simultaneously measuring the lengths of the photon pulses and their arrival times with respect to the pump laser. This work presents simulations of a THz streak camera performance. The simulation procedure utilizes FEL pulses with two different photon energies in hard and soft X-ray regions, respectively. It recreates the energy spectra of the photoelectrons produced by the photon pulses and streaks them by a single-cycle THz pulse. Following the pulse-retrieval procedure of the THz streak camera, the lengths were calculated from the streaked spectra. To validate the pulse length calculation procedure, the precision and the accuracy of the method were estimated for streaking configuration corresponding to previously performed experiments. The obtained results show that for the discussed setup the method is capable of measuring FEL pulses with about a femtosecond accuracy and precision.

  2. III Lead ECG Pulse Measurement Sensor

    Science.gov (United States)

    Thangaraju, S. K.; Munisamy, K.

    2015-09-01

    Heart rate sensing is very important. Method of measuring heart pulse by using an electrocardiogram (ECG) technique is described. Electrocardiogram is a measurement of the potential difference (the electrical pulse) generated by a cardiac tissue, mainly the heart. This paper also reports the development of a three lead ECG hardware system that would be the basis of developing a more cost efficient, portable and easy to use ECG machine. Einthoven's Three Lead method [1] is used for ECG signal extraction. Using amplifiers such as the instrumentation amplifier AD620BN and the conventional operational amplifier Ua741 that would be used to amplify the ECG signal extracted develop this system. The signal would then be filtered from noise using Butterworth filter techniques to obtain optimum output. Also a right leg guard was implemented as a safety feature to this system. Simulation was carried out for development of the system using P-spice Program.

  3. Pulse distortion in single-mode fibers. 3: Chirped pulses.

    Science.gov (United States)

    Marcuse, D

    1981-10-15

    The theory of pulse distortion in single-mode fibers is extended to include laser sources that suffer a linear wavelength sweep (chirp) during the duration of the pulse. The transmitted pulse is expressed as a Fourier integral whose spectral function is given by an analytical expression in closed form. The rms width of the transmitted pulse is also expressed in closed form. Numerical examples illustrate the influence of the chirp on the shape and rms width of the pulse. A somewhat paradoxical situation exists. A given input pulse can be made arbitrarily short by a sufficiently large amount of chirping, and, after a given fiber length, this chirped pulse returns to its original width. But at this particular distance an unchirped pulse would be only [equiation] times longer. Thus chirping can improve the rate of data transmission by only 40%.

  4. Solid-state pulse forming module with adjustable pulse duration

    Science.gov (United States)

    Wang, Langning; Liu, Jinliang; Qiu, Yongfeng; Chu, Xu; Zhang, Qingmeng

    2017-03-01

    A new solid-state pulse forming module is described in this paper. The pulse forming module is fabricated on a glass ceramic substrate, with the dimension of 250 mm × 95 mm × 4 mm. By changing the copper strips used in the pulse forming modules, the pulse duration of the obtained pulsed can range from 80 ns to 140 ns. Both the simulation and tests show that the pulse forming module has a good pulse forming ability. Under a high voltage in microsecond's time, the new pulse forming modules can hold off a voltage up to 25 kV higher than that of the previous study. In addition, future optimization for the field enhancement near the thin electrode edge has been proposed and simulated.

  5. Simulation Analysis and Experimental Research on Parameter Influence in Pulsed Eddy Current Nondestructive Testing Technique%脉冲涡流检测中参数影响的仿真分析与实验研究

    Institute of Scientific and Technical Information of China (English)

    张辉; 杨宾峰; 王晓锋; 赵玉丰

    2012-01-01

    脉冲涡流检测过程中传感器尺寸及激励参数对检测结果影响较大,对其进行优化设计可提高检测系统的性能.在分析矩形脉冲涡流传感器工作原理的基础上,采用ANSYS仿真软件建立了脉冲涡流的仿真模型,仿真分析了传感器尺寸变化对铝板中涡流衰减规律的影响,激励脉冲频率和占空比变化对缺陷检测灵敏度的影响,仿真结果表明:当激励线圈长度增加时,涡流在铝板中的衰减速度变慢,而当激励线圈宽度和高度增加时,涡流在铝板中的衰减速度变快;激励频率与占空比对缺陷检测灵敏度的影响与被测试件厚度有关,对于厚度较大的板材,应适当降低激励频率并提高占空比.最后采用实验的方法对仿真结果进行了验证,实验与仿真结果相一致,证明了仿真结论的正确性.%The dimension of probe and the exciting parameters have an obvious influence on the result of pulsed eddy current (PEC) nondestructive testing, the capability of the PEC inspection system can be improved by optimizing these parameters. Based on the analysis of the principle of PEC, the PEC model is established by ANSYS finite element simulation software to analyze the influence of the variation of probe dimension on the eddy current decay law and that of the change of exciting frequency and duty cycle on the detecting sensitivity. The simulation results show that the attenuation of the eddy current slows down with the increase of exciting coil length, and the attenuation of the eddy current quickens with the increase of exciting coil width and highness. The influence of exciting frequency and duty cycle on the detecting sensitivity of defect has a relationship with the specimen thickness, the exciting frequency should be appropriately decreased and the duty cycle increased in inspecting thick specimen. Finally, the results of simulation are testified by experiment methods, the agreement between simulation and

  6. Design of Excitatory Signal and Matched Filter for Compressed Pulsed Radar

    Directory of Open Access Journals (Sweden)

    Argel Gonzalez Padilla

    2013-11-01

    Full Text Available In this paper is presented pulse compression technique in radar, focusing on Linear Frequency Modulation (LFM. Matched Filter characteristics are the elements considered for pulse compression, algebraic operations are derived to avoid the signal phase effect received by detection capacity. A hardware system for pulse compression in language description hardware is implemented. The product obtained is a first step in radar techniques to improve resolution capacity.

  7. Ultrafast optomechanical pulse picking

    Science.gov (United States)

    Lilienfein, Nikolai; Holzberger, Simon; Pupeza, Ioachim

    2017-01-01

    State-of-the-art optical switches for coupling pulses into and/or out of resonators are based on either the electro-optic or the acousto-optic effect in transmissive elements. In high-power applications, the damage threshold and other nonlinear and thermal effects in these elements impede further improvements in pulse energy, duration, and average power. We propose a new optomechanical switching concept which is based solely on reflective elements and is suitable for switching times down to the ten-nanosecond range. To this end, an isolated section of a beam path is moved in a system comprising mirrors rotating at a high angular velocity and stationary imaging mirrors, without affecting the propagation of the beam thereafter. We discuss three variants of the concept and exemplify practical parameters for its application in regenerative amplifiers and stack-and-dump enhancement cavities. We find that optomechanical pulse picking has the potential to achieve switching rates of up to a few tens of kilohertz while supporting pulse energies of up to several joules.

  8. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  9. Pulsed inductive HF laser

    Energy Technology Data Exchange (ETDEWEB)

    Razhev, A M; Kargapol' tsev, E S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Churkin, D S; Demchuk, S V [Novosibirsk State University, Novosibirsk (Russian Federation)

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  10. Downhole pulse tube refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.; Gardner, D. [Los Alamos National Lab., NM (United States). Condensed Matter and Thermal Physics Group

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  11. Increase of the production rate and crystal growth mode of GdBa{sub 2}Cu{sub 3}O{sub y}-coated conductors using an in-plume growth technique for a reel-to-reel pulsed-laser deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Miura, M; Yoshizumi, M; Izumi, T; Shiohara, Y, E-mail: m_miura@istec.or.j [Superconductivity Research Laboratory, ISTEC, 10-13, Shinonome 1-chome, Koto-ku, Tokyo 135-0062 (Japan)

    2010-01-15

    We developed a new fabrication technique which we call the 'in-plume growth (IPG)' technique. A REBa{sub 2}Cu{sub 3}O{sub y} layered film for a coated conductor (REBCO CC) is grown in the plume using a pulsed-laser deposition (PLD) method with a short distance between the target and the substrate (d{sub T-S}) to increase the production rate. In general, the critical current density (J{sub c}) of PLD-REBCO CCs using an RTR system decreases as d{sub T-S} decreases since the amount of the dead layer increases and the composition of the REBCO layer becomes off-stoichiometric. In this work, we fabricated high- J{sub c} GdBa{sub 2}Cu{sub 3}O{sub y} (GdBCO) CCs using the IPG technique by varying the target composition and the tape moving speed to control the composition of the REBCO layer and to suppress the formation of a-axis-oriented grains. As a result, the IPG-GdBCO CCs, which were fabricated at 2 m h{sup -1} (deposition area = 1-turn x 6.5 cm = 6.5 cm{sup 2}, laser power = 300 mJ, f = four-plumes x 30 Hz), showed the following characteristics: I{sub c} = 312 A cm{sup -1} width (J{sub c} = 2.6 MA cm{sup -2}) with 1.2 {mu}m in thickness and 1 m length. The production speed and the J{sub c} value are 3.0 and 1.8 times higher, respectively, compared to those deposited under standard conditions without using the IPG technique. This result indicates that the PLD-REBCO CCs could be more competitive for production of CCs for practical electric power applications in the near future.

  12. Properties of pulsed laser deposited NiO/MWCNT thin films

    CSIR Research Space (South Africa)

    Yalisi, B

    2011-05-01

    Full Text Available Pulsed laser deposition (PLD) is a thin-film deposition technique, which uses short and intensive laser pulses to evaporate target material. The technique has been used in this work to produce selective solar absorber (SSA) thin film composites...

  13. Recent progress in picosecond pulse generation from semiconductor lasers

    Science.gov (United States)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  14. Classification of Pulse Waveforms Using Edit Distance with Real Penalty

    Directory of Open Access Journals (Sweden)

    Zhang Dongyu

    2010-01-01

    Full Text Available Abstract Advances in sensor and signal processing techniques have provided effective tools for quantitative research in traditional Chinese pulse diagnosis (TCPD. Because of the inevitable intraclass variation of pulse patterns, the automatic classification of pulse waveforms has remained a difficult problem. In this paper, by referring to the edit distance with real penalty (ERP and the recent progress in -nearest neighbors (KNN classifiers, we propose two novel ERP-based KNN classifiers. Taking advantage of the metric property of ERP, we first develop an ERP-induced inner product and a Gaussian ERP kernel, then embed them into difference-weighted KNN classifiers, and finally develop two novel classifiers for pulse waveform classification. The experimental results show that the proposed classifiers are effective for accurate classification of pulse waveform.

  15. Measurement of complex supercontinuum light pulses using time domain ptychography

    CERN Document Server

    Heidt, Alexander M; Brügmann, Michael; Rohwer, Erich G; Feurer, Thomas

    2016-01-01

    We demonstrate that time-domain ptychography, a recently introduced ultrafast pulse reconstruction modality, has properties ideally suited for the temporal characterization of complex light pulses with large time-bandwidth products as it achieves temporal resolution on the scale of a single optical cycle using long probe pulses, low sampling rates, and an extremely fast and robust algorithm. In comparison to existing techniques, ptychography minimizes the data to be recorded and processed, and drastically reduces the computational time of the reconstruction. Experimentally we measure the temporal waveform of an octave-spanning, 3.5~ps long supercontinuum pulse generated in photonic crystal fiber, resolving features as short as 5.7~fs with sub-fs resolution and 30~dB dynamic range using 100~fs probe pulses and similarly large delay steps.

  16. Pulse Response Measurement and Processing by Six-Port Reflectometr

    Directory of Open Access Journals (Sweden)

    Norbert Majer

    2008-01-01

    Full Text Available In this paper the pulse response estimation of radio channel by Six-port reflectometer (SPR is described. The measurement of pulse response is in real time, with baseband conversion and without demodulation. This system is simple, small, exact and inexpensive. In the present, it is insisted on signal processing in real time. In present time it is requested touse faster systems of signal processing, so the using of high performance digital devices is needed. Pulse response of radio channel, six-port reflectometer and radio channel are simulated in program language Delphi 7. In this work the pulse response measurement of MIMO radio channel by Six-port reflectometer technique. A pulse response matrix, Rayleighfading in the radio channel, SPR technology, AWGN radio channel has been simulated in program language Delphi 7.

  17. Measuring ultrashort pulses using frequency-resolved optical gating

    Energy Technology Data Exchange (ETDEWEB)

    Trebino, R. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The purpose of this program is the development of techniques for the measurement of ultrafast events important in gas-phase combustion chemistry. Specifically, goals of this program include the development of fundamental concepts and spectroscopic techniques that will augment the information currently available with ultrafast laser techniques. Of equal importance is the development of technology for ultrafast spectroscopy. For example, methods for the production and measurement of ultrashort pulses at wavelengths important for these studies is an important goal. Because the specific vibrational motion excited in a molecule depends sensitively on the intensity, I(t), and the phase, {psi}(t), of the ultrashort pulse used to excite the motion, it is critical to measure both of these quantities for an individual pulse. Unfortunately, this has remained an unsolved problem for many years. Fortunately, this year, the authors present a technique that achieves this goal.

  18. Epitaxial thin films grown by pulsed laser deposition

    NARCIS (Netherlands)

    Blank, D.H.A.

    2005-01-01

    In this paper, we present the pulsed laser deposition (PLD) technique to control the growth of metal oxide materials at atomic level using high-pressure reflective high-energy electron diffraction and ellipsometry. These developments have helped to make PLD a grown-up technique to fabricate complex

  19. RF pulse compression for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.

    1995-05-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0--1.5 TeV, 5 TeV and 25 TeV. In order keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0--1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150--200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30--40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-11 system) can be used to reduce the klystron peak power by about a factor of two, or alternately, to cut the number of klystrons in half for a 1.0--1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  20. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  1. Bacterial inactivation using pulsed light

    OpenAIRE

    Elmnasser, Noura; Ritz, Magali; Leroi, Francoise; Orange, Nicole; Bakhrouf, Amina; Federighi, Michel

    2007-01-01

    Pulsed light is a new method intended for the decontamination of food surfaces using short, high frequency pulses of an intense broad spectrum. The effects of broad spectrum pulsed light on the survival of Listeria monocytogenes Scott A, Listeria monocytogenes CNL, Pseudomonas fluorescens MF37 and Photobacterium phosphoreum SF680 populations on agar and in a liquid medium were investigated during this study. The sterilisation system generated 1.5 J cm(-2) per pulse with eight lamps for 300 mu...

  2. HARMONIC ANALYSIS OF SVPWM INVERTER USING MULTIPLE-PULSES METHOD

    Directory of Open Access Journals (Sweden)

    Mehmet YUMURTACI

    2009-01-01

    Full Text Available Space Vector Modulation (SVM technique is a popular and an important PWM technique for three phases voltage source inverter in the control of Induction Motor. In this study harmonic analysis of Space Vector PWM (SVPWM is investigated using multiple-pulses method. Multiple-Pulses method calculates the Fourier coefficients of individual positive and negative pulses of the output PWM waveform and adds them together using the principle of superposition to calculate the Fourier coefficients of the all PWM output signal. Harmonic magnitudes can be calculated directly by this method without linearization, using look-up tables or Bessel functions. In this study, the results obtained in the application of SVPWM for values of variable parameters are compared with the results obtained with the multiple-pulses method.

  3. Optical pulse compression using a nonlinear optical loop mirror constructed from dispersion decreasing fiber

    Institute of Scientific and Technical Information of China (English)

    CAO; Wenhua; LIU; Songhao

    2004-01-01

    A novel scheme to compress optical pulses is proposed and demonstrated numerically, which is based on a nonlinear optical loop mirror constructed from dispersion decreasing fiber (DDF). We show that, in contrast to the conventional soliton-effect pulse compression in which compressed pulses are always accompanied by pedestals and frequency chirps owning to nonlinear effects, the proposed scheme can completely suppress pulse pedestals and frequency chirps. Unlike the adiabatic compression technique in which DDF length must increase exponentially with input pulsewidth, the proposed scheme does not require adiabatic condition and therefore can be used to compress long pulses by using reasonable fiber lengths. For input pulses with peak powers higher than a threshold value, the compressed pulses can propagate like fundamental solitons. Furthermore, the scheme is fairly insensitive to small variations in the loop length and is more robust to higher-order nonlinear effects and initial frequency chirps than the adiabatic compression technique.

  4. Measurement of Pulse Width from a Bubble Cloud under Multibubble Sonoluminescence Conditions

    Science.gov (United States)

    Ko, Ilgon; Kwak, Ho-Young

    2010-12-01

    The pulse width from a bubble cloud under multibubble sonoluminescence (MBSL) conditions was measured for the first time using a time-correlated single photon counting technique (TC/SPC). The measured pulse width from several thousand bubbles in water was approximately 250.9 ps, with scattered pulses occurring 1.5 ns before and after the maximum light pulse intensity. The observed pulse width from a bubble cloud, which appears to be comparable to that of the single bubble sonoluminescence, indicates that the clouds of bubbles collapse simultaneous to emitting a light that is synchronized with the applied ultrasound. Also, pulse widths from clouds of multibubbles in water-surfactant and water-alcohol solutions were measured to investigate the surfactant and alcohol effect on the sonoluminescence intensity and pulse width. Size distribution of the bubble cloud at the multibubble conditions was also measured by phase-Doppler technique.

  5. A THERMAL PULSE SHAPER MECHANISM.

    Science.gov (United States)

    A shaped pulse of intense thermal radiation, corresponding to the pulses from nuclear weapons, is obtained by the output of a QM carbon arc. A flywheel driven by a DC motor actuated a venetian blind shutter placed between a mirror and the target to control the flux. The combination produced reasonably good simulation and reproduction of the generalized field pulse.

  6. Nonlinear femtosecond pulse compression in cholesteric liquid crystals (Conference Presentation)

    Science.gov (United States)

    Liu, Yikun; Zhou, Jianying; Lin, Tsung-Hsien; Khoo, Iam-Choon

    2016-09-01

    Liquid crystals materials have the advantage of having a large nonlinear coefficient, but the response time is slow, normally up to several minisecond. This makes it is hard to apply in ultra fast optical devices. Recently, fentosecond (fs) nonlinear effect in choleteric liquid crystals is reported, nonlinear coefficient in the scale of 10-12 cm2/W is achieved. Base on this effect, in this work, fentosecond pulse compression technique in a miniature choleteric liquid crystal is demonstrated1,2. Cholesteric liquid crystals (CLC) is a kind of 1-dimensional phontonic structure with helical periodic. In a 10 μm thick CLC, femtosecond pulse with 100 fs is compressed to about 50 fs. CLC sample in planar texture with 500μm thick cell gap is further fabricated. In this sample, femtosecond pulse with 847 fs can be compressed to 286 fs. Due to the strong dispersion at the edge of photonic band gap, femtosecond pulse stretching and compensation can be achieve. In this experiment, laser pulse with duration 90 fs is stretched to above 2 picosecond in the first CLC sample and re-compressed to 120 fs in the second sample. Such technique might be applied in chirp pulse amplification. In conclusion, we report ultra fast nonlinear effect in cholesteric liquid crystals. Due to the strong dispersion and nonlinearity of CLC, femtosecond pulse manipulating devices can be achieved in the scale of micrometer.

  7. Characteristics and Applications of Spatiotemporally Focused Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Chenrui Jing

    2016-12-01

    Full Text Available Simultaneous spatial and temporal focusing (SSTF of femtosecond laser pulses gives rise to strong suppression of nonlinear self-focusing during the propagation of the femtosecond laser beam. In this paper, we begin with an introduction of the principle of SSTF, followed by a review of our recent experimental results on the characterization and application of the spatiotemporally focused pulses for femtosecond laser micromachining. Finally, we summarize all of the results and give a future perspective of this technique.

  8. A Pulsed Laser and Molecular Beam Apparatus for Surface Studies

    Science.gov (United States)

    1985-03-01

    PRFCAMING ORCANIZATION REPORT NuMSWIS b MONITORING ORGANIZATION RPR :6P" _________ ______._ _ I0 0 1 I &PO*R.TR. o u 1 6NAEOF PERFORMING ORGANIZATION 5.OFFICE...with a second pulsed molecular beam, and the course of the reaction may be followed using several new pulsed surface analysis techniques under...available for electrical and manipulation feedthroughs, roughing and gas inlet lines, as well as special viewports (quartz or MgF 2) for the passage of UV

  9. Pulsed field gel electrophoresis on frozen tumour tissue sections.

    OpenAIRE

    Boultwood, J; Kaklamanis, L.; Gatter, K C; Wainscoat, J S

    1992-01-01

    The application of pulsed field gel electrophoresis (PFGE) to the molecular genetic analysis of solid tumours has been restricted by the requirement for whole single cells as a DNA source. A simple technique which allows for the direct analysis of histologically characterised solid tumour material by pulsed field gel electrophoresis was developed. Single frozen tissue sections obtained from colonic carcinoma specimens were embedded without further manipulation in molten, low melting temperatu...

  10. Pulsed laser ablation and deposition of niobium carbide

    Science.gov (United States)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J. V.; Galasso, A.; Teghil, R.

    2016-06-01

    NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation-deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  11. Wavelength stabilisation during current pulsing of tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2009-01-01

    The use of external feedback to stabilise the frequency of a tapered laser during current pulsing is reported. Using this technique more than 20 W of peak power in 60 ns pulses from the tapered laser is obtained and owing to the external feedback, the laser is tunable in the 778-808 nm range....... The spectral width of the tapered laser is significantly narrowed compared to the freely running laser....

  12. Suspension of atoms using optical pulses, and application to gravimetry.

    Science.gov (United States)

    Hughes, K J; Burke, J H T; Sackett, C A

    2009-04-17

    Atoms from a (87)Rb condensate are suspended against gravity using repeated reflections from a pulsed optical standing wave. Up to 100 reflections are observed, yielding suspension times of over 100 ms. The local gravitational acceleration can be determined from the pulse rate required to achieve suspension. Further, a gravitationally sensitive atom interferometer was implemented using the suspended atoms. This technique could potentially provide a precision measurement of gravity without requiring the atoms to fall a large distance.

  13. Short pulse generation and high speed communication system

    Science.gov (United States)

    Fan, Honglei

    Ultrahigh-speed optical time-division-multiplexing (TDM) transmission technologies are essential to construct ultrahigh-speed all-optical networks needed in the multimedia era. In order to realize high-speed optical TDM systems, ultra-short pulses should be generated. In this dissertation, the gain switching and mode locking techniques have been analyzed and used to produce ultra- short pulses. Gain-switched pulses with a width of ~18ps have been obtained. The theoretical analysis on gain-switching phenomena has been carried out. A new approach for the simulation of the spectrum of a gain- switched laser has been developed. The principle of mode locking has been discussed. ~6.5ps, pulses have been obtained from a monolithic mode-locked distributed Bragg reflector (DBR) laser, which are the shortest pulses from the actively mode- locked DBR lasers as we know. ~1.1ps pulses have been achieved from a colliding-pulse mode-locked (CPM) laser. The operation principle of CPM lasers has been discussed. Pulse compression using dispersion-compensating fiber has been applied in order to get shorter pulses. The semiconductor optical amplifier (SOA) plays a very important role in TDM systems. The cross gain modulation (XGM) measurements on a 2-section SOA, using both cw and pulsed pump and probe beams, have been performed. A theoretical analysis has been carried out. Wavelength conversion and fiber transmission experiments have been achieved at different bit rates. The basic idea of TDM system has been discussed. Multiplexing has been achieved using fibers. Demulitplexing has been demonstrated using XGM in SOA, four-wave mixing (FWM) in SOA, and cascaded modulators. The operation principles have been discussed in detail. The FWM experiments between two optical pulses have been performed.

  14. Experimental techniques; Techniques experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Roussel-Chomaz, P. [GANIL CNRS/IN2P3, CEA/DSM, 14 - Caen (France)

    2007-07-01

    This lecture presents the experimental techniques, developed in the last 10 or 15 years, in order to perform a new class of experiments with exotic nuclei, where the reactions induced by these nuclei allow to get information on their structure. A brief review of the secondary beams production methods will be given, with some examples of facilities in operation or under project. The important developments performed recently on cryogenic targets will be presented. The different detection systems will be reviewed, both the beam detectors before the targets, and the many kind of detectors necessary to detect all outgoing particles after the reaction: magnetic spectrometer for the heavy fragment, detection systems for the target recoil nucleus, {gamma} detectors. Finally, several typical examples of experiments will be detailed, in order to illustrate the use of each detector either alone, or in coincidence with others. (author)

  15. Noisy homoclinic pulse dynamics

    Science.gov (United States)

    Eaves, T. S.; Balmforth, Neil J.

    2016-04-01

    The effect of stochastic perturbations on nearly homoclinic pulse trains is considered for three model systems: a Duffing oscillator, the Lorenz-like Shimizu-Morioka model, and a co-dimension-three normal form. Using the Duffing model as an example, it is demonstrated that the main effect of noise does not originate from the neighbourhood of the fixed point, as is commonly assumed, but due to the perturbation of the trajectory outside that region. Singular perturbation theory is used to quantify this noise effect and is applied to construct maps of pulse spacing for the Shimizu-Morioka and normal form models. The dynamics of these stochastic maps is then explored to examine how noise influences the sequence of bifurcations that take place adjacent to homoclinic connections in Lorenz-like and Shilnikov-type flows.

  16. Computationally intelligent pulsed photoacoustics

    Science.gov (United States)

    Lukić, Mladena; Ćojbašić, Žarko; Rabasović, Mihailo D.; Markushev, Dragan D.

    2014-12-01

    In this paper, the application of computational intelligence in pulsed photoacoustics is discussed. Feedforward multilayer perception networks are applied for real-time simultaneous determination of the laser beam spatial profile and vibrational-to-translational relaxation time of the polyatomic molecules in gases. Networks are trained and tested with theoretical data adjusted for a given experimental set-up. Genetic optimization has been used for calculation of the same parameters, fitting the photoacoustic signals with a different number of generations. Observed benefits from the application of computational intelligence in pulsed photoacoustics and advantages over previously developed methods are discussed, such as real-time operation, high precision and the possibility of finding solutions in a wide range of parameters, similar to in experimental conditions. In addition, the applicability for practical uses, such as the real-time in situ measurements of atmospheric pollutants, along with possible further developments of obtained results, is argued.

  17. Micro pulse laser radar

    Science.gov (United States)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  18. Synthesis of fractal light pulses by quasi-direct space-to-time pulse shaping.

    Science.gov (United States)

    Mendoza-Yero, Omel; Alonso, Benjamín; Mínguez-Vega, Gladys; Sola, Iñigo Juan; Lancis, Jesús; Monsoriu, Juan A

    2012-04-01

    We demonstrated a simple diffractive method to map the self-similar structure shown in squared radial coordinate of any set of circularly symmetric fractal plates into self-similar light pulses in the corresponding temporal domain. The space-to-time mapping of the plates was carried out by means of a kinoform diffractive lens under femtosecond illumination. The spatio-temporal characteristics of the fractal pulses obtained in this way were measured by means of a spectral interferometry technique assisted by a fiber optics coupler (STARFISH). Our proposal allows synthesizing suited sequences of focused fractal femtosecond pulses potentially useful for several current applications, such as femtosecond material processing, atomic, and molecular control of chemical processes or generation of nonlinear effects.

  19. Study of Associated α Particle Imaging Technique for Explosives Detection

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The explosive detecting technique about neutron mainly include the thermal neutron analysis (TNA), the fast neutron analysis (FNA), the pulse fast and thermal neutron analysis (PFTNA) and the associated α particle imaging technique about fast neutron (API).

  20. Twitter's visual pulse

    OpenAIRE

    Hare, Jonathon; Samangooei, Sina; Dupplaw, David; Lewis, Paul H.

    2013-01-01

    Millions of images are tweeted every day, yet very little research has looked at the non-textual aspect of social media communication. In this work we have developed a system to analyse streams of image data. In particular we explore trends in similar, related, evolving or even duplicated visual artefacts in the mass of tweeted image data — in short, we explore the visual pulse of Twitter.

  1. Pulse Portraiture: Pulsar timing

    Science.gov (United States)

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M.

    2016-06-01

    Pulse Portraiture is a wideband pulsar timing code written in python. It uses an extension of the FFTFIT algorithm (Taylor 1992) to simultaneously measure a phase (TOA) and dispersion measure (DM). The code includes a Gaussian-component-based portrait modeling routine. The code uses the python interface to the pulsar data analysis package PSRCHIVE (ascl:1105.014) and also requires the non-linear least-squares minimization package lmfit (ascl:1606.014).

  2. STUCTURE OF PULSED BED

    Directory of Open Access Journals (Sweden)

    I. A. Bokun

    2014-01-01

    Full Text Available The structure of pulsed layer is proposed which can be suggested as a state of particulates that is blown by intermittent gas flow with speed which has the force to start material moving. Layer during one cycle is in a suspension, falling down and immobile state resulting in changes of particles arrangement as well as ways of gas flowing through layer. Moreover, it allows carrying out effective interphase heat exchange even adamant real granulation.The process of formation of impact flows is considered aw well as their influence on formation of air bubbles in pulsed layer. At startup of air blast the balance between the force of hydro-dynamic resistance is broken, on one side, and forces of gravity, particles inertia and their links with walls on the other side. The layer is transferred in the state of pulsed pseudo-fluidization, and presents gas-disperse mixture, inside of which impulse of pressure increasing is spreading to all sides as pressure waves (compression. These waves are the sources of impact flows’ formation, the force of which is two times more than during the stationary flow.The waves of pressure are divided into weak and strong ones depending on movement velocity within gas-disperse system. Weak waves are moving with a sound speed and strong ones in active phase of pulsed layer are moving over the speed of sound limit within gas-disperse system. The peculiarity of strong wave is that parameters of system (pressure, density and others are changing in discrete steps.The article describes the regime of layer’s falling down in the passive stage of cycle, which begins after finishing of gas impulse action. And suspension layer of moving up granular material is transferred in the state of falling resulting in change of the layer structure.

  3. Downhole pulse radar

    Science.gov (United States)

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  4. Ptychographic ultrafast pulse reconstruction

    CERN Document Server

    Spangenberg, D; Brügmann, M H; Feurer, T

    2014-01-01

    We demonstrate a new ultrafast pulse reconstruction modality which is somewhat reminiscent of frequency resolved optical gating but uses a modified setup and a conceptually different reconstruction algorithm that is derived from ptychography. Even though it is a second order correlation scheme it shows no time ambiguity. Moreover, the number of spectra to record is considerably smaller than in most other related schemes which, together with a robust algorithm, leads to extremely fast convergence of the reconstruction.

  5. PULSE Pilot Certification Results

    Directory of Open Access Journals (Sweden)

    Pamela Pape-Lindstrom

    2015-08-01

    Full Text Available The pilot certification process is an ambitious, nationwide endeavor designed to motivate important changes in life sciences education that are in line with the recommendations of the 2011 Vision and Change Report: A Call to Action (American Association for the Advancement of Science [AAAS], 2011.  It is the goal of the certification process to acknowledge departments that have progressed towards full implementation of the tenets of Vision and Change and to motivate departments that have not begun to adopt the recommendations to consider doing so.  More than 70 life science departments applied to be part of the pilot certification process, funded by a National Science Foundation grant, and eight were selected based on initial evidence of transformed and innovative educational practices.  The programs chosen represent a wide variety of schools, including two-year colleges, liberal-arts institutions, regional comprehensive colleges, research universities and minority serving institutions.  Outcomes from this pilot were released June 1, 2015 (www.pulsecommunity.org, with all eight programs being recognized as having progressed along a continuum of change.  Five levels of achievement were defined as PULSE Pilot Progression Levels.  Of the eight departments in the pilot, one achieved “PULSE Progression Level III: Accomplished”.  Six departments achieved “PULSE Progression Level II: Developing” and one pilot department achieved “PULSE Progression Level I: Beginning”.  All of the schools have made significant movement towards the recommendations of Vision and Change relative to a traditional life sciences curriculum.  Overall, the response from the eight pilot schools has been positive. 

  6. Urban Pulse: Capturing the Rhythm of Cities.

    Science.gov (United States)

    Miranda, Fabio; Doraiswamy, Harish; Lage, Marcos; Zhao, Kai; Goncalves, Bruno; Wilson, Luc; Hsieh, Mondrian; Silva, Claudio T

    2017-01-01

    Cities are inherently dynamic. Interesting patterns of behavior typically manifest at several key areas of a city over multiple temporal resolutions. Studying these patterns can greatly help a variety of experts ranging from city planners and architects to human behavioral experts. Recent technological innovations have enabled the collection of enormous amounts of data that can help in these studies. However, techniques using these data sets typically focus on understanding the data in the context of the city, thus failing to capture the dynamic aspects of the city. The goal of this work is to instead understand the city in the context of multiple urban data sets. To do so, we define the concept of an "urban pulse" which captures the spatio-temporal activity in a city across multiple temporal resolutions. The prominent pulses in a city are obtained using the topology of the data sets, and are characterized as a set of beats. The beats are then used to analyze and compare different pulses. We also design a visual exploration framework that allows users to explore the pulses within and across multiple cities under different conditions. Finally, we present three case studies carried out by experts from two different domains that demonstrate the utility of our framework.

  7. Pulsed Plasma Methods in Materials Processing

    Science.gov (United States)

    Rej, D. J.

    1996-05-01

    Plasmas are routinely used to synthesize advanced materials, because of their ability to produce reactant species that enable a wide variety of chemical reactions. For example, in microelectronics manufacturing, plasmas are used to etch, clean, ash photoresist, implant, deposit, polymerize, and metalize. The use of pulsed power may extend the utility of plasma processing. Pulsed devices such as coaxial plasma guns, cathodic arcs, pseudosparks have been employed to synthesize materials ranging from novel steel alloys and high-temperature superconductors to diamond coatings. In this talk, we will highlight plasma immersion ion implantation and deposition, methods that improve conventional steady-state chemical and physical vapor deposition techniques. Pulsed power enables energetic ion bombardment before plasma deposition to promote better film adhesion through the formation of a graded interface. Ion bombardment during deposition reduces residual stress in the deposited film, thereby enabling formation of thick layers. Also, pulsed plasma sources have advantages over steady-state devices in that they conserve electrical power and can produce high-density, fully-dissociated plasmas. As an example, we will review recent experiments on the formation of adherent diamond-like carbon films deposited onto relatively large batches of automotive components.

  8. Controlling the acoustic streaming by pulsed ultrasounds.

    Science.gov (United States)

    Hoyos, Mauricio; Castro, Angélica

    2013-01-01

    We propose a technique based on pulsed ultrasounds for controlling, reducing to a minimum observable value the acoustic streaming in closed ultrasonic standing wave fluidic resonators. By modifying the number of pulses and the repetition time it is possible to reduce the velocity of the acoustic streaming with respect to the velocity generated by the continuous ultrasound mode of operation. The acoustic streaming is observed at the nodal plane where a suspension of 800nm latex particles was focused by primary radiation force. A mixture of 800nm and 15μm latex particles has been also used for showing that the acoustic streaming is hardly reduced while primary and secondary forces continue to operate. The parameter we call "pulse mode factor" i.e. the time of applied ultrasound divided by the duty cycle, is found to be the adequate parameter that controls the acoustic streaming. We demonstrate that pulsed ultrasound is more efficient for controlling the acoustic streaming than the variation of the amplitude of the standing waves.

  9. Petawatt pulsed-power accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  10. Secondary wavelength stabilization of unbalanced Michelson interferometers for the generation of low-jitter pulse trains.

    Science.gov (United States)

    Shalloo, R J; Corner, L

    2016-09-01

    We present a double unbalanced Michelson interferometer producing up to four output pulses from a single input pulse. The interferometer is stabilized with the Hänsch-Couillaud method using an auxiliary low power continuous wave laser injected into the interferometer, allowing the stabilization of the temporal jitter of the output pulses to 0.02 fs. Such stabilized pulse trains would be suitable for driving multi-pulse laser wakefield accelerators, and the technique could be extended to include amplification in the arms of the interferometer.

  11. Quasi-phase-matched high-order harmonic generation using tunable pulse trains.

    Science.gov (United States)

    O'Keeffe, Kevin; Lloyd, David T; Hooker, Simon M

    2014-04-07

    A simple technique for generating trains of ultrafast pulses is demonstrated in which the linear separation between pulses can be varied continuously over a wide range. These pulse trains are used to achieve tunable quasi-phase-matching of high harmonic generation over a range of harmonic orders up to the harmonic cut-off, resulting in enhancements of the harmonic intensity in excess of an order of magnitude. The peak enhancement of the harmonics is clearly shown to depend on the separation between pulses, as well as the number of pulses in the train, representing an easily tunable source of quasi-phase-matched high harmonic generation.

  12. Copper bromide vapour laser with an output pulse duration of up to 320 ns

    Energy Technology Data Exchange (ETDEWEB)

    Gubarev, F A; Fedorov, K V; Evtushenko, G S [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Fedorov, V F; Shiyanov, D V [V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

    2016-01-31

    We report the development of a copper bromide vapour laser with an output pulse duration of up to 320 ns. To lengthen the pulse, the discharge current was limited using a compound switch comprising a pulsed hydrogen thyratron and a tacitron. This technique permits limiting the excitation of the working levels at the initial stage of the discharge development to lengthen the inversion lifetime. The longest duration of a laser pulse was reached in tubes 25 and 50 mm in diameter for a pulse repetition rate of 2 – 4 kHz. (lasers and laser beams)

  13. Characterization of phase and contrast of high peak power, ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Sagisaka, Akito; Aoyama, Makoto; Matsuoka, Sinichi; Akahane, Yutaka; Nakano, Fumihiko; Yamakawa, Koichi [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan)

    2000-03-01

    We fully characterize a high-peak power, ultrashort laser pulse in a Ti:sapphire chirped-pulse amplification laser system. The phase and contrast of the 20 fs pulse are determined by using frequency-resolved optical gating and high dynamic range cross-correlation techniques. The result of the phase measurement of the pulse indicate that the predominant phase distortion is quartic. The measured contrast of the pulse is of the order of 10{sup -6} limited by amplified spontaneous emission coming from the amplifiers. (author)

  14. Pulse Distributing Manifold; Pulse Distributing Manifold

    Energy Technology Data Exchange (ETDEWEB)

    Schutting, Eberhard [Technische Univ. Graz (Austria); Sams, Theodor [AVL List GmbH, Graz (Austria); Glensvig, Michael [Forschungsgesellschaft mbH, Graz (AT). Kompetenzzentrum ' ' Das virtuelle Fahrzeug' ' (VIF)

    2011-07-01

    The Pulse Distributing Manifold is a new charge exchange method for turbocharged diesel engines with exhaust gas recirculation (EGR). The method is characterized in that the EGR mass flow is not diverted from the exhaust gas mass flow continuously, but over time broken into sub-streams. The temporal interruption is achieved by two phase-shifted outlet valves which are connected via separate manifolds only with the turbocharger or only with the EGR path. The time points of valve opening are chosen such that the turbocharger and the aftertreatment process of exhaust gas is perfused by high-energy exhaust gas of the blowdown phase while cooler and less energy-rich exhaust gas of the exhaust period is used for the exhaust gas recirculation. This increases the enthalpy for the turbocharger and the temperature for the exhaust gas treatment, while the cooling efficiency at the EGR cooler is reduced. The elimination of the continuous EGR valve has a positive effect on pumping losses. The principle functioning and the potential of this system could be demonstrated by means of a concept study using one-dimensional simulations. Without disadvantages in fuel consumption for the considered commercial vehicle engine, a reduction the EGR cooler performance by 15 % and an increase in exhaust temperature of 35 K could be achieved. The presented charge exchange method was developed, evaluated and patented within the scope of the research program 'K2-mobility' of the project partners AVL (Mainz, Federal Republic of Germany) and University of Technology Graz (Austria). The research project 'K2-Mobility' is supported by the competence center 'The virtual vehicle' Forschungsgesellschaft mbH (Graz, Austria).

  15. High-speed pulse-shape generator, pulse multiplexer

    Science.gov (United States)

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  16. Novel food processing techniques

    Directory of Open Access Journals (Sweden)

    Vesna Lelas

    2006-12-01

    Full Text Available Recently, a lot of investigations have been focused on development of the novel mild food processing techniques with the aim to obtain the high quality food products. It is presumed also that they could substitute some of the traditional processes in the food industry. The investigations are primarily directed to usage of high hydrostatic pressure, ultrasound, tribomechanical micronization, microwaves, pulsed electrical fields. The results of the scientific researches refer to the fact that application of some of these processes in particular food industry can result in lots of benefits. A significant energy savings, shortening of process duration, mild thermal conditions, food products with better sensory characteristics and with higher nutritional values can be achieved. As some of these techniques act also on the molecular level changing the conformation, structure and electrical potential of organic as well as inorganic materials, the improvement of some functional properties of these components may occur. Common characteristics of all of these techniques are treatment at ambient or insignificant higher temperatures and short time of processing (1 to 10 minutes. High hydrostatic pressure applied to various foodstuffs can destroy some microorganisms, successfully modify molecule conformation and consequently improve functional properties of foods. At the same time it acts positively on the food products intend for freezing. Tribomechanical treatment causes micronization of various solid materials that results in nanoparticles and changes in structure and electrical potential of molecules. Therefore, the significant improvement of some rheological and functional properties of materials occurred. Ultrasound treatment proved to be potentially very successful technique of food processing. It can be used as a pretreatment to drying (decreases drying time and improves functional properties of food, as extraction process of various components

  17. Radial arterial compliance measurement by fiber Bragg grating pulse recorder.

    Science.gov (United States)

    Sharath, U; Shwetha, C; Anand, K; Asokan, S

    2014-12-01

    In the present work, we report a novel, in vivo, noninvasive technique to determine radial arterial compliance using the radial arterial pressure pulse waveform (RAPPW) acquired by fiber Bragg grating pulse recorder (FBGPR). The radial arterial compliance of the subject can be measured during sphygmomanometric examination by the unique signatures of arterial diametrical variations and the beat-to-beat pulse pressure acquired simultaneously from the RAPPW recorded using FBGPR. This proposed technique has been validated against the radial arterial diametrical measurements obtained from the color Doppler ultrasound. Two distinct trials have been illustrated in this work and the results from both techniques have been found to be in good agreement with each other.

  18. Rapid Binary Gage Function to Extract a Pulsed Signal Buried in Noise

    Directory of Open Access Journals (Sweden)

    Bagaria William J

    2004-01-01

    Full Text Available The type of signal studied in this paper is a periodic pulse, with the pulse length short compared to the period, and the signal is buried in noise. If standard techniques such as the fast Fourier transform are used to study the signal, the data record needs to be very long. Additionally, there would be a very large number of calculations. The rapid binary gage function was developed to quickly determine the period of the signal, and the start time of the first pulse in the data. Once these two parameters are determined, the pulsed signal can be recovered using a standard data folding and adding technique.

  19. Rejection of partial-discharge-induced pulses in fission chambers designed for sodium-cooled fast reactors

    Science.gov (United States)

    Hamrita, H.; Jammes, C.; Galli, G.; Laine, F.

    2017-03-01

    Under given temperature and bias voltage conditions, partial discharges can create pulses in fission chambers. Based on experimental results, this phenomenon is in-depth investigated and discussed. A pulse-shape-analysis technique is proposed to discriminate neutron-induced pulses from partial-discharge-induced ones.

  20. Fissile mass estimation by pulsed neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Israelashvili, I., E-mail: israelashvili@gmail.com [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Dubi, C.; Ettedgui, H.; Ocherashvili, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Beck, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Roesgen, E.; Crochmore, J.M. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Ridnik, T.; Yaar, I. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel)

    2015-06-11

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.