WorldWideScience

Sample records for pulse techniques

  1. Pulse holographic measurement techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Baik, Seong Hoon; Hong, Seok Kyung; Kim, Jeong Moog; Kim, Duk Hyun

    1992-01-01

    With the development of laser, remote inspection techniques using laser have been growing on. The inspection and measurement techniques by pulse holography are well-established technique for precise measurement, and widely used in various fields of industry now. In nuclear industry, this technology is practically used because holographic inspection is remote, noncontact, and precise measurement technique. In relation to remote inspection technology in nuclear industry, state-of-the art of pulse HNDT (Holographic non-destructive testing) and holographic measurement techniques are examined. First of all, the fundamental principles as well as practical problems for applications are briefly described. The fields of pulse holography have been divided into the HNDT, flow visualization and distribution study, and other application techniques. Additionally holographic particle study, bubble chamber holography, and applications to other visualization techniques are described. Lastly, the current status for the researches and applications of pulse holography to nuclear industry which are carried out actively in Europe and USA, is described. (Author)

  2. Millimicrosecond pulse techniques

    CERN Document Server

    Lewis, Ian A D

    1959-01-01

    Millimicrosecond Pulse Techniques, Second Edition focuses on millimicrosecond pulse techniques and the development of devices of large bandwidth, extending down to comparatively low frequencies (1 Mc/s). Emphasis is on basic circuit elements and pieces of equipment of universal application. Specific applications, mostly in the field of nuclear physics instrumentation, are considered. This book consists of eight chapters and opens with an introduction to some of the terminology employed by circuit engineers as well as theoretical concepts, including the laws of circuit analysis, Fourier analysi

  3. Pulsed neutron generator for use with pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Rochau, G.E.

    1980-01-01

    A high-output, transportable, pulsed neutron generator has been developed by Sandia National Laboratories for use with Pulsed Neutron Activation (PNA) techniques. The PNA neutron generator generates > 10 10 14 MeV D-T neutrons in a 1.2 millisecond pulse. Each operation of the unit will produce a nominal total neutron output of 1.2 x 10 10 neutrons. The generator has been designed to be easily repaired and modified. The unit requires no additional equipment for operation or measurement of output

  4. Research on digital multi-channel pulse height analysis techniques

    International Nuclear Information System (INIS)

    Xiao Wuyun; Wei Yixiang; Ai Xianyun; Ao Qi

    2005-01-01

    Multi-channel pulse height analysis techniques are developing in the direction of digitalization. Based on digital signal processing techniques, digital multi-channel analyzers are characterized by powerful pulse processing ability, high throughput, improved stability and flexibility. This paper analyzes key techniques of digital nuclear pulse processing. With MATLAB software, main algorithms are simulated, such as trapezoidal shaping, digital baseline estimation, digital pole-zero/zero-pole compensation, poles and zeros identification. The preliminary general scheme of digital MCA is discussed, as well as some other important techniques about its engineering design. All these lay the foundation of developing homemade digital nuclear spectrometers. (authors)

  5. A correlation-based pulse detection technique for gamma-ray/neutron detectors

    International Nuclear Information System (INIS)

    Faisal, Muhammad; Schiffer, Randolph T.; Flaska, Marek; Pozzi, Sara A.; Wentzloff, David D.

    2011-01-01

    We present a correlation-based detection technique that significantly improves the probability of detection for low energy pulses. We propose performing a normalized cross-correlation of the incoming pulse data to a predefined pulse template, and using a threshold correlation value to trigger the detection of a pulse. This technique improves the detector sensitivity by amplifying the signal component of incoming pulse data and rejecting noise. Simulation results for various different templates are presented. Finally, the performance of the correlation-based detection technique is compared to the current state-of-the-art techniques.

  6. Pulse radiolysis - new approaches to the classical technique

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, Z P [Institute of Nuclear Research, Warsaw (Poland)

    1973-01-01

    The present status of classical pulse radiolysis is described as well as trends in the further development of this technique (the investigation of radiolysis with nano- and picoseconds time resolution, new optica and electrochemical methods of intermediate species detection). The attention is concentrated on experimental difficulties of particular versions and the achievements are reviewed critically. This paper is the background for experiments being performed in the Institute of Nuclear Research on new techniques of pulse radiolysis.

  7. Generation of Quasi-Gaussian Pulses Based on Correlation Techniques

    Directory of Open Access Journals (Sweden)

    POHOATA, S.

    2012-02-01

    Full Text Available The Gaussian pulses have been mostly used within communications, where some applications can be emphasized: mobile telephony (GSM, where GMSK signals are used, as well as the UWB communications, where short-period pulses based on Gaussian waveform are generated. Since the Gaussian function signifies a theoretical concept, which cannot be accomplished from the physical point of view, this should be expressed by using various functions, able to determine physical implementations. New techniques of generating the Gaussian pulse responses of good precision are approached, proposed and researched in this paper. The second and third order derivatives with regard to the Gaussian pulse response are accurately generated. The third order derivates is composed of four individual rectangular pulses of fixed amplitudes, being easily to be generated by standard techniques. In order to generate pulses able to satisfy the spectral mask requirements, an adequate filter is necessary to be applied. This paper emphasizes a comparative analysis based on the relative error and the energy spectra of the proposed pulses.

  8. Pulsed neutron generator for mass flow measurement using the pulsed neutron activation technique

    International Nuclear Information System (INIS)

    Rochau, G.E.; Hornsby, D.R.; Mareda, J.F.; Riggan, W.C.

    1980-01-01

    A high-output, transportable neutron generator has been developed to measure mass flow velocities in reactor safety tests using the Pulsed Neutron Activation (PNA) Technique. The PNA generator produces >10 10 14 MeV D-T neutrons in a 1.2 millisecond pulse. The Millisecond Pulse (MSP) Neutron Tube, developed for this application, has an expected operational life of 1000 pulses, and it limits the generator pulse repetition rate to 12 pulses/minute. A semiconductor neutron detector is included in the generator package to monitor the neutron output. The control unit, which can be operated manually or remotely, also contains a digital display with a BCD output for the neutron monitor information. The digital logic of the unit controls the safety interlocks and rejects transient signals which could accidently fire the generator

  9. MICROCALORIMETER SPECTROSCOPY AT HIGH PULSE RATES: A MULTI-PULSE FITTING TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. W.; Alpert, B. K.; Doriese, W. B.; Joe, Y. I.; O’Neil, G. C.; Swetz, D. S.; Ullom, J. N. [National Institute of Standards and Technology, 325 Broadway MS 686.02, Boulder, CO 80305 (United States); Fischer, D. A.; Jaye, C. [National Institute of Standards and Technology, Brookhaven National Lab, Brookhaven, NY (United States)

    2015-08-15

    Transition Edge Sensor microcalorimeters can measure X-ray and gamma-ray energies with very high energy resolution and high photon-collection efficiency. For this technology to reach its full potential in future X-ray observatories, each sensor must be able to measure hundreds or even thousands of photon energies per second. Current “optimal filtering” approaches to achieve the best possible energy resolution work only for photons that are well isolated in time, a requirement which is in direct conflict with the need for high-rate measurements. We describe a new analysis procedure to allow fitting for the pulse height of all photons even in the presence of heavy pulse pile-up. In the limit of isolated pulses, the technique reduces to standard optimal filtering with long records. We employ reasonable approximations to the noise covariance function in order to render this procedure computationally viable even for very long data records. The technique is employed to analyze X-ray emission spectra at 600 eV and 6 keV at rates up to 250 counts s{sup −1} in microcalorimeters having exponential signal decay times of approximately 1.2 ms.

  10. Interference Mitigation Technique for Coexistence of Pulse-Based UWB and OFDM

    Directory of Open Access Journals (Sweden)

    Ohno Kohei

    2008-01-01

    Full Text Available Abstract Ultra-wideband (UWB is a useful radio technique for sharing frequency bands between radio systems. It uses very short pulses to spread spectrum. However, there is a potential for interference between systems using the same frequency bands at close range. In some regulatory systems, interference detection and avoidance (DAA techniques are required to prevent interference with existing radio systems. In this paper, the effect of interference on orthogonal frequency division multiplexing (OFDM signals from pulse-based UWB is discussed, and an interference mitigation technique is proposed. This technique focuses on the pulse repetition cycle of UWB. The pulse repetition interval is set the same or half the period of the OFDM symbol excluding the guard interval to mitigate interference. These proposals are also made for direct sequence (DS-UWB. Bit error rate (BER performance is illustrated through both simulation and theoretical approximations.

  11. Increasing the bit rate in OCDMA systems using pulse position modulation techniques.

    Science.gov (United States)

    Arbab, Vahid R; Saghari, Poorya; Haghi, Mahta; Ebrahimi, Paniz; Willner, Alan E

    2007-09-17

    We have experimentally demonstrated two novel pulse position modulation techniques, namely Double Pulse Position Modulation (2-PPM) and Differential Pulse Position Modulation (DPPM) in Time-Wavelength OCDMA systems that will operate at a higher bit rate compared to traditional OOK-OCDMA systems with the same bandwidth. With 2-PPM technique, the number of active users will be more than DPPM while their bit rate is almost the same. Both techniques provide variable quality of service in OCDMA networks.

  12. Analysis of pulse-shape discrimination techniques for BC501A using GHz digital signal processing

    International Nuclear Information System (INIS)

    Rooney, B.D.; Dinwiddie, D.R.; Nelson, M.A.; Rawool-Sullivan, Mohini W.

    2001-01-01

    A comparison study of pulse-shape analysis techniques was conducted for a BC501A scintillator using digital signal processing (DSP). In this study, output signals from a preamplifier were input directly into a 1 GHz analog-to-digital converter. The digitized data obtained with this method was post-processed for both pulse-height and pulse-shape information. Several different analysis techniques were evaluated for neutron and gamma-ray pulse-shape discrimination. It was surprising that one of the simplest and fastest techniques resulted in some of the best pulse-shape discrimination results. This technique, referred to here as the Integral Ratio technique, was able to effectively process several thousand detector pulses per second. This paper presents the results and findings of this study for various pulse-shape analysis techniques with digitized detector signals.

  13. Real-time pulse deinterleaving using digital delay line techniques

    Science.gov (United States)

    Lentz, L. F.; Palermo, T. J.

    This paper describes an implementation of a tracking pulse sorter based on predictive gating techniques. Real-time pulse sorters or pulse train gating devices have been utilized by the ELINT signal analyst for many years. The more elementary of these devices employed a retriggerable delay interval and an acceptance gate, which were used in predictive fashion to track pulse trains whose PRIs fall within the limits of the programmed delay interval. This design utilizes the pulse hit/miss history of individual track files in a variation of a sequential observer detection algorithm. Use of a digital delay line with pulse history allows multiple pulse trains to be tracked simultaneously and independently without interference. The design also provides flexibility in lock-on and track criteria to allow maintenance of acquisition probability and false alarm rate in dense signal environments and with low SNRs. The hardware provides time interval resolution to 12.5 nsec and covers a PRI range of 50 microsec to 50 msec.

  14. An Efficient Digital Pulse Shape Discrimination Technique for Scintillation Detectors Based on FPGA

    International Nuclear Information System (INIS)

    Kamel, M.S.

    2014-01-01

    Different techniques for pulse discrimination (PSD) of the scintillation pulses have been developed. The PSD of scintillation pulese can been used in several applications as Positron Emission Topography (PET) system. Each technique analyzes the resulting pulses from the absorption of radiation in the scintillation pulses were filtered and digitized then it is captured using DAQ, and it sent to the host computer for processing. The spatial resolution of images that generated in PET system can be improved by applying the proposed PSD. In this thesis various digital PSD techniques are proposed to discriminate the scintillation pulses. These techniques are based on discrete sine transform (DST). discrete cosine transform (DCT). Discrete hartley transform (DHT), Discrete Goertzel transform (DGT),and principal component analysis (PCA). Then the output coefficients of the discrete transforms are classified using one of the following classifiers T-test,tuned, or support vector machine (SVM).

  15. Pulse shaping using the optical Fourier transform technique - for ultra-high-speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael

    2009-01-01

    This paper reports on the generation of a 1.6 ps FWHM flat-top pulse using the optical Fourier transform technique. The pulse is validated in a 320 Gbit/s demultiplexing experiment.......This paper reports on the generation of a 1.6 ps FWHM flat-top pulse using the optical Fourier transform technique. The pulse is validated in a 320 Gbit/s demultiplexing experiment....

  16. The pulses as a diagnostic technique in the sun

    International Nuclear Information System (INIS)

    Das, G.C.

    1980-01-01

    In this paper we discuss a method of finding physical parameters by studying the pulses in the Sun. For the sake of a mathematical approach, we consider an ideal, highly relevant model which could exist in the Sun with the effects of ionization, due to which there will be a continuous formation of ionized particles. It is observed that the pulse originated at the centre of a dipole field propagates along the magnetic field. We derive a dispersion relation for these types of pulses, propagating from the centre to the solar surface. The time taken by the pulse from its source to the solar surface is also estimated, with due account of the ionization effects on the pulse. Without proper account of these effects, the technique employed in determing the physical parameters may lead to error. Temporal and spatial damping of the pulses lead to estimates of the velocity distribution of the ionized particles and of the amplitude of the magnetic field of the wave in pulse. (orig.)

  17. Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.

    Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...

  18. Techniques for Pump-Probe Synchronisation of Fsec Radiation Pulses

    CERN Document Server

    Schlarb, Holger

    2005-01-01

    The increasing interest on the production of ultra-short photon pulses in future generations of Free-Electron Lasers operating in the UV, VUV or X-ray regime demands new techniques to reliably measure and control the arrival time of the FEL-pulses at the experiment. For pump-probe experiments using external optical lasers the desired synchronisation is in the order of tens of femtoseconds, the typical duration of the FEL pulse. Since, the accelerators are large scale facilities of the length of several hundred meters or even kilometers, the problem of synchronisation has to be attacked twofold. First, the RF acceleration sections upstream of the magnetic bunch compressors need to be stabilised in amplitude and phase to high precision. Second, the remain electron beam timing jitter needs to be determined with femtosecond accuracy for off-line analysis. In this talk, several techniques using the electron or the FEL beam to monitor the arrival time are presented, and the proposed layout of the synchronisation sy...

  19. Optimal time-domain technique for pulse width modulation in power electronics

    Directory of Open Access Journals (Sweden)

    I. Mayergoyz

    2018-05-01

    Full Text Available Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.

  20. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Kozawa, Takahiro; Yoshida, Youichi; Tagawa, Seiichi

    2006-01-01

    A new pulse radiolysis system based on a femtosecond electron beam and a femtosecond laser light with oblique double-pulse injection was developed for studying ultrafast chemical kinetics and primary processes of radiation chemistry. The time resolution of 5.2 ps was obtained by measuring transient absorption kinetics of hydrated electrons in water. The optical density of hydrated electrons was measured as a function of the electron charge. The data indicate that the double-laser-pulse injection technique was a powerful tool for observing the transient absorptions with a good signal to noise ratio in pulse radiolysis

  1. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    Science.gov (United States)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  2. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Martín, S., E-mail: sergiomr@usal.es; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ{sup 2} test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  3. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    International Nuclear Information System (INIS)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-01-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ"2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  4. Flat-top pulse generation by the optical Fourier transform technique for ultrahigh speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael

    2009-01-01

    This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super-Gaussian sp......This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super...

  5. [Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique].

    Science.gov (United States)

    Zhang, Qian; Xiong, Wei; Chen, Yu-Qi; Li, Run-Hua

    2011-02-01

    A wood slice was used as absorber to transfer liquid sample to solid sample in order to solve the problems existing in directly analyzing aqueous solutions with laser-induced breakdown spectroscopy (LIBS). An optical-electrical dual pulse LIBS (OEDP-LIBS) technique was first used to enhance atomic emission of mercury in laser-induced plasma. The calibration curves of mercury were obtained by typical single pulse LIBS and OEDP-LIBS techniques. The limit of detection (LOD) of mercury in these two techniques reaches 2.4 and 0.3 mg x L(-1), respectively. Under current experimental conditions, the time-integrated a tomic emission of mercury at 253.65 nm was enhanced 50 times and the LOD of mercury was improved by one order, if comparing OEDP-LIBS to single pulse LIBS. The required time for a whole analysis process is less than 5 minutes. As the atomic emission of mercury decays slowly while increasing the delay time between electrical pulse and laser pulse, increasing the electrical pulse width can further enhance the time integrated intensity of mercury emission and improve the detection sensitivity of mercury by OEDP-LIBS technique.

  6. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    International Nuclear Information System (INIS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R.M.

    2015-01-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence

  7. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  8. Self-diffusion measurements in heterogeneous systems using NMR pulsed field gradient technique

    International Nuclear Information System (INIS)

    Heink, W.; Kaerger, J.; Walter, A.

    1978-01-01

    The experimental pecularities of the NMR pulsed field gradient technique are critical surveyed in its application to zeolite adsorbate adsorbent systems. After a presentation of the different transport parameters accessible by this technique, the consequences of the existence of inner field gradients being inherent to heterogeneous systems are analyzed. Experimental conditions and consequences of an application of pulsed field gradients of high intensity which are necessary for the measurement of small intracrystalline self-diffusion coefficients, are discussed. Gradient pulses of 0.15 Tcm -1 with pulse widths of 2 ms maximum and relative deviations of less than 0.01 per mille can be realized. Since for a number of adsorbate adsorbent systems a distinct dependence of the intracrystalline self-diffusion coeffcients on adsorbate concentration is observed, determination of zeolite pore fiiling factor is of considerable importance for the interpretation of the diffusivities obtained. It is demonstrated that also this information can be obtained by NMR technique in a straightforward way with a mean error of less than 5 to 10 %. Applying this new method and using an optimum experimental device as described, pore filling factor dependences of the self-diffusion coefficients of alkanes in NaX zeolites can be followed over more than two orders of magnitude. (author)

  9. Characterization of ultrashort laser pulses employing self-phase modulation dispersion-scan technique

    Science.gov (United States)

    Sharba, A. B.; Chekhlov, O.; Wyatt, A. S.; Pattathil, R.; Borghesi, M.; Sarri, G.

    2018-03-01

    We present a new phase characterization technique for ultrashort laser pulses that employs self-phase modulation (SPM) in the dispersion scan approach. The method can be implemented by recording a set of nonlinearly modulated spectra generated with a set of known chirp values. The unknown phase of the pulse is retrieved by linking the recorded spectra to the initial spectrum of the pulse via a phase function guessed by a function minimization iterative algorithm. This technique has many advantages over the dispersion scan techniques that use frequency conversion processes. Mainly, the use of SPM cancels out the phase and group velocity mismatch errors and dramatically widens the spectral acceptance of the nonlinear medium and the range of working wavelength. The robustness of the technique is demonstrated with smooth and complex phase retrievals using numerical examples. The method is shown to be not affected by the spatial distribution of the beam or the presence of nonlinear absorption process. In addition, we present an efficient method for phase representation based on a summation of a set of Gaussian functions. The independence of the functions from each other prevents phase coupling of any kind and facilitates a flexible phase representation.

  10. Baseline restoration technique based on symmetrical zero-area trapezoidal pulse shaper

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guoqiang, E-mail: 24829500@qq.com [Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan, Chengdu University of Technology, Chengdu 610059 (China); Yang, Jian, E-mail: 22105653@qq.com [Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan, Chengdu University of Technology, Chengdu 610059 (China); Hu, Tianyu; Ge, Liangquan [Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan, Chengdu University of Technology, Chengdu 610059 (China); Ouyang, Xiaoping [Northwest Institute of Nuclear Technology, Xi’an 710024,China (China); Zhang, Qingxian; Gu, Yi [Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan, Chengdu University of Technology, Chengdu 610059 (China)

    2017-06-21

    Since the baseline of the unipolar pulse shaper have the direct-current (DC) offset and drift, an additional baseline estimator is need to obtain baseline values in real-time. The bipolar zero-area (BZA) pulse shapers can be used for baseline restoration, but they cannot restrain the baseline drift due to their asymmetrical shape. In this study, three trapezoids are synthesized as a symmetrical zero-area (SZA) shape, which can remove the DC offset and restrain the baseline drift. This baseline restoration technique can be easily implemented in digital pulse processing (DPP) systems base on the recursive algorithm. To strengthen our approach, the iron's characteristic x-ray was detected using a Si-PIN diode detector. Compared with traditional trapezoidal pulse shapers, the SZA trapezoidal pulse shaper improved the energy resolution from 237 eV to 216 eV for the 6.403 keV Kα peak.

  11. Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization

    Science.gov (United States)

    Dumitrache, Ciprian

    Recent advances in the development of compact high power laser sources and fiber optic delivery of giant pulses have generated a renewed interest in laser ignition. The non-intrusive nature of laser ignition gives it a set of unique characteristics over the well-established capacitive discharge devices (or spark plugs) that are currently used as ignition sources in engines. Overall, the use of laser ignition has been shown to have a positive impact on engine operation leading to a reduction in NOx emission, fuel saving and an increased operational envelope of current engines. Conventionally, laser ignition is achieved by tightly focusing a high-power q-switched laser pulse until the optical intensity at the focus is high enough to breakdown the gas molecules. This leads to the formation of a spark that serves as the ignition source in engines. However, there are certain disadvantages associated with this ignition method. This ionization approach is energetically inefficient as the medium is transparent to the laser radiation until the laser intensity is high enough to cause gas breakdown. As a consequence, very high energies are required for ignition (about an order of magnitude higher energy than capacitive plugs at stoichiometric conditions). Additionally, the fluid flow induced during the plasma recombination generates high vorticity leading to high rates of flame stretching. In this work, we are addressing some of the aforementioned disadvantages of laser ignition by developing a novel approach based on a dual-pulse pre-ionization scheme. The new technique works by decoupling the effect of the two ionization mechanisms governing plasma formation: multiphoton ionization (MPI) and electron avalanche ionization (EAI). An UV nanosecond pulse (lambda = 266 nm) is used to generate initial ionization through MPI. This is followed by an overlapped NIR nanosecond pulse (lambda = 1064 nm) that adds energy into the pre-ionized mixture into a controlled manner until the

  12. Study of pulse stretching in high current power supplies using multipulse techniques

    International Nuclear Information System (INIS)

    Trendler, R.C.

    1977-01-01

    Considerable interest exists at Fermilab to increase the pulse width of the Neutrino Focusing Horn to permit an increase in beam spill length from twenty (20) microseconds to one (1) millisecond. Two techniques to do this were examined: (1) a high current transformer, and (2) increased bank capacitance using the multi-power supply technique. The transformer is the most straightforward conceptually; it is, however, a complicated device requiring sizable changes to the existing horn power supply. This alternative is briefly reviewed. The second scheme involves pulsing a 20 kv 200 ka power supply to establish the required load current and then maintaining this current by the sequential pulsing of a number of low voltage high current power supplies. This alternative is discussed in detail with the results of tests performed on the Fermilab Focusing Horn System

  13. Dynamic Deformation Behavior of Soft Material Using Shpb Technique and Pulse Shaper

    Science.gov (United States)

    Lee, Ouk Sub; Cho, Kyu Sang; Kim, Sung Hyun; Han, Yong Hwan

    This paper presents a modified Split Hopkinson Pressure Bar (SHPB) technique to obtain compressive stress strain data for NBR rubber materials. An experimental technique with a modified the conventional SHPB has been developed for measuring the compressive stress strain responses of materials with low mechanical impedance and low compressive strengths, such as the rubber and the polymeric material. This paper uses an aluminum pressure bar to achieve a closer impedance match between the pressure bar and the specimen materials. In addition, a pulse shaper is utilized to lengthen the rising time of the incident pulse to ensure dynamic stress equilibrium and homogeneous deformation of NBR rubber materials. It is found that the modified technique can determine the dynamic deformation behavior of rubbers more accurately.

  14. Pulsed dose rate brachytherapy (PDR): an analysis of the technique at 2 years

    Energy Technology Data Exchange (ETDEWEB)

    Thienpont, M [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde; Van Eijkeren, M; Van Hecke, H; Boterberg, T; De Neve, W

    1995-12-01

    A total of 154 applications was analysed using a pulsed dose brachytherapy technique for 138 patients over a 2 year period with emphasis on technical aspects influencing the overall treatment time. Vaginal ovoids were used in 59 cases, plastic tubes in 52, a Fletcher-type in 18, vaginal cylinders in 14 and a perineal template in 11 cases. Pulses were given at hourly intervals with a median dose rate of 0.6 Gy per pulse (range 0.4 to 3 Gy). The number of pulses per application varied from 3 to 134 (median 32). The number of dwell positions varied from 1 to 542 over 1 to 18 catheters. Patient related problems were few. The room was entered almost every 77 minutes. We noted 561 status codes in 147 applications. Of the 25 different codes, the most frequent one was due to the door left open when a pulse had to be given (35%) or due to constriction of the plastic catheters at the transfer tube junction (26%). However, the median total treatment time was increased by only 5 minutes. With pulsed dose rate brachytherapy at hourly pulses we can treat our patients within the planned time despite frequent room entrance and occurrence of an appreciable number of status codes. This technique seems to fulfill its promise to replace low dose rate brachytherapy.

  15. Pulsed electrical discharges for medicine and biology techniques, processes, applications

    CERN Document Server

    Kolikov, Victor

    2015-01-01

    This book presents the application of pulsed electrical discharges in water and water dispersions of metal nanoparticles in medicine (surgery, dentistry, and oncology), biology, and ecology. The intensive electrical and shock waves represent a novel technique to destroy viruses and this way to  prepare anti-virus vaccines. The method of pulsed electrical discharges in water allows to decontaminate water from almost all known bacteria and spores of fungi being present in human beings. The nanoparticles used are not genotoxic and mutagenic. This book is useful for researchers and graduate students.

  16. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    Science.gov (United States)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  17. Real-time lossless data compression techniques for long-pulse operation

    International Nuclear Information System (INIS)

    Vega, J.; Ruiz, M.; Sanchez, E.; Pereira, A.; Portas, A.; Barrera, E.

    2007-01-01

    Data logging and data distribution will be two main tasks connected with data handling in ITER. Data logging refers to the recovery and ultimate storage of all data, independent of the data source. Data distribution is related, on the one hand, to the on-line data broadcasting for immediate data availability and, on the other hand, to the off-line data access. Due to the large data volume expected, data compression is a useful candidate to prevent the waste of resources in communication and storage systems. On-line data distribution in a long-pulse environment requires the use of a deterministic approach to be able to ensure a proper response time for data availability. However, an essential feature for all the above purposes is to apply lossless compression techniques. This article reviews different lossless data compression techniques based on delta compression. In addition, the concept of cyclic delta transformation is introduced. Furthermore, comparative results concerning compression rates on different databases (TJ-II and JET) and computation times for compression/decompression are shown. Finally, the validity and implementation of these techniques for long-pulse operation and real-time requirements is also discussed

  18. Real-time lossless data compression techniques for long-pulse operation

    Energy Technology Data Exchange (ETDEWEB)

    Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: jesus.vega@ciemat.es; Ruiz, M. [Dpto. de Sistemas Electronicos y de Control, UPM, Campus Sur. Ctra., Valencia km 7, 28031 Madrid (Spain); Sanchez, E.; Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Barrera, E. [Dpto. de Sistemas Electronicos y de Control, UPM, Campus Sur. Ctra., Valencia km 7, 28031 Madrid (Spain)

    2007-10-15

    Data logging and data distribution will be two main tasks connected with data handling in ITER. Data logging refers to the recovery and ultimate storage of all data, independent of the data source. Data distribution is related, on the one hand, to the on-line data broadcasting for immediate data availability and, on the other hand, to the off-line data access. Due to the large data volume expected, data compression is a useful candidate to prevent the waste of resources in communication and storage systems. On-line data distribution in a long-pulse environment requires the use of a deterministic approach to be able to ensure a proper response time for data availability. However, an essential feature for all the above purposes is to apply lossless compression techniques. This article reviews different lossless data compression techniques based on delta compression. In addition, the concept of cyclic delta transformation is introduced. Furthermore, comparative results concerning compression rates on different databases (TJ-II and JET) and computation times for compression/decompression are shown. Finally, the validity and implementation of these techniques for long-pulse operation and real-time requirements is also discussed.

  19. Modified Dual Three-Pulse Modulation technique for single-phase inverter topology

    Science.gov (United States)

    Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.

    2016-01-01

    In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.

  20. On the effects of quantization on mismatched pulse compression filters designed using L-p norm minimization techniques

    CSIR Research Space (South Africa)

    Cilliers, Jacques E

    2007-10-01

    Full Text Available In [1] the authors introduced a technique for generating mismatched pulse compression filters for linear frequency chirp signals. The technique minimizes the sum of the pulse compression sidelobes in a p L –norm sense. It was shown that extremely...

  1. Thermal diffusivity of diamond films using a laser pulse technique

    International Nuclear Information System (INIS)

    Albin, S.; Winfree, W.P.; Crews, B.S.

    1990-01-01

    Polycrystalline diamond films were deposited using a microwave plasma-enhanced chemical vapor deposition process. A laser pulse technique was developed to measure the thermal diffusivity of diamond films deposited on a silicon substrate. The effective thermal diffusivity of a diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by laser pulses. An analytical model is presented to calculate the effective inplane (face-parallel) diffusivity of a two-layer system. The model is used to reduce the effective thermal diffusivity of the diamond/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film

  2. Phase-coded multi-pulse technique for ultrasonic high-order harmonic imaging of biological tissues in vitro

    International Nuclear Information System (INIS)

    Ma Qingyu; Zhang Dong; Gong Xiufen; Ma Yong

    2007-01-01

    Second or higher order harmonic imaging shows significant improvement in image clarity but is degraded by low signal-noise ratio (SNR) compared with fundamental imaging. This paper presents a phase-coded multi-pulse technique to provide the enhancement of SNR for the desired high-order harmonic ultrasonic imaging. In this technique, with N phase-coded pulses excitation, the received Nth harmonic signal is enhanced by 20 log 10 N dB compared with that in the single-pulse mode, whereas the fundamental and other order harmonic components are efficiently suppressed to reduce image confusion. The principle of this technique is theoretically discussed based on the theory of the finite amplitude sound waves, and examined by measurements of the axial and lateral beam profiles as well as the phase shift of the harmonics. In the experimental imaging for two biological tissue specimens, a plane piston source at 2 MHz is used to transmit a sequence of multiple pulses with equidistant phase shift. The second to fifth harmonic images are obtained using this technique with N = 2 to 5, and compared with the images obtained at the fundamental frequency. Results demonstrate that this technique of relying on higher order harmonics seems to provide a better resolution and contrast of ultrasonic images

  3. Pulse Compression Techniques for Laser Generated Ultrasound

    Science.gov (United States)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  4. Pulse Sign Separation Technique for the Received Bits in Wireless Ultra-Wideband Combination Approach

    Directory of Open Access Journals (Sweden)

    Rashid A. Fayadh

    2014-01-01

    Full Text Available When receiving high data rate in ultra-wideband (UWB technology, many users have experienced multiple-user interference and intersymbol interference in the multipath reception technique. Structures have been proposed for implementing rake receivers to enhance their capabilities by reducing the bit error probability (Pe, thereby providing better performances by indoor and outdoor multipath receivers. As a result, several rake structures have been proposed in the past to reduce the number of resolvable paths that must be estimated and combined. To achieve this aim, we suggest two maximal ratio combiners based on the pulse sign separation technique, such as the pulse sign separation selective combiner (PSS-SC and the pulse sign separation partial combiner (PSS-PC to reduce complexity with fewer fingers and to improve the system performance. In the combiners, a comparator was added to compare the positive quantity of positive pulses and negative quantities of negative pulses to decide whether the transmitted bit was 1 or 0. The Pe was driven by simulation for multipath environments for impulse radio time-hopping binary phase shift keying (TH-BPSK modulation, and the results were compared with those of conventional selective combiners (C-SCs and conventional partial combiners (C-PCs.

  5. A cement channel-detection technique using the pulsed-neutron log

    International Nuclear Information System (INIS)

    Myers, G.D.

    1991-01-01

    A channel-detection technique has been developed using boron solutions and pulsed-neutron logging (PNL) tools. This technique relies on the extremely high-neutron-absorption cross section that boron exhibits relative to other common elements, including chlorine. The PNL tool is used to detect movement of a boron solution in a log-inject-log procedure. The technique has identified channels in such difficult applications as logging through two strings of pipe and in highly deviated wellbores. Logging procedures are simple and cement channels can be readily identified. The boron solutions are relatively inexpensive, safe to handle, and nonradioactive. Additional PNL information for reservoir performance evaluation is collected simultaneously during channel-detection logging. This paper describes the theory, development, field application, and limitations of this channel-detection logging technique

  6. On the Transmission Line Pulse Measurement Technique

    OpenAIRE

    X. Rodriguez; M. Eduardo; M. Harington

    2015-01-01

    Transmission Line Pulse is a short pulse (25ns to 150ns) measurement of the current-voltage (I/V) characteristics of the ESD protection built into an integrated circuit. The short TLP pulses are used to simulate the short ESD pulse threats and integrated circuit must tolerate without being damaged. In this work the fundamental principles of how the TLP pulse is generated and used to create I-V characteristic plots will be explored. The measurement will be then used to characterize the I-V cha...

  7. Near threshold pulse shape discrimination techniques in scintillating CsI(Tl) crystals

    International Nuclear Information System (INIS)

    Wu, S.C.; Yue, Q.; Lai, W.P.; Li, H.B.; Li, J.; Lin, S.T.; Liu, Y.; Singh, V.; Wang, M.Z.; Wong, H.T.; Xin, B.; Zhou, Z.Y.

    2004-01-01

    There are recent interests with CsI(Tl) scintillating crystals for Dark Matter experiments. The key merit is the capability to differentiate nuclear recoil (nr) signatures from the background β/γ-events due to ambient radioactivity on the basis of their different pulse shapes. One of the major experimental challenges is to perform such pulse shape analysis in the statistics-limited domain where the light output is close to the detection threshold. Using data derived from measurements with low-energy γ's and nuclear recoils due to neutron elastic scatterings, it was verified that the pulse shapes between β/γ-events are different. Several methods of pulse shape discrimination (PSD) are studied, and their relative merits are compared. Full digitization of the pulse shapes is crucial to achieve good discrimination. Advanced software techniques with mean time, neural network and likelihood ratios give rise to satisfactory performance, and are superior to the conventional Double Charge method commonly applied at higher energies. PSD becomes effective starting at a light yield of about 20 photo-electrons. This corresponds to a detection threshold of about 5 keV electron-equivalence energy, or 40-50 keV recoil kinetic energy, in realistic experiments

  8. An application of commercial data averaging techniques in pulsed photothermal experiments

    International Nuclear Information System (INIS)

    Grozescu, I.V.; Moksin, M.M.; Wahab, Z.A.; Yunus, W.M.M.

    1997-01-01

    We present an application of data averaging technique commonly implemented in many commercial digital oscilloscopes or waveform digitizers. The technique was used for transient data averaging in the pulsed photothermal radiometry experiments. Photothermal signals are surrounded by an important amount of noise which affect the precision of the measurements. The effect of the noise level on photothermal signal parameters in our particular case, fitted decay time, is shown. The results of the analysis can be used in choosing the most effective averaging technique and estimating the averaging parameter values. This would help to reduce the data acquisition time while improving the signal-to-noise ratio

  9. High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds-A review.

    Science.gov (United States)

    Yan, Liang-Gong; He, Lang; Xi, Jun

    2017-09-02

    How to extract bioactive compounds safely and efficiently is one of the problems for the food and pharmaceutical industry. In recent years, several novel extraction techniques have been proposed. To pursue a more efficient method for industrial production, high intensity pulsed electric field (HIPEF) extraction technique has been developed. HIPEF extraction technique, which is based on the conventional pulsed electric field (PEF), provided higher electric field intensity and a special continuous extraction system, and it has confirmed less extraction time, higher extraction yield, and mild processing temperature. So this innovative technique is promising for application of industrial production. This review was devoted to introducing the recent achievement of HIPEF extraction technique, including novel HIPEF continuous extraction system, principles and mechanisms; the critical process factors influencing its performance applications; and comparison of HIPEF extraction with other extraction techniques. In the end, the defects and future trends of HIPEF extraction were also discussed.

  10. Detection of rebars in concrete using advanced ultrasonic pulse compression techniques.

    Science.gov (United States)

    Laureti, S; Ricci, M; Mohamed, M N I B; Senni, L; Davis, L A J; Hutchins, D A

    2018-04-01

    A pulse compression technique has been developed for the non-destructive testing of concrete samples. Scattering of signals from aggregate has historically been a problem in such measurements. Here, it is shown that a combination of piezocomposite transducers, pulse compression and post processing can lead to good images of a reinforcement bar at a cover depth of 55 mm. This has been achieved using a combination of wide bandwidth operation over the 150-450 kHz range, and processing based on measuring the cumulative energy scattered back to the receiver. Results are presented in the form of images of a 20 mm rebar embedded within a sample containing 10 mm aggregate. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Fast neutron detection using a new pulse shape discrimination technique: Charge sensitive integration

    International Nuclear Information System (INIS)

    Zucker, M.; Tsoupas, N.; Karwowski, H.; Castaneda, C.; Nimnual, S.; Porter, R.; Ward, T.

    1988-01-01

    A new electronic technique that depends on charge sensitive integration (CSI) has been developed and tested using a CAMAC based pulse shape discrimination system. Neutrons are well separated from γ-ray signals in the 0.1-100 MeV energy range. The new method was compared with the old zero-crossing time-to-amplitude differentiating technique and was found to be comparable in count rate and superior in noise suppression

  12. Electron transport measurements in methane using an improved pulsed Townsend technique

    International Nuclear Information System (INIS)

    Hunter, S.R.; Carter, J.G.; Christophorou, L.G.

    1986-01-01

    An improved pulsed Townsend technique for the measurement of electron transport parameters in gases is described. The accuracy and sensitivity of the technique have been investigated by performing, respectively, electron attachment coefficient measurements in pure O 2 over a wide range of E/N at selected O 2 pressures and by determining the electron attachment and ionization coefficients and electron drift velocity in CH 4 over a wide E/N range. Good agreement has been obtained between the present and the previously published electron attachment coefficients in O 2 and for the drift velocity measurements in CH 4 . The data on the electron attachment coefficient in CH 4 (measured for the first time) showed that with the present improved pulsed Townsend method, electron attachment coefficients up to 10 times smaller than the ionization coefficients at a given E/N value can be accurately measured. Our measurements of the electron attachment and ionization coefficients in CH 4 are in good agreement with a Boltzmann equation analysis of the electron gain and loss processes in CH 4 using published electron scattering cross sections for this molecule

  13. Study of heterogeneous multiplying and non-multiplying media by the neutron pulsed source technique

    International Nuclear Information System (INIS)

    Deniz, V.

    1969-01-01

    The pulsed neutron technique consists essentially in sending in the medium to be studied a short neutron pulse and in determining the asymptotic decay constant of the generated population. The variation of the decay constant as a function of the size of the medium allows the medium characteristics to be defined. This technique has been largely developed these last years and has been applied as well to moderator as to multiplying media, in most cases homogeneous ones. We considered of interest of apply this technique to lattices, to see if useful informations could be collected for lattice calculations. We present here a general theoretical study of the problem, and results and interpretation of a series of experiments made on graphite lattices. There is a good agreement for non-multiplying media. In the case of multiplying media, it is shown that the age value used until now in graphite lattices calculations is over-estimated by about 10 per cent [fr

  14. A novel time-to-pulse height converter for fast-neutron time-of-flight techniques

    International Nuclear Information System (INIS)

    Christiansen, J.

    1962-01-01

    An electronic time-to-pulse height converter is described which uses a multiplicative method instead of the usual one of adding overlapping pulses. This is achieved by a coincidence of a linear sawtooth and a sharply clipped needle-pulse. The sawtooth is fed to the grid of a beam-deflecting tube (E80T) and the needle-pulse is applied to the deflecting plates and opens the tube only during a time-interval of about 5.10 -9 s. The plate gets a charge proportional to the time-difference between the start of the sawtooth and the needle pulse. The plate-pulse is stretched and amplified and its height represents a measurement of the time-difference. With this method we got a time resolution of 2τ = 7 x 10 -12 s with artificial pulses, 2τ = 3 x 10 -10 s with Co 60 γ-coincidences by using NE 102 plastic crystals and 2τ = 1.4 x 10 -9 s with 511-keV γ-coincidences using NaI(Te) crystals. The method was also used with pulsed beam techniques. In this case we got from the pulsing RF an 8-Mc, sharply-peaked pulse-sequence, which was fed to the E80T plates. We had a time-resolution of 2τ = 1.1 x 10 -9 s with 4-MeV neutrons using plastic crystals 0.7 in long. Normally the region of linear response was 30 ns but it was possible to go up to 120 ns. (author) [fr

  15. Water in Brain Edema : Observations by the Pulsed Nuclear Magnetic Resonance Technique

    NARCIS (Netherlands)

    GO, KG; Edzes, HT

    The state of water in three types of brain edema and in normal brain of the rat was studied by the pulsed nuclear magnetic resonance (NMR) technique. In cold-induced edema and in osmotic edema both in cortex and in white matter, the water protons have longer nuclear magnetic relaxation times than in

  16. Pulsed neutron activation calibration technique

    International Nuclear Information System (INIS)

    Kehler, P.

    1979-01-01

    A pulsed neutron activation (PNA) for measurement of two-phase flow consists of a pulsed source of fast neutron to activate the oxygen in a steam-water mixture. Flow is measured downstream by an NaI detector. Measured counts are sorted by a multiscaler into different time channels. A counts vs. time distribution typical for two-phase flow with slip between the two phases is obtained. Proper evaluation for the counts/time distribution leads to flow-regime independent equations for the average of the inverse transil time and the average density. After calculation of the average mass flow velocity, the true mass flow is derived

  17. New autocorrelation technique for the IR FEL optical pulse width measurements

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Brau, K.A.; Becker, C. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1995-12-31

    We have developed a new technique for the autocorrelation measurement of optical pulse width at the Vanderbilt University FEL center. This method is based on nonlinear absorption and transmission characteristics of semiconductors such as Ge, Te and InAs suitable for the wavelength range from 2 to over 6 microns. This approach, aside being simple and low cost, removes the phase matching condition that is generally required for the standard frequency doubling technique and covers a greater wavelength range per nonlinear material. In this paper we will describe the apparatus, explain the principal mechanism involved and compare data which have been acquired with both frequency doubling and two-photon absorption.

  18. Two-phase flow measurement by pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2 percent, and average densities were measured down to 0.08 g/cm 3 with an accuracy of 0.04 g/cm 3 . Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm 3 for 12.5 cm pipes, and to even lower ranges for larger pipes

  19. Multiple-output all-optical header processing technique based on two-pulse correlation principle

    NARCIS (Netherlands)

    Calabretta, N.; Liu, Y.; Waardt, de H.; Hill, M.T.; Khoe, G.D.; Dorren, H.J.S.

    2001-01-01

    A serial all-optical header processing technique based on a two-pulse correlation principle in a semiconductor laser amplifier in a loop mirror (SLALOM) configuration that can have a large number of output ports is presented. The operation is demonstrated experimentally at a 10Gbit/s Manchester

  20. Embedded 32-bit Differential Pulse Voltammetry (DPV) Technique for 3-electrode Cell Sensing

    Science.gov (United States)

    N, Aqmar N. Z.; Abdullah, W. F. H.; Zain, Z. M.; Rani, S.

    2018-03-01

    This paper addresses the development of differential pulse voltammetry (DPV) embedded algorithm using an ARM cortex processor with new developed potentiostat circuit design for in-situ 3-electrode cell sensing. This project is mainly to design a low cost potentiostat for the researchers in laboratories. It is required to develop an embedded algorithm for analytical technique to be used with the designed potentiostat. DPV is one of the most familiar pulse technique method used with 3-electrode cell sensing in chemical studies. Experiment was conducted on 10mM solution of Ferricyanide using the designed potentiostat and the developed DPV algorithm. As a result, the device can generate an excitation signal of DPV from 0.4V to 1.2V and produced a peaked voltammogram with relatively small error compared to the commercial potentiostat; which is only 6.25% difference in peak potential reading. The design of potentiostat device and its DPV algorithm is verified.

  1. Technique for long and absolute distance measurement based on laser pulse repetition frequency sweeping

    Science.gov (United States)

    Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.

    2017-11-01

    In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.

  2. Pulsed-laser time-resolved thermal mirror technique in low-absorbance homogeneous linear elastic materials.

    Science.gov (United States)

    Lukasievicz, Gustavo V B; Astrath, Nelson G C; Malacarne, Luis C; Herculano, Leandro S; Zanuto, Vitor S; Baesso, Mauro L; Bialkowski, Stephen E

    2013-10-01

    A theoretical model for a time-resolved photothermal mirror technique using pulsed-laser excitation was developed for low absorption samples. Analytical solutions to the temperature and thermoelastic deformation equations are found for three characteristic pulse profiles and are compared to finite element analysis methods results for finite samples. An analytical expression for the intensity of the center of a continuous probe laser at the detector plane is derived using the Fresnel diffraction theory, which allows modeling of experimental results. Experiments are performed in optical glasses, and the models are fitted to the data. The parameters of the fit are in good agreement with previous literature data for absorption, thermal diffusion, and thermal expansion of the materials tested. The combined modeling and experimental techniques are shown to be useful for quantitative determination of the physical properties of low absorption homogeneous linear elastic material samples.

  3. Real-time lossless data compression techniques for long-pulse operation

    International Nuclear Information System (INIS)

    Jesus Vega, J.; Sanchez, E.; Portas, A.; Pereira, A.; Ruiz, M.

    2006-01-01

    Data logging and data distribution will be two main tasks connected with data handling in ITER. Data logging refers to the recovery and ultimate storage of all data, independent on the data source. Control data and physics data distribution is related, on the one hand, to the on-line data broadcasting for immediate data availability for both data analysis and data visualization. On the other hand, delayed analyses require off-line data access. Due to the large data volume expected, data compression will be mandatory in order to save storage and bandwidth. On-line data distribution in a long pulse environment requires the use of a deterministic approach to be able to ensure a proper response time for data availability. However, an essential feature for all the above purposes is to apply compression techniques that ensure the recovery of the initial signals without spectral distortion when compacted data are expanded (lossless techniques). Delta compression methods are independent on the analogue characteristics of waveforms and there exist a variety of implementations that have been applied to the databases of several fusion devices such as Alcator, JET and TJ-II among others. Delta compression techniques are carried out in a two step algorithm. The first step consists of a delta calculation, i.e. the computation of the differences between the digital codes of adjacent signal samples. The resultant deltas are then encoded according to constant- or variable-length bit allocation. Several encoding forms can be considered for the second step and they have to satisfy a prefix code property. However, and in order to meet the requirement of on-line data distribution, the encoding forms have to be defined prior to data capture. This article reviews different lossless data compression techniques based on delta compression. In addition, the concept of cyclic delta transformation is introduced. Furthermore, comparative results concerning compression rates on different

  4. Sensitivity analysis of a pulse nutrient addition technique for estimating nutrient uptake in large streams

    Science.gov (United States)

    Laurence Lin; J.R. Webster

    2012-01-01

    The constant nutrient addition technique has been used extensively to measure nutrient uptake in streams. However, this technique is impractical for large streams, and the pulse nutrient addition (PNA) has been suggested as an alternative. We developed a computer model to simulate Monod kinetics nutrient uptake in large rivers and used this model to evaluate the...

  5. Pulse Double-Resonance EPR Techniques for the Study of Metallobiomolecules.

    Science.gov (United States)

    Cox, Nicholas; Nalepa, Anna; Pandelia, Maria-Eirini; Lubitz, Wolfgang; Savitsky, Anton

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy exploits an intrinsic property of matter, namely the electron spin and its related magnetic moment. This can be oriented in a magnetic field and thus, in the classical limit, acts like a little bar magnet. Its moment will align either parallel or antiparallel to the field, giving rise to different energies (termed Zeeman splitting). Transitions between these two quantized states can be driven by incident microwave frequency radiation, analogous to NMR experiments, where radiofrequency radiation is used. However, the electron Zeeman interaction alone provides only limited information. Instead, much of the usefulness of EPR is derived from the fact that the electron spin also interacts with its local magnetic environment and thus can be used to probe structure via detection of nearby spins, e.g., NMR-active magnetic nuclei and/or other electron spin(s). The latter is exploited in spin labeling techniques, an exciting new area in the development of noncrystallographic protein structure determination. Although these interactions are often smaller than the linewidth of the EPR experiment, sophisticated pulse EPR methods allow their detection. A number of such techniques are well established today and can be broadly described as double-resonance methods, in which the electron spin is used as a reporter. Below we give a brief description of pulse EPR methods, particularly their implementation at higher magnetic fields, and how to best exploit them for studying metallobiomolecules. © 2015 Elsevier Inc. All rights reserved.

  6. Digital pulse processing techniques for high resolution amplitude measurement of radiation detector

    International Nuclear Information System (INIS)

    Singhai, P.; Roy, A.; Dhara, P.; Chatterjee, S.

    2012-01-01

    The digital pulse processing techniques for high resolution amplitude measurement of radiation detector pulse is an effective replacement of expensive and bulky analog processing as the digital domain offers higher channel density and at the same time it is cheaper. We have demonstrated a prototype digital setup with highspeed sampling ADC with sampling frequency of 80-125 MHz followed by series of IIR filters for pulse shaping in a trigger-less acquisition mode. The IIR filters, peak detection algorithm and the data write-out logic was written on VHDL and implemented on FPGA. We used CAMAC as the read out platform. In conjunction with the full hardware implementation we also used a mixed platform with VME digitizer card with raw-sample read out using C code. The rationale behind this mixed platform is to test out various filter algorithms quickly on C and also to benchmark the performance of the chip level ADCs against the standard commercial digitizer in terms of noise or resolution. The paper describes implementation of both the methods with performance obtained in both the methods. (author)

  7. Computational efficiency improvement with Wigner rotation technique in studying atoms in intense few-cycle circularly polarized pulses

    International Nuclear Information System (INIS)

    Yuan, Minghu; Feng, Liqiang; Lü, Rui; Chu, Tianshu

    2014-01-01

    We show that by introducing Wigner rotation technique into the solution of time-dependent Schrödinger equation in length gauge, computational efficiency can be greatly improved in describing atoms in intense few-cycle circularly polarized laser pulses. The methodology with Wigner rotation technique underlying our openMP parallel computational code for circularly polarized laser pulses is described. Results of test calculations to investigate the scaling property of the computational code with the number of the electronic angular basis function l as well as the strong field phenomena are presented and discussed for the hydrogen atom

  8. Base adsorption calorimetry for characterising surface acidity: a comparison between pulse flow and conventional ''static'' techniques

    International Nuclear Information System (INIS)

    Felix, S.P.; Savill-Jowitt, C.; Brown, D.R.

    2005-01-01

    A pulsed flow adsorption microcalorimeter (pulse-FMC) has been developed by modifying a Setaram 111. It is tested in comparison with a conventional pulsed static adsorption microcalorimeter (pulse-SMC) for characterising surface acidity of solid acid catalysts. Small pulses of 1% ammonia in helium are delivered to an activated catalyst sample and its surface acidity is differentially profiled in terms of the molar enthalpy of ammonia adsorption (ΔH ads o ) using a combination of differential scanning calorimeter (DSC) and a downstream thermal conductivity detector (TCD). The pulsing action and its sequences are controlled by in-house developed software and the TCD output also is logged into a PC. Thus, the pulse-FMC is fully automated. Two sulfonated polystyrene resin-type catalysts, Amberlyst 15 and Amberlyst 35, a zeolite of the type H + -ZSM-5 (CT 410) and an acid activated clay (Fulcat 220) are characterised at appropriate temperatures using both the new technique and the conventional static base adsorption method. ΔH ads o versus surface coverage profiles of all the four catalysts obtained from both pulse-FMC and the conventional method are found to be comparable. Results are interpreted in terms of the extent to which NH 3 adsorption on the catalysts surface is under thermodynamic control in the two methods

  9. Pile-up and defective pulse rejection by pulse shape discrimination in surface barrier detectors

    International Nuclear Information System (INIS)

    Sjoeland, K.A.; Kristiansson, P.

    1994-01-01

    A technique to reject pile-up pulses and defective tail pulses from surface barrier detectors by the use of pulse shape discrimination is demonstrated. The electronic implementation of the pulse shape discrimination is based upon the zero crossing technique and for data reduction multiparameter techniques are used. The characteristic τ value for pile-up rejection is shown to be less than 56 ns. Its effect on detection limits from tail reduction in Particle Elastic Scattering Analysis (PESA) and pile-up peak suppression is discussed. ((orig.))

  10. Speckle noise reduction technique for Lidar echo signal based on self-adaptive pulse-matching independent component analysis

    Science.gov (United States)

    Xu, Fan; Wang, Jiaxing; Zhu, Daiyin; Tu, Qi

    2018-04-01

    Speckle noise has always been a particularly tricky problem in improving the ranging capability and accuracy of Lidar system especially in harsh environment. Currently, effective speckle de-noising techniques are extremely scarce and should be further developed. In this study, a speckle noise reduction technique has been proposed based on independent component analysis (ICA). Since normally few changes happen in the shape of laser pulse itself, the authors employed the laser source as a reference pulse and executed the ICA decomposition to find the optimal matching position. In order to achieve the self-adaptability of algorithm, local Mean Square Error (MSE) has been defined as an appropriate criterion for investigating the iteration results. The obtained experimental results demonstrated that the self-adaptive pulse-matching ICA (PM-ICA) method could effectively decrease the speckle noise and recover the useful Lidar echo signal component with high quality. Especially, the proposed method achieves 4 dB more improvement of signal-to-noise ratio (SNR) than a traditional homomorphic wavelet method.

  11. Design and Simulation of Control Technique for Permanent Magnet Synchronous Motor Using Space Vector Pulse Width Modulation

    Science.gov (United States)

    Khan, Mansoor; Yong, Wang; Mustafa, Ehtasham

    2017-07-01

    After the rapid advancement in the field of power electronics devices and drives for last few decades, there are different kinds of Pulse Width Modulation techniques which have been brought to the market. The applications ranging from industrial appliances to military equipment including the home appliances. The vey common application for the PWM is three phase voltage source inverter, which is used to convert DC to AC in the homes to supply the power to the house in case electricity failure, usually named as Un-interrupted Power Supply. In this paper Space Vector Pulse Width Modulation techniques is discussed and analysed under the control technique named as Field Oriented Control. The working and implementation of this technique has been studied by implementing on the three phase bridge inverter. The technique is used to control the Permanente Magnet Synchronous Motor. The drive system is successfully implemented in MATLAB/Simulink using the mathematical equation and algorithm to achieve the satisfactory results. PI type of controller is used to tuned ers of the motothe parametr i.e. torque and current.

  12. Application of the pulsed neutron technique on the reactors ALIZE - AQUILON (1963); Application de la methode des neutrons pulses sur les piles ALIZE et AQUILON (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemart, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    Different methods of measuring the ratio effective delayed fraction / prompt neutron lifetime, {alpha}{sub c}, are described. According to the classic pulsed neutron technique the negative reactivity due to a localized absorber is given by {rho} / {beta}{sub eff} = {alpha} / {alpha}{sub c} -1 Experiments are reported which show that in this case {alpha}{sub c} can not be considered constant for large reactivities. The absorber element distorts the flux in the system, increasing the importance of the reflector. An application of the pulsed neutron method to the measurement of critical distributed boron concentrations of various absorber elements is described. Less time is required than for the usual super-critical techniques, and the experimental analysis is simplified. It is interesting to note that the results are not influenced by the spectral sensitivity of the control element. A modified pulsed neutron method has been tried out. This procedure was used to determine by measurements at sub-critical the critical water level of uranium-heavy water lattices with a high precision. (author) [French] Differents modes operatoires pour definir la valeur du rapport pourcentage effectif de neutrons retardes / temps de vie, {alpha}{sub c}, sont exposes. La methode classique par neutrons pulses definit l'anti-reactivite d'un element absorbant a partir de la relation: {rho} / {beta}{sub eff} {alpha} / {alpha}{sub c} -1 Les manipulations effectuees montrent qu'on ne peut considerer dans ce cas {alpha}{sub c} constant pour de tres grandes anti-reactivites. L'absorbant introduit dans la pile deforme le flux et augmente l'importance du reflecteur. Une application de la methode des neutrons pulses pour mesurer le titre critique en mg de B/l de divers absorbants est signalee. Les operations sont effectuees en regime sous-critique avec un certain gain de temps et une grande facilite de depouillement. Il est interessant de noter que les resultats ne sont pas affectes par la

  13. Application of the pulsed neutron technique on the reactors ALIZE - AQUILON (1963); Application de la methode des neutrons pulses sur les piles ALIZE et AQUILON (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemart, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    Different methods of measuring the ratio effective delayed fraction / prompt neutron lifetime, {alpha}{sub c}, are described. According to the classic pulsed neutron technique the negative reactivity due to a localized absorber is given by {rho} / {beta}{sub eff} = {alpha} / {alpha}{sub c} -1 Experiments are reported which show that in this case {alpha}{sub c} can not be considered constant for large reactivities. The absorber element distorts the flux in the system, increasing the importance of the reflector. An application of the pulsed neutron method to the measurement of critical distributed boron concentrations of various absorber elements is described. Less time is required than for the usual super-critical techniques, and the experimental analysis is simplified. It is interesting to note that the results are not influenced by the spectral sensitivity of the control element. A modified pulsed neutron method has been tried out. This procedure was used to determine by measurements at sub-critical the critical water level of uranium-heavy water lattices with a high precision. (author) [French] Differents modes operatoires pour definir la valeur du rapport pourcentage effectif de neutrons retardes / temps de vie, {alpha}{sub c}, sont exposes. La methode classique par neutrons pulses definit l'anti-reactivite d'un element absorbant a partir de la relation: {rho} / {beta}{sub eff} {alpha} / {alpha}{sub c} -1 Les manipulations effectuees montrent qu'on ne peut considerer dans ce cas {alpha}{sub c} constant pour de tres grandes anti-reactivites. L'absorbant introduit dans la pile deforme le flux et augmente l'importance du reflecteur. Une application de la methode des neutrons pulses pour mesurer le titre critique en mg de B/l de divers absorbants est signalee. Les operations sont effectuees en regime sous-critique avec un certain gain de temps et une grande facilite de depouillement. Il est interessant de noter que les resultats ne sont pas

  14. Application of the pulse-shape technique to proton-alpha discrimination in Si-detector arrays

    International Nuclear Information System (INIS)

    Pausch, G.; Moszynski, M.; Wolski, D.; Bohne, W.; Grawe, H.; Hilscher, D.; Schubart, R.; De Angelis, G.; De Poli, M.

    1995-04-01

    The capability of the pulse-shape technique with reversed n-type Si detectors for discrimination of protons and alphas produced in fusion-evaporation reactions was tested at the VICKSI cyclotron in Berlin. We applied a zero-crossing technique which does not need any external time reference, and which can therefore be exploited at DC accelerators. Excellent proton-alpha discrimination in the full energy range of the evaporation spectra, but also charge and even isotope resolution for heavier ions produced in projectile fragmentation, was obtained with detectors of an existing Si ball. There is no doubt that the pulse-shape discrimination works well with detectors from serial production and under experimental conditions which are typical for nuclear structure studies. An application of this technique in Si detector arrays is obvious, but some special features must be considered in the design of the electronics. The particle discrimination depends strongly on the electric field distribution inside the detector. Stabilization of the bias voltage at the detector is therefore recommended. A consequence of the rear-side injection mode is a strong variation of the charge-collection time with energy, charge, and mass number of the detected ion. To obtain a precise energy signal it is indispensable to correct for the ballistic deficit. (orig.)

  15. System for increasing laser pulse rate

    International Nuclear Information System (INIS)

    1980-01-01

    A technique of static elements is disclosed for combining a plurality of laser beams having time sequenced, pulsed radiation to achieve an augmented pulse rate. The technique may also be applied in a system for combining both time sequenced pulses and frequency distinct pulses for use in a system for isotope enrichment. (author)

  16. Refractive index sensor based on optical fiber end face using pulse reference-based compensation technique

    Science.gov (United States)

    Bian, Qiang; Song, Zhangqi; Zhang, Xueliang; Yu, Yang; Chen, Yuzhong

    2018-03-01

    We proposed a refractive index sensor based on optical fiber end face using pulse reference-based compensation technique. With good compensation effect of this compensation technique, the power fluctuation of light source, the change of optic components transmission loss and coupler splitting ratio can be compensated, which largely reduces the background noise. The refractive index resolutions can achieve 3.8 × 10-6 RIU and1.6 × 10-6 RIU in different refractive index regions.

  17. A study of trapped ion dynamics by photon-correlation and pulse-probe techniques

    International Nuclear Information System (INIS)

    Rink, J.; Dholakia, K.; Zs, G.; Horvath, K.; Hernandez-Pozos, J. L.; Power, W.; Segal, D. M.; Thompson, R. C.; Walker, T.

    1995-01-01

    We demonstrate non-evasive methods for observing ion and ion cloud oscillation frequencies in a quadrupole ion trap. These trap resonances are measured for small clouds using a photon correlation technique. For large clouds the rotation frequency can be detected with the help of an additional pulsed probe laser. We show applications of the photon correlation method such as estimating the dynamic properties of a combined trap and detecting ion crystals

  18. Improvement of the yield of highly charged ions by a gas-pulsing technique and the current status of the NIRS Penning source

    International Nuclear Information System (INIS)

    Miyata, Tomohiro; Miyoshi, Tomohiro; Sakuma, Tetsuya; Yamamoto, Mitsugu; Kitagawa, Atsushi; Muramatsu, Masayuki; Sato, Yukio

    2004-01-01

    The yields of highly charged ions have been improved by using a gas-pulsing technique in the pulsed Penning-ionized-gauge ion source (PIGIS) in the heavy-ion medical accelerator in Chiba. So far, this pulsed PIGIS has been operated under a low-duty factor (10 -2 -10 -3 ), in which the gas flow is not being pulsed. A solenoid-type gas valve, having a simple structure compared to the piezo-electric type, was attached to the outside of the PIGIS chamber in order to control the gas flow into the PIGIS chimney. Beam tests for Ne with gas pulsing showed that the pressure response time should actually be a few tens ms, and the intensity of Ne 6+ was increased by ten times, from 20 to 200 eμA. The gas pulsing also improved the average vacuum in the low energy beam transport (LEBT) line by a factor of 4. When producing H 2 + , H 3 + , and He 1+ by PIGIS with gas pulsing, the beam loss of highly charged ions from electron cyclotron resonance ion sources in the LEBT was reduced to be negligible; meanwhile, it was around 30% without gas pulsing. This paper describes the gas-pulsing technique and the preliminary results, as well as some recent developments in the NIRS-PIGIS

  19. Pulse sliced picosecond Ballistic Imaging and two planar elastic scattering: Development of the techniques and their application to diesel sprays

    Science.gov (United States)

    Duran, Sean Patrick Hynes

    A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to

  20. Retrospective Study on Laser Treatment of Oral Vascular Lesions Using the "Leopard Technique": The Multiple Spot Irradiation Technique with a Single-Pulsed Wave.

    Science.gov (United States)

    Miyazaki, Hidetaka; Ohshiro, Takafumi; Romeo, Umberto; Noguchi, Tadahide; Maruoka, Yutaka; Gaimari, Gianfranco; Tomov, Georgi; Wada, Yoshitaka; Tanaka, Kae; Ohshiro, Toshio; Asamura, Shinichi

    2018-06-01

    This study aimed to retrospectively evaluate the efficacy and safety of laser treatment of oral vascular lesions using the multiple spot irradiation technique with a single-pulsed wave. In laser therapy for vascular lesions, heat accumulation induced by excessive irradiation can cause adverse events postoperatively, including ulcer formation, resultant scarring, and severe pain. To prevent heat accumulation and side effects, we have applied a multiple pulsed spot irradiation technique, the so-called "leopard technique" (LT) to oral vascular lesions. This approach was originally proposed for laser treatment of nevi. It can avoid thermal concentration at the same spot and spare the epithelium, which promotes smooth healing. The goal of the study was to evaluate this procedure and treatment outcomes. The subjects were 46 patients with 47 oral vascular lesions treated with the LT using a Nd:YAG laser (1064 nm), including 24 thick lesions treated using a combination of the LT and intralesional photocoagulation. All treatment outcomes were satisfactory without serious complications such as deep ulcer formation, scarring, bleeding, or severe swelling. Laser therapy with the LT is a promising less-invasive treatment for oral vascular lesions.

  1. Synthesis of nanostructured SiC using the pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Zhang, H.X.; Feng, P.X.; Makarov, V.; Weiner, B.R.; Morell, G.

    2009-01-01

    We report the new results on the direct synthesis of nanostructured silicon carbide (SiC) materials using the pulsed laser deposition technique. Scanning electron microscopy images revealed that SiC nanoholes, nanosprouts, nanowires, and nanoneedles were obtained. The crystallographic structure, chemical composition, and bond structure of the nanoscale SiC materials were investigated using X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Raman scattering spectroscopy. The transverse optical mode and longitudinal optical mode in Raman spectra were found to become sharper as the substrate temperature was increased, while the material structure evolved from amorphous to crystalline

  2. Measurement techniques using ultrashort optical pulses. Final report, February 9-September 30, 1983

    International Nuclear Information System (INIS)

    Siegman, A.E.

    1983-12-01

    The very great potential contactless, very high speed, very flexible, on-chip testing, diagnostics and measurement of very fast semiconductor circuits and devices has led us to initiate a small program to investigate such applications, using our own familiarity with picosecond pulse techniques, in conjunction with the integrated circuits skills present in Stanford's Integrated Circuit Laboratory (ICL), Solid State Laboratory (SSL), and the newly established Center for Integrated Systems. We plan to carry out first a rather straightforward set of picosecond pulse measurements on polysilicon photodetectors or photoswitches, such as can be very conveniently fabricated onto silicon integrated circuits using standard IC techniques, to serve as on-chip, optically addressable test or diagnostic points. (Such test points may in fact be fabricated directly into the active portion of the IC, or as test points in the disposable Kerr region between chips, for access during initial fabrication only). We are therefore assembling the necessary laser system for these measurements, and in addition beginning the fabrication of silicon test devices in collaboration with Professor Robert Dutton of the Integrated Circuit Laboratory and CIS. While making these preparations we have also carried out a literature review of the current state-of-the-art in such electrooptic devices. Some of the results of this study are summarized

  3. Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement

    Directory of Open Access Journals (Sweden)

    B. Damtie

    2009-02-01

    Full Text Available Improving an estimate of an incoherent scatter radar signal is vital to provide reliable and unbiased information about the Earth's ionosphere. Thus optimizing the measurement spatial and temporal resolutions has attracted considerable attention. The optimization usually relies on employing different kinds of pulse compression filters in the analysis and a matched filter is perhaps the most widely used one. A mismatched filter has also been used in order to suppress the undesirable sidelobes that appear in the case of matched filtering. Moreover, recently an adaptive pulse compression method, which can be derived based on the minimum mean-square error estimate, has been proposed. In this paper we have investigated the performance of matched, mismatched and adaptive pulse compression methods in terms of the output signal-to-noise ratio (SNR and the variance and bias of the estimator. This is done by using different types of optimal radar waveforms. It is shown that for the case of low SNR the signal degradation associated to an adaptive filtering is less than that of the mismatched filtering. The SNR loss of both matched and adaptive pulse compression techniques was found to be nearly the same for most of the investigated codes for the case of high SNR. We have shown that the adaptive filtering technique is a compromise between matched and mismatched filtering method when one evaluates its performance in terms of the variance and the bias of the estimator. All the three analysis methods were found to have the same performance when a sidelobe-free matched filter code is employed.

  4. Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement

    Directory of Open Access Journals (Sweden)

    B. Damtie

    2009-02-01

    Full Text Available Improving an estimate of an incoherent scatter radar signal is vital to provide reliable and unbiased information about the Earth's ionosphere. Thus optimizing the measurement spatial and temporal resolutions has attracted considerable attention. The optimization usually relies on employing different kinds of pulse compression filters in the analysis and a matched filter is perhaps the most widely used one. A mismatched filter has also been used in order to suppress the undesirable sidelobes that appear in the case of matched filtering. Moreover, recently an adaptive pulse compression method, which can be derived based on the minimum mean-square error estimate, has been proposed. In this paper we have investigated the performance of matched, mismatched and adaptive pulse compression methods in terms of the output signal-to-noise ratio (SNR and the variance and bias of the estimator. This is done by using different types of optimal radar waveforms. It is shown that for the case of low SNR the signal degradation associated to an adaptive filtering is less than that of the mismatched filtering. The SNR loss of both matched and adaptive pulse compression techniques was found to be nearly the same for most of the investigated codes for the case of high SNR. We have shown that the adaptive filtering technique is a compromise between matched and mismatched filtering method when one evaluates its performance in terms of the variance and the bias of the estimator. All the three analysis methods were found to have the same performance when a sidelobe-free matched filter code is employed.

  5. Time resolved high frequency spectrum of Br2 molecules using pulsed photoacoustic technique.

    Science.gov (United States)

    Yehya, Fahem; Chaudhary, A K

    2013-11-01

    The paper reports the time resolved spectral distribution of higher order acoustic modes generated in Br2 molecules using pulsed Photoacoustic (PA) technique. New time resolved vibrational spectrum of Br2 molecules are recorded using a single 532nm, pulses of 7ns duration at 10Hz repetition rate obtained from Q-switched Nd:YAG laser. Frank-Condon principle based assignments confirms the presence of 12 numbers of (ν″-ν') vibrational transitions covered by a single 532+2nm pulse profile. Inclusions of higher order zeroth modes in Bassel's function expansion series shows the probability of overlapping of different types of acoustic modes in the designed PA cells. These modes appear in the form of clusters which occupies higher frequency range. The study of decay behavior of PA signal with respect to time confirms the photolysis of Br2 at 532nm wavelength. In addition, the shifting and clustering effect of cavity eigen modes in Br2 molecules have been studied between 1 and 10ms time scale. The estimated Q-factor of PA cell (l=16cm, R=1.4cm) is 145±4 at 27kHz frequency. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Preparation and characterization of VOx nanorods using pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Rama, N.; Senthil Kumar, E.; Ramachandra Rao, M.S.

    2009-01-01

    Full text: Vanadium oxide (VO x ) is one of the most functional oxides of the transition metal oxide family. This versatility comes because of the ability of Vanadium to exist as both monovalent and multivalent in these oxides. These oxides find potential usage in the field of thermochromism electrochromism catalysts, electrochemistry etc. especially in their nano-form because of their increased sensitivity to these applications. These nano-forms are usually prepared using conventional techniques such as solgel techniques, vapour phase transport, hydrothermal synthesis etc. In this work we have used pulsed laser deposition technique to fabricate vanadium oxide nanorods for the first time. The grown nanorods has a predominant VO 2 phase with a secondary phase of V 3 O 7 . The diameters of the rods were around 300 nm with Raman spectra showing all the group vibrations corresponding to VO x phase. The nanorods exhibited photoluminescence in the visible range due to the presence of oxygen defects. These results, including the mechanism of growth of these nanorods, will be discussed in detail. The existence of multivalence in these rods finds potential applications in electrochemistry while the visible photoluminescence in optical applications

  7. Influence of Bipolar Pulse Poling Technique for Piezoelectric Vibration Energy Harvesters using Pb(Zr,Ti)O3 Films on 200 mm SOI Wafers

    International Nuclear Information System (INIS)

    Moriwaki, N; Fujimoto, K; Suzuki, K; Kobayashi, T; Itoh, T; Maeda, R; Suzuki, Y; Makimoto, N

    2013-01-01

    Piezoelectric vibration energy harvester arrays using Pb(Zr,Ti)O 3 thin films on 200 mm SOI wafers were fabricated. In-plane distribution of influence of bipolar pulse poling technique on direct current (DC) power output from the harvesters was investigated. The results indicate that combination poling treatment of DC and bipolar pulse poling increases a piezoelectric property and reduces a dielectric constant. It means that this poling technique improves the figure of merit of sensors and harvesters. Maximum DC power from a harvester treated by DC poling after bipolar pulse poling is about five times larger than a one treated by DC poling only

  8. Pulsed corona generation using a diode-based pulsed power generator

    NARCIS (Netherlands)

    Pemen, A.J.M.; Grekhov, I.V.; Heesch, van E.J.M.; Yan, K.; Nair, S.A.; Korotkov, S.V.

    2003-01-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and

  9. Rapid thermal pulse annealing

    International Nuclear Information System (INIS)

    Miller, M.G.; Koehn, B.W.; Chaplin, R.L.

    1976-01-01

    Characteristics of recovery processes have been investigated for cases of heating a sample to successively higher temperatures by means of isochronal annealing or by using a rapid pulse annealing. A recovery spectra shows the same features independent of which annealing procedure is used. In order to determine which technique provides the best resolution, a study was made of how two independent first-order processes are separated for different heating rates and time increments of the annealing pulses. It is shown that the pulse anneal method offers definite advantages over isochronal annealing when annealing for short time increments. Experimental data by means of the pulse anneal techniques are given for the various substages of stage I of aluminium. (author)

  10. Reduced timing Sensitivity in all-optical switching using flat-top control pulses obtained by the optical fourier transform technique

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    into the time domain, referred to as the optical Fourier transform technique. A 3 ps flat-top pulse derived from a 3 nm wide square filter is obtained, and used to gate an all-optical OTDM demultiplexer, yielding an error-free timing jitter tolerance of 3 ps for 80 Gb/s and 160 Gb/s data signals.......For high-speed serial data, timing tolerance is crucial for switching and regeneration. We propose a novel scheme to generate flat-top pulses, for use as gating control pulses. The scheme relies on spectral shaping by a square-shaped filter, followed by a linear transformation of the spectral shape...

  11. A hybrid body technique: does the pulse diagnostic cun guan chi method have Chinese-Tibetan origins?

    Science.gov (United States)

    Hsu, Elisabeth

    2008-01-01

    This article investigates the medieval origins of the main pulse diagnostic method in contemporary Chinese medicine, sometimes known as san bu (three sectors) method, which requires physicians to examine the mai (vessels, vessel movements or pulse) on the wrist at the three locations cun guan chi (inch, gate, foot). The article provides evidence to suggest that this body technique grew out of an earlier Chinese one, the cun chi (inch-foot) method, which appears to have aimed at investigating the qualities of yin and yang in order to determine the condition of a patient by means of exploring fairly large areas of the patient's body surface with the palms. The article furthermore posits that the cun chi method was decisively transformed in medieval times, presumably due to the impact of early Tibetan pulse diagnostic practices: it became framed in a numerology of three and started advocating the use of the fingertips for sensing the pulse beats. The article, which draws on detailed textual analyses of medieval manuscripts, on visual evidence and also on psychophysical research, furthermore highlights how misunderstandings can constructively contribute to cultural communication.

  12. Simultaneous PIV and pulsed shadow technique in slug flow: a solution for optical problems

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, S. [Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, B-1640, Rhode Saint Genese (Belgium); Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); Sousa, R.G.; Pinto, A.M.F.R.; Campos, J.B.L.M. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); Riethmuller, M.L. [Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, B-1640, Rhode Saint Genese (Belgium)

    2003-12-01

    A recent technique of simultaneous particle image velocimetry (PIV) and pulsed shadow technique (PST) measurements, using only one black and white CCD camera, is successfully applied to the study of slug flow. The experimental facility and the operating principle are described. The technique is applied to study the liquid flow pattern around individual Taylor bubbles rising in an aqueous solution of glycerol with a dynamic viscosity of 113 x 10{sup -3} Pa s. With this technique the optical perturbations found in PIV measurements at the bubble interface are completely solved in the nose and in annular liquid film regions as well as in the rear of the bubble for cases in which the bottom is flat. However, for Taylor bubbles with concave oblate bottoms, some optical distortions appear and are discussed. The measurements achieved a spatial resolution of 0.0022 tube diameters. The results reported show high precision and are in agreement with theoretical and experimental published data. (orig.)

  13. HPGe detectors timing using pulse shape analysis techniques

    International Nuclear Information System (INIS)

    Crespi, F.C.L.; Vandone, V.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.; Wieland, O.

    2010-01-01

    In this work the Pulse Shape Analysis has been used to improve the time resolution of High Purity Germanium (HPGe) detectors. A set of time aligned signals was acquired in a coincidence measurement using a coaxial HPGe and a cerium-doped lanthanum chloride (LaCl 3 :Ce) scintillation detector. The analysis using a Constant Fraction Discriminator (CFD) time output versus the HPGe signal shape shows that time resolution ranges from 2 to 12 ns depending on the slope in the initial part of the signal. An optimization procedure of the CFD parameters gives the same final time resolution (8 ns) as the one achieved after a correction of the CFD output based on the current pulse maximum position. Finally, an algorithm based on Pulse Shape Analysis was applied to the experimental data and a time resolution between 3 and 4 ns was obtained, corresponding to a 50% improvement as compared with that given by standard CFDs.

  14. Tube welding by the pulsed tig method

    International Nuclear Information System (INIS)

    Dick, N.T.

    1973-01-01

    During the construction of the helical wound boiler pods for the AGR stations at Hartlepool and Heysham, automatic TIG-welding techniques were used. In some cases limited access excluded the use of wire feed techniques and autogenous techniques had to be used. To resolve the problem of excessive concavity which occurred when using constant current autogenous techniques on 14.5 mm OD mild steel tubes of 1.8 mm thickness, pulsed-TIG welding was applied. By modifying the trailing edge of the pulse to produce a crater fill with each pulse, susceptibility to porosity and solidification cracking was reduced. The incorporation of digital counter permitted pulse duration, background duration, and electrode indexing distance to be monitored. (U.K.)

  15. Limitations of the pulse-shape technique for particle discrimination in planar Si detectors

    International Nuclear Information System (INIS)

    Pausch, G.; Seidel, W.; Lampert, M.O.; Rohr, P.

    1996-11-01

    Limitations of the pulse-shape discrimination (PSD) technique - a promising method to identify the charged particles stopped in planar Si-detectors - have been investigated. The particle resolution turned out to be basically determined by resistivity fluctuations in the bulk silicon which cause the charge-collection time to depend on the point of impact. Detector maps showing these fluctuations have been measured and are discussed. Furthermore we present a simple method to test the performance of detectors with respect to PSD. Another limitation of the PSD technique is the finite energy threshold for particle identification. This threshold is caused by an unexpected decrease of the total charge-collection time for ions with a short range, in spite of the fact that the particle tracks are located in a region of very low electric field. (orig.)

  16. The detection and estimation of spurious pulses

    International Nuclear Information System (INIS)

    1976-01-01

    Spurious pulses which may interfere with the counting of particles can sometimes easily be detected by integral counting as a function of amplification or by pulse-height analysis. However, in order to estimate their count rate, more elaborate methods based on their time relationship are needed. Direct techniques (delayed coincidences, use of a multichannel analyser in time mode, time-to-amplitude conversion) and gating techniques (simple subtraction, correlation counting, pulsed sources, modulo counting) are discussed. These techniques are compared to each other and their application to various detectors is studied as well as the influence of a dead time on spurious pulses

  17. An Improved Clutter Suppression Method for Weather Radars Using Multiple Pulse Repetition Time Technique

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    2017-01-01

    Full Text Available This paper describes the implementation of an improved clutter suppression method for the multiple pulse repetition time (PRT technique based on simulated radar data. The suppression method is constructed using maximum likelihood methodology in time domain and is called parametric time domain method (PTDM. The procedure relies on the assumption that precipitation and clutter signal spectra follow a Gaussian functional form. The multiple interleaved pulse repetition frequencies (PRFs that are used in this work are set to four PRFs (952, 833, 667, and 513 Hz. Based on radar simulation, it is shown that the new method can provide accurate retrieval of Doppler velocity even in the case of strong clutter contamination. The obtained velocity is nearly unbiased for all the range of Nyquist velocity interval. Also, the performance of the method is illustrated on simulated radar data for plan position indicator (PPI scan. Compared with staggered 2-PRT transmission schemes with PTDM, the proposed method presents better estimation accuracy under certain clutter situations.

  18. Determination of base-line levels of trace amounts in pulses and spices using neutron activation technique

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Arif, M.; Fatima, I.; Qureshi, I.H.

    1993-01-01

    It has been established that essential trace elements are vitally important for biochemical systems, whereas toxic elements if present in relatively higher amounts adversely affect these systems. Trace elements reach the human body mainly through foodstuffs. The different articles contain varying amount of toxic and essential elements. It is therefore necessary to asses the adequacy and safety of the diet by determining the base-line levels of these elements. In continuation of our previous work, some varieties of pulses and spices were analyzed using neutron activation technique. Among the four varieties of pulses lentil (lens esculenta) was found to contain higher amounts of essential elements and lower amounts of toxic elements. The daily intake of essential and toxic elements through pulses was estimated and compared with the suggested values. The estimated intake of essential elements is adequate and that of toxic elements is well below the tolerance limit. In spices cumin and caraway seeds were found to contain relatively higher amounts of essential as well as toxic elements. The studies showed that food spices were additional source of trace element intake. (author)

  19. Development of the double-pulse technique to improve the analytical performance of Laser Induced Breakdown Spectroscopy (LIBS) on solids: Nuclear and geological applications

    International Nuclear Information System (INIS)

    Gautier, C.

    2005-10-01

    The double-pulse technique has been developed to improve the analytical performance of Laser Ablation coupled to Optical Emission Spectroscopy (LA/OES). This approach relies on the addition of a second time-resolved laser pulse to the classical LA/OES system. It has been studied on aluminium alloys according to different geometries of the two laser beams (orthogonal and collinear geometries) before being applied to different materials (synthetic glass, rock, steel, sodium chloride). The increase in emission intensity depends on the temporal parameters, on the excitation energy level of the emission line, on the concentration of the studied element and on the analyzed matrix. The double-pulse LA/OES technique can be particularly interesting to improve the sensitivity towards vitreous matrices containing elements emitting lines with high excitation energy levels. (author)

  20. Development of Ultrasonic Pulse Compression Using Golay Codes

    International Nuclear Information System (INIS)

    Kim, Young H.; Kim, Young Gil; Jeong, Peter

    1994-01-01

    Conventional ultrasonic flaw detection system uses a large amplitude narrow pulse to excite a transducer. However, these systems are limited in pulse energy. An excessively large amplitude causes a dielectric breakage of the transducer, and an excessively long pulse causes decrease of the resolution. Using the pulse compression, a long pulse of pseudorandom signal can be used without sacrificing resolution by signal correlation. In the present work, the pulse compression technique was implemented into an ultrasonic system. Golay code was used as a pseudorandom signal in this system, since pair sum of autocorrelations has no sidelobe. The equivalent input pulse of the Golay code was derived to analyze the pulse compression system. Throughout the experiment, the pulse compression technique has demonstrated for its improved SNR(signal to noise ratio) by reducing the system's white noise. And the experimental data also indicated that the SNR enhancement was proportional to the square root of the code length used. The technique seems to perform particularly well with highly energy-absorbent materials such as polymers, plastics and rubbers

  1. Pulse power modulators - an overview

    International Nuclear Information System (INIS)

    Venkatramani, N.

    2006-01-01

    Pulse power modulators are electronic devices to provide, high voltage, high current, power bursts. Ideally, a modulator, with the means to shape and control the pulses, acts as a switch between a high voltage power supply and its load. This article gives an overview of the pulse power modulators: starting with the basics of pulse and modulation, it covers modulation topologies, different types of modulators, major subsystems and pulse measurement techniques. The various applications of pulse power modulators and the recent trends have been included at the end. (author)

  2. Determination of pseudo multi-pulse production rate in GM counters by correlation analysis between signal pulses

    International Nuclear Information System (INIS)

    Hashimoto, Kengo; Ueda, Taizou

    1996-01-01

    A technique, based on the correlation analysis of signal pulses in time sequence, is proposed to determine the production rate of the pseudo multi-pulse in Geiger-Mueller (GM) counter. With a multi-channel scaler initiated by a signal pulse, subsequent pulses are recorded in sequence. The production of the multi-pulse increases the counting probability immediately after the initiation. By examining the deviation of the measured probability from the ideal counting probability, the production rate and the average lag time to produce the multi-pulse can be determined. By the use of the present technique, the production rate and the average lag time were obtained for the various GM tubes. These results indicate that the consumption of the quench gas results in a significant increase in the production rate but little variation in the lag time, and that the lag time strongly depends on the tube diameter. (author)

  3. Discrimination of the glucose and the white sugar based on the pulsed laser-induced photoacoustic technique

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong

    2017-08-01

    In this study, to discriminate the glucose and the white sugar gradient in the food, a noninvasive optical detection system based on pulsed laser-induced photoacoustic technique was developed. Meanwhile, the Nd: YAG 532nm pumped OPO pulsed laser was used as the excitation light source to generate of the photoacoustic signals of the glucose and white sugar. The focused ultrasonic transducer with central detection frequency of 1MHz was used to capture the photoacoustic signals. In experiments, the real-time photoacoustic signals of the glucose and the white sugar aqueous solutions were gotten and compared with each other. In addition, to discriminate the difference of the characteristic photoacoustic signals between both of them, the difference spectrum and the first order derivative technique between the peak-to-peak photoacoustic signals of the water and that of the glucose and white sugar were employed. The difference characteristic photoacoustic wavelengths between the glucose and the white sugar were found based on the established photoacoustic detection system. This study provides the potential possibility for the discrimination of the glucose and the white sugar by using the photoacoustic detection method.

  4. Energy calibration of CsI(Tl) scintillator in pulse-shape identification technique

    CERN Document Server

    Avdeichikov, V; Golubev, P; Jakobsson, B; Colonna, N

    2003-01-01

    A batch of 16 CsI(Tl) scintillator crystals, supplied by the Bicron Company, has been studied with respect to precise energy calibration in pulse-shape identification technique. The light corresponding to pulse integration within the time interval 1.6-4.5 mu s (long gate) and 0.0-4.5 mu s (extra-long gate) exhibits a power law relation, L(E,Z,A)=a1(Z,A)E sup a sup 2 sup ( sup Z sup , sup A sup ) , for sup 1 sup , sup 2 sup , sup 3 H isotopes in the measured energy range 5-150 MeV. For the time interval 0.0-0.60 mu s (short gate), a significant deviation from the power law relation is observed, for energy greater than approx 30 MeV. The character of the a2(p)-a2(d) and a2(p)-a2(t) correlations for protons, deuterons and tritons, reveals 3 types of crystals in the batch. These subbatches differ in the value of the extracted parameter a2 for protons, and in the value of the spread of a2 for deuterons and tritons. This may be explained by the difference in the energy dependence of the fast decay time component an...

  5. Quantitative pulsed eddy current analysis

    International Nuclear Information System (INIS)

    Morris, R.A.

    1975-01-01

    The potential of pulsed eddy current testing for furnishing more information than conventional single-frequency eddy current methods has been known for some time. However, a fundamental problem has been analyzing the pulse shape with sufficient precision to produce accurate quantitative results. Accordingly, the primary goal of this investigation was to: demonstrate ways of digitizing the short pulses encountered in PEC testing, and to develop empirical analysis techniques that would predict some of the parameters (e.g., depth) of simple types of defect. This report describes a digitizing technique using a computer and either a conventional nuclear ADC or a fast transient analyzer; the computer software used to collect and analyze pulses; and some of the results obtained. (U.S.)

  6. Studies of some elementary processes involving electrons in the gas phase by pulse-radiolysis microwave-cavity technique

    International Nuclear Information System (INIS)

    Sunagawa, Takeyoshi; Makita, Takeshi; Musasa, Hirofumi; Tatsumi, Yoshitsugu; Shimamori, Hiroshi

    1995-01-01

    The pulse radiolysis-microwave cavity technique has been employed for detection of free electrons in the gas phase. Presented are results of the observation of electron disappearance by attachment to molecules, the electron thermalization (energy loss) processes in the presence of an electron-attaching compound, and the formation of electrons by Penning ionization. (author)

  7. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  8. Characterization and modulation of femtosecond laser pulse

    International Nuclear Information System (INIS)

    Dorrer, Christophe

    1999-01-01

    This work brings some solutions to the characterization and control of femtosecond laser pulses. Spectral interferometry has been extensively studied; whereas this is a rather old technique, it has found new specific applications to short pulses. Several important points concerning the experimental implementation of this technique are treated. Sources of errors have been tracked and simple solutions have been found to enhance its reliability. A recently demonstrated technique for the complete characterization of short pulses has been used to characterize short pulses from Chirped Pulse Amplification Systems. This transposition of shearing interferometry to the optical frequency domain, known as Spectral Phase Interferometry for Direct Electric-field Reconstruction (SPlDER), is conceptually very interesting: for example, the inversion from the experimental data to the electric field to be characterized is completely algebraic. A reliable tool for the characterization and optimization of Chirped pulse amplification systems has been built on this principle. This is the first single-shot real-time characterization implementation of this technique. An improvement of the method has also allowed the first single-shot real-time characterization of a short pulse using a single mono-dimensional integrative detector and an algebraic inversion of the experimental data. The control of these pulses is also of prior interest. Through a collaboration with Thomson CSF-LCR, the demonstration of the use of an optically addressed light valve at the Fourier plane of a zero-dispersion line for spectral phase modulation has been made. This device allows a high-resolution control of the spectral phase of a short pulse. It is a well-adapted tool for the correction of the residual spectral phase, at the output of Chirped Pulse Amplification systems and the temporal synthesis of shaped pulses for specific experiments. (author) [fr

  9. A Technique for Temperature and Ultimate Load Calculations of Thin Targets in a Pulsed Electron Beam

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Lundsager, Per

    1979-01-01

    A technique is presented for the calculation of transient temperature distributions and ultimate load of rotationally symmetric thin membranes with uniform lateral load and exposed to a pulsed electron beam from a linear accelerator. Heat transfer by conduction is considered the only transfer...... mechanism. The ultimate load is calculated on the basis of large plastic strain analysis. Analysis of one aluminum and one titanium membrane is shown....

  10. Development of gap measurement technique in-vessel corium retention using ultrasonic pulse echo method

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Jong Hwan; Kang, Kyung Ho; Kim, Sang Baik; Sim, Cheul Muu

    1999-03-01

    A gap between a molten material and a lower vessel is formed in the LAVA experiment, a phase 1 study of Sonata-IV program. In this technical report, quantitative results of the gap measurement using an off-line ultrasonic pulse echo method are presented. This report aims at development of an appropriate ultrasonics test method, by analyzing the problems from the external environmental reason and the internal characteristic reason. The signal analyzing methods to improve the S/N ratio in these problems are divided into the time variant synthesized signal analyzing method and the time invariant synthesized signal analyzing method. In this report, the possibility of the application of these two methods to the gap signal and the noise is considered. In this test, the signal of the propagational direction and reflectional direction through solid-liquid-solid specimen was analyzed to understand the behavior of the reflectional signal in a multi-layered structure by filling the gap with water between the melt and the lower head vessel. The quantitative gap measurement using the off-line ultrasonic pulse echo method was available for a little of the scanned region. But furtherly using DSP technique and imaging technique, the better results will be obtained. Some of the measured signals are presented as 2-dimensional spherical mapping method using distance and amplitude. Other signals difficult in quantitative measurement are saved for a new signal processing method. (author). 11 refs., 4 tabs., 54 figs

  11. Chirped pulse amplification: Present and future

    International Nuclear Information System (INIS)

    Maine, P.; Strickland, D.; Pessot, M.; Squier, J.; Bado, P.; Mourou, G.; Harter, D.

    1988-01-01

    Short pulses with ultrahigh peak powers have been generated in Nd: glass and Alexandrite using the Chirped Pulse Amplification (CPA) technique. This technique has been successful in producing picosecond terawatt pulses with a table-top laser system. In the near future, CPA will be applied to large laser systems such as NOVA to produce petawatt pulses (1 kJ in a 1 ps pulse) with focused intensities exceeding 10/sup /plus/21/ W/cm 2 . These pulses will be associated with electric fields in excess of 100 e/a/sub o/ 2 and blackbody energy densities equivalent to 3 /times/ 10 10 J/cm 3 . This petawatt source will have important applications in x-ray laser research and will lead to fundamentally new experiments in atomic, nuclear, solid-state, plasma, and high-energy density physics. A review of present and future designs are discussed. 17 refs., 5 figs

  12. Imaging of the magnetic field structure in megagauss plasmas by combining pulsed polarimetry with an optical Kerr effect shutter technique

    International Nuclear Information System (INIS)

    Smith, R. J.

    2010-01-01

    Pulsed polarimetry in combination with a high speed photographic technique based on the optical Kerr effect is described. The backscatter in a pulsed polarimeter is directed through a scattering cell and photographed using an ∼1 ps shutter, essentially freezing the intensity pattern. The image provides both the local electron density and magnetic field distributions along and transverse to the laser sightline. Submillimeter spatial resolution is possible for probing wavelengths in the visible due to the high densities and strong optical activity. Pulsed polarimetry is thereby extended to centimeter-sized plasmas with n e >10 19 -10 20 cm -3 and B>20-100 T (MG) produced by multiterawatt, multimega-ampere electrical drivers, wire Z pinches, and liner imploded magnetized plasmas.

  13. Technique for measuring charged particle distribution in a pulsed beam. Sposob izmereniya raspredeleniya zaryazhennykh chastits v impul'snom puchke

    Energy Technology Data Exchange (ETDEWEB)

    Zakutin, V V; Shenderovich, A M

    1988-11-07

    Technique for measuring charged particle distribution in a pulsed beam by producing beam imprint on a target is described. In order to measure beam particle distribution in longitudinal direction, all beam particles are deflected simultaneously to the target, located in parallel with initial direction of beam motion, by transverse pulse magnetic field, homogeneous in the field of trajectories of beam particle motion in the field. The invention enables to conduct measurements of longitudinal distribution of particle density in beams of 10{sup -9}-10{sup -11}s duration, this corresponds to longitudinal beam dimensions from 30 cm down to 3 mm. 1 fig.

  14. New techniques of time-resolved infrared and Raman spectroscopy using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Laubereau, A.

    1986-01-01

    Considerable progress has been made in recent years in the field of spectroscopic applications of ultrashort laser pulses. This paper examines two approaches toward studying ultrafast relaxation processes in condensed matter: an IR technique which complements coherent Raman scattering; and a Fourier Raman method with high frequency resolution. The time domain IR spectroscopy technique has been applied to various vibration-rotation transitions of pure HCl gas and in mixtures with Ar buffer gas. The advantage of the time domain measurements instead of frequency spectroscopy is readily visualized when one recalls that a frequency resolution of 10 -3 cm -1 corresponds to time observations over 10 -8 , which are readily feasible. As a first demonstration of the FT-Raman technique the author presents experimental data on the Q-branch of the v 1 -vibrational mode of methane. An example for the experimental data obtained approximately 2 mm behind the nozzle is presented; the coherent anti-Stokes Raman signal is plotted versus delay time. A complicated beating structure and the decay of the signal envelope are readily seen. The desired spectroscopic information is obtained by numerical Fourier transformation of the experimental points presented

  15. Generation of programmable temporal pulse shape and applications in micromachining

    Science.gov (United States)

    Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.

    2009-02-01

    In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.

  16. Electron-volt spectroscopy at a pulsed neutron source using a resonance detector technique

    CERN Document Server

    Andreani, C; Senesi, R; Gorini, G; Tardocchi, M; Bracco, A; Rhodes, N; Schooneveld, E M

    2002-01-01

    The effectiveness of the neutron resonance detector spectrometer for deep inelastic neutron scattering measurements has been assessed by measuring the Pb scattering on the eVS spectrometer at ISIS pulsed neutron source and natural U foils as (n,gamma) resonance converters. A conventional NaI scintillator with massive shielding has been used as gamma detector. A neutron energy window up to 90 eV, including four distinct resonance peaks, has been assessed. A net decrease of the intrinsic width of the 6.6 eV resonance peak has also been demonstrated employing the double difference spectrum technique, with two uranium foils of different thickness.

  17. Recurrent potential pulse technique for improvement of glucose sensing ability of 3D polypyrrole

    Science.gov (United States)

    Cysewska, Karolina; Karczewski, Jakub; Jasiński, Piotr

    2017-07-01

    In this work, a new approach for using a 3D polypyrrole (PPy) conducting polymer as a sensing material for glucose detection is proposed. Polypyrrole is electrochemically polymerized on a platinum screen-printed electrode in an aqueous solution of lithium perchlorate and pyrrole. PPy exhibits a high electroactive surface area and high electrochemical stability, which results in it having excellent electrocatalytic properties. The studies show that using the recurrent potential pulse technique results in an increase in PPy sensing stability, compared to the amperometric approach. This is due to the fact that the technique, under certain parameters, allows the PPy redox properties to be fully utilized, whilst preventing its anodic degradation. Because of this, the 3D PPy presented here has become a very good candidate as a sensing material for glucose detection, and can work without any additional dopants, mediators or enzymes.

  18. Application of nonlinear pulse shaping of femtosecond pulse generation in a fiber amplifier at 500 MHz repetition rate

    Science.gov (United States)

    Liu, Yang; Luo, Daping; Wang, Chao; Zhu, Zhiwei; Li, Wenxue

    2018-03-01

    We numerically and experimentally demonstrate that a nonlinear pulse shaping technique based on pre-chirping management in a short gain fiber can be exploited to improve the quality of a compressed pulse. With prior tuning of the pulse chirp, the amplified pulse express different nonlinear propagating processes. A spectrum with s flat top and more smooth wings, showing a similariton feature, generates with the optimal initial pulse chirp, and the shortest pulses with minimal pulse pedestals are obtained. Experimental results show the ability of nonlinear pulse shaping to enhance the quality of compressed pulses, as theoretically expected.

  19. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  20. Use of time history speckle pattern and pulsed photoacoustic techniques to detect the self-accommodating transformation in a Cu-Al-Ni shape memory alloy

    International Nuclear Information System (INIS)

    Sanchez-Arevalo, F.M.; Aldama-Reyna, W.; Lara-Rodriguez, A.G.; Garcia-Fernandez, T.; Pulos, G.; Trivi, M.; Villagran-Muniz, M.

    2010-01-01

    Continuous and pulsed electromagnetic radiation was used to detect the self-accommodation mechanism on a polycrystalline Cu-13.83 wt.%Al-2.34 wt.%Ni shape memory alloy. Rectangular samples of this alloy were mechanically polished to observe the austenite and martensite phases. The samples were cooled in liquid nitrogen prior to the experiments to obtain the martensite phase. Using a dynamic speckle technique with a continuous wave laser we obtained the time history of the speckle pattern image and monitored the surface changes caused by the self-accommodation mechanism during the inverse (martensitic to austenitic) transformation. Using a photoacoustic technique based on a pulsed laser source it was also possible to detect the self-accommodation phenomena in a bulk sample. For comparison purposes, we used differential scanning calorimetry (DSC) to detect the critical temperatures of transformation and use these as reference to evaluate the performance of the optical and photoacoustical techniques. In all cases, the same range of temperature was obtained during the inverse transformation. From these results, we conclude that time history speckle pattern (THSP) and pulsed photoacoustic are complementary techniques; they are non-destructive and useful to detect surface and bulk martensitic transformation induced by a temperature change.

  1. Use of time history speckle pattern and pulsed photoacoustic techniques to detect the self-accommodating transformation in a Cu-Al-Ni shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arevalo, F.M., E-mail: fsanchez@iim.unam.mx [CCADET - Universidad Nacional Autonoma de Mexico, A.P. 70-186, Mexico D.F., C.P. 04510 (Mexico); Aldama-Reyna, W. [Departamento Academico de Fisica, Universidad Nacional de Trujillo, Trujillo (Peru); Lara-Rodriguez, A.G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico (Mexico); Garcia-Fernandez, T. [Universidad Autonoma de la Ciudad de Mexico (UACM), Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, Mexico DF, C.P. 09790 (Mexico); Pulos, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico (Mexico); Trivi, M. [Centro de Investigaciones Opticas, Universidad de la Plata (Argentina); Villagran-Muniz, M. [CCADET - Universidad Nacional Autonoma de Mexico, A.P. 70-186, Mexico D.F., C.P. 04510 (Mexico)

    2010-05-15

    Continuous and pulsed electromagnetic radiation was used to detect the self-accommodation mechanism on a polycrystalline Cu-13.83 wt.%Al-2.34 wt.%Ni shape memory alloy. Rectangular samples of this alloy were mechanically polished to observe the austenite and martensite phases. The samples were cooled in liquid nitrogen prior to the experiments to obtain the martensite phase. Using a dynamic speckle technique with a continuous wave laser we obtained the time history of the speckle pattern image and monitored the surface changes caused by the self-accommodation mechanism during the inverse (martensitic to austenitic) transformation. Using a photoacoustic technique based on a pulsed laser source it was also possible to detect the self-accommodation phenomena in a bulk sample. For comparison purposes, we used differential scanning calorimetry (DSC) to detect the critical temperatures of transformation and use these as reference to evaluate the performance of the optical and photoacoustical techniques. In all cases, the same range of temperature was obtained during the inverse transformation. From these results, we conclude that time history speckle pattern (THSP) and pulsed photoacoustic are complementary techniques; they are non-destructive and useful to detect surface and bulk martensitic transformation induced by a temperature change.

  2. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus

    2010-02-09

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  3. Pulse-shaping strategies in short-pulse fiber amplifiers

    International Nuclear Information System (INIS)

    Schimpf, Damian Nikolaus

    2010-01-01

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  4. Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses

    International Nuclear Information System (INIS)

    Major, Zs.; Osterhoff, J.; Hoerlein, R.; Karsch, S.; Fuoloep, J.A.; Krausz, F.; Ludwig-Maximilians Universitaet, Muenchen

    2006-01-01

    Complete test of publication follows. In the quest for a way to generate ultrashort, high-power, few-cycle laser pulses the discovery of optical parametric amplification (OPA) has opened up to the path towards a completely new regime, well beyond that of conventional laser amplification technology. The main advantage of this parametric amplification process is that it allows for an extremely broad amplification bandwidth compared to any known laser amplifier medium. When combined with the chirped-pulse amplification (CPA) principle (i.e. OPCPA), on one hand pulses of just 10 fs duration and 8 mJ pulse energy have been demonstrated. On the other hand, pulse energies of up to 30 J were also achieved on a different OPCPA system; the pulse duration in this case, however, was 100 fs. In order to combine ultrashort pulse durations (i.e. pulses in the few-cycle regime) with high pulse energies (i.e. in the Joule range) we propose tu pump on OPCPA chain with TW-scale short pulses (100 fs - 1 ps instead of > 100 ps of previous OPCPA systems) delivered by a conventional CPA system. This approach inherently improves the conditions for generating high-power ultrashort pulses using OPCPA in the following ways. Firstly, the short pump pulse duration reduces the necessary stretching factor for the seed pulse, thereby increasing stretching and compression fidelity. Secondly, also due to the shortened pump pulse duration, a much higher contrast is achieved. Finally, the significantly increased pump power makes the use of thinner OPCPA crystals possible, which implies an even broader amplification bandwidth, thereby allowing for even shorter pulses. We carried out theoretical investigations to show the feasibility of such a set-up. Alongside these studies we will also present preliminary experimental results of an OPCPA system pumped by the output of our Ti:Sapphire ATLAS laser, currently delivering 350 mJ in 43 fs. An insight into the planned scaling of this technique to petawatt

  5. A versatile programmable CAMAC random pulse generator

    International Nuclear Information System (INIS)

    Abdel-Aal, R.E.

    1991-01-01

    A new technique for generating linear pulses which can be random in both amplitude and time is described. With this technique, desired values for both pulse amplitude and spacing are set for the individual pulses by the software on a pulse-by-pulse basis. The versatility offered by this software programming allows a wide range of distributions to be obtained; with the user having close control on the distribution parameters. A number of such distributions may also be combined into a single output pulse stream. An implementation in a CAMAC module is presented. Both hardware and software aspects are described and typical performance results for amplitude and time distributions of the uniform and Gaussian type are given. Implications of using the pulser in a typical data acquisition environment on both the data acquisition and the pulser performance are considered. Typical applications are discussed together with some of the limitations. (orig.)

  6. Calculation of the pulsed Feynman- and Rossi-alpha formulae with delayed neutrons

    International Nuclear Information System (INIS)

    Kitamura, Y.; Pazsit, I.; Wright, J.; Yamamoto, A.; Yamane, Y.

    2005-01-01

    In previous works, the authors have developed an effective solution technique for calculating the pulsed Feynman- and Rossi-alpha formulae. Through derivation of these formulae, it was shown that the technique can easily handle various pulse shapes of the pulsed neutron source. Furthermore, it was also shown that both the deterministic (i.e., synchronizing with the pulsing of neutron source) and stochastic (non-synchronizing) Feynman-alpha formulae can be obtained with this solution technique. However, for mathematical simplicity and the sake of insight, the formal derivation was performed in a model without delayed neutrons. In this paper, to demonstrate the robustness of the technique, the pulsed Feynman- and Rossi-alpha formulae were re-derived by taking one group of delayed neutrons into account. The results show that the advantages of this technique are retained even by inclusion of the delayed neutrons. Compact explicit formulae are derived for the Feynman- and Rossi-alpha methods for various pulse shapes and pulsing methods

  7. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement

    Science.gov (United States)

    Liu, Yang; Yang, Linghui; Guo, Yin; Lin, Jiarui; Cui, Pengfei; Zhu, Jigui

    2018-02-01

    An interferometer technique based on temporal coherence function of femtosecond pulses is demonstrated for practical distance measurement. Here, the pulse-to-pulse alignment is analyzed for large delay distance measurement. Firstly, a temporal coherence function model between two femtosecond pulses is developed in the time domain for the dispersive unbalanced Michelson interferometer. Then, according to this model, the fringes analysis and the envelope extraction process are discussed. Meanwhile, optimization methods of pulse-to-pulse alignment for practical long distance measurement are presented. The order of the curve fitting and the selection of points for envelope extraction are analyzed. Furthermore, an averaging method based on the symmetry of the coherence function is demonstrated. Finally, the performance of the proposed methods is evaluated in the absolute distance measurement of 20 μ m with path length difference of 9 m. The improvement of standard deviation in experimental results shows that these approaches have the potential for practical distance measurement.

  8. Transport and calorimetric properties of AISI 321 by pulse thermal diffusivity and calorimetric techniques

    International Nuclear Information System (INIS)

    Perovic, N.L.; Maglic, K.D.; Stanimirovic, A.M.; Vukovic, G.S.

    1995-01-01

    The study of the thermophysical properties of AISI 321 stainless steel was the last part of work within the IAEA-coordinated Research Programme for the Establishment of a Database of Thermophysical Properties of LW and HW Reactor Materials (IAEA CRP) effected at the Institute of Nuclear Sciences Vinca (NIV). The AISI 321 stainless steel belongs to the group of construction materials whose thermophysical and calorimetric properties have significance for the IAEA CRP. Because there have been few investigations of the thermal properties of this material, the CRP foresaw the need for new measurements, which are reported in this paper. Experimental research performed at NIV consisted of the investigation of thermal diffusivity, electric resistivity, and specific heat capacity of this austenitic stainless steel. The thermal diffusivity was measured by the laser pulse technique, and the elastic resistivity and specific heat capacity were determined by use of millisecond-resolution pulse calorimetry. All measurements were performed from ambient temperature to above 1000 o C, within which temperature range the material maintains its structure and stable thermophysical properties. Values for the thermal conductivity were computed from data on the thermal diffusivity, specific heat capacity, and the room-temperature density. (author)

  9. A Brief Journey into the History of the Arterial Pulse

    OpenAIRE

    A. Maziar Zafari; Nima Ghasemzadeh

    2011-01-01

    Objective. This paper illustrates the evolution of our knowledge of the arterial pulse from ancient times to the present. Several techniques for arterial pulse evaluation throughout history are discussed. Methods. Using databases including Worldcat, Pubmed, and Emory University Libraries' Catalogue, the significance of the arterial pulse is discussed in three historical eras of medicine: ancient, medieval, and modern. Summary. Techniques used over time to analyze arterial pulse and its charac...

  10. Pulse-shape discrimination techniques for the COBRA double beta-decay experiment at LNGS

    Science.gov (United States)

    Zatschler, S.; COBRA Collaboration

    2017-09-01

    In modern elementary particle physics several questions arise from the fact that neutrino oscillation experiments have found neutrinos to be massive. Among them is the so far unknown nature of neutrinos: either they act as so-called Majorana particles, where one cannot distinguish between particle and antiparticle, or they are Dirac particles like all the other fermions in the Standard Model. The study of neutrinoless double beta-decay (0νββ-decay), where the lepton number conservation is violated by two units, could answer the question regarding the underlying nature of neutrinos and might also shed light on the mechanism responsible for the mass generation. So far there is no experimental evidence for the existence of 0νββ-decay, hence, existing experiments have to be improved and novel techniques should be explored. One of the next-generation experiments dedicated to the search for this ultra-rare decay is the COBRA experiment. This article gives an overview of techniques to identify and reject background based on pulse-shape discrimination.

  11. Third Harmonic Imaging using a Pulse Inversion

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...

  12. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Gontad, F., E-mail: francisco.gontad@le.infn.it [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Solombrino, L. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Chiadroni, E. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati (Italy); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Perrone, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy)

    2016-11-11

    In this work Magnesium (Mg) and Yttrium (Y) thin films have been deposited on Copper (Cu) polycrystalline substrates by the pulsed laser ablation technique for photocathode application. Such metallic materials are studied for their interesting photoemission properties and are proposed as a good alternative to the Cu photocathode, which is generally used in radio-frequency guns. Mg and Y films were uniform with no substantial differences in morphology; a polycrystalline structure was found for both of them. Photoemission measurements of such cathodes based on thin films were performed, revealing a quantum efficiency higher than Cu bulk. Photoemission theory according to the three-step model of Spicer is invoked to explain the superior photoemission performance of Mg with respect to Y. - Highlights: • Mg and Y thin film photocathodes were successfully prepared by pulsed laser deposition. • Mg quantum efficiency is higher than Y, despite its higher work function. • The three-step model of Spicer justify the difference in quantum efficiency.

  13. Improvement of SOI microdosimeter performance using pulse shape discrimination techniques

    International Nuclear Information System (INIS)

    Cornelius, I.

    2002-01-01

    Full text: Microdosimetry is used to study the radiobiological properties of densely ionising radiations encountered in hadron therapy and space environments by measuring energy deposition in microscopic volumes. The creation of a solid state microdosimeter to replace the traditional tissue equivalent proportional counter is a topic of ongoing research. The Centre for Medical Radiation Physics has been investigating a technique using microscopic arrays of reverse biased pn junctions to measure the linear energy transfer of ions. A prototype silicon-on-insulator (SOI) microdosimeter was developed and measurements were conducted at boron neutron capture therapy, proton therapy, and fast neutron therapy facilities. Previous studies have shown the current microdosimeter possesses a poorly defined sensitive volume, a consequence of charge collection events being measured for ion strikes outside the pn junction via the diffusion of charge carriers. As a result, the amount of charge collected by the microdosimeter following an ion strike has a strong dependence on the location of the strike on the device and the angle of incidence of the ion. The aim of this work was to investigate the use of pulse shape discrimination (PSD) techniques to preclude the acquisition of events resulting from ion strikes outside the depletion region of the pn junction. Experiments were carried out using the Heavy Ion Microprobe (HIMP) at the Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia. The HIMP was used to measure the charge collection time as a function of ion strike location on the microdosimeter array. As expected, the charge collection time was seen to increase monotonically as the distance of the ion strike from the junction increased. The charge collection time corresponding to ion strikes within the junction was determined. Through use of suitable electronics it was possible to gate the charge collection signal based on simultaneous measurements of

  14. Proportional counters for measuring plutonium-239 'in vivo' - The choice of counting gas and the use of pulse shape discrimination techniques

    International Nuclear Information System (INIS)

    Pike, R.A.; Ramsden, D.

    1969-08-01

    The system for determining insoluble plutonium 'in vivo', now in routine use at A.E.E-. Winfrith, has a limit of detection of the order of 4 nCi plutonium - 239. The method of reducing background by using pulse shape discrimination techniques whilst retaining a high detection efficiency is described. The choice of a counting gas mixture to obtain optimum performance is discussed as are the techniques of gas handling. (author)

  15. Gas phase pulse radiolysis

    International Nuclear Information System (INIS)

    Jonah, C.D.; Andong Liu; Mulac, W.A.

    1987-01-01

    Gas phase pulse radiolysis, a technique which can be used to study many different phenomena in chemistry and physics, is discussed. As a source of small radicals, pulse radiolysis is important to the field of chemistry, particularly to combustion and atmospheric kinetics. The reactions of 1,3-butadiene, allene, ethylene and acetylene with OH are presented. 52 refs., 1 fig., 1 tab

  16. High intensity pulse self-compression in short hollow core capillaries

    OpenAIRE

    Butcher, Thomas J.; Anderson, Patrick N.; Horak, Peter; Frey, Jeremy G.; Brocklesby, William S.

    2011-01-01

    The drive for shorter pulses for use in techniques such as high harmonic generation and laser wakefield acceleration requires continual improvement in post-laser pulse compression techniques. The two most commonly used methods of pulse compression for high intensity pulses are hollow capillary compression via self-phase modulation (SPM) [1] and the more recently developed filamentation [2]. Both of these methods can require propagation distances of 1-3 m to achieve spectral broadening and com...

  17. New methods of generation of ultrashort laser pulses for ranging

    Science.gov (United States)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  18. Nuclear pulse signal processing techniques based on blind deconvolution method

    International Nuclear Information System (INIS)

    Hong Pengfei; Yang Lei; Qi Zhong; Meng Xiangting; Fu Yanyan; Li Dongcang

    2012-01-01

    This article presents a method of measurement and analysis of nuclear pulse signal, the FPGA to control high-speed ADC measurement of nuclear radiation signals and control the high-speed transmission status of the USB to make it work on the Slave FIFO mode, using the LabVIEW online data processing and display, using the blind deconvolution method to remove the accumulation of signal acquisition, and to restore the nuclear pulse signal with a transmission speed, real-time measurements show that the advantages. (authors)

  19. Towards attosecond X-ray pulses from the FEL

    International Nuclear Information System (INIS)

    Zholents, Alexander A.; Fawley, William M.

    2004-01-01

    The ability to study ultrafast phenomena has been recently advanced by the demonstrated production and measurement of a single, 650-attosecond (10 18 sec), VUV x-ray pulse[1] and, latter, a 250-attosecond pulse[2]. The next frontier is a production of the x-ray pulses with shorter wavelengths and in a broader spectral range. Several techniques for a generation of an isolated, attosecond duration, short-wavelength x-ray pulse based upon the ponderomotive laser acceleration [3], SASE and harmonic cascade FELs ([4] - [6]) had been already proposed. In this paper we briefly review a technique proposed in [5] and present some new results

  20. The use of linear programming techniques to design optimal digital filters for pulse shaping and channel equalization

    Science.gov (United States)

    Houts, R. C.; Burlage, D. W.

    1972-01-01

    A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.

  1. Forward voltage short-pulse technique for measuring high power laser array junction temperature

    Science.gov (United States)

    Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

    2012-01-01

    The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

  2. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  3. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  4. Applications of pulsed Eddy Current (PEC) technique on defect and material assessment

    International Nuclear Information System (INIS)

    Nurul A'in Ahmad Latif; Noorhazleena Azaman; Ilham Mukriz Zainal Abidin

    2014-01-01

    The pulsed eddy current (PEC) is an emerging electromagnetic method and widely used in multiple field including aerospace, petrochemical, industry and transportation. PEC mainly depends on the multiple variables such as peak value and rising time to detect and quantify the defects. Apart of its advantage as non contacting technique, it has ability on conducting surface and subsurface detection. Additionally, PEC is high sensitive to variety parameters that are inherent in the flaws. Compare to conventional eddy current, PEC allows deeper penetration as it is a combination from multiple frequencies. This paper demonstrates the abilities of PEC technique performing multiple testing in various fields such as conducting conductivity testing, measuring the material thickness and identifying depth of the defects. The conductivity testing will be performed on multiple materials such as aluminium, stainless steel, copper, austenitic steel and titanium. To measure the material thicknesses, PEC testing will be conducted on the multi layered specimen with the different thickness. Meanwhile to identify depth of defects, the testing will be carried out using a stainless steel calibration block contains multiple length of defect. For the validation purposes, all the results generate through the experiments will be compared with simulation results produced using dedicated software, COMSOL. (author)

  5. Nondestructive analysis of the natural uranium mass through the measurement of delayed neutrons using the technique of pulsed neutron source

    International Nuclear Information System (INIS)

    Coelho, Paulo Rogerio Pinto

    1979-01-01

    This work presents results of non destructive mass analysis of natural uranium by the pulsed source technique. Fissioning is produced by irradiating the test sample with pulses of 14 MeV neutrons and the uranium mass is calculated on a relative scale from the measured emission of delayed neutrons. Individual measurements were normalised against the integral counts of a scintillation detector measuring the 14 MeV neutron intensity. Delayed neutrons were measured using a specially constructed slab detector operated in anti synchronism with the fast pulsed source. The 14 MeV neutrons were produced via the T(d,n) 4 He reaction using a 400 kV Van de Graaff accelerated operated at 200 kV in the pulsed source mode. Three types of sample were analysed, namely: discs of metallic uranium, pellets of sintered uranium oxide and plates of uranium aluminium alloy sandwiched between aluminium. These plates simulated those of Material Testing Reactor fuel elements. Results of measurements were reproducible to within an overall error in the range 1.6 to 3.9%; the specific error depending on the shape, size and mass of the sample. (author)

  6. Analysis and Minimization of Output Current Ripple for Discontinuous Pulse-Width Modulation Techniques in Three-Phase Inverters

    Directory of Open Access Journals (Sweden)

    Gabriele Grandi

    2016-05-01

    Full Text Available This paper gives the complete analysis of the output current ripple in three-phase voltage source inverters considering the different discontinuous pulse-width modulation (DPWM strategies. In particular, peak-to-peak current ripple amplitude is analytically evaluated over the fundamental period and compared among the most used DPWMs, including positive and negative clamped (DPWM+ and DPWM−, and the four possible combinations between them, usually named as DPWM0, DPWM1, DPWM2, and DPWM3. The maximum and the average values of peak-to-peak current ripple are estimated, and a simple method to correlate the ripple envelope with the ripple rms is proposed and verified. Furthermore, all the results obtained by DPWMs are compared to the centered pulse-width modulation (CPWM, equivalent to the space vector modulation to identify the optimal pulse-width modulation (PWM strategy as a function of the modulation index, taking into account the different average switching frequency. In this way, the PWM technique providing for the minimum output current ripple is identified over the whole modulation range. The analytical developments and the main results are experimentally verified by current ripple measurements with a three-phase PWM inverter prototype supplying an induction motor load.

  7. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    International Nuclear Information System (INIS)

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-01-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 (micro)m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  8. Fissile mass estimation by pulsed neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Israelashvili, I., E-mail: israelashvili@gmail.com [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Dubi, C.; Ettedgui, H.; Ocherashvili, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Beck, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Roesgen, E.; Crochmore, J.M. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Ridnik, T.; Yaar, I. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel)

    2015-06-11

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  9. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy; Bontemps, P.; Rikken, Geert L J A

    2011-01-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  10. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  11. Progress of Space Charge Research on Oil-Paper Insulation Using Pulsed Electroacoustic Techniques

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2016-01-01

    Full Text Available This paper focuses on the space charge behavior in oil-paper insulation systems used in power transformers. It begins with the importance of understanding the space charge behavior in oil-paper insulation systems, followed by the introduction of the pulsed electrostatic technique (PEA. After that, the research progress on the space charge behavior of oil-paper insulation during the recent twenty years is critically reviewed. Some important aspects such as the environmental conditions and the acoustic wave recovery need to be addressed to acquire more accurate space charge measurement results. Some breakthroughs on the space charge behavior of oil-paper insulation materials by the research team at the University of Southampton are presented. Finally, future work on space charge measurement of oil-paper insulation materials is proposed.

  12. Amorphous indium gallium zinc oxide thin film grown by pulse laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Bhaumik V., E-mail: bhaumik-phy@yahoo.co.in; Joshi, U. S. [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad-380 009 (India)

    2016-05-23

    Highly electrically conducting and transparent in visible light IGZO thin film were grown on glass substrate at substrate temperature of 400 C by a pulse laser deposition techniques. Structural, surface, electrical, and optical properties of IGZO thin films were investigated at room temperature. Smooth surface morphology and amorphous nature of the film has been confirmed from the AFM and GIXRD analysis. A resistivity down to 7.7×10{sup −3} V cm was reproducibly obtained while maintaining optical transmission exceeding 70% at wavelengths from 340 to 780 nm. The carrier densities of the film was obtain to the value 1.9×10{sup 18} cm{sup 3}, while the Hall mobility of the IGZO thin film was 16 cm{sup 2} V{sup −1}S{sup −1}.

  13. Uniaxial Magnetization Performance of Textured Fe Nanowire Arrays Electrodeposited by a Pulsed Potential Deposition Technique

    Science.gov (United States)

    Neetzel, C.; Ohgai, T.; Yanai, T.; Nakano, M.; Fukunaga, H.

    2017-11-01

    Textured ferromagnetic Fe nanowire arrays were electrodeposited using a rectangular-pulsed potential deposition technique into anodized aluminum oxide nanochannels. During the electrodeposition of Fe nanowire arrays at a cathodic potential of - 1.2 V, the growth rate of the nanowires was ca. 200 nm s-1. The aspect ratio of Fe nanowires with a diameter of 30 ± 5 nm reached ca. 2000. The long axis of Fe nanowires corresponded with the direction when a large overpotential during the on-time pulse was applied, whereas it orientated to the direction under the potentiostatic condition with a small overpotential. By shifting the on-time cathode potential up to - 1.8 V, the texture coefficient for the (200) plane, TC200, reached up to 1.94. Perpendicular magnetization performance was observed in Fe nanowire arrays. With increasing TC200, the squareness of Fe nanowire arrays increased up to 0.95 with the coercivity maintained at 1.4 kOe at room temperature. This research result has opened a novel possibility of Fe nanowire arrays that can be applied for a new permanent magnetic material without rare-earth metals.

  14. Quantum theory of NMR adiabatic pulses and their applications

    International Nuclear Information System (INIS)

    Ke, Y.

    1993-01-01

    Recently explosive developments of in vivo NMR spectroscopy (NMRS) and imaging (NMRI) in biological and medical sciences have resulted in the establishment of NMR as one of the most advanced major technique in life sciences. These developments have created huge demands for a variety of NMR adiabatic pulses with play a very important role in NMR experiments in vivo. In order to develop new NMR adiabatic pulses, a rigorous systematical quantum theory for this kind of pulses is greatly needed. Providing such a theory is one of the important goals of this dissertation. Quantum density matrix theory and product operator method have been used throughout this dissertation. Another goal, which is the major goal of this thesis research, is to use the quantum theory as a guide to develop new NMR adiabatic pulses and their applications. To fill this goal, a technique to construct a new type of adiabatic pulses, narrow band selective adiabatic pulses, has been invented, which is described through the example of constructing an adiabatic DANTE inversion pulse. This new adiabatic pulse is the first narrow band selective adiabatic pulses: Adiabatic homonuclear and heteronuclear spectral editing sequences. Unique to the first pulse sequence is a B 1 -field filter which is built by using two non-refocusing adiabatic full passage pulses to refocus the wanted signal and dephase unwanted signals. This extra filter greatly enhance the editing efficiency. Unlike commonly used heteronuclear spectral editing sequences which depend on the polarization transfer or spectral subtraction by phase cycling techniques, the second pulse sequences accomplishes the editing of heteronuclear J-coupled signals based on the fact that this sequence is transparent to the uncoupled spins and is equivalent a 90 degrees excitation pulse to the heteronuclear J-coupled spins. Experimental results have confirmed the ability of spectral editing with these two new sequences

  15. Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Sayed H

    2011-07-01

    Full Text Available Abstract Cardiovascular magnetic resonance (CMR tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR, scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1 Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM, delay alternating with nutations for tailored excitation (DANTE, and complementary SPAMM (CSPAMM; and 2 Advanced techniques, which include harmonic phase (HARP, displacement encoding with stimulated echoes (DENSE, and strain encoding (SENC. Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention

  16. Triple-Pulse Integrated Path Differential Absorption Lidar for Carbon Dioxide Measurement - Novel Lidar Technologies and Techniques with Path to Space

    Science.gov (United States)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  17. Combining multi-pulse excitation and chirp coding in contrast-enhanced ultrasound imaging

    International Nuclear Information System (INIS)

    Crocco, M; Sciallero, C; Trucco, A; Pellegretti, P

    2009-01-01

    The development of techniques to separate the response of the contrast agent from that of the biological tissues is of great importance in ultrasound medical imaging. In the literature, one can find various solutions involving the use of multiple transmitted signals and the weighted sum of related echoes. In this paper, the combination of one of these multi-pulse techniques with a coded excitation is proposed and assessed. Coded excitation has been used mainly to increase the signal-to-noise ratio (SNR) and the penetration depth, provided that a matched filtering is applied in the reception chain. However, it has been shown that a signal with a long duration time also increases the backscattered echoes produced by the microbubbles and, consequently, the contrast-to-tissue ratio. Therefore, the implementation of a multi-pulse technique using a long coded pulse can yield a better contrast-to-tissue ratio and SNR. This paper investigates the combination of the linear chirp pulse with a multi-pulse technique based on the transmission of three pulses. The performance was evaluated using both simulated and real signals, assessing the improvement in the contrast-to-tissue ratio and SNR, the visual quality of the images obtained and the axial accuracy. A comparison with the same multi-pulse technique implemented using a traditional amplitude-modulated pulse revealed that the deployment of a chirp pulse produces several noticeable advantages and only a minor drawback

  18. Properties of pulsed laser deposited NiO/MWCNT thin films

    CSIR Research Space (South Africa)

    Yalisi, B

    2011-05-01

    Full Text Available Pulsed laser deposition (PLD) is a thin-film deposition technique, which uses short and intensive laser pulses to evaporate target material. The technique has been used in this work to produce selective solar absorber (SSA) thin film composites...

  19. Scintillation-based Search for Off-pulse Radio Emission from Pulsars

    Science.gov (United States)

    Ravi, Kumar; Deshpande, Avinash A.

    2018-05-01

    We propose a new method to detect off-pulse (unpulsed and/or continuous) emission from pulsars using the intensity modulations associated with interstellar scintillation. Our technique involves obtaining the dynamic spectra, separately for on-pulse window and off-pulse region, with time and frequency resolutions to properly sample the intensity variations due to diffractive scintillation and then estimating their mutual correlation as a measure of off-pulse emission, if any. We describe and illustrate the essential details of this technique with the help of simulations, as well as real data. We also discuss the advantages of this method over earlier approaches to detect off-pulse emission. In particular, we point out how certain nonidealities inherent to measurement setups could potentially affect estimations in earlier approaches and argue that the present technique is immune to such nonidealities. We verify both of the above situations with relevant simulations. We apply this method to the observation of PSR B0329+54 at frequencies of 730 and 810 MHz made with the Green Bank Telescope and present upper limits for the off-pulse intensity at the two frequencies. We expect this technique to pave the way for extensive investigations of off-pulse emission with the help of existing dynamic spectral data on pulsars and, of course, with more sensitive long-duration data from new observations.

  20. The role of the waveform in pulse pile-up

    International Nuclear Information System (INIS)

    Datlowe, D.W.

    1977-01-01

    Pulse pile-up is the distortion of pulse-height distributions due to the overlap of detector responses to the arrival of two or more particles or photons within the detector resolving time. This paper presents a computational technique for simulating pile-up effects, which includes explicitly the dependence on the pulse-shape of the detector system. The basis of the technique is the manipulation of probability densities. The method is applicable to all types of linear pulse counting systems for nucleons, electrons, and photons, as long as the result is a pulse-height distribution. The algorithms are highly efficient in the amount of computing required for simulations, and internal checks for the numerical accuracy of the results are included. Studies of pile-up by monoenergetic pulses are used to determine the interrelationship between pulse shapes and spectral features; this information can be used to minimize pile-up. For broad spectra, the square wave approximation is compared with the present model including the correct waveform; introducing the pulse shape information smooths spectral features but does not qualitatively change the spectrum. (Auth.)

  1. Digital synthesis of pulse shapes in real time for high resolution radiation spectroscopy

    International Nuclear Information System (INIS)

    Jordanov, Valentin T.; Knoll, Glenn F.

    1994-01-01

    Techniques have been developed for the synthesis of pulse shapes using fast digital schemes in place of the traditional analog methods of pulse shaping. Efficient recursive algorithms have been developed that allow real time implementation of a shaper that can produce either trapezoidal or triangular pulse shapes. Other recursive techniques are presented which allow a synthesis of finite cusp-like shapes. Preliminary experimental tests show potential advantages of using these techniques in high resolution, high count rate pulse spectroscopy. ((orig.))

  2. Microstructural examination of Zr-2.5%Nb alloy welds made by pulsed Nd:YAG laser and TIG welding technique

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Varma, P.V.S.; Panakkal, J.P.; Srivastava, D.; Dey, G.K.

    2009-01-01

    The paper describes the weld microstructure of Zr-2.5%Nb alloy material. Bead on plate welds were made using pulsed Nd:YAG laser and TIG welding technique at different parameters. These welds were characterized at macro and microstructural level. Weld pools of Pulsed Laser and TIG welds were not resolved by optical microscopy. SEM too did not reveal much. Orientation imaging microscopy could reveal the presence of fine martensite. It was observed that microstructure is very sensitive to welding parameters. Microhardness studies suggested formation of martensite in the weld pool. It was also observed that laser welds had very sharp weld pool boundary as compared to TIG welds. Variation in microhardness of the weldment is seen and is influenced by overlapping of weld spots causing thermal treatment of previously deposited spots. (author)

  3. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Hu, Hui [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Chen, Wen-Li [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090 (China); Bond, Leonard J. [Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Room 1200, Ames, IA 50011 (United States); Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, 151 ASC II, Ames, IA 50011 (United States)

    2014-02-18

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  4. Comparison of pulsed electron beam-annealed and pulsed ruby laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wilson, S.R.; Appleton, B.R.; White, C.W.; Narayan, J.; Greenwald, A.C.

    1978-11-01

    Recently two new techniques, pulsed electron beam annealing and pulsed laser annealing, have been developed for processing ion-implanted silicon. These two types of anneals have been compared using ion-channeling, ion back-scattering, and transmission electron microscopy (TEM). Single crystal samples were implanted with 100 keV As + ions to a dose of approx. 1 x 10 16 ions/cm 2 and subsequently annealed by either a pulsed Ruby laser or a pulsed electron beam. Our results show in both cases that the near-surface region has melted and regrown epitaxially with nearly all of the implanted As (97 to 99%) incroporated onto lattice sites. The analysis indicates that the samples are essentially defect free and have complete electrical recovery

  5. Coherent combining pulse bursts in time domain

    Science.gov (United States)

    Galvanauskas, Almantas

    2018-01-09

    A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies using a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.

  6. A digital long pulse integrator

    International Nuclear Information System (INIS)

    Broesch, J.D.; Strait, E.J.; Snider, R.T.

    1996-10-01

    A prototype digital integrator with very long integration capabilities has been developed and field tested on an inductive magnetic sensor on the DIII-D Tokamak. The integrator is being developed for use on ITER with a pulse length of 1000 s, and has direct applications for other long pulse Tokamaks. Inductive magnetic sensors are routinely used on existing Tokamaks, are well understood, and are extremely robust, however, they require integration of the signal to determine the magnetic field strength. The next generation of Tokamaks, will have pulse lengths of 1000 s or longer, require integrators with drift and noise characteristics compatible with the very long pulse lengths. This paper will discuss the architecture, algorithms, and programming of the Long Pulse Integrator (LPI). Of particular interest are the noise control and the built-in offset correction techniques used in this application

  7. Modular pulse sequencing in a tokamak system

    International Nuclear Information System (INIS)

    Chew, A.C.; Lee, S.; Saw, S.H.

    1992-01-01

    Pulse technique applied in the timing and sequencing of the various part of the MUT tokamak system are discussed. The modular architecture of the pulse generating device highlights the versatile application of the simple physical concepts in precise and complicated research experiment. (author)

  8. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron

    International Nuclear Information System (INIS)

    Kurashima, Satoshi; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Taguchi, Mitsumasa; Fukuda, Mitsuhiro

    2015-01-01

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method

  9. PULSED MOLECULAR BEAM PRODUCTION WITH NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Hagena, Otto-Friedrich

    1963-05-15

    Molecular beam experiments that can be carried out in pulsed operation may be performed at considerably reduced expense for apparatus if, for pulse generation, the gas supply to the beam production system is interrupted as opposed to the usual steady molecular beam. This technique is studied by measuring intensity vs time of molecular beam impulses of varying length, how fast and through which intermediate states the initial intensity of the impulse attains equilibrium, and in which way the intensity of the molecular-beam impulse is affected by the pulse length and by increasing pressure in the first pressure stage. For production of pulses, a magnetically actuated, quick shutting, valve is used whose scaling area is the inlet cone of the nozzle used for the beam generation. The shortest pulses produced had a pulse length of 1.6 ms. (auth)

  10. Pulsed corona generation using a diode-based pulsed power generator

    Science.gov (United States)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  11. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  12. Linear induction accelerators made from pulse-line cavities with external pulse injection

    International Nuclear Information System (INIS)

    Smith, I.

    1979-01-01

    Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator

  13. New scientific horizons with pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carlile, C.J.; Finney, J.L.

    1991-01-01

    Pulsed spallation sources are not just another way of producing neutrons: the time structure of the neutron pulse has consequences which allow new scientific areas to be investigated and traditional areas to be explored afresh. In addition to the high epithermal neutron component traditionally associated with pulsed sources the recent development of cold neutron techniques at ISIS illustrates that very high energy and momentum resolutions can be achieved on pulsed sources over a surprisingly wide range. (orig.)

  14. Quantitative Evaluation of Defect in Stainless Steel 304 Tube Using Pulsed Eddy Current Technique

    International Nuclear Information System (INIS)

    Nurul Ain Ahmad Latif; Ilham Mukriz Zainal Abidin; Nurul Ain Ahmad Latif; Nordin Jamaludin; Zaredah Hashim; Norhayati Ramli

    2016-01-01

    Pulsed eddy current (PEC) is an advanced non-destructive testing (NDT) technique that operates based on electromagnetic principle. The excitation consists of broad frequency spectrum leading to be a potential in detecting defects that are deeply buried inside the specimen. In this paper, the experiment and simulation were conducted on stainless steel plate 304 fabricated with open surface defects having a different defect depth as an investigation towards the correlation between extracted signal feature and defect depth. Two common features; time to peak and peak value that corresponds to the location depth of defect and size of defect were used for signals analysis and evaluation. The results that acquired through finite element method (FEM) simulation were compared with experimental results for the signals evaluation and defect quantification. (author)

  15. Breaking time-resolution limits in pulse radiolysis

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Norizawa, Kimihiro; Yoshida, Yoichi; Tagawa, Seiichi

    2009-01-01

    Pulse radiolysis, which is a time-resolved stroboscopic method based on ultrashort electron pulse and ultrashort analyzing light, is widely used for the study of the chemical kinetics and radiation primary processes or reactions. Although it has become possible to use femtosecond-pulse electron beam and femtosecond laser light in pulse radiolysis, the resolution is limited by the difference in group velocities of the electrons and the light in sample. In this contribution, we introduce a concept of equivalent velocity spectroscopy (EVS) into pulse radiolysis and demonstrate the methodology experimentally. In EVS, both the electron and the analyzing light pulses precisely overlap at every point in the sample and throughout the propagation time by rotating the electron pulse. The advance allows us to overcome the resolution degradation due to the different group velocity. We also present a method for measuring the rotated angle of the electron pulse and a technique for rotating the electron pulse with a deflecting cavity.

  16. Complementarity of long pulse and short pulse spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Mezei, F [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1995-11-01

    The complementarity of short pulse spallation sources (SPSS) and steady state (CW) reactors is a widely accepted concept. SPSS and long pulse spallation sources (LPSS) are complementary in two ways: (a) in their performance in neutron scattering experiments LPSS closely emulate CW reactors. In this respect two facets of the time-of-flight (TOF) monochromator method adequate for LPSS will be discussed: the superiority of the TOF approach to the crystal monochromator method in high resolution powder diffraction, and the novel technique of repetition rate multiplication in TOF spectroscopy, (b) LPSS combined with adequate chopper systems can also emulate SPSS in a number of applications. It will be shown that the LPSS method of producing short neutron pulses is more efficient for cold and thermal neutrons (below an energy of about 100 MeV), while SPSS is the more favourable approach for hot, epithermal neutrons, i.e. in the slowing down regime in contrast to the moderated regime. These two aspects of complementarity of LPSS and SPSS lead to the conclusions that for about 75% of the spectrum of neutron scattering experiments as known of today the LPSS approach is the most advantageous one with a feasible neutron intensity exceeding that available at ILL by a factor of about 30, while for the remaining 25% of applications the SPSS technique is superior with a well-known potential of a similar gain over present day performances. (author) 7 figs., 6 refs.

  17. Complementarity of long pulse and short pulse spallation sources

    International Nuclear Information System (INIS)

    Mezei, F.

    1995-01-01

    The complementarity of short pulse spallation sources (SPSS) and steady state (CW) reactors is a widely accepted concept. SPSS and long pulse spallation sources (LPSS) are complementary in two ways: a) in their performance in neutron scattering experiments LPSS closely emulate CW reactors. In this respect two facets of the time-of-flight (TOF) monochromator method adequate for LPSS will be discussed: the superiority of the TOF approach to the crystal monochromator method in high resolution powder diffraction, and the novel technique of repetition rate multiplication in TOF spectroscopy, b) LPSS combined with adequate chopper systems can also emulate SPSS in a number of applications. It will be shown that the LPSS method of producing short neutron pulses is more efficient for cold and thermal neutrons (below an energy of about 100 MeV), while SPSS is the more favourable approach for hot, epithermal neutrons, i.e. in the slowing down regime in contrast to the moderated regime. These two aspects of complementarity of LPSS and SPSS lead to the conclusions that for about 75% of the spectrum of neutron scattering experiments as known of today the LPSS approach is the most advantageous one with a feasible neutron intensity exceeding that available at ILL by a factor of about 30, while for the remaining 25% of applications the SPSS technique is superior with a well-known potential of a similar gain over present day performances. (author) 7 figs., 6 refs

  18. HARMONIC ANALYSIS OF SVPWM INVERTER USING MULTIPLE-PULSES METHOD

    Directory of Open Access Journals (Sweden)

    Mehmet YUMURTACI

    2009-01-01

    Full Text Available Space Vector Modulation (SVM technique is a popular and an important PWM technique for three phases voltage source inverter in the control of Induction Motor. In this study harmonic analysis of Space Vector PWM (SVPWM is investigated using multiple-pulses method. Multiple-Pulses method calculates the Fourier coefficients of individual positive and negative pulses of the output PWM waveform and adds them together using the principle of superposition to calculate the Fourier coefficients of the all PWM output signal. Harmonic magnitudes can be calculated directly by this method without linearization, using look-up tables or Bessel functions. In this study, the results obtained in the application of SVPWM for values of variable parameters are compared with the results obtained with the multiple-pulses method.

  19. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  20. Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser

    Science.gov (United States)

    Manne, J.; Lim, A.; Tulip, J.; Jäger, W.

    2012-05-01

    We report on spectroscopic measurements of acrolein and acrylonitrile at atmospheric pressure using a pulsed distributed feedback quantum-cascade laser in combination with intra- and inter-pulse techniques and compare the results. The measurements were done in the frequency region around 957 cm-1. In the inter-pulse technique, the laser is excited with short current pulses (5-10 ns), and the pulse amplitude is modulated with an external current ramp resulting in a ˜2.3 cm-1 frequency scan. In the intra-pulse technique, a linear frequency down-chirp during the pulse is used for sweeping across the absorption line. Long current pulses up to 500 ns were used for these measurements which resulted in a spectral window of ˜2.2 cm-1 during the down-chirp. These comparatively wide spectral windows facilitated the measurements of the relatively broad absorption lines (˜1 cm-1) of acrolein and acrylonitrile. The use of a room-temperature mercury-cadmium-telluride detector resulted in a completely cryogen-free spectrometer. We demonstrate ppb level detection limits within a data acquisition time of ˜10 s with these methodologies.

  1. Performance of the periodic pulse technique--4. Periodic pulse reaction kinetics of oxidative dehydrogenation of isobutyraldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, T.; Ii, M.; Murakami, Y.

    1980-07-01

    The periodic pulse method was used to study the reaction mechanism and kinetics of the oxidative dehydrogenation of isobutyraldehyde (IBA) by following the formation rates of methacrolein (MA), carbon monoxide and dioxide (CO/sub x/), and other products (P) as a function of pulse widths and reactant partial pressures at 350/sup 0/C over a 2:3 antimony oxide/molybdenum trioxide catalyst. The results were consistent with a mechanism according to which IBA reacts with oxygen retained by the catalyst to form MA, causing reduction of the catalyst. The IBA also adsorbed on the surface as an oxygenated species which either reacted with gas-phase oxygen to form CO/sub x/ or desorbed as an oxygenated P. The reduced catalyst surface was reoxidized by oxygen adsorption. Implications of catalyst tailoring for increased MA yields by improving the redox mechanism and inhibiting the surface reactions, are discussed.

  2. The Toulouse pulsed magnet facility

    International Nuclear Information System (INIS)

    2006-01-01

    The 'Laboratoire National des Champs Magnetiques Pulses' (LNCMP) is an international user facility providing access to pulsed magnetic fields up to and beyond 60 T. The laboratory disposes of 10 magnet stations equipped with long-pulse magnets operating in the 35-60 T range and a short-pulse system reaching magnetic fields in excess of 70 T. The experimental infrastructure includes various high and low-temperature systems ranging from ordinary flow-type cryostats to dilution refrigerators reaching 50 mK, as well as different types of high-pressure cells. Experimental techniques include magnetization, transport, luminescence, IR-spectroscopy and polarimetry. The LNCMP pursues an extensive in-house research program focussing on all technological and scientific aspects of pulsed magnetic fields. Recent technical developments include the implementation of 60 T rapid-cooling coils, an 80 T prototype, a pulsed dipole magnet for optical investigations of dilute matter and a transportable horizontal access magnet for small angle x-ray scattering experiments. Scientific activities cover a variety of domains, including correlated electron systems, magnetism, semiconductors and nanoscience

  3. Influence of Pulse Shaping Filters on PAPR Performance of Underwater 5G Communication System Technique: GFDM

    Directory of Open Access Journals (Sweden)

    Jinqiu Wu

    2017-01-01

    Full Text Available Generalized frequency division multiplexing (GFDM is a new candidate technique for the fifth generation (5G standard based on multibranch multicarrier filter bank. Unlike OFDM, it enables the frequency and time domain multiuser scheduling and can be implemented digitally. It is the generalization of traditional OFDM with several added advantages like the low PAPR (peak to average power ratio. In this paper, the influence of the pulse shaping filter on PAPR performance of the GFDM system is investigated and the comparison of PAPR in OFDM and GFDM is also demonstrated. The PAPR is restrained by selecting proper parameters and filters to make the underwater acoustic communication more efficient.

  4. Maximum repulsed magnetization of a bulk superconductor with low pulsed field

    International Nuclear Information System (INIS)

    Tsuchimoto, M.; Kamijo, H.; Fujimoto, H.

    2005-01-01

    Pulsed field magnetization of a bulk high-T c superconductor (HTS) is important technique especially for practical applications of a bulk superconducting magnet. Full magnetization is not obtained for low pulsed field and trapped field is decreased by reversed current in the HTS. The trapped field distribution by repulsed magnetization was previously reported in experiments with temperature control. In this study, repulsed magnetization technique with the low pulsed field is numerically analyzed under assumption of variable shielding current by the temperature control. The shielding current densities are discussed to obtain maximum trapped field by two times of low pulsed field magnetizations

  5. Repeated pulsed x-ray emission equipment

    International Nuclear Information System (INIS)

    Terauchi, Hikaru; Iida, Satoshi

    1982-01-01

    X-ray diffraction technique has been applied to determine the spatial positions of atoms which compose a material, and it is needless to say that the technique is a fundamental means regardless of the fields of research. However, the application of X-ray diffraction to the research on physical properties has been so far limited to know the spatial positions of atoms or molecules under thermal equilibrium condition. The addition of time element to the conventional technique, that is, the analysis of material structure including the time-varying processes under non-equilibrium conditions, is considered to approach the elucidation of the essence of materials. The authors call this dynamic structural analysis. The authors have planned to analyze X-ray diffraction intensity which has the resolution of about 10 -8 s in the real time which is conjugate with energy. However, present pulsed X-ray sources are not suitable for diffraction experiment because the pulse width is too long or X-ray wavelength is too short. Accordingly, the authors have made for trial a pulsed X-ray source for diffraction experiment. Its specifications are: diode voltage (X-ray tube voltage) from 200 to 300 kV, diode current from 2 to 5 kA, pulse width of about 30ns, maximum repetition frequency 10 pps, and X-ray focus size of 2 mm diameter. One of the features of this source is the repeated generation of pulsed X-ray. This is the first trial in the world, and is indispensable to the dynamic structural analysis described above. The quality of the emitted X-ray is also written. (Wakatsuki, Y.)

  6. Development of a new picosecond pulse radiolysis system by using a femtosecond laser synchronized with a picosecond linac. A step to femtosecond pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoichi; Yamamoto, Tamotsu; Miki, Miyako; Seki, Shu; Okuda, Shuichi; Honda, Yoshihide; Kimura, Norio; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Ushida, Kiminori

    1997-03-01

    A new picosecond pulse radiolysis system by using a Ti sapphire femtosecond laser synchronized with a 20 ps electron pulse from the 38 MeV L-band linac has been developed for the research of the ultra fast reactions in primary processes of radiation chemistry. The timing jitter in the synchronization of the laser pulse with the electron pulse is less than several picosecond. The technique can be used in the next femtosecond pulse radiolysis. (author)

  7. Condensed matter research using pulsed neutron sources: a bibliography

    International Nuclear Information System (INIS)

    Mildner, D.F.R.; Stirling, G.C.

    1976-05-01

    This report is an updated revision of RL-75-095 'Condensed Matter Research Using Pulsed Neutron Sources: A Bibliography'. As before, the survey lists published papers concerning (a) the production of high intensity neutron pulses suitable for thermal neutron scattering research, (b) moderating systems for neutron thermalization and pulse shaping, (c) techniques and instrumentation for diffraction and inelastic scattering at pulsed sources, and (d) their application to research problems concerning the structural and dynamical properties of condensed matter. Papers which deal with the white beam time-of-flight technique at steady state reactors have also been included. A number of scientists have brought to the author's attention papers which have been published since the previous edition. They are thanked and encouraged to continue the cooperation so that the bibliography may be updated periodically. (author)

  8. Hysteresis in Lanthanide Zirconium Oxides Observed Using a Pulse CV Technique and including the Effect of High Temperature Annealing.

    Science.gov (United States)

    Lu, Qifeng; Zhao, Chun; Mu, Yifei; Zhao, Ce Zhou; Taylor, Stephen; Chalker, Paul R

    2015-07-29

    A powerful characterization technique, pulse capacitance-voltage (CV) technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111) substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD). The results indicated that: (1) more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrO x ; (2) the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N₂ ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 10 12 cm -2 for as-deposited sample to 4.55 × 10 12 cm -2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10 - ⁶ A/cm² at V g = +0.5 V for the as-deposited sample to 10 -3 A/cm² at V g = +0.5 V for the 900 °C annealed one.

  9. Hysteresis in Lanthanide Zirconium Oxides Observed Using a Pulse CV Technique and including the Effect of High Temperature Annealing

    Directory of Open Access Journals (Sweden)

    Qifeng Lu

    2015-07-01

    Full Text Available A powerful characterization technique, pulse capacitance-voltage (CV technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111 substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD. The results indicated that: (1 more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrOx; (2 the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N2 ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 1012 cm−2 for as-deposited sample to 4.55 × 1012 cm−2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10−6 A/cm2 at Vg = +0.5 V for the as-deposited sample to 10−3 A/cm2 at Vg = +0.5 V for the 900 °C annealed one.

  10. Design and research of fuel element for pulsed reactor

    International Nuclear Information System (INIS)

    Tian Sheng

    1994-05-01

    The fuel element is the key component for pulsed reactor and its design is one of kernel techniques for pulsed reactor. Following the GA Company of US the NPIC (Nuclear Power Institute of China) has mastered this technique. Up to now, the first pulsed reactor in China (PRC-1) has been safely operated for about 3 years. The design and research of fuel element undertaken by NPIC is summarized. The verification and evaluation of this design has been carried out by using the results of measured parameters during operation and test of PRC-1 as well as comparing the design parameters published by others

  11. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    Science.gov (United States)

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Pulse electrodeposition of Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Adelkhani, H.

    2000-01-01

    Pulse Electroplating is a relativity new technique in electrodeposition of pure metals and alloys which has resulted in a number of improvement over the traditional direct current method. Among these are a better composition control, lower porosity, reduction of internal stresses and hydrogen content as well as other impurities. In this work Pulse plating of Fe-Ni-Cr alloys has been investigated by using a series of planned experiments. A domain of Pulse parameters, such a pulse frequency, pulse duration, current density and batch condition such as Ph, temperature and has been defined where the coating quality is optimal. The result obtained were Compared with those of D C electroplating and finally a number of recommendations are made for future works towards a semi-industrial process

  13. Spectral coherent combination of ultrashort pulses

    International Nuclear Information System (INIS)

    Ursescu, D.; Banici, R.; Ionel, L.; Rusen, L.; Sandel, S.; Blanaru, C.

    2010-01-01

    Complete text of publication follows. The coherent beam combination was chosen in several laser systems, including ELI, as a solution to increase the final attainable intensity. However, the coherent beam combination it is also a difficult technique while it has to combine coherently in space and in time several beams amplified in different laser chains. That means in particular that the beams should be in phase in every point of the amplified beam so the spatial beam profiling techniques have to be mastered with high accuracy for all the combined beams. Here it is proposed an alternative coherent beam combination than the use of identical ultrashort pulses. The idea is to spectrally combine laser pulses with complementary spectra. Collinear and non-collinear approaches have been modelled. Ongoing experimental development, including the demonstration of the rephasing for two spectrally complementary ultrashort pulses will be presented. Acknowledgements. The research leading to these results has received funding from the EC's Seventh Framework Programme (LASERLAB-EUROPE, grant agreement no. 228334).

  14. Local Intraarterial Thrombolysis: In Vitro Comparison Between Automatic and Manual Pulse-Spray Infusion

    International Nuclear Information System (INIS)

    Froelich, Jens J.; Freymann, Christina; Hoppe, Martin; Thiel, Thomas; Wagner, H. Joachim; Barth, Klemens H.; Klose, Klaus J.

    1996-01-01

    Purpose: Manual and automatic pulse-spray infusion techniques are compared in vitro to evaluate the efficacy of thrombolysis and the distribution of urokinase and saline solution within thrombus using a pulse-spray catheter. Methods: A pulse-spray catheter was introduced into a human thrombus within a stenotic flow model. Automatic and manual pulsed infusion of urokinase and automatic pulsed infusion of saline solution were compared. To quantify the efficacy of thrombolysis, pressure gradients were recorded proximal and distal to the thrombus and during the course of infusion. Distribution of infused urokinase was assessed radiographically. Results: The fastest and most homogeneous dissolution of the thrombus was achieved with automatic pulsed infusion of urokinase, shown by decreasing transthrombotic pressure gradients (p < 0.001, Wilcoxon, matched pairs). Manual pulsed infusion of urokinase or saline solution resulted in inhomogeneous thrombus dissolution and delayed thrombolysis. Conclusion: Application of automatic pulse-spray injectors seems beneficial for more effective and homogeneous intraarterial pulse-spray thrombolysis when compared with conventional manual pulsed technique

  15. Digital pulse-shape analyzer based on fast sampling of an integrated charge pulse

    International Nuclear Information System (INIS)

    Jordanov, V.T.; Knoll, G.F.

    1995-01-01

    A novel configuration for pulse-shape analysis and discrimination has been developed. The current pulse from detector is sent to a gated integrator and then sampled by a flash analog-to-digital converter (ADC). The sampled data are processed digitally, thus allowing implementation of a near-optimum weighting function and elimination some of the instabilities associated with the gated integrator. The analyzer incorporates pileup rejection circuit that reduces the pileup effects at high counting rates. The system was tested liquid scintillator. Figures of merit for neutron-gamma pulse-shape discrimination were found to be: 0.78 for 25 keV (electron equivalent energy) and 3.5 for 500 keV. The technique described in this paper was developed to be used in a near tissue-equivalent neutron-gamma dosimeter which employs a liquid scintillator detector

  16. Proton Pulse Radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H C; Nilsson, G; Reitberger, T; Thuomas, K A

    1973-03-15

    A 5 MeV proton accelerator (Van de Graaff) has been used for pulse radiolysis of a number of organic gases and the transient spectra obtained from the alkanes methane, ethane, propane, n-butane and neopentane have tentatively been assigned to alkyl radicals. Some methodological aspects of this new technique are discussed

  17. Improvement of chirped pulse contrast using electro-optic birefringence scanning filter method

    International Nuclear Information System (INIS)

    Zeng Shuguang; Wang Xianglin; Wang Qishan; Zhang Bin; Sun Nianchun; Wang Fei

    2013-01-01

    A method using scanning filter to improve the contrast of chirped pulse is proposed, and the principle of this method is analyzed. The scanning filter is compared with the existing pulse-picking technique and nonlinear filtering technique. The scanning filter is a temporal gate that is independent on the intensity of the pulses, but on the instantaneous wavelengths of light. Taking the electro-optic birefringence scanning filter as an example, the application of scanning filter methods is illustrated. Based on numerical simulation and experimental research, it is found that the electro-optic birefringence scanning filter can eliminate a prepulse which is several hundred picoseconds before the main pulse, and the main pulse can maintain a high transmissivity. (authors)

  18. CO2-Tea pulse clipping using pulsed high voltage preionization for high spatial resolution I.R. Lidar systems

    Directory of Open Access Journals (Sweden)

    Gasmi Taieb

    2018-01-01

    Full Text Available An extra-cavity CO2-TEA laser pulse clipper for high spatial resolution atmospheric monitoring is presented. The clipper uses pulsed high voltageto facilitate the breakdown of the gas within the clipper cell. Complete extinction of the nitrogen tail, that degrades the range resolution of LIDARS, is obtained at pressures from 375 up to 1500 Torr for nitrogen and argon gases whereas an attenuation coefficient of almost 102 is achieved for helium. Excellent energy stability and pulse width repeatability were achieved using high voltage pre-ionized gas technique.

  19. CO2-Tea pulse clipping using pulsed high voltage preionization for high spatial resolution I.R. Lidar systems

    Science.gov (United States)

    Gasmi, Taieb

    2018-04-01

    An extra-cavity CO2-TEA laser pulse clipper for high spatial resolution atmospheric monitoring is presented. The clipper uses pulsed high voltageto facilitate the breakdown of the gas within the clipper cell. Complete extinction of the nitrogen tail, that degrades the range resolution of LIDARS, is obtained at pressures from 375 up to 1500 Torr for nitrogen and argon gases whereas an attenuation coefficient of almost 102 is achieved for helium. Excellent energy stability and pulse width repeatability were achieved using high voltage pre-ionized gas technique.

  20. High current high accuracy IGBT pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 μF capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles

  1. Final project report for NEET pulsed ion beam project

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, S. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-11

    The major goal of this project was to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploited a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. This project had the following four major objectives: (i) the demonstration of the pulsed ion beam method for a prototypical nuclear ceramic material, SiC; (ii) the evaluation of the robustness of the pulsed beam method from studies of defect generation rate effects; (iii) the measurement of the temperature dependence of defect dynamics and thermally activated defect-interaction processes by pulsed ion beam techniques; and (iv) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, all these objectives have been met.

  2. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    International Nuclear Information System (INIS)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-01-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm"−"2 is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm"−"2 and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm"−"2. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  3. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm{sup −2} is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm{sup −2} and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm{sup −2}. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  4. Long-pulse magnetic field facility at Zaragoza

    International Nuclear Information System (INIS)

    Algarabel, P A; Moral, A del; Martin, C; Serrate, D; Tokarz, W

    2006-01-01

    The long-pulse magnetic field facility of the Laboratorio de Magnetismo - Instituto de Ciencia de Materiales de Aragon (Universidad de Zaragoza-CSIC) produces magnetic fields up to 31, with a pulse duration of 2.2s. Experimental set-ups for measurements of magnetization, magnetostriction and magnetoresistance are available. The temperature can be controlled between 1.4 and 335 K, being the inner bore of the He cryostat of 22.5 mm. Magnetization is measured using the mutual induction technique, the magnetostriction is determined with the strain-gage and the capacitive cantilever methods, and the magnetoresistance is measured by means of the aclock-in technique in the 4-probes geometry. An overview of the facility will be presented and the presently available experimental techniques will be discussed

  5. A simple optical spectral calibration technique for pulsed THz sources

    NARCIS (Netherlands)

    Wijnen, F.J.P.; G. Berden,; Jongma, R.T.

    2010-01-01

    We have quantified the sensitivity of a simple method to measurethe frequency spectrum of pulsed terahertz (THz) radiation. The THzpulses are upconverted to the optical regime by sideband generation in a zinctelluride (ZnTe) crystal using a continuous wave (cw) narrow-bandwidthnear-infrared laser. A

  6. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis.

    Science.gov (United States)

    de la Fuente, R; de Celis, B; del Canto, V; Lumbreras, J M; de Celis Alonso, B; Martín-Martín, A; Gutierrez-Villanueva, J L

    2008-10-01

    A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for alpha/beta/gamma-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of alpha/beta particles and X-rays/gamma particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by alpha/gamma coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg(-1) for 0.1 kg of soil and 1000 min counting.

  7. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis

    International Nuclear Information System (INIS)

    Fuente, R. de la; Celis, B. de; Canto, V. del; Lumbreras, J.M.; Celis, Alonso B. de; Martin-Martin, A.; Gutierrez-Villanueva, J.L.

    2008-01-01

    A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for α/β/γ-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of α/β particles and X-rays/γ particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by α/γ coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg -1 for 0.1 kg of soil and 1000 min counting

  8. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.

    2006-01-01

    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  9. Les écoulements par RMN à gradient pulsé Pulsed Gradient Nmr Techniques for Studying Flows

    Directory of Open Access Journals (Sweden)

    Lebon L.

    2006-12-01

    Full Text Available Nous présentons ici les techniques de RMN à gradient pulsé qui permettent d'étudier les écoulements multiphasiques en canalisation ou en milieu poreux. Les principaux avantages sont de pouvoir travailler sur des milieux non transparents et d'accéder à des échelles de longueurs faibles. On montre qu'il est possible d'obtenir des informations locales sur l'écoulement, telles que le profil de vitesse et ses fluctuations dans les écoulements diphasiques, ou les cartes de distribution des probabilités de déplacement dans des échantillons poreux hétérogènes. Pulsed gradient NMR techniques are presented here. They allow the study of multiphase flow in pipes as well as porous media. The main advantages are the possibilities of studying non transparent media at small length scales. We show that it is possible to obtain local information on the fluid flow, such as velocity profiles in two phase systems, or maps of distribution of displacement probabilities in heterogeneous porous media.

  10. Prepulse suppression using a self-induced, ultrashort pulse plasma mirror

    International Nuclear Information System (INIS)

    Gold, D.M.; Nathel, H.; Bolton, P.R.; White, W.E.; Van Woerkom, L.D.

    1991-01-01

    The plasma mirror is a self-induced, plasm-based optical element which can be inserted into existing experiments to reduce repulse energy without significant degradation of ultrashort pulse laser light. The authors have characteristics of the reflected pulse. The initial measurements indicate that the incident pulse reflects specularly from a high density, highly reflective plasma. The reflected pulse has a smoothed spatial profile and reduced pulsewidth. This paper outlines future work to characterize both the plasm mirror technique of repulse suppression and its reflected pulse

  11. Use of pulsed neutron logging to evaluate perforation washing

    International Nuclear Information System (INIS)

    Dimon, C.A.

    1986-01-01

    This invention relates to the use of pulsed neutron logging techniques before and after perforation washing operations are performed to evaluate the degree of success of the perforation washing operations. Well logging operations of a type designed to respond to the difference between a formation immediately behind the well sheath and voids in the formation are performed both before and after the perforation washing operation. differences between the two resulting logs are then indicative of voids created by perforation washing. In a preferred embodiment, pulsed neutron logging is used as the logging technique, while a weighted brine having a high absorption cross section to pulsed neutrons is used as the perforation washing fluid

  12. A 0.76-pJ/Pulse 0.1-1 Gpps Microwatt IR-UWB CMOS Pulse Generator with Adaptive PSD Control Using A Limited Monocycle Precharge Technique

    DEFF Research Database (Denmark)

    Shen, Ming; Yin, Ying-Zheng; Jiang, Hao

    2015-01-01

    This brief presents an ultra-wideband pulse generator topology featuring adaptive control of power spectral density for a broad range of applications with different data rate requirements. The adaptivity is accomplished by employing a limited monocycle precharge approach to control the energy use...... for validation. The measured results show that the pulse generator can be used for a wide pulse repetition rate range from 100 Mpps to 1 Gpps. In addition, the pulse generator consumes 0.76 pJ/pulse at 1 Gpps, equivalent to 760 μW and has a compact size of 0.09 mm2....

  13. Dynamic View on Nanostructures: A Technique for Time Resolved Optical Luminescence Using Synchrotron Light Pulses at SRC, APS, and CLS

    International Nuclear Information System (INIS)

    Heigl, F.; Jurgensen, A.; Zhou, X.-T.; Lam, S.; Murphy, M.; Ko, J.Y.P.; Sham, T.K.; Rosenberg, R.A.; Gordon, R.; Brewe, D.; Regier, T.; Armelao, L.

    2007-01-01

    We present an experimental technique using the time structure of synchrotron radiation to study time resolved X-ray excited optical luminescence. In particular we are taking advantage of the bunched distribution of electrons in a synchrotron storage ring, giving short x-ray pulses (10-10 2 picoseconds) which are separated by non-radiating gaps on the nano- to tens of nanosecond scale - sufficiently wide to study a broad range of optical decay channels observed in advanced nanostructured materials.

  14. Pulsed field gel electrophoresis a practical guide

    CERN Document Server

    Birren, Bruce

    1993-01-01

    Pulsed Field Gel Electrophoresis: A Practical Guide is the first laboratory manual to describe the theory and practice of this technique. Based on the authors' experience developing pulsed field gel instruments and teaching procedures, this book provides everything a researcher or student needs to know in order to understand and carry out pulsed field gel experiments. Clear, well-tested protocols assume only that users have a basic familiarity with molecular biology. Thorough coverage of useful data, theory, and applications ensures that this book is also a lasting resource for more adv

  15. Dependence of adiabatic population transfer on pulse profile

    Indian Academy of Sciences (India)

    Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant. We study the effect of ultrafast shaped pulses for two-level systems, by density-matrix approach. However, we find that adiabaticity depends ...

  16. Warm dense mater: another application for pulsed power hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Reinovsky, Robert Emil [Los Alamos National Laboratory

    2009-01-01

    Pulsed Power Hydrodynamics (PPH) is an application of low-impedance pulsed power, and high magnetic field technology to the study of advanced hydrodynamic problems, instabilities, turbulence, and material properties. PPH can potentially be applied to the study of the properties of warm dense matter (WDM) as well. Exploration of the properties of warm dense matter such as equation of state, viscosity, conductivity is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to slightly above solid density) and modest temperatures ({approx}1-10 eV). Conditions characteristic of WDM are difficult to obtain, and even more difficult to diagnose. One approach to producing WDM uses laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers are applying these techniques. Pulsed power hydrodynamic techniques, such as large convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through multiple shock compression and heating of normal density material between a massive, high density, energetic liner and a high density central 'anvil' are possible ways to reach relevant conditions. Another avenue to WDM conditions is through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. In this paper we will examine the challenges to pulsed power technology and to pulsed power systems presented by the opportunity to explore this interesting region of parameter space.

  17. Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband

    Science.gov (United States)

    Nekoogar, Faranak [San Ramon, CA; Dowla, Farid U [Castro Valley, CA

    2012-01-24

    The multi-pulse frequency shifted technique uses mutually orthogonal short duration pulses o transmit and receive information in a UWB multiuser communication system. The multiuser system uses the same pulse shape with different frequencies for the reference and data for each user. Different users have a different pulse shape (mutually orthogonal to each other) and different transmit and reference frequencies. At the receiver, the reference pulse is frequency shifted to match the data pulse and a correlation scheme followed by a hard decision block detects the data.

  18. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique.

    Science.gov (United States)

    Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  19. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique

    International Nuclear Information System (INIS)

    Ghiyas Ud Din; Imran Rafiq Chughtai; Mansoor Hameed Inayat; Iqbal Hussain Khan

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and 99m Tc in the form of sodium pertechnetate eluted from a 99 Mo/ 99m Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer 99m Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  20. Long-pulse magnetic field facility at Zaragoza

    Science.gov (United States)

    Algarabel, P. A.; del Moral, A.; Martín, C.; Serrate, D.; Tokarz, W.

    2006-11-01

    The long-pulse magnetic field facility of the Laboratorio de Magnetismo - Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-CSIC) produces magnetic fields up to 31, with a pulse duration of 2.2s. Experimental set-ups for measurements of magnetization, magnetostriction and magnetoresistance are available. The temperature can be controlled between 1.4 and 335 K, being the inner bore of the He cryostat of 22.5 mm. Magnetization is measured using the mutual induction technique, the magnetostriction is determined with the strain-gage and the capacitive cantilever methods, and the magnetoresistance is measured by means of the aclock-in technique in the 4-probes geometry. An overview of the facility will be presented and the presently available experimental techniques will be discussed.

  1. The application of pulse shape discrimination in NE 213 to neutron spectrometry

    International Nuclear Information System (INIS)

    Perkins, L.J.; Scott, M.C.

    1979-01-01

    The use of a zero-crossing pulse shape discrimination technique to distinguish protons from alpha particles in NE 213 is described, and a theoretical analysis is performed to predict the zero crossing characteristics. It is shown that, irrespective of the particular method of pulse shape discrimination employed, the pulse shape at low energies no longer uniquely determines the particle type for electrons, protons, alpha particles or 12 C nuclei, and the general limitations of pulse shape discrimination in NE 213 are deduced. The use of an alpha discrimination technique is then discribed, enabling neutron spectra to be unfolded from the measured detector response using a differential code. (orig.)

  2. CO2 laser pulse shortening by laser ablation of a metal target

    International Nuclear Information System (INIS)

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-01-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO 2 laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ∼2 ns and to remove the low power, long duration tails that are present in TEA CO 2 pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ∼10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  3. Effect of High Frequency Pulsing on the Interfacial Structure of Anodised Aluminium-TiO2

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2015-01-01

    High frequency anodizing of friction stir processed Al-TiO2 surface composites was investigated. The effect of anodizing parameters on the structure and morphology of the anodic layer including the incorporation of the TiO2 particles into the anodic layer is studied. Anodizing process was carried...... out using a high frequency pulse and pulse reverse pulse technique at a fixed frequency in a sulfuric acid bath. The structure of the composites and the anodized layer was studied using scanning and transmission electron microscopy. The pulse reverse pulse anodizing technique, using a negative...

  4. Pulsed critical current measurements of NbTi in perpendicular and parallel pulsed magnetic fields using the new Cryo-BI-Pulse System

    International Nuclear Information System (INIS)

    Stehr, V; Tan, K S; Hopkins, S C; Glowacki, B A; Keyser, A De; Bockstal, L Van; Deschagt, J

    2006-01-01

    Rapid transport current versus high magnetic field characterisation of high-irreversibility type II superconductors is important to maximise their critical parameters. HTS conductors are already used to produce insert coils that increase the fields of conventional magnets made from NbTi (Nb, Ta) 3 Sn and Nb 3 Al wires. There is fundamental interest in the study of HTS tapes and wires in magnetic fields higher than 21T, the current limit of superconducting magnets producing a DC field. Such fields can be obtained by using pulse techniques. High critical currents cannot be routinely measured with a continuous current applied at liquid helium, hydrogen or neon temperatures because of thermal and mechanical effects. A newly developed pulsed magnetic field and pulsed current system which allows rapid J c (B, T) measurements of the whole range of superconducting materials was tested with a multifilamentary NbTi wire in perpendicular and parallel orientations

  5. Study on uranium-water multiplicative means of the (RESUCO-Subcritical experimental reactor of uranium with oxygen) subcritical assembly by pulsed neutron technique

    International Nuclear Information System (INIS)

    Jesus Barbosa, S. de.

    1987-01-01

    The effective multiplication factor and the nuclear parameters associated with the variation of (RESUCO- Subcritical Experimental Reactor of Uranium with Oxygen) Subcritical Assembly Configuration, using pulsed neutron technique are analysed. BF3 detectors were used to detect the variation of thermal neutrons in the system, positioned parallelly to fuel elements, and a proton recoil detector was used for monitoring the neutron generation. (M.C.K.) [pt

  6. Nonresonant Multiple-Pulse Control of Molecular Motions in Liquid

    Directory of Open Access Journals (Sweden)

    Nikiforov V.G.

    2015-01-01

    Full Text Available We propose the implementation of the multiple-pulse excitation for manipulation of the molecular contributions to the optically-heterodyne-detected optical-Kerr-effect. The key parameters controlling the specificity of the multiple-pulse excitation scenarios are the pulses durations, the delays between pulses, the relation between the pump pulses amplitudes and the pulses polarizations. We model the high-order optical responses and consider some principles of the scenarios construction. We show that it is possible to adjust the excitation scenario in such a way that the some responses can be removed from detected signal along with the enhancement of the interested response amplitude. The theoretical analysis and first experimental data reveal that the multiple-pulse excitation technique can be useful for the selective spectroscopy of the molecular vibrations and rotations in liquid.

  7. Femtosecond pulse shaping using plasmonic snowflake nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Tok, Ruestue Umut; Sendur, Kuersat [Sabanci University, Orhanli-Tuzla, 34956, Istanbul (Turkey)

    2011-09-15

    We have theoretically demonstrated femtosecond pulse manipulation at the nanoscale using the plasmonic snowflake antenna's ability to localize light over a broad spectrum. To analyze the interaction of the incident femtosecond pulse with the plasmonic nanoantenna, we first decompose the diffraction limited incident femtosecond pulse into its spectral components. The interaction of each spectral component with the nanoantenna is analyzed using finite element technique. The time domain response of the plasmonic antenna is obtained using inverse Fourier transformation. It is shown that the rich spectral characteristics of the plasmonic snowflake nanoantenna allow manipulation of the femtosecond pulses over a wide spectrum. Light localization around the gap region of the nanoantenna is shown for femtosecond pulses. As the alignment of incident light polarization is varied, different antenna elements oscillate, which in turn creates a different spectrum and a distinct femtosecond response.

  8. Principles and techniques of radiation hardening. Volume 3. Electromagnetic pulse (EMP) and system generated EMP

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 3 deals with the following topics: selected fundamentals of electromagnetic theory; EMP induced currents on antennas and cables; the EMP response of electronics; EMP hardening; EMP testing; injection currents; internal electromagnetic pulse (IEMP); replacement currents; and system generated electromagnetic pulse (SGEMP) hardening

  9. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  10. Wavelength stabilisation during current pulsing of tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2009-01-01

    The use of external feedback to stabilise the frequency of a tapered laser during current pulsing is reported. Using this technique more than 20 W of peak power in 60 ns pulses from the tapered laser is obtained and owing to the external feedback, the laser is tunable in the 778-808 nm range...

  11. High power ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  12. Uni- and tridimensional alignment of molecules by femto-second laser pulse

    International Nuclear Information System (INIS)

    Rouzee, Arnaud

    2007-01-01

    This thesis is devoted to the study of the alignment of linear and asymmetric top molecules generated by an intense laser pulse. In the case of short pulses with respect to molecular rotation, periodic alignment appears in field-free conditions after the extinction of the field. We study theoretically and experimentally the effects of intensity, temperature and polarization of the electric field on produced alignment. If the field is linearly polarized, the interaction leads to the alignment of the most polarizable axis of the molecule. If the field is elliptically polarized, the pulse can generate a simultaneous alignment of the three principal axes of inertia of an asymmetric top molecule (3-D alignment). This alignment can be characterized experimentally using pump-probe techniques which exploit the optical properties of the medium. They require the use of a second pulse of low intensity temporally delayed. Three techniques were exploited during this thesis. The first technique measures a depolarization due to the birefringence of the medium when the molecules are aligned. The second is based on the defocusing of the pulse on a gradient of index created following the space variation of alignment with respect to the spatial profile of the field. The last involves the creation of a grading of index to the intersection of two intense pulses, which causes the diffraction of the probe. Finally, we show experimentally that the birefringence technique can be used to quantify the 3-D alignment of an asymmetric top molecule like ethylene. (author) [fr

  13. Pulse oximetry: fundamentals and technology update

    Directory of Open Access Journals (Sweden)

    Nitzan M

    2014-07-01

    Full Text Available Meir Nitzan,1 Ayal Romem,2 Robert Koppel31Department of Physics/Electro-Optics, Jerusalem College of Technology, Jerusalem, Israel; 2Pulmonary Institute, Shaare Zedek Medical Center, Jerusalem, Israel; 3Neonatal/Perinatal Medicine, Cohen Children's Medical Center of New York/North Shore-LIJ Health System, New Hyde Park, NY, United StatesAbstract: Oxygen saturation in the arterial blood (SaO2 provides information on the adequacy of respiratory function. SaO2 can be assessed noninvasively by pulse oximetry, which is based on photoplethysmographic pulses in two wavelengths, generally in the red and infrared regions. The calibration of the measured photoplethysmographic signals is performed empirically for each type of commercial pulse-oximeter sensor, utilizing in vitro measurement of SaO2 in extracted arterial blood by means of co-oximetry. Due to the discrepancy between the measurement of SaO2 by pulse oximetry and the invasive technique, the former is denoted as SpO2. Manufacturers of pulse oximeters generally claim an accuracy of 2%, evaluated by the standard deviation (SD of the differences between SpO2 and SaO2, measured simultaneously in healthy subjects. However, an SD of 2% reflects an expected error of 4% (two SDs or more in 5% of the examinations, which is in accordance with an error of 3%–4%, reported in clinical studies. This level of accuracy is sufficient for the detection of a significant decline in respiratory function in patients, and pulse oximetry has been accepted as a reliable technique for that purpose. The accuracy of SpO2 measurement is insufficient in several situations, such as critically ill patients receiving supplemental oxygen, and can be hazardous if it leads to elevated values of oxygen partial pressure in blood. In particular, preterm newborns are vulnerable to retinopathy of prematurity induced by high oxygen concentration in the blood. The low accuracy of SpO2 measurement in critically ill patients and newborns

  14. Zinc (Zn Analysis in Milk by Microwave Oven Digestion and Differential Pulse Anodic Stripping Voltametry (DPASV Technique

    Directory of Open Access Journals (Sweden)

    Mohineesh

    2013-04-01

    Full Text Available Milk is very important component of human diet. The presence of over limit of heavy metal in milk may create significant health problems. In the present study, the direct determination of Zinc (Zn heavy metal in milk samples of different brands was carried out by differential pulse anodic stripping Voltammetric technique at Hanging Mercury Drop Electrode (HMDE. Milk samples were processed by microwave oven digestion using HP/VHP Vessels and TFM Liners and nitric acid (HNO3.Determination of Zn was made in acetate buffer (pH 4.6 with a sweep rate (scan rate of 59.5 mV/s and pulse amplitude 50mV by HMDE by standard addition method. The solution was stirred during pre-electrolysis at -1150mV (vs. Ag/AgCl for 90 seconds and the potential was scanned from -1150V to +100V (vs. Ag/AgCl. The zinc ions were deposited by reduction at -1150 mV on HMDE. The stripping current arising from the oxidation of metal was correlated with the concentration the metal in the sample. .As a result the minimum level of Zn observed in the milk sample of different brands was determined as 2.28 mgL−1.

  15. Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating

    International Nuclear Information System (INIS)

    DeLong, K.W.; Trebino, R.

    1994-01-01

    We report on significant improvements in the pulse-retrieval algorithm used to reconstruct the amplitude and the phase of ultrashort optical pulses from the experimental frequency-resolved optical gating trace data in the polarization-gate geometry. These improvements involve the use of an intensity constraint, an overcorrection technique, and a multidimensional minimization scheme. While the previously published, basic algorithm converged for most common ultrashort pulses, it failed to retrieve pulses with significant intensity substructure. The improved composite algorithm successfully converges for such pulses. It can now retrieve essentially all pulses of practical interest. We present examples of complex waveforms that were retrieved by the improved algorithm

  16. Study of pulse shapes in Ge detectors with PET

    Energy Technology Data Exchange (ETDEWEB)

    Grabmayr, Peter; Hegai, Alexander; Jochum, Josef; Schmitt, Christopher; Schuetz, Ann-Kathrin [Eberhard Karls Univeritaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The Gerda collaboration aims to determine the half life of the neutrinoless double beta decay (0νββ) of {sup 76}Ge. For Phase II Gerda wants to reduce the background contribution significantly by active background-suppression techniques. One of such techniques is the pulse shape analysis of signals induced by the interaction of radiation with the detector. The pulse shapes depend not only on the energy of the interacting gamma, the geometry and field configuration but also on the location of interaction in the crystal. The waveform and the location of the interaction in the germanium can be determined by positron-emission-tomography (PET). First results of this novel pulse shape study with the PET will be presented in this talk.

  17. Pulse radiolysis of gases

    International Nuclear Information System (INIS)

    Nielsen, O.J.

    1984-04-01

    The pulse radiolysis equipment and technique are described and its relevance to atmospheric chemistry is discussed. Pulse radiolysis of a number of different chemical systems have been used to check the validity of the proposed mechanisms: 1) The hydrogen atom yield in the pulse radiolysis of H 2 was measured by four independent calibration techniques, using reactions of H with O 2 , C1NO, and HI. The H atom yield was compared with O 2 yields in pure O 2 and in O 2 /SF 6 mixtures which lead to a value G(H) = 17.6. The rate constants at room temperature of several reactions were determined. 2) OH radical reactions with tetraalkyllead at room temperature and with ethane, methane, and a series of C1- and F-substituted methanes at 300-400 K were studied. Arrhenius parameters, A and Esub(a), were determined for several reactions. The lifetime of Pb(CH 3 ) 4 and Pb(C 2 H 5 ) 4 in ambient air is estimated. CF 2 C1 2 was found to be a very efficient third body, M, in the reaction OH + OH + M arrow H 2 O 2 + M. 3) In the H 2 S systems the HS extinction coefficient at 3242 AA was determined to 9.5 x 10 2 cm -1 mol -1 . Four rate constants at room temperature were determined. (author)

  18. Transient current changes induced in pin-diodes by nanosecond electron pulses

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Goldner, R.; Bos, J.; Mehnert, R.

    1984-01-01

    The electron pulse technique can be applied as a diagnostic method to measure charge carrier lifetimes, diffusion length or junction width in semiconductor p + -i-n + diodes. The described effect of the pulse length dependence on the electron energy might be of importance as an energy monitor for pulsed electron accelerators. (author)

  19. Generation of ultra short pulses by auto injection in the Nd: YAG laser

    International Nuclear Information System (INIS)

    Faria, I.C. de.

    1986-01-01

    Yhe work presented here, was concerned to the construction of a coherent light source in the near infrared region with pulses of 10 -10 seconds. The auto-injection technique was employed for generating these short pulses with posterior extraction of the pulse applied to a Nd=YAG-pulsed laser. (author) [pt

  20. A study of new pulse auscultation system.

    Science.gov (United States)

    Chen, Ying-Yun; Chang, Rong-Seng

    2015-04-14

    This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT) and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine's pulsing techniques, where pulse signals at places called "cun", "guan" and "chi" of the left hand were measured during lifting (100 g), searching (125 g) and pressing (150 g) actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners' objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  1. Study of heterogeneous multiplying and non-multiplying media by the neutron pulsed source technique; Etude des milieux heterogenes multiplicateurs et non-multiplicateurs par la technique de la source pulsee de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Deniz, V [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The pulsed neutron technique consists essentially in sending in the medium to be studied a short neutron pulse and in determining the asymptotic decay constant of the generated population. The variation of the decay constant as a function of the size of the medium allows the medium characteristics to be defined. This technique has been largely developed these last years and has been applied as well to moderator as to multiplying media, in most cases homogeneous ones. We considered of interest of apply this technique to lattices, to see if useful informations could be collected for lattice calculations. We present here a general theoretical study of the problem, and results and interpretation of a series of experiments made on graphite lattices. There is a good agreement for non-multiplying media. In the case of multiplying media, it is shown that the age value used until now in graphite lattices calculations is over-estimated by about 10 per cent. [French] La technique de la pulsation neutronique consiste essentiellement a envoyer dans le milieu a etudier une courte bouffee de neutrons et a determiner la constante de decroissance asymptotique de la population engendree. La variation de cette constante de decroissance en fonction des dimensions du milieu permet de determiner ses caracteristiques. Cette technique a connu ces dernieres annees un grand essor et a ete appliquee a des moderateurs et des milieux multiplicateurs. Il s'agissait dans la plupart des cas de milieux homogenes. Il nous a semble interessant de l'utiliser dans le cas des reseaux, afin de voir si ces experiences peuvent fournir des renseignements utiles aux calculs. Nous presentons ici une etude theorique generale du probleme, ainsi que les resultats et l'interpretation d'une serie d'experiences faites sur des reseaux a graphite. L'accord est bon dans le cas des reseaux non-multiplicateurs. Dans le cas des reseaux multiplicateurs, on montre que la valeur de l'age utilisee jusqu'ici dans les calculs

  2. A compact plasma pre-ionized TEA-CO2 laser pulse clipper for material processing

    Science.gov (United States)

    Gasmi, Taieb

    2017-08-01

    An extra-laser cavity CO2-TEA laser pulse clipper using gas breakdown techniques for high spatial resolution material processing and shallow material engraving and drilling processes is presented. Complete extinction of the nitrogen tail, that extends the pulse width, is obtained at pressures from 375 up to 1500 torr for nitrogen and argon gases. Excellent energy stability and pulse repeatability were further enhanced using high voltage assisted preionized plasma gas technique. Experimental data illustrates the direct correlation between laser pulse width and depth of engraving in aluminum and alumina materials.

  3. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  4. Ultrashort X-ray pulse science

    International Nuclear Information System (INIS)

    Chin, A.H.; Lawrence Berkeley National Lab., CA

    1998-01-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90 o Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ∼ 300 fs, 30 keV (0.4 (angstrom)) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been

  5. Components for monolithic fiber chirped pulse amplification laser systems

    Science.gov (United States)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  6. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti.

    Science.gov (United States)

    Oléron Evans, Thomas P; Bishop, Steven R

    2014-08-01

    We present a simple mathematical model to replicate the key features of the sterile insect technique (SIT) for controlling pest species, with particular reference to the mosquito Aedes aegypti, the main vector of dengue fever. The model differs from the majority of those studied previously in that it is simultaneously spatially explicit and involves pulsed, rather than continuous, sterile insect releases. The spatially uniform equilibria of the model are identified and analysed. Simulations are performed to analyse the impact of varying the number of release sites, the interval between pulsed releases and the overall volume of sterile insect releases on the effectiveness of SIT programmes. Results show that, given a fixed volume of available sterile insects, increasing the number of release sites and the frequency of releases increases the effectiveness of SIT programmes. It is also observed that programmes may become completely ineffective if the interval between pulsed releases is greater that a certain threshold value and that, beyond a certain point, increasing the overall volume of sterile insects released does not improve the effectiveness of SIT. It is also noted that insect dispersal drives a rapid recolonisation of areas in which the species has been eradicated and we argue that understanding the density dependent mortality of released insects is necessary to develop efficient, cost-effective SIT programmes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.

  8. Studies of nonlinear femtosecond pulse propagation in bulk materials

    Science.gov (United States)

    Eaton, Hilary Kaye

    2000-10-01

    Femtosecond pulse lasers are finding widespread application in a variety of fields including medical research, optical switching and communications, plasma formation, high harmonic generation, and wavepacket formation and control. As the number of applications for femtosecond pulses increases, so does the need to fully understand the linear and nonlinear processes involved in propagating these pulses through materials under various conditions. Recent advances in pulse measurement techniques, such as frequency-resolved optical gating (FROG), allow measurement of the full electric field of the pulse and have made detailed investigations of short- pulse propagation effects feasible. In this thesis, I present detailed experimental studies of my work involving nonlinear propagation of femtosecond pulses in bulk media. Studies of plane-wave propagation in fused silica extend the SHG form of FROG from a simple pulse diagnostic to a useful method of interrogating the nonlinear response of a material. Studies of nonlinear propagation are also performed in a regime where temporal pulse splitting occurs. Experimental results are compared with a three- dimensional nonlinear Schrödinger equation. This comparison fuels the development of a more complete model for pulse splitting. Experiments are also performed at peak input powers above those at which pulse splitting is observed. At these higher intensities, a broadband continuum is generated. This work presents a detailed study of continuum behavior and power loss as well as the first near-field spatial- spectral measurements of the generated continuum light. Nonlinear plane-wave propagation of short pulses in liquids is also investigated, and a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs is observed in methanol. Experiments in water confirm that this effect in methanol is indeed real. Possible explanations for the observed effect are discussed and several are experimentally rejected. This

  9. Microencapsulation of silicon cavities using a pulsed excimer laser

    KAUST Repository

    Sedky, Sherif M.

    2012-06-07

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal required for the migration process, the proposed technique uses short excimer laser pulses (24ns), focused onto an area of 23mm 2, to locally heat the top few microns of the substrate, while the bulk substrate remains near ambient temperature. The treatment can be applied to selected regions of the substrate, without the need for special surface treatments or a controlled environment. This work investigates the effect of varying the laser pulse energy from 400 mJ cm 2to 800 mJ cm 2, the pulse rate from 1Hz to 50Hz and the pulse count from 200 to 3000 pulses on sealing microfabricated cavities in silicon. An analytical model for the effect of holes on the surface temperature distribution is derived, which shows that much higher temperatures can be achieved by increasing the hole density. A mechanism for sealing the cavities is proposed, which indicates how complete sealing is feasible. © 2012 IOP Publishing Ltd.

  10. Virtual experiment instrument of nuclear pulse measuring

    International Nuclear Information System (INIS)

    Shan Jian; Zhao Xiuliang; Yu Hong; Zhang Meiqin

    2009-01-01

    Study on the scheme of application of virtual instrument(VI) technique in measuring of nuclear pulse. The system of Counter based on technology of LabVIEW and NI company's products USB-6009-DAQ is developed. Virtual nuclear instrument-Virtual Counter is realized. This system extends the application of technology of virtual instrument. The experimental results indicate that the system of Counter had the good counting measuring function of Nuclear Pulse. (authors)

  11. Ultra-short pulse, ultra-high intensity laser improvement techniques for laser-driven quantum beam science

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Kando, Masaki

    2014-01-01

    Recent development activities of the Quantum Beam Research Team in JAEA are reported. The downsized, petawatt and femtosecond pulse laser is described at first. The process of the system development and utilization effort of so-called J-KAREN is explained with its time and space control system. For high contrast, OPCPA (Optical Parametric Chirped Pulse Amplification) preamplifier is adopted by using the titanium-sapphire laser system in which only the seed light pulses can be amplified. In addition, high contrast is obtained by adopting the high energy seed light to the amplifier. The system configuration of J-KAREN laser is illustrated. Typical spectra with and without OPCPA, as well as the spectra with OPCPA adjustment and without one are shown. The result of the recompressed pulses is shown in which the pulse width of 29.5 femtoseconds is close to the theoretical limit. Considering the throughput of the pulse compressor is 64 percent it is possible to generate high power laser beam of about 600 terawatts. In the supplementary budget of 2012, it has been approved to cope with the aging or obsoleteness of the system and at the same time to further sophisticate the laser using system. The upgraded laser system is named as J-KAREN-P in which the repetition rate is improved and another booster amplifier is added to increase the power. The system configuration of J-KAREN-P after the upgrading is illustrated. (S. Funahashi)

  12. Pulsed neutron measurement of single and two-phase liquid flow

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    Use of radioactive tracers for flow velocity measurements is well developed and documented. Measurement techniques involving pulsed sources of fast (14 MeV) neutrons for in-situ production of tracers can be considered as extensions of the old methods. Improvements offered by these Pulsed Neutron Activation (PNA) techniques over conventional radioisotope techniques are (1) non-intrusion into the system, (2) easier introduction and better mixing of the tracer, and (3) no requirement to handle large amounts of relatively long lived radioactive materials. Just as in conventional tracer techniques, flow velocity measurements by PNA methods can be based on the transit-time or the total-count method. A very significant difference of the PNA technique from conventional methods is that the induced activity is proportional to the density of the fluid, and that PNA techniques can be used for density measurements (of two-phase flows) in addition to flow velocity measurement. Original equations were derived that relate experimental data to the mass flow velocity and the average density. The accuracy of these equations is not effected by the flow regime. Experimental results are presented for tests performed on liquid sodium loops, on air--water loops, on the EBR-II reactor and on the LOFT reactor. Current instrumentation development programs (detectors, pulsed neutron sources) are discussed

  13. Generation and characterization of atto second pulses

    International Nuclear Information System (INIS)

    Mairesse, Y.

    2005-07-01

    Atto-second pulse trains in the extreme ultraviolet range can be produced by high-order harmonic generation, by focusing an intense femtosecond pulse in a rare gas jet. In this thesis, we present a temporal characterization of this radiation on the femtosecond and atto-second timescales. By transposing a spectral interferometry technique commonly used in the infrared range (SPIDER), we make a complete single-shot characterization of the temporal profile of individual harmonics, on the femtosecond timescale. In a second part, we study experimentally the atto-second structure of the harmonic radiation, and demonstrate a temporal drift in the emission: the lowest harmonics are emitted before the highest ones. This chirp, which is directly related to the electron dynamics in the generation process, imposes a lower limit to the duration that can be achieved by increasing the spectral range. We show how generating conditions can be optimized in order to enhance the synchronization in the emission, and how atto-second pulses can be re-compressed. Last, we propose a new technique for the complete characterization of arbitrary atto-second pulses: FROGCRAB. This method would allow simultaneous measurements of the femtosecond and atto-second structures of the radiation, and thus a complete knowledge of the atto-second light source in the perspective of applications. (author)

  14. A Study of New Pulse Auscultation System

    Directory of Open Access Journals (Sweden)

    Ying-Yun Chen

    2015-04-01

    Full Text Available This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine’s pulsing techniques, where pulse signals at places called “cun”, “guan” and “chi” of the left hand were measured during lifting (100 g, searching (125 g and pressing (150 g actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners’ objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  15. Femtosecond profiling of shaped x-ray pulses

    Science.gov (United States)

    Hoffmann, M. C.; Grguraš, I.; Behrens, C.; Bostedt, C.; Bozek, J.; Bromberger, H.; Coffee, R.; Costello, J. T.; DiMauro, L. F.; Ding, Y.; Doumy, G.; Helml, W.; Ilchen, M.; Kienberger, R.; Lee, S.; Maier, A. R.; Mazza, T.; Meyer, M.; Messerschmidt, M.; Schorb, S.; Schweinberger, W.; Zhang, K.; Cavalieri, A. L.

    2018-03-01

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fully suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. This achievement completes an important step toward future x-ray pulse shaping techniques.

  16. Ultrashort pulse energy distribution for propulsion in space

    Science.gov (United States)

    Bergstue, Grant Jared

    This thesis effort focuses on the development of a novel, space-based ultrashort pulse transmission system for spacecraft. The goals of this research include: (1) ultrashort pulse transmission strategies for maximizing safety and efficiency; (2) optical transmission system requirements; (3) general system requirements including control techniques for stabilization; (4) optical system requirements for achieving effective ablative propulsion at the receiving spacecraft; and (5) ultrashort pulse transmission capabilities required for future missions in space. A key element of the research is the multiplexing device required for aligning the ultrashort pulses from multiple laser sources along a common optical axis for transmission. This strategy enables access to the higher average and peak powers required for useful missions in space.

  17. Self-focusing of optical pulses in media with normal dispersion

    DEFF Research Database (Denmark)

    Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.

    1996-01-01

    The self-focusing of ultra short optical pulses in a nonlinear medium with normal (i.e., negative) group-velocity dispersion is investigated. By using a combination of various techniques like virial-type arguments and self-similar transformations, we obtain strong evidence suggesting that a pulse...

  18. Few-cycle isolated attosecond pulses

    International Nuclear Information System (INIS)

    Sansone, G.; Benedetti, E.; Calegari, F.; Stagira, S.; Vozzi, C.; Silvestri De, S.; Nisoli, M.

    2006-01-01

    Complete test of publication follows. In the last few years the field of attosecond science has shown impressive and rapid progress, mainly due to the introduction of novel experimental methods for the characterization of extreme ultraviolet (XUV) pulses and attosecond electron wave packets. This development has been also triggered by significant improvements in the control of the electric field of the driving infrared pulses. Particularly interesting for the applications is the generation of isolated attosecond XUV pulses using few-cycle driving pulses. In this case significant progresses have been achieved thanks to the stabilization of the carrier-envelope phase (CEP) of amplified light pulses. In this work we demonstrate that the polarization gating (PG) method with few-cycle phase-stabilized driving pulses allows one to generate few-cycle isolated attosecond pulses tunable on a very broad spectral region. The PG method is based on temporal modulation of the ellipticity of a light pulse, which confines the XUV emission in the temporal gate where the polarization is close to linear. The time-dependent polarization of phase-stabilized sub-6-fs pulses, generated by the hollow fiber technique, has been obtained using two birefringent plates. It is possible to create a linear polarization gate, whose position is imposed by the intensity profile of the pulse whilst the emission time is linked to the CEP of the electric field. The pulses have been analyzed by using a flat-field spectrometer. Continuous XUV spectra, corresponding to the production of isolated attosecond pulses, have been generated for particular CEP values. Upon changing the rotation of the first plate it was possible to tune the XUV emission in a broad spectra range. We have then achieved a complete temporal characterization of the generated isolated attosecond pulses using frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG CRAB). The measured parabolic phase

  19. The characterisation of polymers using pulsed NMR

    International Nuclear Information System (INIS)

    Charlesby, A.

    1983-01-01

    Broad line pulsed NMR is applied to obtain information on radiation-induced polymer changes and other aspects of polymer science based on the interpretation of spin-spin relaxation curves. Calculations are made to determine the molecular weight, the crosslink density of simple, low molecular weight, flexible polymers. For higher molecular weight polymers, a conclusion can be drawn on the concentrations of entangled and crosslinked units by means of pulsed NMR. Some typical applications of the technique are illustrated by the examples of polyethylenes, rubbers, filled polymeric systems and aqueous polyethylene oxide solutions. The morphology of polymers can be followed by pulsed NMR. (V.N.)

  20. Remedial pulse programme for the production of monoenergetic ion beams of low energy

    International Nuclear Information System (INIS)

    Olubuyide, O.A.

    1975-01-01

    The technique involves an extension of sequential pulse techniques. An ion swarm is produced in a conventional mass-spectrometer ion source by a short electron beam pulse. Immediately, this swarm is accelerated impulsively by a short high voltage pulse on the repeller. The principal disadvantage of impulsive acceleration is that the final energy distribution of the ion swarm is broad especially at the lowest energies. At some instant during the passage of the ion swarm across the chamber second pulse is applied to the repeller--a ''remedial'' pulse which will accelerate the ions throughout the remainder of their passage and whose amplitude will be time-dependent. Slower ions must travel a greater distance in this ''remedial'' field than faster ions and will experience a proportionately greater increase in velocity from it. In this way, the remedial pulse can cause all the ions to acquire the same velocity at the exit slit. A limited experimental investigation has been made to examine the application of the proposed remedial pulse technique to existing ion sources. Application of the remedial pulse to impulsively-accelerated ion swarms reduced the energy distribution in the manner predicted by the theory but the quantitative reduction measured experimentally--a factor of approximately 2--was substantially less than the theoretical prediction of a factor of approximately 4. The limitations were characterized and a means of overcoming them was suggested in a new ion source of improved design. (Diss. Abstr. Int., B)

  1. Pulse shape discrimination with scintillation detectors

    International Nuclear Information System (INIS)

    Winyard, R.A.

    A quantitative study of pulse shape discrimination with scintillation counters has been undertaken using a crossover timing technique. The scintillators investigated included experimental and commercial liquids and plastics in addition to inorganic phosphors. The versatility of the pulse shape discrimination system has been demonstrated by extending the measurements to investigate phoswiches and liquids loaded with radioactive materials and by its application to the suppression of unwanted backgrounds in delayed coincidence counting for the measurement of nuclear half-lives and isotope identification have been carried out. (author)

  2. Electron emitter pulsed-type cylindrical IEC

    International Nuclear Information System (INIS)

    Miley, G.H.; Gu, Y.; Stubbers, R.; Zich, R.; Anderl, R.; Hartwell, J.

    1997-01-01

    A cylindrical version of the single grid Inertial Electrostatic Confinement (IEC) device (termed the C-device) has been developed for use as a 2.5-MeV D-D fusion neutron source for neutron activation analysis. The C-device employs a hollow-tube type cathode with similar anodes backed up by ''reflector'' dishes. The resulting discharge differs from a conventional hollow cathode discharge, by creating an explicit ion beam which is ''pinched'' in the cathode region. Resulting fusion reactions generate ∼10 6 neutron/s. A pulsed version is under development for applications requiring higher fluxes. Several pulsing techniques are under study, including an electron emitter (e-emitter) assisted discharge in a thorated tungsten wire emitter located behind a slotted area in the reflector dishes. Pulsing is initiated after establishing a low power steady-state discharge by pulsing the e-emitter current using a capacitor switch type circuit. The resulting electron jet, coupled with the discharge by the biased slot array, creates a strong pulse in the pinched ion beam. The pulse length/repetition rate are controlled by the e-emitter pulse circuit. Typical parameters in present studies are ∼30micros, 10Hz and 1-amp ion current. Corresponding neutron measurements are an In-foil type activation counter for time averaged rates. Results for a wide variety of operating conditions are presented

  3. Synthesis of electrochromic vanadium oxide by pulsed spray pyrolysis technique and its properties

    International Nuclear Information System (INIS)

    Patil, C E; Tarwal, N L; Shinde, P S; Patil, P S; Deshmukh, H P

    2009-01-01

    A new improved pulsed spray pyrolysis technique (PSPT) was employed to deposit a vanadium oxide (V 2 O 5 ) thin film from a methanolic vanadium chloride precursor onto glass and conducting F : SnO 2 coated glass substrates. The structural, morphological, electrical, optical and spectroscopic properties of the film deposited at 573 K were studied. Infrared spectroscopy and x-ray diffraction confirmed the presence of the V 2 O 5 phase. The V 2 O 5 film (thickness ∼118 nm) is polycrystalline with a tetragonal crystal structure. Scanning electron microscopy reveals compact granular morphology consisting of ∼80-100 nm size grains. The film is transparent in the visible region (average %T ∼70%) with an optical band gap energy of 2.47 eV involving both direct and indirect optical transitions. The room temperature electrical resistivity (conductivity) of the film is 1.6 x 10 8 Ω cm (6.25 x 10 -9 S cm -1 ) with an activation energy of 0.67 eV in the temperature range 300-550 K. It exhibited cathodic electrochromism in the lithium containing electrolyte (0.5 M LiClO 4 + propylene carbonate).

  4. Optimization And Single-Shot Characterization Of Ultrashort Thz Pulses From A Laser Wakefield Accelerator

    International Nuclear Information System (INIS)

    Plateau, G.R.; Matlis, N.H.; van Tilborg, J.; Geddes, C.G.R.; Toth, Cs.; Schroeder, C.B.; Leemans, W.P.

    2009-01-01

    We present spatiotemporal characterization of μJ-class ultrashort THz pulses generated from a laser wakefield accelerator (LWFA). Accelerated electrons, resulting from the interaction of a high-intensity laser pulse with a plasma, emit high-intensity THz pulses as coherent transition radiation. Such high peak-power THz pulses, suitable for high-field (MV/cm) pump-probe experiments, also provide a non-invasive bunch-length diagnostic and thus feedback for the accelerator. The characterization of the THz pulses includes energy measurement using a Golay cell, 2D sign-resolved electro-optic measurement and single-shot spatiotemporal electric-field distribution retrieval using a new technique, coined temporal electric-field cross-Correlation (TEX). All three techniques corroborate THz pulses of ∼ 5 μJ, with peak fields of 100's of kV/cm and ∼ 0.4 ps rms duration.

  5. Pulse radiolysis studies of model membranes

    International Nuclear Information System (INIS)

    Heijman, M.G.J.

    1984-01-01

    In this thesis the influence of the structure of membranes on the processes in cell membranes were examined. Different models of the membranes were evaluated. Pulse radiolysis was used as the technique to examine the membranes. (R.B.)

  6. Advanced electron beam techniques

    International Nuclear Information System (INIS)

    Hirotsu, Yoshihiko; Yoshida, Yoichi

    2007-01-01

    After 100 years from the time of discovery of electron, we now have many applications of electron beam in science and technology. In this report, we review two important applications of electron beam: electron microscopy and pulsed-electron beam. Advanced electron microscopy techniques to investigate atomic and electronic structures, and pulsed-electron beam for investigating time-resolved structural change are described. (author)

  7. MHD-Stabilization of Axisymmetric Mirror Systems Using Pulsed ECRH

    International Nuclear Information System (INIS)

    Post, R.F.

    2010-01-01

    This paper, part of a continuing study of means for the stabilization of MHD interchange modes in axisymmertric mirror-based plasma confinement systems, is aimed at a preliminary look at a technique that would employ a train of plasma pressure pulses produced by ECRH to accomplish the stabilization. The purpose of using sequentially pulsed ECRH rather than continuous-wave ECRH is to facilitate the localization of the heated-electron plasma pulses in regions of the magnetic field with a strong positive field-line curvature, e. g. in the 'expander' region of the mirror magnetic field, outside the outermost mirror, or in other regions of the field with positive field-line curvature. The technique proposed, of the class known as 'dynamic stabilization,' relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. As will also be discussed in the paper, the plasma pulses, when produced in regions of the confining having a negative gradient, create transient electric potentials of ambipolar origin, an effect that was studied in 1964 in The PLEIDE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulses for a time determined by ion inertia. It is suggested that it may be possible to use this result of pulsed ECRH not only to help to stabilize the plasma but also to help plug mirror losses in a manner similar to that employed in the Tandem Mirror.

  8. Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling

    International Nuclear Information System (INIS)

    Shoupeng, Song; Zhou, Jiang

    2017-01-01

    Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry. (paper)

  9. Detection of SNM by Pulsed Neutron Interrogation

    International Nuclear Information System (INIS)

    Pedersen, Bent; Mayorov, Valeriy; Roesgen, Eric; Mosconi, Marita; Crochemore, Jean-Michel; Ocherashvili, Aharon; Beck, Arie; Ettedgui, Hanania

    2014-01-01

    A method for the detection of special nuclear materials (SNM) in shielded containers which is both sensitive and easily applicable under field conditions is presented. The method applies neutron induced fission in SNM by means of an external pulsed neutron source with subsequent detection of the fast prompt fission neutrons. Liquid scintillation detectors surrounding the container under investigation are able to discriminate gamma rays from fast neutrons by the so-called pulse shape discrimination technique (PSD)

  10. Pulsed Field Waveforms for Magnetization of HTS Gd-Ba-Cu-O Bulk Magnets

    International Nuclear Information System (INIS)

    Ida, T; Matsuzaki, H; Morita, E; Sakashita, H; Harada, T; Ogata, H; Kimura, Y; Miki, M; Kitano, M; Izumi, M

    2006-01-01

    Progress in pulse magnetization technique for high-temperature superconductor bulks of melt-textured RE-Ba-Cu-O with large diameter is important for the realization of power applications. We studied the pulsed power source and pulsed field waveforms to enhance to improve the magnetization properties for Gd-Ba-Cu-O bulk. The risetime and duration of pulse waveform effectively varied distribution of magnetic flux

  11. Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating

    International Nuclear Information System (INIS)

    DeLong, K.W.; Ladera, C.L.; Trebino, R.; Kohler, B.; Wilson, K.R.

    1995-01-01

    Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified pulse-retrieval algorithm that deconvolves such slow effects and use it to retrieve pulses of any width. In experiments with 45-fs pulses this algorithm achieved better convergence and yielded a shorter pulse than previous FROG algorithms

  12. Pulse pile-up. I: Short pulses

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1990-07-01

    The search for rare large pulses against an intense background of smaller ones involves consideration of pulse pile-up. Approximate methods are presented, based on ruin theory, by which the probability of such pile-up may be estimated for pulses of arbitrary form and of arbitrary pulse-height distribution. These methods are checked against cases for which exact solutions are available. The present paper is concerned chiefly with short pulses of finite total duration. (Author) (5 refs., 24 figs.)

  13. 100 GHz pulse waveform measurement based on electro-optic sampling

    Science.gov (United States)

    Feng, Zhigang; Zhao, Kejia; Yang, Zhijun; Miao, Jingyuan; Chen, He

    2018-05-01

    We present an ultrafast pulse waveform measurement system based on an electro-optic sampling technique at 1560 nm and prepare LiTaO3-based electro-optic modulators with a coplanar waveguide structure. The transmission and reflection characteristics of electrical pulses on a coplanar waveguide terminated with an open circuit and a resistor are investigated by analyzing the corresponding time-domain pulse waveforms. We measure the output electrical pulse waveform of a 100 GHz photodiode and the obtained rise times of the impulse and step responses are 2.5 and 3.4 ps, respectively.

  14. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    Directory of Open Access Journals (Sweden)

    Tadhg S. O’Donovan

    2010-12-01

    Full Text Available The dynamic velocity range of particle image velocimetry (PIV is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS technique (i records series of double-frame exposures with different pulse separations, (ii processes the fields using conventional multi-grid algorithms, and (iii yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  15. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.

    Science.gov (United States)

    Persoons, Tim; O'Donovan, Tadhg S

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  16. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2009-11-12

    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  17. Spin gymnastics with selective radiofrequency pulses

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, R.; Kupce, E. [Cambridge Univ. (United Kingdom)

    1994-12-31

    Although high resolution NMR spectra are normally excited with short intense radiofrequency pulses, there is an entire family of new experiments that can be performed with frequency-selective or ``soft`` pulses. Time-consuming two-dimensional spectroscopy may be reduced to a much shorter one-dimensional version with much finer digitization in the frequency domain. A large number of soft pulses can be combined to form a ``polychromatic pulse`` that has uniform excitation over the entire range of proton shifts except for a rejection notch at the water frequency. Polychromatic pulses can also be used to create antiphase magnetization in preparation for a coherence transfer or double-quantum experiment. An excitation profile can be designed in the form of a ``template`` that exactly matches the spectrum of a given chemical compound but has zero excitation elsewhere. This is achieved by using the information in the experimental free induction decay to construct a suitable array of soft pulses that has the required excitation pattern. In this manner, interpenetrating spectra can be separated into the spectra of the pure components, for example those of a and b glucose. Selective Hartmann-Hahn coherence transfer experiments employ similar soft pulse techniques. If several such transfers are concatenated, the method may be used as a test to see whether a group of protons is linked in an unbroken chain by scalar spin-spin interactions. (authors). 24 refs., 18 figs.

  18. Polycrystal silicon recovery by means of a shaped laser pulse train

    International Nuclear Information System (INIS)

    Vitali, G.; Bertolotti, M.; Foti, G.

    1978-01-01

    A structure change from a polycrystal to single-crystal layer in ion-implanted Si samples has been obtained by single-pulse ruby-laser irradiation with a power density threshold of about 70 MW cm -2 (pulse length 50 nsec). Under these conditions surface mechanical damage is produced. A laser pulse train shaping technique was adopted to reduce the residual disorder in the layer after laser irradiation and to prevent mechanical damage

  19. High-order harmonic and attosecond pulse generation for a few-cycle laser pulse in modulated hollow fibres

    International Nuclear Information System (INIS)

    Zhang Xiangyun; Sun Zhenrong; Wang Yufeng; Chen Guoliang; Wang Zugeng; Li Ruxin; Zeng Zhinan; Xu Zhizhan

    2007-01-01

    High harmonic generation from Ar and He atoms by a few-cycle laser pulse in periodic and chirped hollow fibres is investigated theoretically by a self-consistent model. Based on enhanced high harmonics in a periodic hollow fibre, a chirped hollow fibre is proposed to improve quasi-phase matching for the generated harmonics near the cutoff. The results show that the extended and enhanced harmonics near the cutoff are well phase-matched, and a single x-ray pulse with a duration of 279 as in Ar gas and 255 as in He gas can be achieved by frequency synthesizing of high harmonics in the well-selected cutoff bandwidth. The results show that this technique is a potential candidate to generate an intense isolated attosecond pulse in the 'water window' spectrum

  20. Pulsed EPR studies of small reactive radicals produced by ionizing radiation

    International Nuclear Information System (INIS)

    Lawler, R.G.

    1985-01-01

    For several years we have participated in a collaborative research effort to apply the pulsed EPR-pulse radiolysis technique to several problems associated with the dynamics of small reactive radicals formed during radiolysis of aqueous solutions using 3 MeV electrons from a Van de Graaff accelerator. We will discuss experimental techniques and applications arising from this work, with particular emphasis on problems requiring high initial radical concentrations and EPR time resolution of one microsecond or better. 2 figs., 2 tabs

  1. Pulsed high energy synthesis of fine metal powders

    Science.gov (United States)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Repetitively pulsed plasma jets generated by a capillary arc discharge at high stagnation pressure (>15,000 psi) and high temperature (>10,000 K) are utilized to produce 0.1-10 .mu.m sized metal powders and decrease cost of production. The plasma jets impact and atomize melt materials to form the fine powders. The melt can originate from a conventional melt stream or from a pulsed arc between two electrodes. Gas streams used in conventional gas atomization are replaced with much higher momentum flux plasma jets. Delivering strong incident shocks aids in primary disintegration of the molten material. A series of short duration, high pressure plasma pulses fragment the molten material. The pulses introduce sharp velocity gradients in the molten material which disintegrates into fine particles. The plasma pulses have peak pressures of approximately one kilobar. The high pressures improve the efficiency of disintegration. High gas flow velocities and pressures are achieved without reduction in gas density. Repetitively pulsed plasma jets will produce powders with lower mean size and narrower size distribution than conventional atomization techniques.

  2. Simulations of drastically reduced SBS with laser pulses composed of a Spike Train of Uneven Duration and Delay (STUD pulses)

    International Nuclear Information System (INIS)

    Hueller, S.; Afeyan, B.

    2013-01-01

    By comparing the impact of established laser smoothing techniques like Random Phase Plates (RPP) and Smoothing by Spectral Dispersion (SSD) to the concept of 'Spike Trains of Uneven Duration and Delay' (STUD pulses) on the amplification of parametric instabilities in laser-produced plasmas, we show with the help of numerical simulations, that STUD pulses can drastically reduce instability growth by orders of magnitude. The simulation results, obtained with the code Harmony in a nonuniformly flowing mm-size plasma for the Stimulated Brillouin Scattering (SBS) instability, show that the efficiency of the STUD pulse technique is due to the fact that successive re-amplification in space and time of parametrically excited plasma waves inside laser hot spots is minimized. An overall mean fluctuation level of ion acoustic waves at low amplitude is established because of the frequent change of the speckle pattern in successive spikes. This level stays orders of magnitude below the levels of ion acoustic waves excited in hot spots of RPP and SSD laser beams. (authors)

  3. SBS pulse compression applied to a commercial Q-switch Nd-YAG laser

    International Nuclear Information System (INIS)

    Aliaga-Rossel, R.; Bayley, J.; Mamin, A.; Nizienko, Y.

    1997-01-01

    In optical diagnosis of dense Z-pinches, sub-nanosecond laser pulses are required in order to freeze the movement of the plasma during the probing. Commercial lasers can provide such type of pulses but they are either very expensive, or they have a very low energy per pulse. A technique that uses Stimulated Brillouin Scattering (SBS) to compress a 8 ns pulse of a commercial Q-switched Nd-YAG laser is reported here. To carry out this passive compression technique, a frequency doubled laser pulse of 10 ns was focused into a single SBS gas cell, 2 m long, filled with a mixture of argon and sulphurhexafluoride (SF 6 ) at a total pressure of 40 bar. A shorter and high intensity pulse was reflected from the cell (created by SBS) and it travelled back along its original path until it was separated from its original direction by using a dichroic polariser. The pumping volume of the SBS cell, the convergence of the incident beam and the pressure of the gas cell, were optimised to maximise both temporal compression and the output energy. Pulses of 10 ns were compressed to less than 400 ps with a conversion efficiency of 80%. This SBS pulse compression system has been used to make most of the optical measurements of a dense fibre pinch plasma produced in the MAGPIE generator

  4. Tests on a digital neutron-gamma pulse shape discriminator with NE213

    International Nuclear Information System (INIS)

    Bell, Z.W.

    1981-01-01

    A technique using charge sensitive analog-to-digital converters to do neutron-gamma pulse shape discrimination is reported. The converters are gated by short (135 ns) pulses so as to reduce pile-up and the timing is such that the slow and total light output from the scintillator are measured. Preliminary tests indicate that the system performs reasonably well but poorer than some reported analog systems employing gated integrators or cross-over techniques. (orig.)

  5. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    Energy Technology Data Exchange (ETDEWEB)

    Kupenko, I., E-mail: kupenko@esrf.fr; Strohm, C. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France); McCammon, C.; Cerantola, V.; Petitgirard, S.; Dubrovinsky, L. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); Glazyrin, K. [Photon Science, DESY, D-22607 Hamburg (Germany); Vasiukov, D.; Aprilis, G. [Laboratory of Crystallography, Material Physics and Technology at Extreme Conditions, Universität Bayreuth, D-95440 Bayreuth (Germany); Chumakov, A. I.; Rüffer, R. [ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France)

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.

  6. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study

    Science.gov (United States)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.

    2017-10-01

    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  7. In-vitro model for evaluation of pulse oximetry

    Science.gov (United States)

    Vegfors, Magnus; Lindberg, Lars-Goeran; Lennmarken, Claes; Oberg, P. Ake

    1991-06-01

    An in vitro model with blood circulating in a silicon tubing system and including an artificial arterial bed is an important tool for evaluation of the pulse oximetry technique. The oxygen saturation was measured on an artificial finger using a pulse oximeter (SpO2) and on blood samples using a hemoximeter (SaO2). Measurements were performed at different blood flows and at different blood hematocrits. An increase in steady as well as in pulsatile blood flow was followed by an increase in pulse oximeter readings and a better agreement between SpO2 and SaO2 readings. After diluting the blood with normal saline (decreased hematocrit) the agreement was further improved. These results indicate that the pulse oximeter signal is related to blood hematocrit and the velocity of blood. The flow-related dependance of SpO2 was also evaluated in a human model. These results provided evidence that the pulse oximeter signal is dependent on vascular changes.

  8. Microstructure and surface mechanical properties of pulse electrodeposited nickel

    Energy Technology Data Exchange (ETDEWEB)

    Ul-Hamid, A., E-mail: anwar@kfupm.edu.sa [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Dafalla, H.; Quddus, A.; Saricimen, H.; Al-Hadhrami, L.M. [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)

    2011-09-01

    The surface of carbon steel was modified by electrochemical deposition of Ni in a standard Watt's bath using dc and pulse plating electrodeposition. The aim was to compare the microstructure and surface mechanical properties of the deposit obtained by both techniques. Materials characterization was conducted using field emission scanning electron microscope fitted with scanning transmission electron detector, atomic force microscope and X-ray diffractometer. Nanoindentation hardness, elastic modulus, adhesion, coefficients of friction and wear rates were determined for both dc and pulse electrodeposits. Experimental results indicate that pulse electrodeposition produced finer Ni grains compared to dc plating. Size of Ni grains increased with deposition. Both dc and pulse deposition resulted in grain growth in preferred (2 0 0) orientation. However, presence of Ni (1 1 1) grains increased in deposits produced by pulse deposition. Pulse plated Ni exhibited higher hardness, creep and coefficient of friction and lower modulus of elasticity compared to dc plated Ni.

  9. Elastic Evaluation of Poly(Lactic Acid) Electrospun Membranes Using the Pulsed Photoacoustic Technique

    Science.gov (United States)

    Navarrete, M.; Vera-Graziano, R.; Maciel-Cerda, A.; Sánchez-Arévalo, F. M.; Godínez, F. A.

    2017-08-01

    Fibrous membranes manufactured by electrospinning possess unique features such as a high porosity and large specific surface area, making them suitable for applications in tissue engineering. However, the determination of their mechanical behavior under different loading conditions remains one of the most difficult technical problems for researchers to overcome. While the tensile properties of this kind of membrane are commonly reported in the literature, few explorations of their properties in other directions have been reported. In this paper, the pulsed photoacoustic technique is employed to obtain the elastic constants of electrospun non-woven membranes, specifically in two directions ( L, T). The electrospun samples are hybrid fiber membranes of poly(lactic acid) and hydroxyapatite (HA) nanoparticles at different concentrations. It is found that the concentration of HA nanoparticles determines the mechanical response of the membrane, where the nanoparticles act either as a reinforcement or as a mesh defect. The elastic constants (EL, ET, GL, GT, vL, ν T) are obtained through velocity waves related to the stress-strain equations, using samples with two different geometries and considering the electrospinning mats as a transversely isotropic material. These values are compared to those acquired using macro-tensile testing equipment according to the ASTM D1708 standard.

  10. Neural network and area method interpretation of pulsed experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dulla, S.; Picca, P.; Ravetto, P. [Politecnico di Torino, Dipartimento di Energetica, Corso Duca degli Abruzzi, 24 - 10129 Torino (Italy); Canepa, S. [Lab of Reactor Physics and Systems Behaviour LRS, Paul Scherrer Inst., 5232 Villigen (Switzerland)

    2012-07-01

    The determination of the subcriticality level is an important issue in accelerator-driven system technology. The area method, originally introduced by N. G. Sjoestrand, is a classical technique to interpret flux measurement for pulsed experiments in order to reconstruct the reactivity value. In recent times other methods have also been developed, to account for spatial and spectral effects, which were not included in the area method, since it is based on the point kinetic model. The artificial neural network approach can be an efficient technique to infer reactivities from pulsed experiments. In the present work, some comparisons between the two methods are carried out and discussed. (authors)

  11. Single- and multi-pulse femtosecond laser ablation of optical filter materials

    International Nuclear Information System (INIS)

    Krueger, J.; Lenzner, M.; Martin, S.; Lenner, M.; Spielmann, C.; Fiedler, A.; Kautek, W.

    2003-01-01

    Ablation experiments employing Ti:sapphire laser pulses with durations from 30 to 340 fs (centre wavelength 800 nm, repetition rate 1 kHz) were performed in air. Absorbing filters (Schott BG18 and BG36) served as targets. The direct focusing technique was used under single- and multi-pulse irradiation conditions. Ablation threshold fluences were determined from a semi-logarithmic plot of the ablation crater diameter versus laser fluence. The threshold fluence decreases for a shorter pulse duration and an increasing number of pulses. The multi-pulse ablation threshold fluences are similar to those of undoped glass material (∼1 J cm -2 ). That means that the multi-pulse ablation threshold is independent on the doping level of the filters. For more than 100 pulses per spot and all pulse durations applied, the threshold fluence is practically constant. This leads to technically relevant ablation threshold values

  12. A five-picosecond electron pulse from ANL (Argonne National Laboratory) L-Band Linac

    International Nuclear Information System (INIS)

    Cox, G.L.; Jonah, C.D.; Ficht, D.T.; Mavrogenes, G.S.; Sauer, M.C. Jr.

    1989-01-01

    The pulse-compression system of the Argonne National Laboratory Chemistry Division L-Band Linac, presented at the 1986 Linear Accelerator Conference at Stanford, California, has been completed. A five-picosecond-wide electron pulse containing 6 x 10 -9 coulomb charge has been achieved. Acceleration parameters and the pulse-width measurement technique are discussed, and future plans for the utilization of this pulse in radiation chemistry studies are presented. 5 refs., 4 figs

  13. Direct determination of the hit locations from experimental HPGe pulses

    Energy Technology Data Exchange (ETDEWEB)

    Désesquelles, P., E-mail: Pierre.Desesquelles@in2p3.fr [Univ. Paris-Sud, CSNSM CNRS/IN2P3, 15 rue G. Clémenceau, 91405 Orsay (France); Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Dimmock, M.R. [Oliver Lodge Laboratory, The University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Ljungvall, J. [Univ. Paris-Sud, CSNSM CNRS/IN2P3, 15 rue G. Clémenceau, 91405 Orsay (France); Nelson, L. [Oliver Lodge Laboratory, The University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nga, D.-T. [Univ. Paris-Sud, CSNSM CNRS/IN2P3, 15 rue G. Clémenceau, 91405 Orsay (France); Nolan, P.J.; Rigby, S.V. [Oliver Lodge Laboratory, The University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Van-Oanh, N.-T. [Univ. Paris-Sud, LCP UMR8000 CNRS, 15 rue G. Clémenceau, 91405 Orsay (France)

    2013-11-21

    The gamma-tracking technique optimises the determination of the energy and emission angle of gamma-rays detected by modern segmented HPGe detectors. This entails the determination, using the delivered pulse shapes, of the interaction points of the gamma-ray within the crystal. The direct method presented here allows the localisation of the hits using only a large sample of pulses detected in the actual operating conditions. No external crystal scanning system or pulse shape simulation code is needed. In order to validate this method, it is applied to sets of pulses obtained using the University of Liverpool scanning system. The hit locations are determined by the method with good precision.

  14. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  15. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    International Nuclear Information System (INIS)

    Khandelwal, Himanshu; Singh, Gurbhinder; Agrawal, Khelendra; Prakash, Satya; Agarwal, R.D.

    2013-01-01

    Highlights: ► Hydroxyapatite coating was successfully deposited on stainless steel substrate by pulse laser deposition at different energy levels (i.e. 300 mJ and 500 mJ, respectively). ► Variation in laser energy affects the surface characteristic of hydroxyapatite coating (particle size, surface roughness, uniformity, Ca/P ratio). ► Laser energy between 300 mJ and 500 mJ is the optimal choice for obtaining ideal Ca/P ratio. - Abstract: Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  16. Realtime aspects of pulse-to-pulse modulation

    International Nuclear Information System (INIS)

    Steiner, R.; Riedel, C.; Roesch, W.

    1992-01-01

    The pulse-to-pulse modulation of the SIS-ESR control system is described. Fast response to operator interaction and to changes in process conditions is emphasized as well as the essential part played by the timing system in pulse-to-pulse modulation. (author)

  17. Pulse patterning effect in optical pulse division multiplexing for flexible single wavelength multiple access optical network

    Science.gov (United States)

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-01

    A demand for high spectral efficiency requires multiple access within a single wavelength, but the uplink signals are significantly degraded because of optical beat interference (OBI) in intensity modulation/direct detection system. An optical pulse division multiplexing (OPDM) technique was proposed that could effectively reduce the OBI via a simple method as long as near-orthogonality is satisfied, but the condition was strict, and thus, the number of multiplexing units was very limited. We propose pulse pattern enhanced OPDM (e-OPDM) to reduce the OBI and improve the flexibility in multiple access within a single wavelength. The performance of the e-OPDM and patterning effect are experimentally verified after 23-km single mode fiber transmission. By employing pulse patterning in OPDM, the tight requirement was relaxed by extending the optical delay dynamic range. This could support more number of access with reduced OBI, which could eventually enhance a multiple access function.

  18. Energy constraints in pulsed phase control of chaos

    International Nuclear Information System (INIS)

    Meucci, R.; Euzzor, S.; Zambrano, S.; Pugliese, E.; Francini, F.; Arecchi, F.T.

    2017-01-01

    Phase control of chaos is a powerful technique but little is known about its physical constraints, relevant for real systems. As a fact, it has not been explored whether this technique can also be applied when the controlling perturbation is not harmonic. Here we apply phase control on a driven double well Duffing oscillator using periodic rectangular pulsed perturbations instead of the classical sinusoidal perturbations. Experimental measurements and numerical simulations show that this kind of perturbation is also able to stabilize the chaotic orbits for an adequate selection of the phase. Furthermore, as the duty cycle of the perturbation (that is, the fraction of the time that the periodically pulsed control is active) is increased, two separate regimes occur. In the first one, the perturbations leading to stabilization of periodic solutions are of constant energy (taken as the product of the duty cycle and the amplitude) and in the second one, a saturation phenomenon occurs, implying that increasing energy values of the perturbations are wasted. Our results unveil the versatility of the pulsed phase control scheme and the importance of energy constraints.

  19. Energy constraints in pulsed phase control of chaos

    Energy Technology Data Exchange (ETDEWEB)

    Meucci, R., E-mail: riccardo.meucci@ino.it [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Euzzor, S. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Zambrano, S. [Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano (Italy); Pugliese, E. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, 50100 Firenze (Italy); Francini, F. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Arecchi, F.T. [Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo E. Fermi 6, 50125 Firenze (Italy); Università di Firenze, Firenze (Italy)

    2017-01-15

    Phase control of chaos is a powerful technique but little is known about its physical constraints, relevant for real systems. As a fact, it has not been explored whether this technique can also be applied when the controlling perturbation is not harmonic. Here we apply phase control on a driven double well Duffing oscillator using periodic rectangular pulsed perturbations instead of the classical sinusoidal perturbations. Experimental measurements and numerical simulations show that this kind of perturbation is also able to stabilize the chaotic orbits for an adequate selection of the phase. Furthermore, as the duty cycle of the perturbation (that is, the fraction of the time that the periodically pulsed control is active) is increased, two separate regimes occur. In the first one, the perturbations leading to stabilization of periodic solutions are of constant energy (taken as the product of the duty cycle and the amplitude) and in the second one, a saturation phenomenon occurs, implying that increasing energy values of the perturbations are wasted. Our results unveil the versatility of the pulsed phase control scheme and the importance of energy constraints.

  20. Technique of experimental measurements of the optical thickness of a pulse discharge plasma channel in water on a contour reabsorption lines of hydrogen Hα

    Directory of Open Access Journals (Sweden)

    O. A. Fedorovich

    2010-03-01

    Full Text Available In this work the results of development and application of the technique of experimental definition of optical thickness (τ of the pulse discharge plasma channel in water which are based on the distribution of radiation intensities on contour reabsorption lines of hydrogen Ha (656.3 nm are given. Optical thickness of continues spectrum was defined by extrapolation of intensities in far wing of contour reabsorption lines of hydrogen Ha, where t value did not vary any more, and the line smoothly transferred in continuous spectrum. The atomic concentration Na, received on a method of definition of t on a contour reabsorption lines of hydrogen Ha., agreed with calculation obtained from the equation of the plasma state. The recommendations on the correct definition of optical thickness of plasma of pulse discharge in liquids are given.

  1. Pulse-dose radiofrequency treatment in pain management-initial experience.

    Science.gov (United States)

    Ojango, Christine; Raguso, Mario; Fiori, Roberto; Masala, Salvatore

    2018-05-01

    Radiofrequency procedures have been used for treating various chronic pain conditions for decades. These minimally invasive percutaneous treatments employ an alternating electrical current with oscillating radiofrequency wavelengths to eliminate or alter pain signals from the targeted site. The aim of the continuous radiofrequency procedure is to increase the temperature sufficiently to create an irreversible thermal lesion on nerve fibres and thus permanently interrupt pain signals. The pulsed radiofrequency procedure utilises short pulses of radiofrequency current with intervals of longer pauses to avert a temperature increase to the level of permanent tissue damage. The goal of these pulses is to alter the processing of pain signals, but to avoid relevant structural damage to nerve fibres, as seen in the continuous radiofrequency procedure. The pulse-dose radiofrequency procedure is a technical improvement of the pulsed radiofrequency technique in which the delivery mode of the current is adapted. During the pulse-dose radiofrequency procedure thermal damage is avoided. In addition, the amplitude and width of the consecutive pulses are kept the same. The method ensures that each delivered pulse keeps the same characteristics and therefore the dose is similar between patients. The current review outlines the pulse-dose radiofrequency procedure and presents our institution's chronic pain management studies.

  2. Comparison of predicted and measured pulsed-column profiles and inventories

    International Nuclear Information System (INIS)

    Ostenak, C.A.; Cermak, A.F.

    1983-01-01

    Nuclear materials accounting and process control in fuels reprocessing plants can be improved by near-real-time estimation of the in-process inventory in solvent-extraction contactors. Experimental studies were conducted on pilot- and plant-scale pulsed columns by Allied-General Nuclear Service (AGNS), and the extensive uranium concentration-profile and inventory data were analyzed by Los Alamos and AGNS to develop and evaluate different predictive inventory techniques. Preliminary comparisons of predicted and measured pulsed-column profiles and inventories show promise for using these predictive techniques to improve nuclear materials accounting and process control in fuels reprocessing plants

  3. SBS pulse compression for excimer inertial fusion energy drivers

    International Nuclear Information System (INIS)

    Linford, G.J.

    1994-01-01

    A key requirement for the development of commercial fusion power plants utilizing inertial confinement fusion (ICF) as a source of thermonuclear power is the availability of reliable, efficient laser drivers. These laser drivers must be capable of delivering UV optical pulses having energies of the order of 5MJ to cryogenic deuterium-tritium (D/T) ICF targets. The current requirements for laser ICF target irradiation specify the laser wavelength, λ ca. 250 nm, pulse duration, τ p ca. 6 ns, bandwidth, Δλ ca. 0.1 nm, polarization state, etc. Excimer lasers are a leading candidate to fill these demanding ICF driver requirements. However, since excimer lasers are not storage lasers, the excimer laser pulse duration, τ pp , is determined primarily by the length of the excitation pulse delivered to the excimer laser amplifier. Pulsed power associated with efficiently generating excimer laser pulses has a time constant, τ pp which falls in the range, 30 τ p pp p . As a consequence, pulse compression is needed to convert the long excimer laser pulses to pulses of duration τ p . These main ICF driver pulses require, in addition, longer, lower power precursor pulses delivered to the ICF target before the arrival of the main pulse. Although both linear and non-linear optical (NLO) pulse compression techniques have been developed, computer simulations have shown that a ''chirped,'' self-seeded, stimulated Brillouin scattering (SBS) pulse compressor cell using SF 6 at a density, ρ ca. 1 amagat can efficiently compress krypton fluoride (KrF) laser pulses at λ=248 nm. In order to avoid the generation of output pulses substantially shorter than τ p , the optical power in the chirped input SBS ''seed'' beams was ramped. Compressed pulse conversion efficiencies of up to 68% were calculated for output pulse durations of τ p ca. ns

  4. Pulse width modulation inverter with battery charger

    Science.gov (United States)

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  5. Pulsed beams as field probes for precision measurement

    International Nuclear Information System (INIS)

    Hudson, J. J.; Ashworth, H. T.; Kara, D. M.; Tarbutt, M. R.; Sauer, B. E.; Hinds, E. A.

    2007-01-01

    We describe a technique for mapping the spatial variation of static electric, static magnetic, and rf magnetic fields using a pulsed atomic or molecular beam. The method is demonstrated using a beam designed to measure the electric dipole moment of the electron. We present maps of the interaction region, showing sensitivity to (i) electric field variation of 1.5 V/cm at 3.3 kV/cm with a spatial resolution of 15 mm; (ii) magnetic field variation of 5 nT with 25 mm resolution; (iii) radio-frequency magnetic field amplitude with 15 mm resolution. This diagnostic technique is very powerful in the context of high-precision atomic and molecular physics experiments, where pulsed beams have not hitherto found widespread application

  6. Electro-optic sampling of THz pulses at the CTR source at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Steffen

    2012-06-15

    Several applications in material science, non-linear optics and solid-state physics require short pulses with a high pulse energy of radiation in the far-infrared and in the terahertz (THz) regime in particular. As described in the following, coherent transition radiation generated by high-relativistic electron bunches at FLASH provides broadband single-cycle pulses of sub-picosecond length. The pulses are characterized using the quantitative and time-resolved technique of electro-optic sampling showing peak field strengths in the order of 1 MV/cm.

  7. Electro-optic sampling of THz pulses at the CTR source at FLASH

    International Nuclear Information System (INIS)

    Wunderlich, Steffen

    2012-06-01

    Several applications in material science, non-linear optics and solid-state physics require short pulses with a high pulse energy of radiation in the far-infrared and in the terahertz (THz) regime in particular. As described in the following, coherent transition radiation generated by high-relativistic electron bunches at FLASH provides broadband single-cycle pulses of sub-picosecond length. The pulses are characterized using the quantitative and time-resolved technique of electro-optic sampling showing peak field strengths in the order of 1 MV/cm.

  8. Comparative study of pulsed laser cleaning applied to weathered marble surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, P., E-mail: mportcal@upo.es [Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville (Spain); Antúnez, V.; Ortiz, R.; Martín, J.M. [Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville (Spain); Gómez, M.A. [Instituto Andaluz de Patrimonio Histórico, Camino de los Descubrimientos s/n, 41092 Seville (Spain); Hortal, A.R.; Martínez-Haya, B. [Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville (Spain)

    2013-10-15

    The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.

  9. Comparative study of pulsed laser cleaning applied to weathered marble surfaces

    International Nuclear Information System (INIS)

    Ortiz, P.; Antúnez, V.; Ortiz, R.; Martín, J.M.; Gómez, M.A.; Hortal, A.R.; Martínez-Haya, B.

    2013-01-01

    The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.

  10. Comparative study of pulsed laser cleaning applied to weathered marble surfaces

    Science.gov (United States)

    Ortiz, P.; Antúnez, V.; Ortiz, R.; Martín, J. M.; Gómez, M. A.; Hortal, A. R.; Martínez-Haya, B.

    2013-10-01

    The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.

  11. Comparison study among conventional, tissue harmonic and pulse inversion harmonic images to evaluate pleural effusion and ascites

    International Nuclear Information System (INIS)

    Chung, Hwan Hoon; Kim, Yun Hwan; Kang, Chang Ho; Park, Bum Jin; Chung, Kyoo Byung; Suh, Won Hyuck

    2000-01-01

    To determine the most useful sonographic technique to evaluate pleural effusion and ascites by comparing conventional, tissue harmonic and pulse inversion harmonic images. 12 patients having pleural effusion and 14 patients having ascites were included in this study. 18 patients were male and 8 patients were female. Average age was 54.8 yrs (25-77). We compared images which had been taken at the same section with 3 above mentioned sonographic techniques. Evaluation was done by 3 radiologists in consensus and grades were given to 3 techniques from 1 to 3. Evaluating points were 1) normal structures that border the fluid such as liver, peritoneal lining, pleura, 2) septation in fluid, 3) debris floating in fluid, and 4) artifacts. Pulse inversion harmonic image was the best in image quality for normal structures, followed by tissue harmonic and conventional image (p<0.05). Pulse inversion harmonic image was better than conventional image to evaluate septation in fluid (p<0.05), but there were no statistically significant difference between pulse inversion and tissue harmonic images, and tissue harmonic and conventional images. Tissue harmonic image was better than pulse inversion harmonic and conventional images to evaluate debris floating in fluid (p<0.05) but there was no statistically significant difference between these two latter techniques. Artifacts were most prominent on conventional image followed by tissue harmonic and pulse inversion harmonic image (p<0.05). Pulse inversion harmonic image was the best sonographic technique to evaluate pleural effusion or ascites, However, Tissue harmonic image was the best for evaluation of debris.

  12. Comparison study among conventional, tissue harmonic and pulse inversion harmonic images to evaluate pleural effusion and ascites

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hwan Hoon; Kim, Yun Hwan; Kang, Chang Ho; Park, Bum Jin; Chung, Kyoo Byung; Suh, Won Hyuck [Korea University College of Medicine, Seoul (Korea, Republic of)

    2000-12-15

    To determine the most useful sonographic technique to evaluate pleural effusion and ascites by comparing conventional, tissue harmonic and pulse inversion harmonic images. 12 patients having pleural effusion and 14 patients having ascites were included in this study. 18 patients were male and 8 patients were female. Average age was 54.8 yrs (25-77). We compared images which had been taken at the same section with 3 above mentioned sonographic techniques. Evaluation was done by 3 radiologists in consensus and grades were given to 3 techniques from 1 to 3. Evaluating points were 1) normal structures that border the fluid such as liver, peritoneal lining, pleura, 2) septation in fluid, 3) debris floating in fluid, and 4) artifacts. Pulse inversion harmonic image was the best in image quality for normal structures, followed by tissue harmonic and conventional image (p<0.05). Pulse inversion harmonic image was better than conventional image to evaluate septation in fluid (p<0.05), but there were no statistically significant difference between pulse inversion and tissue harmonic images, and tissue harmonic and conventional images. Tissue harmonic image was better than pulse inversion harmonic and conventional images to evaluate debris floating in fluid (p<0.05) but there was no statistically significant difference between these two latter techniques. Artifacts were most prominent on conventional image followed by tissue harmonic and pulse inversion harmonic image (p<0.05). Pulse inversion harmonic image was the best sonographic technique to evaluate pleural effusion or ascites, However, Tissue harmonic image was the best for evaluation of debris.

  13. Pulsed rf excited spectrometer having improved pulse width control

    International Nuclear Information System (INIS)

    1977-01-01

    RF excitation for a spectrometer is obtained by pulse width modulating an RF carrier to produce the desired broadband RF exciting spectrum. The RF excitation includes a train of composite RF pulses, each composite pulse having a primary pulse portion of a first RF phase and a second pulse portion of a second RF phase opposite that of the first. In this manner, the finite rise and fall times of the primary pulse portion are compensated for by the corresponding rise and fall times of the secondary pulse portion. The primary pulse portion is lengthened by an amount equal to the secondary pulse portion so that the secondary pulse portion cancels the added primary pulse portion. In a spectrometer, the compensating second pulse component removes certain undesired side bands of the RF excitation caused by the finite rise and fall times of the applied RF pulses. The compensating second pulse component removes certain undesired side bands associated with each of the resonant lines of the excited resonance spectrum of the sample under analysis, particularly for wide band RF excitation

  14. Real-time multiparameter pulse processing with decision tables

    International Nuclear Information System (INIS)

    Hull, K.; Griffin, H.

    1986-01-01

    Decision tables offer several advantages over other real-time multiparameter, data processing techniques. These include very high collection rates, minimum number of computer instructions, rates independent of the number of conditions applied per parameter, ease of adding or removing conditions during a session, and simplicity of implementation. Decisions table processing is important in multiparameter nuclear spectroscopy, coincidence experiments, multiparameter pulse processing (HgI 2 resolution enhancement, pulse discrimination, timing spectroscopy), and other applications can be easily implemented. (orig.)

  15. Breakdown of methylene blue and methyl orange by pulsed corona discharge

    NARCIS (Netherlands)

    Grabowski, L.R.; Veldhuizen, van E.M.; Pemen, A.J.M.; Rutgers, W.R.

    2007-01-01

    The recently developed corona above water technique is applied to water containing 10 mg l-1 methylene blue (MB) or methyl orange (MO). The corona discharge pulses are created with a spark gap switched capacitor followed by a transmission line transformer. The pulse amplitude is 40 kV; its duration

  16. Pulse shape analysis for γ-ray tracking. Part I: Pulse shape simulation with JASS

    International Nuclear Information System (INIS)

    Schlarb, M.; Gernhaeuser, R.; Klupp, S.; Kruecken, R.

    2011-01-01

    Next-generation γ -ray spectrometers based on highly segmented HPGe detectors are using the recent technique of γ -ray tracking to significantly improve on efficiency and Doppler correction capabilities. A precise reconstruction of the individual interaction locations within the active material is possible through the use of pulse shape analysis (PSA) which, in turn, demands an accurate knowledge of the detector response. We developed JASS, a Java-based simulation software package to generate pulse shapes for the AGATA detectors from physics constraints and basic material parameters. For verifying the simulation experimental data from a coincidence scan with known interaction locations was used. The achieved position resolution, in the order of a few millimeters, is within the requirements of the γ -ray tracking array. (orig.)

  17. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films

    Science.gov (United States)

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Wang, Zhi; Du, Kun; Lu, Yongfeng

    2018-05-01

    Ultrafast laser pulse temporal shaping has been widely applied in various important applications such as laser materials processing, coherent control of chemical reactions, and ultrafast imaging. However, temporal pulse shaping has been limited to only-in-lab technique due to the high cost, low damage threshold, and polarization dependence. Herein we propose a novel design of ultrafast laser pulse train generation device, which consists of multiple polarization-independent parallel-aligned thin films. Various pulse trains with controllable temporal profile can be generated flexibly by multi-reflections within the splitting films. Compared with other pulse train generation techniques, this method has advantages of compact structure, low cost, high damage threshold and polarization independence. These advantages endow it with high potential for broad utilization in ultrafast applications.

  18. Improvement of chemical shift selective saturation (CHESS) pulse for MR angiography

    International Nuclear Information System (INIS)

    Ishimori, Yoshiyuki; Sashie, Hiroyuki; Hiraga, Akira; Matsuda, Tsuyoshi

    2000-01-01

    We improved the fat suppression technique based on chemical shift selective saturation (CHESS). To do this, we shortened the duration of the CHESS pulse to achieve a short repetition time (TR) for MR angiography (MRA). A short-duration CHESS pulse causes broad frequency band saturation, creating extensive offset from the resonance frequency of water. In our phantom experiment, the best parameters of the short-duration CHESS pulse were 3.84 ms in duration, -650 Hz in offset frequency from water resonance, and had a 130-degree flip angle. With this technique, MRA will be able to be carried out without a significant increase in TR. Thus, better vessel contrast will be maintained in time-of-flight (TOF) MRA or contrast-enhanced MRA when using the maximum intensity projection (MIP) method. (author)

  19. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Science.gov (United States)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Fulop, Jozsef A.; Farkas, Gyozo; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-08-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  20. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    International Nuclear Information System (INIS)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Farkas, Gyozo; Fulop, Jozsef A.; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-01-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  1. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Emeric [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); Kovacs, Katalin [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Dombi, Peter; Farkas, Gyozo [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Fulop, Jozsef A.; Hebling, Janos [Department of Experimental Physics, University of Pecs, H-7624 Pecs (Hungary); Tosa, Valer [National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Varju, Katalin [HAS Research Group on Laser Physics, University of Szeged, H-6701 Szeged (Hungary)

    2011-08-15

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  2. Classification of Pulse Waveforms Using Edit Distance with Real Penalty

    Directory of Open Access Journals (Sweden)

    Zhang Dongyu

    2010-01-01

    Full Text Available Abstract Advances in sensor and signal processing techniques have provided effective tools for quantitative research in traditional Chinese pulse diagnosis (TCPD. Because of the inevitable intraclass variation of pulse patterns, the automatic classification of pulse waveforms has remained a difficult problem. In this paper, by referring to the edit distance with real penalty (ERP and the recent progress in -nearest neighbors (KNN classifiers, we propose two novel ERP-based KNN classifiers. Taking advantage of the metric property of ERP, we first develop an ERP-induced inner product and a Gaussian ERP kernel, then embed them into difference-weighted KNN classifiers, and finally develop two novel classifiers for pulse waveform classification. The experimental results show that the proposed classifiers are effective for accurate classification of pulse waveform.

  3. Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains

    Science.gov (United States)

    Kozák, M.; Schönenberger, N.; Hommelhoff, P.

    2018-03-01

    Atomic motion dynamics during structural changes or chemical reactions have been visualized by pico- and femtosecond pulsed electron beams via ultrafast electron diffraction and microscopy. Imaging the even faster dynamics of electrons in atoms, molecules, and solids requires electron pulses with subfemtosecond durations. We demonstrate here the all-optical generation of trains of attosecond free-electron pulses. The concept is based on the periodic energy modulation of a pulsed electron beam via an inelastic interaction, with the ponderomotive potential of an optical traveling wave generated by two femtosecond laser pulses at different frequencies in vacuum. The subsequent dispersive propagation leads to a compression of the electrons and the formation of ultrashort pulses. The longitudinal phase space evolution of the electrons after compression is mapped by a second phase-locked interaction. The comparison of measured and calculated spectrograms reveals the attosecond temporal structure of the compressed electron pulse trains with individual pulse durations of less than 300 as. This technique can be utilized for tailoring and initial characterization of suboptical-cycle free-electron pulses at high repetition rates for stroboscopic time-resolved experiments with subfemtosecond time resolution.

  4. Bipolar pulse generator for intense pulsed ion beam accelerator

    International Nuclear Information System (INIS)

    Ito, H.; Igawa, K.; Kitamura, I.; Masugata, K.

    2007-01-01

    A new type of pulsed ion beam accelerator named ''bipolar pulse accelerator'' (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time

  5. Practical issues of retrieving isolated attosecond pulses

    International Nuclear Information System (INIS)

    Wang He; Chini, Michael; Khan, Sabih D; Chen, Shouyuan; Gilbertson, Steve; Feng Ximao; Mashiko, Hiroki; Chang Zenghu

    2009-01-01

    The attosecond streaking technique is used for the characterization of isolated extreme ultraviolet (XUV) attosecond pulses. This type of measurement suffers from low photoelectron counts in the streaked spectrogram, and is thus susceptible to shot noise. For the retrieval of few- or mono-cycle attosecond pulses, high-intensity streaking laser fields are required, which cause the energy spectrum of above-threshold ionized (ATI) electrons to overlap with that of the streaked photoelectrons. It is found by using the principal component generalized projections algorithm that the XUV attosecond pulse can accurately be retrieved for simulated and experimental spectrograms with a peak value of 50 or more photoelectron counts. Also, the minimum streaking intensity is found to be more than 50 times smaller than that required by the classical streaking camera for retrieval of pulses with a spectral bandwidth supporting 90 as transform-limited pulse durations. Furthermore, spatial variation of the streaking laser intensity, collection angle of streaked electrons and time delay jitter between the XUV pulse and streaking field can degrade the quality of the streaked spectrogram. We find that even when the XUV and streaking laser focal spots are comparable in size, the streaking electrons are collected from a 4π solid angle, or the delay fluctuates by more than the attosecond pulse duration, the attosecond pulses can still be accurately retrieved. In order to explain the insusceptibility of the streaked spectrogram to these factors, the linearity of the streaked spectrogram with respect to the streaking field is derived under the saddle point approximation.

  6. Pulsed electric fields (PEF applications on wine production: A review

    Directory of Open Access Journals (Sweden)

    Ozturk Burcu

    2017-01-01

    Full Text Available Novel techniques have been searched in the last decades as a result of increasing demand for high quality food products. Non-thermal processing technologies, such as pulsed electric fields (PEF have been improved to achieve inhibition of deleterious effects on quality-related compounds. The working principle of PEF is based on the application of pulses of high voltage (typically above 20 kV/cm up to 70 kV/cm to liquid foods placed between two electrodes. Pulsed electric fields technique has also been studied in winemaking process. Certain positive influences of PEF on vinification have been reported as elimination of pathogenic microorganisms, reduction of maceration time, increase in phenolic compounds extraction , acceleration of wine aging and inactivation of oxidative enzymes. The aim of this review is to summarize the potential applications of PEF in winemaking and to express its effects on quality of wine.

  7. Pulse and lock-in IR NDT in complex structures

    Science.gov (United States)

    Tarin, Markus

    2011-05-01

    Bicycles, cars, airplanes, prosthetics, solar panels...composites are ubiquitous in the modern world. Three thermographic NDT techniques are currently in use for the detection and measurement of defects in these composites, including defects such as impact damage, delamination, voids, inclusions and stresses. The particular technique for optimum results, pulsed flash, pulsed transient, or lock-in, depends upon the sample material and thickness and shape, and the test environment. Choice of camera type varies widely, from high performance cooled to affordable uncooled, with large format 640 x 480 pixels now available, also. NDT hardware and software now includes models that allow all types of excitation sources and excitation methods with the same equipment.

  8. $\\beta$-decay study of neutron-rich Tl, Pb, and Bi by means of the pulsed-release technique and resonant laser ionisation

    CERN Multimedia

    Lettry, J

    2002-01-01

    It is proposed to study new neutron-rich nuclei around the Z = 82 magic shell closure, with major relevance for understanding the evolution of nuclear structure at extreme isospin values. Following the IS354 experiment, $\\beta$-decay studies of neutron-rich thallium, lead and bismuth isotopes will be performed for 215 $\\leqslant$ A $\\leqslant$ 219. To this purpose the pulsed-release technique, which was pioneered at ISOLDE, will be optimised. It will be complemented with the higher element selectivity that can be obtained by the unique features of resonant laser ionisation, available at ISOLDE from the RILIS source.

  9. Fully automated system for pulsed NMR measurements

    International Nuclear Information System (INIS)

    Cantor, D.M.

    1977-01-01

    A system is described which places many of the complex, tedious operations for pulsed NMR experiments under computer control. It automatically optimizes the experiment parameters of pulse length and phase, and precision, accuracy, and measurement speed are improved. The hardware interface between the computer and the NMR instrument is described. Design features, justification of the choices made between alternative design strategies, and details of the implementation of design goals are presented. Software features common to all the available experiments are discussed. Optimization of pulse lengths and phases is performed via a sequential search technique called Uniplex. Measurements of the spin-lattice and spin-spin relaxation times and of diffusion constants are automatic. Options for expansion of the system are explored along with some of the limitations of the system

  10. Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms

    National Research Council Canada - National Science Library

    Ardolino, Richard S

    2007-01-01

    This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...

  11. Preparation of water-soluble carbon nanotubes using a pulsed streamer discharge in water

    International Nuclear Information System (INIS)

    Imasaka, Kiminobu; Suehiro, Junya; Kanatake, Yusuke; Kato, Yuki; Hara, Masanori

    2006-01-01

    A novel technique for the preparation of water-soluble carbon nanotubes was demonstrated using a pulsed streamer discharge generated in water. The technique involved chemical reactions between radicals generated by the pulsed streamer discharge and carbon nanotubes. The pulsed streamer-treated carbon nanotubes were homogeneously dispersed and well solubilized in water for a month or longer. The mechanism of solubilization of carbon nanotubes by the pulsed streamer discharge is discussed based on FTIR spectroscopy and optical emission spectra measurements. FTIR spectroscopy revealed that -OH groups, which are known to impart a hydrophilic nature to carbon material, were introduced on the carbon nanotube surface. Optical emission spectra from the pulsed streamer plasma showed that highly oxidative O * and H * radicals were generated in water. These results suggest that the functionalization of the carbon nanotube surface by -OH group can be attributed to the O * and H * radicals. An advantage of the proposed method is that there is no need for any chemical agents or additives for solubilization. Chemical agents for solubilization are generated from the water itself by the electrochemical reactions induced by the pulsed streamer discharge

  12. Electrooxidation of aliphatic alcohols on palladium oxide catalyst prepared by pulsed electrodeposition technique

    International Nuclear Information System (INIS)

    Casella, Innocenzo G.

    2009-01-01

    Palladium film can be deposited on gold polycrystalline electrodes, from a deoxygenated alkaline solution containing 50 mM NaOH plus 0.5 mM K 2 Pd(CN) 4 . A multipulse sequence of potentials of equal amplitude and duration was used for the palladium deposition process. In particular, an optimized waveform of potentials of E 1 = 1.0 V vs. SCE and E 2 = -1.0 V vs. SCE for the relevant pulse duration of t 1 = 0.05 s and t 2 = 0.05 s, for 30 s, was used. Cyclic voltammetry and scanning electron microscopy (SEM) were employed to characterize the gold-palladium modified electrode (Au-Pd) towards the electrooxidation of aliphatic alcohols in alkaline solutions. The voltammetric study suggests that the kinetics involved in the alcohol electrooxidation at the Pd-Au electrode are sensibly higher than those observed on the bare Pd and Au electrodes. In addition, the most interesting aspect of the electrooxidation of aliphatic alcohols at the Au-Pd electrode was that as the number of methylene groups on the homologous series of aliphatic alcohols increased, the molar response also increased. Under pulsed chronoamerometric conditions (PCC), using an optimized triple pulse waveform of potentials the modified electrode exhibits interesting catalytic currents without any apparent poisoning effects during the oxidation of aliphatic alcohols.

  13. Optimizing the Thermoacoustic Pulse Tube Refrigerator Performances

    Directory of Open Access Journals (Sweden)

    E. V. Blagin

    2014-01-01

    Full Text Available The article deals with research and optimization of the thermoacoustic pulse tube refrigerator to reach a cryogenic temperature level. The refrigerator is considered as a thermoacoustic converter based on the modified Stirling cycle with helium working fluid. A sound pressure generator runs as a compressor. Plant model comprises an inner heat exchanger, a regenerative heat exchanger, a pulse tube, hot and cold heat exchangers at its ends, an inertial tube with the throttle, and a reservoir. A model to calculate the pulse tube thermoacoustic refrigerator using the DeltaEC software package has been developed to be a basis for calculation techniques of the pulse tube refrigerator. Momentum, continuity, and energy equations for helium refrigerant are solved according to calculation algorithm taking into account the porosity of regenerator and heat exchangers. Optimization of the main geometric parameters resulted in decreasing temperature of cold heat exchanger by 41,7 K. After optimization this value became equal to 115,01 K. The following parameters have been optimized: diameters of the feeding and pulse tube and heat exchangers, regenerator, lengths of the regenerator and pulse and inertial tubes, as well as initial pressure. Besides, global minimum of temperatures has been searched at a point of local minima corresponding to the optimal values of abovementioned parameters. A global-local minima difference is 0,1%. Optimized geometric and working parameters of the thermoacoustic pulse tube refrigerator are presented.

  14. Pulse on pulse: modulation and signification in Rafael Lozano-Hemmer's Pulse Room

    Directory of Open Access Journals (Sweden)

    Merete Carlson

    2012-06-01

    Full Text Available This article investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006 by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy of the visitor's beating heart to the flashing of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the flashing light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant and pulsating “room”. Hence, the visitor in Pulse Room is invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic “rhythm of life” and instants of pure material processuality (flickering light bulbs; polyrhythmic layers. Taking our point of departure in a discussion of Gilles Deleuze's concepts of modulation and signaletic material in relation to electronic media, we examine how the complex orchestration of pulsation between signification and material modulation produces a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, a relational subject–object intimacy and an all-encompassing immersive environment modulating continuously in real space-time.

  15. Application of pulse combustion technology in spray drying process

    Directory of Open Access Journals (Sweden)

    I. Zbicinski

    2000-12-01

    Full Text Available The paper presents development of valved pulse combustor designed for application in drying process and drying tests performed in a specially built installation. Laser technique was applied to investigate the flow field and structure of dispersed phase during pulse combustion spray drying process. PDA technique was used to determine initial atomization parameters as well as particle size distribution, velocity of the particles, mass concentration of liquid phase in the cross section of spray stream, etc., in the drying chamber during drying tests. Water was used to estimate the level of evaporation and 5 and 10% solutions of sodium chloride to carry out drying tests. The Computational Fluid Dynamics technique was used to perform theoretical predictions of time-dependent velocity, temperature distribution and particle trajectories in the drying chamber. Satisfactory agreement between calculations and experimental results was found in certain regions of the drying chamber.

  16. Column carbon dioxide and water vapor measurements by an airborne triple-pulse integrated path differential absorption lidar: novel lidar technologies and techniques with path to space

    Science.gov (United States)

    Singh, U. N.; Petros, M.; Refaat, T. F.; Yu, J.; Ismail, S.

    2017-09-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption features for the gas at this wavelength region [1]. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers [2]. Currently, LaRC team is engaged in designing, developing and demonstrating a triple-pulsed 2-micron direct detection Integrated Path Differential Absorption (IPDA) lidar to measure the weighted-average column dry-air mixing ratios of carbon dioxide (XCO2) and water vapor (XH2O) from an airborne platform [1, 3-5]. This novel technique allows measurement of the two most dominant greenhouse gases, simultaneously and independently, using a single instrument. This paper will provide status and details of the development of this airborne 2-micron triple-pulse IPDA lidar. The presented work will focus on the advancement of critical IPDA lidar components. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plans for IPDA lidar ground integration, testing and flight validation will also be discussed. This work enables new Earth observation measurements, while reducing risk, cost, size, volume, mass and development time of required instruments.

  17. Determination of the apparent porosity level of refractory concrete during a sintering process using an ultrasonic pulse velocity technique and image analysis

    Directory of Open Access Journals (Sweden)

    LJUBICA M. PAVLOVIĆ

    2010-03-01

    Full Text Available Concrete which undergoes a thermal treatment before (pre-casted concrete blocks and during (concrete embedded in-situ its life-service can be applied in plants operating at high temperature and as thermal insulation. Sintering is a process which occurs within a concrete structure in such conditions. Progression of sintering process can be monitored by the change of the porosity parameters determined with a nondestructive test method - ultrasonic pulse velocity and computer program for image analysis. The experiment has been performed on the samples of corundum and bauxite concrete composites. The apparent porosity of the samples thermally treated at 110, 800, 1000, 1300 and 1500 C was primary investigated with a standard laboratory procedure. Sintering parameters were calculated from the creep testing. The loss of strength and material degradation occurred in concrete when it was subjected to the increased temperature and a compressive load. Mechanical properties indicate and monitor changes within microstructure. The level of surface deterioration after the thermal treatment was determined using Image Pro Plus program. Mechanical strength was estimated using ultrasonic pulse velocity testing. Nondestructive ultrasonic mea¬surement was used as a qualitative description of the porosity change in specimens which is the result of the sintering process. The ultrasonic pulse velocity technique and image analysis proved to be reliable methods for monitoring of micro-structural change during the thermal treatment and service life of refractory concrete.

  18. Metal processing with ultrashort laser pulses

    Science.gov (United States)

    Banks, Paul S.; Felt, M. D.; Komashko, Aleksey M.; Perry, Michael D.; Rubenchik, Alexander M.; Stuart, Brent C.

    2000-08-01

    Femtosecond laser ablation has been shown to produce well-defined cuts and holes in metals with minimal heat effect to the remaining material. Ultrashort laser pulse processing shows promise as an important technique for materials processing. We will discuss the physical effects associated with processing based experimental and modeling results. Intense ultra-short laser pulse (USLP) generates high pressures and temperatures in a subsurface layer during the pulse, which can strongly modify the absorption. We carried out simulations of USLP absorption versus material and pulse parameters. The ablation rate as function of the laser parameters has been estimated. Since every laser pulse removes only a small amount of material, a practical laser processing system must have high repetition rate. We will demonstrate that planar ablation is unstable and the initially smooth crater bottom develops a corrugated pattern after many tens of shots. The corrugation growth rate, angle of incidence and the polarization of laser electric field dependence will be discussed. In the nonlinear stage, the formation of coherent structures with scales much larger than the laser wavelength was observed. Also, there appears to be a threshold fluence above which a narrow, nearly perfectly circular channel forms after a few hundred shots. Subsequent shots deepen this channel without significantly increasing its diameter. The role of light absorption in the hole walls will be discussed.

  19. Detection of fast burst of neutrons in the background of intense electromagnetic pulse

    International Nuclear Information System (INIS)

    Shyam, Anurag

    1999-01-01

    There are many experiments, in which fast neutron burst is emitted along with strong electromagnetic pulse. This pulse has frequency spectrum starting from few tens of khz to hard x-rays. Detecting these neutrons bursts require special measurement techniques, which are described. (author)

  20. SBS pulse compression for excimer inertial fusion energy drivers

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

    1994-12-31

    A key requirement for the development of commercial fusion power plants utilizing inertial confinement fusion (ICF) as a source of thermonuclear power is the availability of reliable, efficient laser drivers. These laser drivers must be capable of delivering UV optical pulses having energies of the order of 5MJ to cryogenic deuterium-tritium (D/T) ICF targets. The current requirements for laser ICF target irradiation specify the laser wavelength, {lambda} ca. 250 nm, pulse duration, {tau}{sub p} ca. 6 ns, bandwidth, {Delta}{lambda} ca. 0.1 nm, polarization state, etc. Excimer lasers are a leading candidate to fill these demanding ICF driver requirements. However, since excimer lasers are not storage lasers, the excimer laser pulse duration, {tau}{sub pp}, is determined primarily by the length of the excitation pulse delivered to the excimer laser amplifier. Pulsed power associated with efficiently generating excimer laser pulses has a time constant, {tau}{sub pp} which falls in the range, 30 {tau}{sub p}<{tau}{sub pp}<100{tau}{sub p}. As a consequence, pulse compression is needed to convert the long excimer laser pulses to pulses of duration {tau}{sub p}. These main ICF driver pulses require, in addition, longer, lower power precursor pulses delivered to the ICF target before the arrival of the main pulse. Although both linear and non-linear optical (NLO) pulse compression techniques have been developed, computer simulations have shown that a ``chirped,`` self-seeded, stimulated Brillouin scattering (SBS) pulse compressor cell using SF{sub 6} at a density, {rho} ca. 1 amagat can efficiently compress krypton fluoride (KrF) laser pulses at {lambda}=248 nm. In order to avoid the generation of output pulses substantially shorter than {tau}{sub p}, the optical power in the chirped input SBS ``seed`` beams was ramped. Compressed pulse conversion efficiencies of up to 68% were calculated for output pulse durations of {tau}{sub p} ca. ns.

  1. Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.

    Science.gov (United States)

    Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert

    2017-07-01

    Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.

  2. Pulsed Field Gel Electrophoresis (PFGE: a DNA finger printing technique to study the genetic diversity of blood disease bacterium of banana

    Directory of Open Access Journals (Sweden)

    HADIWIYONO

    2011-01-01

    Full Text Available Hadiwiyono, Widada J, Subandiyah S, Fegan F (2011 Pulsed Field Gel Electrophoresis (PFGE: a DNA finger printing technique to study the genetic diversity of blood disease bacterium of banana. Biodiversitas 12: 12-16. Blood disease bacterium (BDB is the most important pathogen of bananas in Indonesia. In some field, the disease incidence reaches over 80%. Epidemiologically, the disease is similar to moko disease in South America and bugtok disease in the Philippines caused by Ralstonia solanacearum race 2. However, BDB is different in phenotype and genotype from the two diseases. Previously BDB was limited in South Sulawesi since 1920s – 1980s and recently was reported in 27 of 30 provinces in Indonesia. Pulsed-Field Gel Electrophoresis (PFGE is a genomic DNA fingerprinting method, which employs rare cutting restriction endonucleases to digest genome prior to electrophoresis using specialized condition to separate of large DNA fragments. The results showed that PFGE analysis was a discriminative tool to study the genetic diversity of BDB. Based on the PFGE analysis, BDB isolates obtained from different localities in Yogyakarta and Central Java were quit diverse.

  3. Nuclear pulse signal processing technique based on blind deconvolution method

    International Nuclear Information System (INIS)

    Hong Pengfei; Yang Lei; Fu Tingyan; Qi Zhong; Li Dongcang; Ren Zhongguo

    2012-01-01

    In this paper, we present a method for measurement and analysis of nuclear pulse signal, with which pile-up signal is removed, the signal baseline is restored, and the original signal is obtained. The data acquisition system includes FPGA, ADC and USB. The FPGA controls the high-speed ADC to sample the signal of nuclear radiation, and the USB makes the ADC work on the Slave FIFO mode to implement high-speed transmission status. Using the LabVIEW, it accomplishes online data processing of the blind deconvolution algorithm and data display. The simulation and experimental results demonstrate advantages of the method. (authors)

  4. Possible application of transient electromagnetic pulses to high brightness e-guns

    International Nuclear Information System (INIS)

    Kurnit, N.A.; Benicewicz, P.K.; Taylor, A.J.

    1992-01-01

    A number of groups have recently demonstrated the production of freely propagating, focusable pulses of terahertz radiation, consisting of essentially a single subpicosecond cycle of a baseband electromagnetic field. We discuss the possible application of these techniques to the production of strong fields at photocathode surfaces, in a manner analogous to radial-line switched-power concepts. Experimental status in production of these pulses in our laboratory and elsewhere is reviewed, and recent progress in development of short-pulse solid-state lasers useful for this technology is summarized

  5. A simple pulse shape discrimination technique applied to a silicon strip detector

    International Nuclear Information System (INIS)

    Figuera, P.; Lu, J.; Amorini, F.; Cardella, G.; DiPietro, A.; Papa, M.; Musumarra, A.; Pappalardo, G.; Rizzo, F.; Tudisco, S.

    2001-01-01

    Full text: Since the early sixties, it has been known that the shape of signals from solid state detectors can be used for particle identification. Recently, this idea has been revised in a group of papers where it has been shown that the shape of current signals from solid state detectors is mainly governed by the combination of plasma erosion time and charge carrier collection time effects. We will present the results of a systematic study on a pulse shape identification method which, contrary to the techniques proposed, is based on the use of the same electronic chain normally used in the conventional time of flight technique. The method is based on the use of charge preamplifiers, low polarization voltages (i.e. just above full depletion ones), rear side injection of the incident particles, and on a proper setting of the constant fraction discriminators which enhances the dependence of the timing output on the rise time of the input signals (which depends on the charge and energy of the incident ions). The method has been applied to an annular Si strip detector with an inner radius of about 16 mm and an outer radius of about 88 mm. The detector, manufactured by Eurisys Measures (Type Ips.73.74.300.N9), is 300 microns thick and consists of 8 independent sectors each divided into 9 circular strips. On beam tests have been performed at the cyclotron of the Laboratori Nazionali del Sud in Catania using a 25.7 MeV/nucleon 58 Ni beam impinging on a 51 V and 45 Sc composite target. Excellent charge identification from H up to the Ni projectile has been observed and typical charge identification thresholds are: ∼ 1.7 MeV/nucleon for Z ≅ 6, ∼ 3.0 MeV/nucleon for Z ≅ 11, and ∼ 5.5 MeV/nucleon for Z ≅ 20. Isotope identification up to A ≅ 13 has been observed with an energy threshold of about 6 MeV/nucleon. The identification quality has been studied as a function of the constant fraction settings. The method has been applied to all the 72 independent strips

  6. Thermomechanical and Photophysical Properties of Crystal-Violet-Dye/H2O Based Dissolutions via the Pulsed Laser Photoacoustic Technique

    Directory of Open Access Journals (Sweden)

    Vicente Torres-Zúñiga

    2014-01-01

    Full Text Available Different thermoelastic parameters, for example, the acoustic attenuation and the speed of sound, are fundamental for instrumental calibration and quantitative characterization of organic-based dissolutions. In this work, these parameters as functions of the concentration of an organic dye (crystal-violet: CV in distillated water (H2O based dissolutions are investigated. The speed of sound was measured by the pulsed-laser photoacoustic technique (PLPA, which consists in the generation of acoustic-waves by the optical absorption of pulsed light in a given material (in this case a liquid sample. The thermally generated sound-waves traveling through a fluid are detected with two piezoelectric sensors separated by a known distance. An appropriate processing of the photoacoustic signals allows an adequate data analysis of the generated waves within the system, providing an accurate determination of the speed of sound as function of the dye-concentration. The acoustic attenuation was calculated based on the distance of the two PZT-microphones to an acoustic-source point and performing linear-fitting of the experimental data (RMS-amplitudes as function of the dye-concentration. An important advantage of the PLPA-method is that it can be implemented with poor or null optical transmitting materials permitting the characterization of the mechanical and concentration/aggregate properties of dissolved organic compounds.

  7. Pulsed dc self-sustained magnetron sputtering

    International Nuclear Information System (INIS)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-01-01

    The magnetron sputtering has become one of the commonly used techniques for industrial deposition of thin films and coatings due to its simplicity and reliability. At standard magnetron sputtering conditions (argon pressure of ∼0.5 Pa) inert gas particles (necessary to sustain discharge) are often entrapped in the deposited films. Inert gas contamination can be eliminated during the self-sustained magnetron sputtering (SSS) process, where the presence of the inert gas is not a necessary requirement. Moreover the SSS process that is possible due to the high degree of ionization of the sputtered material also gives a unique condition during the transport of sputtered particles to the substrate. So far it has been shown that the self-sustained mode of magnetron operation can be obtained using dc powering (dc-SSS) only. The main disadvantage of the dc-SSS process is its instability related to random arc formation. In such case the discharge has to be temporarily extinguished to prevent damaging both the magnetron source and power supply. The authors postulate that pulsed powering could protect the SSS process against arcs, similarly to reactive pulsed magnetron deposition processes of insulating thin films. To put this concept into practice, (i) the high enough plasma density has to be achieved and (ii) the type of pulsed powering has to be chosen taking plasma dynamics into account. In this article results of pulsed dc self-sustained magnetron sputtering (pulsed dc-SSS) are presented. The planar magnetron equipped with a 50 mm diameter and 6 mm thick copper target was used during the experiments. The maximum target power was about 11 kW, which corresponded to the target power density of ∼560 W/cm 2 . The magnetron operation was investigated as a function of pulse frequency (20-100 kHz) and pulse duty factor (50%-90%). The discharge (argon) extinction pressure level was determined for these conditions. The plasma emission spectra (400-410 nm range) and deposition

  8. The characterisation of magnetic pigment dispersions using pulsed magnetic fields

    International Nuclear Information System (INIS)

    Blackwell, J.J.; O'Grady, K.; Nelson, N.K.; Sharrock, M.P.

    2003-01-01

    In this work, we describe the application of pulsed field magnetometry techniques for the characterisation of magnetic pigment dispersions. Magnetic pigment dispersions are important technological materials as in one form they are the material which are used to coat base film in order to make magnetic recording tape. It is these materials that have been evaluated. In this work, we describe the use of two pulsed field magnetometers, one being a low-field instrument with a maximum field of 750 Oe and the other a high-field instrument with a maximum field of 4.1 kOe. Using inductive sensing, the magnetisation is monitored in real time as the pulse is applied. We find that using these techniques we can successfully monitor the progress of the dispersion process, the effects of different resin systems and the effect of different processing conditions. We find that our results are consistent with rheological and other measurements

  9. The characterisation of magnetic pigment dispersions using pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, J.J.; O' Grady, K. E-mail: kog1@york.ac.uk; Nelson, N.K.; Sharrock, M.P

    2003-10-01

    In this work, we describe the application of pulsed field magnetometry techniques for the characterisation of magnetic pigment dispersions. Magnetic pigment dispersions are important technological materials as in one form they are the material which are used to coat base film in order to make magnetic recording tape. It is these materials that have been evaluated. In this work, we describe the use of two pulsed field magnetometers, one being a low-field instrument with a maximum field of 750 Oe and the other a high-field instrument with a maximum field of 4.1 kOe. Using inductive sensing, the magnetisation is monitored in real time as the pulse is applied. We find that using these techniques we can successfully monitor the progress of the dispersion process, the effects of different resin systems and the effect of different processing conditions. We find that our results are consistent with rheological and other measurements.

  10. A pulse radiolysis based singlet oxygen luminescence facility

    International Nuclear Information System (INIS)

    Gorman, A.A.; Hamblett, I.; Land, E.J.

    1989-01-01

    In this paper the authors report the first successful time-resolved detection of singlet oxygen, O 2 ( 1 Δ g ), luminescence using the pulse radiolysis technique. The use of this technique (a) to produce high concentrations of solute (S) triplet states in aerated benzene (B) via a combination of channels 1-4 and (b) to subsequently form O 2 ( 1 Δ g ) via channel 5 has already been described. The method complements direct pulsed laser excitation of S in that formation of 3 S*, and therefore of O 2 ( 1 Δ g ), is still efficient in those instances where intersystem crossing (channel 4) is unimportant. In the latter situation a laser-based experiment would require an additional light-absorbing sensitizer which could subsequently transfer triplet energy to high concentrations of S. Such experiments, certainly of a quantitative nature, are usually doomed to failure because of competitive light absorption problems. No such problems exist with pulse radiolysis, and the high available triplet energy of 3 B* (84 kcal mol -1 ) ensures that virtually any solute of interest, in the O 2 ( 1 Δ g ) context, will be efficiently promoted to its triplet state

  11. Crystalline nanostructured Cu doped ZnO thin films grown at room temperature by pulsed laser deposition technique and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Qasem A. [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Rao, Saleem G.; Yamani, Zain H. [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, Mohammed A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2013-04-01

    We report structural and optical properties of Cu doped ZnO (ZnO:Cu) thin films deposited on glass substrate at room temperature by pulsed laser deposition (PLD) method without pre and post annealing contrary to all previous reports. For preparation of (ZnO:Cu) composites pure Zn and Cu targets in special geometrical arrangements were exposed to 248 nm radiations generated by KrF exciter laser. The laser energy was 200 mJ with 10 Hz frequency and 20 ns pulse width. The effect of Cu concentration on crystal structure, morphology, and optical properties were investigated by XRD, FESEM and photoluminescence spectrometer respectively. A systematic shift in ZnO (0 0 2) peak with Cu concentration observed in XRD spectra demonstrated that Cu ion has been incorporated in ZnO lattice. Uniform film with narrow size range grains were observed in FESEM images. The photoluminescence (PL) spectra measured at room temperature revealed a systematic red shift in ZnO emission peak and decrease in the band gap with the increase in Cu concentration. These results entail that PLD technique can be realized to deposit high quality crystalline ZnO and ZnO:Cu thin films without pre and post heat treatment which is normally practiced worldwide for such structures.

  12. Gastrointestinal digital fluoroscopy: Comparison of digital pulsed progressive readout images with 100-mm spot films

    International Nuclear Information System (INIS)

    Steiner, E.; Ferrucci, J.T.; Mueller, P.R.; Hahn, P.F.

    1987-01-01

    New developments in pulsed progressive readout (PPR) techniques allow short, extremely intense pulses of radiation to be used to produce a latent image which is then progressively read off the video camera and placed in 1,024 x 1,024-pixel digital storage. The resulting image is produced by a 10-20-msec pulse, reducing motion artifact to below that achievable with conventional spot film techniques, with a potential for 50%-95% dose reduction. This technique of reducing motion artifact is ideal for digital applications in gastrointestinal radiology. The authors compared 10-mm spot films and PPR digital radiographs of 86 anatomic regions in 43 patients undergoing routine barium enema and cholangiographic examinations. Parameters evaluated included display of normal and pathologic features, image contrast, and resolution. The benefits of the PPR technique include postprocessing to evaluate low contrast region and the potential for significant dose reduction

  13. Experience with pulsed tig-welding at UKAEA Springfields

    International Nuclear Information System (INIS)

    Taylor, A.F.

    1973-01-01

    Welding investigations at Springfields are primarily concerned with development of jointing procedures for nuclear fuel elements, where high standards of integrity are required. Equipment and work which developed from a pulsed TIG-welding technique, set up in 1963 for welding of 0.4 mm thick tubing are described. A computer based control system, which is illustrated, can provide direct digital control of continuous or pulsed TIG or plasma welding. The work has been mainly concerned with stainless and low alloy steel between 0.4 and 4 mm thick. Some applications are mentioned. Tentative conclusions are drawn and it is felt that because of development at Springfields in continuous TIG-welding there is no advantage in using pulsed TIG on materials thinner than about 2 mm. (U.K.)

  14. Improved pulse-height store for A/D conversion

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P [Montedel S.p.a., Laben Division, Via Bassini 15, Milano, Italy; Maranesi, P [Politecnico di Milano (Italy). Centro Studi Nucleari E. Fermi

    1979-11-15

    A new pulse-height store is described. Suitable contrivances improve integral linearity and reduce the differential errors that generally occur at signal amplitudes near the lower threshold. No degradations appear at high rates of input events. The electrical specifications of the pulse-height store are determined through a series of measurements described in the final part of the paper. In order to test the circuit in the most significant way, it has been connected to a fast successive-approximation conversion module which uses the sliding-scale technique for channel width equalisation, thus implementing a complete analog-to-digital converter (ADC) for nuclear spectrometry. The performances of the pulse-height store have been deduced from the behavior of the whole system.

  15. High-energy few-cycle pulse compression through self-channeling in gases

    International Nuclear Information System (INIS)

    Hauri, C.; Merano, M.; Trisorio, A.; Canova, F.; Canova, L.; Lopez-Martens, R.; Ruchon, T.; Engquist, A.; Varju, K.; Gustafsson, E.

    2006-01-01

    Complete test of publication follows. Nonlinear spectral broadening of femtosecond optical pulses by intense propagation in a Kerr medium followed by temporal compression constitutes the Holy Grail for ultrafast science since it allows the generation of intense few-cycle optical transients from longer pulses provided by now commercially available femtosecond lasers. Tremendous progress in high-field and attosecond physics achieved in recent years has triggered the need for efficient pulse compression schemes producing few-cycle pulses beyond the mJ level. We studied a novel pulse compression scheme based on self-channeling in gases, which promises to overcome the energy constraints of hollow-core fiber compression techniques. Fundamentally, self-channeling at high laser powers in gases occurs when the self-focusing effect in the gas is balanced through the dispersion induced by the inhomogeneous refractive index resulting from optically-induced ionization. The high nonlinearity of the ionization process poses great technical challenges when trying to scale this pulse compression scheme to higher energies input energies. Light channels are known to be unstable under small fluctuations of the trapped field that can lead to temporal and spatial beam breakup, usually resulting in the generation of spectrally broad but uncompressible pulses. Here we present experimental results on high-energy pulse compression of self-channeled 40-fs pulses in pressure-gas cells. In the first experiment, performed at the Lund Laser Center in Sweden, we identified a particular self-channeling regime at lower pulse energies (0.8 mJ), in which the ultrashort pulses are generated with negative group delay dispersion (GDD) such that they can be readily compressed down to near 10-fs through simple material dispersion. Pulse compression is efficient (70%) and exhibits exceptional spatial and temporal beam stability. In a second experiment, performed at the LOA-Palaiseau in France, we

  16. New Developments in Spin Labels for Pulsed Dipolar EPR

    Directory of Open Access Journals (Sweden)

    Alistair J. Fielding

    2014-10-01

    Full Text Available Spin labelling is a chemical technique that enables the integration of a molecule containing an unpaired electron into another framework for study. Given the need to understand the structure, dynamics, and conformational changes of biomacromolecules, spin labelling provides a relatively non-intrusive technique and has certain advantages over X-ray crystallography; which requires high quality crystals. The technique relies on the design of binding probes that target a functional group, for example, the thiol group of a cysteine residue within a protein. The unpaired electron is typically supplied through a nitroxide radical and sterically shielded to preserve stability. Pulsed electron paramagnetic resonance (EPR techniques allow small magnetic couplings to be measured (e.g., <50 MHz providing information on single label probes or the dipolar coupling between multiple labels. In particular, distances between spin labels pairs can be derived which has led to many protein/enzymes and nucleotides being studied. Here, we summarise recent examples of spin labels used for pulse EPR that serve to illustrate the contribution of chemistry to advancing discoveries in this field.

  17. A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.

    Science.gov (United States)

    Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D

    2015-01-01

    X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.

  18. Controlling the acoustic streaming by pulsed ultrasounds.

    Science.gov (United States)

    Hoyos, Mauricio; Castro, Angélica

    2013-01-01

    We propose a technique based on pulsed ultrasounds for controlling, reducing to a minimum observable value the acoustic streaming in closed ultrasonic standing wave fluidic resonators. By modifying the number of pulses and the repetition time it is possible to reduce the velocity of the acoustic streaming with respect to the velocity generated by the continuous ultrasound mode of operation. The acoustic streaming is observed at the nodal plane where a suspension of 800nm latex particles was focused by primary radiation force. A mixture of 800nm and 15μm latex particles has been also used for showing that the acoustic streaming is hardly reduced while primary and secondary forces continue to operate. The parameter we call "pulse mode factor" i.e. the time of applied ultrasound divided by the duty cycle, is found to be the adequate parameter that controls the acoustic streaming. We demonstrate that pulsed ultrasound is more efficient for controlling the acoustic streaming than the variation of the amplitude of the standing waves. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A pulsed power hydrodynamics approach to exploring properties of warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Reinovsky, Robert Emil [Los Alamos National Laboratory

    2008-01-01

    Pulsed Power Hydrodynamics, as an application of low-impedance, pulsed power, and high magnetic field technology developed over the last decade to study advanced hydrodynamic problems, instabilities, turbulence, and material properties, can potentially be applied to the study of the behavior and properties of warm dense matter (WDM) as well. Exploration of the properties, such as equation of state and conductivity, of warm dense matter is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to a few times solid density) and modest temperatures ({approx}1-10 eV). Warm dense matter conditions can be achieved by laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers is applying these techniques using petawatt scale laser systems, but the microscopic size scale of the WDM produced in this way limits access to some physics phenomena. Pulsed power hydrodynamics techniques, either through high convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques both offer the prospect for producing warm dense matter in macroscopic quantities. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. Similarly, liner compression of normal density material, perhaps using multiple reflected shocks can provide access to the challenging region above normal density -- again with the requirement of very large amounts of driving energy. In this paper we will provide an introduction to techniques that might be applied to explore this

  20. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  1. Simultaneous multi-element analysis of some edible pulses using neutron activation analysis

    International Nuclear Information System (INIS)

    El-Sweify, F.H.; Metwally, E.; Abdel-Khalik, H.

    2007-01-01

    This paper comprises the application of instrumental neutron activation analysis (INAA) for multi-element determination in some edible pulse samples. These edible pulses are usually daily used in the Egyptian kitchen. These were: anise, cumin, coriander, caraway, black cumin, white kidney bean, lupine, lentil, chickpea, broad bean, peanut, almond, and fenugreek. The pulses have been analyzed as dehulled pulses, in the case of legume and oil pulses with simultaneous analysis of their respective skins. The determined elements were: Ce, Co, Cr, Cs, Eu, Fe, Hf, Rb, Sb, Sc, Sr, Th and Zn. The element content in the dehulled pulses and their respective skins has been compared. Some elements were major or minor elements where others were trace elements. Standard reference materials were used to assure quality control, accuracy and precision of the technique. (author)

  2. Photoacoustic tweezers with a pulsed laser: theory and experiments

    International Nuclear Information System (INIS)

    Zharov, V P; Malinsky, T V; Kurten, R C

    2005-01-01

    A novel noninvasive optical technique for manipulating particles and cells is presented that utilizes laser-generated forces in an absorbing medium surrounding the particles or cells. In this technique, a laser pulse creates near-object acoustic waves, which during interaction with the objects lead to then being moved or trapped. The main optical schemes are considered, and a theory is presented for this new optical tool, namely photoacoustic (PA) tweezer with pulsed laser. The magnitudes of forces acting on polystyrene particles suspended in water were estimated as a function of the particles' properties for circular and ring geometries of the laser beam. Results of our preliminary experiments demonstrated proof that the manipulation, trapping and even rotation of cells is possible with PA tweezers

  3. Fat suppression in MR imaging with binomial pulse sequences

    International Nuclear Information System (INIS)

    Baudovin, C.J.; Bryant, D.J.; Bydder, G.M.; Young, I.R.

    1989-01-01

    This paper reports on a study to develop pulse sequences allowing suppression of fat signal on MR images without eliminating signal from other tissues with short T1. They have developed such a technique involving selective excitation of protons in water, based on a binomial pulse sequence. Imaging is performed at 0.15 T. Careful shimming is performed to maximize separation of fat and water peaks. A spin-echo 1,500/80 sequence is used, employing 90 degrees pulse with transit frequency optimized for water with null excitation of 20 H offset, followed by a section-selective 180 degrees pulse. With use of the binomial sequence for imagining, reduction in fat signal is seen on images of the pelvis and legs of volunteers. Patient studies show dramatic improvement in visualization of prostatic carcinoma compared with standard sequences

  4. Measuring the electric field of few-cycle laser pulses by attosecond cross correlation

    International Nuclear Information System (INIS)

    Bandrauk, Andre D.; Chelkowski, Szczepan; Shon, Nguyen Hong

    2002-01-01

    A new technique for directly measuring the electric field of linearly polarized few-cycle laser pulses is proposed. Based on the solution of the time-dependent Schroedinger equation (TDSE) for an H atom in the combined field of infrared (IR) femtosecond (fs) and ultraviolet (UV) attosecond (as) laser pulses we show that, as a function of the time delay between two pulses, the difference (or equivalently, asymmetry) of photoelectron signals in opposite directions (along the polarization vector of laser pulses) reproduces very well the profile of the electric field (or vector potential) in the IR pulse. Such ionization asymmetry can be used for directly measuring the carrier-envelope phase difference (i.e., the relative phase of the carrier frequency with respect to the pulse envelope) of the IR fs laser pulse

  5. Toeless pulse shaping with a single delay-line network

    International Nuclear Information System (INIS)

    Tauhata, L.; Binns, D.C.

    1976-04-01

    New unipolar delay-line clippers producing negligible cancellation remnant have been developed. Near perfect clipping is achieved using a combination of several types of coaxial cable tranformers working as a phase inverter, a new pulse adder, or an impedance transformer. Only passive elements are used in the bridge network. The construction is simple and the performance is extremely stable and wide in dynamic range and frequency band width. Completely symmetrical bipolar pulses are also easily obtained using this technique

  6. High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals

    Science.gov (United States)

    Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak

    2018-02-01

    Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.

  7. Emission and electron transitions in an atom interacting with an ultrashort electromagnetic pulse

    International Nuclear Information System (INIS)

    Matveev, V.I.

    2003-01-01

    Electron transitions and emission of an atom interacting with a spatially inhomogeneous ultrashort electromagnetic pulse are considered. The excitation and ionization probabilities are obtained as well as the spectra and cross sections of the reemission of such a pulse by atoms. By way of an example, one- and two-electron inelastic processes accompanying the interaction of ultrashort pulses with hydrogen- and helium-like atoms are considered. The developed technique makes it possible to take into account exactly the spatial nonuniformity of the ultrashort pulse field and photon momenta in the course of reemission

  8. Secondary wavelength stabilization of unbalanced Michelson interferometers for the generation of low-jitter pulse trains.

    Science.gov (United States)

    Shalloo, R J; Corner, L

    2016-09-01

    We present a double unbalanced Michelson interferometer producing up to four output pulses from a single input pulse. The interferometer is stabilized with the Hänsch-Couillaud method using an auxiliary low power continuous wave laser injected into the interferometer, allowing the stabilization of the temporal jitter of the output pulses to 0.02 fs. Such stabilized pulse trains would be suitable for driving multi-pulse laser wakefield accelerators, and the technique could be extended to include amplification in the arms of the interferometer.

  9. Pulsed nanocrystalline plasma electrolytic boriding as a novel ...

    Indian Academy of Sciences (India)

    WINTEC

    borided CP-Ti, treated by a relatively new method called pulsed plasma electrolytic boriding. The results ... ratio, high stiffness and strength (Donachie 2000; Lutjer- ing and Albrecht ..... both direct current and a.c. techniques. Although the main ...

  10. Light field driven streak-camera for single-shot measurements of the temporal profile of XUV-pulses from a free-electron laser; Lichtfeld getriebene Streak-Kamera zur Einzelschuss Zeitstrukturmessung der XUV-Pulse eines Freie-Elektronen Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Fruehling, Ulrike

    2009-10-15

    The Free Electron Laser in Hamburg (FLASH) is a source for highly intense ultra short extreme ultraviolet (XUV) light pulses with pulse durations of a few femtoseconds. Due to the stochastic nature of the light generation scheme based on self amplified spontaneous emission (SASE), the duration and temporal profile of the XUV pulses fluctuate from shot to shot. In this thesis, a THz-field driven streak-camera capable of single pulse measurements of the XUV pulse-profile has been realized. In a first XUV-THz pump-probe experiment at FLASH, the XUV-pulses are overlapped in a gas target with synchronized THz-pulses generated by a new THz-undulator. The electromagnetic field of the THz light accelerates photoelectrons produced by the XUV-pulses with the resulting change of the photoelectron momenta depending on the phase of the THz field at the time of ionisation. This technique is intensively used in attosecond metrology where near infrared streaking fields are employed for the temporal characterisation of attosecond XUV-Pulses. Here, it is adapted for the analysis of pulse durations in the few femtosecond range by choosing a hundred times longer far infrared streaking wavelengths. Thus, the gap between conventional streak cameras with typical resolutions of hundreds of femtoseconds and techniques with attosecond resolution is filled. Using the THz-streak camera, the time dependent electric field of the THz-pulses was sampled in great detail while on the other hand the duration and even details of the time structure of the XUV-pulses were characterized. (orig.)

  11. Pulsed diode source of polarized ions

    International Nuclear Information System (INIS)

    Katzenstein, J.; Rostoker, N.

    1983-01-01

    The advantages of polarized nuclei for fusion reactors have recently been described. We propose a pulsed source of polarized nuclei that consists of an ion diode with a polarized anode. With magnetic resonance techniques the nuclear spins of the protons of solid NH 3 can be made about 90 to 95% polarized. This material would be used for the anode. The diode would be pulsed with a voltage of 1-200K-volts for 1-2 μ sec. Flashover of the anode produces a surface plasma from which the polarized protons would be extracted to form a beam. Depolarization could be detected by comparing reaction cross sections and/or distribution of reaction products with similar results for unpolarized beams

  12. [Determination of calcium, magnesium and potassium in nurtured cell by AAS with quick-pulsed nebulization technique and NaOH base digestion].

    Science.gov (United States)

    Shi, C; Gao, S; Gun, S

    1997-06-01

    The sample is digested with 6% NaOH solution and an amount of 50 microl is used for protein content analysis by the method of Comassie Brilliant Blue G250, the residual is diluted with equal 0.4% Lathanurm-EDTA solution. Its Calcium magensium and potassium content are determined by AAS. With quick-pulsed nebulization technique. When a self-made micro-sampling device is used, 20microl of sample volume is needed and it is only the 1/10 approximately 1/20 of the sample volume required for conventional determination. Sensitivity, precision and rate of recovery agree well with those using regular wet ashing method.

  13. Pulsed Electric Field treatment of packaged food

    NARCIS (Netherlands)

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal

  14. Acoustic emission linear pulse holography

    International Nuclear Information System (INIS)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-01-01

    This paper describes the emission linear pulse holography which produces a chronological linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. A thirty two point sampling array is used to construct phase-only linear holograms of simulated acoustic emission sources on large metal plates. The concept behind the AE linear pulse holography is illustrated, and a block diagram of a data acquisition system to implement the concept is given. Array element spacing, synthetic frequency criteria, and lateral depth resolution are specified. A reference timing transducer positioned between the array and the inspection zone and which inititates the time-of-flight measurements is described. The results graphically illustrate the technique using a one-dimensional FFT computer algorithm (ie. linear backward wave) for an AE image reconstruction

  15. Field-swept pulsed electron paramagnetic resonance of Cr3+-doped ZBLAN fluoride glass

    International Nuclear Information System (INIS)

    Drew, S.C.; Pilbrow, J.R.; Newman, P.J.; MacFarlane, D.R.

    2001-01-01

    Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr 3+ are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr 3+ -doped ZBLAN reveals that much of the broad resonance extending from g eff =5.1 to g eff =1.97, characteristic of X-band continuous wave EPR of Cr 3+ in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra. (author)

  16. Determination of alpha-naphthol by an oscillating chemical reaction using the analyte pulse perturbation technique

    International Nuclear Information System (INIS)

    Yang Wu; Sun Kanjun; Lv Weilian; Bo Lili; He Xiaoyan; Suo Nan; Gao Jinzhang

    2005-01-01

    An analytical method for the determination of alpha-naphthol (α-NP) is proposed by the sequential perturbation caused by different amounts of alpha-naphthol on the oscillating chemical system involving the Cu(II)-catalyzed oscillating reaction between hydrogen peroxide and sodium thiocyanate in an alkaline medium with the aid of continuous-flow stirred tank reactor (CSTR). The method relies on the linear relationship between the changes in the oscillation amplitude of the chemical system and the concentration of alpha-naphthol. The use of the analyte pulse perturbation technique permits sequential determinations in the same oscillating system owing to the expeditiousness with which the steady state is regained after each perturbation. The calibration curve obeys a linear equation very well when the concentration of alpha-naphthol is over the range 0.034-530 umol/L (r = 0.9991). Influences of temperature, injection points, flow rate and reaction variables on the oscillating system are investigated in detail and the possible mechanism of action of alpha-naphthol to the chemical oscillating system is also discussed. The method has been successfully used for the determination of α-naphthol in carbaryl hydrolysates

  17. Copper bromide vapour laser with an output pulse duration of up to 320 ns

    International Nuclear Information System (INIS)

    Gubarev, F A; Fedorov, K V; Evtushenko, G S; Fedorov, V F; Shiyanov, D V

    2016-01-01

    We report the development of a copper bromide vapour laser with an output pulse duration of up to 320 ns. To lengthen the pulse, the discharge current was limited using a compound switch comprising a pulsed hydrogen thyratron and a tacitron. This technique permits limiting the excitation of the working levels at the initial stage of the discharge development to lengthen the inversion lifetime. The longest duration of a laser pulse was reached in tubes 25 and 50 mm in diameter for a pulse repetition rate of 2 – 4 kHz. (lasers and laser beams)

  18. Quantitative evaluation of photoplethysmographic artifact reduction for pulse oximetry

    Science.gov (United States)

    Hayes, Matthew J.; Smith, Peter R.

    1999-01-01

    Motion artefact corruption of pulse oximeter output, causing both measurement inaccuracies and false alarm conditions, is a primary restriction in the current clinical practice and future applications of this useful technique. Artefact reduction in photoplethysmography (PPG), and therefore by application in pulse oximetry, is demonstrated using a novel non-linear methodology recently proposed by the authors. The significance of these processed PPG signals for pulse oximetry measurement is discussed, with particular attention to the normalization inherent in the artefact reduction process. Quantitative experimental investigation of the performance of PPG artefact reduction is then utilized to evaluate this technology for application to pulse oximetry. While the successfully demonstrated reduction of severe artefacts may widen the applicability of all PPG technologies and decrease the occurrence of pulse oximeter false alarms, the observed reduction of slight artefacts suggests that many such effects may go unnoticed in clinical practice. The signal processing and output averaging used in most commercial oximeters can incorporate these artefact errors into the output, while masking the true PPG signal corruption. It is therefore suggested that PPG artefact reduction should be incorporated into conventional pulse oximetry measurement, even in the absence of end-user artefact problems.

  19. Thermophysical properties by a pulse-heating reflectometric technique: Niobium, 1100 to 2700 K

    International Nuclear Information System (INIS)

    Righini, F.; Spisiak, J.; Bussolino, G.C.; Gualano, M.

    1999-01-01

    Pulse heating experiments were performed on niobium strips, taking the specimens from room temperature to the melting point is less than one second. The normal spectral emissivity of the strips was measured by integrating sphere reflectometry, and, simultaneously, experimental data (radiance temperature, current, voltage drop) for thermophysical properties were collected with submillisecond time resolution. The normal spectral emissivity results were used to compute the true temperature of the niobium strips; the heat capacity, electrical resistivity, and hemispherical total emissivity were evaluated in the temperature range 1,100 to 2,700 K. The results are compared with literature data obtained in pulse-heating experiments. It is concluded that combined measurements of normal spectral emissivity and of thermophysical properties on strip specimens provide results of the same quality as obtained using tubular specimens with a blackbody. The thermophysical property results on niobium also validate the normal spectral emissivity measurements by integrating sphere reflectometry

  20. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to the signal initiating a process in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe schemes for achieving accurate timing of femtosecond x-ray synchrotron radiation pulses relative to a pump laser, where x-rays pulses of <100 fs duration are generated from the proposed LUX source based on a recirculating superconducting linac. We present a description of the timing signal generation and distribution systems to minimize timing jitter of the x-rays relative to the experimental lasers

  1. Research and simulation of intense pulsed beam transfer in electrostatic accelerate tube

    International Nuclear Information System (INIS)

    Li Chaolong; Shi Haiquan; Lu Jianqin

    2012-01-01

    To study intense pulsed beam transfer in electrostatic accelerate tube, the matrix method was applied to analyze the transport matrixes in electrostatic accelerate tube of non-intense pulsed beam and intense pulsed beam, and a computer code was written for the intense pulsed beam transporting in electrostatic accelerate tube. Optimization techniques were used to attain the given optical conditions and iteration procedures were adopted to compute intense pulsed beam for obtaining self-consistent solutions in this computer code. The calculations were carried out by using ACCT, TRACE-3D and TRANSPORT for different beam currents, respectively. The simulation results show that improvement of the accelerating voltage ratio can enhance focusing power of electrostatic accelerate tube, reduce beam loss and increase the transferring efficiency. (authors)

  2. Effect of parallel magnetic field on repetitively unipolar nanosecond pulsed dielectric barrier discharge under different pulse repetition frequencies

    Science.gov (United States)

    Liu, Yidi; Yan, Huijie; Guo, Hongfei; Fan, Zhihui; Wang, Yuying; Wu, Yun; Ren, Chunsheng

    2018-03-01

    A magnetic field, with the direction parallel to the electric field, is applied to the repetitively unipolar positive nanosecond pulsed dielectric barrier discharge. The effect of the parallel magnetic field on the plasma generated between two parallel-plate electrodes in quiescent air is experimentally studied under different pulse repetition frequencies (PRFs). It is indicated that only the current pulse in the rising front of the voltage pulse occurs, and the value of the current is increased by the parallel magnetic field under different PRFs. The discharge uniformity is improved with the decrease in PRF, and this phenomenon is also observed in the discharge with the parallel magnetic field. By using the line-ratio technique of optical emission spectra, it is found that the average electron density and electron temperature under the considered PRFs are both increased when the parallel magnetic field is applied. The incremental degree of average electron density is basically the same under the considered PRFs, while the incremental degree of electron temperature under the higher-PRFs is larger than that under the lower-PRFs. All the above phenomena are explained by the effect of parallel magnetic field on diffusion and dissipation of electrons.

  3. Quasiperiodic Raman technique for ultrashort pulse generation

    International Nuclear Information System (INIS)

    Yavuz, D.D.; Walker, D.R.; Shverdin, M.Y.; Yin, G.Y.; Harris, S.E.

    2003-01-01

    We report the experimental demonstration of a new Raman technique that produces 200 sidebands, ranging in wavelength from 3 μm to 195 nm. By studying multiphoton ionization of nitric oxide (NO) molecules, we show mutual phase coherence among 15 visible sidebands covering 0.63 octaves of bandwidth

  4. Characteristics and Applications of Spatiotemporally Focused Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Chenrui Jing

    2016-12-01

    Full Text Available Simultaneous spatial and temporal focusing (SSTF of femtosecond laser pulses gives rise to strong suppression of nonlinear self-focusing during the propagation of the femtosecond laser beam. In this paper, we begin with an introduction of the principle of SSTF, followed by a review of our recent experimental results on the characterization and application of the spatiotemporally focused pulses for femtosecond laser micromachining. Finally, we summarize all of the results and give a future perspective of this technique.

  5. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Nersisyan, G.; Hanton, F.; Naughton, K.; Lewis, C. L. S.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Brauckmann, S.; Giesecke, A. L.; Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany)

    2016-05-15

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  6. Precise ion optical description of strip-line pulsed magnetic lenses

    International Nuclear Information System (INIS)

    Varentsov, D.; Spiller, P.; Eickhoff, H.; Hoffmann, D.H.H.

    2002-01-01

    A specific computer code has been developed to investigate ion optical properties of a new generation of pulsed strip-line high current magnets. The code is based on a modern 'Differential Algebra' computational technique and it is able to calculate transfer matrices of pulsed strip-line magnets up to arbitrary order. The realistic three-dimensional distribution of the magnetic field in pulsed lenses as well as all the fringing field effects are taken into account in the simulations. We have demonstrated, that for precise description of such magnets one cannot use the existing ion optical codes where ideal multipole field distributions and fringing fields, typical for conventional iron-dominated magnets are assumed. The transfer matrix elements of pulsed strip-line lenses differ significantly from those of conventional magnets, especially in higher orders

  7. Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils

    Energy Technology Data Exchange (ETDEWEB)

    Nicolodelli, Gustavo, E-mail: gunicolodelli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Senesi, Giorgio Saverio, E-mail: giorgio.senesi@imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, CNR, Bari, 70126 Bari (Italy); Romano, Renan Arnon, E-mail: renan.romano@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Oliveira Perazzoli, Ivan Luiz de, E-mail: ivanperazzoli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Milori, Débora Marcondes Bastos Pereira, E-mail: debora.milori@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil)

    2015-09-01

    Laser-induced breakdown spectroscopy (LIBS) is a well-known consolidated analytical technique employed successfully for the qualitative and quantitative analysis of solid, liquid, gaseous and aerosol samples of very different nature and origin. Several techniques, such as dual-pulse excitation setup, have been used in order to improve LIBS's sensitivity. The purpose of this paper was to optimize the key parameters as excitation wavelength, delay time and interpulse, that influence the double pulse (DP) LIBS technique in the collinear beam geometry when applied to the analysis at atmospheric air pressure of soil samples of different origin and texture from extreme regions of Brazil. Additionally, a comparative study between conventional single pulse (SP) LIBS and DP LIBS was performed. An optimization of DP LIBS system, choosing the correct delay time between the two pulses, was performed allowing its use for different soil types and the use of different emission lines. In general, the collinear DP LIBS system improved the analytical performances of the technique by enhancing the intensity of emission lines of some elements up to about 5 times, when compared with conventional SP-LIBS, and reduced the continuum emission. Further, the IR laser provided the best performance in re-heating the plasma. - Highlights: • The correct choice of the delay time between the two pulses is crucial for the DP system. • An optimization of DP LIBS system was performed allowing its use for different soil and the use of different emission lines. • The DP LIBS system improved the analytical performances of the technique up to about 5 times, when compared with SP LIBS. • The IR laser provided the best performance in re-heating the plasma.

  8. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica Catalunya, Terrassa 08222 (Spain); Sola, I. [Grupo de Investigación en Óptica Extrema (GIOE), Departamento de Física Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Krolikowski, W. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Science Program, Texas A and M University at Qatar, Doha (Qatar); Sheng, Y. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  9. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    International Nuclear Information System (INIS)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Krolikowski, W.; Sheng, Y.

    2015-01-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system

  10. Chirped-pulse manipulated carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs

    International Nuclear Information System (INIS)

    Lee, Chao-Kuei; Lin, Yuan-Yao; Lin, Sung-Hui; Lin, Gong-Ru; Pan, Ci-Ling

    2014-01-01

    Chirped pulse controlled carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs are investigated by degenerate pump-probe technique. Varying the chirped condition of excited pulse from negative to positive increases the carrier relaxation time so as to modify the dispersion and reshape current pulse in time domain. The spectral dependence of carrier dynamics is analytically derived and explained by Shockley-Read Hall model. This observation enables the new feasibility of controlling carrier dynamics in ultrafast optical devices via the chirped pulse excitations

  11. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  12. The Measurement of cloud velocity using the pulsed laser and image tracking technique

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seong-Ouk; Baik, Seung-Hoon; Park, Seung-Kyu; Park, Nak-Gyu; Kim, Dong-lyul; Ahn, Yong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The height of the clouds is also important for the three dimensional radiative interaction of aerosols and clouds, since the radiative effects vary strongly depending whether the cloud is above, below or even embedded in an aerosol layer. Clouds play an important role in climate change, in the prediction of local weather, and also in aviation safety when instrument assisted flying is unavailable. Presently, various ground-based instruments used for the measurements of the cloud base height or velocity. Lidar techniques are powerful and have many applications in climate studies, including the clouds' temperature measurement, the aerosol particle properties, etc. Otherwise, it is very circumscribed in cloud velocity measurements In this paper, we propose a new method to measure the cloud velocity. In this paper, we presented a method for the measurement of the cloud altitude and velocity using lidar's range detection and the tracking system. For the lidar system, we used an injection-seeded pulsed Nd:YAG laser as the transmitter to measure the distance to the target clouds. We used the DIC system to track the cloud image and calculate the actual displacement per unit time. The configured lidar system acquired the lidar signal of clouds at a distance of about 4 km. The developed fast correlation algorithm of the tracking, which is used to track the fast moving cloud relatively, was efficient for measuring the cloud velocity in real time. The measurement values had a linear distribution.

  13. Pulsed glow discharge mass spectrometry for molecular depth profiling of polymers

    International Nuclear Information System (INIS)

    Lobo, L.; Pereiro, R.; Sanz-Medel, A.; Bordel, N.; Pisonero, J.; Licciardello, A.; Tuccitto, N.; Tempez, A.; Chapon, P.

    2009-01-01

    Full text: Nowadays thin films of polymeric materials involve a wide range of industrial applications, so techniques capable of providing in-depth profile information are required. Most of the techniques available for this purpose are based on the use of energetic particle beams which interact with polymers producing undesirable physicochemical modifications. Radiofrequency pulsed glow discharge (rf-pulsed-GD) coupled to time-of-flight mass spectrometry (TOFMS) could afford the possibility of acquiring both elemental and molecular information creating minimal damage to surfaces and thereby obtaining depth profiles. This work will evaluate rf-GDs coupled to an orthogonal TOFMS for direct analysis of polymers. (author)

  14. Air pulse deformation measurement: a preliminary method for noninvasive vocal fold pliability analysis.

    Science.gov (United States)

    Larsson, Hans; Lindestad, P Å; Hertegård, S

    2011-01-01

    A new method, air pulse pliability measurement, is presented, with which the pliability and elasticity of the vocal folds was measured in vitro and in vivo using air pulses. The size of the mucosal movements induced by air pulse stimulation was measured with a laser-based technique. The air pulses fed via a 2-mm tubing, introduced through the working channel of a flexible endoscope. Both in vitro and in vivo tests were performed. Nine normal, vocally healthy subjects were examined by air pulse stimulations of the vocal folds, of the skin (cheek and dorsum of the hand) and of the inside of the lips. The in vitro tests showed a coefficient of variation of 5% within a range of 1-5 mm from the probe to the surface. The elasticity data showed no differences between vocal folds, lips or cheek. The hand data showed a significantly higher stiffness as compared to the other 3 measuring points (p measuring points, but in ideal conditions on skin it was 9%. The results show that the technique allows automatic, quantitative, noninvasive vocal fold pliability measurements on awake subjects. Copyright © 2010 S. Karger AG, Basel.

  15. The LNCMP: a pulsed-field user-facility in Toulouse

    International Nuclear Information System (INIS)

    2004-01-01

    Since summer 2002 the 'Laboratoire National des Champs Magnetiques Pulses' is operated as an international user facility providing access to pulsed magnetic fields up to 76 T. The laboratory disposes of 10 magnet stations equipped with long-pulse magnets operating in the 35-60 T range. A short-pulse system reaching 76 T was recently installed in the framework of the European ARMS-project. The experimental infrastructure includes various low-temperature systems ranging from ordinary flow-type cryostats to dilution refrigerators reaching 50 mK. A system permitting transport measurements under hydrostatic pressure and at low temperatures has recently been successfully tested. Experimental techniques include magnetization, transport, luminescence, IR-spectroscopy and the magneto-optical Kerr-effect. The LNCMP pursues an extensive in-house research program focusing on technological (reinforced wire, coil design, coil aging) as well as scientific aspects (magnetism, strongly correlated fermions, disordered systems and others)

  16. Implementing quantum logic gates with gradient ascent pulse engineering: principles and practicalities.

    Science.gov (United States)

    Rowland, Benjamin; Jones, Jonathan A

    2012-10-13

    We briefly describe the use of gradient ascent pulse engineering (GRAPE) pulses to implement quantum logic gates in nuclear magnetic resonance quantum computers, and discuss a range of simple extensions to the core technique. We then consider a range of difficulties that can arise in practical implementations of GRAPE sequences, reflecting non-idealities in the experimental systems used.

  17. Pulsed electron beam generation with fast repetitive double pulse system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Surender Kumar; Deb, Pankaj; Shyam, Anurag, E-mail: surender80@gmail.com [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Visakhapatnam (India); Sharma, Archana [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Longer duration high voltage pulse (∼ 100 kV, 260 ns) is generated and reported using helical pulse forming line in compact geometry. The transmission line characteristics of the helical pulse forming line are also used to develop fast repetition double pulse system with very short inter pulse interval. It overcomes the limitations caused due to circuit parameters, power supplies and load characteristics for fast repetitive high voltage pulse generation. The high voltage double pulse of 100 kV, 100 ns with an inter pulse repetition interval of 30 ns is applied across the vacuum field emission diode for pulsed electron beam generation. The electron beam is generated from cathode material by application of negative high voltage (> 100 kV) across the diode by explosive electron emission process. The vacuum field emission diode is made of 40 mm diameter graphite cathode and SS mesh anode. The anode cathode gap was 6 mm and the drift tube diameter was 10 cm. The initial experimental results of pulsed electron beam generation with fast repetitive double pulse system are reported and discussed. (author)

  18. Electrical response of relaxing dielectrics compressed by arbitrary stress pulses

    International Nuclear Information System (INIS)

    Lysne, P.C.

    1983-01-01

    The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators

  19. Pulsed system for obtaining microdosimetric data with high intensity beams

    International Nuclear Information System (INIS)

    Zaider, M.; Dicello, J.F.; Hiebert, R.D.

    1977-01-01

    The use of heavy particle accelerators for radiation therapy requires high intensity beams in order to produce useful dose rates. The 800-MeV proton beam at LAMPF passes through different production targets to generate secondary pion beams. Conventional microdosimetric techniques are not applicable under these conditions because exceedingly high count rates result in detector damage, gas breakdown, and saturation effects in the electronics. We describe a new microdosimetric system developed at the Pion Biomedical Channel of LAMPF. The accelerator provides a variable low intensity pulse once every ten high intensity macropulses. The voltage on the detector is pulsed in coincidence with the low intensity pulse so that we were able to operate the detector under optimum data-taking conditions. A low noise two-stage preamplifier was built in connection with the pulsed mode operation. A comparison is made between data obtained in pulsed (high intensity beam) and unpulsed (low intensity beam) modes. The spectra obtained by the two methods agree within the experimental uncertainties

  20. Frequency chirp of harmonic and attosecond pulses

    International Nuclear Information System (INIS)

    Varju, K.; Johansson, P; L'Huillier, A.L.; Mairesse, Y.; Salieres, P.

    2005-01-01

    Full text: We have explored in detail the first- and second-order variations of the atomic phase as a function of the laser intensity and harmonic order. This unravels the similitudes and differences existing between the chirp of individual harmonic pulses and the chirp of the attosecond pulses. We show that the two techniques XFROG and RABITT used to characterize the two chirps (respectively) converge to give the same information, namely the values of the mixed partial derivatives of the atomic phase. This underlines the common physical origin of all these phenomena and provides a unified frame for their description and understanding. Ref. 1 (author)

  1. Pulse discrimination of background and gamma-ray source by digital pulse shape discrimination in a BF3 detector

    International Nuclear Information System (INIS)

    Kim, Jinhyung; Kim, J. H.; Choi, H. D.

    2014-01-01

    As a representative method of non-destructive assay, accurate neutron measurement is difficult due to large background radiation such as γ-ray, secondary radiation, spurious pulse, etc. In a BF 3 detector, the process of signal generation is different between neutron and other radiations. As the development of detection technique, all of signal data can be digitized by digital measurement method. In the previous study, Applied Nuclear Physics Group in Seoul National University has developed digital Pulse Shape Discrimination (PSD) method using digital oscilloscope. In this study, optimization of parameters for pulse discrimination is discussed and γ-ray region is determined by measuring 60 Co source. The background signal of BF 3 detector is discriminated by digital PSD system. Parameters for PSD are optimized through FOM calculation. And the γ-ray region is determined by measuring 60 Co source. In the future, the performance of developed system will be tested in low and high intensity neutron field

  2. Study of two-zone reactor system using a pulsed neutron technique

    Energy Technology Data Exchange (ETDEWEB)

    Shishin, B P; Platovskikh, Yu A; Didejkin, T S

    1977-05-01

    Theoretical and experimental investigations of a neutron flux time dependence after a sport fast neutron pulse in a reactor core - neutron reflector multiplying system have been conducted. A correlation between eigenvalues governing neutron flux decrease at t..-->..infinity for the two-zone system and eigenvalues for each zone has been established in terms of the one-group diffusion approximation. Experiments have been performed in an experimental subcritical assembly comprising a cylindrical uranium core surrounded by a radial water reflector with different boric acid concentrations.

  3. Electromagnetic excitation of a generic cavity with a variable e-beam pulse

    International Nuclear Information System (INIS)

    Fleetwood, R.; Kerris, K.; Merkel, G.; Roberts, H.; Smith, M.

    1987-01-01

    Relativistic electron-beam nose-erosion techniques have been employed to produce an electron beam with variable pulse shape and bremsstrahlung capability (''dial a pulse''). This capability has been employed to excite a large number of electromagnetic fields inside a canonical cavity. Electron-beam and bremsstrahlung pulse-shape parameters have been varied to produce changes in the electromagnetic cavity response. For example, generic cavity test parameters such as displacement currents or conduction currents can be emphasized or de-emphasized. A theoretical interpretation of these electromagnetic excitations is presented

  4. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  5. High-power pulsed light ion beams for applications in fusion- and matter research

    International Nuclear Information System (INIS)

    Bluhm, H.; Karow, H.U.; Rusch, D.; Zieher, K.W.

    1982-01-01

    The foundations of ultrahigh-power pulse techniques are described together with the two pulse generators KALIF (Karlsruhe Light lion Facility) and Pollux of the INR. The physical principles and diagnostics of ion beam production are discussed as well as possible applications in the field of fusion research. (orig./HT) [de

  6. Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves

    NARCIS (Netherlands)

    M.H.N. van Velzen (M. H N); A.J. Loeve (Arjo J.); S.P. Niehof (Sjoerd); E.G. Mik (Egbert)

    2017-01-01

    textabstractPhotoplethysmography (PPG) is a widely available non-invasive optical technique to visualize pressure pulse waves (PWs). Pulse transit time (PTT) is a physiological parameter that is often derived from calculations on ECG and PPG signals and is based on tightly defined characteristics of

  7. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  8. Time-dependence and averaging techniques in atomic photoionization calculations

    International Nuclear Information System (INIS)

    Scheibner, K.F.

    1984-01-01

    Two distinct problems in the development and application of averaging techniques to photoionization calculations are considered. The first part of the thesis is concerned with the specific problem of near-resonant three-photon ionization in hydrogen, a process for which no cross section exists. Effects of the inclusion of the laser pulse characteristics (both temporal and spatial) on the dynamics of the ionization probability and of the metastable state probability are examined. It is found, for example, that the ionization probability can decrease with increasing field intensity. The temporal profile of the laser pulse is found to affect the dynamics very little, whereas the spatial character of the pulse can affect the results drastically. In the second part of the thesis techniques are developed for calculating averaged cross sections directly without first calculating a detailed cross section. Techniques are developed whereby the detailed cross section never has to be calculated as an intermediate step, but rather, the averaged cross section is calculated directly. A variation of the moment technique and a new method based on the stabilization technique are applied successfully to atomic hydrogen and helium

  9. Mapping the spectral phase of isolated attosecond pulses by extreme-ultraviolet emission spectrum.

    Science.gov (United States)

    Liu, Candong; Zeng, Zhinan; Li, Ruxin; Xu, Zhizhan; Nisoli, Mauro

    2015-04-20

    An all-optical method is proposed for the measurement of the spectral phase of isolated attosecond pulses. The technique is based on the generation of extreme-ultraviolet (XUV) radiation in a gas by the combination of an attosecond pulse and a strong infrared (IR) pulse with controlled electric field. By using a full quantum simulation, we demonstrate that, for particular temporal delays between the two pulses, the IR field can drive back to the parent ions the photoelectrons generated by the attosecond pulse, thus leading to the generation of XUV photons. It is found that the generated XUV spectrum is notably sensitive to the chirp of the attosecond pulse, which can then be reliably retrieved. A classical quantum-path analysis is further used to quantitatively explain the main features exhibited in the XUV emission.

  10. Characterization of irradiated fuel rods using pulsed eddy current techniques

    International Nuclear Information System (INIS)

    Martin, M.R.; Francis, W.C.

    1975-11-01

    A number of irradiated fuel rods and unfueled zircaloy cladding tubes (''water tubes'') were obtained from the Saxton reactor through arrangements with the Westinghouse Electric Corporation for use in subsequent irradiation effects and fuel behavior programs. A comprehensive nondestructive and corroborative destructive characterization program was undertaken on these fuel rods and tubes by ANC to provide baseline data on their characteristics prior to further testing and for comparison against post-post data. This report deals primarily with one portion of the NDT program performed remotely in the hot cells. The portion of interest in this paper is the pulsed eddy current inspection used in the nondestructive phase of the work. 6 references

  11. Updating the induction module from single-pulse to double-pulses

    International Nuclear Information System (INIS)

    Huang Ziping; Wang Huacen; Deng Jianjun

    2002-01-01

    A double-pulse Linear Induced Accelerator (LIA) module is reconstructed based on a usual simple-pulse LIA module. By changing the length of one of the cables between the inductive cell and the Blumlein pulse forming line, two induction pulses with 90 ns FWHM and 150 kV pulse voltage are generated by the ferrite cores inductive cell. The interval time of the pulses is adjustable by changing the lengths of the cable

  12. Evaluation of bipolar pulse generator for high-purity pulsed ion beam

    International Nuclear Information System (INIS)

    Ito, H.; Kitamura, I.; Masugata, K.

    2008-01-01

    A new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the experimental results of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PEL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time. At present the bipolar pulse generator is installed in the B y type magnetically insulated ion diode and we carry out the experiment on the production of an intense pulsed ion beam by the bipolar pulse accelerator. (author)

  13. Pulsed Laser Techniques in Laser Heated Diamond Anvil Cells for Studying Methane (CH4) and Water (H2O) at Extreme Pressures and Temperatures

    Science.gov (United States)

    Holtgrewe, N.; Lobanov, S.; Mahmood, M.; Goncharov, A. F.

    2017-12-01

    Scientific advancement in the fields of high pressure material synthesis and research on planetary interiors rely heavily on a variety of techniques for probing such extreme conditions, such as laser-heating diamond anvil cells (LHDACs) (Goncharov et al., J. Synch. Rad., 2009) and shock compression (Nellis et al., J. Chem. Phys., 2001/ Armstrong et al., Appl. Phys. Lett., 2008). However, certain chemical properties can create complications in the detection of such extreme states, for example the instability of energetic materials, and detection of these dynamic chemical states by time-resolved methods has proven to be valuable in exploring the kinetics of these materials. Current efforts at the Linac Coherent Light Source (LCLS) for exploring the transitions between different phases of condensed matter (Armstrong et. al., APS Mar. Meeting, 2017/ Radousky et al., APS Mar. Meeting, 2017), and X-ray synchrotron pulsed heating are useful techniques but require large facilities and are not always accessible. Instead, optical properties of materials can serve as a window into the state or structure of species through electronic absorption properties. Pump-probe spectroscopy can be used to detect these electronic properties in time and allow the user to develop a picture of complex dynamic chemical events. Here we present data acquired up to 1.5 megabar (Mbar) pressures and temperatures >3000 K using pulsed transmission/reflective spectroscopy combined with a pulsed LHDAC and time-resolved detection (streak camera) (McWilliams et. al., PNAS, 2015/ McWilliams et al., PRL, 2016). Time-resolved optical properties will be presented on methane (CH4) and water (H2O) at P-T conditions found in icy bodies such as Uranus and Neptune (Lee and Scandolo, Nature Comm., 2011). Our results show that the interiors of Uranus and Neptune are optically opaque at P-T conditions corresponding to the mantles of these icy bodies, which has implications for the unusual magnetic fields of these

  14. Flight test techniques for validating simulated nuclear electromagnetic pulse aircraft responses

    Science.gov (United States)

    Winebarger, R. M.; Neely, W. R., Jr.

    1984-01-01

    An attempt has been made to determine the effects of nuclear EM pulses (NEMPs) on aircraft systems, using a highly instrumented NASA F-106B to document the simulated NEMP environment at the Kirtland Air Force Base's Vertically Polarized Dipole test facility. Several test positions were selected so that aircraft orientation relative to the test facility would be the same in flight as when on the stationary dielectric stand, in order to validate the dielectric stand's use in flight configuration simulations. Attention is given to the flight test portions of the documentation program.

  15. Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves

    NARCIS (Netherlands)

    van Velzen, M.H.N.; Loeve, A.J.; Niehof, S.P.; Mik, E.G.

    2017-01-01

    Photoplethysmography (PPG) is a widely available non-invasive optical technique to visualize pressure pulse waves (PWs). Pulse transit time (PTT) is a physiological parameter that is often derived from calculations on ECG and PPG signals and is based on tightly defined characteristics of the PW

  16. Estimate of pulse-sequence data acquisition system for multi-dimensional measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Yasunori; Sakae, Takeji; Nohtomi, Akihiro; Matoba, Masaru [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Matsumoto, Yuzuru

    1996-07-01

    A pulse-sequence data acquisition system has been newly designed and estimated for the measurement of one- or multi-dimensional pulse train coming from radiation detectors. In this system, in order to realize the pulse-sequence data acquisition, the arrival time of each pulse is recorded to a memory of a personal computer (PC). For the multi-dimensional data acquisition with several input channels, each arrival-time data is tagged with a `flag` which indicates the input channel of arriving pulse. Counting losses due to the existence of processing time of the PC are expected to be reduced by using a First-In-First-Out (FIFO) memory unit. In order to verify this system, a computer simulation was performed, Various sets of random pulse trains with different mean pulse rate (1-600 kcps) were generated by using Monte Carlo simulation technique. Those pulse trains were dealt with another code which simulates the newly-designed data acquisition system including a FIFO memory unit; the memory size was assumed to be 0-100 words. And the recorded pulse trains on the PC with the various FIFO memory sizes have been observed. From the result of the simulation, it appears that the system with 3 words FIFO memory unit works successfully up to the pulse rate of 10 kcps without any severe counting losses. (author)

  17. Estimate of pulse-sequence data acquisition system for multi-dimensional measurement

    International Nuclear Information System (INIS)

    Kitamura, Yasunori; Sakae, Takeji; Nohtomi, Akihiro; Matoba, Masaru; Matsumoto, Yuzuru.

    1996-01-01

    A pulse-sequence data acquisition system has been newly designed and estimated for the measurement of one- or multi-dimensional pulse train coming from radiation detectors. In this system, in order to realize the pulse-sequence data acquisition, the arrival time of each pulse is recorded to a memory of a personal computer (PC). For the multi-dimensional data acquisition with several input channels, each arrival-time data is tagged with a 'flag' which indicates the input channel of arriving pulse. Counting losses due to the existence of processing time of the PC are expected to be reduced by using a First-In-First-Out (FIFO) memory unit. In order to verify this system, a computer simulation was performed, Various sets of random pulse trains with different mean pulse rate (1-600 kcps) were generated by using Monte Carlo simulation technique. Those pulse trains were dealt with another code which simulates the newly-designed data acquisition system including a FIFO memory unit; the memory size was assumed to be 0-100 words. And the recorded pulse trains on the PC with the various FIFO memory sizes have been observed. From the result of the simulation, it appears that the system with 3 words FIFO memory unit works successfully up to the pulse rate of 10 kcps without any severe counting losses. (author)

  18. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  19. Low-induction pulse current generator with a volume bus arrangement

    International Nuclear Information System (INIS)

    Bocharov, Yu.N.; Krivosheev, S.I.; Lapin, N.G.; Shneerson, G.A.

    1993-01-01

    Pulse current generator (PC6) with 38 kj stored energy designed for up to 50 kV charging voltage used to obtain magnetic fields within megagauss range, is described. Space (volume) bus arrangement of its modules is used to reduce eigen inductance of PC6. Current is commutated by solid-body spark gaps. Under 3uH inductive load PC6 provides for formation of up to 2.25 MA current pulse with 3.3x10 12 A/s pulse rise time. Technique to determine low inductances as applied to PC6 elements is described. The described PC6 is used for experiments on generation of super-strong pulse magnetic fields in single-loop solenoid with volume occupied by magnetic field, 5-7 mm. Magnetic field with up to 350 T induction amplitude is obtained in these experiments

  20. Laser-pulsed Plasma Chemistry: Laser-initiated Plasma Oxidation Of Niobium

    OpenAIRE

    Marks R.F.; Pollak R.A.; Avouris Ph.; Lin C.T.; Thefaine Y.J.

    1983-01-01

    We report the first observation of the chemical modification of a solid surface exposed to an ambient gas plasma initiated by the interaction of laser radiation with the same surface. A new technique, which we designate laser-pulsed plasma chemistry (LPPC), is proposed for activating heterogeneous chemical reactions at solid surfaces in a gaseous ambient by means of a plasma initiated by laser radiation. Results for niobium metal in one atmosphere oxygen demonstrate single-pulse, self-limitin...

  1. Pulse radiolysis study on aqueous solution of nicotine

    International Nuclear Information System (INIS)

    Wang Shilong; Mei Wang; Ni Yaming; Yao Side; Wang Wenfeng

    2004-01-01

    Nicotine has been studied for the first time by pulse radiolysis techniques. It has been found that hydrated electrons, hydrogen radicals and hydroxyl radicals can react with nicotine to produce anion radicals and neutral radicals, respectively, and the related rate constants have been determined. (authors)

  2. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  3. Pulse Generator

    Science.gov (United States)

    Greer, Lawrence (Inventor)

    2017-01-01

    An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.

  4. Amorphous-polycrystal transition induced by laser pulse in self-ion implanted silicon

    International Nuclear Information System (INIS)

    Foti, G.; Rimini, E.; Vitali, G.; Bertolotti, M.

    1977-01-01

    Reflection high energy electron diffraction has been used to investigate the amorphous to polycrystalline structure transition in silicon induced by laser pulse. The power density of the ruby laser pulse, in the free generation mode, has been maintained below the threshold to induce surface damage. Depth analysis has been carried out in silicon crystal using the channeling effect technique. (orig.) [de

  5. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    Science.gov (United States)

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  6. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)

    International Nuclear Information System (INIS)

    Smith, Roger J.

    2008-01-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B pol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T e , n e , and B || along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n e B || product and higher n e and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  7. Pulsed laser ablation and deposition of niobium carbide

    International Nuclear Information System (INIS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J.V.; Galasso, A.; Teghil, R.

    2016-01-01

    Highlights: • We have deposited in vacuum niobium carbide films by fs and ns PLD. • We have compared PLD performed by ultra-short and short laser pulses. • The films deposited by fs PLD of NbC are formed by nanoparticles. • The structure of the films produced by fs PLD at 500 °C corresponds to NbC. - Abstract: NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation–deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  8. Pump-beam-instability limits to Raman-gain-doublet ''fast-light'' pulse propagation

    International Nuclear Information System (INIS)

    Stenner, Michael D.; Gauthier, Daniel J.

    2003-01-01

    We investigate the behavior of a system for generating ''fast-light'' pulses in which a bichromatic Raman pumping beam is used to generate optical gain at two frequencies and a region of anomalous dispersion between them. It is expected that increasing the gain will increase the pulse advancement. However, as the gain increases, the pumping field becomes increasingly distorted, effectively limiting the pulse advancement. We observe as much as 12% of the input pump power converted to orthogonal polarization, broadening of the initially bichromatic pump field (25 MHz initial frequency separation) to more than 2.5 GHz, and a temporal collapse of the pump beam into an erratic train of sub-500-ps pulses. The instability is attributed to the combined effects of the cross modulation instability and stimulated Raman scattering. Extreme distortion of an injected pulse that should (absent the instability) experience an advancement of 21% of its width is observed. We conclude that the fast-light pulse advancement is limited to just a few percent of the pulse width using this pulse advancement technique. The limitation imposed by the instability is important because careful study of the information velocity in fast-light pulses requires that pulse advancement be large enough to distinguish the velocities of different pulse features. Possible methods for achieving pulse advancement by avoiding the distortion caused by the instability are discussed

  9. Dynamic behavior of superconducting flux qubit excited by a series of electromagnetic pulses

    International Nuclear Information System (INIS)

    Kiyko, A.S.; Omelyanchouk, A.N.; Shevchenko, S.N.

    2007-01-01

    We study theoretically the behavior of the superconducting flux qubit subjected to a series of electromagnetic pulses. The possibility of controlling system state via changing the parameters of the pulse is studied. We calculated the phase shift in a tank circuit weakly coupled to the qubit which can be measured by the impedance measurement technique. For the flux qubit we consider the possibility of estimating the relaxation rate from the impedance measurements by varying the delay time between the pulses

  10. Spectral Flattening at Low Frequencies in Crab Giant Pulses

    Science.gov (United States)

    Meyers, B. W.; Tremblay, S. E.; Bhat, N. D. R.; Shannon, R. M.; Kirsten, F.; Sokolowski, M.; Tingay, S. J.; Oronsaye, S. I.; Ord, S. M.

    2017-12-01

    We report on simultaneous wideband observations of Crab giant pulses with the Parkes radio telescope and the Murchison Widefield Array (MWA). The observations were conducted simultaneously at 732 and 3100 MHz with Parkes and at 120.96, 165.76, and 210.56 MHz with the MWA. Flux density calibration of the MWA data was accomplished using a novel technique based on tied-array beam simulations. We detected between 90 and 648 giant pulses in the 120.96-210.56 MHz MWA subbands above a 5.5σ threshold, while in the Parkes subbands we detected 6344 and 231 giant pulses above a threshold of 6σ at 732 and 3100 MHz, respectively. We show, for the first time over a wide frequency range, that the average spectrum of Crab giant pulses exhibits a significant flattening at low frequencies. The spectral index, α, for giant pulses evolves from a steep, narrow distribution with a mean α =-2.6 and width {σ }α =0.5 between 732 and 3100 MHz to a wide, flat distribution of spectral indices with a mean α =-0.7 and width {σ }α =1.4 between 120.96 and 165.76 MHz. We also comment on the plausibility of giant pulse models for fast radio bursts based on this spectral information.

  11. Clinical Comparison of Pulse and Chirp Excitation

    DEFF Research Database (Denmark)

    Pedersen, Morten Høgholm; Misaridis, T.; Jensen, Jørgen Arendt

    2002-01-01

    Coded excitation (CE) using frequency modulated signals (chirps) combined with modified matched filtering has earlier been presented showing promising results in simulations and in-vitro. In this study an experimental ultrasound system is evaluated in a clinical setting, where image sequences...... and short pulse excitation to simultaneously produce identical image sequences using both techniques. Nine healthy male volunteers were scanned in abdominal locations. All sequences were evaluated by 3 skilled medical doctors, blinded to each other and to the technique used. They assessed the depth (1...

  12. Pulsed water jet generated by pulse multiplication

    Czech Academy of Sciences Publication Activity Database

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high- pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  13. CFD simulation of the pulsed neutron activation technique for water flow measurements

    International Nuclear Information System (INIS)

    Mattsson, H.; Nordlund, A.

    2005-01-01

    A pulse neutron activation (PNA) flowmeter uses a radioactive substance to measure water flow in pipes. The water in the pipe is bombarded with neutron pulses, thus introducing activity into the pipe. The activity is then transported and mixed with the flow. Gamma radiation emitted from the activity is measured with one or two detectors downstream from the activation point. The average velocity of the water is calculated using the time-resolved signal from the detector. The CFD program FLUENT was used to simulate the transport and mixing of the activity induced in the pipe. The turbulence of the flow is described with the k-ε model. Some parameters affecting a PNA measurement have been investigated. From the calculations it was possible to quantify how much the average initial velocity of the activity differs from the average velocity of the water. Results also show that activity initially produced far away from the wall has a substantial effect on the detector signal. To accurately simulate the detector signal it is necessary to include activity produced in a large part of the pipe. The results also indicate that the collimation of the detectors have a significant impact on the data and should be included when evaluating simulated data. Three different response functions were also tested. (authors)

  14. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    Science.gov (United States)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/Ilaser.

  15. Diagnostics for environmental aspects of pulsed atmospheric discharges

    International Nuclear Information System (INIS)

    Rutgers, W.R.; Veldhuizen, E.M. van

    2001-01-01

    Diagnostics for the study of pulsed atmospheric discharges are discussed. To obtain parameters for describing conversion processes of pollutants into harmless products many diagnostic techniques are in use and under development. In this contribution electrical, optical and chemical diagnostics used in air and wastewater remediation are reviewed

  16. Diagnostics for environmental aspects of pulsed atmospheric discharges

    Energy Technology Data Exchange (ETDEWEB)

    Rutgers, W.R.; Veldhuizen, E.M. van [Eindhoven Univ. of Technology (Netherlands). Dept. of Applied Physics

    2001-07-01

    Diagnostics for the study of pulsed atmospheric discharges are discussed. To obtain parameters for describing conversion processes of pollutants into harmless products many diagnostic techniques are in use and under development. In this contribution electrical, optical and chemical diagnostics used in air and wastewater remediation are reviewed.

  17. Development of optical parametric chirped-pulse amplifiers and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuhisa

    2006-11-21

    In this work, optical pulse amplification by parametric chirped-pulse amplification (OPCPA) has been applied to the generation of high-energy, few-cycle optical pulses in the near-infrared (NIR) and infrared (IR) spectral regions. Amplification of such pulses is ordinarily difficult to achieve by existing techniques of pulse amplification based on standard laser gain media followed by external compression. Potential applications of few-cycle pulses in the IR have also been demonstrated. The NIR OPCPA system produces 0.5-terawatt (10 fs,5 mJ) pulses by use of noncollinearly phase-matched optical parametric amplification and a down-chirping stretcher and up-chirping compressor pair. An IR OPCPA system was also developed which produces 20-gigawatt (20 fs,350 {mu}J) pulses at 2.1 {mu}m. The IR seed pulse is generated by optical rectification of a broadband pulse and therefore it exhibits a self-stabilized carrier-envelope phase (CEP). In the IR OPCPA a common laser source is used to generate the pump and seed resulting in an inherent sub-picosecond optical synchronization between the two pulses. This was achieved by use of a custom-built Nd:YLF picosecond pump pulse amplifier that is directly seeded with optical pulses from a custom-built ultrabroadband Ti:sapphire oscillator. Synchronization between the pump and seed pulses is critical for efficient and stable amplification. Two spectroscopic applications which utilize these unique sources have been demonstrated. First, the visible supercontinuum was generated in a solid-state media by the infrared optical pulses and through which the carrier-envelope phase (CEP) of the driving pulse was measured with an f-to-3f interferometer. This measurement confirms the self-stabilization mechanism of the CEP in a difference frequency generation process and the preservation of the CEP during optical parametric amplification. Second, high-order harmonics with energies extending beyond 200 eV were generated with the few

  18. Pulsed TRIGA reactor as substitute for long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1999-01-01

    TRIGA reactor cores have been used to demonstrate various pulsing applications. The TRIGA reactor fuel (U-ZrH x ) is very robust especially in pulsing applications. The features required to produce 50 pulses per second have been successfully demonstrated individually, including pulse tests with small diameter fuel rods. A partially optimized core has been evaluated for pulses at 50 Hz with peak pulsed power up to 100 MW and an average power up to 10 MW. Depending on the design, the full width at half power of the individual pulses can range between 2000 μsec to 3000 μsec. Until recently, the relatively long pulses (2000 μsec to 3000 μsec) from a pulsed thermal reactor or a long pulse spallation source (LPSS) have been considered unsuitable for time-of-flight measurements of neutron scattering. More recently considerable attention has been devoted to evaluating the performance of long pulse (1000 to 4000 μs) spallation sources for the same type of neutron measurements originally performed only with short pulses from spallation sources (SPSS). Adequate information is available to permit meaningful comparisons between CW, SPSS, and LPSS neutron sources. Except where extremely high resolution is required (fraction of a percent), which does require short pulses, it is demonstrated that the LPSS source with a 1000 msec or longer pulse length and a repetition rate of 50 to 60 Hz gives results comparable to those from the 60 MW ILL (CW) source. For many of these applications the shorter pulse is not necessarily a disadvantage, but it is not an advantage over the long pulse system. In one study, the conclusion is that a 5 MW 2000 μsec LPSS source improves the capability for structural biology studies of macromolecules by at least a factor of 5 over that achievable with a high flux reactor. Recent studies have identified the advantages and usefulness of long pulse neutron sources. It is evident that the multiple pulse TRIGA reactor can produce pulses comparable to

  19. Method for pulse to pulse dose reproducibility applied to electron linear accelerators

    International Nuclear Information System (INIS)

    Ighigeanu, D.; Martin, D.; Oproiu, C.; Cirstea, E.; Craciun, G.

    2002-01-01

    An original method for obtaining programmed beam single shots and pulse trains with programmed pulse number, pulse repetition frequency, pulse duration and pulse dose is presented. It is particularly useful for automatic control of absorbed dose rate level, irradiation process control as well as in pulse radiolysis studies, single pulse dose measurement or for research experiments where pulse-to-pulse dose reproducibility is required. This method is applied to the electron linear accelerators, ALIN-10 of 6.23 MeV and 82 W and ALID-7, of 5.5 MeV and 670 W, built in NILPRP. In order to implement this method, the accelerator triggering system (ATS) consists of two branches: the gun branch and the magnetron branch. ATS, which synchronizes all the system units, delivers trigger pulses at a programmed repetition rate (up to 250 pulses/s) to the gun (80 kV, 10 A and 4 ms) and magnetron (45 kV, 100 A, and 4 ms).The accelerated electron beam existence is determined by the electron gun and magnetron pulses overlapping. The method consists in controlling the overlapping of pulses in order to deliver the beam in the desired sequence. This control is implemented by a discrete pulse position modulation of gun and/or magnetron pulses. The instabilities of the gun and magnetron transient regimes are avoided by operating the accelerator with no accelerated beam for a certain time. At the operator 'beam start' command, the ATS controls electron gun and magnetron pulses overlapping and the linac beam is generated. The pulse-to-pulse absorbed dose variation is thus considerably reduced. Programmed absorbed dose, irradiation time, beam pulse number or other external events may interrupt the coincidence between the gun and magnetron pulses. Slow absorbed dose variation is compensated by the control of the pulse duration and repetition frequency. Two methods are reported in the electron linear accelerators' development for obtaining the pulse to pulse dose reproducibility: the method

  20. Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization

    International Nuclear Information System (INIS)

    Estrada, David; Dutta, Sumit; Liao, Albert; Pop, Eric

    2010-01-01

    We describe a pulsed measurement technique for suppressing hysteresis for carbon nanotube (CNT) device measurements in air, vacuum, and over a wide temperature range (80-453 K). Varying the gate pulse width and duty cycle probes the relaxation times associated with charge trapping near the CNT, found to be up to the 0.1-10 s range. Longer off times between voltage pulses enable consistent, hysteresis-free measurements of CNT mobility. A tunneling front model for charge trapping and relaxation is also described, suggesting trap depths up to 4-8 nm for CNTs on SiO 2 . Pulsed measurements will also be applicable for other nanoscale devices such as graphene, nanowires, or molecular electronics, and could enable probing trap relaxation times in a variety of material system interfaces.

  1. Pulsed-field gel electrophoresis of bacterial chromosomes.

    Science.gov (United States)

    Mawer, Julia S P; Leach, David R F

    2013-01-01

    The separation of fragments of DNA by agarose gel electrophoresis is integral to laboratory life. Nevertheless, standard agarose gel electrophoresis cannot resolve fragments bigger than 50 kb. Pulsed-field gel electrophoresis is a technique that has been developed to overcome the limitations of standard agarose gel electrophoresis. Entire linear eukaryotic chromosomes, or large fragments of a chromosome that have been generated by the action of rare-cutting restriction endonucleases, can be separated using this technique. As a result, pulsed-field gel electrophoresis has many applications, from karyotype analysis of microbial genomes, to the analysis of chromosomal strand breaks and their repair intermediates, to the study of DNA replication and the identification of origins of replication. This chapter presents a detailed protocol for the preparation of Escherichia coli chromosomal DNA that has been embedded in agarose plugs, digested with the rare-cutting endonuclease NotI, and separated by contour-clamped homogeneous field electrophoresis. The principles in this protocol can be applied to the separation of all fragments of DNA whose size range is between 40 kb and 1 Mb.

  2. Thin solid films deposited by pulsed laser ablating spray

    International Nuclear Information System (INIS)

    Song Guangle

    2002-01-01

    The fabricating technique of thin solid films deposited by pulsed laser ablating spray is a new technique. The background from which it came into being and the process of its evolution were briefly described. According to relative documents, basic principle of the technique was dwelt on. Based on the latest documents, the status quo, including the studying abroad and home, was discussed in detail. The advantages, shortcomings, prospect of its utility, the significance of studying as well as critic problems were summarized. Some proposal was suggested

  3. Ultrasound evaluation of normal and abnormal fetuses: comparison of conventional, tissue harmonic, and pulse- inversion harmonic imaging techniques

    International Nuclear Information System (INIS)

    Ryu, Jeong Ah; Kim, Bohyun; Kim, Sooah; Yang, Soon Ha; Choi, Moon Hae; Ahn, Hyeong Sik

    2003-01-01

    To determine the usefulness of tissue harmonic imaging (THI) and pulse-inversion harmonic imaging (PIHI) in the evaluation of normal and abnormal fetuses. Forty-one pregnant women who bore a total of 31 normal and ten abnormal fetuses underwent conventional ultrasonography (CUS), and then THI and PIHI. US images of six organ systems, namely the brain, spine, heart, abdomen, extremities and face were compared between the three techniques in terms of overall conspicuity and the definition of borders and internal structures. For the brain, heart, abdomen and face, overall conspicuity at THI and PIHI was significantly better than at CUS (p < 0.05). There was, though, no significant difference between THI and PIHI. Affected organs in abnormal fetuses were more clearly depicted at THI and PIHI than at CUS. Both THI and PIHI appear to be superior to CUS for the evaluation of normal or abnormal structures, particularly the brain, heart, abdomen and face

  4. Intense microwave pulse propagation through gas breakdown plasmas in a waveguide

    International Nuclear Information System (INIS)

    Byrne, D.P.

    1986-01-01

    High-power microwave pulse-compression techniques are used to generate 2.856 GHz pulses which are propagated in a TE 10 mode through a gas filled section of waveguide, where the pulses interact with self-generated gas-breakdown plasmas. Pulse envelopes transmitted through the plasmas, with duration varying from 2 ns to greater than 1 μs, and peak powers of a few kW to nearly 100 MW, are measured as a function of incident pulse and gas pressure for air, nitrogen, and helium. In addition, the spatial and temporal development of the optical radiation emitted by the breakdown plasmas are measured. For transmitted pulse durations ≥ 100 ns, good agreement is found with both theory and existing measurements. For transmitted pulse duration as short as 2 ns (less than 10 rf cycles), a two-dimensional model is used in which the electrons in the plasma are treated as a fluid whose interactions with the microwave pulse are governed by a self-consistent set of fluid equations and Maxwell's equations for the electromagnetic field. The predictions of this model for air are compared with the experimental results over a pressure range of 0.8 torr to 300 torr. Good agreement is obtained above about 1 torr pressure, demonstrating that microwave pulse propagation above the breakdown threshold can be accurately modeled on this time scale. 63 refs., 44 figs., 2 tabs

  5. Pulse splitting in nonlinear media with anisotropic dispersion properties

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.; Schmidt, M.R.

    1998-01-01

    The nonlinear self-focusing of beams in media with anisotropic (mix-signed) dispersion is investigated. Theoretical predictions employing virial-type arguments and self-similar techniques suggest that a pulse propagating in a nonlinear medium with anisotropic dispersion will not collapse...

  6. Pulsed-field gel electrophoresis typing of Staphylococcus aureus isolates

    Science.gov (United States)

    Pulsed-field gel electrophoresis (PFGE) is the most applied and effective genetic typing method for epidemiological studies and investigation of foodborne outbreaks caused by different pathogens, including Staphylococcus aureus. The technique relies on analysis of large DNA fragments generated by th...

  7. Narrowband pulse-enhanced upconversion of chirped broadband pulses

    International Nuclear Information System (INIS)

    Zhao, Kun; Yuan, Peng; Zhong, Haizhe; Zhang, Dongfang; Zhu, Heyuan; Qian, Liejia; Chen, Liezun; Wen, Shuangchun

    2010-01-01

    We propose and demonstrate an efficient sum-frequency mixing scheme based on narrowband and chirped broadband pulses. It combines the advantages of wider spectral acceptance bandwidth and of alleviating the temporal walk-off, which are both beneficial to higher conversion efficiency. Chirped sum-frequency pulses at 455 nm with energy up to 360 µJ, corresponding to a conversion efficiency of ∼ 40%, are obtained and the pulses can be compressed to ∼ 110 fs. The sum-frequency mixing scheme may provide a promising route to the efficient generation of deep-ultraviolet femtosecond pulses

  8. Measurements of electron drift velocity in isobutane using the pulsed Townsend technique

    International Nuclear Information System (INIS)

    Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B.; Ridenti, Marco A.; Pascholati, Paulo R.; Fonte, Paulo; Mangiarotti, Alessio

    2010-01-01

    Full text. The electron drift velocity characterizes the electric conductivity of weakly ionized gases and is one of the most important transport parameters for simulation and modeling of radiation detectors and plasma discharges. This work presents the results of electron drift velocity as a function of the reduced electric field obtained in nitrogen and isobutane by the Pulsed Townsend technique. Due to its excellent timing properties, isobutane is a common component of standard mixtures used in RPCs (Resistive Plate Chambers), however, at moderate electric fields strength (50 Td 10 Ω·m). The fast electric signals generated is amplified and were digitalized in a 1 GHz bandwidth oscilloscope to measure the electrons transit time and to calculate the electron drift velocity in different gaps between anode and cathode. As the timing information presented in the fast electric signal originated in the anode is significant in our application, the amplifier circuit had to hold special features in order to preserve the signal shape. The linear amplifier used, based on the BGM1013 integrated circuit (Philips R), reaches up to 2.1 GHz bandwidth with 35.5 dB gain and was developed and built at Laboratory of Instrumentation and Experimental Particles Physics/Portugal. In order to validate this method, measurements were initially carried out in pure nitrogen, in reduced electric fields ranging from 148 to 194 Td. These results showed good agreement with those found in the literature for this largely investigated gas. The measurements of electron drift velocities in pure isobutane were performed as a function of reduced electric field from 190 to 211 Td. The results were concordant, within the experimental errors, with the values simulated by the Imonte (version 4.5) code and the data recently obtained by our group. (author)

  9. First observation of the beta decay of neutron-rich $^{218}Bi$ by the pulsed-release technique and resonant laser ionization

    CERN Document Server

    De Witte, H; Borzov, I N; Caurier, E; Cederkäll, J; De Smet, A; Eckhaudt, S; Fedorov, D V; Fedosseev, V; Franchoo, S; Górska, M; Grawe, H; Huber, G; Huyse, M; Janas, Z; Köster, U; Kurcewicz, W; Kurpeta, J; Plochocki, A; Van Duppen, P; Van de Vel, K; Weissman, L

    2004-01-01

    The neutron-rich isotope /sup 218/Bi has been produced in proton- induced spallation of a uranium carbide target at the ISOLDE facility at CERN, extracted from the ion source by the pulsed-release technique and resonant laser ionization, and its beta decay is studied for the first time. A half-life of 33(1)s was measured and is discussed in the self-consistent continuum-quasi particle-random- phase approximation framework that includes Gamow-Teller and first- forbidden transitions. A level scheme was constructed for /sup 218 /Po, and a deexcitation pattern of stretched E2 transitions 8/sup +/ to 6/sup +/ to 4/sup +/ to 2/sup +/ to 0/sup +/ to the ground state is suggested. Shell-model calculations based on the Kuo-Herling interaction reproduce the experimental results satisfactorily. (28 refs).

  10. Pulse discharge cleaning of the vacuum vessel of HL-1 tokamak

    International Nuclear Information System (INIS)

    Li Guodong; Zhu Yukun; Xiao Zhenggui; Sun Shouqi; Ze Mingrui

    1986-01-01

    The HL-1 Tokamak was test-operated on September 21, 1984. During the period of vacuum conditioning, including 60 hours of baking up to 200 deg C and 7 x 10 4 shots of pulse discharge cleaning, the calculated quantities of carbon and oxygen removed are equivalent to 24 and 6 monolayers, respectively. Then, 124 shots of tokamak discharge were performed with low level plasma parameters. The plasma current and pulse length achieved were 60 kA and 85 ms at the toroidal magnetic field of 15 kG. This paper described the techniques used and the effect on discharge characteristics of bakeout and pulse discharge cleaning of the vacuum vessel

  11. Single flux pulses affecting the ensemble of superconducting qubits

    Science.gov (United States)

    Denisenko, M. V.; Klenov, N. V.; Satanin, A. M.

    2018-02-01

    The present study is devoted to development of a technique for numerical simulation of the wave function dynamics the single Josephson qubits and arrays of noninteracting qubits controlled by ultra-short pulses. We wish to demonstrate the feasibility of a new principle of basic logical operations on the picosecond timescale. The influence of the unipolar pulse ("fluxon") form on the evolution of the state during the execution of the quantum one-qubit operations - "NOT", "READ" and " √{N O T } " - is investigated in the presence of decoherence. In the array of non interacting qubits, the question of the influence of the spread of their energy parameters (tunnel constants) is studied. It is shown that a single unipolar pulse can control a huge array of artificial atoms with 10% spread of geometric parameters in the array.

  12. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  13. International Year of Pulses 2016 | 2016 International Year of Pulses

    Science.gov (United States)

    the Year in collaboration with Governments, relevant organizations, non-governmental organizations and the composition of pulses Image 4 Wrapping up the International Year of Pulses The 5 key messages to food security Infographic Pulses and climate change International Year of Pulses 2016 The 68th UN

  14. Study of resolution and linearity in LaBr3: Ce scintillator through digital-pulse processing

    International Nuclear Information System (INIS)

    Abhinav Kumar; Mishra, Gaurav; Ramachandran, K.

    2014-01-01

    Advent of digital pulse processing has led to a paradigm shift in pulse processing techniques by replacing analog electronics processing chain with equivalent algorithms acting on pulse profiles digitized at high sampling rates. In this paper, we have carried out offline digital pulse processing of Cerium-doped Lanthanum bromide scintillator (LaBr 3 : Ce) detector pulses, acquired using CAEN V1742 VME digitizer module. Algorithms have been written to approximate the functioning of peak sensing analog-to-digital convertor (ADC) and charge-to-digital convertor (QDC). Energy dependence of resolution and energy linearity of LaBr 3 : Ce scintillator detector has been studied by utilizing aforesaid algorithms

  15. Comparative Study of Modulation Techniques for Two-Level Voltage Source Inverters

    Directory of Open Access Journals (Sweden)

    Barry W. Williams

    2016-06-01

    Full Text Available A detailed comparative study of modulation techniques for single and three phase dc-ac inverters is presented.  Sinusoidal Pulse Width Modulation, Triplen Sinusoidal Pulse Width Modulation, Space Vector Modulation, Selective Harmonic Elimination and Wavelet Modulation are assessed and compared in terms of maximum fundamental output, harmonic performance, switching losses and operational mode.  The presented modulation techniques are applied to single and three phase voltage source inverters and are simulated using SIMULINK.  The simulation results clarify the inverter performance achieved using the different modulations techniques.

  16. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power...... picosecond pulses. A novel fiber with 7 tubes and a core of 30 mu m was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 mu m and a 18 mu m core diameter photonic band gap hollow......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  17. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  18. Programmable pulse generator

    International Nuclear Information System (INIS)

    Xue Zhihua; Lou Binqiao; Duan Xiaohui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  19. Photoacoustic and spectroscopic characterization of the ablation process in orthogonal double-pulse configuration

    International Nuclear Information System (INIS)

    Sobral, H; Sanchez-Ake, C; Sangines, R; Alvarez-Zauco, E; Jimenez-Duran, K

    2011-01-01

    A photoacoustic technique was used as an alternative method to monitor the crater volume and its role in the emission line intensification in double-pulse pre-ablation configuration. The crater volume was measured using confocal microscopy and correlated with the changes in the photoacoustic signal. Laser emission spectroscopy was used to characterize the emission enhancement as a function of the delay between lasers and the first pulse energy. Optimum delay was found to be in the microsecond timescale corresponding to the maximum of the crater volume and the largest change between the single- and the double-pulse photoacoustic signals. Only a slight intensification was detected with increasing first pulse energy above the first pulse ablation threshold; however, the crater volume did not significantly change and the possible involved mechanisms are discussed.

  20. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    Science.gov (United States)

    Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-01

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  1. Effects of pulse-to-pulse residual species on discharges in repetitively pulsed discharges through packed bed reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for conversion of toxic and waste gases, and CO2 removal. These discharges are repetitively pulsed having varying flow rates and internal geometries, which results in species from the prior pulse still being in the discharge zone at the time the following discharge pulse occurs. A non-negligible residual plasma density remains, which effectively acts as preionization. This residual charge changes the discharge properties of subsequent pulses, and may impact important PBR properties such as chemical selectivity. Similarly, the residual neutral reactive species produced during earlier pulses will impact the reaction rates on subsequent pulses. We report on results of a computational investigation of a 2D PBR using the plasma hydrodynamics simulator nonPDPSIM. Results will be discussed for air flowing though an array of dielectric rods at atmospheric pressure. The effects of inter-pulse residual species on PBR discharges will be quantified. Means of controlling the presence of residual species in the reactor through gas flow rate, pulse repetition, pulse width and geometry will be described. Comparisons will be made to experiments. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  2. Dynamics of a pulsed continuous-variable quantum memory

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Pinard, Michel

    2006-01-01

    We study the transfer dynamics of nonclassical fluctuations of light to the ground-state collective spin components of an atomic ensemble during a pulsed quantum memory sequence, and evaluate the relevant physical quantities to be measured in order to characterize such a quantum memory. We show...... in particular that the fluctuations stored into the atoms are emitted in temporal modes which are always different from those of the readout pulse, but which can nevertheless be retrieved efficiently using a suitable temporal mode-matching technique. We give a simple toy model—a cavity with variable...... transmission—that accounts for the behavior of the atomic quantum memory....

  3. Frequency-resolved pump-probe characterization of femtosecond infrared pulses

    NARCIS (Netherlands)

    Yeremenko, S.; Baltuška, A.; Haan, F. de; Pshenichnikov, M.S.; Wiersma, D.A.

    2002-01-01

    A novel method for ultrashort IR pulse characterization is presented. The technique utilizes a frequency-resolved pump-probe geometry that is common in applications of ultrafast spectroscopy, without any modifications of the setup. The experimental demonstration of the method was carried out to

  4. Breakdown of methylene blue and methyl orange by pulsed corona discharge

    Science.gov (United States)

    Grabowski, L. R.; van Veldhuizen, E. M.; Pemen, A. J. M.; Rutgers, W. R.

    2007-05-01

    The recently developed corona above water technique is applied to water containing 10 mg l-1 methylene blue (MB) or methyl orange (MO). The corona discharge pulses are created with a spark gap switched capacitor followed by a transmission line transformer. The pulse amplitude is 40 kV; its duration is 50 ns. At a pulse repetition rate of 10 Hz this leads to an average power of 0.6 W into the discharge. MB and MO are completely decolourized in ~20 min. This corresponds to a yield of ~4.5 gr kW-1h-1, which is much higher than obtained with other discharge techniques or sonoluminescence. The high yield is reflected in the observed temperature increase of only ~1 K. Tests with additional chemicals show that the initial speed of the conversion can be influenced but the total time required for total decolourization is constant. Further, it follows that the main oxidation path of the dyes is by direct ozone attack and the conversion products are strong acids.

  5. Breakdown of methylene blue and methyl orange by pulsed corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, L R [Department of Applied Physics, Technische Universiteit Eindhoven (Netherlands); Veldhuizen, E M van [Department of Applied Physics, Technische Universiteit Eindhoven (Netherlands); Pemen, A J M [Department of Electrical Engineering, Technische Universiteit Eindhoven (Netherlands); Rutgers, W R [Department of Applied Physics, Technische Universiteit Eindhoven (Netherlands)

    2007-05-15

    The recently developed corona above water technique is applied to water containing 10 mg l{sup -1} methylene blue (MB) or methyl orange (MO). The corona discharge pulses are created with a spark gap switched capacitor followed by a transmission line transformer. The pulse amplitude is 40 kV; its duration is 50 ns. At a pulse repetition rate of 10 Hz this leads to an average power of 0.6 W into the discharge. MB and MO are completely decolourized in {approx}20 min. This corresponds to a yield of {approx}4.5 gr kW{sup -1}h{sup -1}, which is much higher than obtained with other discharge techniques or sonoluminescence. The high yield is reflected in the observed temperature increase of only {approx}1 K. Tests with additional chemicals show that the initial speed of the conversion can be influenced but the total time required for total decolourization is constant. Further, it follows that the main oxidation path of the dyes is by direct ozone attack and the conversion products are strong acids.

  6. Breakdown of methylene blue and methyl orange by pulsed corona discharge

    International Nuclear Information System (INIS)

    Grabowski, L R; Veldhuizen, E M van; Pemen, A J M; Rutgers, W R

    2007-01-01

    The recently developed corona above water technique is applied to water containing 10 mg l -1 methylene blue (MB) or methyl orange (MO). The corona discharge pulses are created with a spark gap switched capacitor followed by a transmission line transformer. The pulse amplitude is 40 kV; its duration is 50 ns. At a pulse repetition rate of 10 Hz this leads to an average power of 0.6 W into the discharge. MB and MO are completely decolourized in ∼20 min. This corresponds to a yield of ∼4.5 gr kW -1 h -1 , which is much higher than obtained with other discharge techniques or sonoluminescence. The high yield is reflected in the observed temperature increase of only ∼1 K. Tests with additional chemicals show that the initial speed of the conversion can be influenced but the total time required for total decolourization is constant. Further, it follows that the main oxidation path of the dyes is by direct ozone attack and the conversion products are strong acids

  7. Amplification of UV ultrashort pulse laser in e-beam pumped KrF amplifier

    CERN Document Server

    Tang Xiu Zhang; Gong Kun; Ma Wei Yi; Shan Yu Sheng; Wang Nai Yan

    2002-01-01

    Experimental investigations were performed for amplification of ultrashort pulse laser with Heaven-I e-beam pumped KrF amplifier in CIAE. A 50 mJ, 420 fs UV ultrashort pulse was amplified to 2-3 J energy, 1.2 ps pulse duration, and 2TW laser power. Experimental technique such as synchronization were describe, some parameters such as nonlinear absorb coefficient were measured in experiment. As a result, it is possible to achieve ultra-strong UV laser with intensity higher than 10 sup 1 sup 9 W/cm sup 2 in recently years

  8. Amplification of UV ultrashort pulse laser in e-beam pumped KrF amplifier

    International Nuclear Information System (INIS)

    Tang Xiuzhang; Zhang Haifeng; Gong Kun; Ma Weiyi; Shan Yusheng; Wang Naiyan

    2002-01-01

    Experimental investigations were performed for amplification of ultrashort pulse laser with Heaven-I e-beam pumped KrF amplifier in CIAE. A 50 mJ, 420 fs UV ultrashort pulse was amplified to 2-3 J energy, 1.2 ps pulse duration, and 2TW laser power. Experimental technique such as synchronization were describe, some parameters such as nonlinear absorb coefficient were measured in experiment. As a result, it is possible to achieve ultra-strong UV laser with intensity higher than 10 19 W/cm 2 in recently years

  9. Pure and Sn-doped ZnO films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Holmelund, E.; Schou, Jørgen; Tougaard, S.

    2002-01-01

    A new technique, metronome doping, has been used for doping of films during pulsed laser deposition (PLD). This technique makes it possible to dope continuously during film growth with different concentrations of a dopant in one deposition sequence. Films of pure and doped ZnO have been produced...

  10. Multiple pulse nanosecond laser induced damage threshold on hybrid mirrors

    Science.gov (United States)

    Vanda, Jan; Muresan, Mihai-George; Bilek, Vojtech; Sebek, Matej; Hanus, Martin; Lucianetti, Antonio; Rostohar, Danijela; Mocek, Tomas; Škoda, Václav

    2017-11-01

    So-called hybrid mirrors, consisting of broadband metallic surface coated with dielectric reflector designed for specific wavelength, becoming more important with progressing development of broadband mid-IR sources realized using parametric down conversion system. Multiple pulse nanosecond laser induced damage on such mirrors was tested by method s-on-1, where s stands for various numbers of pulses. We show difference in damage threshold between common protected silver mirrors and hybrid silver mirrors prepared by PVD technique and their variants prepared by IAD. Keywords: LIDT,

  11. Pulsed laser dewetting of nickel catalyst for carbon nanofiber growth

    International Nuclear Information System (INIS)

    Guan, Y F; Pearce, R C; Simpson, M L; Rack, P D; Melechko, A V; Hensley, D K

    2008-01-01

    We present a pulsed laser dewetting technique that produces single nickel catalyst particles from lithographically patterned disks for subsequent carbon nanofiber growth through plasma enhanced chemical vapor deposition. Unlike the case for standard heat treated Ni catalyst disks, for which multiple nickel particles and consequently multiple carbon nanofibers (CNFs) are observed, single vertically aligned CNFs could be obtained from the laser dewetted catalyst. Different laser dewetting parameters were tested in this study, such as the laser energy density and the laser processing time measured by the total number of laser pulses. Various nickel disk radii and thicknesses were attempted and the resultant number of carbon nanofibers was found to be a function of the initial disk dimension and the number of laser pulses

  12. Pump pulse duration dependence of coherent phonon amplitudes in antimony

    Energy Technology Data Exchange (ETDEWEB)

    Misochko, O. V., E-mail: misochko@issp.ac.ru [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

    2016-08-15

    Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separation between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.

  13. A New Technique for SET Pulse Width Measurement in Chains of Inverters Using Pulsed Laser Irradiation

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Fel, N.; Gaillardin, M.; Baggio, J.; Girard, S.; Flament, O.; Paillet, P.; McMorrow, D.; Melinger, J. S.; Kobayashi, D.; Hirose, K.; Saito, H.; Pouget, V.; Essely, F.; Schwank, J. R.; Flores, R. S.; Dodd, P. E.; Shaneyfelt, M. R.

    2009-01-01

    A new technique is developed to measure precisely and accurately the width of propagating voltage transients induced by irradiation of inverter chains. The technique is based on measurement of the supply current in a detection inverter, and permits a direct determination of the transient width with a 50 GHz bandwidth. (authors)

  14. The Electrode Modality Development in Pulsed Electric Field Treatment Facilitates Biocellular Mechanism Study and Improves Cancer Ablation Efficacy

    OpenAIRE

    Cen, Chao; Chen, Xinhua

    2017-01-01

    Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatme...

  15. An Improved Nuclear Recoil Calibration in the LUX Detector Using a Pulsed D-D Neutron Generator

    Science.gov (United States)

    Huang, Dongqing

    2017-01-01

    The LUX dark matter search experiment is a 370 kg (250 kg active mass) two-_phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The first absolute charge (Qy) and light (Ly) measurement performed in situ in the LUX detector with a D-D calibration technique for nuclear recoil spanning 0.7 to 74 keV and 1.1 to 74 keV respectively have been reported in. The D-D calibration has subsequently been further improved by incorporating pulsing technique, i.e. the D-D neutron production is concentrated within narrow pulses (20 us / 250 Hz) with the timing information recorded. This technique allows the suppression of accidental backgrounds in D-D neutron data and also provides increased sensitivity for the lower energy NR calibrations. I will report the improved NR absolute Qy and Ly measurements using the pulsed D-D calibration technique performed in situ in the LUX detector. Brown University, Large Underground Xenon(LUX) Collaboration.

  16. Application of thermoluminescence dosimeter on the measurement of hard X-ray pulse energy spectrum

    International Nuclear Information System (INIS)

    Song Zhaohui; Wang Baohui; Wang Kuilu; Hei Dongwei; Sun Fengrong; Li Gang

    2003-01-01

    This paper introduces the application of thermoluminescence dosimeter (TLD) which composed by TLD-3500 reader and GR-100 M chips on the measurement of hard X-ray pulse energy spectrum. The idea using Filter Fluorescence Method (FFM) and TLD to measure hard X-ray pulse energy spectrum (from 10 keV to 100 keV) is discussed in details. Considering all the factors of the measuring surrounding, the measurement system of hard X-ray pulse has been devised. The calibration technique of absolute energy response of TLD is established. This method has been applied successfully on the radiation parameters measurement of the huge pulse radiation device-high-power pulser I. Hard X-ray pulse energy spectrum data of the pulser are acquired

  17. Pulse electrochemical meso/micro/nano ultraprecision machining technology.

    Science.gov (United States)

    Lee, Jeong Min; Kim, Young Bin; Park, Jeong Woo

    2013-11-01

    This study demonstrated meso/micro/nano-ultraprecision machining through electrochemical reactions using intermittent DC pulses. The experiment focused on two machining methods: (1) pulse electrochemical polishing (PECP) of stainless steel, and (2) pulse electrochemical nano-patterning (PECNP) on a silicon (Si) surface, using atomic force microscopy (AFM) for fabrication. The dissolution reaction at the stainless steel surface following PECP produced a very clean, smooth workpiece. The advantages of the PECP process included improvements in corrosion resistance, deburring of the sample surface, and removal of hydrogen from the stainless steel surface as verified by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). In PECNP, the electrochemical reaction generated within water molecules produced nanoscale oxide textures on a Si surface. Scanning probe microscopy (SPM) was used to evaluate nanoscale-pattern processing on a Si wafer surface produced by AFM-PECNP For both processes using pulse electrochemical reactions, three-dimensional (3-D) measurements and AFM were used to investigate the changes on the machined surfaces. Preliminary results indicated the potential for advancing surface polishing techniques and localized micro/nano-texturing technology using PECP and PECNP processes.

  18. LASER PLASMA: Experimental confirmation of the erosion origin of pulsed low-threshold surface optical breakdown of air

    Science.gov (United States)

    Min'ko, L. Ya; Chumakou, A. N.; Chivel', Yu A.

    1988-08-01

    Nanosecond kinetic spectroscopy techniques were used to identify the erosion origin of pulsed low-threshold surface optical breakdown of air as a result of interaction of microsecond neodymium and CO2 laser pulses with some metals (indium, lead).

  19. Internal strain measurement using pulsed neutron diffraction at LANSCE

    International Nuclear Information System (INIS)

    Goldstone, J.A.; Bourke, M.A.M.; Shi, N.

    1994-01-01

    The presence of residual stress in engineering components can effect their mechanical properties and structural integrity. Neutron diffraction in the only technique that can make nondestructive measurements in the interior of components. By recording the change in crystalline lattice spacings, elastic strains can be measured for individual lattice reflections. Using a pulsed neutron source, all lattice reflections are recorded in each measurement, which allows for easy examination of heterogeneous materials such as metal matrix composites. Measurements made at the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) demonstrate the potential at pulsed sources for in-situ stress measurements at ambient and elevated temperatures

  20. Beam modulation: A novel ToF-technique for high resolution diffraction at the Beamline for European Materials Engineering Research (BEER)

    Science.gov (United States)

    Rouijaa, M.; Kampmann, R.; Šaroun, J.; Fenske, J.; Beran, P.; Müller, M.; Lukáš, P.; Schreyer, A.

    2018-05-01

    The Beamline for European Materials Engineering Research (BEER) is under construction at the European Spallation Source (ESS) in Lund, Sweden. A basic requirement on BEER is to make best use of the long ESS pulse (2.86 ms) for engineering investigations. High-resolution diffraction, however, demands timing resolution up to 0.1% corresponding to a pulse length down to about 70 μs for the case of thermal neutrons (λ ∼ 1.8 Å). Such timing resolution can be achieved by pulse shaping techniques cutting a short section out of the long pulse, and thus paying for resolution by strong loss of intensity. In contrast to this, BEER proposes a novel operation mode called pulse modulation technique based on a new chopper design, which extracts several short pulses out of the long ESS pulse, and hence leads to a remarkable gain of intensity compared to nowadays existing conventional pulse shaping techniques. The potential of the new technique can be used with full advantage for investigating strains and textures of highly symmetric materials. Due to its instrument design and the high brilliance of the ESS pulse, BEER is expected to become the European flagship for engineering research for strain mapping and texture analysis.

  1. Design of Optical Pulse Position Modulation (PPM) Translating Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-06-19

    M-ary pulse position modulation (M-ary PPM) signaling is a means of transmitting multiple bits per symbol in an intensity modulated/direct detection (IM/DD) system. PPM is used in applications with average power limitations. In optical communication systems, PPM becomes challenging to implement at gigabit rates and/or large M, since pulsed signaling requires higher electronic processing bandwidths than the fundamental transmission rate. they have thus been exploring techniques for PPM communications using optical processing. Previous work described a transmitter algorithm that directly translates a bit sequence of N digital bits to the optical pulse position m for any M = 2{sup N}. It has been considerably more difficult to define a similar receiver algorithm that translates the received optical pulse position directly back to a bit sequence with minimal electronic processing. Designs for specific Ms (e.g., 4-ary) have been shown and implemented, but are difficult to scale to larger M. In this work, they present for the first time a generalized PPM translating receiver that is applicable to all M and data rates.

  2. Pulse processing in optical fibers using the temporal Radon-Wigner transform

    Energy Technology Data Exchange (ETDEWEB)

    Bulus-Rossini, L A; Costanzo-Caso, P A; Duchowicz, R [Centro de Investigaciones Opticas, CONICET La Plata - CIC, Camino Parque Centenario y 506, C.C. 3 (1897) La Plata (Argentina); Sicre, E E, E-mail: lbulus@ing.unlp.edu.ar [Instituto de Tecnologia, Facultad de Ingenieria y Ciencias Exactas, Universidad Argentina de la Empresa, Lima 717, C1073AAO Buenos Aires (Argentina)

    2011-01-01

    It is presented the use of the temporal Radon-Wigner transform (RWT), which is the squared modulus of the fractional Fourier transform (FRT) for a varying fractional order p, as a processing tool for pulses with FWHM of ps-tens of ps. For analysis purposes, the complete numerical generation of the RWT with 0 < p < 1 is proposed to select a particular pulse shape related to a determined value of p. To this end, the amplitude and phase of the signal to be processed are obtained using a pulse characterization technique. To synthesize the processed pulse, the selected FRT irradiance is optically produced employing a photonic device that combines phase modulation and dispersive transmission. The practical implementation of this device involves a scaling factor that depends on the modulation and dispersive parameters. It is explored the variation of this factor in order to obtain an enhancement of the particular characteristic sought in the pulse to be synthesized. To illustrate the implementation of the proposed method, numerical simulations of its application to compress signals commonly found in fiber optic transmission systems, are performed. The examples presented consider chirped Gaussian pulses and pulses distorted by group velocity dispersion and self-phase modulation.

  3. Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes

    International Nuclear Information System (INIS)

    Hao Yun-Qi; Ye Qing; Pan Zheng-Qing; Cai Hai-Wen; Qu Rong-Hui

    2014-01-01

    The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensing system. The time domain signal of every code sequence is collected by the data acquisition card (DAQ). A shift-averaging technique is applied in the frequency domain for the reason that the local oscillator (LO) in the coherent detection is fix-frequency deviated from the primary source. With the 31-bit simplex code, the signal-to-noise ratio (SNR) has 3.5-dB enhancement with the same single pulse traces, accordant with the theoretical analysis. The frequency fluctuation for simplex codes is 14.01 MHz less than that for a single pulse as to 4-m spatial resolution. The results are believed to be beneficial for the BOTDR performance improvement. (general)

  4. Soft error rate analysis methodology of multi-Pulse-single-event transients

    International Nuclear Information System (INIS)

    Zhou Bin; Huo Mingxue; Xiao Liyi

    2012-01-01

    As transistor feature size scales down, soft errors in combinational logic because of high-energy particle radiation is gaining more and more concerns. In this paper, a combinational logic soft error analysis methodology considering multi-pulse-single-event transients (MPSETs) and re-convergence with multi transient pulses is proposed. In the proposed approach, the voltage pulse produced at the standard cell output is approximated by a triangle waveform, and characterized by three parameters: pulse width, the transition time of the first edge, and the transition time of the second edge. As for the pulse with the amplitude being smaller than the supply voltage, the edge extension technique is proposed. Moreover, an efficient electrical masking model comprehensively considering transition time, delay, width and amplitude is proposed, and an approach using the transition times of two edges and pulse width to compute the amplitude of pulse is proposed. Finally, our proposed firstly-independently-propagating-secondly-mutually-interacting (FIP-SMI) is used to deal with more practical re-convergence gate with multi transient pulses. As for MPSETs, a random generation model of MPSETs is exploratively proposed. Compared to the estimates obtained using circuit level simulations by HSpice, our proposed soft error rate analysis algorithm has 10% errors in SER estimation with speed up of 300 when the single-pulse-single-event transient (SPSET) is considered. We have also demonstrated the runtime and SER decrease with the increment of P0 using designs from the ISCAS-85 benchmarks. (authors)

  5. Spatio-temporal dynamics of a pulsed microwave argon plasma: ignition and afterglow

    International Nuclear Information System (INIS)

    Carbone, Emile; Sadeghi, Nader; Vos, Erik; Hübner, Simon; Van Veldhuizen, Eddie; Van Dijk, Jan; Nijdam, Sander; Kroesen, Gerrit

    2015-01-01

    In this paper, a detailed investigation of the spatio-temporal dynamics of a pulsed microwave plasma is presented. The plasma is ignited inside a dielectric tube in a repetitively pulsed regime at pressures ranging from 1 up to 100 mbar with pulse repetition frequencies from 200 Hz up to 500 kHz. Various diagnostic techniques are employed to obtain the main plasma parameters both spatially and with high temporal resolution. Thomson scattering is used to obtain the electron density and mean electron energy at fixed positions in the dielectric tube. The temporal evolution of the two resonant and two metastable argon 4s states are measured by laser diode absorption spectroscopy. Nanosecond time-resolved imaging of the discharge allows us to follow the spatio-temporal evolution of the discharge with high temporal and spatial resolution. Finally, the temporal evolution of argon 4p and higher states is measured by optical emission spectroscopy. The combination of these various diagnostics techniques gives deeper insight on the plasma dynamics during pulsed microwave plasma operation from low to high pressure regimes. The effects of the pulse repetition frequency on the plasma ignition dynamics are discussed and the plasma-off time is found to be the relevant parameter for the observed ignition modes. Depending on the delay between two plasma pulses, the dynamics of the ionization front are found to be changing dramatically. This is also reflected in the dynamics of the electron density and temperature and argon line emission from the plasma. On the other hand, the (quasi) steady state properties of the plasma are found to depend only weakly on the pulse repetition frequency and the afterglow kinetics present an uniform spatio-temporal behavior. However, compared to continuous operation, the time-averaged metastable and resonant state 4s densities are found to be significantly larger around a few kHz pulsing frequency. (paper)

  6. Reduction of CSF flow artifact in fast fluid attenuated inversion recovery MR imaging. Study of excitation width in 180deg inversion pulse

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Yoshizawa, Satoshi; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Ken; Fujita, Isao

    1998-01-01

    A technique that increases slice thickness so that it becomes wider than the excitation width of the 180deg inversion pulse and in which TR is partitioned twice has been investigated with regard to fast FLAIR. This is a technique that reduces the flow artifact of CSF. It is thought that, with this technique, the flow artifact is reduced because the CSF that flows onto the slice reaches the null point. The cross talk effect of the 180deg inversion pulse appears as a high CSF signal. As a result, the number of slices needs to be partitioned two or three times before imaging. Thus the imaging time is doubled or tripled. Considering the cross talk effect of the 180deg inversion pulse and the imaging time needed for this technique, the optimal imaging technique would be one that uses an inversion pulse that is four times slice thickness plus slice space and for which the number of slices is partitioned twice. Furthermore, the null point of CSF was dependent on dividing TR in half. (author)

  7. Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.

    Directory of Open Access Journals (Sweden)

    Zhihua Cui

    Full Text Available The shear swirling flow vibration cementing (SSFVC technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1 the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2 the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.

  8. Effects of pulse duration on magnetostimulation thresholds

    International Nuclear Information System (INIS)

    Saritas, Emine U.; Goodwill, Patrick W.; Conolly, Steven M.

    2015-01-01

    Purpose: Medical imaging techniques such as magnetic resonance imaging and magnetic particle imaging (MPI) utilize time-varying magnetic fields that are subject to magnetostimulation limits, which often limit the speed of the imaging process. Various human-subject experiments have studied the amplitude and frequency dependence of these thresholds for gradient or homogeneous magnetic fields. Another contributing factor was shown to be number of cycles in a magnetic pulse, where the thresholds decreased with longer pulses. The latter result was demonstrated on two subjects only, at a single frequency of 1.27 kHz. Hence, whether the observed effect was due to the number of cycles or due to the pulse duration was not specified. In addition, a gradient-type field was utilized; hence, whether the same phenomenon applies to homogeneous magnetic fields remained unknown. Here, the authors investigate the pulse duration dependence of magnetostimulation limits for a 20-fold range of frequencies using homogeneous magnetic fields, such as the ones used for the drive field in MPI. Methods: Magnetostimulation thresholds were measured in the arms of six healthy subjects (age: 27 ± 5 yr). Each experiment comprised testing the thresholds at eight different pulse durations between 2 and 125 ms at a single frequency, which took approximately 30–40 min/subject. A total of 34 experiments were performed at three different frequencies: 1.2, 5.7, and 25.5 kHz. A solenoid coil providing homogeneous magnetic field was used to induce stimulation, and the field amplitude was measured in real time. A pre-emphasis based pulse shaping method was employed to accurately control the pulse durations. Subjects reported stimulation via a mouse click whenever they felt a twitching/tingling sensation. A sigmoid function was fitted to the subject responses to find the threshold at a specific frequency and duration, and the whole procedure was repeated at all relevant frequencies and pulse durations

  9. Fiber-integrated tungsten disulfide saturable absorber (mirror) for pulsed fiber lasers

    Science.gov (United States)

    Chen, Hao; Li, Irene Ling; Ruan, Shuangchen; Guo, Tuan; Yan, Peiguang

    2016-08-01

    We propose two schemes for achieving tungsten disulfide (WS2)-based saturable absorber (SA) and saturable absorber mirror (SAM). By utilizing the pulsed laser deposition method, we grow the WS2 film on microfiber to form an evanescent field interaction SA device. Incorporating this SA device into a common ring-cavity erbium-doped fiber (EDF) laser, stably passive mode-locking can be achieved with pulse duration of 395 fs and signal-to-noise ratio of 64 dB. We also produce a fiber tip integrated WS2-SAM by utilizing the magnetron sputtering technique (MST). This new type of SAM combines the WS2 layer as SA and gold mirror as high reflective mirror. By employing the WS2-SAM, we construct the linear-cavity EDF lasers, and achieve passive mode-locking operation with pulse duration of ˜1 ns and SNR of ˜61 dB. We further achieve stably passive Q-switching operation with pulse duration of ˜160 ns and pulse energy of 54.4 nJ. These fiber-integrated SAs and SAMs have merits of compactness and reliability, paving the way for the development of new photonic devices such as SAs for pulsed laser technology.

  10. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  11. Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, Sergei O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-04

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both of these milestones have been met.

  12. Generation of stable Ps, mJ pulses at high repetition rate for ultrafast diagnostic experiments: Final report

    International Nuclear Information System (INIS)

    Mourou, G.

    1986-10-01

    Nd:Glass amplifiers have very good energy storage capabilities (5 J/cm 2 ), but, the energy extraction is extremely inefficient for short-pulse amplification. At relatively high peak intensities of ∼ 10 GW/cm 2 , nonlinear phase shifts occur, leading to beam wavefront distortion which can result in filamentation and irreversible damage. In order that the peak intensity in the amplifier remain below this damage level, a picosecond pulse can be amplified only to an energy density of ∼ 10 mJ/cm 2 , two orders of magnitude less than the stored energy level of 5 J/cm 2 . We have developed an amplification system, which uses an optical pulse compression technique to circumvent this peak power limitation. This technique is analogous to a method developed over forty years ago for the amplification of radar pulses. Briefly: a long optical pulse is deliberately produced by stretching a short, low-energy pulse, amplified and then compressed. The frequency chirp and the temporal broadening are produced by propagating a high-intensity pulse along a single-mode fiber. At the beginning of the fiber, the pulse undergoes self-phase modulation which produces a frequncy chirp. The chirp is then linearized by the group-velocity dispersion of the fiber. This long, frequency-chirped, pulse is amplified, and then compressed to a pulsewidth approximately equal to 1/Δf, where Δf is the chirped bandwidth. With this system, short pulses can reach the high saturation energy levels, with moderately low peak power levels being maintained in the amplifying medium

  13. The density broadening in a sodium F=2 condensate detected by a pulse train

    Directory of Open Access Journals (Sweden)

    Jianing Han

    2011-09-01

    Full Text Available The dipole-blockaded sodium clock transition has been detected by high resolution microwave spectroscopy, the multiple-pulse spectroscopy. This spectroscopic technique has been first used to detect the density broadening and shifting in a Sodium Bose Einstein Condensate (BEC by probing the sodium clock-transition. Moreover, by narrowing the pulse-width of the pulses, some of the broadening mechanisms can be partially reduced. The results reported here are essential steps toward the ground-state quantum computing, few-body spectroscopy, spin squeezing and quantum metrology.

  14. Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

    CERN Document Server

    Wu, Zilu; Krinsky, Sam; Loos, Henrik; Murphy, James; Shaftan, Timur; Sheehy, Brian; Shen, Yuzhen; Wang, Xijie; Yu Li Hua

    2004-01-01

    High Gain Harmonic Generation (HGHG), because it produces longitudinally coherent pulses derived from a coherent seed, presents remarkable possibilities for manipulating FEL pulses. If spectral phase modulation imposed on the seed modulates the spectral phase of the HGHG in a deterministic fashion, then chirped pulse amplification, pulse shaping, and coherent control experiments at short wavelengths become possible. In addition, the details of the transfer function will likely depend on electron beam and radiator dynamics and so prove to be a useful tool for studying these. Using the DUVFEL at the National Synchrotron Light Source at Brookhaven National Laboratory, we present spectral phase analyses of both coherent HGHG and incoherent SASE ultraviolet FEL radiation, applying Spectral Interferometry for Direct Electric Field Reconstruction (SPIDER), and assess the potential for employing compression and shaping techniques.

  15. Design of electron detection system for pulse electron irradiator

    International Nuclear Information System (INIS)

    Anjar Anggraini H; Agus Purwadi; Lely Susita RM; Bambang Siswanto; Agus Wijayanto

    2016-01-01

    Design of electron detection system for pulse electron irradiator has been conducted on the Plasma Cathode Electron Source by Rogowski coil technique. Rogowski coil has ability to capture the induced magnetic field of the electric current, subsequent induced magnetic field will provide voltage after passing integrator. This diagnostic used combination of copper wire, ferrite and RC integrator. The design depends on the pulse width and the value of plasma current that passes through the coil, thus the number of windings, coil area and integrator can be designed. For plasma spots current of IDPS expected to be 10 A and pulse width 10 μs the Rogowski coil using MnZn ferrite with inductance L = 0.275 mH and permeability μr = 200 H/m. For the current of plasma arc ADPS expected to be 100 A and pulse width 100 μs by using inductance L=1.9634 mH and permeability μr = 6256 H/m. Electron current in extraction system expected to be 30 A and pulse width 100 μs the Rogowski coil using inductance L=51.749 mH and permeability μr= 4987 H/m. Design integrator used is the type of RC integrator. (author)

  16. Characteristics of bipolar-pulse generator for intense pulsed heavy ion beam acceleration

    International Nuclear Information System (INIS)

    Igawa, K.; Tomita, T.; Kitamura, I.; Ito, H.; Masugata, K.

    2006-01-01

    Intense pulsed heavy ion beams are expected to be applied to the implantation technology for semiconductor materials. In the application it is very important to purify the ion beam. In order to improve the purity of an intense pulsed ion beams we have proposed a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)'. A prototype of the experimental system has been developed to perform proof of principle experiments of the accelerator. A bipolar pulse generator has been designed for the generation of the pulsed ion beam with the high purity via the bipolar pulse acceleration and the electrical characteristics of the generator were evaluated. The production of the bipolar pulse has been confirmed experimentally. (author)

  17. Characterizing the Statistics of a Bunch of Optical Pulses Using a Nonlinear Optical Loop Mirror

    Directory of Open Access Journals (Sweden)

    Olivier Pottiez

    2015-01-01

    Full Text Available We propose in this work a technique for determining the amplitude distribution of a wave packet containing a large number of short optical pulses with different amplitudes. The technique takes advantage of the fast response of the optical Kerr effect in a fiber nonlinear optical loop mirror (NOLM. Under some assumptions, the statistics of the pulses can be determined from the energy transfer characteristic of the packet through the NOLM, which can be measured with a low-frequency detection setup. The statistical distribution is retrieved numerically by approximating the solution of a system of nonlinear algebraic equations using the least squares method. The technique is demonstrated numerically in the case of a packet of solitons.

  18. Development of the pulse transformer for NLC klystron pulse modulator

    International Nuclear Information System (INIS)

    Akemoto, M.; Gold, S.; Koontz, R.; Krasnykh, A.

    1997-05-01

    We have studied a conventional pulse transformer for the NLC klystron pulse modulator. The transformer has been analyzed using a simplified lumped circuit model. It is found that a fast rise time requires low leakage inductance and low distributed capacitance and can be realized by reducing the number of secondary turns, but it produces larger pulse droop and core size. After making a tradeoff among these parameters carefully, a conventional pulse transformer with a rise time of 250ns and pulse droop of 3.6% has been designed and built. The transmission characteristics and pulse time-response were measured. The data were compared with the model. The agreement with the model was good when the measured values were used in the model simulation. The results of the high voltage tests are also presented

  19. Laser-Induced Damage with Femtosecond Pulses

    Science.gov (United States)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  20. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....