WorldWideScience

Sample records for pulse radiolytic studies

  1. Iron hexacyanide/cytochrome-C - intramolecular electron transfer and binding constants - (pulse radiolytic study). Progress report

    International Nuclear Information System (INIS)

    Ilan, Y.; Shafferman, A.

    Internal oxidation and reduction rates of horse cytochrome-c in the complexes, CII.Fe/sup III/(CN) -3 6 and CIII.Fe/sup II/(CN) -4 6 , are 4.6.10 4 s -1 and 3.3.10 2 s -1 , respectively. The binding sites of the iron hexacyanide ions on either CII or CIII are kinetically almost indistinguishable; binding constants range from 0.87.10 3 to 2.10 3 M -1 . The present pulse radiolytic kinetic data are compared with that from N.M.R, T-jump and equilibrium dialysis studies

  2. A pulse radiolytic study of some radiosensitizing and radioprotective substances

    International Nuclear Information System (INIS)

    Sjoeberg, L.

    1981-01-01

    The one-electron reduction potentials for substituted nitroimidazoles and nitrobenzenes in aqueous solution have been correlated to their electron affinities calculated by the semiempirical quantum mechanical method HAM/3. This procedure implies the validity of a Hammet like equation for the substances studied. Glutathione has been shown to compete with oxygen for radiation induced radicals. Hence the reaction of the hydroxyl radical with glutathione in neutral and alkaline aqueous solution was investigated in some detail. A reaction scheme involving a pH dependent formation of thiyl, and carbon centered radicals is given. (Auth.)

  3. Pulse and gamma radiolytic studies of Ag, Cd and mixed clusters in aqueous solutions of carboxymethyl cellulose and gelatin

    International Nuclear Information System (INIS)

    Kapoor, Sudhir; Gopinathan, C.

    1996-01-01

    Pulse and gamma radiolytic studies in aqueous solutions of Ag, Cd and mixed clusters were carried out in carboxymethylcellulose (CMC) or gelatin. The reaction rate of e aq - with Ag + is lower in the presence of CMC or gelatin and oligomeric clusters of silver, Cd and mixed clusters get stabilized in their presence. (author). 2 refs., 2 figs

  4. Pulse radiolytic study of alpha-tocopherol radical mechanisms in ethanolic solution

    International Nuclear Information System (INIS)

    Jore, D.; Patterson, L.K.; Ferradini, C.

    1986-01-01

    Pulse radiolytic studies of alpha-tocopherol (alpha TH) oxidation-reduction processes were carried out with low doses (5 Gy) of high-energy electrons in O 2 -, N 2 -, and air-saturated ethanolic solutions. Depending on the concentration of oxygen in solution, two different radicals, A . and B ., were observed. The first, A ., was obtained under N 2 and results from alpha TH reaction with solvated electron (k alpha TH + e-solv = 3.4 X 10(8) mol-1 liter s-1) and with H 3 C-CH-OH, (R.) (k alpha TH + R. = 5 X 10(5) mol-1 liter s-1). B., observed under O 2 , is produced by alpha TH reaction with RO 2 . peroxyl radicals (k alpha TH + RO 2 . = 9.5 X 10(4) mol-1 liter s-1)

  5. Fast repair of oxidizing OH adducts of DNA by hydroxycinnamic acid derivatives. A pulse radiolytic study

    International Nuclear Information System (INIS)

    Yue Jiang; Lin Weizhen; Yao Side; Lin Nianyun; Zhu Dayuan

    1999-01-01

    Using pulse radiolytic techniques, it has been demonstrated that the interactions of oxidizing OH adducts of DNA (ssDNA and dsDNA), polyA and polyG with hydroxycinnamic acid derivatives proceed via an electron transfer process (k=5-30x10 8 dm 3 mol -1 s -1 ). In addition, the rates for fast repair of OH adducts of dAMP, polyA and DNA (ssDNA and dsDNA) are slower than the corresponding rates for the rest OH adducts of DNA constituents. The slower rates for repair of oxidizing OH adducts of dAMP may be the rate determining step during the interaction of hydroxycinnamic acid derivatives with OH adducts of DNA containing the varieties of OH adducts of DNA constituents

  6. The chemiluminescence of luminol in aqueous solutions, a pulse radiolytic study

    International Nuclear Information System (INIS)

    Lind, J.

    1980-01-01

    The mechanism of chemiluminescence was studied when the luminol radical and superoxide were generated simultaneously. Hydroperoxide was formed at the first reaction step with a pKa value between 11 and 12. The dissociated form was found to undergo a monomolecular reaction leading to light generation and having a rate constant > 2 x 10 5 s -1 . The protonated form had the rate constant of approx. 2000 s -1 and formed a product which absorbed around 390 nm without light emission. The reaction of the two-electron oxidation product of luminol, 5-aminophthalazine-1, 4 dione (azaquinone), with hydrogenperoxide was stoichiometrically equivalent to the recombination of superoxide with the luminol radical. The pulseradiolytic generation of the chlorinedioxide radical ClO 2 in aqueous solution of sodium chlorite is described, and the oxidation of luminol by ClO 2 in two steps is reported: 1. Radical adducts are formed. 2. The reaction of ClO 2 x radical with the adduct to form azaquinone. The chemiluminescent reaction between the azaquinone and hydrogenperoxide consists of a second order reaction between HO 2 and the azaquinone to form a hydroperoxide followed by a monomolecular rearrangement of the dissociated form of the latter. Its acidbase equilibrium has a pKa of 10.6. A nitrogencentered structure is ascribed to the hydroperoxide formed by cross-recombination of the luminolradical and superoxide while the reaction between HO 2 and azaquinone yields a carboncentered hydroperoxide. The existence of two different emitters is evidenced by the following observations. 1. A slight difference in chemiluminescence spectra. 2. The formation of an endproduct with pKa approx. 10.2 in the luminolradical superoxide system. 3. The formation of an endproduct which acts as an efficient radial scavenger in the luminol radical superoxide system. (G.B.)

  7. Contribution to the study of solvated electrons in water and alcohols and of radiolytic processes in organic carbonates by picosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Torche, Faycal

    2012-01-01

    This work is part of the study area of the interaction of radiation with polar liquids. Using the picosecond electron accelerator ELYSE, studies were conducted using the techniques of pulse radiolysis combined with absorption spectrophotometry Time-resolved in the field of a picosecond. This work is divided into two separate chapters. The first study addresses the temporal variation of the radiolytic yield of solvated electron in water and simple alcohols. Due to original detection system mounted on the accelerator ELYSE, composed of a flash lamp specifically designed for the detection and a streak-camera used for the first time in absorption spectroscopy, it was possible to record the time-dependent radiolytic yields of the solvated electron from ten picoseconds to a few hundred nanoseconds. The scavenging of the electron solvated by methyl viologen, was utilized to reevaluate the molar extinction coefficient of the absorption spectrum of solvated electron in water and ethanol from isobestic points which corresponds to the intersection of the absorption spectra of solvated electron which disappears and methyl viologen which is formed during the reaction. The second chapter is devoted to the study of liquid organic carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC) and propylene carbonate (PC). This family of carbonate which compose the electrolytes lithium batteries, has never been investigated by pulse radiolysis. The studies were focused on the PC in the light of these physicochemical characteristics, including its very high dielectric constant and its strong dipole moment of 4.9 D. The first results were obtained on aqueous solutions containing propylene carbonate to observe the reactions of reduction and oxidation of PC by radiolytic species of water (solvated electron and OH radicals). Then, after the identification (spectral and kinetic) of the species formed by interaction with the OH radical as the PC* radical resulting from the

  8. Pulse radiolytic study of the oxidation reaction of uric acid in presence of bovine serum albumin: evidence of possible complex formation in the transient state

    International Nuclear Information System (INIS)

    Adhikari, S.; Gopinathan, C.

    1996-01-01

    The pulse radiolytic and spectrophotometric study of uric acid in presence of bovine serum albumin (BSA) has been carried out. In the spectrophotometric study there is no evidence for ground state interaction between BSA and uric acid. The reaction of CCl 3 OO . radical with uric acid produces a transient having absorption maximum at 330 nm and that with BSA produces transient having absorption maximum at 410 nm. In a composition of equal concentration of uric acid and BSA the CCl 3 OO . radical produces a transient absorption spectrum which shows two peaks at 330 nm and 350 nm and a shoulder at 410 nm. The peak at 350 nm is ascribed due to weak complex formation between BSA and uric acid radicals. The rate constant of CCl 3 OO . radical with uric acid increases with the increase in BSA concentration which is explained as protection of BSA by uric acid from radical attack. (author). 4 refs., 2 figs., 1 tab

  9. Pulse-radiolytic investigations of catechols and catecholamines

    International Nuclear Information System (INIS)

    Bors, W.; Saran, M.; Michel, C.; Lengfelder, E.; Fuchs, C.; Spoettl, R.

    1975-01-01

    Adrenaline (epinephrine), adrenochrome and C 4 -substituted catechol model compounds were pulse-irradiated in aqueous neutral and alkaline solutions. Transient spectra are reported after oxidizing adrenaline and reducing adrenochrome. All species appearing during the 20 msec interval after the pulse have been identified: the OH adduct with an absorption maximum at 300 to 310 nm, the semiquinone (at 245 nm), and adrenaline quinone (at 340 nm). The reaction of superoxide anions (O 2 - ) with adrenaline was less efficient, compared with OH radicals. A novel oxidation product, derived from the semiquinone and O 2 - , has been identified as the 4-hydroxy-3,6-dioxo derivate. The pulse-radiolytic reduction of adrenochrome by hydrated electrons (esub(aq) - ) yielded the semiquinone of adrenochrome (absorbing at 470 nm), which subsequently decayed by a second-order process. The dismutation products leucoadrenochrome (absorbing at 300 nm, pH 9.8) and the adrenochrome tautomer (absorbing at 375 nm) were unstable, forming a 5,6-dihydro-N-methyl indole and regenerating adrenochrome. (author)

  10. Role of radiolytically generated species in radiation induced polymerization of sodium p-styrene sulphonate (SSS) in aqueous solution: Steady state and pulse radiolysis study

    International Nuclear Information System (INIS)

    Bhardwaj, Y.K.; Mohan, H.; Sabharwal, S.; Majali, A.B.

    2000-01-01

    Radiation induced polymerization of sodium p-styrene sulphonate (SSS) in aqueous solution has been investigated by steady state and pulse radiolysis techniques. Effect of dose, dose rate, monomer concentration, pH and ambient conditions on polymerization was investigated. The reactions of primary radicals of water radiolysis such as OH radical, e - aq , H atom, O· - and some oxidizing radicals like N· 3 , Cl· - 2 ,Br· - 2 , and reducing specie like CO· - 2 with SSS have also been investigated. SSS reacts with OH radical with a rate constant of 5.9x10 9 dm 3 mol -1 s -1 at pH 6.3. The results indicate that ∼83% of OH radicals undergo electron transfer reaction resulting in a cation radical species while remaining ∼17% react via addition reaction. The hydrated electron reacts with SSS with a rate constant 1.3x10 10 dm 3 mol -1 s -1 to form an anion that undergoes fast protonation to form H-adduct at pH 6.3. At high pH (>10) the anion is able to transfer electron to methyl vilogen and p-nitro aceto phenone (p-NAP) where as H-adduct is unable to transfer electron. At pH ∼1 H atom reaction with SSS is diffusion controlled with a rate constant of 5x10 9 dm 3 mol -1 s -1 and results in formation of H adduct. It was seen that anion reacts with solute an order faster than cation generated radiolytically indicating anionic initiation of polymerization of SSS. Molecular weight of the polymer formed by radiation polymerization, determined by viscosity measurement, are of the order of 10 7 and higher molecular weight polymers are obtained at lower dose rates. In presence of a crosslinking agent gelation of polymer is much faster than the monomer and a polymer concentration ∼20% is most efficiently crosslinked. (author)

  11. Radiolytic studies of the cumyloxyl radical in aqueous solutions

    International Nuclear Information System (INIS)

    Neta, P.; Dizdaroglu, M.; Simic, M.G.

    1984-01-01

    Formation and reactions of the cumyloxyl radical in aqueous solutions were studied by steady-state and pulse radiolytic techniques. Cumene hydroperoxide reacts with esub(aq)sup(-) (k = 4.4x10 9 M -1 s -1 ) to yield the cumyloxyl radical. The spectrum recorded after the pulse indicates formation of a species absorbing at 250 nm. This product was identified as acetophenone, which is formed by the fragmentation of the cumyloxyl radical. By comparison of the pseudo-first-order rates of esub(aq)sup(-) decay at 600 nm with the rate of production of acetophenone at 245 nm at increasing concentrations of cumene hydroperoxide, it was possible to derive a rate constant of 1.0x10 7 s -1 for the cleavage of cumyloxyl to acetophenone and methyl radical. This value is higher than that measured previously in organic solvents (1x10 6 s -1 ), as expected. HPLC analysis of the radiation products acetophenone and cumyl alcohol permitted determination of rate constants for hydrogen abstraction by the cumyloxyl radical, in competition with the fragmentation. The rate constants for H abstraction from i-PrOH, EtOH, and MeOH by CmO were found to be 9.9x10 6 , 3.8x10 6 , and 8.5x10 5 M -1 s -1 , respectively

  12. Potential repair of free radical adducts of dGMP and dG by a series of reductants. A pulse radiolytic study

    International Nuclear Information System (INIS)

    O'Neill, P.; Chapman, P.W.

    1985-01-01

    Using the technique of pulse radiolysis, it has been demonstrated that the interaction of hydroxyl-radical adducts of dG and dGMP with a series of reductants with different oxidation potentials at pH 7.0-7.4 proceeds via an electron transfer process (k approx. 1.4-34 x 10 8 dm 3 mol -1 s -1 ). The one-electron oxidation of dGMP (dG) by Br2-anion radicals was shown to result in the formation of a species, the properties of which are similar to those of the OH-radical adduct of dGMP with oxidizing properties based upon both spectral and kinetic information. The nature of the dGMP species produced on interaction with Br2-anion radicals to produce specific base damage. The implications of these findings are presented in terms of potential free radical repair of hydroxyl radical damage and of synergistic effects whereby one reductant may be regenerated at the expense of another reductant. (author)

  13. Pulse radiolytic and electrochemical investigations of intramolecular electron transfer in carotenoporphyrins and carotenoporphyrin-quinone triads

    International Nuclear Information System (INIS)

    Land, E.J.; Lexa, D.; Bensasson, R.V.; Gust, D.; Moore, T.A.; Moore, A.L.; Liddell, P.A.; Nemeth, G.A.

    1987-01-01

    Thermodynamic and kinetic aspects of intramolecular electron-transfer reactions in carotenoporphyrin dyads and carotenoid-porphyrin-quinone triads have been studied by using pulse radiolysis and cyclic voltammetry. Rapid (<1 μs) electron transfer from carotenoid radical anions to attached porphyrins has been inferred. Carotenoid cations, on the other hand, do not readily accept electrons from attached porphyrins or pyropheophorbides. Electrochemical studies provide the thermodynamic basis for these observations and also allow estimation of the energetics of photoinitiated two-step electron transfer and two-step charge recombination in triad models for photosynthetic charge separation

  14. Pulse radiolytic and spectrophotometric investigation of the binding of bilirubin to bovine serum albumin

    International Nuclear Information System (INIS)

    Adhikari, S.; Guha, S.N.; Gopinathan, C.

    1994-01-01

    Bilirubin (BR) exhibits marked change in its absorption properties in the presence of bovine serum albumin (BSA). The λ max of BR observed at 440 nm is red shifted by about 20 nm with 8% increase in band intensity when BSA is present in the matrix. Medium polarity and salt effects were also studied in this system and it was inferred that BR is bound to BSA to form a complex, which becomes unstable at high salt concentration or in a medium of low dielectric constant such as water-alcohol mixture. Pulse radiolysis study of this system employing CO 2 .- radical revealed that BR blocks the sites of CO 2 .- attack in the BSA molecule. (author). 3 refs., 2 figs

  15. Valence isomerization of hexamethyl(dewar benzene) radical cation. Pulse radiolytic investigation

    International Nuclear Information System (INIS)

    Gebicki, J.; Marcinek, A.; Mayer, J.

    1989-01-01

    Organic radical ions are important intermediates in a wide variety of electron-transfer reactions. Both the steady-state and time-resolved techniques have been extensively applied to probe various aspects of their chemistry. We have recently established that low-temperature pulse radiolysis can be successfully applied to the kinetic study of radical ion transformations with very low activation barriers. The target of the present investigation is the hexamethyl(Dewar benzene) (HMDB)-hexamethylbenzene (HMDB) system. Studies by the CIDNP technique indicated the presence of two distinguishable radical cations in the system HMDB-HMB. This view has not been supported by a nanosecond spectroscopic observation which failed to reveal any evidence for a radical cation other than HMB sm-bullet+ . The aim of this work is to present spectroscopic evidence for two different radical cations HMDB sm-bullet+ -HMB sm-bullet+ and the activation barrier for their interconversion

  16. Pulse-radiolytic investigation of the reduction of titanium(III) ions in aqueous solutions

    International Nuclear Information System (INIS)

    Micic, O.I.; Nenadovic, M.T.

    1979-01-01

    The absorption spectrum and decay kinetics of intermediates formed by the reaction of titanium(III) ions with H atoms, hydrated electrons, and carboxyl radicals have been studied in aqueous solution using the pulse-radiolysis technique. The product of the reaction with H atoms in acid solution is a Ti 3+ -H hydride intermediate which decomposes by a first-order process with a half-life of ca. 3 s. Titanium(II) is formed by reaction with hydrated electrons and CO 2 H radicals. The absorption spectrum of titanium(II) and the kinetics of its reactions are reported and discussed. The formation of molecular hydrogen by reaction of Ti 2+ with water is suppressed by the other solutes in the solutions. Titanium(III) reacts with CO 2 H, CH 2 CO 2 H, and CH(CO 2 H) 2 radicals to give titanium-radical complexes. (author)

  17. Pulse radiolytic one-electron oxidation of some dihydroxy-substituted anthraquinones

    International Nuclear Information System (INIS)

    Pal, H.; Palit, D.K.; Mukherjee, T.; Mittal, J.P.

    1992-01-01

    The spectroscopic characteristics and the kinetic parameters associated with the transients formed on one-electron oxidation of quinizarin (1,4-dihydroxy-9,10-anthraquinone), quinizarin 2- and 6-sulfonates, 1,5-dihydroxy-9,10-anthraquinone and 1,8-dihydroxy-9,10-anthraquinone have been studied by pulse radiolysis and kinetic spectrophotometric techniques, using OH . , O .- , N 3 . , Br 2 .- and . CH 2 CHO as the oxidising radicals. The pK a and the disproportionation equilibria of the semi-oxidised quinones have been studied for the water-soluble sulfonates. In contrast to the complex decay of the semi-oxidised naphthazarin (5,8-dihydroxy-1,4-naphtho-quinone), the semi-oxidised anthraquinone derivatives decay by simple second-order kinetics. The pK a values of the latter are also much higher (ca. 8) compared to the former (ca. <4). The differences observed are attributed to the loss in symmetry in the free radical structures of the semi-oxidised anthraquinone derivatives. (author)

  18. Radiolytic oxidation

    International Nuclear Information System (INIS)

    Burns, W.G.; Ewart, F.T.; Hobley, J.; Smith, A.J.; Walters, W.S.; Williams, S.J.

    1991-01-01

    Work under the Radiolytic Oxidation Contract from 1986 until April 1989 is reported. The effects of alpha- and gamma-irradiation on the chemistries of plutonium, neptunium and technetium, under conditions representative of the near fields of intermediate and high level waste repositories, were investigated. Gamma-radiolysis of Np (IV) results in oxidation in solutions below pH 12. Solutions of Tc (VII) are reduced to Tc (IV) by gamma-irradiation in contact with blast furnace slag/ordinary Portland cement under an inert atmosphere but not when in contact with pulverized fuel ash/ordinary Portland cement. Tc (IV) is shown to be susceptible to oxidation by the products of the alpha-radiolysis of water. The results of 'overall effects' experiments, which combined representative components of typical ILW or HLW near fields, supported these observations and also showed enhanced plutonium concentrations in alpha-irradiated, HLW simulations. Mathematical models of the behaviour of plutonium and neptunium during gamma-radiolysis have been developed and indicate that oxidation to Pu (VI) is possible at dose rates typical of those expected for HLW. Simulations at ILW dose rates have indicated some effect upon the speciation of neptunium. Laboratory studies of the gamma-irradiation of Np (IV) in bentonite-equilibrated water have also been modelled. Computer code used: PHREEQE, 8 Figs.; 48 Tabs.; 38 refs

  19. Pulse radiolytic reduction of amino and hydroxy disubstituted anthraquinones (Preprint no. RC-15)

    International Nuclear Information System (INIS)

    Pal, H.; Palit, D.K.; Mukherjee, T.; Mittal, J.P.

    1991-01-01

    One-electron reduction of 1-amino-4-hydroxy-9, 10-anthraquinone (AHAQ) and 1,4-diamino-9, 10-anthraquinone (DAAQ) in various matrices has been investigated by electron pulse radiolysis. Spectroscopic and kinetic parameters, acid dissociation constants (pK a ) of the reduced semiquinone radicals and one-electron reduction potential for AHAQ have been measured. (author). 2 tabs

  20. Pulse radiolytic investigation of the hypoxanthine-xanthine-uric acid system: evidence for transient species

    International Nuclear Information System (INIS)

    Santamaria, J.; Pasquier, C.; Ferradini, C.; Pucheault, J.

    1984-01-01

    The oxidation in aqueous solutions of hypoxanthine into xanthine and xanthine into uric acid by OH radicals has been investigated using pulse radiolysis and fast kinetic absorption spectrophotometry. After hypoxanthine irradiations the spectrum of transient R 1 has been characterized. This radical is formed with a rate constant k/sub (Hyx+OH) = 6.5 x 10 9 M -1 sec -1 and disappears by disproportionation leading to xanthine and hypoxanthine with a rate constant 2K/sub (R 1 + r 1 / = 1.3 x 10 8 M -1 sec - 1 . After xanthine irradiations a radical intermediate R 2 is formed with a rate constant k/sub(X+ OH)/= 5.2 x 10 8 M -1 sec -1 and disappears through a second-order reaction 2K/sub (R 2 + R 2 )/ = 2.0 x 10 8 M -1 sec -1 . Finally, after aeration only uric acid and xanthine are measured

  1. Physicochemical properties and radiolytic degradation studies on tri-iso-amyl phosphate (TiAP)

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasulu, B.; Sivaraman, Nagarajan [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India). Homi Bhabha National Inst.; Suresh, A.; Rajeswari, S.; Ramanathan, N.; Antony, M.P.; Joseph, M. [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India). Chemistry Group

    2017-06-01

    The solvent composed of tri-iso-amyl phosphate (TiAP) in n-dodecane (n-DD) is regarded as a promising candidate for reprocessing of spent fuel. In this context, the radiolytic degradation of a solution of TiAP in n-dodecane was investigated by irradiating the solvent to various absorbed dose levels of γ-radiation. The neat extractant or a solution of extractant in n-dodecane was irradiated in the presence of nitric acid. Physicochemical properties such as density, viscosity and interfacial tension (IFT) were measured for unirradiated and irradiated solutions. The extent of degradation was determined by measuring the variation in extraction behavior of U(VI) and Pu(IV) with irradiated solvent systems. Uranium and plutonium retention with irradiated solvents was also measured. The distribution ratio of uranium and plutonium increased with increase in absorbed dose. Effect of alpha degradation was studied by plutonium retention as a function of time using 1.1 M TiAP/n-DD. Laser desorption/ionization mass spectrometric technique was employed to identify the possible radiolytic degradation products. Similar studies were also carried out with tri-n-butyl phosphate (TBP) based solvent system under identical experimental conditions and the results are compared.

  2. Pulse radiolysis study of egg white

    International Nuclear Information System (INIS)

    Micic, O.I.; Josimovic, L.; Markovic, V.

    1978-01-01

    Radiolytic processes in egg white in intervals of 0.1μs to several seconds have been studied by the pulse radiolysis technique. The formation and decay of short-lived intermediates and their absorption spectra were observed under varied experimental conditions. The results show that intermediates are produced predominantly in reactions of radicals formed in water radiolysis with egg white proteins. The intermediates decay mainly in the first-order intermolecular processes, though the mechanism of transformations is very complex. (author)

  3. Degradation of phenylethylamine and tyramine by gamma radiation process and docking studies of its radiolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cardozo, Monique; Souza, Stefânia Priscila de; Lima, Keila dos Santos Cople; França, Tanos Celmar Costa; Lima, Antonio Luis dos Santos, E-mail: santoslima@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Departamanto de Engenharia Quimica; Oliveira, Aline Alves [Universidade de Sao Paulo (USP), São Carlos, SP (Brazil). Instituto de Quimica; Rezende, Cláudia Moraes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Quimica

    2014-07-01

    Biogenic amines (BA) are toxic low molecular weight organic bases with aliphatic or heterocyclic structures that can be found in several foods. The consumption of food containing large amounts of BA can result in allergic reactions, rash, vomiting, and hypertension. Besides, BA are also known as possible precursors of carcinogens. In the present study we evaluated the effect of different gamma irradiation doses on methanol and water solutions of the BA phenylethylamine and tyramine. Our best results showed that, at a dose of 5 kGy (SI unit used for measurement of absorbed dose of ionizing radiation), it was possible to reduce the content of these two BA up to 85 and 60%, respectively, suggesting that the use of the irradiation process can be an efficient tool for its degradation. Further docking studies also suggested that the radiolytes produced in the irradiation process have more affinity for the human detoxifying enzymes monoaminoxidases type A and B (MAO-A and MAO-B) being, therefore, less toxic than its precursors. (author)

  4. Pulse radiolytic one-electron reduction of 1,4-amino and hydroxy disubstituted 9,10-anthraquinones

    International Nuclear Information System (INIS)

    Pal, H.; Palit, D.K.; Mukherjee, T.; Mittal, J.P.

    1992-01-01

    The semiquinone radicals produced by one-electron reduction of 1-amino-4-hydroxy-9,10-anthraquinone and 1,4-diamino-9,10-anthraquinone have been studied in aqueous-organic mixed solvent using pulse radiolysis technique. Spectroscopic characteristics, kinetic characteristics of formation and decay, acid/base behaviour and redox characteristics of the semiquinones have been investigated and compared with those of some similar systems studied earlier. It has been shown that the variation of the disproportionation equilibria involving the reduced semiquinone radicals, the parent quinone and the fully reduced hydroquinone with pH of the solutions follow a similar trend as observed in the case of other dihydroxy quinones. Stability of the semiquinones over a broad pH range and their thermodynamic properties have been correlated. (Author)

  5. Parametric studies of radiolytic oxidation of iodide solutions with and without paint: comparison with code calculations

    Energy Technology Data Exchange (ETDEWEB)

    Poletiko, C; Hueber, C [Inst. de Protection et de Surete Nucleaire, C.E. Cadarache, St. Paul-lez-Durance (France); Fabre, B [CISI, C.E. Cadarache, St. Paul-lez-Durance (France)

    1996-12-01

    In case of severe nuclear accident, radioactive material may be released into the environment. Among the fission products involved, are the very volatile iodine isotopes. However, the chemical forms are not well known due to the presence of different species in the containment with which iodine may rapidly react to form aerosols, molecular iodine, hydroiodic acid and iodo-organics. Tentative explanations of different mechanisms were performed through benchscale tests. A series of tests has been performed at AEA Harwell (GB) to study parameters such as pH, dose rate, concentration, gas flow rate, temperature in relation to molecular iodine production, under dynamic conditions. Another set of tests has been performed in AECL Whiteshell (CA) to study the behaviour of painted coupons, standing in gas phase or liquid phase or both, with iodine compounds under radiation. The purpose of our paper is to synthesize the data and compare the results to the IODE code calculation. Some parameters of the code were studied to fit the experimental result the best. A law, concerning the reverse reaction of iodide radiolytic oxidation, has been proposed versus: pH, concentrations and gas flow-rate. This law does not apply for dose rate variations. For the study of painted coupons, it has been pointed out that molecular iodine tends to be adsorbed or chemically absorbed on the surface in gas phase, but the mechanism should be more sophisticated in the aqueous phase. The iodo-organics present in liquid phase tend to be partly or totally destroyed by oxidation under radiation (depending upon the dose delivered). These points are discussed. (author) 18 figs., 3 tabs., 15 refs.

  6. Pulse radiolytic one-electron reduction of 2-hydroxy- and 2,6-dihydroxy-9,10-anthraquinones

    International Nuclear Information System (INIS)

    Pal, Haridas; Mukherjee, Tulsi; Mittal, J.P.

    1994-01-01

    The semiquinone free radicals produced by one-electron reduction of 2-hydroxy-9-10-anthraquinone (2HAQ) and 2,6-dihydroxy-9,10-anthraquinone (26DHAQ) in aqueous formate solution, water-isopropyl alcohol-acetone mixed solvent and isopropyl alcohol have been studied using the pulse radiolysis technique. The absorption characteristics, kinetic parameters of formation and decay, acid-base behaviour and redox characteristics of the semiquinones have been investigated and compared with the corresponding characteristics of a few intramolecularly hydro-bonded anthrasemiquinone derivatives. The non-hydrogen-bonded semiquinones show two pKsub(a) values (4.7 and 10.7 for 2HAQ and 5.4 and 8.7 for 26DHAQ, respectively) within the pH range 1-14, whereas other intramolecularly hydrogen-bonded semiquinones show only one pKsub(a). The one-electron reduction potential (E' 7 ) values for 2HAQ (-440 mV) and 26DHAQ (- 400 mV) are more negative than those of the intramolecularly hydrogen-bonded systems. (Author)

  7. Pulse-radiolytic one-electron reduction of anthraquinone and chloro-anthraquinones in aqueous-isopropanol-acetone mixed solvent

    International Nuclear Information System (INIS)

    Rath, M.C.; Pal, H.; Mukherjee, T.

    1996-01-01

    One-electron reduction of 9,10-anthraquinone and some chloro-anthraquinones and the characteristics of the semiquinones thus formed have been investigated in aqueous-isipropanol-acetone mixed solvent using electron pulse radiolysis technique. Spectroscopic characteristics, kinetic parameters of formation and decay, and the acid/base behaviour of the semiquinones have been investigated. The one-electron reduction potential of the quinones have been measured following electron transfer equilibria with a reference redox system (methyl viologen) and the values thus obtained have been compared with those of some other anthrasemiquinone systems. An analysis of the characteristics of the semiquinones shows that α-chloro substituents adjacent to the C=O group act as electron withdrawing groups. (author)

  8. Radiolytic degradation and stability of polycarbonate

    International Nuclear Information System (INIS)

    Araujo, E.S. de.

    1993-01-01

    The radiolytic stability of polycarbonate was studied using national commercial additives, employed in the photo and thermo-oxidative stabilization of polymers. Among several additives tested only two showed the efficiency to radiolytic protection: one quencher and one radical scavenger. It was derived a linear relation that provides by slope of the straight line the degree of degradation (scissions), G, and the factors of radiolytic protection P (degree of protection) and CE (capture of energy) conferred by radioprotector additive easily. Therefore the method developed in this work (viscosity) to study the molecular degradation and stability of polymers is a simply and precise method. The synergic mixture of two additives (1% of weight total) confers at polycarbonate excellent radiolytic protection of 98% (20 - 40 kGy) reducing the G value of 16.7 to only 0.4. (author). 69 refs, 31 figs, 17 tabs

  9. Radiolytic carbon gasification

    International Nuclear Information System (INIS)

    Shennan, J.V.

    1980-01-01

    A vast body of knowledge has been accumulated over the past thirty years related to the radiolytic oxidation of the graphite moderator in carbon dioxide cooled Reactors. In the last ten years the dominance of the internal pore structure of the graphite in controlling the rate of carbon gasification has been steadily revealed. The object of this paper is to sift the large body of evidence and show how internal gas composition and hence carbon gasification is controlled by the virgin pore structure and the changes in pore structure brought about by progressive radiolytic oxidation. (author)

  10. Electrochemical corrosion studies on a selected carbon steel for application in nuclear waste disposal containers: Influence of radiolytic products on corrosion in brines

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Smailos, E.

    1994-07-01

    In previous corrosion studies, carbon steels were identified as promising materials for the manufacturing of long-lived high-level waste containers that could act as a radionuclide barrier in a rock-salt repository. In the present work, the influence of some important oxidizing radiolytic products generated in gamma irradiated brines on the electrochemical corrosion behaviour of the preselected fine-grained steel TStE 355 was studied. The steel was examined by potentiodynamic and potentiostatic polarization methods at 90 C in a disposal relevant NaCl-rich brine containing radiolytic products such as H 2 O 2 , ClO - , ClO 3 - and ClO 4 - at concentrations between 10 -4 and 10 -2 M/l. The significance of the radiolytic products to steel corrosion depends on their concentration at the metal-brine interface, which in turn, depends on many factors such as the dose rate, the amount of water present in the disposal area, the escape of gases (e.g. H 2 )

  11. Study on the combustion behavior of radiolytically generated hydrogen explosion in small scale annular vessels at the reprocessing plant

    International Nuclear Information System (INIS)

    Kudo, Tatsuya; Tamauchi, Yoshikazu; Arai, Nobuyuki; Dai, Wenbin; Sakaihara, Motohiro; Kanehira, Osamu

    2017-01-01

    Hydrogen is generated by radiolysis of water, etc. in process vessels in reprocessing plant. Usually, the hydrogen is scavenged by compressed air into vessels to prevent hydrogen explosion. When an earthquake beyond design based occurs, for example, the compressed air may stop and the hydrogen starts accumulating in the vessels, and under this condition, an ignition source might set off hydrogen explosion. Therefore, the explosion derived by the radiolytically generated hydrogen is designated as one of severe accidents on Rokkasho Reprocessing Plant in new regulatory requirements. It is important to understand the combustion behavior of hydrogen explosion inside a vessel for consideration of safety measures against the severe accident, because the influences of detonation are not considered in the design basis of vessels. Especially, the investigations about the combustion behavior which considered influence of interior obstacles inside the vessel are not performed yet. In order to investigate the combustion behavior comprehensively, explosion experiment, combustion analysis and structural analysis are carried out using the representative vessels (small scale annular vessel, small scale plate vessel, large scale annular vessel and large scale cylindrical vessel) selected from Rokkasho Reprocessing Plant. In this paper, the results of experiments and analysis of small scale annular vessel (as one of representative vessel, imitated a pulsed column in the reprocessing plant) are reported. As imitated vessels, three vessels are manufactured with different interior obstacle arrangements as follows, A) cylindrical obstacles are faithfully reproduced and are arranged based on the actual vessel, B) cylindrical obstacles are arranged more densely than the actual vessel, and C) there are no obstacles inside the vessel. Experiments of hydrogen explosion are performed under condition of stoichiometric hydrogen-air ratio (premixed hydrogen-air is used). As a result of

  12. Photolytic and radiolytic studies of redox processes in aqueous solutions of acridine yellow

    International Nuclear Information System (INIS)

    Micic, O.I.; Nenadovic, M.T.

    1981-01-01

    Irradiation by visible light of an aqueous solution containing acridine yellow as a sensitizer and EDTA or cysteine as an electron donor leads to the formation of reduced species which can later reduce several different electron acceptors. Methyl viologen, europium(III) salicylate, europium(III) EDTA complex or vanadium(III) salicylate were used as electron acceptors. In the presence of a catalyst reduction of water is accompanied by the evolution of hydrogen. The kinetics and mechanism of redox reactions occurring in such a system have been explored by pulse radiolysis. Optimum conditions for water reduction under continuous illumination are analysed and implications for an energy conversion system discussed. (author)

  13. Radiolytic decomposition of 4-bromodiphenyl ether

    International Nuclear Information System (INIS)

    Tang Liang; Xu Gang; Wu Wenjing; Shi Wenyan; Liu Ning; Bai Yulei; Wu Minghong

    2010-01-01

    Polybrominated diphenyl ethers (PBDEs) spread widely in the environment are mainly removed by photochemical and anaerobic microbial degradation. In this paper, the decomposition of 4-bromodiphenyl ether (BDE -3), the PBDEs homologues, is investigated by electron beam irradiation of its ethanol/water solution (reduction system) and acetonitrile/water solution (oxidation system). The radiolytic products were determined by GC coupled with electron capture detector, and the reaction rate constant of e sol - in the reduction system was measured at 2.7 x 10 10 L · mol -1 · s -1 by pulsed radiolysis. The results show that the BDE-3 concentration affects strongly the decomposition ratio in the alkali solution, and the reduction system has a higher BDE-3 decomposition rate than the oxidation system. This indicates that the BDE-3 was reduced by effectively capturing e sol - in radiolytic process. (authors)

  14. The transient reaction characteristic of piperonal and anthraquinone derivative: a pulse radiolytic study

    International Nuclear Information System (INIS)

    Ma Jianhua; Lin Weizhen; Wang Wenfeng; Yao Side

    2006-01-01

    Piperonal belongs to naturally organic compound and anthraquinone-2-sulfate is a important anthraquinone derivative. In this work, the transient reaction characteristic of piperonal and anthraquinone derivative has been investigated. The transient absorption spectra of the product from electron transfer reaction between piperonal and anthraquinone-2-sulfate was obtained, the electron transfer between electron donor and acceptor was observed directly. (authors)

  15. Pulse radiolytic study of the reaction OH + O3 in aqueous medium

    International Nuclear Information System (INIS)

    Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E.J.

    1984-01-01

    In slightly alkaline solution the ozonide radical ion, O 3 - , forms as a product of the hydroxyl radical reaction with ozone. For each O 3 - formed, two O 3 molecules are consumed. In acid solution the product of this reaction is the perhydroxyl radical, HO 2 , formed from one O 3 molecule. Our results are consistent with the gas-phase reaction where the products are HO 2 and O 2 . A rate constant of (1.1 +/- 0.2) x 10 8 dm 3 mol -1 s -1 is found for the reaction OH + O 3 → HO 2 + O 2 . This rate constant was obtained by three systems, by buildup of O 3 - in basic solutions, by competition of the OH radical with the carbonate ion, and directly by O 3 consumption in acid solution. The rate constant for the reaction of HO 2 with O 3 is very low, 4 dm 3 mol -1 s -1 . At pH greater than or equal to 1, HO 2 reacts with O 3 preferentially in its dissociated form, O 2 - . No spectroscopic evidence has been found for the HO 3 and HO 4 free-radical intermediates. 24 references, 4 figures, 2 tables

  16. Studies on the radiation chemistry of biomolecules in aqueous solution with specific objective of minimizing their radiolytic degradation. Coordinated programme for Asia and the Pacific Region on radiation sterilization practices significant to local medical supplies and conditions

    International Nuclear Information System (INIS)

    Narayana Rao, K.

    1979-01-01

    As part of a study of radiolytic degradation of pharmaceuticals during radiosterilization, the basic radiation chemistry of the B-group vitamins, nicotinamide, pyridoxin, riboflavin and thiamine, and the reaction of hydrogen peroxide with these same materials has been investigated. The various aspects studied were - radiolysis under controlled conditions, effects of phase, temperature, pH and nature and concentration of additives. Some of the conclusions are: 1) with oxygen saturated aqueous solutions containing glucose, the radiolytic degradation of the vitamins is reduced: 2) results a similar for N 2 O saturated aqueous solutions; 3) in glucose-containing solutions, the protective effect is considerably modified at higher temperatures; and 4) irradiation of air-saturated aqueous solutions in the frozen state leads to reduced decomposition. It is concluded that in the presence of oxygen, in frozen matrices at low temperature, it appears possible to reduce the radiolytic breakdown of vitamins to low levels

  17. Studying radiolytic ageing of nuclear power plant electric cables with FTIR spectroscopy.

    Science.gov (United States)

    Levet, A; Colombani, J; Duponchel, L

    2017-09-01

    Due to the willingness to extend the nuclear power plants length of life, it is of prime importance to understand long term ageing effect on all constitutive materials. For this purpose gamma-irradiation effects on insulation of instrumentation and control cables are studied. Mid-infrared spectroscopy and principal components analysis (PCA) were used to highlight molecular modifications induced by gamma-irradiation under oxidizing conditions. In order to be closer to real world conditions, a low dose rate of 11Gyh -1 was used to irradiate insulations in full cable or alone with a dose up to 58 kGy. Spectral differences according to irradiation dose were extracted using PCA. It was then possible to observe different behaviors of the insulation constitutive compounds i.e. ethylene vinyl acetate (EVA), ethylene propylene diene monomer (EPDM) and aluminium trihydrate (ATH). Irradiation of insulations led to the oxidation of their constitutive polymers and a modification of filler-polymer ratio. Moreover all these modifications were observed for insulations alone or in full cable indicating that oxygen easily diffuses into the material. Spectral contributions were discussed considering different degradation mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Radiolytic decomposition of dioxins in liquid wastes

    International Nuclear Information System (INIS)

    Zhao Changli; Taguchi, M.; Hirota, K.; Takigami, M.; Kojima, T.

    2006-01-01

    The dioxins including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are some of the most toxic persistent organic pollutants. These chemicals have widely contaminated the air, water, and soil. They would accumulate in the living body through the food chains, leading to a serious public health hazard. In the present study, radiolytic decomposition of dioxins has been investigated in liquid wastes, including organic waste and waste-water. Dioxin-containing organic wastes are commonly generated in nonane or toluene. However, it was found that high radiation doses are required to completely decompose dioxins in the two solvents. The decomposition was more efficient in ethanol than in nonane or toluene. The addition of ethanol to toluene or nonane could achieve >90% decomposition of dioxins at the dose of 100 kGy. Thus, dioxin-containing organic wastes can be treated as regular organic wastes after addition of ethanol and subsequent γ-ray irradiation. On the other hand, radiolytic decomposition of dioxins easily occurred in pure-water than in waste-water, because the reaction species is largely scavenged by the dominant organic materials in waste-water. Dechlorination was not a major reaction pathway for the radiolysis of dioxin in water. In addition, radiolytic mechanism and dechlorinated pathways in liquid wastes were also discussed. (authors)

  19. Radiolytic graphite oxidation revisited

    International Nuclear Information System (INIS)

    Minshall, P.C.; Sadler, I.A.; Wickham, A.J.

    1996-01-01

    The importance of radiolytic oxidation in graphite-moderated CO 2 -cooled reactors has long been recognised, especially in the Advanced Gas-Cooled Reactors where potential rates are higher because of the higher gas pressure and ratings than the earlier Magnox designs. In all such reactors, the rate of oxidation is partly inhibited by the CO produced in the reaction and, in the AGR, further reduced by the deliberate addition of CH 4 . Significant roles are also played by H 2 and H 2 O. This paper reviews briefly the mechanisms of these processes and the data on which they are based. However, operational experience has demonstrated that these basic principles are unsatisfactory in a number of respects. Gilsocarbon graphites produced by different manufacturers have demonstrated a significant difference in oxidation rate despite a similar specification and apparent equivalence in their pore size and distribution, considered to be the dominant influence on oxidation rate for a given coolant-gas composition. Separately, the inhibiting influence of CH 4 , which for many years had been considered to arise from the formation of a sacrificial deposit on the pore walls, cannot adequately be explained by the actual quantities of such deposits found in monitoring samples which frequently contain far less deposited carbon than do samples from Magnox reactors where the only source of such deposits is the CO. The paper also describes the current status of moderator weight-loss predictions for Magnox and AGR Moderators and the validation of the POGO and DIFFUSE6 codes respectively. 2 refs, 5 figs

  20. Polycarbonate radiolytic degradation and stabilization

    International Nuclear Information System (INIS)

    Araujo, E.S. de

    1994-01-01

    Polycarbonate Durolon, useful for medical supplies fabrication, is submitted to gamma radiation for sterilization purposes. Scissions in main chain occur, in carbonyl groups, producing molecular degradations and yellowness. The radiolytic stabilization is obtained through additive to the polymer. In this work some degradation and stabilization aspects are presented. (L.C.J.A.). 7 refs, 7 figs, 2 tabs

  1. Picosecond pulse radiolysis study of primary reactions in solutions

    International Nuclear Information System (INIS)

    El-Omar, Abdel Karim

    2013-01-01

    Following the discovery of ionizing radiations and their chemical effects, it was important to study and comprehend the formation mechanisms of short lived free radicals and molecular products. In order to perform such studies, researchers and research groups worked on developing tools allowing both formation and detection of those species at short time scales. Nowadays, pulse radiolysis imposed itself as a fundamental and efficient tool allowing scientists to probe chemical effects as well as reaction mechanisms in studied media. The Laboratoire de Chimie Physique d'Orsay 'LCP' is an interdisciplinary laboratory hosting the platform of fast kinetics known as 'ELYSE'. Due to its femtosecond laser and its picosecond electron accelerator, we have the possibility to study chemical effects of ionizing radiations interaction with media at ultrashort times up to ∼5 ps.Knowing that we are interested in primary reactions induced in aqueous media by ionizing radiations, ELYSE represents the essential tool in performing our studies. The obtained results concern:- First direct determination of hydroxyl radical 'HO*' radiolytic yield as function of time at picosecond time scale;- Direct effect of ionizing radiation in highly concentrated aqueous solutions as well as investigation of the ultrafast electron transfer reaction between solute molecules and positive holes 'H 2 O*+' formed upon water radiolysis;- Study at room temperature of electron transfer reaction between solvated electron (electron donor) and organic solutes (electron acceptors) en viscous medium;- Study at room temperature of electron's solvation dynamics in ethylene glycol and 2-propanol. (author)

  2. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  3. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  4. Radiolytic hydrogen production in the subseafloor basaltic aquifer

    Directory of Open Access Journals (Sweden)

    Mary E Dzaugis

    2016-02-01

    Full Text Available Hydrogen (H2 is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U, thorium (232Th and potassium (40K. To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt concentrations (which can vary between eruptive events and post-emplacement alteration. In our samples, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may

  5. Reactivity of OH radicals with chlorobenzoic acids-A pulse radiolysis and steady-state radiolysis study

    DEFF Research Database (Denmark)

    Zona, Robert; Solar, Sonja; Getoff, Nikola

    2010-01-01

    The reactions of OH radicals with 2-, 3-, 4-chlorobenzoic acids (ClBzA) and chlorobenzene (ClBz), k(OH+substrates)=(4.5−6.2)×109 dm3 mol−1 s−1, have been studied by pulse radiolysis in N2O saturated solutions. The absorption maxima of the OH-adducts were in the range of 320−340 nm. Their decay wa...... to degradation. The order for the efficiency of dehalogenation was 4->2->3-ClBzA. Several primary radiolytic products could be detected by HPLC. To evaluate the toxicity of final products a bacterial bioluminescence test was carried out....

  6. Structure elucidation and toxicity analyses of the radiolytic products of aflatoxin B{sub 1} in methanol-water solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Institute of Agro-food Science and Technology of Chinese Academy of Agricultural Sciences, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Graduate School of Chinese Academy of Agricultural Sciences, 12th Zhongguancun South Road, Hai Dian District, Beijing 100081 (China); Xie, Fang [Institute of Agro-food Science and Technology of Chinese Academy of Agricultural Sciences, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Xue, Xiaofeng [Bee Research Institute of Chinese Academy of Agricultural Sciences, 1st Xiangshan North Ditch, Hai Dian District, Beijing 100093 (China); Wang, Zhidong; Fan, Bei [Institute of Agro-food Science and Technology of Chinese Academy of Agricultural Sciences, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Ha, Yiming, E-mail: wxfay2011@hotmail.com [Institute of Agro-food Science and Technology of Chinese Academy of Agricultural Sciences, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China)

    2011-09-15

    Highlights: {yields} Radiolytic products of aflatoxin B{sub 1} were produced under gamma irradiation. {yields} Seven key radiolytic products were structure-elucidated. {yields} Free-radical species in radiolytic solution resulted in the formation of products. {yields} Based on the structure-activity relationship analysis, the toxicity of radiolytic products was significantly reduced compared with that of AFB{sub 1}. {yields} The addition reaction on furan ring double bond was the reason for the reduced toxicity. - Abstract: The identification of the radiolytic products of mycotoxins is a key issue in the feasibility study of gamma ray radiation detoxification. Methanol-water solution (60:40, v/v) spiked with aflatoxin B{sub 1} (AFB{sub 1}; 20 mg L{sup -1}) was irradiated with Co{sup 60} gamma ray to generate radiolytic products. Liquid chromatography-quadruple time-of-flight mass spectrometry was applied to identify the radiolytic products of AFB{sub 1}. Accurate mass and proposed molecular formulas with a high-matching property of more than 20 radiolytic products were obtained. Seven key radiolytic products were proposed based on the molecular formulas and tandem mass spectrometry spectra. The analyses of toxicity and formation pathways were proposed based on the structure of the radiolytic products. The addition reaction caused by the free-radical species in the methanol-water solution resulted in the formation of most radiolytic products. Based on the structure-activity relationship analysis, the toxicity of radiolytic products was significantly reduced compared with that of AFB{sub 1} because of the addition reaction that occurred on the double bond in the terminal furan ring. For this reason, gamma irradiation is deemed an effective tool for the detoxification of AFB{sub 1}.

  7. Photolytic and radiolytic destruction of natural polycyclic mycotoxins

    International Nuclear Information System (INIS)

    Mammadov, Kh. F

    2011-01-01

    Full text: The kinetics of degradation of natural polycyclic toxins in grains and dried fruits under the influence of UV-light and ionizing radiation 60 C and the probability of radiolytic detoxication of these products has been studied for the first time

  8. Hole transfer in DNA studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Majima, T.; Kawai, K.; Takada, T.

    2003-01-01

    Attention has been paid to charge transfer in DNA with respect to oxidation damage of DNA and nano bio-devices such as DNA molecular wire. We report hole transfer in DNA during pulse radiolysis of molecule-conjugated DNA (M-DNA). Direct measurement of the charge transfer in DNA has never been reported due to the low extinction coefficient of nucleobase radical ions and to difficult definition of nucleobases. We have used M-DNA in which M radical cation has enough extinction coefficient and distinct absorption. Radical cation was generated in M-DNA during pulse radiolysis in water, and hole transfer through DNA was monitored by time-resolved transient absorption spectra of the radical cations. Hole was generated in Py-DNA by pulse radiolysis in water. Hole transfer to Py through DNA was monitored by transient absorption of Py'+ at 465 nm. The hole hopping rate (k) from G-region to Py was determined to be 104 s-1 which decreased with intervening A-T base-pairs between Py and G-region. We suppose that G(-H+)-radical and C(+H+) basepair can alive in DNA more than 100 us and that this long lifetime is responsible to the long-distance hole transfer. The dependence of k against the distance between the G-region and Py led to the slope of 0.3 Angstroms-1 which is due to multi-step k with the smaller distance dependence. On the other hand, beta = 0.6 Angstroms-1 was found for the single-step k in DNA. On the basis of pulse radiolytic studied on various molecule-conjugated DNA, we found that hole transfer between two chromophores (A and B)-conjugated DNA increased with decreasing the distance between A and B and was accelerated slightly with increasing the number of Gs of the bridge between A and B, and that k was modulated by the bridged base sequences. We also found that weak distance dependent hole transfer in DNA by adenine hopping mechanism

  9. Modelling of Radiolytical Proceses in Polystyrenic Structures

    International Nuclear Information System (INIS)

    Postolache, C.

    2006-01-01

    The behavior of polystyrene, poly α-methylstyrene and poly β-methylstyrene structures in ionizing fields was analyzed using computational methods. In this study, the primary radiolytic effect was evaluated using a free radical mechanism. Molecular structures were built and geometrical optimized using quantum-chemical methods. Binding energies for different quantum states and peripheral orbitals distribution were determined. Based on obtained results it was proposed an evaluation model of radiolytical processes in polymers in solid phase. Suggested model suppose to distinguish the dominant processes by binding energies values analysis and LUMO peripheral orbital distribution. Computed binding energies analysis of energetically optimized molecular structures in ionized state (charge +1, multiplicity 2) reveals a high similitude of obtained binding energies for ionized states. The same similitude was observed also in case of total binding energies for neutral state (charge 0, multiplicity 1). Analyzed molecular structures can be associated with ionized molecule state right after one electron capture. This fact suggests that the determined stage of radiolitical fragmentation act is intermediate state of ionized molecule. This molecule captured one electron but it had no necessary time for atoms rearrangement in the molecule for new quantum state. This supposition is in accordance with literature, the time period between excitation act and fragmentation act being lower than 10 - 15 seconds. Based on realized model could be explained the behavior differences of polymeric structures in ionizing radiation field. Preferential fracture of main chains in fragmentation poly α-methylstirene can be explained in accordance with proposed model by C-C from main C bonding energies decreasing in the neighboring of quaternary C

  10. Local radiolytic effectiveness of Auger electrons of iodine-125 in benzene-iodine solutions

    International Nuclear Information System (INIS)

    Uenak, P.; Uenak, T.

    1987-01-01

    High radiotoxicity of iodine-125 has been mainly attributed to the local radiolytic effects of Auger electrons on biological systems. In the present study, experimental and theoretical results are compared. The agreement between the experimental and theoretical results explains that the energy absorption of iodine aggregates has an important role in the radiolytic effectiveness of Auger electrons and iodine-125 in benzene-iodine solutions. (author) 18 refs.; 3 figs

  11. A Study of New Pulse Auscultation System

    Directory of Open Access Journals (Sweden)

    Ying-Yun Chen

    2015-04-01

    Full Text Available This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine’s pulsing techniques, where pulse signals at places called “cun”, “guan” and “chi” of the left hand were measured during lifting (100 g, searching (125 g and pressing (150 g actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners’ objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  12. A study of new pulse auscultation system.

    Science.gov (United States)

    Chen, Ying-Yun; Chang, Rong-Seng

    2015-04-14

    This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT) and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine's pulsing techniques, where pulse signals at places called "cun", "guan" and "chi" of the left hand were measured during lifting (100 g), searching (125 g) and pressing (150 g) actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners' objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  13. Gas chromatographic measurement of the radiolytic products of irradiated pork

    International Nuclear Information System (INIS)

    Zhou Yingcai; Wang Xiuying; Xu Peishu; Yuan Bihuai

    1988-01-01

    The radiolytic products of irradiated pork were isolated, analyzed and identified by the techniques of vacuum distillation, GC-MS. The higher boiling point compounds in fat were collected by cold-finger and its lower boiling point compounds were recovered on a short precolumn packed with alumina, and the volatiles of lean pork were collected on a short column packed with TCEP/Chromosovb. Some experimental conditions were studied. 49 compounds were identified. These compounds include hydrocarbons and sulphides etc. (author)

  14. Radiolytic degradation of paracetamol in dilute aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, L [Hungarian Academy of Sciences, Budapest (Hungary). Inst. of Isotopes; Budapest University of Technology and Economics, Budapest (Hungary); Toth, T [Budapest University of Technology and Economics, Budapest (Hungary); Homlok, R; Takacs, E; Wojnarovits, L [Hungarian Academy of Sciences, Budapest (Hungary). Inst. of Isotopes

    2011-07-01

    Complete text of publication follows. Paracetamol or with name acetaminophen is widely used as analgesic and antipyretic drug. Due to its heavy use it is regularly detected in the surface waters. The degradation of the compound formerly was studied in several advanced oxidation processes (UV/H{sub 2}O{sub 2}, UV/TiO{sub 2}, electrochemical oxidation, ozonation). Here we report on the radiolytic degradation. In the experimental work we combined a wide variety of techniques. For the investigation of the intermediates pulse radiolysis, for end-product experiments (decolouration, mineralization) gamma irradiation were used together with UV-Vis spectroscopy, HPLC separation (with diode array and MS-MS detection), chemical oxygen demand, total organic carbon content and toxicity measurements. {sup {center_dot}O}H radicals are the main oxidative species during irradiation. They add to the aromatic ring producing hydroxycyclohexadienyl type radicals. These radicals either transform to hydroxy-paracetamol stable products in several reaction steps, or after water elimination transform to semi-iminoquinone radical. The reaction of hydroxycyclohexadienyl radicals with O{sub 2} yields peroxi radicals. The latter radicals may eliminate HO{sub 2}{sup {center_dot}} or undergo ring opening and transformation, first to different carboxylic acids, and finally (mineralization) to CO{sub 2}, H{sub 2}O and NH{sub 3} or NO{sub 2}. Paracetamol has a relatively low toxicity. In 10{sup -3} mol dm{sup -3} DCF solution after irradiation some products (e.g. hydroquinone, acetamide) are more toxic than paracetamol. By increasing the dose the toxicity suddenly decreases. It seems that the toxic products are highly sensitive to irradiation treatment.

  15. Radiolytic degradation of paracetamol in dilute aqueous solution

    International Nuclear Information System (INIS)

    Szabo, L.; Toth, T.; Homlok, R.; Takacs, E.; Wojnarovits, L.

    2011-01-01

    Complete text of publication follows. Paracetamol or with name acetaminophen is widely used as analgesic and antipyretic drug. Due to its heavy use it is regularly detected in the surface waters. The degradation of the compound formerly was studied in several advanced oxidation processes (UV/H 2 O 2 , UV/TiO 2 , electrochemical oxidation, ozonation). Here we report on the radiolytic degradation. In the experimental work we combined a wide variety of techniques. For the investigation of the intermediates pulse radiolysis, for end-product experiments (decolouration, mineralization) gamma irradiation were used together with UV-Vis spectroscopy, HPLC separation (with diode array and MS-MS detection), chemical oxygen demand, total organic carbon content and toxicity measurements. · OH radicals are the main oxidative species during irradiation. They add to the aromatic ring producing hydroxycyclohexadienyl type radicals. These radicals either transform to hydroxy-paracetamol stable products in several reaction steps, or after water elimination transform to semi-iminoquinone radical. The reaction of hydroxycyclohexadienyl radicals with O 2 yields peroxi radicals. The latter radicals may eliminate HO 2 · or undergo ring opening and transformation, first to different carboxylic acids, and finally (mineralization) to CO 2 , H 2 O and NH 3 or NO 2 . Paracetamol has a relatively low toxicity. In 10 -3 mol dm -3 DCF solution after irradiation some products (e.g. hydroquinone, acetamide) are more toxic than paracetamol. By increasing the dose the toxicity suddenly decreases. It seems that the toxic products are highly sensitive to irradiation treatment.

  16. Evaluate the role of organic acids in the protection of ligands from radiolytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Anneka [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mezyk, Stehpen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterman, Dean [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    In the Advanced TALSPEAK process, the bis(2-ethylhexyl)phosphoric acid (HDEHP) extractant used in the traditional TALSPEAK process is replaced by the extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]). In addition, the aqueous phase complexant and buffer used in traditional TALSPEAK is replaced with the combination of N-(2-hydroxyethyl)ethylenediamine-N,N’,N’-triacetic acid (HEDTA) and citric acid. In order to evaluate the possible impacts of gamma radiolysis upon the efficacy of the Advanced TALSPEAK flowsheet, aqueous and organic phases corresponding to the extraction section of the proposed flowsheet were irradiated in the INL test loop under an ambient atmosphere. The results of these studies conducted at INL, led INL researchers to conclude that the scarcity of values of rate constants for the reaction of hydroxyl radical with the components of the Advanced TALSPEAK process chemistry was severely limiting the interpretation of the results of radiolysis studies performed at the INL. In this work, the rate of reaction of hydroxyl radical with citric acid at several pH values was measured using a competitive pulse radiolysis technique. This report describes those results and is written in completion of milestone M3FT-16IN030102028, the goal of which was to evaluate the role of organic acids in the protection of ligands from radiolytic degradation. The results reported here demonstrate the importance of obtaining hydroxyl radical reaction rate data for the conditions that closely resemble actual solution conditions expected to be used in an actual solvent extraction process. This report describes those results and is written in completion of milestone M3FT-16IN030102028, the goal of which was to evaluate the role of organic acids in the protection of ligands from radiolytic degradation.

  17. Time-dependent radiolytic yields at room temperature and temperature-dependent absorption spectra of the solvated electrons in polyols

    International Nuclear Information System (INIS)

    Lin Mingzhang; Mostafavi, M.; Lampre, I.; Muroya, Y.; Katsumura, Y.

    2007-01-01

    The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol -1 ·m 2 for 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD), respectively. These values are two-third or three-fourth of the value usually reported in the published report. Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution. The temperature dependent absorption spectra of the solvated electron in 12ED, 12PD, and 13PD have been also investigated. In all the three solvents, the optical spectra shift to the red with increasing temperature. While the shape of the spectra does not change in 13PD, a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures. (authors)

  18. Annular pulse column development studies

    International Nuclear Information System (INIS)

    Benedict, G.E.

    1980-01-01

    The capacity of critically safe cylindrical pulse columns limits the size of nuclear fuel solvent extraction plants because of the limited cross-sectional area of plutonium, U-235, or U-233 processing columns. Thus, there is a need to increase the cross-sectional area of these columns. This can be accomplished through the use of a column having an annular cross section. The preliminary testing of a pilot-plant-scale annular column has been completed and is reported herein. The column is made from 152.4-mm (6-in.) glass pipe sections with an 89-mm (3.5-in.) o.d. internal tube, giving an annular width of 32-mm (1.25-in.). Louver plates are used to swirl the column contents to prevent channeling of the phases. The data from this testing indicate that this approach can successfully provide larger-cross-section critically safe pulse columns. While the capacity is only 70% of that of a cylindrical column of similar cross section, the efficiency is almost identical to that of a cylindrical column. No evidence was seen of any non-uniform pulsing action from one side of the column to the other

  19. Radiolytic degradation of chlorinated hydrocarbons in water

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xing-Zheng; Yamamoto, Takeshi [Fukui Univ., Faculty of Engineering, Dept. of Materials Science and Engineering, Fukui (Japan); Hatashita, Masanori [The Wakasa Wan Energy Research Center, Research Dept., Tsuruga, Fukui (Japan)

    2002-11-01

    Radiolytic degradation of chlorinated hydrocarbons (chloroform, trichloroethylene, and tetrachloroethylene) in water was carried out. Water solutions of the chlorinated hydrocarbons with different concentrations were irradiated with {gamma} rays. Concentrations of methane, ethane, CO, CO{sub 2}, H{sub 2}, and O{sub 2} after the irradiation were determined by gas chromatography. Concentration of chloride ion in the irradiated sample was determined by ion chromatography. Experimental results show that radiolytic degradation of the chlorinated hydrocarbon increased with the radiation dose. Methane, ethane, CO{sub 2}, H{sub 2}, and Cl{sup -} concentrations increased with the radiation dose and the sample concentration. On the other hand, O{sub 2} concentration decreased with the radiation dose and the sample concentration. When sample concentration was high, dissolved oxygen might be not enough for converting most of the C atoms in the sample into CO{sub 2}. This resulted in a low decomposition ratio. Addition of H{sub 2}O{sub 2} as an oxygen resource could increase the decomposition ratio greatly. Furthermore, gas chromatography-mass spectroscopy was applied to identify some intermediates of the radiolytic dehalogenation. Radiolytic degradation mechanisms are also discussed. (author)

  20. Understanding the sorption behavior of Pu{sup 4+} on poly(amidoamine) dendrimer functionalized carbon nanotube. Sorption equilibrium, mechanism, kinetics, radiolytic stability, and back-extraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Parveen [Indian Institute of Technology, Himachal Pradesh (India); Sengupta, Arijit [Bahbha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Deb, Ashish Kumar Singha; Ali, S. Musharaf [Bahbha Atomic Research Centre, Mumbai (India). Chemical Engineering Div.; Homi Bhabha National Institute, Mumbai (India); Dasgupta, Kinshuk [Bhabha National Institute, Mumbai (India). Mechanical Metallurgy Div.

    2017-07-01

    Poly(amidoamine) dendrimer functionalized carbon nanotube was demonstrated as highly efficient sorbent of the Pu{sup 4+} from radioactive waste solution. The second generation dendrimer was found to have more efficiency as compared to the 1{sup st} generation might be due to the availability of more functionality for coordinating to the Pu{sup 4+} ion. Analysis of different isotherm models revealed that, Langmuir isotherm was predominantly operating through chemi-sorption (with the sorption energy 10.07 and 16.95 kJ mol{sup -1} for 1{sup st} and 2{sup nd} generation dendrimer) with the sorption capacity 89.22 mg g{sup -1} and 92.48 mg g{sup -1} for 1{sup st} and 2{sup nd} generation dendrimer, respectively. Analysis of different sorption kinetics model revealed that the sorption proceeded via pseudo 2{sup nd} order reaction. The 2{sup nd} generation dendrimer was found to be radiolytically more stable while oxalic acid was found to be suitable for quantitative back extraction of Pu{sup 4+}.

  1. Photosynthetic pigments and model compounds studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Jensen, N.-H.

    1980-05-01

    The photosynthetic pigments chlorophyll a and alltrans-β-carotene as well as the quinone model compound duroquinone have been studied in solution by pulse radiolysis combined with time-resolved absorption and resonance Raman spectroscopy. In benzene solution the excited triplet states of the subtrates were produced either directly in the case of duroquinone or by triplet energy transfer from triplet naphthalene in the case of chlorophyll a and β-carotene. All relevant rate constants involved in the reactions of the excited states in benzene were determined, including i) the rate constants for energy transfer from triplet naphthalene to chlorophyll a with k = (3.6+-0.6).10 9 M -1 s -1 and β-carotene with k = (10.7+-1.2).10 9 M -1 s -1 ii) the rate constants of triplet annihilation of chlorophyll a: (1.4+-0.3).10 9 M -1 s -1 , β-carotene: (3.6+-0.4).10 9 M -1 s -1 , duroquinone: (3.0+-0.6).10 9 M -1 s -1 . For β-carotene it is suggested that triplet-triplet annihilation produces the optically forbidden excited 1 Asub(g) state. The first-order components of the triplet decays were strongly dependent upon irradiation dose in the case of naphthalene and duroquinone but apparently only slightly dependent on or independent or irradiation dose in the case of chlorophyll a and β-carotene. Apparent bimolecular rate constants for triplet quenching by radiolytically produced free radicals are determined. The triplet state of duroquinone is quenched by ground state duroquinone with a rate constant of (1.2+-0.3).10 6 M -1 s -1 . The excited triplet state of all-trans-β-carotene has been investigated by time-resolved resonance Raman spectroscopy. Six transient Raman bands at 965 cm -1 , 1009 cm -1 , 1125 cm -1 , 1188 cm -1 , 1236 cm -1 and 1496 cm -1 were observed. The spectra suggest that the C = C band order is decreased and that the molecule may be substantially twisted, presumably at the 15,15 1 band, in the triplet state. The radical anion of chlorophyll a with

  2. Radiolytic stabilization of poly(hydroxybutyrate)

    International Nuclear Information System (INIS)

    Santos, Renata F.S.; Araujo, Elmo S.

    2007-01-01

    Poly(hydroxybutyrate), PHB, is a thermoplastic polyester synthesized by many types of bacteria. PHB is of special interest in the manufacture of medical devices sterilizable by gamma radiation, because of remarkable characteristics like its great biocompatibility and biodegradability. However, ionizing radiation causes main chain scissions of PHB followed by the reduction in its molar mass. Then, the purpose of this study was to investigate the radiolytic stabilization of the structure and properties of Brazilian PHB by commercial additives used in photo and thermo-oxidative stabilization of polymers. Initially, casting solvent films were prepared adding 0.5 wt% of five different additives to the polymer system. These films were irradiated at 25 kGy and investigated viscosity-average molar mass (Mv) changes in order to select the best stabilizer. Among the tested additives only one, antioxidant type, provided a good radiostabilization. New polymeric films were prepared with the antioxidant, whose concentrations (wt%) were 0.3, 0.5, 0.7 and 1.0. In this case, the samples were submitted to doses that varied from 15 to 50 kGy. Viscometric analysis was performed in order to assess the radiation-induced main chain scissions. The G value (scissions/100eV of energy transferred to the system) was also obtained by the viscosity technique. The most effective additive, added to the polymer system at 0.5 wt%, promotes a decrease of 8.6 to 1.5 in G value at a dose range of 0 - 35 kGy. In addition, (FT-IR, NMR-1H) spectroscopic analyses on polymer system were also performed. (author)

  3. Unusual radiolytic behavior of neptunium ions in aqueous bicarbonate solutions

    International Nuclear Information System (INIS)

    Shilov, V.P.; Gogolev, A.V.; Pikaev, A.K.

    2000-01-01

    Behavior of neptunium ions in carbonate and bicarbonate aqueous solutions saturated with air, oxygen or argon during gamma radiation ( 60 Co) by doses up to 3 kGy at dose rates 10 and 25 Gy/min was studied by the method of spectrophotometry. It is shown that in neptunium (5) bicarbonate solution nearly complete (95%) neptunium ion oxidation occurs under the effect of radiation, whereas no oxidation is observed in carbonate solution. Radiation-chemical yield of neptunium (5) oxidation and stationary concentration of neptunium (6) ions depend on concentration of bicarbonate-ions. Explanation to the results obtained is made from the viewpoint of potential radiolytic reactions [ru

  4. Influence of radiolytic degradation products from organic phase

    International Nuclear Information System (INIS)

    Azevedo, H.L.P. de.

    1980-01-01

    The influence of primary and secondary degradation products from TBP - dodecane on zirconium extraction is studied. The presence of radiolytical degradation at organic phase, in systems of initial concentration of HNO 3 1 and 4M, and absorbed γ radiation doses from 0,5 to 4,5 Wh/l, lead to an increase of zirconium extraction, being the HDBP the main product of degradation responsable by this effect. The influence of secondary degradation products is significative in systems of HNO 3 1M initial concentration. The formation of precipitator in extractions of Zr in HNO 3 1M with irradiated TBP-dodecane was observed. (M.C.K.) [pt

  5. Radiolytic generation of gases in reactors

    International Nuclear Information System (INIS)

    Ramshesh, V.; Venkateswarlu, K.S.

    1988-01-01

    Water or heavy water is used in different circuits in a reactor. Their most common use is as a moderator and/or as a coolant. Light water is used at other places such as in end shield, calandria vault etc., In the process they are exposed to intense ionizing radiation and undergo radiolytic degradation. The molecular produts of radiolysis are hydrogen, hydrogen peroxide and oxygen. As is commonly known if hydrogen is formed beyond a certain level, in the presence of oxygen it may lead to combustion or even explosion. Thus one should comprehend the basic principles of radiolysis and see whether the concentration of these gases under various conditions can be worked out. This report attempts to analyse in depth the radiolytic generation of gases in reactor systems. (author). 3 tabs

  6. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Draganic, Z.D.; Navarro-Gonzalez, R.; Graganic, I.G.

    1983-01-01

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH 4 CN, CH 3 CN, and C 2 H 4 CN, that had received multikilogray doses of 60 Co γ radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond

  7. Modeling of Radiolytic Degradation of Cefaclor by Ionizing Energy

    International Nuclear Information System (INIS)

    Yu, Seungho; Choi, Dongkyu; Lee, Myunjoo

    2008-01-01

    Recently, many researches have been conducted on the treatments of antibiotics found in groundwater, surface water, and wastewater. Ingerslev et al. showed that antibiotics under aerobic and anaerobic conditions were not readily biodegradable. Advanced oxidation processes (AOPs) have been suggested in recent years as a suitable alternative for the removal of refractory organic compounds found in a variety of environment. AOPs by using free radicals such as the hydroxyl radical (·OH) include ozone, ozone/UV, TiO 2 photo catalysis, fenton's reaction, H 2 O 2 /UV, H 2 O 2 /O 3 and ionizing radiation. Herein are reported the results of the radiolytic degradation of cefaclor. This study focused on the use of gamma radiation as an AOP for the complete mineralization of antibiotics. Among the many kinds of antibiotics, the target antibiotic in this study was cefaclor, which a β lactam antibiotic widely used for the medical treatment of microbial infective diseases. The objectives of this study were: 1) to investigate the decomposition and mineralization of cefaclor using gamma irradiation; 2) to study the decomposition kinetics of cefaclor; and 3) to simulate radiolytic decomposition of cefaclor with experimentally measured kinetic parameters

  8. Inhibition of the radiolytic hydrogen production in the nuclear waste of 'bitumen coated' type: study of the interaction between hydrogen and cobalt hydroxo-sulphide

    International Nuclear Information System (INIS)

    Pichon, C.

    2006-11-01

    In the nuclear field in France, the bitumen is mainly used for the conditioning of the radioactive muds generated by the fuel reprocessing. However, the self-irradiation of the bitumen induces a production of hydrogen which generates safety problems. The comparison of various storage sites showed that the presence of cobalt hydroxo sulphide limited such a production. Consequently, this compound was regarded as an 'inhibitor of radiolytic hydrogen production'. However, the origin of this phenomenon was not clearly identified. In order to propose an explanation to this inhibition phenomenon, model organic molecules were used to represent the components of the bitumen. Irradiations were carried out by protons to simulate the alpha radiolysis. The organic molecules irradiations by a proton beam showed that cobalt hydroxo sulphide CoSOH, does not act as a hydrogenation catalyst of unsaturated hydrocarbons, nor as a radicals scavenger, but consists of a trap of hydrogen. Experiments of hydrogen trapping at ambient temperature were carried out according to two techniques: gravimetry and manometry. The solid was characterized before and after interaction with hydrogen (infrared and Raman spectroscopies, X-ray diffraction). The initial solid was composed of amorphous cobalt hydroxo sulphide and a minor phase of cobalt hydroxide. The gravimetry and manometry experiments showed that the maximum of hydrogen trapping capacity is equal to 0.59 ± 0.18 mole of hydrogen per mole of cobalt. After interaction with hydrogen, the Co(OH) 2 phase disappeared and a new solid phase appeared corresponding to Co 9 S 8 . These observations, as well as the analysis of the gas phase, made it possible to conclude with the following reaction (1): 9 CoSOH + 11/2 H 2 = Co 9 S 8 + 9 H 2 O + H 2 S (1). Gravimetry experiments at temperatures between 50 and 210 C revealed the desorption of water but not of hydrogen sulphide. The absence of hydrogen sulphide in gaseous phase and the Co(OH) 2 phase

  9. Experimental study of rf pulsed heating

    Directory of Open Access Journals (Sweden)

    Lisa Laurent

    2011-04-01

    Full Text Available Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop®, copper silver, and silver plated copper. The samples were exposed to different machining and heat treatment processes prior to rf processing. Each sample was tested to a peak pulsed heating temperature of approximately 110°C and remained at this temperature for approximately 10×10^{6} rf pulses. In general, the results showed the possibility of pushing the gradient limits due to pulsed heating fatigue by the use of copper zirconium and copper chromium alloys.

  10. Design Study for Pulsed Proton Beam Generation

    Directory of Open Access Journals (Sweden)

    Han-Sung Kim

    2016-02-01

    Full Text Available Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

  11. Experimental study on performance of pulsed liquid jet pump

    International Nuclear Information System (INIS)

    Xu Weihui; Gao Chuanchang; Qin Haixia

    2010-01-01

    The device performance characteristics of transformer type pulsed liquid pump device were experimentally studied. The effects of the area ratio, work pressure and pulse parameters on the performance of the pulsed liquid jet pump device were performed in the tests. The potency of pulsed jet on improving the performance of the liquid jet pump device was also studied through the comparison with invariable jet pump at the same conditions. The results show that the pulsed jet can significantly improve the performance of transformer type jet pump devices. Area ratio and pulse parameters are the critical factors to the performance of the pulsed liquid jet pump device. The jet pump device performances are significantly improved by reducing the area ratio or by increasing the pulsed frequency. The flux characteristics of the pulsed liquid jet pump device presents the typical negative linear,the potency of pulsed jet in improving the performance of jet pump device with small area ratio can be more significant. The efficiency curve of pulsed liquid jet pump is similar to the parabola. At higher pulsed frequency, the top efficiency point of the pulsed jet pump moves to the higher flow ratio. The high efficiency area of the pulsed jet pump also is widened with the increase of the pulsed frequency. (authors)

  12. Radiolytic Synthesis of Magnetic Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Grdanovska, Slavica; Tissot, Chanel; Barkatt, Aaron; Al-Sheikhly, Mohamad [Nuclear Engineering Program – Department of Materials Science and Engineering, University of Maryland, College Park, MD (United States)

    2011-07-01

    Magnetic nanocomposites, in which magnetic nanoparticles are encapsulated in polymeric matrices, have important applications in medicine, electronics and mechanical devices. However, the development of processes leading to magnetic nanocomposites with desirable, predictable and reproducible properties has turned out to be a difficult challenge. To date, most studies have concentrated on a magnetic oxide, primarily magnetite (Fe{sub 3}O{sub 4}), as the encapsulated phase. However, the synthesis of batches of magnetite with homogeneous properties at reasonably low temperature is a delicate operation. Indeed, commercial lots of magnetite powder, despite having bulk Fe{sub 3}O{sub 4} stoichiometry, turn out to have large variations in structure and in magnetic properties. The difficulties in controlling the product are greatly magnified when the particle size is in the nanometer range.

  13. Radiolytic and electron-transfer reactions in supercritical CO2

    International Nuclear Information System (INIS)

    Bartels, D. M.; Dimitrijevic, N. M.; Jonah, C. D.; Takahashi, K.

    2000-01-01

    Using supercritical fluids as solvents is useful for both practical and theoretical reasons. It has been proposed to use supercritical CO 2 as a solvent for synthesis because it eliminates the air pollution arising from other solvents. The properties of supercritical fluids can be easily varied with only modest changes in temperature and density, so they provide a way of testing theories of chemical reactions. It has also been proposed to use supercritical fluids for the treatment of hazardous mixed waste. For these reasons the authors have studied the production of radiolytic species in supercritical CO 2 and have measured their reactivity as a function of density. They have shown that the C 2 O 4 + is formed. They also have shown that the electron transfer reactions of dimethylaniline to C 2 O 4 + and CO 2 (e - ) to benzoquinone are diffusion controlled over a considerable density range

  14. Effect of radiolytic products on bacteria in a food system

    International Nuclear Information System (INIS)

    Dickson, J.S.; Maxcy, R.B.

    1984-01-01

    Inhibitory effects of radiolytic products were studied using Escherichia coli, Pediococcus cerevisiae, and two radiation-resistant microorganisms, an isolate of Moraxella-Acinetobacter and a Micrococcus sp. End Products of an irradiation dose of 300 Krads completely inhibited resistant organisms on an experimental medium with a very low concentration of nutrients. Plate count agar, with higher nutrient concentration, required 600 Krads to produce the same inhibition. On the same medium, radiation-sensitive organisms could tolerate products generated by a 1000 Krad dose. However, no inhibition could be detected when either Escherichia coli or Moraxella-Acinetobacter was incubated at 5 0 C on the surface of fresh meat irradiated to 1500 Krad. The effects of inhibitory products in culture media could be mitigated by the addition of catalase or sodium pyruvate. 19 references, 2 figures, 4 tables

  15. Toxicological potential of 2-alkylcyclobutanones--specific radiolytic products in irradiated fat-containing food--in bacteria and human cell lines

    NARCIS (Netherlands)

    Hartwig, A; Pelzer, A; Burnouf, D; Titéca, H; Delincée, H; Briviba, K; Soika, C; Hodapp, C; Raul, F; Miesch, M; Werner, D; Horvatovich, P; Marchioni, E

    2007-01-01

    Food irradiation has been considered as a safe processing technology to improve food safety and preservation, eliminating efficiently bacterial pathogens, parasites and insects. This study aims to characterize the toxicological potential of 2-alkylcyclobutanones (2-ACBs), radiolytic derivatives of

  16. The radiolytic and radiolytically induced gas generation in Hanford waste tanks

    International Nuclear Information System (INIS)

    Jonah, C.D.; Meisel, D.; Sauer, M.C. Jr.

    1994-01-01

    A task force operating in ANL/CHM has been developing a mechanistic understanding of the radiolytic processes that lead to the generation and retention of gases within tanks of radioactive waste at the Hanford site. This chemistry is one of the important factors that must be considered in devising remediation procedures to eliminate the great potential hazard of these tanks. A quantitative description of much of the chemistry involved in the production of H 2 and, to a lesser extent, in the production of N 2 O has been achieved. Direct radiolytic generation was experimentally quantified and this new information was utilized in computer modeling to provide predictive capabilities so that changes of chemical composition of various waste tanks under different remediation procedures could be assessed. Oxygen in the waste solutions is effectively consumed upon irradiation and thus is of no concern. The mechanism of the radiolytic degradation of the chelators was established. The end products are simple organic molecules, in particularly, formaldehyde and glyoxylate, that are very efficient in the thermal generation of H 2

  17. Development of a Cardiovascular Simulator for Studying Pulse Diagnosis Mechanisms

    Directory of Open Access Journals (Sweden)

    Min Jang

    2017-01-01

    Full Text Available This research was undertaken to develop a cardiovascular simulator for use in the study of pulse diagnosis. The physical (i.e., pulse wave transmission and reflection and physiological (i.e., systolic and diastolic pressure, pulse pressure, and mean pressure characteristics of the radial pulse wave were reproduced by our simulator. The simulator consisted of an arterial component and a pulse-generating component. Computer simulation was used to simplify the arterial component while maintaining the elastic modulus and artery size. To improve the reflected wave characteristics, a palmar arch was incorporated within the simulator. The simulated radial pulse showed good agreement with clinical data.

  18. Radiolytic decomposition of organic C-14 released from TRU waste

    International Nuclear Information System (INIS)

    Kani, Yuko; Noshita, Kenji; Kawasaki, Toru; Nishimura, Tsutomu; Sakuragi, Tomofumi; Asano, Hidekazu

    2007-01-01

    It has been found that metallic TRU waste releases considerable portions of C-14 in the form of organic molecules such as lower molecular weight organic acids, alcohols and aldehydes. Due to the low sorption ability of organic C-14, it is important to clarify the long-term behavior of organic forms under waste disposal conditions. From investigations on radiolytic decomposition of organic carbon molecules into inorganic carbonic acid, it is expected that radiation from TRU waste will decompose organic C-14 into inorganic carbonic acid that has higher adsorption ability into the engineering barriers. Hence we have studied the decomposition behavior of organic C-14 by gamma irradiation experiments under simulated disposal conditions. The results showed that organic C-14 reacted with OH radicals formed by radiolysis of water, to produce inorganic carbonic acid. We introduced the concept of 'decomposition efficiency' which expresses the percentage of OH radicals consumed for the decomposition reaction of organic molecules in order to analyze the experimental results. We estimated the effect of radiolytic decomposition on the concentration of organic C-14 in the simulated conditions of the TRU disposal system using the decomposition efficiency, and found that the concentration of organic C-14 in the waste package will be lowered when the decomposition of organic C-14 by radiolysis was taken into account, in comparison with the concentration of organic C-14 without radiolysis. Our prediction suggested that some amount of organic C-14 can be expected to be transformed into the inorganic form in the waste package in an actual system. (authors)

  19. Modeling study on the effects of pulse rise rate in atmospheric pulsed discharges

    Science.gov (United States)

    Zhang, Yuan-Tao; Wang, Yan-Hui

    2018-02-01

    In this paper, we present a modeling study on the discharge characteristics driven by short pulsed voltages, focusing on the effects of pulse rise rate based on the fluid description of atmospheric plasmas. The numerical results show that the breakdown voltage of short pulsed discharge is almost linearly dependent on the pulse rise rate, which is also confirmed by the derived equations from the fluid model. In other words, if the pulse rise rate is fixed as a constant, the simulation results clearly suggest that the breakdown voltage is almost unchanged, although the amplitude of pulsed voltage increases significantly. The spatial distribution of the electric field and electron density are given to reveal the underpinning physics. Additionally, the computational data and the analytical expression also indicate that an increased repetition frequency can effectively decrease the breakdown voltage and current density, which is consistent with the experimental observation.

  20. Explosive Nucleosynthesis Study Using Laser Driven γ-ray Pulses

    Directory of Open Access Journals (Sweden)

    Takehito Hayakawa

    2017-03-01

    Full Text Available We propose nuclear experiments using γ-ray pulses provided from high field plasma generated by high peak power laser. These γ-ray pulses have the excellent features of extremely short pulse, high intensity, and continuous energy distribution. These features are suitable for the study of explosive nucleosyntheses in novae and supernovae, such as the γ process and ν process. We discuss how to generate suitable γ-ray pulses and the nuclear astrophysics involved.

  1. Experimental study of rf pulsed heating

    CERN Document Server

    Laurent, L; Nantista, C; Dolgashev, V; Higashi, Y; Aicheler, M; Tantawi, S; Wuensch, W

    2011-01-01

    Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop (R), copper silver, and silver plated co...

  2. Molecular dynamics study of lubricant depletion by pulsed laser heating

    Science.gov (United States)

    Seo, Young Woo; Rosenkranz, Andreas; Talke, Frank E.

    2018-05-01

    In this study, molecular dynamics simulations were performed to numerically investigate the effect of pulsed laser heating on lubricant depletion. The maximum temperature, the lubricant depletion width, the number of evaporated lubricant beads and the number of fragmented lubricant chains were studied as a function of laser peak power, pulse duration and repetition rate. A continuous-wave laser and a square pulse laser were simulated and compared to a Gaussian pulse laser. With increasing repetition rate, pulsed laser heating was found to approach continuous-wave laser heating.

  3. Chromatographic studies on thermal and radiolytic degradation of n-dodecane-HNO3 two components system and its purification employing silica gel treatment

    International Nuclear Information System (INIS)

    Kadam, Prashant; Kaushik, C.P.; Ozarde, P.D.; Bindu, M.; Tripathi, S.C.; Jambunathan, U.; Pandit, G.G.

    2005-01-01

    This paper describes the studies carried out to examine the extent of degradation of n-dodecane at elevated temperature for different time periods and the effect of gamma radiolysis at different absorbed dose, in n-dodecane- nitric acid two components system. The studies also involved the identification of the degradation products formed during above process using GC-MS. A large number of degradation products were observed. Formation of degradation products increases with absorbed dose and time of heating. Further purification of degraded dodecane was carried out with silica gel crystals as an adsorbent. Treated dodecane samples were subjected to GC/GC-MS analysis, to confirm the extent of removal degradation products. (author)

  4. Study on the plutonium extraction and reextraction in radiolytic degraded system 30 % TBP-n-dodecane/HNO3-H2O

    International Nuclear Information System (INIS)

    Hoffmann, P.M.; Wronska, T.

    1980-01-01

    The degree of the complexation of plutonium(4) by the products of radiolysis of the system 30 % TBP-n-dodecane/HNO 3 -H 2 O as a function of radiation dose and concentration of nitric acid has been studied. The special method of calculation based on extraction equilibria was used. The retention of plutonium in the organic phase after single reductive reextraction has been determined. (author)

  5. Parametric study on femtosecond laser pulse ablation of Au films

    International Nuclear Information System (INIS)

    Ni Xiaochang; Wang Chingyue; Yang Li; Li Jianping; Chai Lu; Jia Wei; Zhang Ruobing; Zhang Zhigang

    2006-01-01

    Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N x φ th (N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research

  6. Pulse radiolysis studies of model membranes

    International Nuclear Information System (INIS)

    Heijman, M.G.J.

    1984-01-01

    In this thesis the influence of the structure of membranes on the processes in cell membranes were examined. Different models of the membranes were evaluated. Pulse radiolysis was used as the technique to examine the membranes. (R.B.)

  7. Contamination Study of Micro Pulsed Plasma Thruster

    National Research Council Canada - National Science Library

    Kesenek, Ceylan

    2008-01-01

    .... Micro-Pulsed Plasma Thrusters (PPTs) are highly reliable and simple micro propulsion systems that will offer attitude control, station keeping, constellation flying, and drag compensation for such satellites...

  8. Heat pulse propagation studies in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E.D.; Callen, J.D.; Colchin, R.J.; Efthimion, P.C.; Hill, K.W.; Izzo, R.; Mikkelsen, D.R.; Monticello, D.A.; McGuire, K.; Bell, J.D.

    1986-02-01

    The time scales for sawtooth repetition and heat pulse propagation are much longer (10's of msec) in the large tokamak TFTR than in previous, smaller tokamaks. This extended time scale coupled with more detailed diagnostics has led us to revisit the analysis of the heat pulse propagation as a method to determine the electron heat diffusivity, chi/sub e/, in the plasma. A combination of analytic and computer solutions of the electron heat diffusion equation are used to clarify previous work and develop new methods for determining chi/sub e/. Direct comparison of the predicted heat pulses with soft x-ray and ECE data indicates that the space-time evolution is diffusive. However, the chi/sub e/ determined from heat pulse propagation usually exceeds that determined from background plasma power balance considerations by a factor ranging from 2 to 10. Some hypotheses for resolving this discrepancy are discussed. 11 refs., 19 figs., 1 tab.

  9. Heat pulse propagation studies in TFTR

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; Callen, J.D.; Colchin, R.J.

    1986-02-01

    The time scales for sawtooth repetition and heat pulse propagation are much longer (10's of msec) in the large tokamak TFTR than in previous, smaller tokamaks. This extended time scale coupled with more detailed diagnostics has led us to revisit the analysis of the heat pulse propagation as a method to determine the electron heat diffusivity, chi/sub e/, in the plasma. A combination of analytic and computer solutions of the electron heat diffusion equation are used to clarify previous work and develop new methods for determining chi/sub e/. Direct comparison of the predicted heat pulses with soft x-ray and ECE data indicates that the space-time evolution is diffusive. However, the chi/sub e/ determined from heat pulse propagation usually exceeds that determined from background plasma power balance considerations by a factor ranging from 2 to 10. Some hypotheses for resolving this discrepancy are discussed. 11 refs., 19 figs., 1 tab

  10. Gamma radiolytic degradation of 4-chlorophenol determination of degraded products with HPLC and GC-MS

    International Nuclear Information System (INIS)

    Butt, S.B.; Masood, M.N.

    2007-01-01

    Contamination by chlorophenols of surface water and groundwater is an emerging issue in environmental science and engineering. After their usage as pesticide, herbicide and disinfectant, these organic compounds subsequently enter the aquatic environment through a number of routes. Some of the chlorophenols are slightly biodegradable, while others are more persistent and mobile in the aquatic environment especially chlorophenols. Gamma radiolytic degradation is one of advance oxidation process that has been thought to be one of the promising treatments to deal with this problem. This radiolytic study was carried out in methanolic 4-CP (4-chlorophenol) samples. Among several factors effecting radiolytic degradation of 4-CP, dose and concentration are important that were evaluated under atmospheric conditions. A degradation yield (G -value) for 4- CP of 0.38 and 1.35 was achieved in 20 and 100 mg/dm/sup 3/ solution. It was observed that degradation yield decreases with increasing 4-CP concentration. Gamma radiolysis produce free radicals in solvent which further react with 4-CP molecules to generate different products. The identification of degradation products was proposed using HPLC and GC-MS. (author)

  11. Structural and behavioral characteristics of radiolytically synthesized polyacrylic acid–polyacrylonitrile copolymeric hydrogels

    International Nuclear Information System (INIS)

    Bera, Anuradha; Misra, R.K.; Singh, Shailendra K.

    2013-01-01

    Copolymeric hydrogels of polyacrylic acid (PAA) – polyacrylonitrile (PAN) was radiolytically synthesized from their respective monomers with trimethyloltrimethacrylate (TMPTMA) as the crosslinker wherein both polymerization and crosslinking could be achieved in a single step reaction using 60 Co γ-radiation under varying doses and dose rates. The formation of the hydrogels was confirmed by their FT-IR analysis, while their thermal degradation patterns were investigated through thermogravimetric analysis in both the dry and swelled state. The water sorption studies showed rapid swelling behavior of these hydrogels, where swelling (%EWC) was found to be strongly dependent on the ratio of the two monomers in the hydrogels and the swelling kinetics dependent on the dose rates of hydrogel synthesis. These radiolytically synthesized hydrogels responded to electrical stimulus both in terms of the bending speed as well as bending angle under an applied voltage. The nature of the deformation was reversible and can be controlled through switching the voltage on and off. - Highlights: • Polyacrylic acid – polyacrilonitrile copolymeric hydrogel has been radiolytically synthesized. • Trimethyloltrimethacrylate (TMPTMA) used as crosslinker. • Hydrogel has been characterized and tested for electroresponsive character. • Bending angles and bending speed were found dependent upon applied voltage

  12. Pulse radiolysis studies in model lipid systems

    International Nuclear Information System (INIS)

    Patterson, L.K.; Hasegawa, K.

    1978-01-01

    The kinetic and spectral behavior of radicals formed by hydroxyl radical attack on linoleate anions has been studied by pulse radiolysis. Reactivity of OH toward this surfactant is an order of magnitude greater in monomeric form (kOH + linoleate = 8.0 x 10 9 M -1 sec -1 ) than in mecellar form (kOH + lin(micelle) = 1.0 x 10 9 M -1 sec -1 ). Abstraction of a hydrogen atom from the doubly allylic position gives rise to an intense absorption in the UV region (lambda max = 282-286 nm, epsilon approximately 3 x 10 4 M -1 cm -1 ) which may be used as a probe of radical activity at that site. This abstraction may occur, to a small extent, directly via OH attack. However, greater than 90% of initial attack occurs at other sites. Subsequent secondary abstraction of doubly allylic H atoms appears to occur predominantly by: (1) intramolecular processes in monomers, (2) intermolecular processes in micelles. Disappearance of radicals by secondary processes is slower in the micellar pseudo phase than in monomeric solution. (orig.) 891 HK 892 KR [de

  13. Pulsed EPR for studying silver clusters

    International Nuclear Information System (INIS)

    Michalik, J.; Wasowicz, T.; Sadlo, J.; Reijerse, E.J.; Kevan, L.

    1996-01-01

    The cationic silver clusters of different nuclearity have been produced by radiolysis of zeolite A and SAPO molecular sieves containing Ag + as exchangeable cations. The pulsed EPR spectroscopy has been applied for studying the local environment of silver cluster in order to understand the mechanism of cluster formation and stabilization. the electron spin echo modulation (ESEM) results on Ag 6 n+ cluster in dehydration zeolite A indicate that the hexameric silver is stabilized only in sodalite cages which are surrounded by α-cages containing no water molecules. Trimeric silver clusters formed in hydrated A zeolites strongly interact with water, thus the paramagnetic center can be considered as a cluster-water adduct. In SAPO-molecular sieves, silver clusters are formed only in the presence of adsorbed alcohol molecules. From ESEM it is determined that Ag 4 n+ in SAPO-42 is stabilized in α cages, where it is directly coordinated by two methanol molecules. Dimeric silver, Ag 2 + in SAPO-5 and SAPO-11 is located in 6-ring channels and interacts with three CH 3 OH molecules, each in different 10 ring or 12 ring channels. The differences of Ag 2 + stability in SAPO-5 and SAPO-11 are also discussed. (Author)

  14. A pulse radiolysis study of emulsion polymerization

    International Nuclear Information System (INIS)

    McAskill, N.A.

    1976-01-01

    The emulsion polymerisation of slightly water soluble monomers such as styrene occurs initially in micelles of surfactant swollen with monomer and later in larger particles consisting of polymer swollen with monomer and stabilized with an outer layer of surfactant. There is considerable controversy on whether the reaction sites of polymerization are inside or on the surface of the particle or micelle. The relative amounts of micelle and particles present at various stages of the polymerization are also nuclear. In the present study the OH radical formed by pulse radiolysis has been used as a probe to investigate the site of solubilization of styrene in various surfactant micelles. Two products can be distinguished by UV spectrometry, a benzyl type radical formed by OH addition to the side chain of styrene and a cyclohexadienyl type radical formed by addition to the ring. Wide differences in the relative amounts of each product were observed suggesting that in some surfactants the styrene ring is buried inside the micelle whilst in other systems the styrene appears to be so solubilized at the interface leaving both the ring and the side chain open to attack by the OH radical. (author)

  15. Studying dense plasmas with coherent XUV pulses

    International Nuclear Information System (INIS)

    Stabile, H.

    2006-12-01

    The investigation of dense plasma dynamic requires the development of diagnostics able to ensure the measurement of electronic density with micro-metric space resolution and sub-nanosecond, or even subpicosecond, time resolution (indeed this must be at least comparable with the characteristic tune scale of plasma evolution). In contrast with low-density plasmas, dense plasmas cannot be studied using optical probes in the visible domain, the density range accessible being limited to the critical density (N c equals 1.1*10 21 λ -2 (μm) ∼ 10 21 cm -3 for infrared). In addition, light is reflected even at smaller densities if the medium exhibits sharp density gradients. Hence probing of dense plasmas, for instance those produced by laser irradiation of solids, requires using shorter wavelength radiation. Thanks to their physical properties, high order harmonics generated in rare gases are particularly adapted to the study of dense plasmas. Indeed, they can naturally be synchronized with the generating laser and their pulse duration is very short, which makes it possible to use them in pump-probe experiments. Moreover, they exhibit good spatial and temporal coherencies. Two types of diagnostics were developed during this thesis. The first one was used to study the instantaneous creation of hot-solid-density plasma generated by focusing a femtosecond high-contrast laser on an ultra-thin foil (100 nm) in the 10 18 W/cm 2 intensity regime. The use of high order harmonics, providing a probe beam of sufficiently short wavelengths to penetrate such a medium, enables the study of its dynamics on the 100 fs time scale. The second one uses the harmonics beam as probe beam (λ equals 32 nm) within an interferometric device. This diagnostic was designed to ensure a micro-metric spatial resolution and a temporal resolution in the femtosecond range. The first results in presence of plasma created by irradiation of an aluminum target underline the potentialities of this new

  16. Study on the Depth, Rate, Shape, and Strength of Pulse with Cardiovascular Simulator

    Directory of Open Access Journals (Sweden)

    Ju-Yeon Lee

    2017-01-01

    Full Text Available Pulse diagnosis is important in oriental medicine. The purpose of this study is explaining the mechanisms of pulse with a cardiovascular simulator. The simulator is comprised of the pulse generating part, the vessel part, and the measurement part. The pulse generating part was composed of motor, slider-crank mechanism, and piston pump. The vessel part, which was composed with the aorta and a radial artery, was fabricated with silicon to implement pulse wave propagation. The pulse parameters, such as the depth, rate, shape, and strength, were simulated. With changing the mean pressure, the floating pulse and the sunken pulse were generated. The change of heart rate generated the slow pulse and the rapid pulse. The control of the superposition time of the reflected wave generated the string-like pulse and the slippery pulse. With changing the pulse pressure, the vacuous pulse and the replete pulse were generated. The generated pulses showed good agreements with the typical pulses.

  17. Studies of nonlinear femtosecond pulse propagation in bulk materials

    Science.gov (United States)

    Eaton, Hilary Kaye

    2000-10-01

    Femtosecond pulse lasers are finding widespread application in a variety of fields including medical research, optical switching and communications, plasma formation, high harmonic generation, and wavepacket formation and control. As the number of applications for femtosecond pulses increases, so does the need to fully understand the linear and nonlinear processes involved in propagating these pulses through materials under various conditions. Recent advances in pulse measurement techniques, such as frequency-resolved optical gating (FROG), allow measurement of the full electric field of the pulse and have made detailed investigations of short- pulse propagation effects feasible. In this thesis, I present detailed experimental studies of my work involving nonlinear propagation of femtosecond pulses in bulk media. Studies of plane-wave propagation in fused silica extend the SHG form of FROG from a simple pulse diagnostic to a useful method of interrogating the nonlinear response of a material. Studies of nonlinear propagation are also performed in a regime where temporal pulse splitting occurs. Experimental results are compared with a three- dimensional nonlinear Schrödinger equation. This comparison fuels the development of a more complete model for pulse splitting. Experiments are also performed at peak input powers above those at which pulse splitting is observed. At these higher intensities, a broadband continuum is generated. This work presents a detailed study of continuum behavior and power loss as well as the first near-field spatial- spectral measurements of the generated continuum light. Nonlinear plane-wave propagation of short pulses in liquids is also investigated, and a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs is observed in methanol. Experiments in water confirm that this effect in methanol is indeed real. Possible explanations for the observed effect are discussed and several are experimentally rejected. This

  18. Pulse radiolysis of 6-aminophenalenone ethanolic solutions

    International Nuclear Information System (INIS)

    Semenova, G.V.; Kartasheva, L.I.; Ryl'kov, V.V.; Pikaev, A.K.

    1986-01-01

    Intermediates of 6-aminophenalenone radiolytic transformations in ethanol are investigated using pulse radiolysis method (5 and 8 MeV energy electrons, pulse duration is 2.3 μs and 15 ns respectively). Constants of reaction rate of e s and α-ethanolic radical with dye are measured (they are equal to (9.3±1.0)x10 9 and (1.1±0.2)x10 8 l/(molxs) respectively); optical and kinetic characteristics of products of their interaction are investigated. Mechanism of radiolytic transformations of this dye is proposed

  19. Radiolytic gas formation in high-level liquid waste solutions

    International Nuclear Information System (INIS)

    Brodda, B.-G.; Dix, Siegfried; Merz, E.R.

    1989-01-01

    High-level fission product waste solutions originating from the first-cycle raffinate stream of spent fast breeder reactor fuel reprocessing have been investigated gas chromatographically for their radiolytic and chemical gas production. The solutions showed considerable formation of hydrogen, carbon dioxide and dinitrogen oxide, whereas atmospheric oxygen was consumed completely within a short time. In particular, carbon dioxide resulted from the radiolytic degradation of entrained organic solvent. After nearly complete degradation of the organic solvent, the influence of hydrazine and nitrogen dioxide on hydrogen formation was investigated. Hydrazinium hydroxide led to the formation of dinitrogen oxide and nitrogen. After 60 d, the concentration of dinitrogen oxide had reduced to zero, whereas the amount of nitrogen formed had reached a maximum. This may be explained by simultaneous chemical and radiolytic reactions leading to the formation of dinitrogen oxide and nitrogen and photolytic fission of dinitrogen oxide. Addition of sodium nitrite resulted in the rapid formation of dinitrogen oxide. The rate of hydrogen production was not changed significantly after the addition of hydrazine or nitrite. The results indicate that under normal operating conditions no dangerous hydrogen radiolysis yields should develop in the course of reprocessing and high-level liquid waste tank storage. Organic entrainment may lead to enhanced radiolytic decomposition and thus to considerable hydrogen production rates and pressure build-up in closed systems. (author)

  20. Kinetic studies on a repetitively pulsed fast reactor

    International Nuclear Information System (INIS)

    Das, S.

    1982-01-01

    Neutronic analysis of an earlier proposed periodically pulsed fast reactor at Kalpakkam (KPFR) has been carried out numerically under equilibrium and transient conditions using the one-point model of reactor kinetics and the experimentally measured total worth of reactivity modulator, the parabolic coefficient of reactivity of the movable reflector and the mean prompt neutron lifetime. Results of steady-state calculations - treated on the basis of delayed neutron precursor and energy balances during a period of operation - have been compared with the analytical formulae of Larrimore for a parabolic reactivity input. Empirical relations for half-width of the fast neutron pulse, the peak pulse power and the power at first crossing of prompt criticality have been obtained and shown to be accurate enough for predicting steady-state power pulse characteristics of a periodically pulsed fast reactor. The concept of a subprompt-critical reactor has been used to calculate the fictitious delayed neutron fraction, β of the KPFR through a numerical experiment. Relative pulse height stability and pulse shape sensitivity to changes of maximum reactivity is discussed. With the aid of new safety concepts, the Power Amplification Factor (PAF) and the Pulse Growth Factor (Rsub(p)), the dynamics KPFR under accidental conditions has been studied for step and ramp reactivity perturbations. All the analysis has been done without taking account of reactivity feedback. (orig.)

  1. Studies on pulsed hollow cathode capillary discharges

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P; Dumitrescu-Zoita, C; Larour, J; Rous, J [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises; Favre, M; Moreno, J; Chuaqui, H; Wyndham, E [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Zambra, M [Comision Chilena de Energia Nuclear, Santiago (Chile); Wong, C S [Univ. of Malaya, Kuala Lumpur (Malaysia). Plasma Research Lab

    1997-12-31

    Preliminary results on radiation characteristics of pulsed hollow cathode capillary discharges are presented. The device combines the on axis electron beam assisted ionization capabilities of the transient hollow cathode discharge with a novel high voltage low inductance geometrical design, which integrates the local energy storage into the electrode system. A nanosecond regime high temperature plasma is produced in a long, high aspect ratio capillary, with light emission in the UV to XUV region. The discharge is operated from near vacuum to pressure in the 1000 mTorr range. (author). 2 figs., 7 refs.

  2. A Multidisciplinary Study of Pulse Detonation Engine Propulsion

    National Research Council Canada - National Science Library

    Santoro, Robert

    2003-01-01

    ... chemistry, injector and flow field mixing, and advanced diagnostics to study the fundamental phenomena of importance under both static and dynamic conditions representative of actual pulse detonation engine operation...

  3. Terahertz pulsed imaging study of dental caries

    Science.gov (United States)

    Karagoz, Burcu; Altan, Hakan; Kamburoglu, Kıvanç

    2015-07-01

    Current diagnostic techniques in dentistry rely predominantly on X-rays to monitor dental caries. Terahertz Pulsed Imaging (TPI) has great potential for medical applications since it is a nondestructive imaging method. It does not cause any ionization hazard on biological samples due to low energy of THz radiation. Even though it is strongly absorbed by water which exhibits very unique chemical and physical properties that contribute to strong interaction with THz radiation, teeth can still be investigated in three dimensions. Recent investigations suggest that this method can be used in the early identification of dental diseases and imperfections in the tooth structure without the hazards of using techniques which rely on x-rays. We constructed a continuous wave (CW) and time-domain reflection mode raster scan THz imaging system that enables us to investigate various teeth samples in two or three dimensions. The samples comprised of either slices of individual tooth samples or rows of teeth embedded in wax, and the imaging was done by scanning the sample across the focus of the THz beam. 2D images were generated by acquiring the intensity of the THz radiation at each pixel, while 3D images were generated by collecting the amplitude of the reflected signal at each pixel. After analyzing the measurements in both the spatial and frequency domains, the results suggest that the THz pulse is sensitive to variations in the structure of the samples that suggest that this method can be useful in detecting the presence of caries.

  4. Changes in porosity of graphite caused by radiolytic gasification by carbon dioxide

    International Nuclear Information System (INIS)

    Murdie, Neil; Edwards, I.A.S.; Marsh, Harry

    1986-01-01

    Methods have been developed to study porosity in nuclear grade graphite. The changes induced during the radiolytic gasification of graphite in carbon dioxide have been investigated. Porosity in radiolytically gasified graphite (0-22.8% wt. loss) was examined by optical microscopy and scanning electron microscopy (SEM). Each sample was vacuum impregnated with a slow-setting resin containing a fluorescent dye. Optical microscopy was used to study pores >2 μm 2 c.s.a. A semi-automatic image analysis system linked to the optical microscope enabled pore parameter data including cross-sectional areas, perimeters, Feret's diameters and shape factors, to be collected. The results showed that radiolytic gasification produced a large increase in the number of pores 2 c.s.a. New open pores 2 c.s.a. were developed by gasification of existing open porosity into the closed porosity ( 2 c.s.a.) within the binder-coke. Open pores, 2-100 μm 2 c.s.a., which were gasified within the coarse-grained mosaics of the binder-coke. In the gasification process to 22.8% wt. loss, the apparent open pore volume increased from 6.6 to 33.8% and the apparent closed pore volumes decreased from approx. 3% to 0.1%. The increase in apparent open porosity from 6.6% (virgin) to 33.8% resulted from gasification within original open porosity and by the opening and development of closed porosity. There was no evidence for creation of porosity from within the 'bulk' graphite, it being developed from existing fine porosity. The structure of pores > 100 μm 2 c.s.a. showed no change because of the inhibition of oxidation by deposition of carbonaceous species from the CH 4 inhibitor. Such species diffuse to the pore wall and are sacrificially oxidised. (author)

  5. Account of the intratrack radiolytic processes for interpretation of the AMOC spectrum of liquid water

    International Nuclear Information System (INIS)

    Zvezhinskiy, D S; Stepanov, S V; Butterling, M; Wagner, A; Krause-Rehberg, R

    2013-01-01

    Recent development of the Gamma-induced Positron Spectroscopy (GiPS) setup significantly extends applicability of the Age-Momentum Correlation technique (AMOC) for studies of the bulk samples. It also provides many advantages comparing with conventional positron annihilation experiments in liquids, such as extremely low annihilation fraction in vessel walls, absence of a positron source and positron annihilations in it. We have developed a new approach for processing and interpretation of the AMOC-GiPS data based on the diffusion recombination model of the intratrack radiolytic processes. This approach is verified in case of liquid water, which is considered as a reference medium in the positron and positronium chemistry.

  6. Account of the intratrack radiolytic processes for interpretation of the AMOC spectrum of liquid water

    Science.gov (United States)

    Zvezhinskiy, D. S.; Butterling, M.; Wagner, A.; Krause-Rehberg, R.; Stepanov, S. V.

    2013-06-01

    Recent development of the Gamma-induced Positron Spectroscopy (GiPS) setup significantly extends applicability of the Age-Momentum Correlation technique (AMOC) for studies of the bulk samples. It also provides many advantages comparing with conventional positron annihilation experiments in liquids, such as extremely low annihilation fraction in vessel walls, absence of a positron source and positron annihilations in it. We have developed a new approach for processing and interpretation of the AMOC-GiPS data based on the diffusion recombination model of the intratrack radiolytic processes. This approach is verified in case of liquid water, which is considered as a reference medium in the positron and positronium chemistry.

  7. Impact of different metal turbidities on radiolytic hydrogen generation in nuclear power plants

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Belapurkar, A.D.; Venkateswaran, G.; Kishore, K.

    2005-01-01

    Radiolytic hydrogen generation on γ irradiation of turbid solutions containing metal turbidities such as titanium, nickel, iron, chromium, copper, indium, and aluminium was studied. It is suggested that the chemical reactivity of the metal in the turbid solution with e aq -/H/OH produced by radiolysis of water interferes with the recombination reactions which destroy H 2 and H 2 O 2 , thus leading to higher yield of hydrogen. The rate of generation of hydrogen and the G(H 2 ) value is related to the reactivity of the metal ion/hydroxylated species with the free radicals. (orig.)

  8. Hydrogen output from radiolytic split of water in the presence of some zeolites

    International Nuclear Information System (INIS)

    Cecal, A.; Colisnic, D.; Popa, K.; Paraschivescu, A.; Bilba, N.

    2002-01-01

    Radiolytic decomposition of water under the action of gamma rays in the presence of some zeolites such as ZSM-5, SAPO-5 and MOR was studied. The irradiation was performed using a gamma 60 Co source at an activity of 3 . 10 4 Ci and dose rate 8.3 KGy/h. The stable products of radiolysis as well as the other chemical species were identified by mass spectrometry. The calculated radiochemical yield decreased in order: H-ZSM-5 > Na-ZSM-5 > H-SAPO-5 > MOR and was higher in the presence of these catalysts than in their absence

  9. Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes

    International Nuclear Information System (INIS)

    Dole, L.R.; Friedman, H.A.

    1986-01-01

    Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages

  10. Subpicosecond pulse radiolysis studies on spur reactions and nanotechnology

    International Nuclear Information System (INIS)

    Tagawa, S.

    2003-01-01

    Recently we developed a subpicosecond pulse radiolysis system, although the time resolution of pulse radiolysis had remained about 30 ps for these 30 years. Time resolution and S/N ratio have been improved dramatically. The subpicosecond pulse radiolysis is a very powerful method to detect and observe transient phenomena in radiation chemistry and physics within 30 ps. By using the subpicosecond pulse radiolysis, many researches have been carried out on ultrafast phenomena in radiation chemistry, physics, biology and applied fields such as material science.Especially the spur reaction, which is one of the most important reactions in radiation chemistry, physics and biology, has been studied in the very wide time range from subpicosecond to several hundred nanoseconds by very high S/N ratio. These experimental results were analyzed theoretically and applied to the basic data for nanofabrication, which are very important in both next generation lithography and nanotechnology

  11. Experimental study of pulsed heating of electromagnetic cavities

    International Nuclear Information System (INIS)

    Pritzkau, D.P.; Menegat, A.; Siemann, R.H.

    1997-01-01

    An experiment to study the effects of pulsed heating in electromagnetic cavities will be performed. Pulsed heating is believed to be the limiting mechanism of high acceleration gradients at short wavelengths. A cylindrical cavity operated in the TE 011 mode at a frequency of 11.424 GHz will be used. A klystron will be used to supply a peak input power of 20 MW with a pulse length of 1.5 μs. The temperature response of the cavity will be measured by a second waveguide designed to excite a TE 012 mode in the cavity with a low-power CW signal at a frequency of 17.8 GHz. The relevant theory of pulsed heating will be discussed and the results from cold-testing the structure will be presented

  12. Giant Pulse Studies of Ordinary and Recycled Pulsars with NICER

    Science.gov (United States)

    Lewandowska, Natalia; Arzoumanian, Zaven; Gendreau, Keith C.; Enoto, Teruaki; Harding, Alice; Lommen, Andrea; Ray, Paul S.; Deneva, Julia; Kerr, Matthew; Ransom, Scott M.; NICER Team

    2018-01-01

    Radio Giant Pulses are one of the earliest discovered form of anomalous single pulse emission from pulsars. Known for their non-periodical occurrence, restriction to certain phase ranges, power-law intensity distributions, pulse widths ranging from microseconds to nanoseconds and very high brightness temperatures, they stand out as an individual form of pulsar radio emission.Discovered originally in the case of the Crab pulsar, several other pulsars have been observed to emit radio giant pulses, the most promising being the recycled pulsar PSR B1937+21 and also the Vela pulsar.Although radio giant pulses are apparently the result of a coherent emission mechanism, recent studies of the Crab pulsar led to the discovery of an additional incoherent component at optical wavelengths. No such component has been identified for recycled pulsars, or Vela yet.To provide constraints on possible emission regions in their magnetospheres and to search for differences between giant pulses from ordinary and recycled pulsars, we present the progress of the correlation study of PSR B1937+21 and the Vela pulsar carried out with NICER and several radio observatories.

  13. Pulse radiolysis study on several fluoroquinolones

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Peng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Science, Beijing 100049 (China); Yao Side [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li Haixia; Song Xiyu; Liu Yancheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Science, Beijing 100049 (China); Wang Wenfeng, E-mail: wangwenfeng@sinap.ac.c [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2011-04-15

    Reactions of several fluoroquinolones (FQs), including enoxacin, norfloxacin, and ciprofloxacin, with various reactive species such as e{sub aq}{sup -}, N{sup {center_dot}}{sub 3}, and {sup {center_dot}O}H are investigated by pulse radiolysis techniques. The FQ radical anions formed in the reactions of FQs with e{sub aq}{sup -} could either be protonated or deprotonated, and the absorption of FQ radical anions was located around 370 nm. The absorption of the neutral radicals produced in the protonation, and the radical dianions produced in the deprotonation of FQ radical anions were located in the 500-750 nm region. The FQ radical cations formed in the reactions of FQs with N{sub 3}{sup {center_dot}} showed an absorption band around 360 nm. Due to the strong bleaching below 350 nm, the absorption maxima ({lambda}{sub max}) of FQ radical anions, and the {lambda}{sub max} of FQ radical cations were not confirmed. The absorption of the FQ radical anions and cations was clearly pH dependent. Under neutral conditions, the reaction rate constants of FQs with e{sub aq}{sup -} and {sup {center_dot}O}H, which are diffusion controlled, were determined.

  14. Redox reaction studies by nanosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Moorthy, P.N.

    1979-01-01

    Free radicals are formed as intermediates in many chemical and biochemical reactions. An important type of reaction which they can undergo is a one electron or redox process. The direction and rate of such electron transfer reactions is governed by the relative redox potentials of the participating species. Because of the generally short lived nature of free radicals, evaluation of their redox potentials poses a number of problems. Two techniques are described for the experimental determination of the redox potentials of short lived species generated by either a nanosecond electron pulse or laser flash. In the first method, redox titration of the short lived species with stable molecules of known redox potential is carried out, employing the technique of fast kinetic spectrophotometry. Conversely, by the same method it is also possible to evaluate the one electron redox potentials of stable molecules by redox titration with free radicals of known redox potential produced as above. In the second method, electrochemical reduction or oxidation of the short lived species at an appropriate electrode (generally a mercury drop) is carried out at different fixed potentials, and the redox potential evaluated from the current-potential curves (polarograms). Full description of the experimental set up and theoretical considerations for interpretation of the raw data are given. The relative merits of the two methods and their practical applicability are discussed. (auth.)

  15. Radiolytic investigations of solutions of organophosphorus compounds in cyclohexane and benzene

    International Nuclear Information System (INIS)

    Otrebski, W.

    1981-01-01

    Organphosphorus compounds are used in various branches of the chemical industry, but in many cases the reaction mechanisms are not well elucidated and less is known about the intermediates of organophosphines. In order to learn more about these rather complicated processes several organophosphorus compounds were used as model substrates in cyclohexane or benzene solution. The systems have been investigated applying the pulse radiolysis technique and steady-state irradiation methods. As representative solutes were chosen diphenylphosphinous chloride, diphenylmethylphosphine, and triphenylphosphine. By means of the pulse radiolysis it was possible to obtain spectroscopic and kinetic data for characterization of the various transients. The final radiolytic products have been analyzed following steady-state and multipulse radiolysis. Since some of the rate constants were not directly accessible by the applied kinetic method, they have been determined by simulation computation. Thereby the experimental data obtained by pulse radiolysis were used. Based on the kinetic, spectroscopic and computed data as well as on the identification of final products, it was possible to elucidate the reaction mechanism of the diphenylphosphinous chloride/cyclohexane system. As a main primary specie was identified the diphenylphoshorus radical. Its spectral and kinetic data have been determined. The reactions of diphenylmethylphosphine involve the same radical, but only to a lesser extent. The reactions of the primary radiolysis products with triphenylphosphine yield mainly adducts. The results represent a contribution in the field of reaction kinetics of organophosphorus compounds. (author)

  16. Chemical and radiolytical solvent degradation in the Purex process

    International Nuclear Information System (INIS)

    Stieglitz, L.; Becker, R.

    1985-01-01

    The state of the art of chemical and radiolytical solvent degradation is described. For the hydrolysis of tributylphosphate TBP->HDBP->H 2 MBP->H 3 PO 4 values are given for the individual constants in a temperature range from 23 to 90 0 C. Radiolytic yields were measured for HDBP as 80 mg/Wh, for H 2 MBP as 2 mg/Wh, and for H 3 PO 4 as 5 mg/Wh. Experimental results on the degradation products of the diluent are summarized and their influence on the process is discussed. Long chain acid phosphates and acid TBP oligomeres were identified as responsible for the retention of fission products. Techniques such as polarography, infrared spectrometry and electrolytic conductometry are applied to estimate concentrations of degradation products down to 10 -5 mol/l. (orig.) [de

  17. Chemical and radiolytical solvent degradation in the Purex process

    Energy Technology Data Exchange (ETDEWEB)

    Stieglitz, L; Becker, R

    1985-01-01

    The state of the art of chemical and radiolytical solvent degradation is described. For the hydrolysis of tributylphosphate TBP->HDBP->H/sub 2/MBP->H/sub 3/PO/sub 4/ values are given for the individual constants in a temperature range from 23 to 90/sup 0/C. Radiolytic yields were measured for HDBP as 80 mg/Wh, for H/sub 2/MBP as 2 mg/Wh, and for H/sub 3/PO/sub 4/ as 5 mg/Wh. Experimental results on the degradation products of the diluent are summarized and their influence on the process is discussed. Long chain acid phosphates and acid TBP oligomeres were identified as responsible for the retention of fission products. Techniques such as polarography, infrared spectrometry and electrolytic conductometry are applied to estimate concentrations of degradation products down to 10/sup -5/ mol/l.

  18. Radiolytic degradation of sorbic acid in isolated systems

    International Nuclear Information System (INIS)

    Thakur, B.R.; Trehan, I.R.; Arya, S.S.

    1990-01-01

    Effect of Co(60) gamma-irradiation on stability of sorbic acid (SA) in solutions, dough and chapaties has been investigated. SA was highly susceptible to radiolytic degradation in aqueous systems. Rate of degradation decreased with rise in pH. Sugars, hydrocolloids except pectin, citric acid, lactic acid, malic acid, arginine and threonine, catalyzed degradation while oxalic acid, maleic acid, Cu2+, nitrite, nitrate and phthalate had protective effects. SA was more stable in alcohols and vegetable oils than in aqueous solutions. In wheat flour radiolytic degradation of SA was less at lower moisture. Relatively SA was more stable in chapaties than in dough. Gelatinization and addition of oil in dough reduced degradation of SA

  19. Preliminary study of pseudorandom binary sequence pulsing of ORELA

    International Nuclear Information System (INIS)

    Larson, N.M.; Olsen, D.K.

    1980-03-01

    It has been suggested that pseudorandom binary sequence (PRBS) pulsing might enhance the performance of the Oak Ridge Electron Linear Accelerator (ORELA) for neutron-induced, time-of-flight (TOF) cross-section measurements. In this technical memorandum, equations are developed for expected count rates, statistical variances, and backgrounds for a pulsing scheme in which a PRBS is superimposed on the periodic equalintensity ORELA bursts. Introduction of the PRBS modification permits neutrons of different energies originating from different bursts to reach the detector simultaneously, and the signal corresponding to a unique flight time to be extracted mathematically. Relative advantages and disadvantages of measurements from conventional and PRBS pulsing modes are discussed in terms of counting statistics and backgrounds. Computer models of TOF spectra are generated for both pulsing modes, using as examples a 20-meter 233 U fission-chamber measurement and a 155-meter 238 U sample-in transmission measurement. Detailed comparisons of PRBS vs conventional results are presented. This study indicates that although PRBS pulsing could enhance ORELA performance for selected measurements, for general ORELA operation the disadvantages from PRBS pulsing probably outweigh the advantages

  20. Comparative study on Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation of urease thin films

    International Nuclear Information System (INIS)

    Smausz, Tomi; Megyeri, Gabor; Kekesi, Renata; Vass, Csaba; Gyoergy, Eniko; Sima, Felix; Mihailescu, Ion N.; Hopp, Bela

    2009-01-01

    Urease thin films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE) and Pulsed Laser Deposition from two types of targets: frozen water solutions of urease with different concentrations (1-10% m/v) and pure urease pellets. The fluence of the ablating KrF excimer laser was varied between 300 and 2200 mJ/cm 2 . Fourier transform infrared spectra of the deposited films showed no difference as compared to the original urease. Morphologic studies proved that the films consist of a smooth 'base' layer with embedded micrometer-sized droplets. Absorption-coefficient measurements contradicted the traditional 'absorptive matrix' model for MAPLE deposition. The laser energy was absorbed by urease clusters leading to a local heating-up and evaporation of the frozen matrix from the uppermost layer accompanied by the release of dissolved urease molecules. Significant enzymatic activity of urease was preserved only during matrix assisted transfer.

  1. Reactivity of OH radicals with chlorobenzoic acids-A pulse radiolysis and steady-state radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Zona, Robert [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology, UZAII, Althanstrasse 14, A-1090 Vienna (Austria); Solar, Sonja, E-mail: sonja.solar@univie.ac.a [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology, UZAII, Althanstrasse 14, A-1090 Vienna (Austria); Getoff, Nikola [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology, UZAII, Althanstrasse 14, A-1090 Vienna (Austria); Sehested, Knud; Holcman, Jerzy [RISO National Laboratory Environmental Science and Technology Department, DK-4000, Roskilde (Denmark)

    2010-05-15

    The reactions of OH radicals with 2-, 3-, 4-chlorobenzoic acids (ClBzA) and chlorobenzene (ClBz), k({sup c}entre dotOH+substrates)=(4.5-6.2)x10{sup 9} dm{sup 3} mol{sup -1} s{sup -1}, have been studied by pulse radiolysis in N{sub 2}O saturated solutions. The absorption maxima of the OH-adducts were in the range of 320-340 nm. Their decay was according to a second-order reaction, 2k=(1-9)x10{sup 8} dm{sup 3} mol{sup -1} s{sup -1}. In the presence of N{sub 2}O/O{sub 2} the formation of peroxyl radicals was detectable for 2-, 4-ClBzA and ClBz, k(OH-adduct+O{sub 2})=(2-4)x10{sup 7} dm{sup 3} mol{sup -1} s{sup -1}, while this reaction for 3-ClBzA was too slow to be registered. In the presence of N{sub 2}O the degradation rates induced by gamma radiation were very similar for all chlorobenzoic acids, yet the chloride formation was distinctly higher for 3-ClBzA. In the presence of oxygen the initial degradation of 2-and 4-ClBzA equaled the OH-radical concentration, whereas in case of 3-ClBzA only approx60% of {sup c}entre dotOH led to degradation. The order for the efficiency of dehalogenation was 4->2->3-ClBzA. Several primary radiolytic products could be detected by HPLC. To evaluate the toxicity of final products a bacterial bioluminescence test was carried out.

  2. Pulsed total dose damage effect experimental study on EPROM

    International Nuclear Information System (INIS)

    Luo Yinhong; Yao Zhibin; Zhang Fengqi; Guo Hongxia; Zhang Keying; Wang Yuanming; He Baoping

    2011-01-01

    Nowadays, memory radiation effect study mainly focus on functionality measurement. Measurable parameters is few in china. According to the present situation, threshold voltage testing method was presented on floating gate EPROM memory. Experimental study of pulsed total dose effect on EPROM threshold voltage was carried out. Damage mechanism was analysed The experiment results showed that memory cell threshold voltage negative shift was caused by pulsed total dose, memory cell threshold voltage shift is basically coincident under steady bias supply and no bias supply. (authors)

  3. Nuclear fuel safety studies by laser pulse heating

    International Nuclear Information System (INIS)

    Viswanadham, C.S.; Kumar, Santosh; Dey, G.K.; Kutty, T.R.G.; Khan, K.B.; Kumar, Arun; Jathar, V.P.; Sahoo, K.C.

    2009-01-01

    The behaviour of nuclear fuels under transient heating conditions is vital to nuclear safety. A laser pulse based heating system to simulate the transient heating conditions experienced by the fuel during reactor accidents like LOCA and RIA is under development at BARC, Mumbai. Some of the concepts used in this system are under testing in pilot studies. This paper describes the results of some pilot studies carried out on unirradiated UO 2 specimens by laser pulse heating, followed by metallography and X-ray diffraction measurements. (author)

  4. Time extrapolation of radiolytic degradation product kinetics: the case of polyurethane

    International Nuclear Information System (INIS)

    Dannoux, A.

    2007-02-01

    The prediction of the environmental impact of organic materials in nuclear waste geological storage needs knowledge of radiolytic degradation mechanisms and kinetics in aerobic and anaerobic conditions. In this framework, the effect of high doses (> MGy) and the variation of dose rate have to be considered. The material studied is a polyurethane composed of polyether soft segment and aromatic hard segments. Mechanisms were built on the analysis of material submitted to irradiations of simulation (high energy electrons and gamma radiation) by FTIR spectroscopy and gaseous and liquid degradation products by gas mass spectrometry and size exclusion chromatography. The electron paramagnetic resonance study of radical process and the determination of oxygen consumption and gas formation radiolytic yields allowed us to acquire kinetic data and to estimate dose rate and high doses effects. The polyurethane radio-oxidation mainly concerns soft segments and induced cross-linkings and production by scissions of oxidised compounds (esters, alcohols, carboxylic acids). The kinetic of radical termination is rapid and the dose rate effect is limited. After 10 MGy, branching and scission reactions are in equilibrium and low molecular weight products accumulate. At last, the degradation products release in water is influenced by the oxidation rate and the temperature. After 10 MGy, the soluble fraction is stabilised at 25%. The water soluble products identified by electro-spray ionisation mass spectrometry (alcohols, aldehydes, carboxylic acids) potentially formed complexes with radionuclides. (author)

  5. Pulse radiolysis of rhodamine dye solutions

    International Nuclear Information System (INIS)

    Kucherenko, E.A.; Kartasheva, L.I.; Pikaev, A.K.

    1982-01-01

    Applying the method of pulse radiolysis (5 MeV electrons) a study was made on intermediate products of rhodamine B radiolytic transformations in neutral aqueous and ethanol solutions. Rate constants of reactions of esub(aq) and OH with the dye (they are equal to (2.2+-0.3)x10 10 and (2.1+-0.3)x10 10 e/molxs, accordingly) as well as optical and kinetic characteristics of esub(aq), OH and H interaction products were measured. The nature of these products is concluded. It was found that in ethanol solutions the semirecovered form - electroneutral radical of rhodamine B - was the only intermediate product. It arises during the interaction of the dye with esub(s) (k=(9.2+-1.2)x10 9 e/molxs) and α-et hananol radical (k=(1.1+-0.1)x10 8 l/molxs). Properties of this product were investigated

  6. Radiolytic formation of organic iodides from organic compounds released from ripolin paint

    International Nuclear Information System (INIS)

    Attia, S.; Evans, G.J.

    2002-01-01

    The impact of a serious nuclear reactor accident is governed to a large extent by the possible release of airborne organic iodides to the environment. This research examines the identification and behavior of organic iodides formed in the containment due to the release of organic compounds from Ripolin paint, into the aqueous phase, following a nuclear reactor accident. A bench scale apparatus installed in the irradiation chamber of a Gammacell was used to analyze the formation of organic iodides. Iodo-organics, transferred to the gas phase above irradiated aqueous samples, were analyzed using a Thermal Desorption method coupled with gas chromatography and mass spectrometry. Detailed studies of the identity of the organic compounds released and the organic iodides formed were conducted. The effects of parameters such as irradiation dose were also examined. All the organic iodides formed, under radiolytic conditions, were identified as iodo-alkanes. The organic compounds that were released from the Ripolin paint, such as methyl isobutyl ketone, were found to decompose, by a series of reactions, to produce the organic iodides. The precursor organic compounds and the organic iodides formed were observed to consist of the same alkyl group. These results indicate that organic compounds released from surface paints directly influence the formation of radiolytic organic iodide. (author)

  7. Structural, optical and thermal properties of PVA/CdS nanocomposites synthesized by radiolytic method

    International Nuclear Information System (INIS)

    Kharazmi, Alireza; Saion, Elias; Faraji, Nastaran; Hussin, Roslina Mat; Yunus, W. Mahmood Mat

    2014-01-01

    Monodispersed spherical CdS nanoparticles stabilized in PVA solution were synthesized by the gamma radiolytic method and found the average particle size increased from 12 to 13 nm with the increment of dose from 10 to 40 kGy. The XRD results show that it has crystalline planes of cubic structure with crystal lattice parameter of 5.832 Å. The optical reflectance revealed a band-edge of CdS nanoparticles at about 475 nm and the reflectance wavelength red shifted with increasing dose due to increasing particle size. The thermal conductivity of CdS/PVA nanocomposites measured by the transient hot wire method that revealed a decrement of the thermal conductivity with an increase of dose caused by effect of radiation on crystallinity of the polymer structure. - Highlights: • CdS/PVA nanocomposite was synthesized by radiolytic method from 10 to 40 kGy doses. • The structure of nanocomposite and the effect of dose on structure were investigated by X-ray powder diffraction. • The morphology of nanoparticles and the effect of dose on nanoparticles were observed by transmission electron microscope. • The optical properties of nanocomposite and the effect of radiation were studied by UV–visible spectroscopy and fluorescence spectroscopy. • The thermal properties of nanocomposite and the effect of dose were investigated by the transient hot wire method

  8. Radiolytic generation of chloro-organic compounds in transuranic and low-level radioactive waste

    International Nuclear Information System (INIS)

    Reed, D.T.; Armstrong, S.C.; Krause, T.R.

    1993-01-01

    The radiolytic degradation of chloro-plastics is being investigated to evaluate the formation of chlorinated volatile organic compounds in radioactive waste. These chlorinated VOCs, when their subsequent migration in the geosphere is considered, are potential sources of ground-water contamination. This contamination is an important consideration for transuranic waste repositories being proposed for the Waste Isolation Pilot Plant project and the several additional low-level radioactive waste sites being considered throughout the United States. The production of chlorinated volatile organic compounds due to the interaction of ionizing radiation with chloro-plastic materials has been well-established in both this work and past studies. This occurs as a result of gamma, beta, and alpha particle interactions with the plastic material. The assemblage of organic compounds generated depends on the type of plastic material, the type of ionizing radiation, the gaseous environment present and the irradiation temperature. In the authors' experiments, gas generation data were obtained by mounting representative plastics near (3 mm) an alpha particle source (Am-241 foil). This assembly was placed in an irradiation vessel which contained air, nitrogen, or a hydrogen/carbon dioxide mixture, at near-atmospheric pressures, to simulate the range of atmospheres likely to be encountered in the subsurface. The gas phase in the vessels are periodically sampled for net gas production. The gas phase concentrations are monitored over time to determine trends and calculate the radiolytic yield for the various gaseous products

  9. In vitro studies with a pulsed neodymium/YAG laser.

    Science.gov (United States)

    Venkatesh, S; Guthrie, S; Foulds, W S; Lee, W R; Cruickshank, F R; Bailey, R T

    1985-02-01

    The relationships between the destructive effects of Q-switched Nd/YAG laser pulses and a number of experimental parameters were studied for various target materials including in particular excised, fixed samples of human trabecular meshwork. The laser parameters altered were the pulse energy, the convergence angle of the focused beam, and the position of the focus of the beam relative to the target's axial position. The main finding was that it was possible to make deep holes, of a diameter less than 100 micron, in virtually transparent samples of trabecular meshwork with a laser delivery system of 6 degrees convergence and pulse energies of 14 mJ or more. The relevance of this and the other experimental results to the development of a reliable system for performing internal trabeculotomies for the treatment of open-angle glaucoma is presented.

  10. Study of pulse shapes in Ge detectors with PET

    Energy Technology Data Exchange (ETDEWEB)

    Grabmayr, Peter; Hegai, Alexander; Jochum, Josef; Schmitt, Christopher; Schuetz, Ann-Kathrin [Eberhard Karls Univeritaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The Gerda collaboration aims to determine the half life of the neutrinoless double beta decay (0νββ) of {sup 76}Ge. For Phase II Gerda wants to reduce the background contribution significantly by active background-suppression techniques. One of such techniques is the pulse shape analysis of signals induced by the interaction of radiation with the detector. The pulse shapes depend not only on the energy of the interacting gamma, the geometry and field configuration but also on the location of interaction in the crystal. The waveform and the location of the interaction in the germanium can be determined by positron-emission-tomography (PET). First results of this novel pulse shape study with the PET will be presented in this talk.

  11. Studies of Pulsed Signals in High-precision Experiments (Antarctica

    Directory of Open Access Journals (Sweden)

    Shapovalov S. N.,

    2013-07-01

    Full Text Available The paper presents the results of studies on pulsed signals in photocurrent (PCC-2 instrument, in the 565-nm LED spectrum, and in the atmospheric zenith spectrum (342.5 nm. According to the results of statistical analysis of data measurements for the period from 24.04.04 till 01.02.06 a correlation between the temporal distribution of pulsed signals in photocurrent PCC-2 and CA F10.7 cm (2800 MHz index and the total solar radiation (TSI was established. In the course of the parallel measurements of photocurrent in PCC-2 and fluctuations in the spectra frequencies of the LED and the atmosphere zenith, based on the average daily values of the standard deviation, the identical trend in the photocurrent pulse signals (PCC-2 and the fluctuations at 520-nm LED spectrum and 342.5-nm atmosphere zenith spectrum was detected (AvaSpec–2048 spectrometer.

  12. Study on high gain broadband optical parametric chirped pulse amplification

    International Nuclear Information System (INIS)

    Zhang, S.K.; Fujita, M.; Yamanaka, C.; Yoshida, H.; Kodama, R.; Fujita, H.; Nakatsuka, M.; Izawa, Y.

    2000-01-01

    Optical parametric chirped pulse amplification has apparent advantages over the current schemes for high energy ultrashort pulse amplification. High gain in a single pass amplification, small B-integral, low heat deposition, high contrast ratio and, especially the extremely broad gain bandwidth with large-size crystals available bring people new hope for over multi-PW level at which the existing Nd:glass systems suffered difficulties. In this paper we present simulation and experimental studies for a high gain optical parametric chirped pulse amplification system which may be used as a preamplifier to replace the current complicated regenerative system or multi-pass Ti:sapphire amplifiers. Investigations on the amplification bandwidth and gain with BBO are performed. Analysis and discussions are also given. (author)

  13. Study of laser pulses propagation through an ultrashort pulse amplifying systems for the development of an Offner temporal stretcher

    International Nuclear Information System (INIS)

    Cordeiro, Thiago da Silva

    2009-01-01

    The study of laser pulses propagation through an ultrashort pulses amplifying system containing dispersive and spectral modifying media was performed. The study emphasis was the development of an ultrashort pulse stretcher to replace the one inside a hybrid Ti:Sapphire/Cr:LiSAF CPA system operating at the Center for Lasers and Applications at IPEN/CNEN-SP. A spherical aberration free Offner stretcher was theoretically studied, aiming to obtain a stretching ratio larger than the one available in our system. The influence of the phase components in the amplified pulse final duration was also studied, and the bandwidth limiting elements of the system in operation were mapped, with the purpose of determining the conditions under which a new stretcher should be implemented. Based on the actual measurements, computing routines were implemented in order to determine the consequences of an ultrashort pulse travelling through a bandwidth limiting component. (author)

  14. Pulse radiolysis study on aqueous solution of nicotine

    International Nuclear Information System (INIS)

    Wang Shilong; Mei Wang; Ni Yaming; Yao Side; Wang Wenfeng

    2004-01-01

    Nicotine has been studied for the first time by pulse radiolysis techniques. It has been found that hydrated electrons, hydrogen radicals and hydroxyl radicals can react with nicotine to produce anion radicals and neutral radicals, respectively, and the related rate constants have been determined. (authors)

  15. Spectroscopic studies of pulsed-power plasmas

    International Nuclear Information System (INIS)

    Maron, Y.; Arad, R.; Dadusc, G.; Davara, G.; Duvall, R.E.; Fisher, V.; Foord, M.E.; Fruchtman, A.; Gregorian, L.; Krasik, Ya.

    1993-01-01

    Recently developed spectroscopic diagnostic techniques are used to investigate the plasma behavior in a Magnetically Insulated Ion Diode, a Plasma Opening Switch, and a gas-puffed Z-pinch. Measurements with relatively high spectral, temporal, and spatial resolutions are performed. The particle velocity and density distributions within a few tens of microns from the dielectric-anode surface are observed using laser spectroscopy. Collective fluctuating electric fields in the plasma are inferred from anisotropic Stark broadening. For the Plasma Opening Switch experiment, a novel gaseous plasma source was developed which is mounted inside the high-voltage inner conductor. The properties of this source, together with spectroscopic observations of the electron density and particle velocities of the injected plasma, are described. Emission line intensities and spectral profiles give the electron kinetic energies during the switch operation and the ion velocity distributions. Secondary plasma ejection from the electrodes is also studied. In the Z-pinch experiment, spectral emission-line profiles are studied during the implosion phase. Doppler line shifts and widths yield the radial velocity distributions for various charge states in various regions of the plasma. Effects of plasma ejection from the cathode are also studied

  16. Hydrolytic and radiolytic degradation of TBP in TBP.30% V/V-dodecane/UO2(NO3)2.HNO3.H2O systems

    International Nuclear Information System (INIS)

    Barreta, L.G.

    1980-01-01

    The hydrolytic and radiolytic degradation of TBP is investigated in systems of TBP 30% V/V-dodecane/H 2 O . HNO 3 . UO 2 (NO 3 ) 2 by gas chromatographic determination of HDBP. No direct relation between the concentration of HDBP formed and the quantity of HNO 3 extracted by the organic phase is observed in the studies of hydrolysis of TBP. The HDBP concentration is seen to increase non-linearly with the concentration of HNO 3 extracted by the organic phase. Radiolytic studies show that for doses greater than 1 Wh/l, the concentration of HDBP formed increases with the dose absorbed by the system. Whith doses smaller than 1 Wh/l and acid concentration greater than 2 M, two distinct patterns of behavior are observed. The concentration of HDBP as a function of the radiation dose absorbed by the system presents a minimum for uranyl nitrate concentrations smaller than 0.9 M; for uranyl nitrate concentrations greater than 1.3 M the concentration of radiolytic HDBP cannot be calculated because the concentration of the hydrolytic HDBP determined is greater than the sum of the experimental concentrations of hydrolytic and radiolytic HDBP. It is known that the dose absorbed by the process solutions during the reprocessing of light water reactor fuel elements is smaller than one Wh/l. Thus, dose rates between zero and one Wh/l should be studied for this system. (Author) [pt

  17. Pulse radiolysis study of aqueous cyanamide solutions

    International Nuclear Information System (INIS)

    Draganic, I.G.; Draganic, Z.D.; Sehested, K.

    1978-01-01

    The radiolysis of oxygen-free, aqueous solutions of cyanamide was studied by fast kinetic spectrophotometry. Computer simulation of the reaction mechanisms was used to evaluate the experimental data. Four different species are identified: (1) the radical anion (NH 2 CN) - absorbing light in the UV with lambda/sub max/ 240 = 1500 M -1 cm -1 ; the disappearance is a second-order process with 2k = 1.3 x 10 9 M -1 s -1 ; (2) the hydrogen adduct, NH 2 C(H) double bond N (or NH 2 C double bond NH), with lambda/sub max/ 300 nm and epsilon 300 = 150 M -1 cm -1 decaying by second-order kinetics with 2k = 3.1 x 10 9 M -1 s -1 ; (3) the hydroxyl radical preferentially adds to the cyano group, NH 2 C(OH) double bond N (or NH 2 C double bond NOH). This species rearranges in the submicrosecond scale to NH 2 C ( double bond O) NH (lambda/sub max/ 325 nm and epsilon/sub 325 = 1900 M -1 cm -1 ) and disappears by a second-order process with 2k = 6.3 x 10 9 M -1 s -1 . (4) It is estimated that about 10% of OH radicals attack the substituent group and by H abstraction produce the NHCN radical (lambda/sub max/ 370 nm and epsilon 370 = 1800 M -1 cm -1 ); it disappears by a pseudo-first-order process attributed to a hydrolysis reaction. At increasing acidities, protonation of this radical takes place, NHCN + H + → + NH 2 CN; the protonated form decays faster and absorbs more strongly. In a cyanamide solution containing S 2 O 8 2- , the SO - 4 . radicals react with cyanamide, k = 1 x 10 8 M -1 s -1 , producing + NH 2 CN radicals. The dependence of the optical density at 325 nm on the dose rate and solute concentration are quantitatively consistent with the assumption that the OH radicals react with the NH 2 C(=O)NH species with k = 4 x 10 9 M -1 s -1

  18. Radiolytic gas production in the alpha particle degradation of plastics

    International Nuclear Information System (INIS)

    Reed, D.T.; Hoh, J.; Emery, J.; Hobbs, D.

    1992-01-01

    Net gas generation due to alpha particle irradiation of polyethylene and polyvinyl chloride was investigated. Experiments were performed in an air environment at 30, 60, and 100 degree C. The predominant radiolytic degradation products of polyethylene were hydrogen and carbon dioxide with a wide variety of trace organic species noted. Irradiation of polyvinyl chloride resulted in the formation of HCl in addition to the products observed for polyethylene. For both plastic materials, a strong enhancement of net yields was noted at 100 degree C

  19. Comparative Study Between Intense Pulsed Light IPLAND Pulsed Dye Laser In The Treatment Of Striae Distensae

    International Nuclear Information System (INIS)

    El-Khalafawy, Gh.M.K.A.

    2013-01-01

    Pulsed dye laser (PDL) and Intense Pulsed Light (IPL) have been used to treat Striae Distensae (SD). Thirty patients with age ranging from 14 - 42 years were included in this study. Twenty patients were treated on one side of their bodies with PDL and on the other side with IPL while seven patients were treated on both sides by IPL and three patients were treated on both sides by PDL for five sessions with four weeks interval between sessions. Skin biopsies were stained with H and E, Masson Trichrome, Orcein, Alcian blue and anti-collagen I Α1. After both PDL and IPL treatments striae width was decreased and the texture was improved in a highly significant manners where P value was 0.001. Collagen expression was increased in a highly significant manner and P values were <0.001 and 0.004 after PDL and IPL treatments respectively. However, PDL induced expression of collagen I in a highly significant manner compared to the treatment with IPL where P values were <0.001 and 0.193 respectively. Striae rubra gave a superior response with either PDL or IPL compared to striae alba which was evaluated clinically by the width, color and texture, although the histological changes could not verify this consequence. Both PDL and IPL can enhance the clinical picture of striae through collagen stimulation therapeutic modalities

  20. Degradation Mechanism of Poly(Ether-Urethane) Estane Induced by High Energy Radiation (III) : Radiolytic Gases and Water Soluble Products

    International Nuclear Information System (INIS)

    Dannoux, A.

    2006-01-01

    Within the framework of nuclear waste management, there is interest in the prediction of long-term behaviour of organic materials subjected to high energy radiation. Once organic waste has been stored, gases and low molecular products might be generated from materials irradiated by radionuclides. Long-term behaviour of organic material in nuclear waste has several common concerns with radiation ageing of polymers. But a more detailed description of the chemical evolution is needed for nuclear waste management. In a first approach, an extensive work on radiation ageing is used to identify the different processes encountered during the degradation of a polyurethane, including oxidation dose rate-effects and influence of dose on the oxidation mechanism. In a second approach, a study is performed to identify and quantify gases and possible production of water soluble chemical complexing agents which might enhance radionuclides migration away from the repository. In this work, we present results concerning the production of radiolytic gases and the formation of water soluble oligomers reached with leaching tests Films were made from a poly(ether-urethane) synthesized from methylene bis(p-phenyl isocyanate) (MDI) and poly(tetramethylene glycol) (PTMG) with 1,4 butanediol (BD) and were irradiated by high-energy electron beam to cover a wide doses range and by γ rays to determine the formation/consumption yields of gases. They were measured by mass spectrometry and gas-chromatography/mass spectrometry (GC/MS). The migration of water soluble oligomers in water was reached by measuring the weight loss versus leaching time. The identification of oligomers was performed by using a mass spectrometry with an electrospray ionisation interface (ESI-MS-MS). The analysis of radiolytic gases indicates the formation of H 2 , CO 2 and CO with respective radiolytic yields of 1, 0.5 and 0.3 molecule/100 eV. The consumption of O 2 is evaluated to 6 molecules/100 eV. For absorbed doses

  1. Radiolytic gas generation in salt cake technical task plan

    International Nuclear Information System (INIS)

    Walker, D.D.; Crawford, C.L.; Bibler, N.E.

    1993-01-01

    High-level radioactive wastes are stored in large, steel tanks in the Savannah River Site Tank Farms. The liquid levels in these tanks are monitored to detect leakage of waste out of tanks or leakage of liquids into the tanks. Recent unexplained level fluctuations in high-level waste (HLW) tanks have caused High Level Waste Engineering (HLWE) to develop a program to better understand tank level behavior. Interim Waste Technology (IWT) has been requested by HLWE to obtain data which will lead to a better understanding of the radiolytic generations of gases in salt cake. The task described below will provide data from laboratory experiments with simulated wastes which can be used in tank level fluctuation modeling. The following experimental programs have been formulated to meet the task requirements of the customer: (A) determine whether radiolytically generated gas bubbles can be trapped in salt cake; (B) determine the composition of gases produced by radiolysis; (C) determine the yield of radiolysis gases as a function of radiation dose; (D) determine bubble distribution

  2. Radiolytic Syntheses of Nanoparticles and Inorganic-Polymer Hybrid Microgels

    International Nuclear Information System (INIS)

    Chen, Q.; Shi, J.; Zhao, R.; Shen, X.

    2010-01-01

    In the second year of the project, we have gotten progress mainly in two directions. Firstly, for the first time, Prussian blue (PB) nanoparticles (NPs) were successfully synthesized by the partly radiolytic reduction of Fe3+ and Fe(CN)63 in the presence of poly(N-vinyl pyrrolidine) (PVP) under N2 atmospheres at room temperature. With the increase of the concentration of PVP, the size and the size distribution of the synthesized quasi-spherical PB NPs decreased obviously, leading to a hypsochromic shift on their peak position of the characteristic absorption. In the experiment, we further found that the smaller ones have a larger capacity to Cs+, suggesting that the application of PB NPs in curing thallotoxicosis may decrease the usage of PB for the patient to great extent. Secondly, through a series of preliminary experiments, we got a clear picture about the one-step radiolytic preparation of inorganic-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by surfactant-free emulsion polymerization. Besides, unpurified N-carbamothioylmethacrylamide was synthesized via the methacrylation of thiourea. These created favorable conditions for the one-step synthesis of metal sulfide-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by -irradiation and surfactant-free emulsion polymerization. (author)

  3. Radiolytic reactions in the coolant of helium cooled reactors

    International Nuclear Information System (INIS)

    Tingey, G.L.; Morgan, W.C.

    1975-01-01

    The success of helium cooled reactors is dependent upon the ability to prevent significant reaction between the coolant and the other components in the reactor primary circuit. Since the thermal reaction of graphite with oxidizing gases is rapid at temperatures of interest, the thermal reactions are limited primarily by the concentration of impurity gases in the helium coolant. On the other hand, the rates of radiolytic reactions in helium are shown to be independent of reactive gas concentration until that concentration reaches a very low level. Calculated steady-state concentrations of reactive species in the reactor coolant and core burnoff rates are presented for current U. S. designed, helium cooled reactors. Since precise base data are not currently available for radiolytic rates of some reactions and thermal reaction rate data are often variable, the accuracy of the predicted gas composition is being compared with the actual gas compositions measured during startup tests of the Fort Saint Vrain high temperature gas-cooled reactor. The current status of these confirmatory tests is discussed. 12 references

  4. Radiolytic Syntheses of Nanoparticles and Inorganic-Polymer Hybrid Microgels

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Shi, J.; Zhao, R.; Shen, X., E-mail: qdchen@pku.edu.cn [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, No. 5, Yiheyuan Load, Haidian District Beijing 100871 (China)

    2010-07-01

    In the second year of the project, we have gotten progress mainly in two directions. Firstly, for the first time, Prussian blue (PB) nanoparticles (NPs) were successfully synthesized by the partly radiolytic reduction of Fe3+ and Fe(CN)63 in the presence of poly(N-vinyl pyrrolidine) (PVP) under N2 atmospheres at room temperature. With the increase of the concentration of PVP, the size and the size distribution of the synthesized quasi-spherical PB NPs decreased obviously, leading to a hypsochromic shift on their peak position of the characteristic absorption. In the experiment, we further found that the smaller ones have a larger capacity to Cs+, suggesting that the application of PB NPs in curing thallotoxicosis may decrease the usage of PB for the patient to great extent. Secondly, through a series of preliminary experiments, we got a clear picture about the one-step radiolytic preparation of inorganic-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by surfactant-free emulsion polymerization. Besides, unpurified N-carbamothioylmethacrylamide was synthesized via the methacrylation of thiourea. These created favorable conditions for the one-step synthesis of metal sulfide-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by -irradiation and surfactant-free emulsion polymerization. (author)

  5. Radiolytic stabilization of industrial poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    Aquino, Katia Aparecida da Silva

    2005-03-01

    Poly(methyl methacrylate), PMMA, Acrigel, a Brazilian polymer, is used in the manufacture of medical supplies sterilisable by ionizing radiation. However, when PMMA is gamma-irradiated it undergoes main chain scissions, which promote molecular degradation causing reduction in its physical properties. Therefore, radiolytic stabilization of PMMA is important for to become it commercially radio sterilisable. In this work we investigated the radiolytic stabilization of PMMA by using HALS (Hindered Amine Light Stabilizer) additive, commercially used for photo and thermo oxidative stabilization of polymers. The investigation of the radiation-induced main chain scissions was carried out by viscometric method. The additive added to the polymer system at 0.3 % w/w promotes a molecular radioprotection of 61%. That means a reduction of G value (scissions/100 eV) from 2.6 to 1.0. In addition, the glassy transition temperature (Tg) of PMMA (no additive), significantly changed by radiation, does not change when PMMA (with additive) is irradiated. TGA analysis showed that the additive promotes thermal stability to the system, increasing decomposition temperature of PMMA. Spectroscopy analysis, FT-IR and RMN ( 1 H), showed that the radioprotector additive added to the system does not change the PMMA structure. Analysis on mechanical (tensile strength and elongation at break) and optical (yellowness index and refractive index) properties showed a good influence of the additive on polymer system. (author)

  6. Nonlinear scattering in hard tissue studied with ultrashort laser pulses

    International Nuclear Information System (INIS)

    Eichler, J.; Kim, B.M.

    2002-01-01

    The back-scattered spectrum of ultrashort laser pulses (800 nm, 0.2 ps) was studied in human dental and other hard tissues in vitro below the ablation threshold. Frequency doubled radiation (SHG), frequency tripled radiation and two-photon fluorescence were detected. The relative yield for these processes was measured for various pulse energies. The dependence of the SHG signal on probe thickness was determined in forward and back scattering geometry. SHG is sensitive to linear polarization of the incident laser radiation. SHG in human teeth was studied in vitro showing larger signals in dentin than in cementum and enamel. In carious areas no SHG signal could be detected. Possible applications of higher harmonic radiation for diagnostics and microscopy are discussed. (orig.)

  7. Radiolytically-induced novel materials and their application to waste processing

    International Nuclear Information System (INIS)

    Massimo Bertino; Akira Tokuhiro; Tadashi Tokuhiro

    2007-01-01

    In the present NEER project we investigated two different types of gel materials with respect to potential applications in environmental remediation, including mixed waste generated from the nuclear fuel cycles. The materials under study were: (1) silica-polymer based aerogel composites into which specific metallic cations diffuse into and remain, and (2) polymer gels made of thermo-sensitive polymer networks, whose functional groups can be ''tailored'' to have a preferred affinity for specific cations, again diffusing into and remaining in the network under a volumetrically, contractive phase-transition. The molecular, diffusion of specific cations, including those of concern in low-level waste streams, into the gel materials studied here indicates that a scaled, engineered system can be designed so that it is passive; that is, minimal (human) intervention and risk would be involved in encapsulating LLW species. In addition, the gel materials hold potential significance in environmental remediation of and recovery of metallic cations identified in respective domains and physico-chemical processes. In brief, silica gels start as aqueous/liquid solutions of base catalyzed silica hydrogels and metal ions (targeted species), such as silver. The metal ions are reduced radiolytically and migrate through the solution to form clusters. Upon post-irradiation processing, aerogel monoliths, extremely lightweight but mechanically strong, that encapsulate the metals are produced. Interestingly the radiolytic or photonic source can be gamma-rays and/or other rays from ''artificial sources'', such as reactors, or ''inherent sources'' like those characterizing mixed waste. Polymer gels, in contrast exhibit thermally-induced volumetric contraction at 20-50 C by expelling water from the gels physical state. Further, some functional groups that capture di- or tri-valent cations from aqueous solutions can be incorporated into the polymer networks on synthesis, including by radiolytic

  8. Radiolytically-induced novel materials and their application to waste processing

    Energy Technology Data Exchange (ETDEWEB)

    Massimo Bertino, Akira Tokuhiro, Tadashi Tokuhiro

    2007-12-05

    In the present NEER project we investigated two different types of gel materials with respect to potential applications in environmental remediation, including mixed waste generated from the nuclear fuel cycles. The materials under study were: (1) silica-polymer based aerogel composites into which specific metallic cations diffuse into and remain, and (2) polymer gels made of thermo-sensitive polymer networks, whose functional groups can be ''tailored'' to have a preferred affinity for specific cations, again diffusing into and remaining in the network under a volumetrically, contractive phase-transition. The molecular, diffusion of specific cations, including those of concern in low-level waste streams, into the gel materials studied here indicates that a scaled, engineered system can be designed so that it is passive; that is, minimal (human) intervention and risk would be involved in encapsulating LLW species. In addition, the gel materials hold potential significance in environmental remediation of and recovery of metallic cations identified in respective domains and physico-chemical processes. In brief, silica gels start as aqueous/liquid solutions of base catalyzed silica hydrogels and metal ions (targeted species), such as silver. The metal ions are reduced radiolytically and migrate through the solution to form clusters. Upon post-irradiation processing, aerogel monoliths, extremely lightweight but mechanically strong, that encapsulate the metals are produced. Interestingly the radiolytic or photonic source can be gamma-rays and/or other rays from ''artificial sources'', such as reactors, or ''inherent sources'' like those characterizing mixed waste. Polymer gels, in contrast exhibit thermally-induced volumetric contraction at 20-50 C by expelling water from the gels physical state. Further, some functional groups that capture di- or tri-valent cations from aqueous solutions can be incorporated

  9. Radiolytic decomposition of water-ethanol mixtures

    International Nuclear Information System (INIS)

    Baquey, Charles

    1968-07-01

    This research thesis addresses the study of the behaviour of binary mixtures submitted to ionizing radiations, and notably aims, by studying the case of water-ethanol mixtures, at verifying solutions proposed by previously published works on the origin of hydrogen atoms and of molecular hydrogen, on the intervention of excited atoms, and on the origin of products appearing under radiolysis. The experimental part of this work consists in the dosing of products formed in water-ethanol mixtures irradiated in presence or absence of nitrate, hydrogen, hydrocarbon, acetaldehyde, 2-3 butanediol and nitrite. Results are discussed and interpreted in terms of acetaldehyde efficiency, 2-3 butanediol efficiencies, and hydrocarbon efficiencies in pure ethanol, and in water-ethanol mixtures. The influence of the presence of nitrate ions in mixtures is also discussed

  10. Detection of radiolytic products by electrochemical methods

    International Nuclear Information System (INIS)

    Gonzalez-Velasco, J.

    1979-01-01

    This study demonstrates that the values of the rest potential of a platinum electrode submerged in an alkaline electrolyte (similar behaviour is also observed for an acidic one), can give a qualitative idea of the predominance in solution of radicaloid products that are oxidant and reducing in character. A simultaneous recording of potential sweep diagrams gives more precise information on the presence and characteristics of these radicals. (author)

  11. Radiolytic treatment of dioxin contaminated soils

    International Nuclear Information System (INIS)

    Gray, K.A.; Hilarides, R.J.

    1995-01-01

    Recent work in our laboratory has demonstrated that γ-radiolysis is a feasible method by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can be converted to products of negligible toxicity. In the presence of 25% water, 2.5% non-ionic surfactant and at a dose of 800 kGy greater than 98% destruction was achieved in a standard soil artificially contaminated with 100 ppb TCDD. By-product analysis has illustrated that the destruction occurs via step-wise reductive dechlorination producing a suite of lesser chlorinated dioxins. These results in combination with scavenger studies, target theory calculations and yields indicate that direct radiation effects account for the major route of destruction. Radiolysis has also been conducted on a real soil contaminated with TCDD and other chlorinated aromatic compounds verifying the results of model studies. Based on the data of these experiments some designs of batch gamma systems are considered and a discussion of estimated capital and operating costs associated with γ-radiolysis is presented. Given the high costs of the alternatives (i.e. incineration), radiolysis appears to be not only technically feasible, but it may also be economically competitive. (author)

  12. Study of polysilane mainchain electronic structure by picosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Habara, H.; Saeki, A.; Kunimi, Y.; Seki, S.; Kozawa, T.; Yoshida, Y.; Tagawa, S.

    2000-01-01

    The electronic structure of a charged polysilane molecle is studied. The transient absorption spectroscopy was carried out for charged radicals of poly (methylphenylsilane): PMPS by pico-second and nanosecond pulse radiolysis technique. It was observed that the peak of the transient absorption spectra shifted to longer wavelength region within a few nsec, and an increase was observed in the optical density at 370 nm, which had been already assigned to the radical anions of PMPS. It is ascribed to inter-segment electron transfer (intra-molecular transfer) through polymer chain. The nanosecond pulse radiolysis experiments gave similar kinetic traces in near-UV and IR region. This suggests the presence of an interband level, that is, a polaron level occupied by an excess electron or a hole. (author)

  13. Radiolytic removal of trihalomethane in chlorinated seawater

    International Nuclear Information System (INIS)

    Rajamohan, R.; Rajesh, Puspalata; Venugopalan, V.P.; Rangarajan, S.; Natesan, Usha

    2015-01-01

    Biofouling is one of the major operational problems in seawater cooling systems. It is controlled by application of chlorine based biocides in the range of 0.5-2.0 mg L -1 . The bromide in seawater reacts with the added chlorine and forms hypobromous acid. The brominated residual biocides react with natural organic matter present in the seawater, resulting in the formation of trihalomethanes (THM) such as bromoform (CHBr 3 ), dibromochloromethane (CHBr 2 Cl) bromodichloromethane (CHBrCl 2 ). Though THMs represent a small fraction of the added chlorine, they are relatively more persistent than residual chlorine, and hence pose a potential hazard to marine life because of their reported mutagenicity. There have been few reports on removal of THMs from chlorinated seawater. In this work, the efficacy of gamma irradiation technique for the removal of THMs from chlorine-dosed seawater was investigated. Experiments were carried out using seawater collected from Kalpakkam. Irradiation study was conducted in chlorinated (1, 3, and 5 mg L -1 of Cl 2 ) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation using a 60 Co Gamma Chamber 5000. Bromoform showed a faster rate of degradation as compared to other halocarbons like bromodichloromethane and dibromochloromethane. This shows the change in total THM concentration with variation in the radiation dose and initial Cl 2 dosing. When the percentage degradation of all the three trihalomethane species was compared with applied doses, it was found that the maximum reduction occurred at a dose of 2.5 kGy. The reduction was almost similar for all the three doses (1, 3, 5 ppm of Cl 2 ) used for chlorination. With a further increase in radiation dose to 5.0 kGy, a slight increase in reduction was observed

  14. Radiolytic degradation of gallic acid and its derivatives in aqueous solution

    International Nuclear Information System (INIS)

    Melo, R.; Leal, J.P.; Takacs, E.; Wojnarovits, L.

    2009-01-01

    Polyphenols, like gallic acid (GA) released in the environment in larger amount, by inducing some unwanted oxidations, may constitute environmental hazard: their concentration in wastewater should be controlled. Radiolytic degradation of GA was investigated by pulse radiolysis and final product techniques in dilute aqueous solution. Subsidiary measurements were made with 3,4,5-trimethoxybenzoic acid (TMBA) and 3,4,5-trihydroxy methylbenzoate (MGA). The hydroxyl radical and hydrogen atom intermediates of water radiolysis react with the solute molecules yielding cyclohexadienyl radicals. The radicals formed in GA and MGA solutions in acid/base catalyzed water elimination decay to phenoxyl radicals. This reaction is not observed in TMBA solution. The hydrated electron intermediate of water decomposition adds to the carbonyl oxygen, the anion thus formed protonates on the ring forming cyclohexadienyl radical or on the carbonyl group forming carbonyl centred radical. The GA intermediates formed during reaction with primary water radicals in presence of oxygen transform to non-aromatic molecules, e.g., to aliphatic carboxylic acids.

  15. Radiolytic degradation of gallic acid and its derivatives in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Melo, R. [Instituto Tecnologico e Nuclear, UCQR, Estrada Nacional No. 10, Apartado 21, 2686-953, Sacavem (Portugal); Leal, J.P. [Instituto Tecnologico e Nuclear, UCQR, Estrada Nacional No. 10, Apartado 21, 2686-953, Sacavem (Portugal); Centro Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, 1749-016 Lisboa (Portugal); Takacs, E., E-mail: takacs@iki.kfki.hu [Institute of Isotopes, Hungarian Academy of Sciences, P.O. Box 77, H-1525 Budapest (Hungary); Wojnarovits, L. [Institute of Isotopes, Hungarian Academy of Sciences, P.O. Box 77, H-1525 Budapest (Hungary)

    2009-12-30

    Polyphenols, like gallic acid (GA) released in the environment in larger amount, by inducing some unwanted oxidations, may constitute environmental hazard: their concentration in wastewater should be controlled. Radiolytic degradation of GA was investigated by pulse radiolysis and final product techniques in dilute aqueous solution. Subsidiary measurements were made with 3,4,5-trimethoxybenzoic acid (TMBA) and 3,4,5-trihydroxy methylbenzoate (MGA). The hydroxyl radical and hydrogen atom intermediates of water radiolysis react with the solute molecules yielding cyclohexadienyl radicals. The radicals formed in GA and MGA solutions in acid/base catalyzed water elimination decay to phenoxyl radicals. This reaction is not observed in TMBA solution. The hydrated electron intermediate of water decomposition adds to the carbonyl oxygen, the anion thus formed protonates on the ring forming cyclohexadienyl radical or on the carbonyl group forming carbonyl centred radical. The GA intermediates formed during reaction with primary water radicals in presence of oxygen transform to non-aromatic molecules, e.g., to aliphatic carboxylic acids.

  16. Time-dependent radiolytic product concentrations in the water flow of a spinning wheel target

    International Nuclear Information System (INIS)

    Burns, W.G.; Goodall, J.A.B.

    1989-01-01

    Using the Harwell Facsimile computer simulation package, values of water radiolytic product concentrations, for both transient radicals and stable molecules were calculated for a single revolution of the cooling water at 75 0 C in a spallation neutron source target wheel irradiated with 1000 MeV protons and consequential secondary radiation. The radiation was pulsed except for part of the γ radiation, which was continuous. The stable product concentrations at first rose and eventually came to steady values before the end of the revolution. Comparison with results for steady radiation suggested that with the mixed radiation molecular products from the more densely ionizing radiation were largely destroyed by the radicals from the more lightly ionizing radiation. The distribution of the dose rate in time and space also tended to give a lower extent of radiolysis than calculated for uniform irradiation at the arithmetic mean dose rate. The effect of a second revolution on the diluted products showed a smaller increase in product concentrations than for the first revolution. The Authors consider that the extent of radiolysis should be manageable. (author)

  17. Laser-driven hydrothermal process studied with excimer laser pulses

    Science.gov (United States)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  18. 5 MW pulsed spallation neutron source, Preconceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  19. 5 MW pulsed spallation neutron source, Preconceptual design study

    International Nuclear Information System (INIS)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in ∼ 1 μsec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs

  20. Radiolytic reduction of nifurtimose by CO2-· free radicals

    International Nuclear Information System (INIS)

    Filali-Mouhim, A.; Champion, B.; Jore, D.; Ferradini, C.; Hickel, B.

    1991-01-01

    Nifurtimox is an antiparasitic drug often used in the treatment of the Chagas disease. Its therapeutic action seems to involve its monoelectronic reduction leading to a reduced radical capable of providing superoxide anion by reaction with oxygen. The oxidation reduction mechanisms involved in this action have been studied by steady state and pulse radiolysis methods. This study is devoted to the monoelectronic exchanges observed in the absence of air, the reducing radicals being the CO 2 - · anions [fr

  1. Radiolytic preparation of ETFE and PFA based anion exchange membranes for alkaline fuel cell

    International Nuclear Information System (INIS)

    Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young-Chang; Shin, Junhwa

    2011-01-01

    In this study, a versatile monomer, vinylbenzyl chloride (VBC) was radiolytically grafted onto a partially fluorinated ETFE and perfluorinated polymer PFA films. The VBC grafted films were treated with trimethylamine to prepare the alkaline anion exchange membranes (AAEMs). No significant differences in the ion exchange capacities and water uptakes were observed between the ETFE and PFA based AAEMs with similar degree of grafting (DOG). However, the distribution patterns of the graft chains over the cross-section of the ETFE and PFA based AAEMs were found to be quite different; the even distribution was observed from the ETFE based AAEMs while the uneven distribution was observed from the PFA based AAEMs. It was also found that the PFA based AAEMs have the higher ionic conductivity and chemical stability, compared to the ETFE based AAEMs.

  2. Safety operation of chromatography column system with discharging hydrogen radiolytically generated

    International Nuclear Information System (INIS)

    Watanabe, S; Sano, Y.; Nomura, K.; Koma, Y.; Okamoto, Y.

    2015-01-01

    The extraction chromatography technology is one of the promising methods for the partitioning of minor actinides (Am and Cm) from spent nuclear fuels. In the extraction chromatography system, the accumulation of hydrogen gas in the chromatography column is suspected to lead to fire or explosion. In order to prevent hazardous accidents, it is necessary to evaluate behaviors of gas radiolytically generated inside the column. In this study, behaviors of gas inside the extraction chromatography column were investigated through experiments and Computation Fluid Dynamics (CFD) simulation. N_2 gas once accumulated as bubbles in the packed bed was hardly discharged by the flow of mobile phase. However, the CFD simulation and X-ray imaging on γ-ray irradiated column revealed that during operation the hydrogen gas generated in the column was dissolved into the mobile phase without accumulation and then discharged. (authors)

  3. Radiolytic effect on the chemical state of iodine in aqueous solution

    International Nuclear Information System (INIS)

    Shiraishi, H.; Kimiya, T.; Ohmae, M.; Ishigure, K.

    1988-01-01

    The oxidation state of iodine dissolved in an aqueous solution is easily changed in the presence of radiation field. Hence, it is essential to take the radiolytic effect into account when one is to estimate chemical forms of iodine after being released into the containment under an LOCA condition. This paper summarizes results of γ-radiolysis experiments on aqueous solutions containing iodine species, which have been carried out to extend the previously reported study on the same system. Variation in iodine product distribution with time has been examined as before, utilizing a flow system under irradiation. Attention has been paid to the effect of oxygen, to that of an initial oxidation state of iodine, and to the influence of temperature. Some kinetic analysis on the system was also undertaken

  4. Complexation of Cu2+, Ni2+ and UO22+ by radiolytic degradation products of bitumen

    International Nuclear Information System (INIS)

    Loon, L.R. Van; Kopajtic, Z.

    1990-05-01

    The radiolytic degradation of bitumen was studied under conditions which reflect those which will exist in the near field of a cementitious radioactive waste repository. The potential complexation capacity of the degradation products was studied and complexation experiments with Cu 2+ , Ni 2+ and UO 2 2+ were performed. In general 1:1 complexes with Cu 2+ , Ni 2+ and UO 2 2+ , with log K values of between 5.7 and 6.0 for Cu 2+ , 4.2 for Ni 2+ and 6.1 for UO 2 2+ , were produced at an ionic strength of 0.1 M. The composition of the bitumen water was analysed by GC-MS and IC. The major proportion of the bitumen degradation products in solution were monocarboxylic acids (acetic acid, formic acid, myric acid, stearic acid ...), dicarboxylic acids (oxalic acid, phthalic acid) and carbonates. The experimentally derived log K data are in good agreement with the literature and suggest that oxalate determines the speciation of Cu 2+ , Ni 2+ and UO 2 2+ in the bitumen water below pH=7. However, under the high pH conditions typical of the near field of a cementitious repository, competition with OH-ligands will be large and oxalate, therefore, will not play a significant role in the speciation of radionuclides. The main conclusion of the study is that the radiolytic degradation products of bitumen will have no influence on radionuclide speciation in a cementitious near field and, as such, need not to be considered in the appropriate safety assessment models. (author) 12 figs., 11 tabs., 31 refs

  5. Radiolytic products of irradiated authentic fatty acids and triacylglycerides

    International Nuclear Information System (INIS)

    Kim, K.-S.; Lee, Jeong-Min; Seo, Hye-Young; Kim, Jun-Hyoung; Song, Hyun-Pa; Byun, Myung-Woo; Kwon, Joong-Ho

    2004-01-01

    Radiolytic products of authentic fatty acids (palmitic, stearic, oleic, linoleic and linolenic acids) and triacylglycerides (tripalmitin, tristearin, triolein, trilinolein and trilinolenin) were determined. Concentrations of hydrocarbons from the saturated fatty acids were higher than the unsaturated fatty acids. Authentic fatty acids were mainly decomposed in the α-carbon position and C n-1 hydrocarbons occurred in higher than C n-2 hydrocarbons. Concentrations of 2-alkylcyclobutanones from the saturated fatty acids were lower than the unsaturated fatty acids. Concentrations of hydrocarbons from tripalmitin and tristearin were not a significant change compared with triolein, trilinolein and trilinolenin. For all triacylglycerides except triolein, C n-1 hydrocarbons were higher than C n-2 hydrocarbons. Radioproduction rates of 2-alkylcyclobutanones from tripalmitin and tristearin were higher than triolein, trilinolein and trilinolenin

  6. Radiolytic gas generation in Salt Cake Quality Assurance Plan

    International Nuclear Information System (INIS)

    Walker, D.D.

    1993-01-01

    High-level radioactive wastes are stored in large, steel tanks in the Savannah River Site's Tank Farms. The liquid levels in these tanks are monitored to detect leakage of waste out of tanks or leakage of liquids into the tanks. Recent unexplained level fluctuations in high-level waste (HLW) tanks have caused High Level Waste Engineering (HLWE) to develop a program to better understand tank level behavioral Interim Waste Technology (IWT) has been requested by HLWE to obtain data which will lead to a better understanding of the radiolytic generation of gases in salt cake. A task plan has been written in response to this request. This document details the controls necessary to ensure the quality of the results of the activities described in the task plan

  7. Concerted effects in the reaction of ·OH radicals with aromatics: radiolytic oxidation of salicylic acid

    International Nuclear Information System (INIS)

    Albarran, G.; Schuler, R.H.

    2003-01-01

    Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, · OH radicals preferentially add to the positions ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition at the para position. Because · OH radical is a strong electrophile this difference suggests that the electron population at the ortho position in the salicylate anion is enhanced as a result of the hydrogen bonding in salicylic acid

  8. Pulse radiolysis in model studies toward radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Sonntag, C Von; Bothe, E; Ulanski, P; Deeble, D J [Max-Planck-Institut fuer Strahlenchemie, Muelheim an der Ruhr (Germany)

    1995-10-01

    Using the pulse radiolysis technique, the OH-radical-induced reactions of poly(vinyl alcohol) PVAL, poly(acrylic acid) PAA, poly(methyacrylic acid) PMA, and hyaluronic acid have been investigated in dilute aqueos solution. The reactions of the free-radical intermediates were followed by UV-spectroscopy and low-angle laser light-scattering; the scission of the charged polymers was also monitored by conductometry. For more detailed product studies, model systems such as 2,4-dihydroxypentane (for PVAL) and 2,4-dimethyl glutaric acid (for PAA) was also investigated. (author).

  9. One-electron oxidations of ferrocenes: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Faraggi, Moshe; Weinraub, Dany; Broitman, Federico; DeFelippis, M.R.; Klapper, M.H.

    1988-01-01

    Using the pulse radiolysis technique we have studied the oxidation by various inorganic radicals of four water soluble ferrocene derivatives, hydroxyethyl, dimethylaminomethyl, monocarboxylic acid and dicarboxylic acid. We report the second order rate constants for these reactions, the stabilities and spectral properties of the ferrocinium products, and the electrochemically determined ferrocinium/ferrocene redox potentials. We also present preliminary estimates of tyrosine and tryptophan radical redox potentials obtained with the dicarboxylic acid ferrocene derivative as reference, and we discuss the relationship between redox potential differences and the reactivities of the ferrocenes with the inorganic radicals. (author)

  10. Free radical reactions of hematoporphyrin: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Ahmed, Mohammed; Guleria, Apurav; Singh, Ajay K.; Sarkar, S.K.

    2011-01-01

    Radiation chemistry of porphyrin derivatives has been given much attention in recent years. Although till date photo dynamic therapy (PDT) with Hematoporphyrin (HP) has already proved its effectiveness in the treatment of cancer, the molecular mechanisms by which this therapy-destroys tumour cells as well as its optimal physical parameters are still not fully understood. Thus it becomes necessary to understand the interaction of different free radicals with HP. Pulse radiolysis studies have been performed to understand the interaction of different free radicals with HP. The product formation along with bleaching and presence of a number of transients makes it difficult to pin point the mode and site of free radical attack. The radiation-induced formation of various transients (HP-OH, HO - , HP + ) in aqueous solution was investigated at various pHs by pulse radiolysis technique by means of N 3 , O - and CCl 3 O 2 radicals with and without triethyl-amine, under different dose conditions. The observed intermediates are characterized by their kinetic and spectroscopic data. The absorption spectrum of each transient could be differentiated from each other by their absorption maxima, extinction coefficients and kinetics. A clear indication of product formation has also been observed by employing continuous electron pulse and the solution shows a green coloration. It is conceivable that under certain conditions, similar transients may be produced when HP is used as a sensitizer in radiation chemotherapy of cancer patients. Our study may throw some light into the breakdown mechanism of haemoglobin to BV in addition to the understanding of free radical interaction of HP. (author)

  11. Studying the mechanism of micromachining by short pulsed laser

    Science.gov (United States)

    Gadag, Shiva

    economical, because the micromachining rates are much higher than in the case of the ultra-short pulsed lasers. Hence, studying the mechanisms of micromachining by nanosecond pulsed laser of semiconductor silicon, transparent dielectric glass and quartz is undertaken for this research work. Laser drilling of an array of miniaturized micro holes is termed as laser micro via. A study of the effect of laser wavelengths, frequency, and energy of the pulses on the depth and diameter of craters and micro via are carried out using high resolution optical microscopy and a nano via 3D profiler. Analytical equations correlating depth and volume of the crater in terms of the optical absorption coefficient and ratio of peak applied to the threshold fluence for ablation of the silicon are derived. The depth of crater is scaled in terms of optical penetration depth times the ratio of crater diameter to the beam diameter. The shorter UV wavelengths are found to be more suitable for ablation of Si and SiO2 than longer IR wavelengths from the study of the absorption coefficient of Si varying with wavelength. Hence, the UV lasers (266 nm or 355 nm) are used for micromachining of Si and SiO2 involving cutting, cleaning, drilling and dicing, micro-milling and texturing of submicron size vertically oriented silicon wires for photovoltaic applications. The high density vertical wires are useful to grab a greater density of solar energy to generate more environmentally-friendly green power. The laser drilling of micro via can be typically of two types: (1) percussion drilling using a stationary laser beam with single or multiple pulses of the laser or (2) trepanned drilling of micro via by the circular motion of laser. Numerical simulation of dynamic drilling of laser micro via of silicon is performed, using control volume (FV) Fluent code in a Cartesian co-ordinate system. Total enthalpy formulation is used to simulate the phase change taking place during the laser ablation process from melting

  12. Feasibility study of a 1-MW pulsed spallation source

    International Nuclear Information System (INIS)

    Cho, Y.; Chae, Y.C.; Crosbie, E.

    1995-01-01

    A feasibility study of a 1-MW pulsed spallation source based on a rapidly cycling proton synchrotron (RCS) has been completed. The facility consists of a 400-MeV HP - linac, a 30-Hz RCS that accelerates the 400-MeV beam to 2 GeV, and two neutron-generating target stations. The design time-averaged current of the accelerator system is 0.5 mA, or 1.04x1014 protons per pulse. The linac system consists of an H - ion source, a 2-MeV RFQ, a 70-MeV DTL and a 330-MeV CCL. Transverse phase space painting to achieve a Kapchinskij-Vladimirskij (K-V) distribution of the injected particles in the RCS is accomplished by charge exchange injection and programming of the closed orbit during injection. The synchrotron lattice uses FODO cells of ∼90 degrees phase advance. Dispersion-free straight sections are obtained by using a missing magnet scheme. Synchrotron magnets are powered by a dual-frequency resonant circuit that excites the magnets at a 20-Hz rate and de-excites them at a 60-Hz rate, resulting in an effective rate of 30 Hz, and reducing the required peak rf voltage by 1/3. A key feature, of the design of this accelerator system is that beam losses are from injection to extraction, reducing activation to levels consistent with hands-on maintenance. Details of the study are presented

  13. A feasibility study on age-related factors of wrist pulse using principal component analysis.

    Science.gov (United States)

    Jang-Han Bae; Young Ju Jeon; Sanghun Lee; Jaeuk U Kim

    2016-08-01

    Various analysis methods for examining wrist pulse characteristics are needed for accurate pulse diagnosis. In this feasibility study, principal component analysis (PCA) was performed to observe age-related factors of wrist pulse from various analysis parameters. Forty subjects in the age group of 20s and 40s were participated, and their wrist pulse signal and respiration signal were acquired with the pulse tonometric device. After pre-processing of the signals, twenty analysis parameters which have been regarded as values reflecting pulse characteristics were calculated and PCA was performed. As a results, we could reduce complex parameters to lower dimension and age-related factors of wrist pulse were observed by combining-new analysis parameter derived from PCA. These results demonstrate that PCA can be useful tool for analyzing wrist pulse signal.

  14. Numerical study of free pulsed jet flow with variable density

    Energy Technology Data Exchange (ETDEWEB)

    Kriaa, Wassim [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, Route de Ouardanine, 5000 Monastir (Tunisia)], E-mail: kriaawass@yahoo.fr; Cheikh, Habib Ben; Mhiri, Hatem [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, Route de Ouardanine, 5000 Monastir (Tunisia); Le Palec, Georges; Bournot, Philippe [Institut de Mecanique de Marseille, 60 rue Juliot Curie Technopole de Chateau-Gombert 13453, Marseille Cedex 13 (France)

    2008-05-15

    In this work, we propose a numerical study of a free pulsed plane jet with variable density in unsteady and laminar modes. At the nozzle exit, the flow is characterized by a uniform temperature and submitted to a longitudinal and periodic velocity disturbance: u = u{sub 0}(1 + A sin({omega}t)). A finite difference method is performed to solve the equations governing this flow type. The discussion relates to the effect of the most significant parameters, such as the pulsation frequency and amplitude, on the flow characteristic fields. The effects of Reynolds and Galileo numbers was also examined. The results show that the pulsation affects the flow in the vicinity of the nozzle, and further, the results of the unsteady mode join those of the steady non-pulsed jet. The results state also that the Strouhal number has no influence on the flow mixture degree, whereas the amplitude of pulsation affects, in a remarkable way, the mixture and, consequently, the concentration core length.

  15. Pulse shape discrimination studies of Phase I Ge-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Andrea [MPI fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The GERmanium Detector Array experiment aims to search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge by using isotopically enriched germanium crystals as source and detector simultaneously. The bare semiconductor diodes are operated in liquid argon at cryogenic temperatures in an ultra-low background environment. In addition, Gerda applies different active background reduction techniques, one of which is pulse shape discrimination studies of the current Phase I germanium detectors. The analysis of the signal time structure provides an important tool to distinguish single site events (SSE) of the ββ-decay from multi site events (MSE) of common gamma-ray background or surface events. To investigate the correlation between the signal shape and the interaction position, a new, also to the predominantly deployed closed-ended coaxial HPGe detectors applicable analysis technique has been developed. A summary of the used electronic/detector assembly is given and followed by a discussion of the performed classification procedure by means of accurate pulse shape simulations of 0νββ-like signals. Finally, the obtained results are presented along with an evaluation of the relevance for the Gerda experiment.

  16. Study on pulsed current cathodic protection in a simulated system

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Milin; Li, Helin [Xi' an Jiao Tong Universitiy (China)]|[Tubular Goods Research Center of China National Petroleum Corp. (China); Qiu, Yubing; Guo, Xingpeng [Hua Zhong University of Science and Techonology (China)

    2004-07-01

    The pulsed current cathodic protection (PCCP) is a new cathodic protection (CP) technology and shows more advantages over the conventional DC cathodic protection (DCCP) in oil well casing system. However, little information about PCCP is reported. In this research, a simulated CP system was set up in a pool of 3.5 m x 2.0 m x 3.0 m size, in which the effects of the square wave pulsed current (SWPC) parameters (amplitude: IA, frequency: f, duty cycle: P), auxiliary anode distance (d) and media conductivity ({mu}) on the cathodic potential (E) distribution were studied, and the protection effects of PCCP and DCCP were compared. The results show that with increase of the square wave parameters (IA, f, P), the E distribution becomes more negative and the effects of each current parameter are relate closely to the cathode polarizing state. Only with suitable square wave parameters can the whole cathode be effectively protected. With increase of d and {mu}, the E distribution becomes more uniform. Compared with DCCP system, PCCP system has much more uniform E distribution, costs less average current, and gains much better protection effects. Further, the mechanism of PCCP was analyzed. (authors)

  17. Pulse radiolysis of ethanolic solutions of rhodamine dyes

    International Nuclear Information System (INIS)

    Kartasheva, L.I.; Kucherenko, E.A.; Kozlov, A.S.; Pikaev, A.K.

    1983-01-01

    The primary products of radiolytical transformations of rhodamine 6G, rhodamine B, rhodamine 3B and rhodamine 110 in ethanolic solutions were studied by pulse radiolysis method under various conditions. It was found that the semireduced form of a dye was the only intermediate product of such transformations in ethanolic solutions of all dyes. It was shown that this species was formed by interaction of the dye with esub(s) - and CH 3 CHOH. The properties of this species were investigated and the rate constants of respective reactions for each dye were determined. It was found that nature and position of a substituent in the molecule of the dye have an effect on the rate of formation of the semi-reduced form. (author)

  18. A comparative study of pulsed dye laser versus long pulsed Nd:YAG laser treatment in recalcitrant viral warts.

    Science.gov (United States)

    Shin, Yo Sup; Cho, Eun Byul; Park, Eun Joo; Kim, Kwang Ho; Kim, Kwang Joong

    2017-08-01

    Viral warts are common infectious skin disease induced by human papillomavirus (HPV). But the treatment of recalcitrant warts is still challenging. In this study, we compared the effectiveness of pulsed dye laser (PDL) and long pulsed Nd:YAG (LPNY) laser in the treatment of recalcitrant viral warts. We retrospectively analyzed the medical records of patients with recalcitrant warts treated with laser therapy between January 2013 and February 2016. Seventy-two patients with recalcitrant warts were evaluated. Thirty-nine patients were treated with pulsed dye laser and thirty-three patients were treated with LPNY laser. The following parameters were used: PDL (spot size, 7 mm; pulse duration, 1.5 ms; and fluence, 10-14 J/cm 2 ) and LPNY (spot size, 5 mm; pulse duration, 20 ms; and fluence, 240-300 J/cm 2 ). Complete clearance of two patients (5.1%) in PDL group, and three patients (9.1%) in LPNY group were observed without significant side effects. The patients who achieved at least 50% improvement from baseline were 20 (51.3%) in PDL and 22 (66.7%) in LPNY, respectively. This research is meaningful because we compared the effectiveness of the PDL and LPNY in the recalcitrant warts. Both PDL and LPNY laser could be used as a safe and alternative treatment for recalcitrant warts.

  19. Pulse radiolysis studies of proline-ninhydrin complex

    Energy Technology Data Exchange (ETDEWEB)

    Barik, A; Priyadarsini, K I [Radiation and Photochemistry Division, Behabha Atomic Research Centre, Trombay, Mumbai (India); Prabhakar, K R; Veerapur, V P; Unnikrishnan, M K [Department of Pharmacology, Manipal College of Pharmaceutical Sciences (India)

    2006-07-01

    Proline-Ninhydrin (PN) complex has earlier been reported by us to be an excellent free radical scavenger and also examined for in vitro and in vivo radioprotection. Here we present mechanism of reaction of PN complex with hydroxyl ({sup .}OH) radicals and other oxidants and compared the results with proline and ninhydrin independently. PN complex was prepared by mixing in 1:1 stoichiometric ratio of proline and ninhydrin in a ball mill at 40 degree C and purified by crystallisation. Parent absorption spectra of PN complex show peak at 300 nm and 304 nm with a ground state pK{sub a} of 9.3. The reaction of {sup .}OH radical and other one-electron oxidants were studied using 7 MeV electron pulses from LINAC and the dose determined by aerated KSCN dosimeter. {sup .}OH radical reaction with PN studied at pH 6.8 produced a transients having broad absorption band at 400 nm. The reaction of {sup .}OH with PN complex was found to be dependent on the pH of the solution, at pH > 8 the transient absorption band shifted to 360 nm. The pK{sub a} of the transient was measured by following these absorption changes with varying the pH from 2 to 11 to be 6.9. OH radical reactions with the organic substrates is non-selective in nature and in order to establish the nature of the transient absorption band, pulse radiolysis studied were carried out with specific one electron oxidants, SO{sub 4}{sup .-} radical and Cl{sub 2}{sup .-} radical, which showed the transient absorption band with maximum at 440 nm and 350 nm respectively, indicating that the reaction {sup .}OH with PN complex at pH 7 is not by oxidation but by addition reaction to the aromatic ring. The reaction of H atom with PN complex was carried out in presence of tert-butanol at pH 1. The transient showed similar spectrum as observed with reaction OH radical reaction. As the H atom proceeds through mostly abstraction reaction, the transient formed by H atom and OH radical at low pH produces H atom abstracted species of the

  20. Studies of exposure of rabbits to electromagnetic pulsed fields

    International Nuclear Information System (INIS)

    Cleary, S.F.; Nickless, F.; Liu, L.M.; Hoffman, R.

    1980-01-01

    Dutch rabbits were acutely exposed to electromagnetic pulsed (EMP) fields (pulse duration 0.4 mus, field strengths of 1--2 kV/cm and pulse repetition rates in the range of 10 to 38 Hz) for periods of up to two hours. The dependent variables investigated were pentobarbital-induced sleeping time and serum chemistry (including serum triglycerides, creatine phosphokinase (CPK) isoenzymes, and sodium and potassium). Core temperature measured immediately pre-exposure and postexposure revealed no exposure-related alterations. Over the range of field strengths and pulse durations investigated no consistent, statistically significant alterations were found in the end-points investigated

  1. Theoretical study on device efficiency of pulsed liquid jet pump

    International Nuclear Information System (INIS)

    Gao Chuanchang; Lu Hongqi; Wang Shicheng; Cheng Mingchuan

    2001-01-01

    The influence of the main factors on device efficiency of pulsed liquid jet pump with gas-liquid piston is analysed, the theoretical equation and its time-averaged solution of pulsed liquid jet pump device efficiency are derived. The theoretical and experimental results show that the efficiency of transmission of energy and mass to use pulsed jet is greatly raised, compared with steady jet, in the same device of liquid jet pump. The calculating results of time-averaged efficiency of pulsed liquid jet pump are approximately in agreement with the experimental results in our and foreign countries

  2. Experimental study and modelisation of a pulse tube refrigerator

    International Nuclear Information System (INIS)

    Ravex, A.; Rolland, P.; Liang, J.

    1992-01-01

    A test bench for pulse tube refrigerator characterization has been built. In various configurations (basic pulse tube, orifice pulse tube and double inlet pulse tube), the ultimate temperature and the cooling power have been measured as a function of pressure wave amplitude and frequency for various geometries. A lowest temperature of 28 K has been achieved in a single staged double inlet configuration. A modelisation taking into account wall heat pumping, enthalpy flow and regenerator inefficiency is under development. Preliminary calculation results are compared with experimental data

  3. Determination of oxidation products in radiolysis of halophenols with pulse radiolysis, hplc, and ion chromatography

    International Nuclear Information System (INIS)

    Ye, M.; Schuler, R.H.

    1990-01-01

    This paper reports on hydroxyl radicals that react with halogen substituted phenols by several different ways. One is addition of OH radicals to the aromatic ring, which is followed by elimination of hydrogen halide, H 2 O or H - . The positions of OH radicals attack are dependent on the nature of the halogen which affects the electronic distribution in the ring. The oxidation of fluorophenols, chlorophenols and bromophenols with hydroxyl radicals in N 2 O saturated solution has been investigated with pulse radiolysis and γ-irradiation experiments. The intermediates of the reactions were studied by pulse radiolysis. The products created in the γ-irradiation of aqueous solutions of halophenols were analyzed by ion chromatography and high performance liquid chromatography (HPLC). With the combination of time-resolved and steady-state experiments a complete and detailed description of radiolytic oxidation of halophenols by hydroxyl radicals was obtained

  4. Hyperfine interaction studies with pulsed heavy-ion beams

    International Nuclear Information System (INIS)

    Raghavan, P.

    1985-01-01

    Heavy-ion reactions using pulsed beams have had a strong impact on the study of hyperfine interactions. Unique advantages offered by this technique have considerably extended the scope, detail and systematic range of its applications beyond that possible with radioactivity or light-ion reaction. This survey will cover a brief description of the methodological aspects of the field and recent applications to selected problems in nuclear and solid state physiscs illustrating its role. These include measurements of nuclear magnetic and electric quadrupole moments of high spin isomers, measurements of hyperfine magnetic fields at impurities in 3d and rare-earths ferromagnetic hosts, studies of paramagnetic systems, especially those exhibiting valence instabilities, and investigations of electric field gradients of impurities in noncubic metals. Future prospects of this technique will be briefly assessed. (orig.)

  5. An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator

    Science.gov (United States)

    Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  6. Study of water radiolysis in porous media

    International Nuclear Information System (INIS)

    Rotureau, Patricia

    2001-08-01

    The understanding of the production of H 2 in the radiolysis of water confined into pores of concrete is important for the disposal of radioactive waste. In order to describe the mechanisms of water radiolysis in such heterogeneous porous systems we have studied the behaviour under gamma radiation of water confined in porous silica glasses with pores going from 8 to 300 nm of diameter and meso-porous molecular sieves (MCM-41). The radiolytic yields of hydroxyl radicals, hydrated electron and dihydrogen, have been determined with respect to the pore size of materials. The increase of these radiolytic yields compared to those of free water allowed us to show a charge transfer from silica to confined water. On the other hand the kinetics of hydrated electron reactions measured by pulse radiolysis are not modified. (author) [fr

  7. Pulse radiolysis studies of iron(I) in aqueous solutions

    International Nuclear Information System (INIS)

    Nenadovic, M.T.; Micic, O.I.; Muk, A.A.

    1980-01-01

    The absorption spectrum and decay kinetics of the products of the reactions of iron(II) ions with hydrated electrons and hydrogen atoms have been studied in aqueous solution using pulse-radiolysis techniques. Iron(I) is formed by reaction with hydrated electrons and its absorption spectrum is reported and discussed. The formation of molecular hydrogen by reaction of Fe + with water is suppressed by other solutes present in the solutions. In acidic solutions containing [SO 4 ] 2- , the intermediates formed in the reaction with H atoms decay by a first-order process and produce molecular hydrogen, but the rate of their decay does not depend only on the oxonium ion concentration but also on intermolecular rearrangement in the [FeSO 4 -H] complex. (author)

  8. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  9. Pulsed laser photoacoustic spectrometer for study of solid materials

    International Nuclear Information System (INIS)

    Patel, N.D.; Kartha, V.B.

    1991-01-01

    The technique of photoacoustic spectroscopy has wide applications bacause it is extremely sensitive, and can be used to obtain spectra in wide spectral range for solids, liquids, gases, solutions, crystals etc. which may be usually difficult by conventional methods. For studying a variety of materials, a pulsed laser photoacoustic spectrometer has been set up in the laboratory. The report discusses the design and performance of the instrument. Some of the spectra of materials like Nd 2 O 9 powder, Nd-YAG crystal, CoCl 2 6H 2 O etc. are shown. A detailed discussion on assignment of the spectra of Nd-YAG is also presented. (author). 4 refs., 5 figs., 1 tab

  10. Mechanical study of 20 MJ superconducting pulse coil

    International Nuclear Information System (INIS)

    Hattori, Yasuhide; Shimamoto, Susumu

    1985-09-01

    This paper describes calculation methods and computer codes of stress distribution in a circular-shaped superconducting pulsed coils. The stress problems of a large sized superconducting coil, for example, are discussed for 20 MJ pool-cooled pulse coil. Young's modulus of a stranded flat cable, low rigidity, is measured and evaluated. (author)

  11. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    Science.gov (United States)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  12. Pulse radiolysis studies on DNA-Binding radioprotectors

    International Nuclear Information System (INIS)

    Anderson, R.F.

    1996-01-01

    Full text: Hoechst 33342 and newly-synthesised analogues exhibit radioprotective activity in cultured cells and in vivo, as described in accompanying abstracts. These minor groove binding ligands bind at discreet sites in DNA, characterised by 3 to 4 consecutive AT base pairs, and DNA sequencing studies have shown focussed radioprotection at these binding sites. There is evidence that the bound ligands also confer more 'global' protection including the intervening DNA between the binding sites. The observed focussed radioprotection could be explained by H-atom donation from the ligand to radiation-induced carbon-centred deoxyribosyl radicals, but this mechanism is unlikely to account for the global radioprotection. We now report pulse radiolysis studies on another possible mechanism, namely reduction of transient radiation-induced oxidising species on DNA by the ligand, which is consistent with the report of reduction of G + by TMPD. Oxidation of deoxyguanosine (dG) by Br 2 - , produced by radiolysis of Br- in N 2 0-saturated solutions, in the presence of Hoechst 33342 results in the appearance of a transient ligand species which is kinetically resolvable from that obtained from direct oxidation of Hoechst 33342 by Br 2 - . A plot of reaction rate versus ligand concentration indicates that the rate constant for reduction of G + is approximately 3 x 10 8 dm 3 M -1 sec -1 . Similar experiments with DNA, rather than dG, also revealed a transient species corresponding to oxidation of the ligand, but the absolute rate of oxidation was considerably slower for the DNA-bound ligand compared to that for oxidation of the free ligand by G+. These results are clearly consistent with the proposed mechanism of radioprotection by Hoechst 33342 and its analogues, moreover, pulse radiolysis may provide a very useful endpoint for screening new analogues, as a preliminary to radiobiological evaluation

  13. Study of general digital DC/pulse neutron generator

    International Nuclear Information System (INIS)

    Li Gang; Liu Zheng; Li Wensheng; Liu Hanlin; Liu Linmao

    2014-01-01

    Preliminary experimental results of digital DC/pulse neutron generator based on a ceramic drive-in target neutron tube for explosives detection are presented. The generator is a portable and on-off neutron source, and it can be controlled by remote PC. The generator can produce DC neutrons, pulse neutrons and multiple pulse neutrons. The maximum neutron yield is about 2 × 10"8 n/s, the minimum pulse width is 10 μs and the maximum pulse frequency is 10 kHz. Neutron yield and time-spectrum is measured in China Academy of Engineering Physics. The generator is suitable for explosive detection with PFTNA technology, and it can be used in other areas such as reactor measurements and on-line industrial test systems. (authors)

  14. Radiolytic stabilization of poly(methyl methacrylate) using commercial additives

    International Nuclear Information System (INIS)

    Aquino, Katia Aparecida da Silva

    2000-04-01

    Poly(methyl methacrylate), PMMA, Acrigel, a Brazilian polymer, is used in the manufacture of medical supplies sterelizable by ionizing radiation. However, when PMMA is gamma-irradiated it undergoes main chain scissions, which promote molecular degradation causing reduction in its mechanical properties. Therefore, radiolytic of PMMA is important for it to become commercially radiosterizable. In this work some commercial additives, originally used in photo-and thermo-oxidate stabilization of polymers, were tested. Only two additives, type HALS (Hindered Amine Light Stabilizer), denoted Scavenger, showed a good protective quality. The investigation of radiation-induced main scissions was carried out by viscosimetric method. The most effective additive, added to the polymer system at 0.3 w/w%, promotes a great molecular radioprotection of 93%. That means a reduction of G-value (scissions/100 eV) from 0.611 to 0.053. In addition, the glassy transition temperature (T g ) of PMMA (no additive) significantly changed by radiation does not change when PMMA (with additive) is irradiated. The spectroscopy analysis, FT-IR and NMR ( 1 H), showed that the radioprotector added to the system does not change the PMMA structure. (author)

  15. Global distribution of radiolytic H2 production in marine sediment and implications for subsurface life

    Science.gov (United States)

    Sauvage, J.; Flinders, A. F.; Spivack, A. J.; D'Hondt, S.

    2017-12-01

    We present the first global estimate of radiolytic H2production in marine sediment. Knowledge of microbial electron donor production rates is critical to understand the bioenergetics of Earth's subsurface ecosystems In marine sediment, radiolysis of water by radiation from naturally occurring radionuclides leads to production of reduced (H2) and oxidized (H2O2, O2) species. Water radiolysis is catalyzed by marine sediment. The magnitude of catalysis depends on sediment composition and radiation type. Deep-sea clay is especially effective at enhancing H2 yields, increasing yield by more than an order of magnitude relative to pure water. This previously unrecognized catalytic effect of geological materials on radiolytic H2 production is important for fueling microbial life in the subseafloor, especially in sediment with high catalytic power. Our estimate of radiolytic H2 production is based on spatially integrating a previously published model and uses (i) experimentally constrained radiolytic H2 yields for the principal marine sediment types, (ii) bulk sediment radioactive element content of sediment cores in three ocean basins (N. Atlantic, N. and S. Pacific), and global distributions of (iii) seafloor lithology, (iv) sediment porosity, and (v) sediment thickness. We calculate that global radiolytic H2 production in marine sediment is 1.6E+12 mol H2 yr-1. This production rate is small relative to the annual rate of photosynthetic organic-matter production in the surface ocean. The globally integrated ratio of radiolytic H2 production relative to photosynthetic primary production is 4.1E-4, based on electron equivalences. Although small relative to global photosynthetic biomass production, sediment-catalyzed production of radiolytic products is significant in the subseafloor. Our analysis of 9 sites in the N. Atlantic, N. and S. Pacific suggests that H2 is the primary microbial fuel in organic-poor sediment older than a few million years; at these sites, calculated

  16. Evolution of heavy ions (He{sup 2+}, H{sup +}) radiolytic yield of molecular hydrogen vs. ''Track-Segment'' LET values

    Energy Technology Data Exchange (ETDEWEB)

    Crumiere, Francis; Vandenborre, Johan; Blain, Guillaume; Fattahi, Massoud [Nantes Univ., CNRS/IN2P3 (France). SUBATECH Unite Mixte de Recherche 6457; Haddad, Ferid [Nantes Univ., CNRS/IN2P3 (France). SUBATECH Unite Mixte de Recherche 6457; Cyclotron Arronax, Saint Herblain (France)

    2017-08-01

    Ionizing radiation's effects onto water molecules lead to the ionization and/or the excitation of them. Then, these phenomena are followed by the formation of radicals and molecular products. The linear energy transfer (LET), which defines the energy deposition density along the radiation length, is different according to the nature of ionizing particles. Thus, the values of radiolytic yields, defined as the number of radical and molecular products formed or consumed by unit of deposited energy, evolve according to this parameter. This work consists in following the evolution of radiolytic yield of molecular hydrogen and ferric ions according to the ''Track-Segment'' LET of ionizing particles (protons, helions). Concerning G(Fe{sup 3+}) values, it seems that the energy deposited into the Bragg peak does not play the main role for the Fe{sup 3+} radiolytic formation, whereas for the G(H{sub 2}) it is the case with a component around 40% of the Bragg peak in the dihydrogen production. Therefore, as main results of this work, for high energetic Helion and Proton beams, the G(Fe{sup 3+}) values, which can be used for further dosimetry studies for example during the α radiolysis experiments, and the primary g(H{sub 2}) values for the Track-Segment LET, which can be used to determine the dihydrogen production by α-emitters, are published.

  17. Thermal and Radiolytic Gas Generation Tests on Material from Tanks 241-U-103, 241-AW-101, 241-S-106, and 241-S-102: Status Report

    International Nuclear Information System (INIS)

    King, C.M.; Bryan, S.A.

    1999-01-01

    This report summarizes progress in evaluating thermal and radiolytic flammable gas generation in actual Hanford single-shell tank wastes. The work described was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, whose purpose is to develop information to support DE and S Hanford (DESH) and Project Management Hanford Contract (PHMC) subcontractors in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies performed by Numatec Hanford Corporation (formerly Westinghouse Hanford Company). This report describes the results of laboratory tests of gas generation from actual convective layer wastes from Tank 241-U-103 under thermal and radiolytic conditions. Accurate measurements of gas generation rates from highly radioactive tank wastes are needed to assess the potential for producing and storing flammable gases within the tanks. The gas generation capacity of the waste in Tank 241-U-103 is a high priority for the Flammable Gas Safety Program due to its potential for accumulating gases above the flammability limit (Johnson et al, 1997). The objective of this work was to establish the composition of gaseous degradation products formed in actual tank wastes by thermal and radiolytic processes as a function of temperature. The gas generation tests on Tank 241-U-103 samples focused first on the effect of temperature on the composition and rate of gas generation Generation rates of nitrogen, nitrous oxide, methane, and hydrogen increased with temperature, and the composition of the product gas mixture varied with temperature

  18. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study

    Science.gov (United States)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.

    2017-10-01

    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  19. Study of growth mechanism of conducting polymers by pulse radiolysis

    International Nuclear Information System (INIS)

    Coletta, Cecilia

    2016-01-01

    Today conductive polymers have many applications in several devices. For these reasons they have received much attention in recent years. Despite intensive research, the mechanism of conducting polymers growth is still poorly understood and the methods of polymerization are limited to two principal ways: chemical and electrochemical synthesis. On the other hand, the complex properties of polymers can be controlled only if a good knowledge of polymerization process is acquired. In this case, it is possible to control the process during the synthesis (functionalization, hydrophilicity, chain length, doping level), and consequently to improve the conductive properties of the synthesized polymers. Water radiolysis represents an easy and efficient method of synthesis comparing to chemical and electrochemical polymerization routes. It enables the polymerization under soft conditions: ambient temperature and pressure, without any external dopant. Among all conductive polymers, poly(3, 4-ethylenedioxy-thiophene) (PEDOT, a derivative of poly-thiophene) and poly-Pyrrole (PPy) have gained some large scale applications for their chemical and physical proprieties. The aim of the present work was the synthesis of PEDOT and PPy in aqueous solution and the study of their growth mechanism by pulsed radiolysis. Thanks to the electron accelerator ELYSE, the use of pulsed radiolysis coupled with time-resolved absorption spectroscopy allowed to study the kinetics of polymerization. The first transient species involved in the mechanism were identified by time resolved spectroscopy and the rate constants were determined. First, the reaction of hydroxyl radicals onto EDOT and Py monomers was studied, as well as the corresponding radiation induced polymerization. Then, the study was transposed to others oxidizing radicals such as CO3 .- , N 3 . and SO 4 .- at different pHs. This approach allowed to check and to highlight the influence of oxidizing species onto the first transient species

  20. S-process studies using single and pulsed neutron exposures

    Science.gov (United States)

    Beer, H.

    The formation of heavy elements by slow neutron capture (s-process) is investigated. A pulsed neutron irradiation leading to an exponential exposure distribution is dominant for nuclei from A = 90 to 200. For the isotopes from iron to zirconium an additional 'weak' s-process component must be superimposed. Calculations using a single or another pulsed neutron exposure for this component have been carried out in order to reproduce the abundance pattern of the s-only and s-process dominant isotopes. For the adjustment of these calculations to the empirical values, the inclusion of new capture cross section data on Se76 and Y89 and the consideration of the branchings at Ni63, Se79, and Kr85 was important. The combination of an s-process with a single and a pulsed neutron exposure yielded a better representation of empirical abundances than a two component pulsed s-process.

  1. S-process studies using single and pulsed neutron exposures

    International Nuclear Information System (INIS)

    Beer, H.

    1986-01-01

    The formation of heavy elements by slow neutron capture (s-process) is investigated. A pulsed neutron irradiation leading to an exponential exposure distribution is dominant for nuclei from A=90 to 200. For the isotopes from iron to zirconium an additional ''weak'' s-process component must be superimposed. Calculations using a single or another pulsed neutron exposure for this component have been carried out in order to reproduce the abundance pattern of the s-only and s-process dominant isotopes. For the adjustment of these calculations to the empirical values, including new capture cross section data on Se76 and Y89 and the consideration of the branchings at Ni63, Se79, and Kr85 was important. The combination of a s-process with a single and a pulsed neutron exposure yielded a better representation of empirical abundances than a two component pulsed s-process

  2. Fundamental study on metal plating removal using pulsed power technology

    International Nuclear Information System (INIS)

    Imasaka, Kiminobu; Gnapowski, Sebastian; Akiyama, Hidenori

    2013-01-01

    A novel method for the metal removal from metal-plated substrate using pulsed power technology is proposed. A metal-plated substrate with three metal-layers structure (Cu, Ni and Au) is used as the sample substrate. Repetitive pulsed arc discharge plasma is generated between a rod electrode and the surface of substrate. Effect of the type of electrode system on metal plating removal was investigated. The removal region is produced by the moving phenomena of the pulsed arc discharge. A part of Au layer, which is the tompost metal surface of the substrate is vaporized and removed by the repetitive pulsed arc discharges. The proposed method can be used for recycle of metal-plated substrate. (author)

  3. In-vivo studies of reflectance pulse oximeter sensor

    Science.gov (United States)

    Ling, Jian; Takatani, Setsuo; Noon, George P.; Nose, Yukihiko

    1993-08-01

    Reflectance oximetry can offer an advantage of being applicable to any portion of the body. However, the major problem of reflectance oximetry is low pulsatile signal level which prevents prolonged clinical application during extreme situations, such as hypothermia and vasoconstriction. In order to improve the pulsatile signal level of reflectance pulse oximeter and thus its accuracy, three different sensors, with the separation distances (SPD) between light emitting diode (LED) and photodiode being 3, 5, and 7 mm respectively, were studied on nine healthy volunteers. With the increase of the SPD, it was found that both the red (660 nm) and near-infrared (830 nm) pulsatile to average signal ratio (AC/DC) increased, and the standard deviations of (AC/DC)red/(AC/DC)infrared ratio decreased, in spite of the decrease of the absolute signal level. Further clinical studies of 3 mm and 7 mm SPD sensors on seven patients also showed that the (AC/DC)red/(AC/DC)infrared ratio measured by the 7 mm sensor were less disturbed than the 3 mm sensor during the surgery. A theoretical study based on the three-dimensional photon diffusion theory supports the experimental and clinical results. As a conclusion, the 7 mm sensor has the highest signal-to- noise ratio among three different sensors. A new 7 mm SPD reflectance sensor, with the increased number of LEDs around the photodiode, was designed to increase the AC/DC ratio, as well as to increase the absolute signal level.

  4. Study of the radiolysis of water in porous media

    International Nuclear Information System (INIS)

    Rotureau, P.

    2004-01-01

    The understanding of the production of H 2 in the radiolysis of water confined into pores of concrete is important for the disposal of radioactive waste. In order to describe the mechanisms of water radiolysis in such heterogeneous porous systems we have studied the behaviour under gamma radiation of water confined in porous silica glasses with pores going from 8 to 300 nm of diameter and meso-porous molecular sieves (MCM-41). The radiolytic yields of hydroxyl radicals, hydrated electron and dihydrogen, have been determined with respect to the pore size of materials. The increase of these radiolytic yields compared to those of free water allowed us to show a charge transfer from silica to confined water. On the other hand the kinetics of hydrated electron reactions measured by pulse radiolysis are not modified. (author) [fr

  5. Pulsed field studies of magnetotransport in semiconductor heterostructures

    International Nuclear Information System (INIS)

    Dalton, K.S.H.

    1999-01-01

    High field magnetotransport in two classes of semiconductor heterostructures has been studied: parallel transport in InAs/(Ga,In)Sb double heterojunctions and superlattices at low temperatures (300 mK-4.2 K), and vertical transport in GaAs/AlAs short-period superlattices at 150-300 K. The experiments mainly used the Oxford pulsed magnet (∼45 T, ∼15 ms pulses). The development of the data acquisition system and experimental techniques for magnetotransport are described, including corrections to the data, required because of the rapidly changing magnetic field. Previous studies of magnetotransport in InAs/GaSb double heterojunctions are reviewed: this electron-hole system shows compensated quantum Hall plateaux, with ρ xy dips accompanied by 'anomalous' peaks in σ xx . New data show a peak between ν=1 plateaux; this behaviour and the temperature dependence of the 'anomalous' σ xx peaks are explained by considering the movement of the Fermi level amongst anticrossing electron- and hole-like levels. InAs/(Ga,In)Sb superlattices with electron:hole density ratios close to 1 exhibit large oscillations in the resistivity (maxima typically ∼20-30 x higher than minima) and conductivity components. Deep minima in ρ xy alternate with low-integer plateaux. The magnetotransport in various ideal structures is considered, to explain the experimental results. The growth of a novel structure has allowed clearer observation of the behaviour of ρ xx (giant maxima) and ρ xy (zeroes or maxima) when the contributions from each well to σ xx and σ xy approach zero. Measurements of the high field magnetotransport peak positions show that the band overlap is increased by growing 'InSb' rather than 'GaAs' interfaces (∼20% increase), increasing the indium in the (Ga,In)Sb (∼30% increase per 10% In), or growing along [111] instead of [001] (∼30% increase). Magnetophonon resonance in short-period GaAs/AlAs superlattices causes strong, electric field-dependent vertical

  6. Pulsed radiation studies of carotenoid radicals and excited states

    International Nuclear Information System (INIS)

    Burke, M.

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of β-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar (∼1 x 10 7 M -1 s -1 ) for β-carotene and zeaxanthin and somewhat lower (∼0.5 x 10 7 M -1 s -1 ) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for β-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number of conjugated double bonds, the longer chain systems having

  7. A study of pulse columns for thorium fuel reprocessing

    International Nuclear Information System (INIS)

    Fumoto, H.

    1982-03-01

    Two 5 m pulse columns with the same cartridge geometries are installed to investigate the performance. The characteristic differences of the aqueous continous and the organic continuous columns were investigated experimentally. A ternary system of 30% TBP in dodecane-acetic acid-water was adopted for the mass-transfer study. It was concluded that the overall mass-transfer coefficient was independent of whether the mass-transfer is from the dispersed to the continuous phase or from the continuous to the dispersed phase. Thorium nitrate was extracted and reextracted using both modes of operation. Both HETS and HTU were obtained. The aqueous continuous column gave much shorter HTU than the organic continuous column. In reextraction the organic continuous column gave shorter HTU. The Thorex-processes for uranium and thorium co-extraction, co-stripping, and partitioning were studied. Both acid feed solution and acid deficiend feed solution were investigated. The concentration profiles along the column height were obtained. The data were analysed with McCABE-THIELE diagrams to evaluate HETS. (orig./HP) [de

  8. Intermediates of radiolytic transformations of 6-aminophenalenone in ethanol

    International Nuclear Information System (INIS)

    Semenova, G.V.; Ponomarev, A.V.; Kartasheva, L.I.; Pikaev, A.K.

    1992-01-01

    Pulsed radiolysis method is used to study transformations intermediates of 6-aminophenalenone in ethanol. In alkaline medium the main product is radical-anion of 6-aminophenalenone, which optical absorption spectrum contains two bands with maxima at 355 and 400 nm. The particle precursors are e s , CH 3 CHOH and CH 3 CHO - radicals. In neutral and acid medium radical-anions are protonated in reactions with alcohol and hydrogen ions. The resulting H-adduct of 6-aminophenalenone has optical absorption maxima at 350 and 390 nm. Availability of two maxima is related to two various product structures. Molar extinction coefficients of radical-anions and H-adducts of 6-aminophenalenone and rate constants of reactions with their participation are estimated

  9. Radiolytic and thermal generation of gases from Hanford grout samples

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, D.; Jonah, C.D.; Kapoor, S.; Matheson, M.S.; Mulac, W.A.

    1993-10-01

    Gamma irradiation of WHC-supplied samples of grouted Tank 102-AP simulated nonradioactive waste has been carried out at three dose rates, 0.25, 0.63, and 130 krad/hr. The low dose rate corresponds to that in the actual grout vaults; with the high dose rate, doses equivalent to more than 40 years in the grout vault were achieved. An average G(H{sub 2}) = 0.047 molecules/100 eV was found, independent of dose rate. The rate of H2 production decreases above 80 Mrad. For other gases, G(N{sub 2}) = 0.12, G(O{sub 2}) = 0.026, G(N{sub 2}O) = 0.011 and G(CO) = 0.0042 at 130 krad/hr were determined. At lower dose rates, N{sub 2} and O{sub 2} could not be measured because of interference by trapped air. The value of G(H{sub 2}) is higher than expected, suggesting segregation of water from nitrate and nitrite salts in the grout. The total pressure generated by the radiolysis at 130 krad/h has been independently measured, and total amounts of gases generated were calculated from this measurement. Good agreement between this measurement and the sum of all the gases that were independently determined was obtained. Therefore, the individual gas measurements account for most of the major components that are generated by the radiolysis. At 90 {degree}C, H{sub 2}, N{sub 2}, and N{sub 2}O were generated at a rate that could be described by exponential formation of each of the gases. Gases measured at the lower temperatures were probably residual trapped gases. An as yet unknown product interfered with oxygen determinations at temperatures above ambient. The thermal results do not affect the radiolytic findings.

  10. Pulse radiolysis in model studies toward radiation processing

    Science.gov (United States)

    Von Sonntag, C.; Bothe, E.; Ulanski, P.; Deeble, D. J.

    1995-02-01

    Using the pulse radiolysis technique, the OH-radical-induced reactions of poly(vinyl alcohol) PVAL, poly(acrylic acid) PAA, poly(methacrylic acid) PMA, and hyaluronic acid have been investigated in dilute aqueous solution. The reactions of the free-radical intermediates were followed by UV-spectroscopy and low-angle laser light-scattering; the scission of the charged polymers was also monitored by conductometry. For more detailed product studies, model systems such as 2,4-dihydroxypentane (for PVAL) and 2,4-dimethyl glutaric acid (for PAA) was also investigated. With PVA, OH-radicals react predominantly by abstraction of an H-atom in α-position to the hydroxyl group (70%). The observed bimolecular decay rate constant of the PVAL-radicals decreases with time. This has been interpreted as being due to an initially fast decay of proximate radicals and a decrease of the probability of such encounters with time. Intramolecular crosslinking (loop formation) predominates at high doses per pulse. In the presence of O 2, peroxyl radicals are formed which in the case of the α-hydroxyperoxyl radicals can eliminate HO 2-radicals in competition with bimolecular decay processes which lead to a fragmentation of the polymer. In PAA, radicals both in α-position (characterized by an absorption near 300 nm) and in β-position to the carboxylate groups are formed in an approximately 1:2 ratio. The lifetime of the radicals increases with increasing electrolytic dissociation of the polymer. The β-radicals undergo a slow (intra- as well as intermolecular) H-abstraction yielding α-radicals, in competition to crosslinking and scission reactions. In PMA only β-radicals are formed. Their fragmentation has been followed by conductometry. In hyaluronic acid, considerable fragmeentation is observed even in the absence of oxygen which, in fact, has some protective effect against this process. Thus free-radical attack on this important biopolymer makes it especially vulnerable with respect

  11. Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges

    International Nuclear Information System (INIS)

    Huo, W. G.; Jian, S. J.; Yao, J.; Ding, Z. F.

    2014-01-01

    In pulsed RF atmospheric pressure glow discharges, the gas breakdown judged by the rapid drop in the amplitude of the pulsed RF voltage is no longer universally true. The steep increment of the plasma-absorbed RF power is proposed to determine the gas breakdown. The averaged plasma-absorbed RF power over a pulse period is used to evaluate effects of the preceding pulsed RF discharge on the breakdown voltage of the following one, finding that the breakdown voltage decreases with the increment in the averaged plasma-absorbed RF power under constant pulse duty ratio. Effects of the pulse off-time on the breakdown voltage and the breakdown delay time are also studied. The obtained dependence of the breakdown voltage on the pulse off-time is indicative of the transitional plasma diffusion processes in the afterglow. The breakdown voltage varies rapidly as the plasma diffuses fast in the region of moderate pulse off-time. The contribution of nitrogen atom recombination at the alumina surface is demonstrated in the prolonged memory effect on the breakdown delay time vs. the pulse off-time and experimentally validated by introducing a trace amount of nitrogen into argon at short and long pulse off-times

  12. Feasibility study of a contained pulsed nuclear propulsion engine

    International Nuclear Information System (INIS)

    Parlos, A.G.; Metzger, J.D.

    1994-01-01

    The result of a feasibility analysis of a contained pulsed nuclear propulsion (CPNP) engine concept utilizing the enormously dense energy generated by small nuclear detonations is presented in this article. This concept was initially proposed and studied in the 1950s and 1960s under the program name HELIOS. The current feasibility of the concept is based upon materials technology that has advanced to a state that allows the design of pressure vessels required to contain the blast associated with small nuclear detonations. The impulsive nature of the energy source provides the means for circumventing the materials thermal barriers that are inherent in steady-state nuclear propulsion concepts. The rapid energy transfer to the propellant results in high thrust levels for times less than 1 s following the detonation. The preliminary feasibility analysis using off-the-shelf materials technology appears to indicate that the CPNP concept can have thrust-to-weight ratios on the order of 1 or greater. Though the specific impulse is not a good indicator for impulsive engines, an operating-cycle averaged specific impulse of approximately 1000 or greater seconds was calculated. 16 refs

  13. Pulse EPR distance measurements to study multimers and multimerisation

    Science.gov (United States)

    Ackermann, Katrin; Bode, Bela E.

    2018-06-01

    Pulse dipolar electron paramagnetic resonance (PD-EPR) has become a powerful tool for structural biology determining distances on the nanometre scale. Recent advances in hardware, methodology, and data analysis have widened the scope to complex biological systems. PD-EPR can be applied to systems containing lowly populated conformers or displaying large intrinsic flexibility, making them all but intractable for cryo-electron microscopy and crystallography. Membrane protein applications are of particular interest due to the intrinsic difficulties for obtaining high-resolution structures of all relevant conformations. Many drug targets involved in critical cell functions are multimeric channels or transporters. Here, common approaches for introducing spin labels for PD-EPR cause the presence of more than two electron spins per multimeric complex. This requires careful experimental design to overcome detrimental multi-spin effects and to secure sufficient distance resolution in presence of multiple distances. In addition to obtaining mere distances, PD-EPR can also provide information on multimerisation degrees allowing to study binding equilibria and to determine dissociation constants.

  14. Long-pulsed Nd: YAG laser and intense pulse light-755 nm for idiopathic facial hirsutism: A comparative study

    Directory of Open Access Journals (Sweden)

    Arpit Shrimal

    2017-01-01

    Full Text Available Background: Hirsutism means excessive terminal hair growth in a female in male pattern distribution. Perception of hirsutism is subjective. Permanent laser hair reduction is a slow process taking many sessions and tracking of improvement parameters is tedious. Hence, a lot of confusion still exists regarding the type of laser most beneficial for treatment. Aim: The aim of this study was to compare the effectiveness and safety profile of long-pulsed Nd: YAG laser (1064 nm and intense pulse light (IPL-755 nm in management of idiopathic facial hirsutism. Settings and Design: Open-labelled, randomly allocated experimental study. Subjects and Methods: The study included 33 cases of idiopathic facial hirsutism. Patients were randomly divided into Group A, treated with long-pulsed Nd: YAG laser and Group B, treated with IPL-755 for a total of six sessions at 1 month interval. Statistical Analysis: Chi-square test was used in Medcalc® version 9.0 and the test of significance was taken to be P75% reduction in hair after six sessions in Group A was seen in fourteen (93.33% out of fifteen patients, whereas in Group B, it was seen only in three (16.66% out of eighteen patients. In Group A, erythema was seen in 26.67%, perifollicular edema and hyperpigmentation in 13.33% each. In Group B, erythema was seen in 50% patients, perifollicular edema in 16.67% and hyperpigmentation in 38.89% patients. Conclusions: Long-pulsed Nd: YAG Laser (1064 nm is better than IPL-755 nm in terms of safety and effectiveness in the management of idiopathic facial hirsutism.

  15. Pulse radiolysis for the study of lead salt solutions

    International Nuclear Information System (INIS)

    Breitenkamp, M.

    1976-01-01

    The Pb + ions are produced from Pb 2 + in lead perchlorate solutions by reduction with hydrated electrons, and the absorption spectrum of this ion has been measured together with a time differential observation in the micro- and millisecond range of the disparation of these ions from the solution in the presence of different substances. For these studies the method of pulsed radiolysis has been applied, detecting the short lifed intermediate reaction products by optical absorption and electric conductivity measurements. First an attempt has been made to produce the Pb + ions also by reduction of Pb 2 + with H-atoms. If Pb + and H is produced simultaneously in an aqueous solution the reaction Pb + + H -> PbH + can occur. The absorption spectrum of the short lifed species PbH + has been studied together with the second order evanescence. In addition Pb 2 + has been reduced by i-propanol radicals at high Pb 2 + concentrations. The second order evanescence has been observed and the rate constant of the reaction 2Pb + -> Pb + Pb 2 + has been measured. The Pb 2 + ions can also be reduced by CO 2- radicals, which are formed in the presence of formiate. The observations can be interpreted by the assumption of the primary reaction Pb 2 + + CO 2- -> PbCO 2+ . the spectrum of the product PbCO 2+ has been measured. A second order reaction of PbCO 2+ is observed with a resulting unstable particle of the structure Pb 2 CO 2 2 + . Finally the oxidation of Pb + by the OH-radical and by hydrogen peroxide has been studied. (orig./HK) [de

  16. Influence of concentration on the radiolytic decomposition of thiamine, riboflavin, and pyridoxine in aqueous solution

    Directory of Open Access Journals (Sweden)

    Guadalupe Albarrán

    2014-10-01

    Full Text Available Vitamin loss during irradiation has been claimed as a critical area in food irradiation technology, especially that of thiamine (B1, which has been considered as the most sensitive to radiation. Although it has been suggested that no vitamin deficiency could result from consuming irradiated food, a long debate on the loss of vitamins and other nutrients during food irradiation has been maintained by the lack of experimental studies monitoring decomposition rates at different concentrations and doses. Since thiamine, riboflavin, and pyridoxine are labile vitamins, this study has focused on their radiolytic decomposition in dilute aqueous solutions in the presence of air. The decomposition process was followed by HPLC and UV-spectroscopy. The results obtained in aqueous solutions showed a dependence of the decomposition as a nonlinear function of the dose. Of these three compounds, the decomposition was higher for thiamine than for riboflavin and even less in pyridoxine.

  17. Study of low vibration 4 K pulse tube cryocoolers

    Science.gov (United States)

    Xu, Mingyao; Nakano, Kyosuke; Saito, Motokazu; Takayama, Hirokazu; Tsuchiya, Akihiro; Maruyama, Hiroki

    2012-06-01

    Sumitomo Heavy Industries, Ltd. (SHI) has been continuously improving the efficiency and reducing the vibration of a 4 K pulse tube cryocooler. One advantage of a pulse tube cryocooler over a GM cryocooler is low vibration. In order to reduce vibration, both the displacement and the acceleration have to be reduced. The vibration acceleration can be reduced by splitting the valve unit from the cold head. One simple way to reduce vibration displacement is to increase the wall thickness of the tubes on the cylinder. However, heat conduction loss increases while the wall thickness increases. To overcome this dilemma, a novel concept, a tube with non-uniform wall thickness, is proposed. Theoretical analysis of this concept, and the measured vibration results of an SHI lowvibration pulse tube cryocooler, will be introduced in this paper.

  18. Pulsed Thermography Applied to the Study of Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Fulvio Mercuri

    2017-09-01

    Full Text Available In this paper, an overview of the recent applications of pulsed infrared thermography is presented. Pulsed infrared thermography, which provides stratigraphic information by analyzing the heat diffusion process within the sample after a thermal perturbation, is applied to the investigation of different kinds of cultural heritage artefacts. In particular, it is used to analyze repairs, decorative elements, and casting faults on bronzes, to detect texts hidden or damaged in ancient books/documents, and to characterize paint decorations. Moreover, the integration of pulsed infrared thermography and three-dimensional shape recording methods is proposed in order to provide a three-dimensional representation of the thermographic results. Finally, it is shown how the obtained thermographic results may be crucial from the historical and artistic points of view for understanding the modus operandi of a specific artist and/or of a workshop and for reconstructing the manufacturing process of the analyzed artefacts.

  19. Iron release from ferritin and lipid peroxidation by radiolytically generated reducing radicals

    International Nuclear Information System (INIS)

    Reif, D.W.; Schubert, J.; Aust, S.D.

    1988-01-01

    Iron is involved in the formation of oxidants capable of damaging membranes, protein, and DNA. Using 137 Cs gamma radiation, we investigated the release of iron from ferritin and concomitant lipid peroxidation by radiolytically generated reducing radicals, superoxide and the carbon dioxide anion radical. Both radicals released iron from ferritin with similar efficiencies and iron mobilization from ferritin required an iron chelator. Radiolytically generated superoxide anion resulted in peroxidation of phospholipid liposomes as measured by malondialdehyde formation only when ferritin was included as an iron source and the released iron was found to be chelated by the phospholipid liposomes

  20. Preliminary Optical And Electric Field Pulse Statistics From Storm Overflights During The Altus Cumulus Electrification Study

    Science.gov (United States)

    Mach, D. A.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.

    2003-01-01

    The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect high resolution optical pulse and electric field data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses with associated electric field changes. Most of these observations were made while close to the top of the storms. We found filtered mean and median 10-10% optical pulse widths of 875 and 830 microns respectively while the 50-50% mean and median optical pulse widths are 422 and 365 microns respectively. These values are similar to previous results as are the 10-90% mean and median rise times of 327 and 265 microns. The peak electrical to optical pulse delay mean and median were 209 and 145 microns which is longer than one would expect from theoretical results. The results of the pulse analysis will contribute to further validation of the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS) satellites. Pre-launch estimates of the flash detection efficiency were based on a small sample of optical pulse measurements associated with less than 350 lightning discharges collected by NASA U-2 aircraft in the early 1980s. Preliminary analyses of the ACES measurements show that we have greatly increased the number of optical pulses available for validation of the LIS and other orbital lightning optical sensors. Since the Altus was often close to the cloud tops, many of the optical pulses are from low-energy pulses. From these low-energy pulses, we can determine the fraction of optical lightning pulses below the thresholds of LIS, OTD, and any future satellite-based optical sensors such as the geostationary Lightning Mapping Sensor.

  1. Study of startup conditions of a pulsed annular reactor

    International Nuclear Information System (INIS)

    Silva, Mario Augusto Bezerra da

    2003-10-01

    A new concept of reactor, which combines features of pulsed and stationary reactors, was proposed so as to produce intense neutronic fluxes. Such a reactor, known as VICHFPR (Very Intense Continuous High Flux Pulsed Reactor), consists of a subcritical core with an annular geometry and pulsed by a rotating reflector which acts as a reactivity modulator as it produces a short pulse (approximately equal to 1 ms) of high intensity, guiding the region near the pulser to super-prompt critical state. This dissertation intends to analyze the startup conditions of a Pulsed Annular Reactor. The evolution of the neutron pulse intensity is analyzed when the reactivity modulator is brought upwards according to a helicoidal path from its initial position (far away from the core), when the multiplication factor has a subcritical value, up to the final position (near the core), in which a super-prompt critical state is reached. Part of the analysis is based on the variation of neutron reflection, which is a uniform function of the exit and reflection angles between the core and the modulator. It must be emphasized that this work is an approximation of the real situation. As the initial and final reactor parameters are known, a programming code in Fortran is worked out to provide the multiplication factor and the flux intensity evolution. According to the results obtained with this code, the conditions under which the modulator must be lifted up during the startup are established. Basically, these conditions are related to the analysis of the rising and the rotation velocities, the reflector saving and the initial distance between the reactor and the modulator. The Pulsed Annular Reactor startup was divided into three stages. Because of its negative reactivity in the first two stages, the neutron multiplication is not large, while the last one, having a positive reactivity, shows an intense multiplication as is usually expected when handling pulsed systems. This last stage is quite

  2. Pulse radiolysis study on temperature and pressure dependence of the yield of solvated electron in methanol from room temperature to supercritical condition

    International Nuclear Information System (INIS)

    Han, Zhenhui; He, Hui; Lin, Mingzhang; Muroya, Yusa; Katsumura, Yosuke

    2012-09-01

    . Therefore, it was suggested that the supercritical primary alcohols, for example methanol, as the simplest alcohol and an analogue of water, might become a promising substitute of water in a radiolysis study. As our knowledge, the yield of solvated electron in methanol at high temperatures and pressures, especially at supercritical condition, is still unknown now. In this work, the yield of solvated electron in methanol has been investigated at different temperatures from room temperature to supercritical condition by a method of nanosecond pulse radiolysis. By using 4,4'-bipyridyl as a scavenger, the temperature-, pressure- and density-dependent yields of solvated electron, i.e., G-values, have been measured for the first time, which revealing a special density effect on the yield in supercritical methanol. With increasing temperature under 9 MPa, the yield just changes slightly below 230 deg. C, and increases dramatically to peak at around 250 deg. C, after that decreases again. The pressure and density dependence of the yields at elevated temperatures are also measured and discussed. The results imply that, in supercritical region, especially near to critical point, the density effect becomes predominant influence on the yield of radiolysis products. (authors)

  3. A study on radiolytic nitrogen compounds in bwr primary systems

    International Nuclear Information System (INIS)

    Ibe, Eishi; Karasawa, Hidetoshi; Endo, Masao; Suzuki, Kazumichi; Etho, Yoshinori

    1988-01-01

    Behavior of nitrogen compounds in a γ radiation field was evaluated. Twenty-four species and 73 reactions were proposed for analysis of the system. It was pointed out that reactions dominating analysis reliability were primary reactions which lead to evolution of atomic nitrogen and reactions related to ammonium ion decomposition. Theoretical calculations for the BWR primary system revealed that: (i) in-leaked nitrogen from a condenser did not deteriorate the oxygen reduction efficiency due to hydrogen addition in reactor water; (ii) most 16 N atmos released in the main steam line were in the form of nitrogen mono-oxide under both hydrogen and normal water chemistry; (iii) 16 N atoms in nitric and nitrous acids under normal water chemistry were reduced by hydrogen atom to 16 NO and then released to the main steam line under hydrogen water chemistry; and (iv) 16 N in the main steam under normal water chemistry could be suppressed one order of magnitude by addition of non-radioactive nitrous acid into the reactor water. (author)

  4. Hydrogen radiolytic release from zeolite 4A/water systems under γ irradiations

    International Nuclear Information System (INIS)

    Frances, Laëtitia; Grivet, Manuel; Renault, Jean-Philippe; Groetz, Jean-Emmanuel; Ducret, Didier

    2015-01-01

    Although the radiolysis of bulk water is well known, some questions remain in the case of adsorbed or confined water, especially in the case of zeolites 4A, which are used to store tritiated water. An enhancement of the production of hydrogen is described in the literature for higher porous structures, but the phenomenon stays unexplained. We have studied the radiolysis of zeolites 4A containing different quantities of water under 137 Cs gamma radiation. We focused on the influence of the water loading ratio. The enhancement of hydrogen production compared with bulk water radiolysis has been attributed to the energy transfer from the zeolite to the water, and to the influence of the water structure organization in the zeolite. Both were observed separately, with a maximum efficiency for energy transfer at a loading ratio of about 13%, and a maximum impact of structuration of water at a loading ratio of about 4%. - Highlights: • We irradiated samples of zeolites 4A which contained different quantities of water. • We measured the quantity of hydrogen released. • Hydrogen radiolytic yields, present two maxima, for two water loading ratios. • Hydrogen release is enhanced by the strength of the zeolite/water interaction. • Hydrogen release is enhanced by the quantity of water interacting with the zeolite

  5. Structural, Optical and Electrical Properties of PVA/PANI/Nickel Nanocomposites Synthesized by Gamma Radiolytic Method

    Directory of Open Access Journals (Sweden)

    Abdo Mohd Meftah

    2014-09-01

    Full Text Available This article reports a simultaneous synthesis of polyaniline (PANI and nickel (Ni nanoparticles embedded in polyvinyl alcohol (PVA film matrix by gamma radiolytic method. The mechanism of formation of PANI and Ni nanoparticles were proposed via oxidation of aniline and reduction of Ni ions, respectively. The effects of dose and Ni ions concentration on structural, optical, and electrical properties of the final PVA/PANI/Ni nanocomposites film were carefully examined. The structural and morphological studies show the presence of PANI with irregular granular microstructure and Ni nanoparticles with spherical shape and diameter less than 60 nm. The average particle size of Ni nanoparticles decreased with increasing dose and decreasing of precursor concentration due to increase of nucleation process over aggregation process during gamma irradiation. The optical absorption spectra showed that the absorption peak of Ni nanoparticles at about 390 nm shifted to lower wavelength and the absorbance increased with increasing dose. The formation of PANI was also revealed at 730 nm absorption peak with the absorbance increasing by the increase of dose. The electrical conductivity increased with increasing of dose and chlorine concentration due to number of polarons formation increases in the PVA/PANI/Ni nanocomposites.

  6. Novel Radiolytic Rotenone Derivative, Rotenoisin B with Potent Anti-Carcinogenic Activity in Hepatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Srilatha Badaboina

    2015-07-01

    Full Text Available Rotenone, isolated from roots of derris plant, has been shown to possess various biological activities, which lead to attempting to develop a potent drug against several diseases. However, recent studies have demonstrated that rotenone has the potential to induce several adverse effects such as a neurodegenerative disease. Radiolytic transformation of the rotenone with gamma-irradiation created a new product, named rotenoisin B. The present work was designed to investigate the anticancer activity of rotenoisin B with low toxicity and its molecular mechanism in hepatic cancer cells compared to a parent compound, rotenone. Our results showed rotenoisin B inhibited hepatic cancer cells’ proliferation in a dose dependent manner and increased in apoptotic cells. Interestingly, rotenoisin B showed low toxic effects on normal cells compared to rotenone. Mitochondrial transmembrane potential has been decreased, which leads to cytochrome c release. Down regulation of anti-apoptotic Bcl-2 levels as well as the up regulation of proapoptotic Bax levels were observed. The cleaved PARP (poly ADP-ribose polymerase level increased as well. Moreover, phosphorylation of extracellular signal regulated kinase (ERK and p38 slightly up regulated and intracellular reactive oxygen species (ROS increased as well as cell cycle arrest predominantly at the G2/M phase observed. These results suggest that rotenoisin B might be a potent anticancer candidate similar to rotenone in hepatic cancer cells with low toxicity to normal cells even at high concentrations compared to rotenone.

  7. Pulse radiolysis of solutions of trans-stilbene

    International Nuclear Information System (INIS)

    Langan, J.R.; Salmon, G.A.

    1982-01-01

    On pulse radiolysis of solutions of trans-stilbene (t-St) in THF the radical-anion of t-St is formed by reaction of e - sub(s) with t-St. The transient absorption spectrum observed with lambdasub(max) at 500 and 720 nm is attributed to the unassociated St - . The subsequent decay of the radical-anion is accounted for by reaction with the counter-cation of THF formed on radiolysis and with radiolytically generated radicals; rate constants for these processes are estimated. Addition of sodium tetrahydridoaluminate (NAH) results in the radical-anion being associated with Na + as a contact ion-pair and a shift of lambdasub(max) to 490 nm. In the presence of the lithium salt the absorption spectrum of the radical-anion reverts to 500 nm. On pulse radiolysis of solutions containing NAH the main reaction forming St - is that of (Na + , e - sub(s))ion pairs with t-St. In addition there is a delayed formation of St - over a period of microseconds. The presence of tetrahydridoaluminate salts also greatly enhances the stability of St - and at high doses per pulse little decay was observed over 700 μs. The variation of G(St - ) with [NAH] was studied and was found to attain a plateau value of 2.0 at the higher concentrations. (author)

  8. Pulsed radiation studies of carotenoid radicals and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of {beta}-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar ({approx}1 x 10{sup 7} M{sup -1}s{sup -1}) for {beta}-carotene and zeaxanthin and somewhat lower ({approx}0.5 x 10{sup 7} M{sup -1}s{sup -1}) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for {beta}-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number

  9. Pulse radiolysis study of NaNO/sub 2/ and NaNO/sub 3/ solutions. [Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Broszkiewicz, R K [Institute of Nuclear Research, Warsaw (Poland)

    1976-01-01

    The pulse radiolysis of aqueous solutions of NaNO/sub 2/ and NaNO/sub 3/ has been done. In the nitrate solutions the transient species NO/sup 2 -//sub 2/ and NO/sub 2/ have been observed, the former reacting with water to produce NO, the latter dimerizing to N/sub 2/O/sub 4/. In the presence of O/sub 2/ and unidentified species with absorption maximum at 280 nm, probably a peroxy compound, is being formed. The radiolytic processes occurring in the nitrite solution do not depend on /NO/sub 02// and no effect of the direct energy absorption by NO/sup -//sub 2/ has been noticed. Transient species in the diluted nitrate solution are NO/sup 2 -//sub 3/ and the pernitrous ion; in concentrated solutions NO/sub 3/ is the main transient product. NO/sub 3/ is formed by the direct energy absorption by NO/sup -//sub 3/. Participation in tha effect of the cation should not be disregarded. There is evidence that the 340 nm peak in the transient spectrum is probably connected with N/sub 2/O/sub 4/ and not with NO/sub 3/. The tranient spectra, extinction coefficients of products and rate constants of relevant reactions are given.

  10. Neutron depolarization studies on magnetization process using pulsed polarized neutrons

    International Nuclear Information System (INIS)

    Mitsuda, Setsuo; Endoh, Yasuo

    1985-01-01

    Neutron depolarization experiments investigating the magnetization processes have been performed by using pulsed polarized neutrons for the first time. Results on both quenched and annealed ferromagnets of Fe 85 Cr 15 alloy indicate the significant difference in the wavelength dependence of depolarization between them. It also constitutes the experimental demonstration of the theoretical prediction of Halpern and Holstein. (author)

  11. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  12. Study of a pulsed capillary discharge with a modulated radius

    NARCIS (Netherlands)

    Broks, B.H.P.; Dijk, van W.; Mullen, van der J.J.A.M.; Veldhuizen, van E.M.

    2005-01-01

    In this contribution, we present a plasma physical model of a pulsed capillary discharge with a modulated radius. Using a 2D time-dependent model, we have modeled the plasma and wall properties of this channel. It was found that properties of the central plasma are different than the properties of a

  13. Ultraviolet germicidal efficacy as a function of pulsed radiation parameters studied by spore film dosimetry.

    Science.gov (United States)

    Bauer, Stefan; Holtschmidt, Hans; Ott, Günter

    2018-01-01

    Disinfection by pulsed ultraviolet (UV) radiation is a commonly used method, e.g. in industry or medicine and can be carried out either with lasers or broadband UV radiation sources. Detrimental effects to biological materials depending on parameters such as pulse duration τ or pulse repetition frequency f p are well-understood for pulsed coherent UV radiation, however, relatively little is known for its incoherent variant. Therefore, within this work, it is the first time that disinfection rates of pulsed and continuous (cw) incoherent UV radiation studied by means of spore film dosimetry are presented, compared with each other, and in a second step further investigated regarding two pulse parameters. After analyzing the dynamic range of the Bacillus subtilis spore films with variable cw radiant exposures H=5-100Jm -2 a validation of the Bunsen-Roscoe law revealed its restricted applicability and a 28% enhanced detrimental effect of pulsed compared to cw incoherent UV radiation. A radiant exposure H=50Jm -2 and an irradiance E=0.5Wm -2 were found to be suitable parameters for an analysis of the disinfection rate as a function of τ=0.5-10ms and f p =25-500Hz unveiling that shorter pulses and lower frequencies inactivate more spores. Finally, the number of applied pulses as well as the experiment time were considered with regard to spore film disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Pulsed Neutron Scattering Studies of Strongly Fluctuating solids, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin Broholm

    2006-06-22

    The conventional description of a solid is based on a static atomic structure with small amplitude so-called harmonic fluctuations about it. This is a final technical report for a project that has explored materials where fluctuations are sufficiently strong to severely challenge this approach and lead to unexpected and potentially useful materials properties. Fluctuations are enhanced when a large number of configurations share the same energy. We used pulsed spallation source neutron scattering to obtain detailed microscopic information about structure and fluctuations in such materials. The results enhance our understanding of strongly fluctuating solids and their potential for technical applications. Because new materials require new experimental techniques, the project has also developed new techniques for probing strongly fluctuating solids. Examples of material that were studied are ZrW2O8 with large amplitude molecular motion that leads to negative thermal expansion, NiGa2S4 where competing interactions lead to an anomalous short range ordered magnet, Pr1- xBixRu2O7 where a partially filled electron shell (Pr) in a weakly disordered environment produces anomalous metallic properties, and TbMnO3 where competing interactions lead to a magneto-electric phase. The experiments on TbMnO3 exemplify the relationship between research funded by this project and future applications. Magneto-electric materials may produce a magnetic field when an electric field is applied or vise versa. Our experiments have clarified the reason why electric and magnetic polarization is coupled in TbMnO3. While this knowledge does not render TbMnO3 useful for applications it will focus the search for a practical room temperature magneto-electric for applications.

  15. Guanosine radical reactivity explored by pulse radiolysis coupled with transient electrochemistry.

    Science.gov (United States)

    Latus, A; Alam, M S; Mostafavi, M; Marignier, J-L; Maisonhaute, E

    2015-06-04

    We follow the reactivity of a guanosine radical created by a radiolytic electron pulse both by spectroscopic and electrochemical methods. This original approach allows us to demonstrate that there is a competition between oxidation and reduction of these intermediates, an important result to further analyse the degradation or repair pathways of DNA bases.

  16. Studies of calorimeter absorbers for CW and pulsed CO2 lasers

    International Nuclear Information System (INIS)

    Gunn, S.R.

    1975-01-01

    Solid and liquid absorbers, used in calorimeters to measure the power and energy of cw and pulsed CO 2 lasers, have been studied from 9.24 to 10.76 μm (cw) and near 10.588 μm (pulsed). The principal materials used were magnesium oxide, lithium fluoride, polystyrene, polytetrafluorethylene, carbon tetrachloride and kerosene. (U.S.)

  17. Experimental study of the counting loss in an ionization chamber in pulsed radiation fields

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Yanagihara, L.S.; Veissid, V.L.C.P.; Herdade, S.B.; Teixeira, A.N.

    1983-01-01

    The behavior of an ionization chamber gamma ray monitor in a pulsed radiation field at a linear electron accelerator facility was studied experiementally. A loss of sensitivity was observed as expected due to the pulsed nature of the radiation. By fitting the experiemental data to semi-empirical expressions, parameters for the correction of the counting efficiency were obtained. (Author) [pt

  18. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  19. A model for void-induced back reaction between radiolytic products in NaCl

    NARCIS (Netherlands)

    Turkin, A.A.; Dubinko, V.I.; Vainshtein, D.I.; Hartog, H.W. den

    A kinetic model is formulated for the chemical reaction between radiolytic sodium colloids and gas bubbles, which are brought into contact with each other during the exposure to ionising radiation by the growing voids. The reaction starts with the evaporation of Na atoms into the void due to the

  20. Optimisation studies for a moderator on a pulsed neutron source

    International Nuclear Information System (INIS)

    Picton, D.J.; Ross, D.K.; Taylor, A.D.

    1982-01-01

    Having reviewed general aspects of moderator design for pulsed neutron sources, calculations are presented on a number of aspects of moderator optimization. Results of time-independent calculations on metal hydride moderators and a detailed method of evaluating moderated pulse intensities and time distributions, are given. Using computer codes, neutron cross-sections have been calculated from vibrational frequency distributions and time-dependent moderator calculations performed by Monte Carlo methods. The choice of an ambient moderator material and the optimum configuration of heterogeneous poisoning are examined and evaluations of liquid-nitrogen-cooled moderators are presented. Conclusions are drawn concerning the relative merits of cooled and poisoned moderators and an evaluation presented of solid methane at 20 K as a moderator for the production of cold neutrons. (U.K.)

  1. FEASIBILITY STUDY OF PRESSURE PULSING PIPELINE UNPLUGGING TECHNOLOGIES FOR HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    Servin, M. A. [Washington River Protection Solutions, LLC, Richland, WA (United States); Garfield, J. S. [AEM Consulting, LLC (United States); Golcar, G. R. [AEM Consulting, LLC (United States)

    2012-12-20

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging.

  2. Feasibility Study Of Pressure Pulsing Pipeline Unplugging Technologies For Hanford

    International Nuclear Information System (INIS)

    Servin, M. A.; Garfield, J. S.; Golcar, G. R.

    2012-01-01

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging

  3. Radical Ions of 3-Styryl-quinoxalin-2-one Derivatives Studied by Pulse Radiolysis in Organic Solvents.

    Science.gov (United States)

    Skotnicki, Konrad; De la Fuente, Julio R; Cañete, Álvaro; Berrios, Eduardo; Bobrowski, Krzysztof

    2018-04-12

    The absorption-spectral and kinetic behaviors of radical ions and neutral hydrogenated radicals of seven 3-styryl-quinoxalin-2(1 H)-one (3-SQ) derivatives, one without substituents in the styryl moiety, four others with electron-donating (R = -CH 3 , -OCH 3 , and -N(CH 3 ) 2 ) or electron-withdrawing (R = -OCF 3 ) substituents in the para position in their benzene ring, and remaining two with double methoxy substituents (-OCH 3 ), however, at different positions (meta/para and ortho/meta) have been studied by UV-vis spectrophotometric pulse radiolysis in neat acetonitrile saturated with argon (Ar) and oxygen (O 2 ) and in 2-propanol saturated with Ar, at room temperature. In acetonitrile solutions, the radical anions (4R-SQ •- ) are characterized by two absorption maxima located at λ max = 470-490 nm and λ max = 510-540 nm, with the respective molar absorption coefficients ε 470-490 = 8500-13 100 M -1 cm -1 and ε 510-540 = 6100-10 300 M -1 cm -1 , depending on the substituent (R). All 4R-SQ •- decay in acetonitrile via first-order kinetics, with the rate constants in the range (1.2-1.5) × 10 6 s -1 . In 2-propanol solutions, they decay predominantly through protonation by the solvent, forming neutral hydrogenated radicals (4R-SQH • ), which are characterized by weak absorption bands with λ max = 480-490 nm. Being oxygen-insensitive, the radical cations (4R-SQ •+ ) are characterized by a strong absorption with λ max = 450-630 nm, depending on the substituent (R). They are formed in a charge-transfer reaction between a radical cation derived from acetonitrile (ACN •+ ) and substituted 3-styryl-quinoxalin-2-one derivatives (4R-SQ) with a pseudo-first-order rate constant k = (2.7-4.7) × 10 5 s -1 measured in solutions containing 0.1 mM 4R-3-SQ. The Hammett equation plot gave a very small negative slope (ρ = -0.08), indicating a very weak influence of the substituents in the benzene ring on the rate of charge-transfer reaction. The decay of 4R

  4. CFD study of a simple orifice pulse tube cooler

    Science.gov (United States)

    Zhang, X. B.; Qiu, L. M.; Gan, Z. H.; He, Y. L.

    2007-05-01

    Pulse tube cooler (PTC) has the advantages of long-life and low vibration over the conventional cryocoolers, such as G-M and Stirling coolers because of the absence of moving parts in low temperature. This paper performs a two-dimensional axis-symmetric computational fluid dynamic (CFD) simulation of a GM-type simple orifice PTC (OPTC). The detailed modeling process and the general results such as the phase difference between velocity and pressure at cold end, the temperature profiles along the wall as well as the temperature oscillations at cold end with different heat loads are presented. Emphases are put on analyzing the complicated phenomena of multi-dimensional flow and heat transfer in the pulse tube under conditions of oscillating pressure. Swirling flow pattern in the pulse tube is observed and the mechanism of formation is analyzed in details, which is further validated by modeling a basic PTC. The swirl causes undesirable mixing in the thermally stratified fluid and is partially responsible for the poor overall performance of the cooler, such as unsteady cold-end temperature.

  5. Photoemission studies using femtosecond pulses for high brightness electron beams

    International Nuclear Information System (INIS)

    Srinivasan-Rao, T.; Tsang, T.; Fischer, J.

    1990-06-01

    We present the results of a series of experiments where various metal photocathodes are irradiated with ultrashort laser pulses, whose characteristics are: λ = 625 nm, τ = 100 fs, PRR = 89.5 MHz, Hν = 2 eV and average power 25 mW in each of the two beams. The quantum efficiency of the metals range from ∼10 -12 to 10 -8 at a power density of 100 MW/cm 2 at normal incidence. Since all the electrons are emitted due to multiphoton processes, these efficiencies are expected to increase substantially at large intensities. The efficiency at 100 MW/cm 2 has been increased by using p-polarized light at oblique incidence by ∼20x and by mediating the electron emission through surface plasmon excitation by ∼10 3 x. For the low intensities used in these experiments, the electron pulse duration is almost the same as the laser pulse duration for both the bulk and the surface plasmon mediated photoemission. 7 refs., 8 figs., 2 tabs

  6. Effect of electron affinic hypoxic cell sensitizers on the radiolytic depletion of oxygen in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Michaels, H.B.

    1982-01-01

    When CHO cells are equilibrated with a low level of oxygen (e.g. 0.4% O 2 ) and irradiated with single 3 ns pulses of electrons, a breaking survival curve is observed. This effect is believed to be the result of radiolytic oxygen depletion and can be prevented by the presence of a relatively low concentraton of hypoxic cell radiosensitizer. This prevention of the breaking survival curve has been observed for 2- and 5-nitroimidazoles, nitrofurans, and diamide. It is hypothesized that the sensitizer acts by competing wth oxygen for the radiation-induced intracellular oxygen-binding species, perhaps a hydrated electron adduct, leaving oxygen free to participate in radiosensitization reactions during the lifetime of the oxygen-sensitive radiation-induced target sites for lethal damage, probably DNA radicals produced by hydroxyl radical attack. The proposed role of the sensitizer in the interference with oxygen depletion is a transient phenomenon, occuring on the microsecond to millisecond time scale

  7. Study and realisation of a femtosecond dye laser operating at different wavelengths. Ultrashort pulses compression and amplification

    International Nuclear Information System (INIS)

    Georges, Patrick

    1989-01-01

    We present the study and the realization of a passively mode-locked dye laser producing pulses shorter than 100 femto-seconds (10 -13 s). In a ring cavity with an amplifier medium (Rhodamine 60) and a saturable absorber (DODCI), a sequence of four prisms controls the group velocity dispersion and allows the generation of very short pulses. Then we have studied the production of femtosecond pulses at other wavelengths directly from the femtosecond dye laser. For the first rime, 60 fs pulses at 685 nm and pulses shorter than 50 fs between 775 nm and 800 nm have been produced by passive mode locking. These near infrared pulses have been used to study the absorption saturation kinetics in semiconductors multiple quantum wells GaAs/GaAlAs. We have observed a singular behavior of the laser operating at 685 nm and analyzed the produced pulses in terms of optical solitons. To perform time resolved spectroscopy with shortest pulses, we have studied a pulse compressor and a multipass amplifier to increase the pulses energy. Pulses of 20 fs and 10 micro-joules (peak power: 0.5 GW) have been obtained at low repetition rate (10 Hz) and pulses of 16 fs and 0.6 micro-joules pulses have been generated at high repetition rate (11 kHz) using a copper vapor laser. These pulses have been used to study the absorption saturation kinetics of an organic dye (the Malachite Green). (author) [fr

  8. Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics

    Science.gov (United States)

    Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.

    2013-12-01

    In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.

  9. Experimental studies of the overshoot and undershoot in pulse-modulated radio-frequency atmospheric discharge

    Energy Technology Data Exchange (ETDEWEB)

    Huo, W. G.; Li, R. M.; Shi, J. J. [School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China); Ding, Z. F., E-mail: huowg.wg@tom.com [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China)

    2016-08-15

    The overshoot and undershoot of the applied voltage on the electrodes, the discharge current, and radio frequency (RF) power were observed at the initial phase of pulse-modulated (PM) RF atmospheric pressure discharges, but factors influencing the overshoot and undershoot have not been fully elucidated. In this paper, the experimental studies were performed to seek the reasons for the overshoot and undershoot. The experimental results show that the overshoot and undershoot are associated with the pulse frequency, the rise time of pulse signal, and the series capacitor C{sub s} in the inversely L-shaped matching network. In the case of a high RF power discharge, these overshoot and undershoot become serious when shortening the rise time of a pulse signal (5 ns) or operating at a moderate pulse frequency (500 Hz or 1 kHz).

  10. Experimental Study of RF Pulsed Heating on Oxygen Free Electronic Copper

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2003-02-10

    When the thermal stresses induced by RF pulsed heating are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Therefore, pulsed heating limits the maximum surface magnetic field and through it the maximum achievable accelerating gradient. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz was designed to study pulsed heating on Oxygen Free Electronic (OFE) copper. An X-band klystron delivered up to 10 MW to the cavities in 1.5 {micro}s pulses at 60 Hz repetition rate. One run was executed at a temperature rise of 120 K for 56 x 10{sup 6} pulses. Cracks at grain boundaries, slip bands and cracks associated with these slip bands were observed. The second run consisted of 86 x 10{sup 6} pulses with a temperature rise of 82 K, and cracks at grain boundaries and slip bands were seen. Additional information can be derived from the power-coupling iris, and we conclude that a pulsed temperature rise of 250 K for several million pulses leads to destruction of copper. These results can be applied to any mode of any OFE copper cavity.

  11. Old Faithful Model for Radiolytic Gas-Driven Cryovolcanism at Enceladus

    Science.gov (United States)

    Cooper, John F.; Cooper, Paul D.; Sittler, Edward; Sturner, Steven J.; Rymer, Abigail M.

    2009-01-01

    A new model is presented on how chemically driven cryovolcanism might contribute to episodic outgassing at the icy moon Enceladus and potentially elsewhere including Europa and Kuiper Belt Objects. Exposed water ices can become oxidized from radiolytic chemical alteration of near-surface water ice by space environment irradiation. In contact with primordially abundant reductants such as NH3, CH4, and other hydrocarbons, the product oxidants can react exothermically to produce volatile gases driving cryovolcanism via gas-piston forces on any subsurface liquid reservoirs. Radiolytic oxidants such as H2O2 and O2 can continuously accumulate deep in icy regoliths and be conveyed by rheological flows to subsurface chemical reaction zones over million-year time scales indicated by cratering ages for active regions of Enceladus and Europa. Surface blanketing with cryovolcanic plume ejecta would further accelerate regolith burial of radiolytic oxidants. Episodic heating from transient gravitational tides, radioisotope decay, impacts, or other geologic events might occasionally accelerate chemical reaction rates and ignite the exothermic release of cumulative radiolytic oxidant energy. The time history for the suggested "Old Faithful" model of radiolytic gas-driven cryovolcanism at Enceladus and elsewhere therefore consists of long periods of chemical energy accumulation punctuated by much briefer episodes of cryovolcanic activity. The most probable sequence for detection of activity in the current epoch is a long evolutionary phase of slow but continuous oxidant accumulation over billions of years followed by continuous but variable high activity over the past 10(exp 7)-10(exp 8) years. Detectable cryovolcanic activity could then later decline due to near-total oxidation of the rheologically accessible ice crust and depletion the accessible reductant abundances, as may have already occurred for Europa in the more intense radiation environment of Jupiter's magnetosphere

  12. Randomized, double-blind, comparative study on efficacy and safety of itraconazole pulse therapy and terbinafine pulse therapy on nondermatophyte mold onychomycosis: A study with 90 patients.

    Science.gov (United States)

    Ranawaka, Ranthilaka R; Nagahawatte, Ajith; Gunasekara, Thusitha Aravinda; Weerakoon, Hema S; de Silva, S H Padmal

    2016-08-01

    Nondermatophyte mold (NDM) onychomycosis shows poor response to current topical, oral or device-related antifungal therapies. This study was aimed to determine the efficacy and safety of itraconazole and terbinafine pulse therapy on NDM onychomycosis. Mycologically proven subjects were treated with itraconazole 400 mg daily or terbinafine 500 mg daily for 7 days/month; two pulses for fingernails and three pulses for toenails(SLCTR/2013/013). One-hundred seventy-eight patients underwent mycological studies and 148 had positive fungal isolates. NDM were the prevailing fungi, 68.2%, followed by candida species 21.6%, and dermatophytes made up only 10.1%. Out of NDM Aspergillus spp (75.1%) predominated followed by 8.9% Fusarium spp and 4.95% Penicillium spp. The clinical cure at completion of pulse therapy was statistically significant 9.2% versus 2.0% (p terbinafine pulse cured 55.0% Aspergillus spp and 50.0% Fusarium spp. NDM was the prevailing fungi in onychomycosis in Sri Lanka. Both itraconazole and terbinafine were partially effective on NDM onychomycosis showing a clinical cure of 54-65%. Future research should focus on searching more effective antifungal for NDM onychomycosis.

  13. Identification of radiolytic products from N-nitrosodimethylamine and N-nitrosopyrrolidine by gas chromatography and mass spectrometry

    International Nuclear Information System (INIS)

    Ahn, H.-J.; Lee, C.-H.; Kim, J.-H.; Han, S.-B.; Jo, Cheorun; Kim, Sung; Byun, M.-W.

    2004-01-01

    The radiolytic products of N-nitrosodimethylamine (NDMA) and N-nitrosopyrrolidine (NPYR) dissolved in dichloromethane (DCM) were identified after gamma irradiation. The UV spectra of NDMA and NPYR indicated that irradiation reduced the typical peak of NDMA at 258 nm and NPYR at 260 nm.The major radiolytic components identified in irradiated NDMA were ethyl acetate and 2-dimethyl propanol. The irradiated NPYR dissolved in DCM and produced 2-butanone and 2-methyl-6-propyl piperidine as the major radiolytic components. 2-Methyl-6-propyl piperidine was the component detected in the greatest concentration in irradiated NPYR

  14. A model to estimate volume change due to radiolytic gas bubbles and thermal expansion in solution reactors

    International Nuclear Information System (INIS)

    Souto, F.J.; Heger, A.S.

    2001-01-01

    To investigate the effects of radiolytic gas bubbles and thermal expansion on the steady-state operation of solution reactors at the power level required for the production of medical isotopes, a calculational model has been developed. To validate this model, including its principal hypotheses, specific experiments at the Los Alamos National Laboratory SHEBA uranyl fluoride solution reactor were conducted. The following sections describe radiolytic gas generation in solution reactors, the equations to estimate the fuel solution volume change due to radiolytic gas bubbles and thermal expansion, the experiments conducted at SHEBA, and the comparison of experimental results and model calculations. (author)

  15. Recent results on solvation dynamics of electron and spur reactions of solvated electron in polar solvents studied by femtosecond laser spectroscopy and picosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Mostafavi, M.

    2006-01-01

    . Nevertheless, the results show that the effect of the molecular structure of the solvents on solvation dynamics of electron is not negligible. The first study of picosecond pulse radiolysis of neat tetrahydrofuran (THF) by pulse-probe method was performed using the ELYSE picosecond pulse electron facility. ELYSE is a laser triggered electron accelerator that delivers at repetition rate of 1-50 Hz, electron pulses with a duration 5-15 ps, a charge of 2-7 nC and a kinetic energy tuneable in the range 2-9 MeV. The pulse- probe study of neat THF shows a fast decay of absorbance at 790 nm within 2.5 ns (Figure 2). This decay is assigned to the solvated electron. From the decay we deduced the time dependent G-value of solvated electron in the picosecond time range. The ratio between the initial absorbance (at 30 ps) and at 2.5 ns is about 2. In similar conditions, the same ratio in water and in the alcohols is 1.15, 1.25, respectively. In fact, the G-value of solvated electron in THF is much more time dependent that those in polar solvents like water and alcohols. We compared the time dependent G value for solvated electron between two methods: direct time resolved measurement and scavenging method. The analysis suggests either that the initial yield in THF (at zero time) is lower than in water or that a very fast decay occurs within the electron pulse.Eventually, the first pulse radiolysis measurements at picosecond range and at elevated temperature in water is studied by pulse-probe method using a high temperature high pressure cell. This study is done in collaboration with the Radiolysis laboratory of CEA/Saclay. The kinetics of the hydrated electron are found to be temperature dependent (Figure 3) and are qualitatively in agreement with radiolytic yield values obtained at elevated temperature after spur reactions. Assuming the same initial G value at picosecond time range for different temperatures, we deduce that at 350 degree C the yield at nanosecond range becomes almost the

  16. A pulse radiolysis study of hyperoside isolated from Hypericum mysorense

    International Nuclear Information System (INIS)

    Hariharapura, Raghu C.; Mahal, H.S.; Srinivasan, R.; Jagani, Hitesh; Vijayan, P.

    2015-01-01

    Background: The recent growth in knowledge of free radicals in biology is producing a medical revolution that promises a new age in health and disease management. In the last two decades there has been an explosive interest in the role of oxygen free radicals, more generally known as “reactive oxygen species” and of “reactive nitrogen species” in experimental and clinical medicine. Methods: The flowering top extract of Hypericum mysorense possessing potent anti-oxidant activity was subjected to bio-active guided isolation. Pulse radiolysis technique was used to determine the transient spectrum and rate constant for the one-electron oxidation of hyperoside by · OH, N 3 · , NO 2 · , NO · , CCl 3 OO · radicals in aqueous solution. Results: Three compounds were isolated and characterized as rutin, quercetin-3-O-galactoside (hyperoside) and quercetin from spectral analysis. The hyperoside radical showed pK a1 and pK a2 at 5.4 and 9.2. Both, Cu(II) and iron(II) ions form chelate with hyperoside. The Cu–hyperoside chelate was able to scavenge O 2 ·− , k=7.0(±0.3)×10 6 dm 3 mol −1 s −1 at pH 9. The repair rates for tryptophan and guanosine radicals by hyperoside were also determined. Conclusion: The reduction potential of hyperoside radical was determined by cyclic voltammetric and pulse radiolysis methods. - Highlights: • Hyperoside, rutin and quercetin were isolated from extract of Hypericum mysorense. • Rate constant of hyperoside was determined by Pulse radiolysis technique. • The hyperoside radical showed pK a1 and pK a2 at 5.4 and 9.2. • Cu(II) and iron(II)ions form chelate with hyperoside. • Hyperoside can repair the damage to guanosine, tryptophan radicals

  17. Numerical study of the propagation of high power microwave pulses in air breakdown environment

    International Nuclear Information System (INIS)

    Kim, J.; Kuo, S.P.

    1992-01-01

    A theoretical model based on a set of two modal equations has been developed to describe self-consistently the propagation of an intense microwave pulse in an air breakdown environment. It includes Poynting's equation for the continuity of the power flux of the pulse and the rate equation of the electron density. A forward wave approximation is used to simplify Poynting's equation and a semi-empirical formula for the ionization frequency as a function of the wave field amplitude is adopted for this model. In order to improve the numerical efficiency of the model in terms of the required computation time and available subroutines for numerical analysis of pulse propagation over a long distance, a transformation to the frame of local time of the pulse is introduced. The effect of space-time dependence of the group velocity of the pulse is included in this properly designed transformation. The inhomogeneous feature of the background pressure is also preserved in the model. The resultant equations are reduced to the forms which can be solved directly by the available subroutine of ODE solver. In this work, a comprehensive numerical analysis of the propagation of high power microwave pulse through the atmosphere is performed. It is shown that the pulse energy can severely be attenuated by the self-generated plasma. Therefore, the aim of the present study is to identify the optimum parameters of the pulse so that the energy loss of the pulse before reaching the destination can be minimized. These parameters include the power, frequency, shape and length of the pulse. The conditions for maximizing the ionization at a destinated region in the upper atmosphere will also be determined

  18. Proposals of electronic-vibrational energy relaxation studies by using laser pulses synchronized with IR-SR pulses

    International Nuclear Information System (INIS)

    Nakagawa, Hideyuki

    2000-01-01

    Synchrotron radiation is expected to be the sharp infrared light source for the advanced experiments on IR and FIR spectroscopy in wide research fields. Especially, synchronized use of SR with VIS and/or UV laser light is to be a promising technique for the research on the dynamical properties of the photo-excited states in condensed materials. Some proposals are attempted for high resolution IR spectroscopy to elucidate fine interaction of molecular ions in crystalline solids with their environmental field and for time-resolved IR spectroscopic studies on the electronic and vibrational energy relaxation by using laser pulses synchronized with IR-SR pulses. Several experimental results are presented in relevance to the subjects; on high-resolution FTIR spectra of cyanide ions and metal cyanide complexes in cadmium halide crystals, on the energy up-conversion process among the vibrational levels of cyanide ions in alkali halide crystals, and on the electronic-to-vibrational energy conversion process in metal cyanide complexes. (author)

  19. A feasibility study for a contained pulsed nuclear propulsion concept

    International Nuclear Information System (INIS)

    Parlos, A.G.; Metzger, J.D.

    1993-01-01

    A preliminary analysis of a pulsed propulsion concept is performed utilizing the enormously dense energy generated by small nuclear detonations. The concept feasibility is based on the premise that current materials technology has undergone significant breakthroughs, allowing design of pressure vessels capable of containing the blast associated with such detonations. Furthermore, the rapid energy transfer to the propellant, allows generation of high thrust levels for up to 10 ms following the detonation. Preliminary reevaluation of the concept using off-the-shelf materials technology appears to indicate that the contained pulsed nuclear propulsion concept has no major flaws, and it can provide thrust levels resulting in average thrust-to-weight ratios on the order of 2--2.5 over an engine operating cycle. Furthermore, even though the specific impulse is not a good performance indicator for impulsive engines, operating-cycle-averaged specific impulse of approximately 1800 s has been calculated. The engine mass associated with this performance is on the order of 50 Mg. The concept appears attractive for a number of missions planned for the Space Exploration Initiative, however, there are still a number of issues that must be addressed

  20. Study on irradiation effects of nucleus electromagnetic pulse on single chip computer system

    International Nuclear Information System (INIS)

    Hou Minsheng; Liu Shanghe; Wang Shuping

    2001-01-01

    Intense electromagnetic pulse, namely nucleus electromagnetic pulse (NEMP), lightning electromagnetic pulse (LEMP) and high power microwave (HPM), can disturb and destroy the single chip computer system. To study this issue, the authors made irradiation experiments by NEMPs generated by gigahertz transversal electromagnetic (GTEM) Cell. The experiments show that shutdown, restarting, communication errors of the single chip microcomputer system would occur when it was irradiated by the NEMPs. Based on the experiments, the cause on the effects on the single chip microcomputer system is discussed

  1. Study of {sup 14}N NQR response to SORC pulse sequence

    Energy Technology Data Exchange (ETDEWEB)

    Konnai, A., E-mail: konnai@nmri.go.jp; Odano, N. [National Maritime Research Institute, Department of Navigation and System Engineering (Japan); Asaji, T. [Nihon University, Department of Chemistry, College of Humanities and Sciences (Japan)

    2008-01-15

    The behavior of nuclear quadrupole resonance (NQR) signals between RF pulses of the strong off-resonance comb (SORC) as well as the spin-locking spin-echo (SLSE) pulse sequences was studied as for {sup 14}N NQR line {nu}{sub +} of dimethylnitramine (CH{sub 3}){sub 2}NNO{sub 2} at 77 K. The periodic variation of the signal amplitude observed by using SORC pulse sequence could be reasonably explained by the theoretical expression reported in the literature.

  2. Mixing of radiolytic hydrogen generated within a containment compartment following a LOCA

    International Nuclear Information System (INIS)

    Willcutt, G.J.E. Jr.; Gido, R.G.

    1978-07-01

    The objective of this work was to determine hydrogen concentration variations with position and time in a closed containment compartment with radiolytic hydrogen generation in the water on the compartment floor following a Loss-of-Coolant-Accident (LOCA). One application is to determine the potential difference between the compartment maximum hydrogen concentration and a hydrogen detector reading, due to the detector location. Three possible mechanisms for hydrogen transport in the compartment were investigated: (1) molecular diffusion, (2) possible bubble formation and motion, and (3) natural convection flows. A base case cubic compartment with 6.55-m (21.5-ft) height was analyzed. Parameter studies were used to determine the sensitivity of results to compartment size, hydrogen generation rates, diffusion coefficients, and the temperature difference between the floor and the ceiling and walls of the compartment. Diffusion modeling indicates that if no other mixing mechanism is present for the base case, the maximum hydrogen volume percent (vol percent) concentration difference between the compartment floor and ceiling will be 4.8 percent. It will be 24.5 days before the maximum concentration difference is less than 0.5 percent. Bubbles do not appear to be a potential source of hydrogen pocketing in a containment compartment. Compartment natural convection circulation rates for a 2.8 K (5 0 F) temperature difference between the floor and the ceiling and walls are estimated to be at least the equivalent of 1 compartment volume per hour and probably in the range of 4 to 9 compartment volumes per hour. Related natural convection studies indicate there will be turbulent mixing in the compartment for a 2.8 K (5 0 F) temperature difference between the floor and the ceiling and walls

  3. Measurements of the radiolytic oxidation of aqueous CsI using a sparging apparatus

    International Nuclear Information System (INIS)

    Ashmore, C.B.; Brown, D.; Sims, H.E.; Gwyther, J.R.

    1996-01-01

    Radiolytic oxidation is considered to be the main mechanism for the formation of I 2 from aqueous CsI in containment of a water cooled reactor after a LOCA. Despite the amount of study over the last 60 years on the radiation chemistry of iodine there has been no consistent set of experiments spanning a wide enough range of conditions to verify models with confidence. This paper describes results from a set of experiments carried out in order to remedy this deficiency. In this work the rate of evolution of I 2 from sparged irradiated CsI solution labeled with 131 I was measured on-line over a range of conditions. This work involved the measurement of the effects of pH, temperature, O 2 concentration, I - concentration, phosphate concentration, dose-rate and impurities on the rate of evolution of I 2 . The range of conditions was chosen in order to span as closely as possible conditions expected in a LOCA but also to help to elucidate some of the mechanisms especially at high pH. pH was found to be a very important factor influencing iodine volatility, over the temperature range studied the extent of oxidation reduced with temperature but this was compensated for by the decrease in partition coefficient. Oxygen concentration was more important in solutions not containing phosphate. The fractional oxidation was not particularly dependent on iodide concentration but G I2 was very dependent on [I - ]. There was no effect of added impurities, Fe, Mn, Mo or organics although in separate work silver was found to have a very important effect. During attempts to interpret the data it was found that it was necessary to include the iodine atom as a volatile species with a partition coefficient of 1.9 taken from thermodynamic data. The modelling work is described in a separate paper. (author) 15 figs., 1 tab., 19 refs

  4. Time resolved studies of H{sub 2}{sup +} dissociation with phase-stabilized laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Bettina

    2010-06-23

    In the course of this thesis, experimental studies on the dissociation of H{sub 2}{sup +}(H{sub 2}{sup +}{yields}p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H{sub 2} molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H{sub 2}{sup +} at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  5. Time resolved studies of H2+ dissociation with phase-stabilized laser pulses

    International Nuclear Information System (INIS)

    Fischer, Bettina

    2010-01-01

    In the course of this thesis, experimental studies on the dissociation of H 2 + (H 2 + →p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H 2 molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H 2 + at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  6. Pulse radiolysis studies of bergenin, an isocoumarin polyphenolic derivative

    International Nuclear Information System (INIS)

    Singh, Umang; Srinivasan, R.; Barik, A.; Priyadarsini, K.I.

    2008-01-01

    Bergenin, a polyphenolic isocoumarin derivative, isolated from medicinal plant Caesalpinia digynae, has been subjected for OH and oxidizing radical reactions using pulse radiolysis technique coupled with absorption detection. OH radicals cause multiple reactions, producing transients absorbing with maxima at 440 nm and 500 nm. By comparing the spectra and decay kinetics with that produced by N 3 radicals, the species absorbing at 440 nm is assigned to phenoxyl type radical and the one absorbing at 500 nm to be a hydroxyl-radical adduct, which has been found to be reducing in nature. Bergenin also reacts with peroxyl radicals, with rate constants of 4.2 x 10 6 M -1 s -1 . (author)

  7. Pulse radiolysis studies of bergenin, an isocoumarin polyphenolic derivative

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Umang; Srinivasan, R; Barik, A; Priyadarsini, K I [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)

    2008-01-15

    Bergenin, a polyphenolic isocoumarin derivative, isolated from medicinal plant Caesalpinia digynae, has been subjected for OH and oxidizing radical reactions using pulse radiolysis technique coupled with absorption detection. OH radicals cause multiple reactions, producing transients absorbing with maxima at 440 nm and 500 nm. By comparing the spectra and decay kinetics with that produced by N{sub 3} radicals, the species absorbing at 440 nm is assigned to phenoxyl type radical and the one absorbing at 500 nm to be a hydroxyl-radical adduct, which has been found to be reducing in nature. Bergenin also reacts with peroxyl radicals, with rate constants of 4.2 x 10{sup 6} M{sup -1}s{sup -1}. (author)

  8. NeuRad detector prototype pulse shape study

    Science.gov (United States)

    Muzalevsky, I.; Chudoba, V.; Belogurov, S.; Kiselev, O.; Bezbakh, A.; Fomichev, A.; Krupko, S.; Slepnev, R.; Kostyleva, D.; Gorshkov, A.; Ovcharenko, E.; Schetinin, V.

    2018-04-01

    The EXPERT setup located at the Super-FRS facility, the part of the FAIR complex in Darmstadt, Germany, is intended for investigation of properties of light exotic nuclei. One of its modules, the high granularity neutron detector NeuRad assembled from a large number of the scintillating fiber is intended for registration of neutrons emitted by investigated nuclei in low-energy decays. Feasibility of the detector strongly depends on its timing properties defined by the spatial distribution of ionization, light propagation inside the fibers, light emission kinetics and transition time jitter in the multi-anode photomultiplier tube. The first attempt of understanding the pulse formation in the prototype of the NeuRad detector by comparing experimental results and Monte Carlo (MC) simulations is reported in this paper.

  9. Radiolytic stabilization of poly(methyl methacrylate) in blends with polystyrene

    International Nuclear Information System (INIS)

    Lima, Ivania Soares de

    2002-04-01

    In this work the radiolytic stabilization of poly(methyl methacrylate) was analyzed by three radioprotective agents: polystyrene (PS) and hindered amine light stabilizers (HEALS), respectively, PMMA/PS systems, so a called polymeric blends were prepared with different compositions, where the miscibility of these blends were studied using viscometric, microscopy (SEM) and spectroscopy (FT-IR) techniques. The results show that PMMA/PS blends in the compositions below 10 wt% of PS are miscible, on films casting from solution of toluene and methyl-ethyl-ketone (1;1) mixture. On the other hand, in the composition above 10 wt% of PS, PMMA/PS blends show imminiscibility behavior. These polymer solutions were irradiated with gamma rays ( 60 Co) and viscometric, microscopic and spectroscopic experiments show gamma radiation-induced compatibilization on PMMA/PS blends on proportion 50/50 and 30/70 take place. Viscometric interaction parameters of miscible and compatibilized PMMA/PS bends were calculated in the range of - 50 kGy, with the goal to find out the polymeric interactions after irradiation of the films. G values of PMMA, PMMA/PS and PMMA+St systems were calculated in order to analyze the radioprotection of PS and St into PMMA matrix. The results show that (90/10) PMMA/PS and PMMA+1,5%St systems promote protection against the gamma the radiation-induced scissions, effect that leads to polymer degradation. Moreover, a small amount of crosslinking observed in irradiated blends has contributed to stabilize mechanical properties of PMMA films. PMMA+0,3% HALS system irradiated in doses above 60 kGy showed little stabilization of the mechanical properties of PMMA, since it was observed mechanical degradation this system. Based on these results, PS and St showed to be the best radioprotective agents to PMMA. (author)

  10. Radiation chemistry and advanced polymer materials studied by picosecond pulse radiolysis combined with femtosecond laser

    International Nuclear Information System (INIS)

    Tagawa, S.; Yoshida, Y.; Miki, M.; Yamamoto, T.; Ushida, K.; Izumi, Y.

    1996-01-01

    We have synchronized a single picosecond MeV electron pulse from L-band linear accelerator (linac) of The Institute of Scientific and Industrial Research of Osaka University to a single femtosecond laser pulse of Ti:Sapphire laser. It is an essential technique for the future femtosecond pulse radiolysis and is also applied to many kinds of combined application of more than two different beams from accelerators in very short time range. Radiation chemistry and new type of polymers have been studied by LL (laser-linac) twin picosecond pulse radiolysis. Especially the early events in radiation chemistry such as geminate recombination processes of electrons and radical cations are have been studied in both liquids and solids. (author)

  11. Neutronic studies on decoupled hydrogen moderator for a short-pulse spallation source

    International Nuclear Information System (INIS)

    Harada, Masahide; Watanabe, Noboru; Teshigawara, Makoto; Kai, Tetsuya; Ikeda, Yujiro

    2005-01-01

    Neutronic studies of decoupled hydrogen moderators were performed by calculations taking into account para hydrogen content, decoupling energy, moderator dimensions/shapes and reflector material. Low-energy parts of calculated spectral intensities with different para hydrogen contents were analyzed by a modified Maxwell function to characterize neutron spectra. The result shows that a 100% para hydrogen moderator gives the highest pulse peak intensity together with the narrowest pulse width and the shortest decay times. Pulse broadening with a reflector was explained by time distributions of source neutrons entering into the moderator through a decoupler. Material dependence of time distribution was studied. A decoupling energy higher than 1 eV does not bring about a large improvement in pulse widths and decay times, even at a large penalty in the peak intensity. The optimal moderator thickness was also discussed for a rectangular parallelepipe-shaped and a canteen-shaped moderator

  12. Spectroscopic studies on diamond like carbon films synthesized by pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Madhusmita; Krishnan, R., E-mail: krish@igcar.gov.in; Ravindran, T. R.; Das, Arindam; Mangamma, G.; Dash, S.; Tyagi, A. K. [Material Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102, Tamil Nadu (India)

    2016-05-23

    Hydrogen free Diamond like Carbon (DLC) thin films enriched with C-C sp{sup 3} bonding were grown on Si (111) substrates at laser pulse energies varying from 100 to 400 mJ (DLC-100, DLC-200, DLC-300, DLC-400), by Pulsed Laser Ablation (PLA) utilizing an Nd:YAG laser operating at fundamental wavelength. Structural, optical and morphological evolutions as a function of laser pulse energy were studied by micro Raman, UV-Vis spectroscopic studies and Atomic Force Microscopy (AFM), respectively. Raman spectra analysis provided critical clues for the variation in sp{sup 3} content and optical energy gap. The sp{sup 3} content was estimated using the FWHM of the G peak and found to be in the range of 62-69%. The trend of evolution of sp{sup 3} content matches well with the evolution of I{sub D}/I{sub G} ratio with pulse energy. UV-Vis absorption study of DLC films revealed the variation of optical energy gap with laser pulse energy (1.88 – 2.23 eV), which matches well with the evolution of G-Peak position of the Raman spectra. AFM study revealed that roughness, size and density of particulate in DLC films increase with laser pulse energy.

  13. The use of pulsed power ion/electron beams for studying of units of electronuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S A; Korenev, A S; Puzynin, I V; Samojlov, V N; Sissakyan, A N [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    1997-12-31

    The problems associated with the use of power pulsed ion beams for studying some units of the model electronuclear installation are considered. This makes it possible to analyze the problem of heating loads on the targets, entrance and exit windows for beams of charged particles. The methods of increasing the life-time of these thin foil based windows by surface modification of the materials by high current pulsed ion beams are considered. (author). 4 figs., 5 refs.

  14. The use of pulsed power ion/electron beams for studying of units of electronuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A.; Korenev, A.S.; Puzynin, I.V.; Samoilov, V.N.; Sissakian, A.N. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-09-01

    The questions of using power pulsed ion beams for studying some units of model`s electronuclear installation are considered in this report. It allows to analyze the question of heating loads on the targets, entering and output windows for beams of charge particles. The methods of increasing a life-time of these windows on the basis of thin foils with help of surface modification of materials by high current pulsed ion beams are considered. 5 refs., 4 figs.

  15. The use of pulsed power ion/electron beams for studying of units of electronuclear reactor

    International Nuclear Information System (INIS)

    Korenev, S.A.; Korenev, A.S.; Puzynin, I.V.; Samojlov, V.N.; Sissakyan, A.N.

    1996-01-01

    The problems associated with the use of power pulsed ion beams for studying some units of the model electronuclear installation are considered. This makes it possible to analyze the problem of heating loads on the targets, entrance and exit windows for beams of charged particles. The methods of increasing the life-time of these thin foil based windows by surface modification of the materials by high current pulsed ion beams are considered. (author). 4 figs., 5 refs

  16. The use of pulsed power ion/electron beams for studying of units of electronuclear reactor

    International Nuclear Information System (INIS)

    Korenev, S.A.; Korenev, A.S.; Puzynin, I.V.; Samoilov, V.N.; Sissakian, A.N.

    1997-01-01

    The questions of using power pulsed ion beams for studying some units of model's electronuclear installation are considered in this report. It allows to analyze the question of heating loads on the targets, entering and output windows for beams of charge particles. The methods of increasing a life-time of these windows on the basis of thin foils with help of surface modification of materials by high current pulsed ion beams are considered. 5 refs., 4 figs

  17. Simulation study of a pulsed neutron focusing using a pulsed electromagnetic lens coupled with a permanent magnet

    International Nuclear Information System (INIS)

    Iwashita, H.; Iwasa, H.; Hiraga, F.; Kamiyama, T.; Kiyanagi, Y.; Suzuki, J.; Shinohara, T.; Oku, T.; Shimizu, H.M.

    2009-01-01

    A pulsed sextupole electromagnetic lens with suitably controlled time-dependent magnetic field can in principle focus pulsed neutrons at the same focal point over a wide range of wavelength as the lens removes aberrations. However, in fact, it is difficult to focus neutrons over a wide range of wavelength because attenuation of a practical pulsed sextupole electromagnet is faster than an ideal case. We have devised a method of canceling the difference between the practical pulsed sextupole magnetic field and the ideal magnetic field with the use of a permanent sextupole magnet. We performed simulation calculations to investigate the feasibility of this method, and it was shown that focusing wavelength range spread compared with the case using a pulsed magnetic lens only. This result indicates the usefulness of the method.

  18. Infrared study of the Crab pulsar: The ''shoulder'' pulse and the 3.45 micron pulse profile

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.; Burns, M.S.

    1983-01-01

    Infrared measurements of the Crab pulsar with the NASA IRTF 3.0 m telescope show that the spectrum of the main pulse turns downward for wavelengths longer than 3 μm. The ''shoulder'' pulse discovered by Pennypacker is measured in the 0.9--2.4 μm region, but disappears at 3.5 μm. This pulse rises from 0 to 20% of the height of the main pulse within 1 to 2 ms after the main pulse peak and decays with a 4 to 5 ms time constant. Excess infrared flux also appears after the interpulse. The main peak itself may be narrower at 3.45 μm than in the optical to 2.2 μm band

  19. The importance of variables and parameters in radiolytic chemical kinetics modeling

    International Nuclear Information System (INIS)

    Piepho, M.G.; Turner, P.J.; Reimus, P.W.

    1989-01-01

    Many of the pertinent radiochemical reactions are not completely understood, and most of the associated rate constants are poorly characterized. To help identify the important radiochemical reactions, rate constants, species, and environmental conditions, an importance theory code, SWATS (Sensitivitiy With Adjoint Theory-Sparse version)-LOOPCHEM, has been developed for the radiolytic chemical kinetics model in the radiolysis code LOOPCHEM. The LOOPCHEM code calculates the concentrations of various species in a radiolytic field over time. The SWATS-LOOPCHEM code efficiently calculates: the importance (relative to a defined response of interest) of each species concentration over time, the sensitivity of each parameter of interest, and the importance of each equation in the radiolysis model. The calculated results will be used to guide future experimental and modeling work for determining the importance of radiolysis on waste package performance. A demonstration (the importance of selected concentrations and the sensitivities of selected parameters) of the SWATS-LOOPCHEM code is provided for illustrative purposes

  20. The complex reaction sequence of the thermal and radiolytic degradation of polyvinyl chloride

    International Nuclear Information System (INIS)

    Reichert, W.

    1983-03-01

    The degradation of PVC-foils was been tested by thermal and radiolytic stress in N 2 - and O 2 -atmosphere. Additionally was determined the influence of plasticizers, Fe-, Zn- and Cu-stearates and other additives, which partially are known as stabilizators. Complex mechanisms of degradation are proposed, which were deduced from the HCl-elimination, consumption of oxygen and the shift of the molmass by the scission and crosslinking of main chains both for PVC as combination of PVC with additives. The mechanism corresponds to other known experimental results, too. It was shown, that the radiolytical degradation caused by radicals, which initiate a radical chain mechanism, if the temperature is higher than the glass temperature (Tg). The thermical degradation in a N 2 -atmosphere was explained by an ionic complex mechanism. At the presence of oxygen the ionic mechanism was superimposed by a radical chain mechanism following the oxidation of polyene structures. (author)

  1. Influence of radiolytic products on the chemistry of uranium VI in brines

    International Nuclear Information System (INIS)

    Lucchini, J-F.; Reed, D.T.; Borkowski, M.; Rafalski, A.; Conca, J.

    2004-01-01

    In the near field of a salt repository of nuclear waste, ionizing radiations can strongly affect the chemistry of concentrated saline solutions. Radiolysis can locally modify the redox conditions, speciation, solubility and mobility of the actinide compounds. In the case of uranium VI, radiolytic products can not only reduce U(VI), but also react with uranium species. The net effect on the speciation of uranyl depends on the relative kinetics of the reactions and the buildup of molecular products in brine solutions. The most important molecular products in brines are expected to be hypochlorite ion, hypochlorous acid and hydrogen peroxide. Although U(VI) is expected not to be significantly affected by radiolysis, the combined effects of the major molecular radiolytic products on the chemistry of U(VI) in brines have not been experimentally established previously. (authors)

  2. Radiolytic decomposition of pesticide carbendazim in waters and wastes for environmental protection

    International Nuclear Information System (INIS)

    Bojanowska-Czajka, A.; Drzewicz, P.; Meczynska, S.; Kruszewski, M.; Zimek, Z.; Nichipor, H.; Galezowska, A.; Nalecz-Jawecki, G.; Trojanowicz, M.; Warsaw University, Warsaw

    2011-01-01

    The radiolytic degradation of widely used fungicide, carbendazim, in synthetic aqueous solutions and industrial wastewater was investigated employing γ-irradiation. The effect of the absorbed dose, initial concentration and pH of irradiated solution on the effectiveness of carbendazim decomposition were investigated. Decomposition of carbendazim in 100 μM concentration in synthetic aqueous solutions required irradiation with 600 Gy dose. The aqueous solutions of carbendazim have been irradiated in different conditions, where particular active radical species from water radiolysis predominate. The obtained data have been compared with the kinetic modeling. The reversed-phase high-performance liquid chromatography was used for the determination of carbendazim and its radiolytic decomposition products in irradiated solutions. The changes of toxicity of irradiated solutions were examined with different test organisms and human leukemia cells. (author)

  3. Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments

    International Nuclear Information System (INIS)

    Merino, J.; Cera, E.; Bruno, J.; Quinones, J.; Casas, I.; Clarens, F.; Gimenez, J.; Pablo, J. de; Rovira, M.; Martinez-Esparza, A.

    2005-01-01

    Calibration and testing are inherent aspects of any modelling exercise and consequently they are key issues in developing a model for the oxidative dissolution of spent fuel. In the present work we present the outcome of the calibration process for the kinetic constants of a UO 2 oxidative dissolution mechanism developed for using in a radiolytic model. Experimental data obtained in dynamic leaching experiments of unirradiated UO 2 has been used for this purpose. The iterative calibration process has provided some insight into the detailed mechanism taking place in the alteration of UO 2 , particularly the role of · OH radicals and their interaction with the carbonate system. The results show that, although more simulations are needed for testing in different experimental systems, the calibrated oxidative dissolution mechanism could be included in radiolytic models to gain confidence in the prediction of the long-term alteration rate of the spent fuel under repository conditions

  4. XPS studies of short pulse laser interaction with copper

    International Nuclear Information System (INIS)

    Stefanov, P.; Minkovski, N.; Balchev, I.; Avramova, I.; Sabotinov, N.; Marinova, Ts.

    2006-01-01

    The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm 2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas. The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α') and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH) 2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air

  5. Pulse radiolysis studies concerning oxidative degradation processes in linear polymers

    International Nuclear Information System (INIS)

    Schnabel, Wolfram

    1986-01-01

    On the basis of pulse radiolysis experiments carried out with various polymers in dilute solution three modes of action of molecular oxygen, 0 2 , can be discriminated with respect to main-chain scission: (a) 0 2 acts as a promoter, (b) 0 2 acts as an inhibitor, and (c) 0 2 acts as a fixing agent for main-chain breaks. The promoting mode of action (a) is due to the inhibition of simultaneously occurring intermolecular crosslinking (DNA, polymethylvinylketone) and/or to the combination of peroxyl radicals with the subsequent formation of readily decomposing oxyl radicals (polyethylene oxide, polyacrylamide, polyvinylpyrrolidone, polyribouridylic acid, polyriboadenylic acid, polyribocytidylic acid). The inhibiting mode of action (b) pertains to the reaction of 0 2 with macroradicals that otherwise undergo main-chain rupture (amylose polymethylmethacrylate). Fixing of main-chain ruptures (mode c) becomes important, if macroradicals generated by a very fast rupture of bonds in the main-chain, are prone to recombine quickly. This mode of action was evidenced in the case of polybutenesulfone where main-chain scission involves the extrusion of small segments of the chain. (author)

  6. Determination of non-volatile radiolytic compounds in ethylene co-vinyl alcohol

    International Nuclear Information System (INIS)

    Kothapalli, A.; Sadler, G.

    2003-01-01

    The use of ionizing radiation on food contact polymers is increasing due to the critical role of the package in holding or containing the irradiated foods [Food Add. Contam. 18(6) (2001) 475]. Irradiation benefits the food if properly applied and the food is pre-packaged prior to irradiation to protect it from subsequent recontamination. The United States Food and Drug Administration (USFDA) has approved the use of ionizing radiation within the dosage range of 0-60 kGy on limited films since the 1960s [USFDA 21CFR 179.45]. The obstacle in the way of approval of additional polymers is that FDA fears that these materials may undergo changes during irradiation producing toxic radiolytic fragments. Ethylene co-vinyl alcohol (EVOH), which is often used in food applications, is not approved by the FDA for pre-packaged irradiated foods. The present work examines the non-volatile radiolytic compounds, which may be formed due to exposure to gamma irradiation at the dosage levels of 3 and 10 kGy versus a non-radiated control. Irradiated EVOH is subjected to extraction with 95:5 ethanol and water (by volume) as the food simulating solvent (FSS) for a period of 10 days at 40 deg. C, which models the amount of radiolytic compound a food would extract in 1 year [USFDA Chemistry Requirement for Food Contact Notification]. The FSS is then analyzed for the presence of non-volatile compounds using advanced liquid chromatographic techniques. The chromatograms obtained from different dosages show that non-volatile radiolytic compounds are not formed in EVOH and it would, therefore be in compliance with safety demands of USFDA [Available at: http://www.cfsan.fda.gov/~dms/opa-guid.htmlref and http://www.access.gpo.gov/nara/cfr/cfr-table-search.htmlpage1

  7. Determination of non-volatile radiolytic compounds in ethylene co-vinyl alcohol

    Science.gov (United States)

    Kothapalli, A.; Sadler, G.

    2003-08-01

    The use of ionizing radiation on food contact polymers is increasing due to the critical role of the package in holding or containing the irradiated foods [Food Add. Contam. 18(6) (2001) 475]. Irradiation benefits the food if properly applied and the food is pre-packaged prior to irradiation to protect it from subsequent recontamination. The United States Food and Drug Administration (USFDA) has approved the use of ionizing radiation within the dosage range of 0-60 kGy on limited films since the 1960s [USFDA 21CFR 179.45]. The obstacle in the way of approval of additional polymers is that FDA fears that these materials may undergo changes during irradiation producing toxic radiolytic fragments. Ethylene co-vinyl alcohol (EVOH), which is often used in food applications, is not approved by the FDA for pre-packaged irradiated foods. The present work examines the non-volatile radiolytic compounds, which may be formed due to exposure to gamma irradiation at the dosage levels of 3 and 10 kGy versus a non-radiated control. Irradiated EVOH is subjected to extraction with 95:5 ethanol and water (by volume) as the food simulating solvent (FSS) for a period of 10 days at 40 °C, which models the amount of radiolytic compound a food would extract in 1 year [USFDA Chemistry Requirement for Food Contact Notification]. The FSS is then analyzed for the presence of non-volatile compounds using advanced liquid chromatographic techniques. The chromatograms obtained from different dosages show that non-volatile radiolytic compounds are not formed in EVOH and it would, therefore be in compliance with safety demands of USFDA [Available at: http://www.cfsan.fda.gov/~dms/opa-guid.html#ref and http://www.access.gpo.gov/nara/cfr/cfr-table-search.html#page1].

  8. An assessment of post-LOCA radiolytic generation of hydrogen in reactor containment of Indian PHWRs

    International Nuclear Information System (INIS)

    Bose, H.; Shah, G.C.; Dutta, S.

    2002-01-01

    Full text: An event-wise assessment has been carried out for the 220 MWe Indian PHWRs of standardized design, to estimate the post-LOCA release of radiolytic hydrogen inside reactor containment, in absence of steam-zirconium reaction. The assessment is based on (i) the dissolved hydrogen concentration build-up in water corresponding to the decaying gamma dose profile and (ii) the rate of concentration dependent mass-transfer of hydrogen from water to gas-space. It is observed that the total radiolytic hydrogen released is about three times less than that obtained by the conventional method of calculation which assumes the radiolytic yield of hydrogen to be equal to the primary yield G(H 2 ) = 0.44 molecules per 100 eV. It is also seen that a major part (∼90 %) of the total release is due to the spillage of fission product irradiated suppression pool water flowing through the core, followed by moderator and suppression pool surface releases respectively

  9. The impact of radiolytic yield on the calculated ECP in PWR primary coolant circuits

    International Nuclear Information System (INIS)

    Urquidi-Macdonald, Mirna; Pitt, Jonathan; Macdonald, Digby D.

    2007-01-01

    A code, PWR-ECP, comprising chemistry, radiolysis, and mixed potential models has been developed to calculate radiolytic species concentrations and the corrosion potential of structural components at closely spaced points around the primary coolant circuits of pressurized water reactors (PWRs). The pH(T) of the coolant is calculated at each point of the primary-loop using a chemistry model for the B(OH) 3 + LiOH system. Although the chemistry/radiolysis/mixed potential code has the ability to calculate the transient reactor response, only the reactor steady state condition (normal operation) is discussed in this paper. The radiolysis model is a modified version of the code previously developed by Macdonald and coworkers to model the radiochemistry and corrosion properties of boiling water reactor primary coolant circuits. In the present work, the PWR-ECP code is used to explore the sensitivity of the calculated electrochemical corrosion potential (ECP) to the set of radiolytic yield data adopted; in this case, one set had been developed from ambient temperature experiments and another set reported elevated temperatures data. The calculations show that the calculated ECP is sensitive to the adopted values for the radiolytic yields

  10. LC-MS analysis in the e-beam and gamma radiolysis of metoprolol tartrate in aqueous solution: Structure elucidation and formation mechanism of radiolytic products

    Energy Technology Data Exchange (ETDEWEB)

    Slegers, Catherine [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium)]. E-mail: catherine.slegers@skynet.be; Maquille, Aubert [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium); Deridder, Veronique [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium); Sonveaux, Etienne [Unite de Chimie Pharmaceutique et de Radiopharmacie, Universite Catholique de Louvain, Brussels (Belgium); Habib Jiwan, Jean-Louis [Laboratoire de Spectrometrie de Masse, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium); Tilquin, Bernard [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium)

    2006-09-15

    E-beam and gamma products from the radiolysis of aqueous solutions of ({+-})-metoprolol tartrate, saturated in nitrogen, are analyzed by HPLC with on-line mass and UV detectors. The structures of 10 radiolytic products common to e-beam and gamma irradiations are elucidated by comparing their fragmentation pattern to that of ({+-})-metoprolol. Two of the radiolytic products are also metabolites. Different routes for the formation of the radiolytic products are proposed.

  11. LC-MS analysis in the e-beam and gamma radiolysis of metoprolol tartrate in aqueous solution: Structure elucidation and formation mechanism of radiolytic products

    International Nuclear Information System (INIS)

    Slegers, Catherine; Maquille, Aubert; Deridder, Veronique; Sonveaux, Etienne; Habib Jiwan, Jean-Louis; Tilquin, Bernard

    2006-01-01

    E-beam and gamma products from the radiolysis of aqueous solutions of (±)-metoprolol tartrate, saturated in nitrogen, are analyzed by HPLC with on-line mass and UV detectors. The structures of 10 radiolytic products common to e-beam and gamma irradiations are elucidated by comparing their fragmentation pattern to that of (±)-metoprolol. Two of the radiolytic products are also metabolites. Different routes for the formation of the radiolytic products are proposed

  12. Moessbauer and XRD study of pulse plated Fe-P and Fe-Ni thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Miko, Annamaria [Bay Zoltan Institute for Material Science (Hungary); Kuzmann, Erno, E-mail: kuzmann@para.chem.elte.hu [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Lakatos-Varsanyi, Magda [Bay Zoltan Institute for Material Science (Hungary); Kakay, Attila [Research Institute for Solid State Physics and Optics (Hungary); Nagy, Ferenc [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Varga, Lajos Karoly [Research Institute for Solid State Physics and Optics (Hungary)

    2005-09-15

    {sup 57}Fe conversion electron Moessbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe-P and Ni-Fe coatings. XRD and {sup 57}Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe-P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe-P deposits pulse plated at medium long deposition time (t{sub on} = 2 ms), with short relaxation time (t{sub off} = 9 ms) and low current density (I{sub p} = 0.05 Acm{sup -2}) or at short deposition time (t{sub on} = 1 ms) with long relaxation time (t{sub off} = 250 ms) and high current density (I{sub p} = 1.0 Acm{sup -2}). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni-Fe alloy with a very fine, 5-8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni-Fe and Fe-P pulse plated thin layers.

  13. Moessbauer and XRD study of pulse plated Fe-P and Fe-Ni thin layers

    International Nuclear Information System (INIS)

    Miko, Annamaria; Kuzmann, Erno; Lakatos-Varsanyi, Magda; Kakay, Attila; Nagy, Ferenc; Varga, Lajos Karoly

    2005-01-01

    57 Fe conversion electron Moessbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe-P and Ni-Fe coatings. XRD and 57 Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe-P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe-P deposits pulse plated at medium long deposition time (t on = 2 ms), with short relaxation time (t off = 9 ms) and low current density (I p = 0.05 Acm -2 ) or at short deposition time (t on = 1 ms) with long relaxation time (t off = 250 ms) and high current density (I p = 1.0 Acm -2 ). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni-Fe alloy with a very fine, 5-8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni-Fe and Fe-P pulse plated thin layers.

  14. Pulse radiolysis studies on liquid alkanes and related polymers

    International Nuclear Information System (INIS)

    Tagawa, S.; Hayashi, N.; Yoshida, Y.; Washio, M.; Tabata, Y.

    1989-01-01

    Absorption spectra of alkane radical cations, alkane excited states, and alkyl radicals and electrons in irradiated neat liquid alkanes at room temperature were assigned on subnanosecond and nanosecond time scale after an electron pulse. Two broad visible and near-infrared absorption bands of alkane excited states and radical cations, and UV absorption band of alkyl radicals was observed in neat n-alkanes. In neat cyclohezane and trans-decalin, very broad visible absorption band mainly due to alkane excited states and UV absorption band of alkyl radicals were observed. In neat neopentane and isooctane, visible absorption bands were not observed, although UV absorption bands of alkyl radicals were observed. The wavelengths of absorptive peaks of alkane radical cations and excited states become longer with increasing the number of carbon atoms of n-alkanes. The lifetimes of alkane radical cations become shorter with decreasing the number of carbon atoms of n-alkanes and are shorter than those of electrons in neat alkanes. The main processes of the alkyl radical formation finish within the time resolution of our system (about 20 ps). The alkyl radicals are produced mainly from excited radicals cations and partly from higher excited states, the lowest excited states, radical cations, and thermal hydrogen atoms, In irradiated ethylene-propylene copolymers, broad absorption bands of excited states and tail parts of absorption bands of radical cations and electrons were observed in visible and near-infrared region, although UV absorption of alkyl radicals was not confirmed lack of transparency of polymer films. (author)

  15. Intermediate products of radiolytic conversions of 6-aminophenalenone in ethanol

    International Nuclear Information System (INIS)

    Semenova, G.V.; Ponomarev, A.V.; Kartasheva, L.I.; Pikaev, A.K.

    1992-01-01

    Intermediate products of the conversions of 6-aminophenalenone in ethanol were investigated by pulse radiolysis. In alkaline medium the main product is the 6-aminophenalenone radical cation, the optical absorption spectrum of which contains two bands with maxima at 355 and 400 nm. The precursors of this particle are e s , CH 3 CHOH and CH 3 CHO - radicals. In neutral and acid medium, radical cations are protonated in reactions with alcohol and hydrogen ions. The H-adduct of 6-aminophenalenone that arises has optical absorption maxima at 350 and 390 nm. The presence of two maxima is due to two different structures of the product. The molar extinction coefficients of the radical anions and H-adducts of 6-aminophenalenone and the rate constants of the reactions involving them were estimated. 6 refs., 4 figs., 2 tabs

  16. Lithium-sodium separation by ion-exchange. Particular study of a pulsed column

    International Nuclear Information System (INIS)

    Auvert, H.

    1966-02-01

    A study is made of the operational conditions and constraints in the case of a moving-bed ion-exchange column subjected to pulses. The example chosen to illustrate its application concerns the lithium-sodium separation in a hydroxide medium (LiOH, NaOH). In the first part, the physico-chemical characteristics of the exchange and the kinetic characteristics of the exchange-reaction are considered. In the second part, the operation of the pulsed column is studied. Using the results obtained in the first part, the conditions required for study state operation are determined. When this is obtained, it is possible to calculate the height equivalent of the theoretical plate (HETP) of the installation. A study is also made of 'sliding', a phenomenon peculiar to pulsed columns. The results obtained show that it is possible, using laboratory tests, to determine the characteristics and the operational condition of a moving-bed ion-exchange column. (author) [fr

  17. Study of resolution and linearity in LaBr3: Ce scintillator through digital-pulse processing

    International Nuclear Information System (INIS)

    Abhinav Kumar; Mishra, Gaurav; Ramachandran, K.

    2014-01-01

    Advent of digital pulse processing has led to a paradigm shift in pulse processing techniques by replacing analog electronics processing chain with equivalent algorithms acting on pulse profiles digitized at high sampling rates. In this paper, we have carried out offline digital pulse processing of Cerium-doped Lanthanum bromide scintillator (LaBr 3 : Ce) detector pulses, acquired using CAEN V1742 VME digitizer module. Algorithms have been written to approximate the functioning of peak sensing analog-to-digital convertor (ADC) and charge-to-digital convertor (QDC). Energy dependence of resolution and energy linearity of LaBr 3 : Ce scintillator detector has been studied by utilizing aforesaid algorithms

  18. Heat pulse propagation studies on DIII-D and the Tokamak Fusion Test Reactor

    Science.gov (United States)

    Fredrickson, E. D.; Austin, M. E.; Groebner, R.; Manickam, J.; Rice, B.; Schmidt, G.; Snider, R.

    2000-12-01

    Sawtooth phenomena have been studied on DIII-D and the Tokamak Fusion Test Reactor (TFTR) [D. Meade and the TFTR Group, in Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, pp. 9-24]. In the experiments the sawtooth characteristics were studied with fast electron temperature (ECE) and soft x-ray diagnostics. For the first time, measurements of a strong ballistic electron heat pulse were made in a shaped tokamak (DIII-D) [J. Luxon and DIII-D Group, in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] and the "ballistic effect" was stronger than was previously reported on TFTR. Evidence is presented in this paper that the ballistic effect is related to the fast growth phase of the sawtooth precursor. Fast, 2 ms interval, measurements on DIII-D were made of the ion temperature evolution following sawteeth and partial sawteeth to document the ion heat pulse characteristics. It is found that the ion heat pulse does not exhibit the very fast, "ballistic" behavior seen for the electrons. Further, for the first time it is shown that the electron heat pulses from partial sawtooth crashes (on DIII-D and TFTR) are seen to propagate at speeds close to those expected from the power balance calculations of the thermal diffusivities whereas heat pulses from fishbones propagate at rates more consistent with sawtooth induced heat pulses. These results suggest that the fast propagation of sawtooth-induced heat pulses is not a feature of nonlinear transport models, but that magnetohydrodynamic events can have a strong effect on electron thermal transport.

  19. Study of intense pulse irradiation effects on silicon targets considered as ground matter for optical detectors

    International Nuclear Information System (INIS)

    Muller, O.

    1994-12-01

    This study aim was centered on morphological and structural alterations induced by laser irradiation on silicon targets considered as ground matter for optical detectors. First we recalled the main high light intensity effects on the condensed matter. Then we presented the experimental aspects. The experimental studies were achieved on two sample types: SiO 2 /Si and Si. Two topics were studied: the defect chronology according to wavelength and pulse length, and the crystalline quality as well as the structure defects of irradiated zones by Raman spectroscopy. Finally, irradiation of Si targets by intense pulsed beams may lead to material fusion. This phenomenon is particularly easy when the material is absorbent, when the pulse is short and when the material is superficially oxidized. (MML). 204 refs., 93 figs., 21 tabs., 1 appendix

  20. Temperature and radiolytic corrosion effects on the chlorine behaviour in nuclear graphite: consequences for the disposable of irradiated graphite from UNGG reactors

    International Nuclear Information System (INIS)

    Vaudey, C.E.

    2010-10-01

    This work concerns the dismantling of the UNGG reactor which have produced around 23 000 t of graphite wastes that ave to be disposed of according to the French law of June 206. These wastes contain two long-lived radionuclides ( 14 C and 36 Cl) which are the main long term dose contributors. In order to get information about their inventory and their long term behaviour in case of water ingress into the repository, it is necessary to determine their location and speciation in the irradiated graphite after the reactor shutdown. This work concerns the study of 36 Cl. The main objective is to reproduce its behaviour during reactor operation. For that purpose, we have studied the effects of temperature and radiolytic corrosion independently. Our results show a rapid release of around 20% 36 Cl during the first hours of reactor operation whereas a much slower release occurs afterwards. We have put in evidence two types of chlorine corresponding to two different chemical forms (of different thermal stabilities) or to two locations (of different accessibilities). We have also shown that the radiolytic corrosion seems to enhance chlorine release, whatever the irradiation dose. Moreover, the major chemical form of chlorine is inorganic. (author)

  1. Time extrapolation of radiolytic degradation product kinetics: the case of polyurethane; Extrapolation dans le temps des cinetiques de production des produits de degradation radiolytique: application a un polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Dannoux, A

    2007-02-15

    The prediction of the environmental impact of organic materials in nuclear waste geological storage needs knowledge of radiolytic degradation mechanisms and kinetics in aerobic and anaerobic conditions. In this framework, the effect of high doses (> MGy) and the variation of dose rate have to be considered. The material studied is a polyurethane composed of polyether soft segment and aromatic hard segments. Mechanisms were built on the analysis of material submitted to irradiations of simulation (high energy electrons and gamma radiation) by FTIR spectroscopy and gaseous and liquid degradation products by gas mass spectrometry and size exclusion chromatography. The electron paramagnetic resonance study of radical process and the determination of oxygen consumption and gas formation radiolytic yields allowed us to acquire kinetic data and to estimate dose rate and high doses effects. The polyurethane radio-oxidation mainly concerns soft segments and induced cross-linkings and production by scissions of oxidised compounds (esters, alcohols, carboxylic acids). The kinetic of radical termination is rapid and the dose rate effect is limited. After 10 MGy, branching and scission reactions are in equilibrium and low molecular weight products accumulate. At last, the degradation products release in water is influenced by the oxidation rate and the temperature. After 10 MGy, the soluble fraction is stabilised at 25%. The water soluble products identified by electro-spray ionisation mass spectrometry (alcohols, aldehydes, carboxylic acids) potentially formed complexes with radionuclides. (author)

  2. Assessment of anastomotic reliability with pulse oximetry in graded intestinal ischemia: an experimental study in dogs.

    Science.gov (United States)

    Türkyilmaz, Z; Sönmez, K; Başaklar, A C; Demiroğullari, B; Numanoğlu, V; Ekingen, G; Dursun, A; Altin, M A; Kale, N

    1997-12-01

    Pulse oximetry has been proposed as an appropriate and feasible technique in the assessment of intestinal ischemia in recent years. In this study the authors aimed to assess the reliability of anastomoses in the dog small intestine in which there is graded irreversible ischemia as measured by pulse oxymeter. In a control group of four dogs, without any devascularization, three small bowel anastomoses were formed in each dog. The study group consisted of 12 dogs. In each animal three intestinal segments with different levels of ischemia were created by ligating the marginal vessels proximally and distally in sequence beginning from the midpoint of the segmental vascular arcade. Preanastomotic pulse oximeter readings between 80% and 90% were assigned to mild ischemia, 70% and 80% to moderate, and 60% and 70% to severe ischemia group. Pulse oximetry measurements were obtained from probes applied to the antimesenteric serosal surfaces at the midpoint of small intestinal segments. A total of 48 intestinal segments (12 nonischemic in the control group and 36 with three different levels of ischemia in the study group) were transected in the midpoint and anastomosed in double layers. Postanastomotic SaO2 values were also noted. The anastomoses were evaluated 48 hours later macroscopically if there was any leakage, and biopsy specimens were obtained for histopathologic ischemic gradings. All results were studied statistically. Histopathologic grades between each group were statistically different (P .05), worsening as the level of ischemia increased. Pre- and postanastomotic pulse oximetry measurements correlated very well with the histological gradings (r = -0.90, P anastomoses) in severe ischemia groups. In the moderate ischemia group with an average preanastomotic pulse reading of 76.75%, each of the leaking anastomoses had a postanastomotic pulse measurement of lower than 70%. The finding that the difference between histopathologic grades of control and mild ischemia

  3. Pulse wave imaging in normal, hypertensive and aneurysmal human aortas in vivo: a feasibility study

    International Nuclear Information System (INIS)

    Li, Ronny X; Luo, Jianwen; Shahmirzadi, Danial; Konofagou, Elisa E; Balaram, Sandhya K; Chaudhry, Farooq A

    2013-01-01

    Arterial stiffness is a well-established biomarker for cardiovascular risk, especially in the case of hypertension. The progressive stages of an abdominal aortic aneurysm (AAA) have also been associated with varying arterial stiffness. Pulse wave imaging (PWI) is a noninvasive, ultrasound imaging-based technique that uses the pulse wave-induced arterial wall motion to map the propagation of the pulse wave and measure the regional pulse wave velocity (PWV) as an index of arterial stiffness. In this study, the clinical feasibility of PWI was evaluated in normal, hypertensive, and aneurysmal human aortas. Radiofrequency-based speckle tracking was used to estimate the pulse wave-induced displacements in the abdominal aortic walls of normal (N = 15, mean age 32.5 ± 10.2 years), hypertensive (N = 13, mean age 60.8 ± 15.8 years), and aneurysmal (N = 5, mean age 71.6 ± 11.8 years) human subjects. Linear regression of the spatio-temporal variation of the displacement waveform in the anterior aortic wall over a single cardiac cycle yielded the slope as the PWV and the coefficient of determination r 2 as an approximate measure of the pulse wave propagation uniformity. The aortic PWV measurements in all normal, hypertensive, and AAA subjects were 6.03 ± 1.68, 6.69 ± 2.80, and 10.54 ± 6.52 m s −1 , respectively. There was no significant difference (p = 0.15) between the PWVs of the normal and hypertensive subjects while the PWVs of the AAA subjects were significantly higher (p 2 in the AAA subjects was significantly lower (p 2 ) obtained using PWI, in addition to the PWI images and spatio-temporal maps that provide qualitative visualization of the pulse wave, may potentially provide valuable information for the clinical characterization of aneurysms and other vascular pathologies that regionally alter the arterial wall mechanics. (paper)

  4. An Experimental Study of Two-Phase Pulse Flushing Technology in Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Zhaozhao Tang

    2017-12-01

    Full Text Available The deterioration of drinking water during distribution process is caused by many factors. The microorganisms and substances peeling off from the “growth-ring” make the secondary pollution in drinking water distribution systems. To reduce the secondary pollution, two-phase pulse flushing technology is introduced to quickly remove the “growth-ring”. In this study, experiment is undertaken for investigating the efficiency of the two-phase pulse flushing and finding the best setting combination. A case study is undertaken to compare the efficiencies between the two-phase pulse and the single-phase flushing. The best setting combination of the two-phase pulse flushing is at the frequency 4 s–6 s (air inflow time is 4 s and air cut off time is 6 s and the round air inflow nozzle is set at the bottom of the pipe. Two-phase pulse flushing technology can save 95% of water and 6 h 40 min flushing time.

  5. Mathematical-model study of servo system with pulse-duration control of micromovements

    International Nuclear Information System (INIS)

    Dement'eva, M.A.; Leonov, A.P.; Popov, V.V.; Skugarevskii, A.I.; Ustinov, E.A.; Chernyavskii, N.N.

    1988-01-01

    A number of digital servo systems with pulse-duration control have been developed at the Institute of High Energy Physics for the instruments of the scanning and measurement system and various experimental setups. They are based on stock transistor bridge stages, whose loads are high-speed servomotors with printed-circuit armature windings. Study of these servo systems by traditional methods, which are based on Laplace transforms, or by mean values with expansion of the current pulse into a Fourier transform yields approximate results and does not reflect the actual processes that take place in a pulse servo system. They attempt to develop a method and extend it to the study of high-speed servo systems in the area of micromovements and quasistationary velocity without position or velocity feedback

  6. Numerical and experimental study of pulse-jet cleaning in fabric filters

    DEFF Research Database (Denmark)

    O. Andersen, B.; Nielsen, N. F.; Walther, J. H.

    2016-01-01

    Pulse-jet cleaning and understanding of the complex physics are essential when designing fabric filters used for air pollution control. Today, low-pressure cleaning is of particular interest due to demand for reduced compressed air consumption. Pulse-jet cleaned fabric filters have been studied......-pressure fabric filters (2 bar) is studied using a full three-dimensional (3D) CFD model. Experimental results obtained in a pilot-scale test filter with 28 bags, in length of 10 m and in general full-scale dimensions of the cleaning system are used to verify the reliability of the present CFD model....... The validated CFD model reveals the strong compressible effects, a highly transient behaviour, the formation of compressible vortex rings and the shock cell phenomenon within the overexpanded supersonic jet. The cleaning nozzles and venturi design aid or oppose the pulse-pressure within the bags, and this plays...

  7. Transient behaviour study program of research reactors fuel elements at the Hydra Pulse Reactor

    International Nuclear Information System (INIS)

    Khvostionov, V.E.; Egorenkov, P.M.; Malankin, P.V.

    2004-01-01

    Program on behavior study of research reactor Fuel Elements (FE) under transient regimes initiated by excessive reactivity insertion is being presented. Program would be realized at HYDRA pulse reactor at Russian Research Center 'Kurchatov Institute' (RRC 'K1'). HYDRA uses aqueous solution of uranyl sulfate (UO 2 SO 4 ) as a fuel. Up to 30 MJ of energy can be released inside the core during the single pulse, effective power pulse width varying from 2 to 10 ms. Reactor facility allows to investigate behaviour of FE consisting of different types of fuel composition, being developed according to Russian RERTR. First part of program is aimed at transient behaviour studying of FE MR, IRT-3M, WWR-M5 types containing meats based on dioxide uranium in aluminum matrix. Mentioned FEs use 90% and 36% enriched uranium. (author)

  8. Monitoring of gamma radiolytic degradation products of methoxychlor pesticide in water by solid phase micro-extraction using hplc and GC-MS (abstract)

    International Nuclear Information System (INIS)

    Butt, S.B.; Zafar, A.

    2011-01-01

    Monitoring, removal and management of toxic chemicals is an essential area of study regarding sustainable progress. Different approaches are adopted to eliminate these water born toxics from water and waste water. Among these gamma radiolytic is an emerging option. This ionization radiation generates highly reactive radicals that reacts with pollutants and hence eliminates these. A solid-phase micro-extraction (SPME) procedure has been developed for the successful preconcentration of organic pollutant irradiated water. A SPME fused-silica fiber coated with Polyacrylate was used as a probe to extract the organic pollutant after irradiation. In this reference, degradation of priority organic pollutant methoxychlor (1, 1, 1-Trichloro 2, 2-bis (p-methoxyphenyl) ethane, in water by gamma irradiation under varied experimental conditions has been investigated. The degree of gamma radiolytic degradation was monitored by HPLC-UV and GC-MS. For 4 kGy and 5 kGy gamma radiation dose at a rate of 200 kGyh/sup -1/ greater or equal to 95 % and 98 % MXC was degraded respectively. The degradation products were identified by Mass Spectrometry after comparing their MS spectras with the NIST 98 library. The major degradation occurs via dechlorination, dehydro chlorination, by the detachment of methoxyphenyl from MXC and by interaction of other radicals generated by the water radiolysis. (author)

  9. The Radiolytic Destruction of Glycine Diluted in H2O and CO2 Ice: Implications for Mars and Other Planetary Environments

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, R. L.

    2013-10-01

    Future missions to Mars and other planetary surfaces will probe under the surfaces of these worlds for signs of organic chemistry. In previous studies we have shown that glycine and other amino acids have radiolytic destruction rates that depend on temperature and on dilution within an H2O ice matrix (Gerakines et al., 2012; Gerakines and Hudson 2013). In the new work presented here, we have examined the destruction of glycine diluted in CO2 ice at various concentrations and irradiated with protons at 0.8 MeV, typical of cosmic rays and solar energetic particles. Destruction rates for glycine were measured by infrared spectroscopy in situ, without removing or warming the ice samples. New results on the half life of glycine in solid CO2 will be compared to those found in H2O ice matrices. The survivability of glycine in icy planetary surfaces rich in H2O and CO2 ice will be discussed, and the implications for planetary science missions will be considered. References: Gerakines, P. A., Hudson, R. L., Moore, M. H., and Bell, J-L. (2012). In-situ Measurements of the Radiation Stability of Amino Acids at 15 - 140 K. Icarus, 220, 647-659. Gerakines, P. A. and Hudson, R. L. (2013). Glycine's Radiolytic Destruction in Ices: First in situ Laboratory Measurements for Mars. Astrobiology, 13, 647-655.

  10. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    L.V. Wain (Louise); G.C. Verwoert (Germaine); P.F. O'Reilly (Paul); G. Shi (Gang); T. Johnson (Toby); M. Bochud (Murielle); K. Rice (Kenneth); P. Henneman (Peter); A.V. Smith (Albert Vernon); G.B. Ehret (Georg); N. Amin (Najaf); M.G. Larson (Martin); V. Mooser (Vincent); D. Hadley (David); M. Dörr (Marcus); J.C. Bis (Joshua); T. Aspelund (Thor); T. Esko (Tõnu); A.C.J.W. Janssens (Cécile); J.H. Zhao (Jing Hua); S.C. Heath (Simon); M. Laan (Maris); J. Fu (Jingyuan); G. Pistis (Giorgio); J. Luan; G. Lucas (Gavin); N. Pirastu (Nicola); I. Pichler (Irene); A.U. Jackson (Anne); R.J. Webster (Rebecca J.); F.F. Zhang; J. Peden (John); R. Schmidt (Reinhold); T. Tanaka (Toshiko); H. Campbell (Harry); W. Igl (Wilmar); Y. Milaneschi (Yuri); J.J. Hottenga (Jouke Jan); V. Vitart (Veronique); D.I. Chasman (Daniel); S. Trompet (Stella); J.L. Bragg-Gresham (Jennifer L.); B.Z. Alizadeh (Behrooz); J.C. Chambers (John); X. Guo (Xiuqing); T. Lehtimäki (Terho); B. Kuhnel (Brigitte); L.M. Lopez; O. Polasek (Ozren); M. Boban (Mladen); C.P. Nelson (Christopher P.); A.C. Morrison (Alanna); V. Pihur (Vasyl); S.K. Ganesh (Santhi); A. Hofman (Albert); S. Kundu (Suman); F.U.S. Mattace Raso (Francesco); F. Rivadeneira Ramirez (Fernando); E.J.G. Sijbrands (Eric); A.G. Uitterlinden (André); S.J. Hwang; R.S. Vasan (Ramachandran Srini); Y.A. Wang (Ying); S.M. Bergmann (Sven); P. Vollenweider (Peter); G. Waeber (Gérard); J. Laitinen (Jaana); A. Pouta (Anneli); P. Zitting (Paavo); W.L. McArdle (Wendy); H.K. Kroemer (Heyo); U. Völker (Uwe); H. Völzke (Henry); N.L. Glazer (Nicole); K.D. Taylor (Kent); T.B. Harris (Tamara); H. Alavere (Helene); T. Haller (Toomas); A. Keis (Aime); M.L. Tammesoo; Y.S. Aulchenko (Yurii); K-T. Khaw (Kay-Tee); P. Galan (Pilar); S. Hercberg (Serge); G.M. Lathrop (Mark); S. Eyheramendy (Susana); E. Org (Elin); S. Sõber (Siim); X. Lu (Xiaowen); I.M. Nolte (Ilja); B.W.J.H. Penninx (Brenda); T. Corre (Tanguy); C. Masciullo (Corrado); C. Sala (Cinzia); L. Groop (Leif); B.F. Voight (Benjamin); O. Melander (Olle); C.J. O'Donnell (Christopher); V. Salomaa (Veikko); P. d' Adamo (Pio); A. Fabretto (Antonella); F. Faletra (Flavio); S. Ulivi (Shelia); F. Del Greco M (Fabiola); M.F. Facheris (Maurizio); F.S. Collins (Francis); R.N. Bergman (Richard); J.P. Beilby (John); J. Hung (Judy); A.W. Musk (Arthur); M. Mangino (Massimo); S.Y. Shin (So Youn); N. Soranzo (Nicole); H. Watkins (Hugh); A. Goel (Anuj); A. Hamsten (Anders); P. Gider (Pierre); M. Loitfelder (Marisa); M. Zeginigg (Marion); D.G. Hernandez (Dena); S.S. Najjar (Samer); P. Navarro (Pau); S.H. Wild (Sarah); A.M. Corsi (Anna Maria); A. Singleton (Andrew); E.J.C. de Geus (Eco); G.A.H.M. Willemsen (Gonneke); A.N. Parker (Alex); L.M. Rose (Lynda); B.M. Buckley (Brendan M.); D.J. Stott (David. J.); M. Orrù (Marco); M. Uda (Manuela); M.M. van der Klauw (Melanie); X. Li (Xiaohui); J. Scott (James); Y.D.I. Chen (Yii-Der Ida); G.L. Burke (Greg); M. Kähönen (Mika); J. Viikari (Jorma); A. Döring (Angela); T. Meitinger (Thomas); G.S. Davis; J.M. Starr (John); V. Emilsson (Valur); A.S. Plump (Andrew); J.H. Lindeman (Jan H.); P.A.C. 't Hoen (Peter); I.R. König (Inke); J.F. Felix (Janine); R. Clarke; J. Hopewell; H. Ongen (Halit); M.M.B. Breteler (Monique); S. Debette (Stéphanie); A.L. DeStefano (Anita); M. Fornage (Myriam); G.F. Mitchell (Gary); H. Holm (Hilma); K. Stefansson (Kari); G. Thorleifsson (Gudmar); U. Thorsteinsdottir (Unnur); N.J. Samani (Nilesh); M. Preuss (Michael); I. Rudan (Igor); C. Hayward (Caroline); I.J. Deary (Ian); H.E. Wichmann (Heinz Erich); O. Raitakari (Olli); W. Palmas (Walter); J.S. Kooner (Jaspal); R.P. Stolk (Ronald); J.W. Jukema (Jan Wouter); A.F. Wright (Alan); D.I. Boomsma (Dorret); S. Bandinelli (Stefania); U. Gyllensten (Ulf); J.F. Wilson (James); L. Ferrucci (Luigi); M. Farrall (Martin); T.D. Spector (Timothy); L.J. Palmer; J. Tuomilehto (Jaakko); A. Pfeufer (Arne); P. Gasparini (Paolo); D.S. Siscovick (David); D. Altshuler (David); R.J.F. Loos (Ruth); D. Toniolo (Daniela); H. Snieder (Harold); C. Gieger (Christian); P. Meneton (Pierre); N.J. Wareham (Nick); B.A. Oostra (Ben); A. Metspalu (Andres); L.J. Launer (Lenore); R. Rettig (Rainer); D.P. Strachan (David); J.S. Beckmann (Jacques); J.C.M. Witteman (Jacqueline); J.A.P. Willems van Dijk (Ko); E.A. Boerwinkle (Eric); M. Boehnke (Michael); P.M. Ridker (Paul); M.R. Järvelin; A. Chakravarti (Aravinda); J. Erdmann (Jeanette); V. Gudnason (Vilmundur); C. Newton-Cheh (Christopher); D. Levy (Daniel); P. Arora (Pankaj); P. Munroe (Patricia); B.M. Psaty (Bruce); M. Caulfield (Mark); D.C. Rao (Dabeeru C.); P. Elliott (Paul); P. Tikka-Kleemola (Päivi); G.R. Abecasis (Gonçalo); I.E. Barroso (Inês)

    2011-01-01

    textabstractNumerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N =

  11. Competition for pulsed resources: an experimental study of establishment and coexistence for an arid-land grass.

    Science.gov (United States)

    Jankju-Borzelabad, Mohammad; Griffiths, Howard

    2006-07-01

    In arid environments, episodically-pulsed resources are important components of annual water and nutrient supply for plants. This study set out to test whether seedlings have an increased capacity for using pulsed resources, which might then improve establishment when in competition with older individuals. A second aim was to determine whether there is a trade-off in competitive strategies when resources are supplied continuously at low concentrations, or as pulses with pronounced inter-pulse periods. A glasshouse experiment used a target-neighbour design of size-asymmetric competition, with juveniles of Panicum antidotale (blue panicgrass) introduced into contrasting densities of adult plants. Stable isotopes of nitrogen were used for measuring plant resource uptake from pulses, and tolerance to inter-pulse conditions was assessed as the mean residence time (MRT) of nitrogen. A higher root/shoot ratio and finer root system enhanced the capacity of juveniles to use resources when pulsed, rather than when continuously supplied. Higher resource uptake during pulses improved the establishment of juvenile Panicum in mixed cultures with older individuals. However, a trade-off was observed in plant strategies, with juveniles showing a lower MRT for nitrogen, which suggested reduced tolerance to resource deficit during inter-pulse periods. Under field conditions, higher utilization of pulsed resources would lead to the improved seedling establishment of Panicum adjacent to "nurse" plants, whereas mature plants with well-developed roots, exploiting a greater soil volume, maintain more constant resource uptake and retention during inter-pulse periods.

  12. A pulsed source neutron reflectometer for surface studies

    International Nuclear Information System (INIS)

    Penfold, J.; Williams, W.G.

    1985-05-01

    A design for a neutron reflectometer for surface studies to be constructed at the SNS is presented. Examples of its use to study problems in surface chemistry, surface magnetism and low dimensional structures are highlighted. (author)

  13. Shock wave generation in laser ablation studied using pulsed digital holographic interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Amer, Eynas; Gren, Per; Sjoedahl, Mikael [Division of Experimental Mechanics, Luleaa University of Technology, SE-971 87 Luleaa (Sweden)], E-mail: eynas.amer@ltu.se, E-mail: per.gren@ltu.se, E-mail: mikael.sjodahl@ltu.se

    2008-11-07

    Pulsed digital holographic interferometry has been used to study the shock wave induced by a Q-switched Nd-YAG laser ({lambda} = 1064 nm and pulse duration 12 ns) on a polycrystalline boron nitride (PCBN) ceramic target under atmospheric air pressure. A special setup based on using two synchronized wavelengths from the same laser for processing and measurement simultaneously has been introduced. Collimated laser light ({lambda} = 532 nm) passed through the volume along the target and digital holograms were recorded for different time delays after processing starts. Numerical data of the integrated refractive index field were calculated and presented as phase maps showing the propagation of the shock wave generated by the process. The location of the induced shock wave front was observed for different focusing and time delays. The amount of released energy, i.e. the part of the incident energy of the laser pulse that is eventually converted to a shock wave has been estimated using the point explosion model. The released energy is normalized by the incident laser pulse energy and the energy conversion efficiency between the laser pulse and PCBN target has been calculated at different power densities. The results show that the energy conversion efficiency seems to be constant around 80% at high power densities.

  14. Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study.

    Science.gov (United States)

    Barker, Steven J; Curry, Jeremy; Redford, Daniel; Morgan, Scott

    2006-11-01

    A new eight-wavelength pulse oximeter is designed to measure methemoglobin and carboxyhemoglobin, in addition to the usual measurements of hemoglobin oxygen saturation and pulse rate. This study examines this device's ability to measure dyshemoglobins in human volunteers in whom controlled levels of methemoglobin and carboxyhemoglobin are induced. Ten volunteers breathed 500 ppm carbon monoxide until their carboxyhemoglobin levels reached 15%, and 10 different volunteers received intravenous sodium nitrite, 300 mg, to induce methemoglobin. All were instrumented with arterial cannulas and six Masimo Rad-57 (Masimo Inc., Irvine, CA) pulse oximeter sensors. Arterial blood was analyzed by three laboratory CO-oximeters, and the resulting carboxyhemoglobin and methemoglobin measurements were compared with the corresponding pulse oximeter readings. The Rad-57 measured carboxyhemoglobin with an uncertainty of +/-2% within the range of 0-15%, and it measured methemoglobin with an uncertainty of 0.5% within the range of 0-12%. The Masimo Rad-57 is the first commercially available pulse oximeter that can measure methemoglobin and carboxyhemoglobin, and it therefore represents an expansion of our oxygenation monitoring capability.

  15. Radiolytic and thermal stability of selected plutonium salts containing nitrate groups

    International Nuclear Information System (INIS)

    Bryan, G.H.

    1976-04-01

    (Pu(NO 3 ) 4 . XH 2 O, K 2 Pu(NO 3 ) 6 , and (NH 4 ) 2 Pu(NO 3 ) 6 ) were studied to evaluate their ability to serve as shipping forms that meet criteria. The radiolytic gas evolution study eliminated (NH 4 ) 2 Pu(NO 3 ) 6 from further consideration. None of the compounds produced H 2 or O 2 in sufficient quantity to produce a flammable mixture, except Pu(NO 3 ) 4 . XH 2 O which produced O 2 and H 2 in a ratio that is above explosive limits after long storage time. The ammonium salt decomposition appears to be about the same as that observed upon heating of NH 4 NO 3 to produce N 2 , H 2 O, and nitrous oxides. Plutonium nitrate contains hydration water. This water is of some concern due to the production of hydrogen by alpha-radiolysis. Two waters of hydration appear to be the lower limit to which Pu(NO 3 ) 4 . XH 2 O may be taken before decomposition of the solid begins. TGA results indicate the simple nitrate (Pu(NO 3 ) 4 . XH 2 O) is somewhat less thermally stable than either the ammonium or potassium hexanitrato plutonate which detracts somewhat from its suitability as a shipping form. Maintaining large quantities of this compound with a high 238 Pu content (less than 1 percent 238 Pu) may require specially designed and larger containers to prevent thermal degradation and gas pressure buildup problems. The informaion was presented to plutonium processors; the final consensus of this group was that in spite of some thermal instability of Pu(NO 3 ) 4 . XH 2 O at fairly low temperatures, it was preferable to K 2 Pu(NO 3 ) 6 due to the additional waste disposal problems the potassium would present. (Pu(NO 3 ) 4 . XH 2 O also has several other advantages. A possible problem that could arise due to the variable weight of plutonium nitrate could be in plutonium accountability, but this would be prevented if the plutonium content of the solution prior to evaporation to the solid is known

  16. Measurements of the radiolytic oxidation of aqueous CsI using a sparging apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, C B; Brown, D; Sims, H E [AEA Technology, Harwell (United Kingdom); Gwyther, J R [NE plc Berkeley Technology Centre, Berkeley (United Kingdom)

    1996-12-01

    Radiolytic oxidation is considered to be the main mechanism for the formation of I{sub 2} from aqueous CsI in containment of a water cooled reactor after a LOCA. Despite the amount of study over the last 60 years on the radiation chemistry of iodine there has been no consistent set of experiments spanning a wide enough range of conditions to verify models with confidence. This paper describes results from a set of experiments carried out in order to remedy this deficiency. In this work the rate of evolution of I{sub 2} from sparged irradiated CsI solution labeled with {sup 131}I was measured on-line over a range of conditions. This work involved the measurement of the effects of pH, temperature, O{sub 2} concentration, I{sup -} concentration, phosphate concentration, dose-rate and impurities on the rate of evolution of I{sub 2}. The range of conditions was chosen in order to span as closely as possible conditions expected in a LOCA but also to help to elucidate some of the mechanisms especially at high pH. pH was found to be a very important factor influencing iodine volatility, over the temperature range studied the extent of oxidation reduced with temperature but this was compensated for by the decrease in partition coefficient. Oxygen concentration was more important in solutions not containing phosphate. The fractional oxidation was not particularly dependent on iodide concentration but G{sub I2} was very dependent on [I{sup -}]. There was no effect of added impurities, Fe, Mn, Mo or organics although in separate work silver was found to have a very important effect. During attempts to interpret the data it was found that it was necessary to include the iodine atom as a volatile species with a partition coefficient of 1.9 taken from thermodynamic data. The modelling work is described in a separate paper. (author) 15 figs., 1 tab., 19 refs.

  17. Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces

    International Nuclear Information System (INIS)

    Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V

    2014-01-01

    Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100–500 Hz, with a pulse peak voltage and current of 10–15 kV and 7–20 A, respectively, a pulse FWHM of ∼100 ns, and a coupled pulse energy of 2–9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol–saturated butanol vapor interface, as well as over the distilled water–saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge

  18. Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves

    International Nuclear Information System (INIS)

    Katsuragawa, Naoki; Hojo, Hitoshi; Mase, Atushi

    1996-11-01

    Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves due to magnetic fluctuations is presented. One-dimensional coupled wave equations for the ordinary and extraordinary modes are solved for incident unipolar sub-cycle pulses in an inhomogeneous magnetized plasma. It is shown that the peak frequencies in the frequency-spectral signals of the mode-converted reflected waves are determined from the Bragg resonance condition in the wave numbers of the ordinary mode, the extraordinary mode and the magnetic fluctuations for relatively short-wavelength localized magnetic fluctuations. (author)

  19. Comparative study of pulsed and steady-state tokamak reactor burn cycles

    International Nuclear Information System (INIS)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K.; Hassanein, A.M.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1984-05-01

    Four distinct operating modes have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue in pulsed poloidal field coils; out-of-plant fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics and engineering which will help achieve these goals for different burn cycles

  20. Parameter studies on the effect of pulse shape on the dynamic plastic deformation of a hexagon

    International Nuclear Information System (INIS)

    Youngdahl, C.K.

    1973-10-01

    Results of a parameter study on the dynamic plastic response of a hexagonal subassembly duct subjected to an internal pressure pulse of arbitrary shape are presented. Plastic distortion of the cross section and large-deformation geometric effects that result in redistribution of the internal forces between bending and membrane stresses in the hexagon wall are included in the analytical model. Correlation procedures are established for relating permanent plastic deformation to simple properties of the pressure pulse, for both the small- and large-deformation ranges. Characteristic response times are determined, and the dynamic load factor for large-deformation plastic response is computed

  1. [The development of a wearable pulse oximeter sensor and study of the calibration method].

    Science.gov (United States)

    Wu, Xiaoling; Cai, Guiyan

    2009-08-01

    The paper first analyses the principles of measurement of the two-wave oximeter and their limitations in technology. We propose to filter off motion interference from pulse oximeter signal using an algorithm based on the Beer-Lambert law that requires a three-wave probe (660 nm, 850 nm, and 940 nm). Based on the new algorithm, this paper describes the design principle of the circuitry and the software flowchart. Also, we study the calibration method of the pulse oximeter sensor and discuss the results in this paper.

  2. Experimental study and numerical simulation of free pulsed jets; Etude experimentale et modelisation numerique des jets libres pulses

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Salwa; Mhiri, Hatem [Ecole Nationale d' Ingenieurs de Monastir, Lab. de Mecanique des Fluides et Thermique, Monastir (Tunisia); Caminat, Ph.; Le Palec, G.; Bournot, Ph. [UNIMECA, 13 - Marseille (France)

    2001-07-01

    A plane pulsed jet flow has been simulated by a finite difference method. Experimental results have also been obtained by laser tomography and particle image velocimetry. The results show that the flow is affected by the pulsation in the vicinity of the nozzle to reach an asymptotic state of a permanent jet. (A.L.B.)

  3. Relaxation and crystallization of amorphous carbamazepine studied by terahertz pulsed spectroscopy

    DEFF Research Database (Denmark)

    Zeitler, J Axel; Taday, Philip F; Pepper, Michael

    2007-01-01

    At the example of carbamazepine the crystallization of a small organic molecule from its amorphous phase was studied using in situ variable temperature terahertz pulsed spectroscopy (TPS). Even though terahertz spectra of disordered materials in the glassy state exhibit no distinct spectral featu...

  4. Local electronic structure of TM-based alloys: a pulsed NMR study

    International Nuclear Information System (INIS)

    Guerra, D.A.

    1984-01-01

    A pulsed NMR study on several transition metal + metalloid amorphous alloys is reported. The analisis of Knight shifts and nuclear spin-lattice relaxation of metalloids indicates a dominant contribution of p-electrons in the Fermi level density of state, supporting the existence of a p-d hibridization. (author) [pt

  5. Experimental studies on pulse soft X-ray generator

    International Nuclear Information System (INIS)

    Li Chengrong; Yang Qinchi; Luo Chengmu; Han Min

    1990-01-01

    Emission sources of soft x rays (2 keV < hv < 6 keV) from hot plasmas have been studied in a small gas-puff Z-pinch. The emission sources are a group of uncontinuous hot spots. The output of soft x rays from the hot spots have been measured and the effect of the initial gas density on the yield of soft x rays has been investigated

  6. Observation of Radiolytic Field Alteration of the Uranyl Cation in Bicarbonate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Lanee A.; McNamara, Bruce K.; Sinkov, Sergey I.; Cho, Herman M.; Friese, Judah I.

    2006-12-01

    In previous work we demonstrated that radiolysis of uranyl tris carbonate in near neutral pH to alkaline carbonate solutions, could be followed by 13C NMR. Radiolysis of the complex produced novel uranyl peroxo carbonate solution state species, whose structures depended on the pH and radiolytic dose rate. In this work, we investigate speciation of the uranyl carbonate trimer which is predominant in bicarbonate solution near pH 5.9. We observe radiolytically derived speciation to different mixed peroxy carbonate species than seen in the higher pH solutions. Auto radiolysis of uranium (VI) carbonate solutions between pH 5.9 and 7.2 is shown to alter the uranium speciation over relatively short periods of time and was followed by 13C NMR and visible spectrophotometry, using dissolved 233(UO2)3(CO3)6 6- both as the radiolysis source (D= 14.9 Gy/hr) and as a trap for the newly formed hydrogen peroxide. Direct addition of hydrogen peroxide to solutions of the uranyl-carbonate trimer is shown to reproduce the 13 C NMR signatures of the complexe(s) formed by radiolysis, but additionally a variety of new complexes are revealed. Ratios of H2O2/trimer < 1.5 produced a uranyl peroxo carbonate adduct, that is shown to be common to the radiolytically produced species. Ratios of H2O2/ trimer >1 resulted in formation of stable higher order peroxo carbonate complexes. The 13C NMR signatures and visible spectra of these complexes are described here. Rigorous characterization of the species is an ongoing effort.

  7. Pulse radiolysis study on oxidation reactions of gallic acid

    International Nuclear Information System (INIS)

    Dwibedy, P.; Dey, G.R.; Naik, D.B.; Kishore, Kamal

    1998-01-01

    Reactions of OH . /O - and other oxidising radicals viz. N 3 . , Br 2 .- , Cl 2 .- with gallic acid (GA) have been studied at various pHs. At pH 6.8, OH . radicals react with GA giving an adduct which in turn reacts with the parent GA to give a dimeric species. At pH 9.7, the initial OH adduct formed is able to oxidize GA to give a semi-oxidised species. At pH 12 and ∼ 13.6, OH . /O .- radicals directly bring about oxidation of GA. (author)

  8. Mechanisms of CFR composites destruction studying with pulse acoustic microscopy

    Science.gov (United States)

    Petronyuk, Y. S.; Morokov, E. S.; Levin, V. M.; Ryzhova, T. B.; Chernov, A. V.

    2016-05-01

    Non-destructive inspection of carbon-fiber-reinforced (CFR) composites applied in aerospace industry attracts a wide attention. In the paper, high frequency focused ultrasound (50-100 MHz) has been applied to study the bulk microstructure of the CFR material and mechanisms of its destruction under the mechanical loading. It has been shown impulse acoustic microscopy provides detecting the areas of adhesion loss at millimeter and micron level. Behavior of the CFR laminate structure fabricated by prepreg or infusion technology has been investigated under the tensile and impact loading.

  9. Study on the dynamic holdup distribution of the pulsed extraction column

    International Nuclear Information System (INIS)

    Wang, S.; Chen, J.; Wu, Q.

    2013-01-01

    In the study, a CSTR cascade dynamic hydraulic model was developed to investigate the dynamic holdup distribution of the pulsed extraction column. It is assumed that the dynamic process of the dispersed phase holdup of pulsed extraction column has equal effects with the operational process of multiple cascade CSTRs. The process is consistent with the following assumptions: the holdups vary on different stages but maintain uniform on each stage; the changes of the hydraulic parameters have impact initially on the inlet of dispersed phase, and stability will be reached gradually through stage-by-stage blending. The model was tested and verified utilizing time domain response curves of the average holdup. Nearly 150 experiments were carried out with different capillary columns, various feed liquids, and diverse continuous phases and under different operation conditions. The regression curves developed by the model show a good consistency with the experimental results. After linking parameters of the model with operational conditions, the study further found that the parameters are only linearly correlated with pulse conditions and have nothing to do with flow rate for a specific pulsed extraction column. The accuracy of the model is measured by the average holdup, and the absolute error is ±0.01. The model can provide supports for the boundary studies on hydraulics and mass transfer by making simple and reliable prediction of the dynamic holdup distribution, with relatively less accessible hydraulic experimental data. (authors)

  10. Study on the dynamic holdup distribution of the pulsed extraction column

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Chen, J.; Wu, Q. [Tsinghua University, Beijing 100084 (China)

    2013-07-01

    In the study, a CSTR cascade dynamic hydraulic model was developed to investigate the dynamic holdup distribution of the pulsed extraction column. It is assumed that the dynamic process of the dispersed phase holdup of pulsed extraction column has equal effects with the operational process of multiple cascade CSTRs. The process is consistent with the following assumptions: the holdups vary on different stages but maintain uniform on each stage; the changes of the hydraulic parameters have impact initially on the inlet of dispersed phase, and stability will be reached gradually through stage-by-stage blending. The model was tested and verified utilizing time domain response curves of the average holdup. Nearly 150 experiments were carried out with different capillary columns, various feed liquids, and diverse continuous phases and under different operation conditions. The regression curves developed by the model show a good consistency with the experimental results. After linking parameters of the model with operational conditions, the study further found that the parameters are only linearly correlated with pulse conditions and have nothing to do with flow rate for a specific pulsed extraction column. The accuracy of the model is measured by the average holdup, and the absolute error is ±0.01. The model can provide supports for the boundary studies on hydraulics and mass transfer by making simple and reliable prediction of the dynamic holdup distribution, with relatively less accessible hydraulic experimental data. (authors)

  11. In vivo study of human skin using pulsed terahertz radiation

    International Nuclear Information System (INIS)

    Pickwell, E; Cole, B E; Fitzgerald, A J; Pepper, M; Wallace, V P

    2004-01-01

    Studies in terahertz (THz) imaging have revealed a significant difference between skin cancer (basal cell carcinoma) and healthy tissue. Since water has strong absorptions at THz frequencies and tumours tend to have different water content from normal tissue, a likely contrast mechanism is variation in water content. Thus, we have previously devised a finite difference time-domain (FDTD) model which is able to closely simulate the interaction of THz radiation with water. In this work we investigate the interaction of THz radiation with normal human skin on the forearm and palm of the hand in vivo. We conduct the first ever systematic in vivo study of the response of THz radiation to normal skin. We take in vivo reflection measurements of normal skin on the forearm and palm of the hand of 20 volunteers. We compare individual examples of THz responses with the mean response for the areas of skin under investigation. Using the in vivo data, we demonstrate that the FDTD model can be applied to biological tissue. In particular, we successfully simulate the interaction of THz radiation with the volar forearm. Understanding the interaction of THz radiation with normal skin will form a step towards developing improved imaging algorithms for diagnostic detection of skin cancer and other tissue disorders using THz radiation

  12. In vivo study of human skin using pulsed terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pickwell, E [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cole, B E [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Fitzgerald, A J [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Pepper, M [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Wallace, V P [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom)

    2004-05-07

    Studies in terahertz (THz) imaging have revealed a significant difference between skin cancer (basal cell carcinoma) and healthy tissue. Since water has strong absorptions at THz frequencies and tumours tend to have different water content from normal tissue, a likely contrast mechanism is variation in water content. Thus, we have previously devised a finite difference time-domain (FDTD) model which is able to closely simulate the interaction of THz radiation with water. In this work we investigate the interaction of THz radiation with normal human skin on the forearm and palm of the hand in vivo. We conduct the first ever systematic in vivo study of the response of THz radiation to normal skin. We take in vivo reflection measurements of normal skin on the forearm and palm of the hand of 20 volunteers. We compare individual examples of THz responses with the mean response for the areas of skin under investigation. Using the in vivo data, we demonstrate that the FDTD model can be applied to biological tissue. In particular, we successfully simulate the interaction of THz radiation with the volar forearm. Understanding the interaction of THz radiation with normal skin will form a step towards developing improved imaging algorithms for diagnostic detection of skin cancer and other tissue disorders using THz radiation.

  13. Pulse radiolysis study of one electron oxidation of riboflavin

    International Nuclear Information System (INIS)

    Kishore, K.; Moorthy, P.N.; Guha, S.N.

    1991-01-01

    One electron oxidation of riboflavin (Rf) has been studied using various oxidising species such as Cl 2 -. , SO 4 -. and OH radicals. The transient species produced by the reaction of SO 4 -. with riboflavin gave spectra with λ m at 680 and 640 nm at pHs 4 and 7.1 respectively with a pK a at ∼ 6. Cl 2 -. radicals reacted with riboflavin to give a transient spectrum with λ m at 570 nm. The possibility of two sites viz. C-8 methyl group and the extended π-ring system of the molecule for oxidation reaction are discussed. The reaction of Cl 2 -. with riboflavin is an equilibrium from which the redox potential for the Rf +. /Rf couple has been evaluated to be 2.28 V vs NHE. OH radicals reacted with riboflavin to give a transient spectrum attributable to a mixture of species produced by addition or abstraction reactions. (author)

  14. [Autoaggression and pulse rate--a longitudinal study].

    Science.gov (United States)

    Rohmann, U H; Elbing, U; Hartmann, H

    1988-12-01

    This article presents a model of autoaggressive behavior in which a distinction is made between determining and maintaining factors. Specific environmental, in particular social, and organismic variables are linked to them. The two types of variables interact, thus causing or maintaining autoaggressive behavior. A theory of autoaggression must therefore rely on multicausal/multimodal explanations. A connection between autoaggression and a high level of arousal suggests itself. In this single-case longitudinal study a comparison was made between heart rate and frequency of autoaggressive behavior. High heart rates were found to be correlated with low frequencies of autoaggressive behavior and vice versa. Decreasing autoaggressive behavior was coupled with increasing muscle relaxation and increasing motor activity. However, abnormally high heart rates were associated with both low and high levels of motor activity.

  15. Material studies for pulsed high-intensity proton beam targets

    International Nuclear Information System (INIS)

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W-T.; McDonald, K.; Yoshimura, K.

    2004-01-01

    Intense beams for muon colliders and neutrino facilities require high-performance target stations of 1-4 MW proton beams. The physics requirements for such a system push the envelope of our current knowledge as to how materials behave under high-power beams for both short and long exposure. The success of an adopted scheme that generates, captures and guides secondary particles depends on the useful life expectancy of this critical system. This paper presents an overview of what has been achieved during the various phases of the experimental effort including a tentative plan to continue the effort by expanding the material matrix. The first phase of the project was to study the changes after irradiation in mechanical properties and specially in thermal expansion coefficient of various materials. During phase-I the study attention was primarily focused on Super-invar and in a lesser degree on Inconel-718. Invar is a metal alloy which predominantly consists of 62% Fe, 32% Ni and 5% Co. It is showed that this metal, whose non-irradiated properties held such promise, can only be considered a serious target candidate for an intense proton beam only if one can anneal the atomic displacements followed by the appropriate heat treatment to restore its favorable expansion coefficient. New materials that have been developed for various industrial needs by optimizing key properties, might be of value for the accelerator community. These materials like carbon-carbon composites, titanium alloys, the Toyota 'gum metal', the Vascomax material and the AlBeMet alloy will be explored and tested in the second phase of the project. (A.C.)

  16. The radiolytic cracking decomposion of the plant cellulose materials and their chemcial properties

    International Nuclear Information System (INIS)

    Shou Hongxia

    1987-01-01

    Under the treatment with high energy radiation, plant cellulose materials undergo a series of changes in chemical and physical properties. This paper describes the chemical changes of water-soluble carbohydrate, easy-to-hydrolyse carbohydrate, hard-to-hydrolyse carbohydrate, amino acid and protein in rice straw after irradiation with 60 Co γ-ray. The content of water-soluble carbohydrate in rice straw can be increased significantly by such treatment. The combination treatment of irradiation and acid or alkali soaker can reduce the dose for the radiolytic cracking decomposition and produce a good effect

  17. Redox reactions of methylene blue: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Kishore, K.; Guha, S.N.; Mahadevan, J.; Moorthy, P.N.; Mittal, J.P.

    1989-01-01

    One-electron oxidation of methylene blue (MB - has been studied using specific oxidizing radicals such as Cl 2 - , Br 2 - , N 3 and Tl(II) in acidic and neutral aqueous solutions). The transient spectrum showed absorption maxima at 525 nm and 360 nm in the acidic pH region. At neutral pH also the absorption maxima were at 525 and 360 nm but the extinction coefficients were lower by 30%. A pK a of ∼4.3 was observed for the equilibrium MBH 3+ MB 2+ + H + . In the case of N 3 radical as the oxidant, the equilibrium: N 3 + MB = N 3 - + MB 2+ was observed for which an equilibrium constant of 120 was estimated from the experimental data. From this as well as from cyclic voltammetric experiments, the redox potential for the MB 2+ /MB + couple was calculated as 1.25 V vs NHE. The transient species produced by the reaction of OH radicals with methylene blue gave a very different spectrum with λ m = 400nm and a pK a of ∼ 8.6, and hence it is inferred that OH radicals do not bring about one-electron oxidation of the molecule. (author)

  18. Pulse radiolysis study of zinc(II)-insulin

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, A J; Wilkinson, F; Armstrong, D A [Calgary Univ., Alberta (Canada). Dept. of Chemistry

    1980-07-01

    Reactions of e/sup -/sub(aq) with zinc(II)-insulin at pH 6.6 and 9.0 yielded relatively low disulphide anion absorptions, suggesting e/sup -/sub(aq) reacts at other sites than S-S. A similar conclusion was reached for the reaction of COsub(./2) where an even lower yield of disulphide anion was found. However, here the disulphide anion yield increased with 'prepulsing'. Simultaneously the rate constant decreased, implying that a more reactive site was 'cleaned up'. While no reaction of Brsub(./2) with insulin was observed, both OH and Clsub(./2) reacted rapidly and predominantly at the tyrosine residues. The second order rate constants, calculated in terms of insulin monomer concentrations, are reported for e/sup -/sub(aq) COsub(./2) and Clsub(./2). The transient spectra qualitatively support evidence regarding the accessibility of S-S bonds and tyrosine residues in the various forms of insulin as predicted from earlier studies.

  19. Study on the flow nonuniformity in a high capacity Stirling pulse tube cryocooler

    Science.gov (United States)

    You, X.; Zhi, X.; Duan, C.; Jiang, X.; Qiu, L.; Li, J.

    2017-12-01

    High capacity Stirling-type pulse tube cryocoolers (SPTC) have promising applications in high temperature superconductive motor and gas liquefaction. However, with the increase of cooling capacity, its performance deviates from well-accepted one-dimensional model simulation, such as Sage and Regen, mainly due to the strong field nonuniformity. In this study, several flow straighteners placed at both ends of the pulse tube are investigated to improve the flow distribution. A two-dimensional model of the pulse tube based on the computational fluid dynamics (CFD) method has been built to study the flow distribution of the pulse tube with different flow straighteners including copper screens, copper slots, taper transition and taper stainless slot. A SPTC set-up which has more than one hundred Watts cooling power at 80 K has been built and tested. The flow straighteners mentioned above have been applied and tested. The results show that with the best flow straightener the cooling performance of the SPTC can be significantly improved. Both CFD simulation and experiment show that the straighteners have impacts on the flow distribution and the performance of the high capacity SPTC.

  20. Chemical reaction networks as a model to describe UVC- and radiolytically-induced reactions of simple compounds.

    Science.gov (United States)

    Dondi, Daniele; Merli, Daniele; Albini, Angelo; Zeffiro, Alberto; Serpone, Nick

    2012-05-01

    When a chemical system is submitted to high energy sources (UV, ionizing radiation, plasma sparks, etc.), as is expected to be the case of prebiotic chemistry studies, a plethora of reactive intermediates could form. If oxygen is present in excess, carbon dioxide and water are the major products. More interesting is the case of reducing conditions where synthetic pathways are also possible. This article examines the theoretical modeling of such systems with random-generated chemical networks. Four types of random-generated chemical networks were considered that originated from a combination of two connection topologies (viz., Poisson and scale-free) with reversible and irreversible chemical reactions. The results were analyzed taking into account the number of the most abundant products required for reaching 50% of the total number of moles of compounds at equilibrium, as this may be related to an actual problem of complex mixture analysis. The model accounts for multi-component reaction systems with no a priori knowledge of reacting species and the intermediates involved if system components are sufficiently interconnected. The approach taken is relevant to an earlier study on reactions that may have occurred in prebiotic systems where only a few compounds were detected. A validation of the model was attained on the basis of results of UVC and radiolytic reactions of prebiotic mixtures of low molecular weight compounds likely present on the primeval Earth.

  1. Study on the E-beam pulse width scaling for a 25-kilojoule KrF amplifier

    International Nuclear Information System (INIS)

    Ramirez, J.J.

    1983-02-01

    The KrF laser is being considered as an ICF driver candidate. Since this laser is not an energy storing system, the output energy of an amplifier is delivered over the entire pulse width of the excitation source. E-beam pumping is preferred for large energy systems. The e-beam pulse width is constrained to a few hundred nanoseconds by laser operation and pulsed power considerations. The target requires pulses of a few nanoseconds. Angular multiplexing of probe beams through the amplifier is a preferred scheme for bridging this difference in timing requirements. Progressively shorter target irradiation times may be obtained by using shorter pulse probe beams and by either increasing the number of angular multiplexed beams or by decreasing the e-beam pulse width. This report documents results of a study on the consequences of following the latter approach

  2. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    Science.gov (United States)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  3. Studies of pulsed laser melting and rapid solidification using amorphous silicon

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Wood, R.F.

    1984-06-01

    Pulsed-laser melting of ion implantation-amorphized silicon layers, and subsequent solidification were studied. Measurements of the onset of melting of amorphous silicon layers and of the duration of melting, and modified melting model calculations demonstrated that the thermal conductivity, K/sub a/, of amorphous silicon is very low (K/sub a/ approx. = 0.02 W/cm-K). K/sub a/ is also the dominant parameter determining the dynamical response of amorphous silicon to pulsed laser radiation. TEM indicates that bulk (volume) nucleation occurs directly from the highly undercooled liquid silicon that can be prepared by pulsed laser melting of amorphous silicon layers at low laser energy densities. A modified thermal melting model is presented. The model calculations demonstrate that the release of latent heat by bulk nucleation occurring during the melt-in process is essential to obtaining agreement with observed depths of melting. These calculations also show that this release of latent heat accompanying bulk nucleation can result in the existence of buried molten layers of silicon in the interior of the sample after the surface has solidified. The bulk nucleation implies that the liquid-to-amorphous phase transition (produced using picosecond or uv nanosecond laser pulses) cannot be explained using purely thermodynamic considerations

  4. Retrieval process development and enhancements FY96 pulsed-air mixer testing and deployment study

    International Nuclear Information System (INIS)

    Powell, M.R.; Hymas, C.R.

    1996-08-01

    Millions of gallons of radioactive wastes resides in underground tanks at US Department of Energy sites. The waste was generated primarily by the processing of nuclear fuel elements to remove fissile radionuclides for use in atomic weapons. Plans call for the waste to be removed from the tanks and processed to create immobile waste forms, which will be stored to prevent release to the environment. The consistency of the waste ranges from liquid, to slurry, to sticky sludge, to hard saltcake. a variety of waste- retrieval and processing methods are being evaluated and implemented. One such method is pulsed-air mixing, which is the subject of this report. Pulsed-air mixing equipment has been successfully applied to a number of difficult mixing applications in various chemical-process industries. Most previous applications involved the mixing of particle-free viscous fluids. The study described in this report was preformed to improve the understanding of how pulsed-air mixing applies to slurries. This document describes work conducted to evaluate the potential application of pulsed-air mixers to the slurry- mixing needs of the US Department of Energy's waste-retrieval programs

  5. γ-radiolytical degradation of levofloxacin lactate and the activity of the byproducts

    International Nuclear Information System (INIS)

    Cao Dongmei; Zhang Xiaohong; Guan Yu; Zhu Wei; Zhang HaiQian

    2010-01-01

    Recently antibiotics wastewater in environment has induced the increment of bacterial resistance. This paper is to investigate the gamma radiolysis of wastewater containing 10 μg/mL levofloxacin lactate (LVF). It has been found that the antibiotic was removed more than 99% with 1 kGy under air while the G-value decreased with the dose increment.Five main degraded products (m/z 346, 330, 318, 302, 274) and the most probable radiolysis pathway were identified by liquid chromatography-mass spectrometry (LC-MS). Compared with the degradation under N 2 , the radiolytical mechanism was suggested.In the active assay, 2 μg/mL was the inhibitory concentration.Compared with the concentration of 4 μg/mL, the minimal inhibitory concentration (MIC), degraded products analysis can be suggested that the byproduct m/z 346 might have the anti-E. coli activity. It has been shown that 3 kGy is the appropriate dose for the radiolytical treatment of LVF. To sum up, the gamma radiation technique is an effective method for decomposing antibiotics, and it is necessary to take the activity of degraded products into consideration. (authors)

  6. Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, J.V., E-mail: jvrojas@vcu.edu [Mechanical and Nuclear Engineering Department, Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia, 23284 (United States); Toro-Gonzalez, M.; Molina-Higgins, M.C. [Mechanical and Nuclear Engineering Department, Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia, 23284 (United States); Castano, C.E., E-mail: cecastanolond@vcu.edu [Nanomaterials Core Characterization Facility, Chemical and Life Science Engineering Department, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia, 23284 (United States)

    2016-03-15

    Graphical abstract: - Highlights: • Facile radiolytic synthesis of Ru nanoparticles on graphene oxide and carbon nanotubes. • Homogeneously distributed Rh nanoparticles on supports are ∼2.5 nm in size. • Simultaneous reduction of graphene oxide and Ru ions occurs during the synthesis. • Ru-O bonds evidenced the interaction of the nanoparticles with the support. - Abstract: Ruthenium nanoparticles on pristine (MWCNT) and functionalized carbon nanotubes (f-MWCNT), and graphene oxide have been prepared through a facile, single step radiolytic method at room temperature, and ambient pressure. This synthesis process relies on the interaction of high energy gamma rays from a {sup 60}Co source with the water in the aqueous solutions containing the Ru precursor, leading to the generation of highly reducing species that further reduce the Ru metal ions to zero valence state. Transmission electron microscopy and X-Ray diffraction revealed that the nanoparticles were homogeneously distributed on the surface of the supports with an average size of ∼2.5 nm. X-ray Photoelectron spectroscopy analysis showed that the interaction of the Ru nanoparticles with the supports occurred through oxygenated functionalities, creating metal-oxygen bonds. This method demonstrates to be a simple and clean approach to produce well dispersed nanoparticles on the aforementioned supports without the need of any hazardous chemical.

  7. Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes

    International Nuclear Information System (INIS)

    Rojas, J.V.; Toro-Gonzalez, M.; Molina-Higgins, M.C.; Castano, C.E.

    2016-01-01

    Graphical abstract: - Highlights: • Facile radiolytic synthesis of Ru nanoparticles on graphene oxide and carbon nanotubes. • Homogeneously distributed Rh nanoparticles on supports are ∼2.5 nm in size. • Simultaneous reduction of graphene oxide and Ru ions occurs during the synthesis. • Ru-O bonds evidenced the interaction of the nanoparticles with the support. - Abstract: Ruthenium nanoparticles on pristine (MWCNT) and functionalized carbon nanotubes (f-MWCNT), and graphene oxide have been prepared through a facile, single step radiolytic method at room temperature, and ambient pressure. This synthesis process relies on the interaction of high energy gamma rays from a "6"0Co source with the water in the aqueous solutions containing the Ru precursor, leading to the generation of highly reducing species that further reduce the Ru metal ions to zero valence state. Transmission electron microscopy and X-Ray diffraction revealed that the nanoparticles were homogeneously distributed on the surface of the supports with an average size of ∼2.5 nm. X-ray Photoelectron spectroscopy analysis showed that the interaction of the Ru nanoparticles with the supports occurred through oxygenated functionalities, creating metal-oxygen bonds. This method demonstrates to be a simple and clean approach to produce well dispersed nanoparticles on the aforementioned supports without the need of any hazardous chemical.

  8. Investigation of the hydrolytic and radiolytic degradation of HEH[EHP

    International Nuclear Information System (INIS)

    Peterman, Dean Richard; McDowell, Rocklan George; Zarzana, Christopher Andrew; Johnson, Kristyn Marie; Rowe, Salene Marie; Groenewold, Gary Steven

    2016-01-01

    The extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) is a component used in both the Advanced TALSPEAK and ALSEP solvent extraction processes. The most likely compound formed via hydrolytic or radiolytic degradation of HEH[EHP] would be the phosphonic acid 2-ethylhexylphosphonic acid (H2EHP) that is formed by cleavage of the P-O-R bond. Thus far, attempts to detect H2EHP by gas chromatography or mass spectrometry have not been successful. The inability to detect this proposed degradation product in analytical samples is likely due to inadequate analysis techniques, lack of H2EHP production, further decomposition of H2EHP forming products not detectable by the employed analytical techniques, or a combination of all of the above scenarios. In order to address this problem, commercially available alkylphosphonic acids were acquired and used as surrogates for H2EHP in the gas chromatography and mass spectrometry analysis of samples. Once the ability to detect alkylphosphonic acid compounds was confirmed, these analytical techniques were used to confirm the production of H2EHP in samples of HEH[EHP] exposed to nitric acid and nitric acid plus gamma radiation. This report provides a brief summary of results and serves as documentation of the completion the level four milestone M4FT-16IN030102025 “Investigate the hydrolytic and radiolytic degradation of HEH[EHP]”.

  9. Radiolytic effects on Simpson Violet dye and their applications

    International Nuclear Information System (INIS)

    El-Banna, M.; Barakat, M.F.

    2005-01-01

    Simpson Violet dye has been exposed to γ-irradiation in non-aqueous solvents, and the color bleaching by irradiation was studied. The color bleaching was related to the applied dose. In another series of experiments, Simpson Violet dye was incorporated in polymethylmethacrylate films for studying the dose-response relationship. Finally, the results were compared with those obtained for externally dyed polymeric films. Most of the systems investigated were found suitable for gamma dose evaluation within a certain dose range. (author)

  10. A new mathematical model of wrist pulse waveforms characterizes patients with cardiovascular disease - A pilot study.

    Science.gov (United States)

    He, Dianning; Wang, Lu; Fan, Xiaobing; Yao, Yang; Geng, Ning; Sun, Yingxian; Xu, Lisheng; Qian, Wei

    2017-10-01

    The purpose of this study was to analyze and compare a series of measured radial pulse waves as a function of contact pressure for young and old healthy volunteers, and old patients with cardiovascular disease. The radial pulse waves were detected with a pressure sensor and the contact pressure of the sensor was incremented by 20gf during the signal acquisition. A mathematical model of radial pulse waveform was developed by using two Gaussian functions modulated by radical functions and used to fit the pulse waveforms. Then, a ratio of area (r A ) and a ratio of peak height (r PH ) between percussion wave and dicrotic wave as a function of contact pressure were calculated based on fitted parameters. The results demonstrated that there was a maximum for waveform peak height, a minimum for r A (r A min ) and a minimum for r PH (r PH min ) appeared as contact pressure varied. On average, older patients had higher peak amplitude and a significantly smaller r A min (pmathematical model had moderate to strong positive linear correlations (r=0.66 to 0.84, pmodel. The receiver operating characteristic (ROC) analysis showed that the r A min calculated with the model and the contact pressure measured at the r A min had good diagnostic accuracy to distinguish healthy volunteers vs. diseased patients. Therefore, using the mathematical model to quantitatively analyze the radial pulse waveforms as a function of contact pressure could be useful in the diagnosis of cardiovascular diseases. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Determination of one-electron reduction potentials of some radiosensitive compounds by pulse radiolysis

    International Nuclear Information System (INIS)

    Zuo Zhihua; Yao Side; Li Hucheng; Lin Nianyun; Jin Yizun

    1994-01-01

    One-electron reduction potential (E 7 1 ) is one of the important parameters of radiosensitive compound with high electron affinity. In this work one-electron reduction potentials of some radiosensitizers, such as Miso, 911, CMNa, SMU-1, SMU-2, SMD, SNN, S 3 and BSO, were determined pulse radiolytically by using anthraquinone-2-sulfate (AQS), duroquinone (DQ) and methyl viologen (MV 2+ ) as references

  12. Radiolytic alteration of biopolymers in the Mulga Rock (Australia) uranium deposit

    International Nuclear Information System (INIS)

    Jaraula, Caroline M.B.; Schwark, Lorenz; Moreau, Xavier; Pickel, Walter; Bagas, Leon; Grice, Kliti

    2015-01-01

    Highlights: • Bulk kerogen compositions indicate land plant sources for organic matter in the uranium deposit. • Radiolysis led to cleavage of straight long chain forming medium chain length n-alkyl moieties. • Secondary and tertiary reactions with OH − radicals promoted the formation of alkanones. • “Radiolytic molecular markers” imply molecular markers resulting from radiolytic cracking. • A mechanism is proposed for the production of n-alkanes and n-alkanones. - Abstract: We investigated the effect of ionizing radiation on organic matter (OM) in the carbonaceous uranium (U) mineralization at the Mulga Rock deposit, Western Australia. Samples were collected from mineralized layers between 53 and 58.5 m depths in the Ambassador prospect, containing <5300 ppm U. Uranium bears a close spatial relationship with OM, mostly finely interspersed in the attrinite matrix and via enrichments within liptinitic phytoclasts (mainly sporinite and liptodetrinite). Geochemical analyses were conducted to: (i) identify the natural sources of molecular markers, (ii) recognize relationships between molecular markers and U concentrations and (iii) detect radiolysis effects on molecular marker distributions. Carbon to nitrogen ratios between 82 and 153, and Rock–Eval pyrolysis yields of 316–577 mg hydrocarbon/g TOC (HI) and 70–102 mg CO 2 /g TOC (OI) indicate a predominantly lipid-rich terrigenous plant OM source deposited in a complex shallow swampy wetland or lacustrine environment. Saturated hydrocarbon and ketone fractions reveal molecular distributions co-varying with U concentration. In samples with <1700 ppm U concentrations, long-chain n-alkanes and alkanones (C 27 –C 31 ) reveal an odd/even carbon preference indicative of extant lipids. Samples with ⩾1700 ppm concentrations contain intermediate-length n-alkanes and alkanones, bearing a keto-group in position 2–10, with no carbon number preference. Such changes in molecular distributions are

  13. Radiolytic reduction reaction of colloidal silver bromide solution

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Zushi, Takehiro; Hasegawa, Kunihiko; Matsuura, Tatsuo.

    1995-01-01

    The reduction reaction of colloidal silver bromide (AgBr 3 ) 2- in nitrous oxide gas saturated solution of some alcohols: methanol, ethanol, 2-propanol and 2-methyl-2-propanol by γ-irradiation was studied spectrophotometrically in order to elucidate the mechanism of the formation of colloidal silver bromide (AgBr 3 ) 3- at ambient temperature. The amount of colloidal silver bromide formed increases in the order: i-PrOH, EtOH, MeOH. In t-BuOH, colloidal silver bromide did not form. The relative reactivities of alcohols for colloidal silver bromide was also studied kinetically. (author)

  14. Radiolytic removal of PCBs from isooctane and hydraulic oil solutions

    International Nuclear Information System (INIS)

    Mincher, B.J.; Arbon, R.E.; Schwendimann, G.L.

    1995-01-01

    Research at the Idaho National Engineering Laboratory (INEL) has shown the ability to degrade PCBs by exposure to gamma radiation in a number of solvents, including hydraulic oils. Radiolysis with gamma-rays may be achieved in the absence of activation or contamination and does not result in a radiologically contaminated product. While much of the original work was done in isopropanol, recent studies have been performed in isooctane as an oil surrogate. Use of isooctane permits radiolysis studies in a surrogate reasonably similar to oils yet one in which analytical work is considerably simplified. Results in both isopropanol and isooctane show the mechanism to be one of reductive dechlorination, probably associated with electron capture of solvated electrons by the PCBs. The electrons are generated by radiolysis of the solvent. Data is presented showing rate constants for the radiolysis of individual PCB congeners, in isooctane and the decomposition of Aroclor 1260 in hydraulic oil

  15. An optimization study of peak thermal neutron flux in moderators of advanced repetitive pulse reactors

    International Nuclear Information System (INIS)

    Asaoka, Takumi; Watanabe, N.

    1976-01-01

    In achieving a high peak thermal neutron flux in hydrogenous moderators installed in repetitive pulse reactors, the core-moderator arrangement can play as much an important role as the moderator design itself. However, the effect of the former has not been adequately emphasized to date, while a rather extensive study has been made on the latter. The present study concerns with a core-moderator system parameter optimization for a repetitive accelerator pulsed fast reactor. The results have shown that small differences in the arrangement resulting from the optimizations of various parameters are significant and the effects can be summed up to give an increase in the peak thermal flux by a factor of about two. (auth.)

  16. Short-pulse CO2-laser damage studies of NaCl and KCl windows

    International Nuclear Information System (INIS)

    Newnam, B.E.; Nowak, A.V.; Gill, D.H.

    1979-01-01

    The damage resistance of bare surfaces and the bulk interior of NaCl and KCl windows was measured with a short-pulse CO 2 laser at 10.6 μm. Parametric studies with 1.7-ns pulses indicated that adsorbed water was probably the limiting agent on surface thresholds in agreement with previous studies at long pulsewidths. Rear-surface thresholds up to 7 J/cm 2 were measured for polished NaCl windows, whereas KCl surfaces damaged at approximately 60% of this level. The breakdown electric-field thresholds of exit surfaces were only 50% of the value of the bulk materials. The pulsewidth dependence of surface damage from 1 to 65 ns, in terms of incident laser fluence, increased as t/sup 1/3/

  17. Study of heterogeneous multiplying and non-multiplying media by the neutron pulsed source technique

    International Nuclear Information System (INIS)

    Deniz, V.

    1969-01-01

    The pulsed neutron technique consists essentially in sending in the medium to be studied a short neutron pulse and in determining the asymptotic decay constant of the generated population. The variation of the decay constant as a function of the size of the medium allows the medium characteristics to be defined. This technique has been largely developed these last years and has been applied as well to moderator as to multiplying media, in most cases homogeneous ones. We considered of interest of apply this technique to lattices, to see if useful informations could be collected for lattice calculations. We present here a general theoretical study of the problem, and results and interpretation of a series of experiments made on graphite lattices. There is a good agreement for non-multiplying media. In the case of multiplying media, it is shown that the age value used until now in graphite lattices calculations is over-estimated by about 10 per cent [fr

  18. Gamma Radiolytic Formation of Alloyed Ag-Pt Nanocolloids

    Directory of Open Access Journals (Sweden)

    M. K. Temgire

    2011-01-01

    Full Text Available Colloidal dispersions of Ag-Pt composite nanoparticles were prepared by gamma radiolysis technique in the presence of nonionic surfactant Brij'97. Simultaneous as well as sequential reduction methods were employed in order to study the structural formation of Ag-Pt bimetallic clusters. Similar shape and trend was observed in optical spectra for both methods. Radiolysis yielded nearly spherical Ag-Pt bimetallic clusters by use of AgNO3 instead of AgClO4. The disappearance of the silver resonance and the simultaneous growth of the 260 nm resonance are independent of cluster structure and degree of alloying. To understand formation of Ag-Pt aggregate, the optical studies were also done as a function of amount of dose absorbed, concentration of surfactant, that is, Brij'97. The shape of the absorption spectrum did not change with increase in gamma radiation dose. TEM analysis exhibited fine dispersions of Ag-Pt clusters surrounded by a mantle when capped with Brij'97. The particle size obtained was in the range of 5–9 nm. On the basis of optical, XRD, and TEM analysis, alloy formation is discussed.

  19. Radiolytical oxidation of gaseous iodine by beta radiation

    International Nuclear Information System (INIS)

    Kaerkelae, Teemu; Auvinen, Ari; Kekki, Tommi; Kotiluoto, Petri; Lyyraenen, Jussi; Jokiniemi, Jorma

    2015-01-01

    Iodine is one of the most radiotoxic fission product released from fuel during a severe nuclear power plant accident. Within the containment building, iodine compounds can react e.g. on the painted surfaces and form gaseous organic iodides. In this study, it was found out that gaseous methyl iodide (CH 3 I) is oxidised when exposed to beta radiation in an oxygen containing atmosphere. As a result, nucleation of aerosol particles takes place and the formation of iodine oxide particles is suggested. These particles are highly hygroscopic. They take up water from the air humidity and iodine oxides dissolve within the droplets. In order to mitigate the possible source term, it is of interest to understand the effect of beta radiation on the speciation of iodine.

  20. Radiolytical oxidation of gaseous iodine by beta radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaerkelae, Teemu; Auvinen, Ari; Kekki, Tommi; Kotiluoto, Petri; Lyyraenen, Jussi [VTT Technical Research Centre of Finland, Espoo (Finland); Jokiniemi, Jorma [VTT Technical Research Centre of Finland, Espoo (Finland); Eastern Finland Univ., Kuopio (Finland)

    2015-07-01

    Iodine is one of the most radiotoxic fission product released from fuel during a severe nuclear power plant accident. Within the containment building, iodine compounds can react e.g. on the painted surfaces and form gaseous organic iodides. In this study, it was found out that gaseous methyl iodide (CH{sub 3}I) is oxidised when exposed to beta radiation in an oxygen containing atmosphere. As a result, nucleation of aerosol particles takes place and the formation of iodine oxide particles is suggested. These particles are highly hygroscopic. They take up water from the air humidity and iodine oxides dissolve within the droplets. In order to mitigate the possible source term, it is of interest to understand the effect of beta radiation on the speciation of iodine.

  1. Radiolytic oxidation of propane: computer modeling of the reaction scheme

    International Nuclear Information System (INIS)

    Gupta, A.K.; Hanrahan, R.J.

    1991-01-01

    The oxidation of gaseous propane under gamma radiolysis was studied at 100 torr pressure and 25 o C, at oxygen pressures from 1 to 15 torr. Major oxygen-containing products and their G-values with 10% added oxygen are as follows: acetone, 0.98; i-propyl alcohol, 0.86; propionaldehyde, 0.43; n-propyl alcohol, 0.11; acrolein, 0.14; and allyl alcohol, 0.038. The formation of major oxygen-containing products was explained on the basis that the alkyl radicals combine with molecular oxygen to give peroxyl radicals; the peroxyl radicals react with one another to give alkoxyl radicals, which in turn react with one another to form carbonyl compounds and alcohols. The reaction scheme for the formation of major products was examined using computer modeling based on a mechanism involving 28 reactions. Yields could be brought into agreement with the data within experimental error in nearly all cases. (author)

  2. Radiolytic polymerization and some applications of obtained polymers

    International Nuclear Information System (INIS)

    Nizam El-Din, H.M.M.N.

    1996-01-01

    Hydrogles are considered as very interesting polymeric materials that find wide application in many fields. These fields include chromatography, biology and medicine, field of contact lenses, controlled release application and agriculture. However, most of the research work are devoted to synthesis these hydrogels using chemical techniques. In literature, a very limited information are available on radiation polymerization of corresponding monomer for hydrogel preparation. The present work is aim ming to synthesis a series of hydrogels based on ho moor co-polymer and to study the parameters affecting, these process. These parameters include radiation dose, type of monomer, type of solvent, concentration of crosslinking agent and liquor ratio. Besides, it is aimed to correlate the structure of these hydrogels with the efficiency for different metal ions recovery. Several chemicals and physical tools were used during this investigation including spectroscopic UV-Visible, Atomic absorption and IR), the mal analysis (TGA and DSc), magnetic and scanning electron microscope

  3. Radiolytic polymerization and some applications of obtained polymers

    International Nuclear Information System (INIS)

    Nizam El-Din, H.M.M.

    1996-01-01

    Hydrogels are considered as very interesting polymeric materials that find wide application in many fields. These fields include chromatography, biology and medicine, field of contact lenses, controlled release application and agriculture. However, most of the research work are devoted to synthesis these hydrogels using chemical techniques. In literature, a very limited information are available on radiation polymerization of corresponding monomer for hydrogel preparation. The present work is aiming to synthesis a series of hydrogels based on homoor co-polymer and to study the parameters affecting, these process. These parameters include radiation dose, type of monomer, type of solvent, concentration of crosslinking agent and liquor ratio. Besides, it is aimed to correlate the structure of these hydrogels with the efficiency for different metal ions recovery. Several chemicals and physical tools were used during this investigation including spectroscopic UV-Visible, Atomic absorption and IR), thermal analysis (TGA and DSC), magnetic and scanning electron microscope

  4. Studying Intense Pulsed Light Method Along With Corticosteroid Injection in Treating Keloid Scars

    OpenAIRE

    Shamsi Meymandi, Simin; Rezazadeh, Azadeh; Ekhlasi, Ali

    2014-01-01

    Background: Results of various studies suggest that the hypertrophic and keloid scars are highly prevalent in the general population and are irritating both physically and mentally. Objective: Considering the variety of existing therapies, intense pulsed light (IPL) method along with corticosteroid injection was evaluated in treating these scars. Materials and Methods: 86 subjects were included in this clinical trial. Eight sessions of therapeutic intervention were done with IPL along with co...

  5. Pulse radiolysis study of the reduction mechanism of an antitumor antibiotic, mitomycin C

    International Nuclear Information System (INIS)

    Machtalere, G.; Houee-Levin, C.; Gardes-Albert, M.; Ferradini, C.; Hickel, B.

    1988-01-01

    Mitomycin C is a quinonic antitumor metabolized in vivo by one-electron reduction. We have studied the mechanism of the one-electron reduction of this drug by pulse radiolysis using C00 .- free radicals as reductants. Semiquinonic and hydroquinonic intermediates are formed. The hydroquinonic form undergoes a methanol elimination leading to a transient which can disappear in one of two ways: by either internal redox reaction or hydrolysis of the aziridine. 17 refs [fr

  6. Technical design study. BESSY VSR. Variable pulse length Storage Ring. Upgrade of BESSY II

    International Nuclear Information System (INIS)

    2015-06-01

    BESSY-VSR is a novel approach to create in the Storage Ring BESSY II long and short photon pulses simultaneously for all beam lines through a pair of superconducting bunch compression cavities. Pulse-picking schemes will allow each individual user to freely switch between high average flux for X-ray spectroscopy, microscopy and scattering and picosecond pulses up to 500 MHz repetition rate for dynamic studies. Thus BESSY-VSR preserves the present average brilliance of BESSY II and adds the new capability of user accessible picosecond pulses at high repetition rate. In addition, high intensities for THz radiation with intrinsic synchronization of THz and X-ray pulses can be extracted from BESSY-VSR. For the scientific challenges of quantum materials for energy, future information technologies and basic energy science BESSY-VSR is the multi-user Synchrotron Radiation facility that allows with the flexible switching between high repetition rate for picosecond dynamics and high average brightness to move classical 3rd generation Synchrotron Radiation science from the observation of static properties and their quantum mechanical description towards the function and the control of materials properties, technologically relevant switching processes and chemical dynamics and kinetics on the picosecond time scale. Strategic relevance of BESSY-VSR for science with photons BESSY-VSR creates for the highly productive Synchrotron Radiation community a uniquely attractive multi user storage ring adding the soft X-ray picosecond dynamics at MHz repetition rate. In particular investigations on reversible dynamics and switching in molecular systems and materials are accessible in a non destructive way. The investigations with X-rays from BESSY-VSR are highly complementary and compatible to dynamic studies conducted by users with optical lasers at their home universities and laboratories. Technologically, the employed superconducting bunch compression cavities in BESSY-VSR are a

  7. Technical design study. BESSY VSR. Variable pulse length Storage Ring. Upgrade of BESSY II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    BESSY-VSR is a novel approach to create in the Storage Ring BESSY II long and short photon pulses simultaneously for all beam lines through a pair of superconducting bunch compression cavities. Pulse-picking schemes will allow each individual user to freely switch between high average flux for X-ray spectroscopy, microscopy and scattering and picosecond pulses up to 500 MHz repetition rate for dynamic studies. Thus BESSY-VSR preserves the present average brilliance of BESSY II and adds the new capability of user accessible picosecond pulses at high repetition rate. In addition, high intensities for THz radiation with intrinsic synchronization of THz and X-ray pulses can be extracted from BESSY-VSR. For the scientific challenges of quantum materials for energy, future information technologies and basic energy science BESSY-VSR is the multi-user Synchrotron Radiation facility that allows with the flexible switching between high repetition rate for picosecond dynamics and high average brightness to move classical 3rd generation Synchrotron Radiation science from the observation of static properties and their quantum mechanical description towards the function and the control of materials properties, technologically relevant switching processes and chemical dynamics and kinetics on the picosecond time scale. Strategic relevance of BESSY-VSR for science with photons BESSY-VSR creates for the highly productive Synchrotron Radiation community a uniquely attractive multi user storage ring adding the soft X-ray picosecond dynamics at MHz repetition rate. In particular investigations on reversible dynamics and switching in molecular systems and materials are accessible in a non destructive way. The investigations with X-rays from BESSY-VSR are highly complementary and compatible to dynamic studies conducted by users with optical lasers at their home universities and laboratories. Technologically, the employed superconducting bunch compression cavities in BESSY-VSR are a

  8. Hydrogen radiolytic production in light and heavy water mixtures under conditions similar to LOCA (loss of coolant accidents)

    International Nuclear Information System (INIS)

    Garcia Rodenas, L.; Ali, S.P.; Liberman, S.J.

    1987-01-01

    H 2 , HD and D 2 radiolytic yield in heavy and light water mixtures has been determined to supply the necessary data which will allow to make a realistic estimation of the solution of such gas under LOCA conditions as a function of time. (Author)

  9. Radiolytic oxidation of propane: Computer modeling of the reaction scheme

    Science.gov (United States)

    Gupta, Avinash K.; Hanrahan, Robert J.

    The oxidation of gaseous propane under gamma radiolysis was studied at 100 torr pressure and 25°C, at oxygen pressures from 1 to 15 torr. Major oxygen-containing products and their G-values with 10% added oxygen are as follows: acetone, 0.98; i-propyl alcohol, 0.86; propionaldehyde, 0.43; n-propyl alcohol, 0.11; acrolein, 0.14; and allyl alcohol, 0.038. Minor products include i-butyl alcohol, t-amyl alcohol, n-butyl alcohol, n-amyl alcohol, and i-amyl alcohol. Small yields of i-hexyl alcohol and n-hexyl alcohol were also observed. There was no apparent difference in the G-values at pressures of 50, 100 and 150 torr. When the oxygen concentration was decreased below 5%, the yields of acetone, i-propyl alcohol, and n-propyl alcohol increased, the propionaldehyde yield decreased, and the yields of other products remained constant. The formation of major oxygen-containing products was explained on the basis that the alkyl radicals combine with molecular oxygen to give peroxyl radicals; the peroxyl radicals react with one another to give alkoxyl radicals, which in turn react with one another to form carbonyl compounds and alcohols. The reaction scheme for the formation of major products was examined using computer modeling based on a mechanism involving 28 reactions. Yields could be brought into agreement with the data within experimental error in nearly all cases.

  10. Study on Digital Pulse Shape Discrimination System in BF{sub 3} Detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinhyeong; Kim, J. H.; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, we develop the digital PSD system and discriminate the background signal of BF{sub 3}. Spectrum shapes are different according to the t{sub start} setting method, and it is favorable to set it as the certain ratio of maximum height. In future, it will be performed to vary t{sub start} point to optimize the pulse discrimination. To quantify the performance, Figure Of Merit (FOM) will be determined. For the nuclear non-proliferation and safeguards, an accurate and reliable measurement of nuclear material is essential. The nuclear material emits neutron and γ-ray, simultaneously. For the accurate detection of the nuclear material, neutron should be discriminated from γ-ray or background radiation. In previous study, N. S. Jung developed pulse shape analysis method based on NIM and CAMAC system. However, applications of other discrimination methods based on different detection modules or changing parameters are time-and-money consuming procedures in analogue systems. Today, the performance of digitizers is improved and it replaces some radiation measurement systems which require simple and portable equipment. Digital Pulse Shape Discrimination (PSD) method by using a digital oscilloscope is developed and applied to a neutron detection system by using BF{sub 3} detector in this study.

  11. Optical design and studies of a tiled single grating pulse compressor for enhanced parametric space and compensation of tiling errors

    Science.gov (United States)

    Daiya, D.; Patidar, R. K.; Sharma, J.; Joshi, A. S.; Naik, P. A.; Gupta, P. D.

    2017-04-01

    A new optical design of tiled single grating pulse compressor has been proposed, set-up and studied. The parametric space, i.e. the laser beam diameters that can be accommodated in the pulse compressor for the given range of compression lengths, has been calculated and shown to have up to two fold enhancement in comparison to our earlier proposed optical designs. The new optical design of the tiled single grating pulse compressor has an additional advantage of self compensation of various tiling errors like longitudinal and lateral piston, tip and groove density mismatch, compared to the earlier designs. Experiments have been carried out for temporal compression of 650 ps positively chirped laser pulses, at central wavelength 1054 nm, down to 235 fs in the tiled grating pulse compressor set up with the proposed design. Further, far field studies have been performed to show the desired compensation of the tiling errors takes place in the new compressor.

  12. Studies of the pulse charge of lead-acid batteries for PV applications. Part I. Factors influencing the mechanism of the pulse charge of the positive plate

    Energy Technology Data Exchange (ETDEWEB)

    Kirchev, A.; Perrin, M.; Lemaire, E.; Karoui, F.; Mattera, F. [Commissariat de l' Energie Atomique, Institut National de l' Energie Solaire, INES-RDI, Parc Technologique de Savoie Technolac, 50 Avenue du Lac Leman, 73377 Le Bourget du Lac Cedex (France)

    2008-02-15

    The mechanism of the positive plate charge in pulse regime was studied in model lead-acid cells with one positive and two negative plates (8 Ah each) and Ag/Ag{sub 2}SO{sub 4} reference electrodes. The results showed that the evolution of the electrode potential is much slower on the positive plate than on the negative plate. Regardless of this fact, the calculated capacitive current of charge and self-discharge of the electrochemical double layer (EDL) during the 'ON' and 'OFF' half-periods of the pulse current square waves is comparable with the charge current amplitude. The result is due to the high values of the EDL on the surface of the lead dioxide active material. The influence of different factors like state of charge, state of health, pulse frequency, current amplitude and open circuit stay before the polarization was discussed. The previously determined optimal frequency of 1 Hz was associated with a maximum in the average double layer current on frequency dependence. The average double layer current is also maximal at SOC between 75 and 100%. The exchange of the constant current polarization with pulse polarization does not change substantially the mechanism and the overvoltage of the oxygen evolution reaction on the positive plate. The mechanism of the self-discharge of the EDL was also estimated analyzing long-time PPP transients (up to 2 h). It was found that when the PPP is lower than 1.2 V the preferred mechanism of EDL self-discharge is by coupling with the lead sulphate oxidation reaction. At higher values of PPP the EDL self-discharge happens via oxygen evolution. The high faradic efficiency of the pulse charge is due to the chemical oxidation of the Pb(II) ions by the O atoms and OH radicals formed at the oxygen evolution both during the 'ON' and 'OFF' periods. (author)

  13. Radiolytic oxidation of iodine in the containment at high temperature and dose rate

    International Nuclear Information System (INIS)

    Guilbert, S.; Bosland, L.; Jacquemain, D.; Clement, B.; Andreo, F.; Ducros, G.; Dickinson, S.; Herranz, L.; Ball, J.

    2007-01-01

    Iodine Chemistry is one of the areas of top interest in the field of nuclear power plants (NPP) severe accidents studies. The strong radiological impact of iodine on man health and environment, mostly through its isotope I-131, has made it a key point to get an accurate prediction of the potential iodine release from the NPP containment to the environment in the low probable event of an accident leading to core melt. Released from the fuel as a gaseous form, iodine enters the containment in gaseous or particulate form and undergoes deposition processes that eventually take it to the containment surfaces and sump. Once in the sump, iodine, when present as soluble compounds, gets dissolved as non volatile iodide (I-). Nonetheless, in the presence of radiation and particularly in acidic sumps, iodine can be oxidized to volatile forms such as molecular iodine (I 2 ) and can escape from the sump to the containment atmosphere (sump radiolysis process), thus increasing its potential contribution to the iodine source term. Iodine sump radiolysis has been extensively studied experimentally in the past decades. Experiments have revealed that parameters such as pH, temperature and total iodine concentration have a large impact on iodine volatility. However, experimental data at elevated temperatures (> 80 O C) and elevated dose rates (> 1 kGy.h -1 ) anticipated in containment during a postulated severe accident are too scarce to provide for these relevant conditions an accurate determination of the volatile iodine fractions. Furthermore, some data were obtained from post-irradiation analysis and iodine concentration may be underestimated at the time of measurements compared with that during irradiation, due to post-irradiation reactions. To complete the existing database, the EPICUR program was launched by IRSN (Institut de Radioprotection et de Surete Nucleaire) and experiments have been performed in the frame of the International Source Term Program (ISTP) to provide on

  14. Study on the construction and its operating characteristics of Marx high voltage pulse generator

    International Nuclear Information System (INIS)

    Chung, W.K.; Yook, C.C.

    1984-01-01

    This study is to investigate the operating characteristics of a Marx high voltage pulse generator, which is designed and fabricated for the purpose of constructing a linear theta-pinch plasma generating facility. The Marx generator consists of a 2 kJ capacitor bank of maximum output voltage of 200kV, a set of main spark switch, a triggring system, and high voltage charging power supply. The experimental results show that the operating characteristics of the generator can be controlled through varying nitrogen pressure as a filling gas. The output pulse of the generator is achieved close to the estimated voltage with the rise time of 3*m seconds. The stability of the generator is also very satisfactory within operating range of main spark switch. (Author)

  15. Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study

    International Nuclear Information System (INIS)

    Meng, Qinglong; Zhang, Bin; Zhong, Sencheng; Zhu, Liguo

    2016-01-01

    The damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses has been studied theoretically and experimentally. Firstly, the model for the damage threshold prediction of crystal materials based on the improved rate equation has been proposed. Then, the experimental measure method of the damage threshold of crystal materials has been given in detail. On the basis, the variation of the damage threshold of lithium niobate crystal with the pulse duration has also been analyzed quantitatively. Finally, the damage threshold of lithium niobate crystal under multiple laser pulses has been measured and compared to the theoretical results. The results show that the transmittance of lithium niobate crystal is almost a constant when the laser pulse fluence is relative low, whereas it decreases linearly with the increase in the laser pulse fluence below the damage threshold. The damage threshold of lithium niobate crystal increases with the increase in the duration of the femtosecond laser pulse. And the damage threshold of lithium niobate crystal under multiple laser pulses is obviously lower than that irradiated by a single laser pulse. The theoretical data fall in good agreement with the experimental results. (orig.)

  16. Identification of radiolytic products from N-nitrosodimethylamine and N-nitrosopyrrolidine by gas chromatography and mass spectrometry[Gamma irradiation; N-Nitrosodimethylamine; N-Nitrosopyrrolidine; Radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, H -J; Lee, C -H; Kim, J -H; Han, S -B; Jo, Cheorun; Kim, Sung; Byun, M -W

    2004-01-01

    The radiolytic products of N-nitrosodimethylamine (NDMA) and N-nitrosopyrrolidine (NPYR) dissolved in dichloromethane (DCM) were identified after gamma irradiation. The UV spectra of NDMA and NPYR indicated that irradiation reduced the typical peak of NDMA at 258 nm and NPYR at 260 nm.The major radiolytic components identified in irradiated NDMA were ethyl acetate and 2-dimethyl propanol. The irradiated NPYR dissolved in DCM and produced 2-butanone and 2-methyl-6-propyl piperidine as the major radiolytic components. 2-Methyl-6-propyl piperidine was the component detected in the greatest concentration in irradiated NPYR.

  17. Square biphasic pulse deep brain stimulation for essential tremor: The BiP tremor study.

    Science.gov (United States)

    De Jesus, Sol; Almeida, Leonardo; Shahgholi, Leili; Martinez-Ramirez, Daniel; Roper, Jaimie; Hass, Chris J; Akbar, Umer; Wagle Shukla, Aparna; Raike, Robert S; Okun, Michael S

    2018-01-01

    Conventional deep brain stimulation (DBS) utilizes regular, high frequency pulses to treat medication-refractory symptoms in essential tremor (ET). Modifications of DBS pulse shape to achieve improved effectiveness is a promising approach. The current study assessed the safety, tolerability and effectiveness of square biphasic pulse shaping as an alternative to conventional ET DBS. This pilot study compared biphasic pulses (BiP) versus conventional DBS pulses (ClinDBS). Eleven ET subjects with clinically optimized ventralis intermedius nucleus DBS were enrolled. Objective measures were obtained over 3 h while ON BiP stimulation. There was observed benefit in the Fahn-Tolosa Tremor Rating Scale (TRS) for BiP conditions when compared to the DBS off condition and to ClinDBS setting. Total TRS scores during the DBS OFF condition (28.5 IQR = 24.5-35.25) were significantly higher than the other time points. Following active DBS, TRS improved to (20 IQR = 13.8-24.3) at ClinDBS setting and to (16.5 IQR = 12-20.75) at the 3 h period ON BiP stimulation (p = 0.001). Accelerometer recordings revealed improvement in tremor at rest (χ 2  = 16.1, p = 0.006), posture (χ 2  = 15.9, p = 0.007) and with action (χ 2  = 32.1, p=<0.001) when comparing median total scores at ClinDBS and OFF DBS conditions to 3 h ON BiP stimulation. There were no adverse effects and gait was not impacted. BiP was safe, tolerable and effective on the tremor symptoms when tested up to 3 h. This study demonstrated the feasibility of applying a novel DBS waveform in the clinic setting. Larger prospective studies with longer clinical follow-up will be required. Copyright © 2017. Published by Elsevier Ltd.

  18. Preliminary studies of the quickly pulsed synchrotron involved in the Beta-Beam project; Etudes preliminaires du synchrotron rapidement pulse du projet Beta-Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lachaize, A

    2007-07-01

    This study presents a quickly-pulsed synchrotron able to accelerate He{sup 6} and Ne{sup 18} beams from 100 MeV/u till 3.5 GeV (proton equivalent) The accelerator is made up of 48 bending dipoles and 42 focusing quadrupoles. The design of the HF accelerating system, the bunch injection and the correction of errors in beam dynamics are dealt with.

  19. Study of performance of electronic dosemeters in continuous and pulsed X-radiation beams

    International Nuclear Information System (INIS)

    Guimaraes, Margarete Cristina

    2014-01-01

    Personal radiation monitoring is a basic procedure to verify the compliance to regulatory requirements for radiological protection. Electronic personal dosimeters (EPD) based on solid state detectors have largely been used for personnel monitoring; including for pulsed radiation beams where their responses are not well known and deficiencies have been reported. In this work, irradiation conditions for testing the response of EPDs in both continuous and pulsed X-ray beams were studied to be established in a constant potential Seifert-Pantak and in a medical Pulsar 800 Plus VMI X-ray machines. Characterization of X-ray beams was done in terms of tube voltage, half-value layer, mean energy and air kerma rate. A Xi R/F Unfors solid state dosimeter used as reference for air kerma measurements was verified against a RC-6 and 10X6-6 Radical ionization chambers as far its metrological coherence. Rad-60 RADOS, PDM- 11 Aloka and EPD MK2 Thermo electron EPDs were selected to be tested in terms of relative intrinsic error and energy response in similar to IEC RQR, IEC RQA and ISO N reference radiations. Results demonstrated the reliability of the solid state Xi R/F Unfors dosimeter to be as reference dosimeter although its response was affected by heavily filtered beams. Results also showed that relative intrinsic errors in the response of the EPDs in terms of personal dose equivalent, Hp(10), were higher than the requirement established for continuous beams. In pulsed beams, some EPDs showed inadequate response and high relative intrinsic errors. This work stressed the need of performing additional checks for EPDs, besides the limited 137 Cs beam calibration, before using them in pulsed X-ray beams. (author)

  20. Experimental study on the vascular thermal response to visible laser pulses.

    Science.gov (United States)

    Li, D; Chen, B; Wu, W J; Wang, G X; He, Y L; Ying, Z X

    2015-01-01

    Port-wine stains (PWSs) are congenital vascular malformations that progressively darken and thicken with age, and laser therapy is the most effective in clinical practice. Using dorsal skin chamber (DSC), this study evaluated thermal response of blood vessel to a 595-nm pulsed dye laser (PDL) with controlled energy doses and pulse durations. Totally, 32 vessels (30∼300 μm in diameter) are selected from the dorsal skin of the mouse to match those in port-wine stain. The experimental results showed that the thermal response of the blood vessels to laser irradiation can be recognized as coagulation, constriction with diameter decrease, disappearance (complete constriction), hemorrhage, and collagen damage in the order of increasing laser radiant exposure. Blood vessels with small diameter would response poorly and survive from the laser heating because their thermal relaxation time is much shorter than the pulse duration. The optimalradiant exposure is from 10 to 12 J/cm(2) under 6 ms pulse duration without considering the epidermal light absorption. Numerical simulations were also conducted using a 1,000-μm deep Sprague-Dawley (SD) mouse skinfold. The light transportation and heat diffusion in dorsal skin were simulated with the Monte Carlo method and heat transfer equation, while the blood vessel photocoagulation was evaluated by Arrhenius-type kinetic integral. Both experimental observation and numerical simulation supported that hemorrhage is the dominant thermal response, which occurs due to preferential heating of the superior parts of large blood vessels. In clinical practice for 595 nm PDL, the consequent purpura caused by hemorrhage can be used as a treatment end point.

  1. Design and development of micro pulse lidar for cloud and aerosol studies

    Science.gov (United States)

    Dubey, P. K.; Arya, B. C.; Ahammed, Y. Nazeer; Kumar, Arun; Kulkarni, P. S.; Jain, S. L.

    2008-12-01

    A micro pulse lidar (MPL) has been indigenously designed and developed at the National Physical Laboratory, New Delhi using a 532 nm, 500 pico second pulsed laser having average power of 50mW (at 7.5 KHz PRR). Photon counting technique has been incorporated using the conventional optics, multichannel scaler (Stanford Research Systems SR430) and high sensitive photomultiplier tube. The sensitivity, range and bin etc are computer controlled in the present system. The interfacing between MPL and computer has been achieved by serial (RS232) and parallel printer port. The necessary software and graphical user interface has been developed using visual basic. In addition to this the telescope cover status sensing circuit has been incorporated to avoid conflict between dark count and background acquisition. The micro pulse lidar will be used for the aerosol, boundary layer and the cloud studies at a bin resolution of 6 meters. In the present communication the details of the system and preliminary results will be presented.

  2. Use of a ring chromosome and pulsed-field gels to study recombinational repair

    International Nuclear Information System (INIS)

    Game, J.C.; Arabi, S.; Mortimer, R.K.

    1989-01-01

    In wild type yeast, it is known that x-ray induced DNA double-strand breaks (dsb) are repaired, leading to recovery of high molecular-weight molecules on gradients or pulsed-field gels. There is genetic evidence that some or all of this repair occurs via recombinational mechanisms involving sister-chromatid exchange (SCE) and (in diploids) inter-homologue recombination. However, this evidence is indirect and qualitative. The authors of this paper are attempting to use pulsed-field gels to detect and measure recombinational repair at the physical level in yeast strains with a circular homologue of Chr. III. The authors have previously used such strains to study meiotic recombination. The authors have shown that double-size circular molecules can be detected in log-phase haploid yeast cells carrying a ring chromosome, when such cells are exposed to x-rays and allowed time for subsequent repair. Large circular molecules will not enter our pulsed-field gels, but treatment of the DNA samples with radiation prior to running the gels will linearize a fraction of such molecules with a single dsb. Such linearized molecules will run as a band whose position indicates the size of the original unbroken circles

  3. Studies on the wetting properties of plate surfaces used in pulsed extraction columns

    International Nuclear Information System (INIS)

    Tai Derong; Yang Xin; Wang Xinchang

    1991-01-01

    Many factors influence the hydrodynamic characteristics of pulsed column. Of all the factors the surface effect at liquid-liquid interfaces and liquid-solid boundaries may be the most influential factor to the state of droplets. In order to get some understanding of the behaviour of droplets in a pulsed column, the time history of wetting properties of plates under different conditions in 30% TBP (Kerosene) -HNO 3 -UO 2 (NO 3 ) 2 -H 2 O systems was studied. The results show that the hydrophilic wetting behaviour of the plates changes into the hydrophobic and neutral conditions, respectively after they have been exposed to air and put in the 'open system' within about 50 days after contacting with process solutions. For the case where the access of air is prohibited at the upper organic phase boundary by a well fitting cover, or supersonic pulse cleaning is used to the cartridge, the behaviour of the metal surface stays in the original good hydrophilic wetting condition constant with time. The uranium charged liquid systems can conserve hydrophilic behaviour better than the non-charged systems under identical conditions. It is also found that the interfacial tension is unvaried with time for saturated process systems, hence it has no effects on the variation of wettability

  4. Studies of Effect Analysis of Electromagnetic Pulses (EMP) in Operating Nuclear Power Plants (NPP)

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Song Hae; Ryu, Ho Sun; Kim, Min Yi; Lee, Eui Jong [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    The effect analysis of electromagnetic pulses (EMPs) has been studied for the past year by the Central Research Institute of Korea Hydro Nuclear Power Co. (KHNP) in order to better establish safety measures in operating nuclear power plants. What is an electromagnetic pulse (EMP)? As a general term for high-power electromagnetic radiation, it refers to strong electromagnetic pulses that destroy only electronic equipment devices in a short period without loss of life. The effect analysis of EMPs in operating NPPs and their corresponding safety measures in terms of selecting target devices against EMP impact have been examined in this paper. In general, domestic nuclear power plants do apply the design of fail-safe concepts. For example, if key instruments of a system fail because of EMPs, the control rods of a nuclear reactor are dropped automatically in order to maintain safe conditions of the NPP. Reactor cooling presents no problem because the diesel generator will adopt the analog starting circuit least affected by the electromagnetic waves.

  5. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    International Nuclear Information System (INIS)

    Bisby, R.H.; Tabassum, N.

    1988-01-01

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k 2 ) of (2.2 ± 0.4) x 10 9 M -1 sec -1 . In alkaline solutions the radical deprotonates with a pK of 11.1 ± 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 ± 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10 6 M -1 sec -1 at pH7 and 2.7 x 10 8 M -1 sec -1 at pH 11.3 were obtained. The reaction of O 2 with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed. (author)

  6. UV laser interaction with a fluorescent dye solution studied using pulsed digital holography.

    Science.gov (United States)

    Amer, Eynas; Gren, Per; Sjödahl, Mikael

    2013-10-21

    A frequency tripled Q-switched Nd-YAG laser (wavelength 355 nm, pulse duration 12 ns) has been used to pump Coumarin 153 dye solved in ethanol. Simultaneously, a frequency doubled pulse (532 nm) from the same laser is used to probe the solvent perpendicularly resulting in a gain through stimulated laser induced fluorescence (LIF) emission. The resulting gain of the probe beam is recorded using digital holography by blending it with a reference beam on the detector. Two digital holograms without and with the pump beam were recorded. Intensity maps were calculated from the recorded digital holograms and used to calculate the gain of the probe beam due to the stimulated LIF. In addition numerical data of the local temperature rise was calculated from the corresponding phase maps using Radon inversion. It was concluded that about 15% of the pump beam energy is transferred to the dye solution as heat while the rest is consumed in the radiative process. The results show that pulsed digital holography is a promising technique for quantitative study of fluorescent species.

  7. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  8. Study on Analysis and Pattern Recognition of the Manifestation of the Pulse Detection of Cerebrovascular Disease

    Energy Technology Data Exchange (ETDEWEB)

    Jing, J; Wang, Y C; Hong, W X; Zhang, W P [Department of Biomedical Engineering, University of Yanshan, Qinhuangdao, Hebei Province, 066004 (China)

    2006-10-15

    Cerebrovascular Disease (CVD) is also called stroke in Traditional Chinese Medicine (TCM). CVD is a kind of frequent diseases with high incidence, high death rate, high deformity rate and high relapse rate. The pathogenesis of CVD has relation to many factors. In modern medicine, we can make use of various instruments to check many biochemical parameters. However, at present, the early detection of CVD can mostly be done artificially by specialists. In TCM the salted expert can detect the state of a CVD patient by felling his (or her) pulse. It is significant to apply the modern information and engineering techniques to the early discovery of CVD. It is also a challenge to do this in fact. In this paper, the authors presented a detection method of CVD basing on analysis and pattern recognition of Manifestation of the Pulse of TCM using wavelet technology and Neural Networks. Pulse signals from normal health persons and CVD patients were studied comparatively. This research method is flexible to deal with other physiological signals.

  9. STUDY OF THE PROPAGATION OF SHORT PULSE LASER WITH CAVITY USING NUMERICAL SIMULATION SOFTWARE

    Directory of Open Access Journals (Sweden)

    S. Terniche

    2015-07-01

    Full Text Available The purpose of this representation is to show the potentialities (Computational Time, access to the dynamic and feasibility of systematic studies of the numerical study of the nonlinear dynamics in laser cavity, assisted by software. We will give as an example, one type of cavity completely fibered composed of several elements and then studying the physical parameters of a pulse propagating into this cavity, determining its characteristics at the output. The results are interesting but we also projects to verify them experimentally by making assemblies similar to this type of cavities.

  10. Radiolytic synthesis and electrocatalytic activity of bimetallic nanoaggregates grafted upon various electrodes

    International Nuclear Information System (INIS)

    Amblard, J.; Belloni, J.; Platzer, O.

    1991-01-01

    We show how to utilize the radiolytic pathway for grafting metal nanoaggregates upon anodes or cathodes involved in the chlorine-soda process, thus enhancing their electrochemical behaviour. In both cases important overpotentials are usually measured on unmodified electrodes. The electrocatalytic efficiency of bimetallic nanoparticles (such as Pt-Ru and Ni-Ru), once grafted onto bulk metal electrodes (Ti or Ni), has been investigated by measuring the overpotential for chlorine or hydrogen evolution, respectively. Experimental conditions are similar to those of the industrial process. A synergistic effect is shown when Pt and Ru are alloyed in a 2: 1 atomic ratio. Then the chlorine overpotential is minimum. Conversely, there is no synergy between Ni and Ru, although a minimum amount of Ru in Ru-Ni (50% atomic) ensures a very low hydrogen overpotential [fr

  11. Gamma Radiolytic Degradation of Heptachlor in Methanol and Monitoring of Degradation by HPLC

    International Nuclear Information System (INIS)

    Riaz, M.; Butt, S.B.

    2014-01-01

    Removal of known insecticide Heptachlor (HPTC) in methanol solution by gamma-rays under varied experimental conditions has been optimized. Air saturated solution of HPTC was irradiated at x-rays dose from 1 to 10 kGys. The extent of radiolytic degradation was monitored by reversed phase high performance liquid chromatography (HPLC) coupled with UV detector. At dose of 10 kGys gamma 98 % of HPTC was degraded. The degradation of HPTC occurs by CH/sub 3/O and CH/sub 2/OH radicals generated by methanol radiolysis. It is concluded that gamma-rays can remove Persistent Organic Pollutants (POPs) form environmental matrices. It can decrease the harmful properties of these POPs by their transformation into less resistant fragments to biological / natural elimination in the aquatic atmosphere. (author)

  12. Study of the oncogenic expression in human fibroblast cells after exposure to very short pulsed laser radiations

    International Nuclear Information System (INIS)

    Dormont, D.; Freville, Th.; Raoul, H.; Courant, D.; Court, L.

    1992-01-01

    The aim of this study is to evaluate the capacity of a laser, delivering very short pulses in the near infrared spectrum with a high pulse ratio frequency, to induce genetic modification on biological tissues. The absence of dicentric among chromosomal aberrations on human lymphocytes suggests that a repetitive very short pulses irradiation has a relatively low capacity to induce genetic abnormalities. The studies of the radiation effects on the cellular growth and the oncogenic expression show that the modifications, induced at the cellular level, do not seem the origin of a cellular transformation and a possible mechanism of carcinogenesis. (author)

  13. Magnetic study of a few antiferromagnets in very-strong pulsed fields (450 kOE)

    International Nuclear Information System (INIS)

    Krebs, J.

    1968-01-01

    In this thesis we describe a pulsed field device with which we obtain magnetization curves up to 450 kOE at all temperatures between 1. 6 and 300. We have studied the 'spin-flopping'(and therefore the anisotropy) in MnF 2 versus temperature, below the Neel point. We have also studied the antiferromagnets MnSO 4 . and MnSO 4 .H 2 O which have revealed saturation fields respectively of 250 kOE and 320 kOE. (author) [fr

  14. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang; Yao, Yingbang; Zhang, Q.; Zhang, Xixiang

    2014-01-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences

  15. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: effect on radionuclide speciation

    International Nuclear Information System (INIS)

    Loon, L. van; Hummel, W.

    1995-10-01

    The formation of water soluble organic ligands by the radiolytic and chemical degradation of several ion exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were characterised and their role on radionuclide speciation evaluated thoroughly. Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulphate and dissolved organic carbon. A small part of the carbon (10-20%) could be identified as oxalate. The identity of the remainder is unknown. Complexation studies with Cu 2+ and Ni 2+ showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterised by its concentration, a deprotonation constant and a complexation constant for the NiX complex. The influence of oxalate and ligand X on the speciation of radionuclides is examined in detail. For oxalate no significant influence on the speciation of radionuclides is expected. The stronger complexing ligand X may exert some influence depending on its concentration and the values of other parameters. These critical parameters are discussed and limiting values are evaluated. In absence of irradiation, no evidence for the formation of ligands was found. Irradiation of strong basic anion exchange resins (Powdex PAO and Lewatite M-500) resulted in the formation of mainly ammonia, amines and dissolved organic carbon. Up to 50% of the carbon could be identified as methyl-, dimethyl- and trimethylamine. Complexation studies with Eu 3+ showed that the complexing capacity under near field conditions was negligible. The speciation of cations such as Ag, Ni, Cu and Pd can be influenced by the presence of amins. The strongest amine-complexes are formed with Pd and therefore, as an example, the aqueous Pd-ammonia system is examined in great detail. (author) 30 figs., 10 tabs., refs

  16. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: effect on radionuclide speciation

    Energy Technology Data Exchange (ETDEWEB)

    Loon, L. van; Hummel, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    The formation of water soluble organic ligands by the radiolytic and chemical degradation of several ion exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were characterised and their role on radionuclide speciation evaluated thoroughly. Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulphate and dissolved organic carbon. A small part of the carbon (10-20%) could be identified as oxalate. The identity of the remainder is unknown. Complexation studies with Cu{sup 2+} and Ni{sup 2+} showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterised by its concentration, a deprotonation constant and a complexation constant for the NiX complex. The influence of oxalate and ligand X on the speciation of radionuclides is examined in detail. For oxalate no significant influence on the speciation of radionuclides is expected. The stronger complexing ligand X may exert some influence depending on its concentration and the values of other parameters. These critical parameters are discussed and limiting values are evaluated. In absence of irradiation, no evidence for the formation of ligands was found. Irradiation of strong basic anion exchange resins (Powdex PAO and Lewatite M-500) resulted in the formation of mainly ammonia, amines and dissolved organic carbon. Up to 50% of the carbon could be identified as methyl-, dimethyl- and trimethylamine. Complexation studies with Eu{sup 3+} showed that the complexing capacity under near field conditions was negligible. The speciation of cations such as Ag, Ni, Cu and Pd can be influenced by the presence of amins. The strongest amine-complexes are formed with Pd and therefore, as an example, the aqueous Pd-ammonia system is examined in great detail. (author) 30 figs., 10 tabs., refs.

  17. Calculus of radiolytic products generation in water due to alpha radiation. Determination of the spent nuclear fuels matrix alteration rate Determination of velocity of spent fuel matrix

    International Nuclear Information System (INIS)

    Quinones, J.; Serrano, J.; Diaz Arocas, P.; Rodriguez Almazan, J. L.; Bruno, J.; Cera, E.; Merino, J.; Esteban, J. A.; Martinez-Esparza, A.

    2000-01-01

    The generation of radiolytic products as a result of alpha radiation in the surface of the spent fuel is a key process in order to understand how the it becomes degraded in repository conditions. The present work has established a radiolytic model based on a set of reactions involving fuel oxidation-dissolution and radiolytic products recombination. It also includes the decrease of the dose rates as the main alpha emitters decay away. Four cases, with varying parameters of the system, have been assessed. The results show a decrease in both the concentration of the radiolytic products in the gap water and the degradation of the fuel matrix. It has been estimated that in the period of the evaluation (10''6 years) up to 52% of the pellet is altered in the conservative cases, whereas only 11% is altered in the realistic cases. No significant differences were observed when the carbonates reactions were included in the system. (Author)

  18. Optimum pulse duration and radiant exposure for vascular laser therapy of dark port-wine skin: a theoretical study

    International Nuclear Information System (INIS)

    Tunnell, James W.; Anvari, Bahman; Wang, Lihong V.

    2003-01-01

    Laser therapy for cutaneous hypervascular malformations such as port-wine stain birthmarks is currently not feasible for dark-skinned individuals. We study the effects of pulse duration, radiant exposure, and cryogen spray cooling (CSC) on the thermal response of skin, using a Monte Carlo based optical-thermal model. Thermal injury to the epidermis decreases with increasing pulse duration during irradiation at a constant radiant exposure; however, maintaining vascular injury requires that the radiant exposure also increase. At short pulse durations, only a minimal increase in radiant exposure is necessary for a therapeutic effect to be achieved because thermal diffusion from the vessels is minimal. However, at longer pulse durations the radiant exposure must be greatly increased. There exists an optimum pulse duration at which minimal damage to the epidermis and significant injury within the targeted vasculature occur. For example, the model predicts optimum pulse durations of approximately 1.5, 6, and 20 ms for vessel diameters of 40, 80, and 120 μm, respectively. Optimization of laser pulse duration and radiant exposure in combination with CSC may offer a means to treat cutaneous lesions in dark-skinned individuals

  19. Feasibility study for a multi-channel pulsed radar reflectometer for the jet divertor region

    International Nuclear Information System (INIS)

    Heijnen, S.H.; Pol, M.J. van de.

    1994-09-01

    In this report, the feasibility of a pulsed radar system for measuring the electron density profile in the divertor region of JET is studied. Some dedicated experiments are performed with a four-channel system, which was designed for the Rijnhuizen Tokamak Project. To simulate divertor plasmas the measurements are performed in ECRH induced plasmas without current. The parameters of these kinds of plasmas are: n e 19 m -3 , T e <100 eV, and a diameter of ∼30 cm. (HSI)

  20. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao; Shen Ji

    2011-01-01

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  1. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China); Shen Ji, E-mail: shenji@ustc.edu.c [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China)

    2011-02-15

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  2. Pulsed EPR studies of Phosphorus shallow donors in diamond and SiC

    International Nuclear Information System (INIS)

    Isoya, J.; Katagiri, M.; Umeda, T.; Koizumi, S.; Kanda, H.; Son, N.T.; Henry, A.; Gali, A.; Janzen, E.

    2006-01-01

    Phosphorus shallow donors having the symmetry lower than T d are studied by pulsed EPR. In diamond:P and 3C-SiC:P, the symmetry is lowered to D 2d and the density of the donor wave function on the phosphorus atom exhibits a predominant p-character. In 4H-SiC:P with the site symmetry of C 3v , the A 1 ground state of the phosphorus donors substituting at the quasi-cubic site of silicon shows an axial character of the distribution of the donor wave function in the vicinity of the phosphorus atom

  3. Tunable pores in mesoporous silica films studied using a pulsed slow positron beam

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Ohdaira, Toshiyuki; Oshima, Nagayasu; Kinomura, Atsushi; Suzuki, Ryoichi; Kobayashi, Yoshinori

    2007-01-01

    Positron annihilation lifetime spectroscopy (PALS) based on a pulsed slow positron beam was applied to study mesoporous silica films, synthesized using amphiphilic PEO-PPO-PEO triblock copolymers as structure-directing agents. The pore size depends on the loading of different templates. Larger pores were formed in silica films templated by copolymers with higher molecular-weights. Using 2-dimensional PALS, open porosity of silica films was also found to be influenced by the molecular-weight as well as the ratio of hydrophobic PPO moiety of the templates

  4. Broad line and pulsed NMR study of molecular motion in furfuryl alcohol resins

    International Nuclear Information System (INIS)

    Glowinkowski, S.; Pajak, Z.

    1978-01-01

    Broad line and pulsed nuclear magnetic resonance studies are carried out on a number of furfuryl alcohol resins differentiated by viscosity. Proton NMR spectra and relaxation times T 1 and Tsub(1rho) are measured over a wide temperature range and the results are interpreted in terms of molecular motion. The marked decrease in second moment and existence of high temperature spin-lattice relaxation times minima are presumed to result from rotational motion of polymer chains. The relaxation processes at low temperature are believed to be due to rotational motion of methyl endgroup and paramagnetic centres. (author)

  5. Positron and positronium annihilation in silica-based thin films studied by a pulsed positron beam

    International Nuclear Information System (INIS)

    Suzuki, R.; Ohdaira, T.; Kobayashi, Y.; Ito, K.; Shioya, Y.; Ishimaru, T.

    2003-01-01

    Positron and positronium annihilation in silica-based thin films has been investigated by means of measurement techniques with a monoenergetic pulsed positron beam. The age-momentum correlation study revealed that positron annihilation in thermally grown SiO 2 is basically the same as that in bulk amorphous SiO 2 while o-Ps in the PECVD grown SiCOH film predominantly annihilate with electrons of C and H at the microvoid surfaces. We also discuss time-dependent three-gamma annihilation in porous low-k films by two-dimensional positron annihilation lifetime spectroscopy

  6. Photochemistry of CS2/Cl complexes-combined pulse radiolysis-laser flash photolysis studies

    International Nuclear Information System (INIS)

    Sumiyoshi, Takashi; Nakayama, Masayoshi; Fujiyoshi, Ryoko; Sawamura, Sadashi

    2006-01-01

    Complexes of chlorine atoms and carbon disulfide (CS 2 ) were produced by pulse radiolysis of CS 2 in halocarbons and photochemical reactions were studied by laser flash photolysis. Excitation of CS 2 /Cl complexes resulted in rapid and permanent photobleaching. The photobleaching of CS 2 /Cl complexes is due to intermolecular chlorine atom abstraction in CCl 4 with a quantum yield of 0.04, while that ascribed to hydrogen atom abstraction in 1,2-dichloroethane has a quantum yield of 0.21. The effects of additives are discussed based on the bond dissociation energy

  7. A Three-Pulse Release Tablet for Amoxicillin: Preparation, Pharmacokinetic Study and Physiologically Based Pharmacokinetic Modeling.

    Science.gov (United States)

    Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang

    2016-01-01

    Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients' compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box-Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box-Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry® film to produce pulsatile tablet of

  8. Positron annihilation in SiO 2-Si studied by a pulsed slow positron beam

    Science.gov (United States)

    Suzuki, R.; Ohdaira, T.; Uedono, A.; Kobayashi, Y.

    2002-06-01

    Positron and positronium (Ps) behavior in SiO 2-Si have been studied by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The PALS study of SiO 2-Si samples, which were prepared by a dry-oxygen thermal process, revealed that the positrons implanted in the Si substrate and diffused back to the interface do not contribute to the ortho-Ps long-lived component, and the lifetime spectrum of the interface has at least two components. From the AMOC study, the momentum distribution of the ortho-Ps pick-off annihilation in SiO 2, which shows broader momentum distribution than that of crystalline Si, was found to be almost the same as that of free positron annihilation in SiO 2. A varied interface model was proposed to interpret the results of the metal-oxide-semiconductor (MOS) experiments. The narrow momentum distribution found in the n-type MOS with a negative gate bias voltage could be attributed to Ps formation and rapid spin exchange in the SiO 2-Si interface. We have developed a two-dimensional positron lifetime technique, which measures annihilation time and pulse height of the scintillation gamma-ray detector for each event. Using this technique, the positronium behavior in a porous SiO 2 film, grown by a sputtering method, has been studied.

  9. A time-pulsed positronium beam and a study of oxides on silicon using positrons

    International Nuclear Information System (INIS)

    Khatri, R.K.

    1993-01-01

    The studies on rare gas solid moderators were carried out with a 350 μCi 22 Na radioactive source. The corrected efficiency for neon moderator in conical geometrical configuration was as high as (1.4 ± 0.2)%. The conical configuration moderator performed better by a factor of (2.2 ± 0.2) than the cylindrical configuration. A time pulsed positron beam was built to carry out investigations on the positronium formation processes and positronium beam. This beam has the capability to store low energy e + in a magnetic bottle, with a magnetic bottle at one end and an electrostatic mirror at the other. These stored e + are then bunched to form a pulse with a buncher. The bunched beam had a FWHM of 17 nsec and contained 1 to 2 e + /pulse. A thin carbon foil of 50 angstrom thickness was used for positronium formation by process of charge exchange. Positronium Annihilation Spectroscopy (PAS) was utilized to carry out studies on the activation energy of hydrogen at the interface of oxide and silicon substrate and the effect of irradiation on the oxides in SiO 2 /Si(100) sample. The activation energy of hydrogen at the interface of SiO 2 /Si(100) samples with n- and p-type substrate was measured to be 2.60(6) eV and 2.47(6) eV respectively. The investigations of the samples irradiated with x-ray and γ-ray led to the first time identification of creation of E' centers with PAS

  10. Studying intense pulsed light method along with corticosteroid injection in treating keloid scars.

    Science.gov (United States)

    Shamsi Meymandi, Simin; Rezazadeh, Azadeh; Ekhlasi, Ali

    2014-02-01

    Results of various studies suggest that the hypertrophic and keloid scars are highly prevalent in the general population and are irritating both physically and mentally. Considering the variety of existing therapies, intense pulsed light (IPL) method along with corticosteroid injection was evaluated in treating these scars. 86 subjects were included in this clinical trial. Eight sessions of therapeutic intervention were done with IPL along with corticosteroid intralesional injection using 450 to 1200 NM filter, Fluence 30-40 J/cm2, pulse duration of 2.1-10 ms and palsed delay 10-40 ms with an interval of three weeks. To specify the recovery consequences and complication rate and to determine features of the lesion, the criteria specified in the study of Eroll and Vancouver scar scale were used. The level of clinical improvement, color improvement and scar height was 89.1%, 88.8% and 89.1% respectively. The incidence of complications (1 telangiectasia case, 7 hyperpigmentation cases and 2 atrophy cases) following treatment with IPL was 11.6%. Moreover, the participants' satisfaction with IPL method was 88.8%. This study revealed that a combined therapy (intralesional corticosteroid injection + IPL) increases the recovery level of hypertrophic and keloid scars. It was also demonstrated that this method had no significant side effect and patients were highly satisfied with this method.

  11. Portable pulse X-ray micro and nanosecond range apparatus for studying fast-going processes in opaque media

    International Nuclear Information System (INIS)

    Goganov, D.A.; Komyak, N.I.; Pelix, E.A.

    Pulse X-radiography (X-ray flash duration in the order of 10 -6 -10 -9 sec) is the principal method for studying fast-going processes in opaque media by serial and parallel radiographic imaging. Description is given and main features are outlined of pulse X-ray apparatus IRA-4b, 5b, 6b producing X-radiation flashes from 0.3 μsec to 10-20 nsec in duration

  12. An analyzer for pulse-interval times to study high-order effects in the processing of nuclear detector signals

    International Nuclear Information System (INIS)

    Denecke, B.; Jonge, S. de

    1998-01-01

    An electronic device to measure interval time density distributions of subsequent pulses in nuclear detectors and their electronics is described. The device has a pair-pulse resolution of 10 ns and 25 ns for 3 subsequent input signals. The conversion range is 4096 channels and the lowest channel width is 10 ns. Counter dead times, single and in series were studied and compared with the statistical model. True count rates were obtained from an exponential fit through the interval-time distribution

  13. Studies on the hydrodynamic properties of the sieve plate pulsed column for 30% TRPO-kerosene/nitric acid system

    International Nuclear Information System (INIS)

    Ma Ronglin; Chen Jing; Xu Shiping; Wu Qiulin; Tai Derong; Song Chongli

    2000-01-01

    The hydrodynamic properties of the sieve plate pulsed column for 30% TRPO-kerosene/nitric acid system is studied. With the organic phase or aqueous phase as the continuous one, the dispersed phase behaves mainly as coalescing or dispersing, respectively. The sieve plate pulsed column has a fairish flooding throughput for this system. Under the same pulsation intensity, the flooding throughput for the organic phase as the continuous one is more than that for the aqueous phase as the continuous one

  14. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study

    International Nuclear Information System (INIS)

    Samek, Ota; Kurowski, Andre; Kittel, Silke; Kukhlevsky, Sergei; Hergenroeder, Roland

    2005-01-01

    This work reports on a feasibility study of proximity ablation using femtosecond pulses. Ultra-short pulses were launched to a bare tapered optical fiber and delivered to the sample. The tip-sample distance was controlled by means of shear-force feedback. Consequently, ablation craters with submicrometer dimensions were obtained. Potential analytical applications for Laser Induced Breakdown Spectroscopy (LIBS) technique, such as e.g. inclusions in steel or bio cells, are suggested

  15. Scoping Study of Airlift Circulation Technologies for Supplemental Mixing in Pulse Jet Mixed Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Schonewill, Philip P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Berglin, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Boeringa, Gregory K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buchmiller, William C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burns, Carolyn A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-07

    At the request of the U.S. Department of Energy Office of River Protection, Pacific Northwest National Laboratory (PNNL) conducted a scoping study to investigate supplemental technologies for supplying vertical fluid motion and enhanced mixing in Waste Treatment and Immobilization Plant (WTP) vessels designed for high solids processing. The study assumed that the pulse jet mixers adequately mix and shear the bottom portion of a vessel. Given that, the primary function of a supplemental technology should be to provide mixing and shearing in the upper region of a vessel. The objective of the study was to recommend a mixing technology and configuration that could be implemented in the 8-ft test vessel located at Mid-Columbia Engineering (MCE). Several mixing technologies, primarily airlift circulator (ALC) systems, were evaluated in the study. This technical report contains a review of ALC technologies, a description of the PNNL testing and accompanying results, and recommended features of an ALC system for further study.

  16. Failure rate modeling using fault tree analysis and Bayesian network: DEMO pulsed operation turbine study case

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo Nicola, E-mail: danilo.dongiovanni@enea.it [ENEA, Nuclear Fusion and Safety Technologies Department, via Enrico Fermi 45, Frascati 00040 (Italy); Iesmantas, Tomas [LEI, Breslaujos str. 3 Kaunas (Lithuania)

    2016-11-01

    Highlights: • RAMI (Reliability, Availability, Maintainability and Inspectability) assessment of secondary heat transfer loop for a DEMO nuclear fusion plant. • Definition of a fault tree for a nuclear steam turbine operated in pulsed mode. • Turbine failure rate models update by mean of a Bayesian network reflecting the fault tree analysis in the considered scenario. • Sensitivity analysis on system availability performance. - Abstract: Availability will play an important role in the Demonstration Power Plant (DEMO) success from an economic and safety perspective. Availability performance is commonly assessed by Reliability Availability Maintainability Inspectability (RAMI) analysis, strongly relying on the accurate definition of system components failure modes (FM) and failure rates (FR). Little component experience is available in fusion application, therefore requiring the adaptation of literature FR to fusion plant operating conditions, which may differ in several aspects. As a possible solution to this problem, a new methodology to extrapolate/estimate components failure rate under different operating conditions is presented. The DEMO Balance of Plant nuclear steam turbine component operated in pulse mode is considered as study case. The methodology moves from the definition of a fault tree taking into account failure modes possibly enhanced by pulsed operation. The fault tree is then translated into a Bayesian network. A statistical model for the turbine system failure rate in terms of subcomponents’ FR is hence obtained, allowing for sensitivity analyses on the structured mixture of literature and unknown FR data for which plausible value intervals are investigated to assess their impact on the whole turbine system FR. Finally, the impact of resulting turbine system FR on plant availability is assessed exploiting a Reliability Block Diagram (RBD) model for a typical secondary cooling system implementing a Rankine cycle. Mean inherent availability

  17. Failure rate modeling using fault tree analysis and Bayesian network: DEMO pulsed operation turbine study case

    International Nuclear Information System (INIS)

    Dongiovanni, Danilo Nicola; Iesmantas, Tomas

    2016-01-01

    Highlights: • RAMI (Reliability, Availability, Maintainability and Inspectability) assessment of secondary heat transfer loop for a DEMO nuclear fusion plant. • Definition of a fault tree for a nuclear steam turbine operated in pulsed mode. • Turbine failure rate models update by mean of a Bayesian network reflecting the fault tree analysis in the considered scenario. • Sensitivity analysis on system availability performance. - Abstract: Availability will play an important role in the Demonstration Power Plant (DEMO) success from an economic and safety perspective. Availability performance is commonly assessed by Reliability Availability Maintainability Inspectability (RAMI) analysis, strongly relying on the accurate definition of system components failure modes (FM) and failure rates (FR). Little component experience is available in fusion application, therefore requiring the adaptation of literature FR to fusion plant operating conditions, which may differ in several aspects. As a possible solution to this problem, a new methodology to extrapolate/estimate components failure rate under different operating conditions is presented. The DEMO Balance of Plant nuclear steam turbine component operated in pulse mode is considered as study case. The methodology moves from the definition of a fault tree taking into account failure modes possibly enhanced by pulsed operation. The fault tree is then translated into a Bayesian network. A statistical model for the turbine system failure rate in terms of subcomponents’ FR is hence obtained, allowing for sensitivity analyses on the structured mixture of literature and unknown FR data for which plausible value intervals are investigated to assess their impact on the whole turbine system FR. Finally, the impact of resulting turbine system FR on plant availability is assessed exploiting a Reliability Block Diagram (RBD) model for a typical secondary cooling system implementing a Rankine cycle. Mean inherent availability

  18. Study of phonon-induced energy transfer processes in crystals using heat pulses

    International Nuclear Information System (INIS)

    Burns, A.R.

    1978-03-01

    The artificial generation of acoustic lattice vibrations by a heat pulse technique is developed in order to probe phonon interactions in molecular crystals. Specifically, the phonon-assisted delocalization of ''trapped'' excited triplet state energy in the aromatic crystal 1,2,4,5-tetrachlorobenzene (TCB) is studied in a quantitative manner by monitoring the time-resolved decrease in trap phosphorescence intensity due to the propagation of a well-defined heat pulse. The excitation distribution in a single trap system, such as the X-trap in neat h 2 -TCB, is discussed in terms of the energy partition function relating the temperature dependence of the trap phosphorescence intensity to the trap depth, exciton bandwidth, and the number of exciton band states. In a multiple trap system, such as the hd and h 2 isotopic traps in d 2 -TCB, the excitation distribution is distinctly non-Boltzmann; yet it may be discussed in terms of a preferential energy transfer between the two trap states via the exciton band. For both trap systems, a previously developed kinetic model is presented which relates the efficiency of trap-band energy exchange to the density of band states and the trap-phonon coupling matrix elements. A bolometric technique for determining the thermal response time of the heater/crystal system is presented. The phonon mean free path in the crystal is size-limited, and the heater/crystal boundary conductance is reasonably close to previously reported values. The theory of heat pulse phonon spectroscopy is presented and discussed in terms of black-body phonon radiation

  19. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Bisby, R H; Tabassum, N

    1988-07-15

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k/sub 2/) of (2.2 +- 0.4) x 10/sup 9/ M/sup -1/ sec/sup -1/. In alkaline solutions the radical deprotonates with a pK of 11.1 +- 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 +- 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10/sup 6/ M/sup -1/ sec/sup -1/ at pH7 and 2.7 x 10/sup 8/ M/sup -1/ sec/sup -1/ at pH 11.3 were obtained. The reaction of O/sub 2/ with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed.

  20. Histologic evaluation of skin damage after overlapping and nonoverlapping flashlamp pumped pulsed dye laser pulses: A study on normal human skin as a model for port wine stains

    NARCIS (Netherlands)

    Koster, P. H.; van der Horst, C. M.; van Gemert, M. J.; van der Wal, A. C.

    2001-01-01

    BACKGROUND AND OBJECTIVE: In the treatment of port wine stains (PWS) with the flashlamp pumped pulsed dye laser (FPPDL), no consensus exists about overlapping of pulses. The advantage of overlapping pulses is homogeneous lightening of the PWS; the risk is redundant tissue damage. The aim of this

  1. Pulsed power

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The key element of our pulsed power program is concentration of power in time and space by suppression of breakdown in dielectrics and in vacuum. Magnetically insulated vacuum transmission lines and magnetic suppression of insulator flashover have continued as the main reserch directions. Vacuum insulated line studies at Physics International have been expanded and a test bed at Sandia, called MITE (Magnetically Insulated Transmission Experiment), is under development. The choice for the baseline EBFA design will depend on the outcome of these studies and should be made in July 1977. The slow and intermediate speed pulsed power approaches to EBFA will be based on Proto I and Proto II results and several of the projected EBFA subsystems are presently being tested in Proto II. A further stage of power concentration, within the vacuum diode itself, would considerably ease the burden on dielectrics; methods of power multiplication involving magnetically imploded plasmas are being considered and tests have begun using the Ripple III apparatus

  2. Semianalytical study of the propagation of an ultrastrong femtosecond laser pulse in a plasma with ultrarelativistic electron jitter

    Energy Technology Data Exchange (ETDEWEB)

    Jovanović, Dušan, E-mail: dusan.jovanovic@ipb.ac.rs [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Zemun (Serbia); Fedele, Renato, E-mail: renato.fedele@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II,” M.S. Angelo, Napoli (Italy); INFN Sezione di Napoli, Complesso Universitario di M.S. Angelo, Napoli (Italy); Belić, Milivoj, E-mail: milivoj.belic@qatar.tamu.edu [Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); De Nicola, Sergio, E-mail: sergio.denicola@spin.cnr.it [SPIN-CNR, Complesso Universitario di M.S. Angelo, Napoli (Italy)

    2015-04-15

    The interaction of a multi-petawatt, pancake-shaped laser pulse with an unmagnetized plasma is studied analytically and numerically in a regime with ultrarelativistic electron jitter velocities, in which the plasma electrons are almost completely expelled from the pulse region. The study is applied to a laser wakefield acceleration scheme with specifications that may be available in the next generation of Ti:Sa lasers and with the use of recently developed pulse compression techniques. A set of novel nonlinear equations is derived using a three-timescale description, with an intermediate timescale associated with the nonlinear phase of the electromagnetic wave and with the spatial bending of its wave front. They describe, on an equal footing, both the strong and the moderate laser intensity regimes, pertinent to the core and to the edges of the pulse. These have fundamentally different dispersive properties since in the core the electrons are almost completely expelled by a very strong ponderomotive force, and the electromagnetic wave packet is imbedded in a vacuum channel, thus having (almost) linear properties. Conversely, at the pulse edges, the laser amplitude is smaller, and the wave is weakly nonlinear and dispersive. New nonlinear terms in the wave equation, introduced by the nonlinear phase, describe without the violation of imposed scaling laws a smooth transition to a nondispersive electromagnetic wave at very large intensities and a simultaneous saturation of the (initially cubic) nonlocal nonlinearity. The temporal evolution of the laser pulse is studied both analytically and by numerically solving the model equations in a two-dimensional geometry, with the spot diameter presently used in some laser acceleration experiments. The most stable initial pulse length is estimated to exceed ≳1.5–2 μm. Moderate stretching of the pulse in the direction of propagation is observed, followed by the development of a vacuum channel and of a very large

  3. Development of response transforms from comparative study of commercial pulsed neutron capture logging systems

    International Nuclear Information System (INIS)

    Salaita, G.N.; Youngblood, W.E.

    1991-01-01

    This paper reports that the absence of a common calibration facility to ascertain the accuracy of commercial pulsed neutron capture logging systems, coupled with the desire for more accurate saturation determination from time-lapse logs, prompted Saudi Aramco to carry out this comparative study. Three generations of Schlumberger's Thermal Decay Time (TDT) logging devices, viz., TDT-K, TDT-M, and TDT-P along with Atlas Wireline PDK-100 system were run in an Aramco well. The wellbore 8-1/2 inch with 7-inch casing-penetrated clean sand, shaly sand, and shale streaks sequence as exhibited by the open hole natural gamma ray log. initially, the wellbore fluid was diesel. The fluid was then changed to brines of 42-kppm and 176-kppm NACl, respectively. Three repeat passes at a logging speed of 900 ft/hr were obtained by each device for each of the three borehole liquids. In the case of PDK-100, a second set of log runs was obtained at 1800 ft/hr. The results of this extensive comparative study have increased the author's understanding of the borehole liquid and the diffusion effects on the response of pulsed neutron capture logging systems and also on the relative accuracy and precision of measured formation thermal neutron capture cross section by each system

  4. Long-Pulse Operation and High-Energy Particle Confinement Study in ICRF Heating of LHD

    International Nuclear Information System (INIS)

    Mutoh, Takashi; Kumazawa, Ryuhei; Seki, Tetsuo

    2004-01-01

    Long-pulse operation and high-energy particle confinement properties were studied using ion cyclotron range of frequency (ICRF) heating for the Large Helical Device. For the minority-ion mode, ions with energies up to 500 keV were observed by concentrating the ICRF heating power near the plasma axis. The confinement of high-energy particles was studied using the power-modulation technique. This confirmed that the confinement of high-energy particles was better with the inward-shifted configuration than with the normal configuration. This behavior was the same for bulk plasma confinement. Long-pulse operation for more than 2 min was achieved during the experimental program in 2002. This was mainly due to better confinement of the helically trapped particles and accumulation of fewer impurities in the region of the plasma core, in conjunction with substantial hardware improvements. Currently, the plasma operation time is limited by an unexpected density rise due to outgassing from the chamber materials. The temperature of the local carbon plates of the divertor exceeded 400 deg, C, and a charge-coupled device camera observed the hot spots. The hot spot pattern was well explained by a calculation of the accelerated-particle orbits, and those accelerated particles came from outside the plasma near the ICRF antenna

  5. Effect of intense pulsed light on immature burn scars: A clinical study

    Directory of Open Access Journals (Sweden)

    Arindam Sarkar

    2014-01-01

    Full Text Available Introduction: As intense pulsed light (IPL is widely used to treat cutaneous vascular malformations and also used as non-ablative skin rejunuvation to remodel the skin collagen. A study has been undertaken to gauze the effect of IPL on immature burn scars with regard to vascularity, pliability and height. Materials and Methods: This study was conducted between June 2013 and May 2014, among patients with immature burn scars that healed conservatively within 2 months. Photographic evidence of appearance of scars and grading and rating was done with Vancouver Scar Scale parameters. Ratings were done for both case and control scar after the completion of four IPL treatment sessions and were compared. Results: Out of the 19 cases, vascularity, pliability and height improved significantly (P < 0.05 in 13, 14 and 11 scars respectively following IPL treatment. Conclusions: Intense pulsed light was well-tolerated by patients, caused good improvement in terms of vascularity, pliability, and height of immature burn scar.

  6. Pulse Generator

    Science.gov (United States)

    Greer, Lawrence (Inventor)

    2017-01-01

    An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.

  7. Study on two phase flow characteristics in annular pulsed extraction column with different ratio of annular width to column diameter

    International Nuclear Information System (INIS)

    Qin Wei; Dai Youyuan; Wang Jiading

    1994-01-01

    Annular pulsed extraction column can successfully provide large throughput and can be made critically safe for fuel reprocessing. This investigation is to study the two phase flow characteristics in annular pulsed extraction column with four different annular width. 30% TBP (in kerosene)-water is used (water as continuous phase). Results show that modified Pratt correlation is valid under the experimental operation conditions for the annular pulsed extraction column. The characteristic velocity U K decreased with the increase of energy input and increased with the increase of the ratio of annular width to column diameter. Flooding velocity correlation is suggested. The deviation of the calculated values from the experimental data is within +20% for four annular width in a pulsed extraction column

  8. Warm dense matter study and pulsed-power developments for X-pinch equipment in Nagaoka University of Technology

    International Nuclear Information System (INIS)

    Sasaki, Toru; Miki, Yasutoshi; Tachinami, Fumitaka; Saito, Hirotaka; Takahashi, Takuya; Anzai, Nobuyuki; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.

    2014-01-01

    In order to explore high energy density physics, we have performed WDM experiment by using several pulsed-power devices. To generate well-defined warm dense state for evaluating electrical conductivity and its properties, we have proposed an isochoric heating of foamed metal by using pulsed-power discharge. The proposed technique yields the electrical conductivity of warm dense matter with a well-defined temperature. To observe the warm dense matter, a pulsed-power generator based on a pulse-forming-network (PFN) was studied toward generating an intense point-spot-like X-ray source from X-pinch technique. From comparison of the designing and the actual inductances of the X-pinch system, the actual inductance of X-pinch system is 3.5 times higher than the designing inductance. To reduce the total inductance of X-pinch system, we will modify the gap switch system such as multi spake gap

  9. Diffraction properties study of reflection volume holographic grating in dispersive photorefractive material under ultra-short pulse readout

    Energy Technology Data Exchange (ETDEWEB)

    Yi Yingyan; Liu Deming; Liu Hairong, E-mail: yiyingyan0410@163.com [Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2011-02-01

    Based on the modified Kogelnik diffraction efficiency equation, we study the diffraction intensity spectrum and the total diffraction efficiency of reflection volume holographic gratings in photorefractive media. Taking photorefractive LiNbO{sub 3} crystal as an example, the effect of the grating parameters and the pulse width on the diffraction properties is presented under the influence of crystal material dispersion. Under the combined effects, the diffraction pulse profiles and the total diffraction efficiency are compared with and without crystal material dispersion. The results show that the dispersion will decrease the diffraction intensity. Moreover, when pulse width is smaller or the grating spacing and the grating thickness are larger, the influence of dispersion on diffraction is large. The results of our paper can be used in pulse shaping applications.

  10. Study of the mechanisms of flux enhancement through hairless mouse skin by pulsed DC iontophoresis

    International Nuclear Information System (INIS)

    Pikal, M.J.; Shah, S.

    1991-01-01

    Enhanced iontophoretic transport using pulsed DC is usually explained by citing the observed decrease in skin resistance caused by an increase in AC pulse frequency at very small currents. Alternately, it has been suggested that the on-to-off nature of pulsed DC imparts an impact energy to the fluid, thereby increasing transport. This report provides a test of these mechanisms for enhanced delivery via pulsed iontophoresis. The DC resistance of hairless mouse skin during continuous and pulsed DC iontophoresis is measured as a function of time for selected pulse frequencies and duty cycles using current densities ranging from 0.1 to 1.0 mA/cm2. As a test of the impact energy mechanism, the iontophoretic transport of 14C-glucose measured with pulsed DC is compared with similar data obtained previously using continuous DC. It is suggested that pulsed current can yield lower resistance and enhanced drug delivery provided that (a) the steady-state current during the on phase of the pulse is very small and (b) the frequency is low enough to allow depolarization of the skin during the off phase of the pulse. The glucose transport results suggest that the impact energy concept does not apply to iontophoresis

  11. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W.; Wang, L.M.

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m -1 , 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions

  12. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wang, L.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m{sup {minus}1}, 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions.

  13. Potentiostatic pulse-deposition of calcium phosphate on magnesium alloy for temporary implant applications--an in vitro corrosion study.

    Science.gov (United States)

    Kannan, M Bobby; Wallipa, O

    2013-03-01

    In this study, a magnesium alloy (AZ91) was coated with calcium phosphate using potentiostatic pulse-potential and constant-potential methods and the in vitro corrosion behaviour of the coated samples was compared with the bare metal. In vitro corrosion studies were carried out using electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid (SBF) at 37 °C. Calcium phosphate coatings enhanced the corrosion resistance of the alloy, however, the pulse-potential coating performed better than the constant-potential coating. The pulse-potential coating exhibited ~3 times higher polarization resistance than that of the constant-potential coating. The corrosion current density obtained from the potentiodynamic polarization curves was significantly less (~60%) for the pulse-deposition coating as compared to the constant-potential coating. Post-corrosion analysis revealed only slight corrosion on the pulse-potential coating, whereas the constant-potential coating exhibited a large number of corrosion particles attached to the coating. The better in vitro corrosion performance of the pulse-potential coating can be attributed to the closely packed calcium phosphate particles. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Reactivity Of Radiolytically-Produced Nitrogen Oxide Radicals Toward Aromatic Compounds

    International Nuclear Information System (INIS)

    Elias, Gracy

    2010-01-01

    radiolysis of the modifier (Cs-7SB), which solvates both metal complexes, is responsible for this change. These reactions presumably occur due to reactions with radiolytically-produced nitrogen-centered radicals like (sm b ullet)NO, (sm b ullet)NO 2 and (sm b ullet)NO 3 . Anisole (C 6 H 5 -OCH 3 ) was used in this study as a surrogate for Cs-7SB, since both are aryl ethers. Toluene was used as a surrogate for Cs-7SB because of the alkyl group on the benzene ring in both molecules. Anisole, highly reactive in acids, is a small molecule compared to Cs-7SB and the nitration products are easier to identify compared to those for the larger Cs-7SB molecule. Toluene is less reactive than anisole. Therefore, the highly reactive anisole and the less reactive toluene were considered in this study as model compounds to compare the reaction mechanisms and the nitrated products in acidic media under irradiation. Experiments were designed to elucidate the mechanism of the nitration of aromatic rings in γ-irradiated aqueous nitric acid. Since a suite of radical and ionic reactive species are produced in this condensed-phase system, solutions of nitric acid, neutral nitrate and neutral nitrite were irradiated in separate experiments to isolate selected reactive species. Product nitration species were assessed by high performance liquid chromatography (HPLC) with a reversed phase C-18 column and photodiode array detector. The nitrated anisole product distributions were the same with and without radiation in acidic solution, although more products were formed with radiation. In the irradiated acidic condensed phase, radiation-enhanced nitrous acid-catalyzed nitrosonium ion electrophilic aromatic substitution followed by oxidation reactions dominated over radical addition reactions. In contrast, the distribution of nitrated derivatives for toluene showed nitronium ion electrophilic substitution in the unirradiated acidic medium as a result of thermal nitration only at elevated temperatures

  15. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    International Nuclear Information System (INIS)

    Jung, S.; Christenson, M.; Curreli, D.; Bryniarski, C.; Andruczyk, D.; Ruzic, D.N.

    2014-01-01

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m 2 and 0.43 ± 0.01 GW/m 2 . A few ways to further increase the plasma heat flux for LiMIT experiments are discussed

  16. Pulse Double-Resonance EPR Techniques for the Study of Metallobiomolecules.

    Science.gov (United States)

    Cox, Nicholas; Nalepa, Anna; Pandelia, Maria-Eirini; Lubitz, Wolfgang; Savitsky, Anton

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy exploits an intrinsic property of matter, namely the electron spin and its related magnetic moment. This can be oriented in a magnetic field and thus, in the classical limit, acts like a little bar magnet. Its moment will align either parallel or antiparallel to the field, giving rise to different energies (termed Zeeman splitting). Transitions between these two quantized states can be driven by incident microwave frequency radiation, analogous to NMR experiments, where radiofrequency radiation is used. However, the electron Zeeman interaction alone provides only limited information. Instead, much of the usefulness of EPR is derived from the fact that the electron spin also interacts with its local magnetic environment and thus can be used to probe structure via detection of nearby spins, e.g., NMR-active magnetic nuclei and/or other electron spin(s). The latter is exploited in spin labeling techniques, an exciting new area in the development of noncrystallographic protein structure determination. Although these interactions are often smaller than the linewidth of the EPR experiment, sophisticated pulse EPR methods allow their detection. A number of such techniques are well established today and can be broadly described as double-resonance methods, in which the electron spin is used as a reporter. Below we give a brief description of pulse EPR methods, particularly their implementation at higher magnetic fields, and how to best exploit them for studying metallobiomolecules. © 2015 Elsevier Inc. All rights reserved.

  17. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    Energy Technology Data Exchange (ETDEWEB)

    Jung, S., E-mail: jung73@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Christenson, M.; Curreli, D. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Bryniarski, C. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Andruczyk, D.; Ruzic, D.N. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States)

    2014-12-15

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m{sup 2} and 0.43 ± 0.01 GW/m{sup 2}. A few ways to further increase the plasma heat flux for LiMIT experiments are discussed.

  18. Study on the ablation threshold induced by pulsed lasers at different wavelengths

    International Nuclear Information System (INIS)

    Torrisi, L.; Borrielli, A.; Margarone, D.

    2007-01-01

    A study of the effects induced by pulsed laser ablation on different materials as a function of the laser wavelength is presented. In particular the ablation at low laser fluence, of the order of 10 8 -10 10 W/cm 2 with ns pulse width, is investigated experimentally on different metals, semiconductors and polymers. Two theoretical models, explain the experimental results about the fluence threshold value measurements, as depending on the laser wavelength are discussed. The photothermal process is valid for the estimation of the threshold fluence for IR and visible radiation, both inducing thermal heating in metals and semiconductors through the photon-free electron energy transfer. This model is not valid for polymers. The photochemical process is valid for the estimation of the threshold fluence for UV radiation, which photon energy is higher with respect to the chemical binding energy. This radiation induces chemical bond breaking in insulators and scission and cross linking effects can be produced. This last model is not valid for metals and semiconductors

  19. Redox reactions of tocopherol monoglucoside in aqueous solutions. A pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, S.; Mukherjee, T.; Nair, C.K.K. [Bhabha Atomic Research Centre, Mumbai (India); Kagiya, Tsutomu V. [Health Research Foundation, Kyoto (Japan)

    2002-03-01

    The reactions between tocopherol monoglucoside (TMG), a water-soluble vitamin-E derivative, with Br{sub 2}{sup {center_dot}}{sup -}, N{sub 3}{sup {center_dot}}, (SCN){sub 2}{sup {center_dot}}{sup -}, NO{sub 2}{sup {center_dot}}, OH{sup {center_dot}} and various halogenated peroxyl radicals were examined using a pulse radiolysis technique. The results demonstrate that TMG forms a stable phenoxyl radical at pH>6.8. The thus-formed phenoxyl radical shows pH-dependent decay kinetics and is disproportionated by 2nd order kinetics at pH2.3. It was observed that the TMG reactivity towards a halogenated peroxyl radical increases with the number of halogen atoms at the carbon atom having a peroxyl group. The reaction between the TMG phenoxyl radical and ascorbic acid was also examined using a pulse radiolysis technique. The results indicate that the TMG phenoxyl radical is repaired by ascorbate. Kinetic studies indicate that TMG may act as an antioxidant to repair free-radical damage to some biologically importnat compounds. The one-electron reduction potential for TMG was found to be 0.522 V{+-}0.06 vs. NHE. (author)

  20. A parametric study on the PD pulses activity within micro-cavities

    Science.gov (United States)

    Ganjovi, Alireza A.

    2016-03-01

    A two-dimensional kinetic model has been used to parametric investigation of the spark-type partial discharge pulses inside the micro-cavities. The model is based on particle-in-cell methods with Monte Carlo Collision techniques for modeling of collisions. Secondary processes like photo-emission and cathode-emission are considered. The micro-cavity may be sandwiched between two metallic conductors or two dielectrics. The discharge within the micro-cavity is studied in conjunction with the external circuit. The model is used to successfully simulate the evolution of the discharge and yield useful information about the build-up of space charge within the micro-cavity and the consequent modification of the applied electric field. The phase-space scatter plots for electrons, positive, and negative ions are obtained in order to understand the manner in which discharge progresses over time. The rise-time and the magnitude of the discharge current pulse are obtained and are seen to be affected by micro-cavity dimensions, gas pressure within the micro-cavity, and the permittivity of surrounding dielectrics. The results have been compared with existing experimental, theoretical, and computational results, wherever possible. An attempt has been made to understand the nature of the variations in terms of the physical processes involved.

  1. A quantum dynamics study of the benzopyran ring opening guided by laser pulses

    Science.gov (United States)

    Saab, Mohamad; Doriol, Loïc Joubert; Lasorne, Benjamin; Guérin, Stéphane; Gatti, Fabien

    2014-10-01

    The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of strategies that could help experimentalists to control the photoreactivity vs. photostability ratio (selectivity). In this work we present: (i) a pump-dump technique used to control the photostability, (ii) a two-step strategy to enhance the reactivity of the system: first, a pure vibrational excitation in the electronic ground state that prepares the system and, second, an ultraviolet excitation that brings the system to the first adiabatic electronic state; (iii) finally the effect of a non-resonant pulse (Stark effect) on the dynamics.

  2. Application of adjustable pulse lasers to studying rapid reaction kinetics of excited lanthanide complexing

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, V.P. (Gosudarstvennyj Opticheskij Inst., Leningrad (USSR))

    1983-12-01

    Using some europium (3) ion complexes new possibilities to be opened by application of adjustable pulse lasers for studying rapid reactions of electron-excited metal ion complexing are demonstrated. The 6Zh rhodamine pulse laser is used as a source of nonequilibrium photoexcitation of an array of Eu/sup 3 +/ complexes in the luminescent kinetic spectroscopy method. The following results are obtained: for the first time the rate of reaction of acetate ion substitution for water molecules of an excited (/sup 5/D/sub 0/) ion of Eu/sup 3 +/ was measured to be (0.7+-0.2)x10/sup 7/ s/sup -1/; using direct experiments the lower limit for the rate of transition of one isomeric form of the excited Eu x EDTA complex into another one in an aqueous solution is determined to be 5x10/sup 5/ s/sup -1/ at 295 K; the kinetics of the excitation energy migration beteen aqueous solvates of Eu/sup 3 +/ and EuxEDTA complexes is investigated.

  3. Study on the exposure of spherical microtargets to a (1-3) TW iodine laser pulse

    International Nuclear Information System (INIS)

    Zaretskij, A.I.; Kirillov, G.A.; Kormer, S.B.; Kochemasov, G.G.; Murugov, V.M.; Sukharev, S.A.

    1983-01-01

    Investigations carried out at the photo dissociation iodine laser ''Iskra-4'' (PIL) with the aim of improving laser parameters and studying the interaction of laser radiation with microtargets filled with TD gas, are reviewed. PIL ''Iskra-4'' has the radiation energy maximum in the world of approximately 1.8 kJ in one beam with the light aperture approximately 60 cm, pulse duration approximately 0.8 ns, beam divergence theta approximately 0.3-0.4 mrad and the contrast more than 10 6 . A good direction of laser radiation is achieved due to . the optimization of the composition of working medium, pressure of its components, and other factors that permits to minimize the gradient of refraction index without considerable reduction of the stored energy. The problem of selecting the regime of affecting of the ''exploding shell'' type and obtaining of short duration pulses is generally considered. The assigning generator and results of experiments into irradiation of spherical microtargets filled with DT gas are described. The neutron yield of up to 10 6 neutrons in the case of 50 time volumetric compression is obtained for the first time with the aid of PIL

  4. The Feasibility and Validity of a Remote Pulse Oximetry System for Pulmonary Rehabilitation: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Jonathan Tang

    2012-01-01

    Full Text Available Pulmonary rehabilitation is an effective treatment for people with chronic obstructive pulmonary disease. However, access to these services is limited especially in rural and remote areas. Telerehabilitation has the potential to deliver pulmonary rehabilitation programs to these communities. The aim of this study was threefold: to establish the technical feasibility of transmitting real-time pulse oximetry data, determine the validity of remote measurements compared to conventional face-to-face measures, and evaluate the participants’ perception of the usability of the technology. Thirty-seven healthy individuals participated in a single remote pulmonary rehabilitation exercise session, conducted using the eHAB telerehabilitation system. Validity was assessed by comparing the participant's oxygen saturation and heart rate with the data set received at the therapist’s remote location. There was an 80% exact agreement between participant and therapist data sets. The mean absolute difference and Bland and Altman’s limits of agreement fell within the minimum clinically important difference for both oxygen saturation and heart rate values. Participants found the system easy to use and felt confident that they would be able to use it at home. Remote measurement of pulse oximetry data for a pulmonary rehabilitation exercise session was feasible and valid when compared to conventional face-to-face methods.

  5. Numerical studies of acceleration of thorium ions by a laser pulse of ultra-relativistic intensity

    Directory of Open Access Journals (Sweden)

    Domanski Jaroslaw

    2018-01-01

    Full Text Available One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity ~ 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values ~ 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.

  6. Defect studies of thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Vlček, M; Čížek, J; Procházka, I; Novotný, M; Bulíř, J; Lančok, J; Anwand, W; Brauer, G; Mosnier, J-P

    2014-01-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  7. Construction and temporal behaviour study of multi RLC intense light pulses for dermatological applications.

    Science.gov (United States)

    Hamoudi, Walid K; Ismail, Raid A; Shakir, Hussein A

    2017-10-01

    Driving a flash lamp in an intense pulsed light system requires a high-voltage DC power supply, capacitive energy storage and a flash lamp triggering unit. Single, double, triple and quadruple-mesh discharge and triggering circuits were constructed to provide intense light pulses of variable energy and time durations. The system was treated as [Formula: see text] circuit in some cases and [Formula: see text] circuit in others with a light pulse profile following the temporal behaviour of the exciting current pulse. Distributing the energy delivered to one lamp onto a number of LC meshes permitted longer current pulses, and consequently increased the light pulse length. Positive results were obtained when using the system to treat skin wrinkles.

  8. RADIOLYTIC HYDROGEN GENERATION INSAVANNAH RIVER SITE (SRS) HIGH LEVEL WASTETANKS COMPARISON OF SRS AND HANFORDMODELING PREDICTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C; Ned Bibler, N

    2009-04-15

    In the high level waste tanks at the Savannah River Site (SRS), hydrogen is produced continuously by interaction of the radiation in the tank with water in the waste. Consequently, the vapor spaces of the tanks are purged to prevent the accumulation of H{sub 2} and possible formation of a flammable mixture in a tank. Personnel at SRS have developed an empirical model to predict the rate of H{sub 2} formation in a tank. The basis of this model is the prediction of the G value for H{sub 2} production. This G value is the number of H{sub 2} molecules produced per 100 eV of radiolytic energy absorbed by the waste. Based on experimental studies it was found that the G value for H{sub 2} production from beta radiation and from gamma radiation were essentially equal. The G value for H{sub 2} production from alpha radiation was somewhat higher. Thus, the model has two equations, one for beta/gamma radiation and one for alpha radiation. Experimental studies have also indicated that both G values are decreased by the presence of nitrate and nitrite ions in the waste. These are the main scavengers for the precursors of H{sub 2} in the waste; thus the equations that were developed predict G values for hydrogen production as a function of the concentrations of these two ions in waste. Knowing the beta/gamma and alpha heat loads in the waste allows one to predict the total generation rate for hydrogen in a tank. With this prediction a ventilation rate can be established for each tank to ensure that a flammable mixture is not formed in the vapor space in a tank. Recently personnel at Hanford have developed a slightly different model for predicting hydrogen G values. Their model includes the same precursor for H{sub 2} as the SRS model but also includes an additional precursor not in the SRS model. Including the second precursor for H{sub 2} leads to different empirical equations for predicting the G values for H{sub 2} as a function of the nitrate and nitrite concentrations in

  9. Studies on the transmission and processing of pulse-shaped signals from nuclear radiation detectors using methods of systems theory

    International Nuclear Information System (INIS)

    Spillekothen, H.G.

    2007-01-01

    Using methods of the systems theory of electronic communications and theoretical electrical science, this study describes the transmission of pulse-shaped signals from nuclear radiation detectors from the detector over ''electrically long lines'' (cables) to the output of the first pulse amplifier. The example of pulses from BF 3 -proportional counters shows, using the Fourier transformation, that pulses from radiation detectors contain a frequency spectrum ranging well above 10 8 Hz. If these pulses are transmitted to the first amplifier over a line length of several meters, the laws of the theory of transmission lines must be taken into account to avoid false signals caused by reflections. In the example, line equations are applied and the influence of the line and the terminating impedance is demonstrated. The influence of the frequency response ν(ω) and the phase response δ(ω) of the amplifier is also considered in the sample calculation. The methods presented make it possible to analyze and optimize the transmission and amplification of signals from radiation detectors. Close agreement emerges between empirically observed and calculated pulse shapes. (orig.)

  10. Studies on the Pulse Rate, Pedometer Count and Satisfactoin Degree at Various Exercise

    OpenAIRE

    小原, 史朗

    2004-01-01

    This investigation examined whether free exercise of students became good stimulation of breathing circulation function from relation of pulse rate and pedometer count. And, I examined it on satisfaction degree after exercise. Object person was 432 man students (total of 1391) and 94 woman students (total of 472). As for relation of pulse rate and pedometer count, statistical meaning was recognized by man and women. The exercise that a pulse rate and pedometer count were high together seemed ...

  11. Experimental Study of SO2 Removal by Pulsed DBD Along with the Application of Magnetic Field

    International Nuclear Information System (INIS)

    Rong Mingzhe; Liu Dingxin; Wang Xiaohua; Wang Junhua

    2007-01-01

    Dielectric barrier discharge (DBD) for SO 2 removal from indoor air is investigated. In order to improve the removal efficiency, two novel methods are combined in this paper, namely by applying a pulsed driving voltage with nanosecond rising time and applying a magnetic field. For SO 2 removal efficiency, different matches of electric field and magnetic field are discussed. And nanosecond rising edge pulsed power supply and microsecond rising edge pulsed power supply are compared. It can be concluded that a pulsed DBD with nanosecond rising edge should be adopted, and electrical field and magnetic field should be applied in an appropriate match

  12. Multiplex Outputs ns Grade High-voltage Fast Pulse Generator Study

    International Nuclear Information System (INIS)

    Wang Xin; Chen Kenan

    2009-01-01

    Using a double-grid hydrogen thyratron, a fast pulse generator with four outputs, high-voltage, low jitter, was made to use at special occasion.In this paper, the basic structure of pulser, switching theory and double-grid driving of hydrogen thyratron was introduced, and also, the effects of grids driving pulses characteristics, the delay between too grids driving, the reservoir heater voltage and cathode heater voltage on the output are carefully examined in experiments. The pulse generator with four outputs was made to producing pulses with amplitude up to 4 kV, rise-time less than 15 ns and jitter less than 3 ns. (authors)

  13. Study of 18-Pulse Rectifier Utilizing Hexagon Connected 3-Phase to 9-Phase Transformer

    Directory of Open Access Journals (Sweden)

    Ahmad Saudi Samosir

    2008-04-01

    Full Text Available The 18-pulse converter, using Y or -connected differential autotransformer, is very interesting since it allows natural high power factor correction. The lowest input current harmonic components are the 17th and 19th. The Transformer is designed to feed three six-pulse bridge rectifiers displaced in phase by 200. This paper present a high power factor three-phase rectifier bases on 3-phase to 9-phase transformer and 18-pulse rectifier. The 9-phase polygon-connected transformer followed by 18-pulse diode rectifiers ensures the fundamental concept of natural power factor correction. Simulation results to verify the proposed concept are shown in this paper.

  14. Studies on widely tunable ultra-short laser pulses using energy transfer distributed feedback dye laser

    International Nuclear Information System (INIS)

    Ahamed, M.B.; Ramalingam, A.; Palanisamy, P.K.

    2003-01-01

    This paper presents both theoretical and experimental study of the characteristics of Nd: YAG laser pumped energy transfer distributed feedback dye laser (ETDFDL). Using theoretical model proposed, the behavior of ETDFDL such as the characteristics of donor DFDL, the acceptor DFDL, the dependence of their pulse width and output power on donor-acceptor concentrations and pump power are studied for dye mixture Rhodamine 6G and Cresyl Violet in detail. Experimentally using prism-dye cell configuration, the ETDFDL output is obtained and the output energy of DFDL is measured at the emission peaks of donor and acceptor dyes for different pump powers and donor-acceptor concentrations. In addition, the DFDL linewidth measurement has been carried out at the lasing wavelengths of the donor and acceptor dyes using Fabry-Perot etalon and the tunability of DFDL is measured to be in the wavelength range of 545-680 nm

  15. Photoelectric properties of GaAs materials studied by pulsed laser techniques

    International Nuclear Information System (INIS)

    Aguir, Khalifa

    1981-01-01

    This research thesis addressed the photoelectric properties of single-crystal or epitaxial GaAs (N doped or P doped) materials. The objective is to characterize and to improve the electric quality of these materials and associated components, notably for the production of high performance solar cells for ground-based or space-based applications. More particularly, this research aimed at using an excitation by a pulsed laser to analyse recombination and trapping properties of carriers created by photo-excitation, and also at studying the effect of low doses of particle irradiation on the carrier properties. Thus, the author describes conduction characteristics of two different N-type epitaxial layers, discusses carrier excitation and recombination processes which may occur in semiconductors, and proposes an overview of trapping phenomena. Photoelectric properties of the considered epitaxial layers are then studied and discussed

  16. Moessbauer and calorimetric studies of portland cement hydration in the presence of black gram pulse

    International Nuclear Information System (INIS)

    Rai, Sarita; Kurian, Sajith; Dwivedi, V. N.; Das, S. S.; Singh, N. B.; Gajbhiye, N. S.

    2009-01-01

    Effect of different concentrations of naturally occurring admixture in the form of fine powder of black gram pulse (BGP) on the hydration of Portland cement was studied by isothermal calorimetry and 57 Fe Moessbauer spectroscopy. The spectra were recorded for anhydrous cement and the hydration products at room temperature and 77 K. In the presence of BGP, the spectra showed superparamagnetic doublets at room temperature and the sextet at 77 K, due to the presence of fine particles of iron containing component. Moessbauer studies of hydration products confirmed the formation of nanosize hydration products containing Fe 3+ . The isomer shift (δ) and the quadrupole splitting (ΔE Q ) values of C 4 AF in the cement confirmed iron in an octahedral and tetrahedral environment with +3 oxidation state. The high value of quadrupole splitting showed the high asymmetry of the electron environment around the iron atom. The overall mechanism of the hydration of cement in presence of BGP is discussed.

  17. Pulse to pulse klystron diagnosis system

    International Nuclear Information System (INIS)

    Nowak, J.; Davidson, V.; Genova, L.; Johnson, R.; Reagan, D.

    1981-03-01

    This report describes a system used to study the behavior of SLAC high powered klystrons operating with a twice normal pulse width of 5 μs. At present, up to eight of the klystrons installed along the accelerator can be operated with long pulses and monitored by this system. The report will also discuss some of the recent findings and investigations

  18. The association between pulse wave velocity and cognitive function: the Sydney Memory and Ageing Study.

    Directory of Open Access Journals (Sweden)

    Joel Singer

    Full Text Available OBJECTIVES: Pulse wave velocity (PWV is a measure of arterial stiffness and its increase with ageing has been associated with damage to cerebral microvessels and cognitive impairment. This study examined the relationship between carotid-femoral PWV and specific domains of cognitive function in a non-demented elderly sample. METHOD: Data were drawn from the Sydney Memory and Ageing Study, a cohort study of non-demented community-dwelling individuals aged 70-90 years, assessed in successive waves two years apart. In Wave 2, PWV and cognitive function were measured in 319 participants. Linear regression was used to analyse the cross-sectional relationship between arterial stiffness and cognitive function in the whole sample, and separately for men and women. Analysis of covariance was used to assess potential differences in cognition between subjects with PWV measurements in the top and bottom tertiles of the cohort. Covariates were age, education, body mass index, pulse rate, systolic blood pressure, cholesterol, depression, alcohol, smoking, hormone replacement therapy, apolipoprotein E ε4 genotype, use of anti-hypertensive medications, history of stroke, transient ischemic attack, myocardial infarction, angina, diabetes, and also sex for the whole sample analyses. RESULTS: There was no association between PWV and cognition after Bonferroni correction for multiple testing. When examining this association for males and females separately, an association was found in males, with higher PWV being associated with lower global cognition and memory, however, a significant difference between PWV and cognition between males and females was not found. CONCLUSION: A higher level of PWV was not associated with lower cognitive function in the whole sample.

  19. Pilot Study: Estimation of Stroke Volume and Cardiac Output from Pulse Wave Velocity.

    Directory of Open Access Journals (Sweden)

    Yurie Obata

    Full Text Available Transesophageal echocardiography (TEE is increasingly replacing thermodilution pulmonary artery catheters to assess hemodynamics in patients at high risk for cardiovascular morbidity. However, one of the drawbacks of TEE compared to pulmonary artery catheters is the inability to measure real time stroke volume (SV and cardiac output (CO continuously. The aim of the present proof of concept study was to validate a novel method of SV estimation, based on pulse wave velocity (PWV in patients undergoing cardiac surgery.This is a retrospective observational study. We measured pulse transit time by superimposing the radial arterial waveform onto the continuous wave Doppler waveform of the left ventricular outflow tract, and calculated SV (SVPWV using the transformed Bramwell-Hill equation. The SV measured by TEE (SVTEE was used as a reference.A total of 190 paired SV were measured from 28 patients. A strong correlation was observed between SVPWV and SVTEE with the coefficient of determination (R2 of 0.71. A mean difference between the two (bias was 3.70 ml with the limits of agreement ranging from -20.33 to 27.73 ml and a percentage error of 27.4% based on a Bland-Altman analysis. The concordance rate of two methods was 85.0% based on a four-quadrant plot. The angular concordance rate was 85.9% with radial limits of agreement (the radial sector that contained 95% of the data points of ± 41.5 degrees based on a polar plot.PWV based SV estimation yields reasonable agreement with SV measured by TEE. Further studies are required to assess its utility in different clinical situations.

  20. The association between pulse wave velocity and cognitive function: the Sydney Memory and Ageing Study.

    Science.gov (United States)

    Singer, Joel; Trollor, Julian N; Crawford, John; O'Rourke, Michael F; Baune, Bernhard T; Brodaty, Henry; Samaras, Katherine; Kochan, Nicole A; Campbell, Lesley; Sachdev, Perminder S; Smith, Evelyn

    2013-01-01

    Pulse wave velocity (PWV) is a measure of arterial stiffness and its increase with ageing has been associated with damage to cerebral microvessels and cognitive impairment. This study examined the relationship between carotid-femoral PWV and specific domains of cognitive function in a non-demented elderly sample. Data were drawn from the Sydney Memory and Ageing Study, a cohort study of non-demented community-dwelling individuals aged 70-90 years, assessed in successive waves two years apart. In Wave 2, PWV and cognitive function were measured in 319 participants. Linear regression was used to analyse the cross-sectional relationship between arterial stiffness and cognitive function in the whole sample, and separately for men and women. Analysis of covariance was used to assess potential differences in cognition between subjects with PWV measurements in the top and bottom tertiles of the cohort. Covariates were age, education, body mass index, pulse rate, systolic blood pressure, cholesterol, depression, alcohol, smoking, hormone replacement therapy, apolipoprotein E ε4 genotype, use of anti-hypertensive medications, history of stroke, transient ischemic attack, myocardial infarction, angina, diabetes, and also sex for the whole sample analyses. There was no association between PWV and cognition after Bonferroni correction for multiple testing. When examining this association for males and females separately, an association was found in males, with higher PWV being associated with lower global cognition and memory, however, a significant difference between PWV and cognition between males and females was not found. A higher level of PWV was not associated with lower cognitive function in the whole sample.

  1. Particle acceleration by electromagnetic pulses

    International Nuclear Information System (INIS)

    Lai, H.M.

    1982-01-01

    Particle interaction with plane electromagnetic pulses is studied. It is shown that particle acceleration by a wavy pulse, depending on the shape of the pulse, may not be small. Further, a diffusive-type particle acceleration by multiple weak pulses is described and discussed. (author)

  2. Study of liquid hydrocarbons subjected to ionizing radiations

    International Nuclear Information System (INIS)

    Grob, Robert.

    1977-01-01

    This work is a study of liquid hydrocarbons (especially alkanes and cycloalkanes), ionized and excited by low L.E.T. high energy radiation. An analysis of radiolytical products shows a definite correlation between radiochemical yields and bond energies. The study of the influence of scavengers has been carried out and the methods for the determination of α parameters are discussed. Ionic recombination has been fully investigated: theoretical studies, based on a phenomenological model, on primary and (in presence of solute) secondary charge recombination have been performed. Secondary species were observed by use of kinetic optical absorption spectrophotometry. A good agreement with theory is obtained only when the electron scavenging before thermalization is negligible. Electron mobility in hydrocarbons has been measured and the electron scavenging rate constants have been determined using the pulse conductivity technique. Conformational analysis calculations show a correlation between the electron mobility and the electronic structure. The rate of formation of a radiolytic product and the rate of decay of its precursor have been studied for solutions of hydrocarbons and electron scavengers [fr

  3. Positron annihilation in a metal-oxide semiconductor studied by using a pulsed monoenergetic positron beam

    Science.gov (United States)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Ohji, Y.

    1993-12-01

    The positron annihilation in a metal-oxide semiconductor was studied by using a pulsed monoenergetic positron beam. Lifetime spectra of positrons were measured as a function of incident positron energy for a polycrystalline Si(100 nm)/SiO2(400 nm)/Si specimen. Applying a gate voltage between the polycrystalline Si film and the Si substrate, positrons implanted into the specimen were accumulated at the SiO2/Si interface. From the measurements, it was found that the annihilation probability of ortho-positronium (ortho-Ps) drastically decreased at the SiO2/Si interface. The observed inhibition of the Ps formation was attributed to an interaction between positrons and defects at the SiO2/Si interface.

  4. A study of the ion species dependence of [chi][sub e] by heat pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Mertens, V; Wagner, F [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Kraemer-Flecken, A; Waidmann, G [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik; Riedel, K [New York Univ., NY (United States). Courant Inst. of Mathematical Sciences

    1991-01-01

    An investigation of the isotope dependence of [chi][sub e] on Asdex revealed that the values of [chi][sub e] in hydrogen and deuterium were the same within the limits of experimental accuracy. This study in hydrogen, deuterium and helium has been continued on Textor. The 11 channel ECE diagnostic measures the temperature perturbations generated by sawtooth crashes in an ohmically heated plasma. Averaging over the one second flat top phase improves the signal to noise ratio to the extent that differences in the radial profile of [chi][sub e] are able to be inferred. Even though the values of [chi][sub e] found in each of the three gases are greater than the values calculated from power balance, the basic relationship between the energy confinement time and the value of [chi][sub e] deduced by heat pulse propagation can still be explored. (author) 7 refs. 4 figs.

  5. A study of the ion species dependence of χe by heat pulse propagation

    International Nuclear Information System (INIS)

    Giannone, L.; Mertens, V.; Wagner, F.; Kraemer-Flecken, A.; Waidmann, G.; Riedel, K.

    1991-01-01

    An investigation of the isotope dependence of χ ε on ASDEX revealed that the values of χ ε in hydrogen and deuterium were the same within the limits of experimental accuracy. This study in hydrogen, deuterium and helium has been continued on TEXTOR. The 11 channel ECE diagnostic measures the temperature perturbations generated by sawtooth crashes in an ohmically heated plasma. Averaging over the one second flat top phase improves the signal to noise ratio to the extent that differences in the radial profile of χ ε are able to be inferred. Even though the values of χ ε found in each of the three gases are greater than the values calculated from power balance, the basic relationship between the energy confinement time and the value of χ ε deduced by heat pulse propagation can still be explored. (orig.)

  6. A study of the ion species dependence of χe by heat pulse propagation

    International Nuclear Information System (INIS)

    Giannone, L.; Mertens, V.; Wagner, F.; Kraemer-Flecken, A.; Waidmann, G.; Riedel, K.

    1991-01-01

    An investigation of the isotope dependence of χ e on Asdex revealed that the values of χ e in hydrogen and deuterium were the same within the limits of experimental accuracy. This study in hydrogen, deuterium and helium has been continued on Textor. The 11 channel ECE diagnostic measures the temperature perturbations generated by sawtooth crashes in an ohmically heated plasma. Averaging over the one second flat top phase improves the signal to noise ratio to the extent that differences in the radial profile of χ e are able to be inferred. Even though the values of χ e found in each of the three gases are greater than the values calculated from power balance, the basic relationship between the energy confinement time and the value of χ e deduced by heat pulse propagation can still be explored. (author) 7 refs. 4 figs

  7. Study of the diffusion of some emulsions in the human skin by pulsed photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Lahjomri, F; Benamar, N; Chatri, E; Leblanc, R M

    2003-01-01

    We previously used pulsed photoacoustic spectroscopy (PPAS) to quantify sunscreen diffusion into human skin, and suggested a methodology to evaluate the time and the depth diffusion profile. These results were obtained by the analysis of the photoacoustic maximum response signal P max decrease, the time delay t max and the Fourier transform representation of the photoacoustic signal. In this study we present the results obtained for diffusion of four typical emulsions used in sunscreen compositions that show, for the first time, a particular behaviour for one of these emulsions due to a chemical reaction inside the skin during the diffusion process. This result provides a particularly interesting technique through the PPAS, to evaluate in situ the eventual chemical reactions that can occur during drug diffusion into human skin

  8. Ignition Study on a Rotary-valved Air-breathing Pulse Detonation Engine

    Science.gov (United States)

    Wu, Yuwen; Han, Qixiang; Shen, Yujia; Zhao, Wei

    2017-05-01

    In the present study, the ignition effect on detonation initiation was investigated in the air-breathing pulse detonation engine. Two kinds of fuel injection and ignition methods were applied. For one method, fuel and air was pre-mixed outside the PDE and then injected into the detonation tube. The droplet sizes of mixtures were measured. An annular cavity was used as the ignition section. For the other method, fuel-air mixtures were mixed inside the PDE, and a pre-combustor was utilized as the ignition source. At firing frequency of 20 Hz, transition to detonation was obtained. Experimental results indicated that the ignition position and initial flame acceleration had important effects on the deflagration-to-detonation transition.

  9. One-electron reduction of anthraquinone sulphonates: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Pal, H.; Palit, D.K.; Mukherjee, T.; Mittal, J.P.

    1991-01-01

    Semiquinone free radicals, derived from 2-sulphonate, 1,5-disulphonate and 2,6-disulphonate derivatives of 9,10-anthraquinone, have been studied using pulse radiolysis and kinetic absorption spectrophotometry techniques. Spectroscopic characteristics of both neutral and anionic species have been ascertained. Kinetics of formation and decay, reactivity with oxygen and one-electron reduction potential values have been estimated. The semiquinone radicals have been shown to be very stable under suitable pH conditions where the equilibrium (2 semiquinone ↔ quinone + hydroquinone) lies predominantly to the left. From a measurement of the equilibrium constants at different pH, values of E 2 and E m have been calculated. (author)

  10. Study of graphene growth on copper foil by pulsed laser deposition at reduced temperature

    Science.gov (United States)

    Abd Elhamid, Abd Elhamid M.; Hafez, Mohamed A.; Aboulfotouh, Abdelnaser M.; Azzouz, Iftitan M.

    2017-01-01

    Graphene has been successfully grown on commercial copper foil at low temperature of 500 °C by pulsed laser deposition (PLD). X-ray diffraction patterns showed that films have been grown in the presence of Cu(111) and Cu(200) facets. Raman spectroscopy was utilized to study the effects of temperature, surface structure, and cooling rate on the graphene growth. Raman spectra indicate that the synthesis of graphene layers rely on the surface quality of the Cu substrate together with the proper cooling profile coupled with graphene growth temperature. PLD-grown graphene film on Cu has been verified by transmission electron microscopy. Surface mediated growth of graphene on Cu foil substrate revealed to have a favorable catalytic effect. High growth rate of graphene and less defects can be derived using fast cooling rate.

  11. Reconfigurable intelligent sensors for health monitoring: a case study of pulse oximeter sensor.

    Science.gov (United States)

    Jovanov, E; Milenkovic, A; Basham, S; Clark, D; Kelley, D

    2004-01-01

    Design of low-cost, miniature, lightweight, ultra low-power, intelligent sensors capable of customization and seamless integration into a body area network for health monitoring applications presents one of the most challenging tasks for system designers. To answer this challenge we propose a reconfigurable intelligent sensor platform featuring a low-power microcontroller, a low-power programmable logic device, a communication interface, and a signal conditioning circuit. The proposed solution promises a cost-effective, flexible platform that allows easy customization, run-time reconfiguration, and energy-efficient computation and communication. The development of a common platform for multiple physical sensors and a repository of both software procedures and soft intellectual property cores for hardware acceleration will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of a reconfigurable pulse oximeter sensor.

  12. Surface capped fluorescent semiconductor nanoparticles: radiolytic synthesis and some of its biological applications

    International Nuclear Information System (INIS)

    Saha, A.

    2006-01-01

    Semiconductor nanocrystals or colloidal quantum dots (QD's) have generated great research interest because of their unusual properties arising out of quantum confinement effects. Many researchers in the field of nanotechnology focus on the 'high quality' semiconductor quantum dots. A good synthetic route should yield nanoparticles with narrow size distribution, good crystallinity, high photostability, desired surface properties and high photoluminescence quantum efficiency. In the domain of colloidal chemistry, reverse micellar synthesis, high temperature thermolysis using organometallic precursors and synthesis in aqueous media using polyphosphates or thiols as stabilizers are the most prominent ones. In contrast, γ-radiation assisted synthesis can offer a simplified approach to prepare size-controlled nanoparticles at room temperature. Syntheses of thiol-capped II-VI nanoparticles by radiolytic method, its characterization and some of its luminescence-based applications of biological relevance will be presented. The versatility of thiols (RSH) can be emphasized here as changing the R-group imparts different functionality to the particles and thus chemical behavior of the particles can be manipulated according to the application intended for. (authors)

  13. Pulsed-laser studies on the free-radical polymerization kinetics of styrene in microemulsion

    NARCIS (Netherlands)

    Manders, L.G.; Herk, van A.M.; German, A.L.; Sarnecki, J.; Schomäcker, R.; Schweer, J.

    1993-01-01

    A mean value of 339 L mol-1 s-1 was obtained for the propagation const. derived from pulsed-laser polymn. (PLP) of styrene in aq. AOT microemulsions. For accurate detns., simulations accounting for the esp. high radical concn. after the laser pulse in microemulsions were recommended. PLP with

  14. Study on characteristics of valves for pulsed gas feed into a cyclotron multicharged ion source

    International Nuclear Information System (INIS)

    Bogomolov, S.L.; Efremov, A.A.; Koval'chuk, I.M.; Kutner, V.B.; Pasyuk, A.S.

    1984-01-01

    Different valves (with rotating drum, piezoelectric and electromagnetic) for pulsed gas feed into cyclotron multicharged ion arc source are described. It is shown that piezoelectric and electromagnetic valves provide a possibility of regulating in a wide range the gas flow pulse parameters

  15. Polyphenol extraction from fresh tea leaves by pulsed electric field : a study of mechanisms

    NARCIS (Netherlands)

    Zderic, Aleksandra; Zondervan, Edwin

    2016-01-01

    The major interest in pulsed electric field treatment of biological tissues is derived from its non-thermal application: increasing cell permeability. This application has an important implication in extraction of complex organic molecules. In this work, pulsed electric field treatment is

  16. Principle study on the signal connection at transabdominal fetal pulse oximetry

    Directory of Open Access Journals (Sweden)

    Böttrich Marcel

    2016-09-01

    Full Text Available Transabdominal fetal pulse oximetry is an approach to measure oxygen saturation of the unborn child non-invasively. The principle of pulse oximetry is applied to the abdomen of a pregnant woman, such that the measured signal includes both, the maternal and the fetal pulse curve. One of the major challenges is to extract the shape of the fetal pulse curve from the mixed signal for computation of the oxygen saturation. In this paper we analyze the principle kind of connection of the fetal and maternal pulse curves in the measured signal. A time varying finite element model is used to rebuild the basic measurement environment, including a bulk tissue and two independently pulsing arteries to model the fetal and maternal blood circuit. The distribution of the light fluence rate in the model is computed by applying diffusion equation. From the detectors we extracted the time dependent fluence rate and analyzed the signal regarding its components. The frequency spectra of the signals show peaks at the fetal and maternal basic frequencies. Additional signal components are visible in the spectra, indicating multiplicative coupling of the fetal and maternal pulse curves. We conclude that the underlying signal model of algorithms for robust extraction of the shape of the fetal pulse curve, have to consider additive and multiplicative signal coupling.

  17. MR pulse sequences for selective relaxation time measurements: a phantom study

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Jensen, M

    1990-01-01

    a Siemens Magnetom wholebody magnetic resonance scanner operating at 1.5 Tesla was used. For comparison six imaging pulse sequences for relaxation time measurements were tested on the same phantom. The spectroscopic pulse sequences all had an accuracy better than 10% of the reference values....

  18. Analytical performances of laser-induced micro-plasma of Al samples with single and double ultrashort pulses in air and with Ar-jet: A comparative study

    International Nuclear Information System (INIS)

    Semerok, A.; Dutouquet, C.

    2014-01-01

    Ultrashort pulse laser microablation coupled with optical emission spectroscopy was under study to obtain several micro-LIBS analytical features (shot-to-shot reproducibility, spectral line intensity and lifetime, calibration curves, detection limits). Laser microablation of Al matrix samples with known Cu- and Mg-concentrations was performed by single and double pulses of 50 fs and 1 ps pulse duration in air and with Ar-jet. The micro-LIBS analytical features obtained under different experimental conditions were characterized and compared. The highest shot-to-shot reproducibility and gain in plasma spectral line intensity were obtained with double pulses with Ar-jet for both 50 fs and 1 ps pulse durations. The best calibration curves were obtained with 1 ps pulse duration with Ar-jet. Micro-LIBS with ultrashort double pulses may find its effective application for surface elemental microcartography. - Highlights: • Analytical performances of micro-LIBS with ultrashort double pulses were studied. • The maximal line intensity gain of 20 was obtained with double pulses and Ar-jet. • LIBS gain was obtained without additional ablation of a sample by the second pulse. • LIBS properties were almost the same for both 50 fs and 1 ps pulses. • The micro-LIBS detection limit was around 35 ppm

  19. Comparison study among conventional, tissue harmonic and pulse inversion harmonic images to evaluate pleural effusion and ascites

    International Nuclear Information System (INIS)

    Chung, Hwan Hoon; Kim, Yun Hwan; Kang, Chang Ho; Park, Bum Jin; Chung, Kyoo Byung; Suh, Won Hyuck

    2000-01-01

    To determine the most useful sonographic technique to evaluate pleural effusion and ascites by comparing conventional, tissue harmonic and pulse inversion harmonic images. 12 patients having pleural effusion and 14 patients having ascites were included in this study. 18 patients were male and 8 patients were female. Average age was 54.8 yrs (25-77). We compared images which had been taken at the same section with 3 above mentioned sonographic techniques. Evaluation was done by 3 radiologists in consensus and grades were given to 3 techniques from 1 to 3. Evaluating points were 1) normal structures that border the fluid such as liver, peritoneal lining, pleura, 2) septation in fluid, 3) debris floating in fluid, and 4) artifacts. Pulse inversion harmonic image was the best in image quality for normal structures, followed by tissue harmonic and conventional image (p<0.05). Pulse inversion harmonic image was better than conventional image to evaluate septation in fluid (p<0.05), but there were no statistically significant difference between pulse inversion and tissue harmonic images, and tissue harmonic and conventional images. Tissue harmonic image was better than pulse inversion harmonic and conventional images to evaluate debris floating in fluid (p<0.05) but there was no statistically significant difference between these two latter techniques. Artifacts were most prominent on conventional image followed by tissue harmonic and pulse inversion harmonic image (p<0.05). Pulse inversion harmonic image was the best sonographic technique to evaluate pleural effusion or ascites, However, Tissue harmonic image was the best for evaluation of debris.

  20. Comparison study among conventional, tissue harmonic and pulse inversion harmonic images to evaluate pleural effusion and ascites

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hwan Hoon; Kim, Yun Hwan; Kang, Chang Ho; Park, Bum Jin; Chung, Kyoo Byung; Suh, Won Hyuck [Korea University College of Medicine, Seoul (Korea, Republic of)

    2000-12-15

    To determine the most useful sonographic technique to evaluate pleural effusion and ascites by comparing conventional, tissue harmonic and pulse inversion harmonic images. 12 patients having pleural effusion and 14 patients having ascites were included in this study. 18 patients were male and 8 patients were female. Average age was 54.8 yrs (25-77). We compared images which had been taken at the same section with 3 above mentioned sonographic techniques. Evaluation was done by 3 radiologists in consensus and grades were given to 3 techniques from 1 to 3. Evaluating points were 1) normal structures that border the fluid such as liver, peritoneal lining, pleura, 2) septation in fluid, 3) debris floating in fluid, and 4) artifacts. Pulse inversion harmonic image was the best in image quality for normal structures, followed by tissue harmonic and conventional image (p<0.05). Pulse inversion harmonic image was better than conventional image to evaluate septation in fluid (p<0.05), but there were no statistically significant difference between pulse inversion and tissue harmonic images, and tissue harmonic and conventional images. Tissue harmonic image was better than pulse inversion harmonic and conventional images to evaluate debris floating in fluid (p<0.05) but there was no statistically significant difference between these two latter techniques. Artifacts were most prominent on conventional image followed by tissue harmonic and pulse inversion harmonic image (p<0.05). Pulse inversion harmonic image was the best sonographic technique to evaluate pleural effusion or ascites, However, Tissue harmonic image was the best for evaluation of debris.

  1. An automated pulse labelling method for structure-activity relationship studies with antibacterial oxazolidinones.

    Science.gov (United States)

    Eustice, D C; Brittelli, D R; Feldman, P A; Brown, L J; Borkowski, J J; Slee, A M

    1990-01-01

    The 3-aryl-2-oxooxazolidinones are a new class of synthetic antibacterial agents that potently inhibit protein synthesis. An automated pulse labelling method with [3H]-lysine was developed with Bacillus subtilis to obtain additional quantitative activity data for structure-activity relationship studies with the oxazolidinones. Inhibition constants were calculated after a Logit fit of the data into the formula: % of control = 100/(1 + e[-B(X - A)]), where B is the slope of the model, X is the natural log of the inhibitor concentration and A is the natural log of the inhibitor concentration required to inhibit protein synthesis by 50% (ln IC50). When substituents at the 5-methyl position of the heterocyclic ring (B-substituent) were NHCOCH3, OH or Cl, the correlation coefficient was 0.87 between the MIC and IC50 values (for all compounds with MICs less than or equal to 16 micrograms/ml). The D-isomers of DuP 721 (A-substituent = CH3CO) and DuP 105 (A-substituent = CH3SO) gave MICs of 128 micrograms/ml and IC50s of greater than or equal to 50 micrograms/ml for protein synthesis, showing that only the L-isomers were active. By MIC testing, oxazolidinones with the B-substituent of NHCOCH3 and the A-substituent of CH3CO, NO2, CH3S, CH3SO2 or (CH3)2CH had comparable antibacterial potency; however, pulse labelling analysis showed that compounds with an A-substituent of CH3CO or NO2 were more potent inhibitors of protein synthesis.

  2. Studies of the confinement at laser-induced backside dry etching using infrared nanosecond laser pulses

    Science.gov (United States)

    Ehrhardt, M.; Lorenz, P.; Bayer, L.; Han, B.; Zimmer, K.

    2018-01-01

    In the present study, laser-induced backside etching of SiO2 at an interface to an organic material using laser pulses with a wavelength of λ = 1064 nm and a pulse length of τ = 7 ns have been performed in order to investigate selected processes involved in etching of the SiO2 at confined ablation conditions with wavelengths well below the band gap of SiO2. Therefore, in between the utilized metallic absorber layer and the SiO2 surface, a polymer interlayer with a thickness between 20 nm to 150 nm was placed with the aim, to separate the laser absorption process in the metallic absorber layer from the etching process of the SiO2 surface due to the provided organic interlayer. The influence of the confinement of the backside etching process was analyzed by the deposition of different thick polymer layers on top of the metallic absorber layer. In particular, it was found that the SiO2 etching depth decreases with higher polymer interlayer thickness. However, the etching depth increases with increasing the confinement layer thickness. SEM images of the laser processed areas show that the absorber and confinement layers are ruptured from the sample surface without showing melting, and suggesting a lift off process of these films. The driving force for the layers lift off and the etching of the SiO2 is probably the generated laser-induce plasma from the confined ablation that provides the pressure for lift off, the high temperatures and reactive organic species that can chemically attack the SiO2 surface at these conditions.

  3. Analytical and Numerical Studies of the Complex Interaction of a Fast Ion Beam Pulse with a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    Plasma neutralization of an intense ion beam pulse is of interest for many applications, including plasma lenses, heavy ion fusion, high energy physics, etc. Comprehensive analytical, numerical, and experimental studies are underway to investigate the complex interaction of a fast ion beam with a background plasma. The positively charged ion beam attracts plasma electrons, and as a result the plasma electrons have a tendency to neutralize the beam charge and current. A suite of particle-in-cell codes has been developed to study the propagation of an ion beam pulse through the background plasma. For quasi-steady-state propagation of the ion beam pulse, an analytical theory has been developed using the assumption of long charge bunches and conservation of generalized vorticity. The analytical results agree well with the results of the numerical simulations. The visualization of the data obtained in the numerical simulations shows complex collective phenomena during beam entry into and ex it from the plasma

  4. The study of Zn–Co alloy coatings electrochemically deposited by pulse current

    Directory of Open Access Journals (Sweden)

    Tomić Milorad V.

    2012-01-01

    Full Text Available The electrochemical deposition by pulse current of Zn-Co alloy coatings on steel was examined, with the aim to find out whether pulse plating could produce alloys that could offer a better corrosion protection. The influence of on-time and the average current density on the cathodic current efficiency, coating morphology, surface roughness and corrosion stability in 3% NaCl was examined. At the same Ton/Toff ratio the current efficiency was insignificantly smaller for deposition at higher average current density. It was shown that, depending on the on-time, pulse plating could produce more homogenous alloy coatings with finer morphology, as compared to deposits obtained by direct current. The surface roughness was the greatest for Zn-Co alloy coatings deposited with direct current, as compared with alloy coatings deposited with pulse current, for both examined average current densities. It was also shown that Zn-Co alloy coatings deposited by pulse current could increase the corrosion stability of Zn-Co alloy coatings on steel. Namely, alloy coatings deposited with pulse current showed higher corrosion stability, as compared with alloy coatings deposited with direct current, for almost all examined cathodic times, Ton. Alloy coatings deposited at higher average current density showed greater corrosion stability as compared with coatings deposited by pulse current at smaller average current density. It was shown that deposits obtained with pulse current and cathodic time of 10 ms had the poorest corrosion stability, for both investigated average deposition current density. Among all investigated alloy coatings the highest corrosion stability was obtained for Zn-Co alloy coatings deposited with pulsed current at higher average current density (jav = 4 A dm-2.

  5. Structural, morphological and Raman studies of pulse electrosynthesised indium antimonide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Joginder, E-mail: joginderchauhan82@gmail.com; Chandel, Tarun; Rajaram, P. [School of Studies in Physics, Jiwaji University, Gwalior (MP), India-474011 (India)

    2015-08-28

    InSb films deposited on fluorine doped tin oxide (FTO) substrates by a pulse elctrodeposition technique. The deposition was carried out at an applied potential −1.3V versus Ag/AgCl electrode. Structural, morphological and optical studies were performed on the electrodeposited InSb. X-ray diffraction (XRD) studies show that the deposited InSb films are polycrystalline in nature having the zinc blend structure. The crystallite size (D), dislocation density (δ) and strain (ε) were calculated using XRD results. The EDAX analysis shows that chemical composition of In{sup 3+} and Sb{sup 3+} ions is close to the required stoichiometry. The surface morphology of the deposited films was examined using scanning electron microscopy (SEM). SEM studies reveal that the surface of the films is uniformly covered with submicron sized spherical particles. However, the crystallite size determined by the Scherrer method shows a size close to 30 nm. Surface morphology studies of the InSb films were also performed using atomic force microscopy (AFM). The average surface roughness as measured by AFM is around 40 nm. Hot probe studies show that all the electrodeposited thin films have n type conductivity and the thickness of the films is calculated using electrochemical formula.

  6. Study of the fast inversion recovery pulse sequence. With reference to fast fluid attenuated inversion recovery and fast short TI inversion recovery pulse sequence

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Suzuki, Takeshi

    1997-01-01

    The fast inversion recovery (fast IR) pulse sequence was evaluated. We compared the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence in which inversion time (TI) was established as equal to the water null point for the purpose of the water-suppressed T 2 -weighted image, with the fast short TI inversion recovery (fast STIR) pulse sequence in which TI was established as equal to the fat null point for purpose of fat suppression. In the fast FLAIR pulse sequence, the water null point was increased by making TR longer. In the FLAIR pulse sequence, the longitudinal magnetization contrast is determined by TI. If TI is increased, T 2 -weighted contrast improves in the same way as increasing TR for the SE pulse sequence. Therefore, images should be taken with long TR and long TI, which are longer than TR and longer than the water null point. On the other hand, the fat null point is not affected by TR in the fast STIR pulse sequence. However, effective TE was affected by variation of the null point. This increased in proportion to the increase in effective TE. Our evaluation indicated that the fast STIR pulse sequence can control the extensive signals from fat in a short time. (author)

  7. Efficacy and cognitive side effects after brief pulse and ultrabrief pulse right unilateral electroconvulsive therapy for major depression: a randomized, double-blind, controlled study

    NARCIS (Netherlands)

    Spaans, H.P.; Verwijk, E.; Comijs, H.C.; Kok, R.M.; Sienaert, P.; Bouckaert, F.; Fannes, K.; Vandepoel, K.; Scherder, E.J.A.; Stek, M.L.; Kho, K.H.

    2013-01-01

    Objective: To compare the efficacy and cognitive side effects of high-dose unilateral brief pulse electroconvulsive therapy (ECT) with those of high-dose unilateral ultrabrief pulse ECT in the treatment of major depression. Method: From April 2007 until March 2011, we conducted a prospective,

  8. Study and realisation of a programmable generator of pulse sequences, for nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Lambert, Daniel

    1974-01-01

    After having recalled the operation of pulse-based nuclear magnetic resonance and the use of pulse sequences in NMR-based measurements, and outlined the need for a pulse sequence generator, the author reports the design and realisation of such a device. He describes its general organisation with its base sequence, base clock, sequence start, duration, displays, data transfers, data processing, and signal distribution. He presents the chosen technology (ECL logics), the sequence base set, time bases, multiplexers, comparison sets, the distribution set, the sequence programming, the sampling and output set. He reports tests and the use of the so-designed generator [fr

  9. Study of graphitic microstructure formation in diamond bulk by pulsed Bessel beam laser writing

    Science.gov (United States)

    Kumar, S.; Sotillo, B.; Chiappini, A.; Ramponi, R.; Di Trapani, P.; Eaton, S. M.; Jedrkiewicz, O.

    2017-11-01

    The advantages of using Bessel beams for the generation of graphitic structures in diamond bulk are presented. We show that by irradiating the sample with a pulsed Bessel beam whose non-diffracting zone is of the same order of the sample thickness, it is possible to produce without any sample translation straight graphitic through-microstructures, whose size depends on the input pulse energy. The microstructure growth is investigated as a function of the number of irradiating pulses, and the femtosecond and picosecond regimes are contrasted.

  10. Pulse radiolysis study of monomer and dimer cations of styrene, 1-methylstyrene and 1,1'-diphenylethylene

    International Nuclear Information System (INIS)

    Mehnert, R.; Helmstreit, W.; Boes, J.; Brede, O.

    1977-01-01

    In pulse-irradiated solutions of styrene, 1-methylstyrene and 1,1'-diphenylethylene, the decay kinetics of the olefin monomer cations and the formation kinetics of the corresponding dimer cations have been studied at room temperature. The solutions were irradiated with 15-nsec 15-ampere pulses of 1-MeV electrons from an Elit-type accelerator. The total dose per pulse was approximately 10 krad. The monomer cations were generated with rate constants of about 10 11 M -1 sec -1 . From the time decay of the monomer light absorption and the growth in time of the dimer absorption rate constants for the dimer formation between 0.8x10 10 and 1.2x10 10 M -1 sec -1 have been determined. (T.I.)

  11. Pulsed activation analyses of the ITER blanket design options considered in the blanket trade-off study

    International Nuclear Information System (INIS)

    Wang, Q.; Henderson, D.L.

    1995-01-01

    Pulsed activation calculations have been performed on two blanket options considered as part of the ITER home team blanket trade-off study. The objective was to compare the activity, afterheat and waste disposal rating (WDR) results of a composite blanket-shield design for the continuous operation approximation to a pulsed operation case to determine whether the differences are at most the duty factor as predicted by the two nuclide chain model. Up to a cooling period of 100 years, the pulsed activity and afterheat values were below the continuous oepration results and well within (except for one afterheat value) the maximum deviation predicted by the two nuclide chain model. No differences in the WDR values were noted as they are, to a large extent, based on long-lived nuclides which are insensitive to short-term changes in the operation history. (orig.)

  12. Experimental and theoretical studies of the physical processes occurring in thin plane targets irradiated by intense X-ray pulses

    International Nuclear Information System (INIS)

    Bugrov, A. E.; Burdonskii, I. N.; Gavrilov, V. V.; Gol'tsov, A. Yu.; Grabovskii, E. V.; Efremov, V. P.; Zhuzhukalo, E. V.; Zurin, M. V.; Koval'skii, N. G.; Kondrashov, V. N.; Oleinik, G. M.; Potapenko, A. I.; Samokhin, A. A.; Smirnov, V. P.; Fortov, V. E.; Frolov, I. N.

    2007-01-01

    Results are presented from experimental and theoretical studies of the interaction of intense X-ray pulses with different types of plane targets, including low-density (∼10 mg/cm 3 ) ones, in the Angara-5-1 facility. It is found experimentally that a dense low-temperature plasma forms on the target surface before the arrival of the main heating X-ray pulse. It is demonstrated that the contrast of the X-ray pulse can be increased by placing a thin organic film between the target and the discharge gap. The expansion velocity of the plasma created on the target surface irradiated by Z-pinch-produced X rays was found to be (3-4) x 10 6 cm/s. A comparison between the simulation and experimental results confirms the validity of the physical-mathematical model used

  13. Urinary 1H Nuclear Magnetic Resonance Metabolomic Fingerprinting Reveals Biomarkers of Pulse Consumption Related to Energy-Metabolism Modulation in a Subcohort from the PREDIMED study.

    Science.gov (United States)

    Madrid-Gambin, Francisco; Llorach, Rafael; Vázquez-Fresno, Rosa; Urpi-Sarda, Mireia; Almanza-Aguilera, Enrique; Garcia-Aloy, Mar; Estruch, Ramon; Corella, Dolores; Andres-Lacueva, Cristina

    2017-04-07

    Little is known about the metabolome fingerprint of pulse consumption. The study of robust and accurate biomarkers for pulse dietary assessment has great value for nutritional epidemiology regarding health benefits and their mechanisms. To characterize the fingerprinting of dietary pulses (chickpeas, lentils, and beans), spot urine samples from a subcohort from the PREDIMED study were stratified using a validated food frequency questionnaire. Urine samples of nonpulse consumers (≤4 g/day of pulse intake) and habitual pulse consumers (≥25 g/day of pulse intake) were analyzed using a 1 H nuclear magnetic resonance (NMR) metabolomics approach combined with multi- and univariate data analysis. Pulse consumption showed differences through 16 metabolites coming from (i) choline metabolism, (ii) protein-related compounds, and (iii) energy metabolism (including lower urinary glucose). Stepwise logistic regression analysis was applied to design a combined model of pulse exposure, which resulted in glutamine, dimethylamine, and 3-methylhistidine. This model was evaluated by a receiver operating characteristic curve (AUC > 90% in both training and validation sets). The application of NMR-based metabolomics to reported pulse exposure highlighted new candidates for biomarkers of pulse consumption and the impact on energy metabolism, generating new hypotheses on energy modulation. Further intervention studies will confirm these findings.

  14. Pulsed Electrical Spin Injection into InGaAs Quantum Dots: Studies of the Electroluminescence Polarization Dynamics

    International Nuclear Information System (INIS)

    Asshoff, P.; Loeffler, W.; Fluegge, H.; Zimmer, J.; Mueller, J.; Westenfelder, B.; Hu, D. Z.; Schaadt, D. M.; Kalt, H.; Hetterich, M.

    2010-01-01

    We present time-resolved studies of the spin polarization dynamics during and after initialization through pulsed electrical spin injection into InGaAs quantum dots embedded in a p-i-n-type spin-injection light-emitting diode. Experiments are performed with pulse widths in the nanosecond range and a time-resolved single photon counting setup is used to detect the subsequent electroluminescence. We find evidence that the achieved spin polarization shows an unexpected temporal behavior, attributed mainly to many-carrier and non-equilibrium effects in the device.

  15. Development and application of resistive pulse spectroscopy: studies on the size, form and deformability of red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Yee, J.P.

    1979-01-01

    The following studies were conducted using the resistive pulse spectroscopy (RPS) technique: cumulative spectra and individual pulse forms for rigid latex polymer spheres; acquisition and analysis of RPS spectral data by means of special computer program; interaction of red blood cells with glutaraldehyde; membrane properties of erythrocytes undergoing abrupt osmotic hemolysis; reversible effects of the binding of chlorpromazine HCl at the red cell membrane surface; effects of high cholesterol diet on erythrocytes of guinea pigs; and multi-population analysis for a mixture of fetal and maternal red cells. (HLW)

  16. Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells

    Energy Technology Data Exchange (ETDEWEB)

    Duka, M V; Dvoretskaya, L N; Babelkin, N S; Khodzitskii, M K; Chivilikhin, S A; Smolyanskaya, O A [St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation)

    2014-08-31

    We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 – 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth. (laser biophotonics)

  17. Study on Writing Transmission Metal Grating with Pulse Shaping of Femtosecond Laser

    International Nuclear Information System (INIS)

    Ni, X C; Sun, Q; Wang, Ch Y; Yang, L; Wu, Y Z; Jia, W; Chai, L

    2006-01-01

    Pulse shaping in femtosecond(fs) laser micromachining is different from that of traditional laser, whose main purpose is to reduce focal scale size, wipe off fluorescence around laser beam, decrease pulse distortion, and fabricate all kinds of figures. To describe the spatial form of laser pulse around focal scale, the synchronous moving of focal objective and accepting material is presented. When a pinhole mask is placed in front of focal objective, the changing trend of laser spatial form around focal point with the laser beam diameter will be obtained by the diameter changing of the hole mask. Experimental results show that the diameter of laser pulse around focal point trends smoothly when the pinhole diameter is modulated to smaller, even the position of beam waist is changed. These phenomena can be explained by optical imaging theory. Finally, the transmission metal grating is written successfully with a selected parameter

  18. Pulse radiolysis studies of fast reactions in molecular systems. Progress report, November 1976--October 1977

    International Nuclear Information System (INIS)

    Dorfman, L.M.

    1977-01-01

    Results from research in the following two areas are given: formation, properties, and reactivity of molecular ionic species in irradiated liquid systems; and pulse radiolysis of elementary reactions in protein function

  19. Optimal pulse sequence for ferumoxides-enhanced MR imaging used in the detection of hepatocellular carcinoma: a comparative study using seven pulse sequences

    International Nuclear Information System (INIS)

    Kim, Seung Hoon; Choi, Dongil; Lim, Jae Hoon; Lee, Won Jae; Jang, Hyun Jung; Lim, Kyo Keun; Lee, Soon Jin; Cho, Jae Min; Kim, Seung Kwon; Kim, Gab Chul

    2002-01-01

    To identify the optimal pulse sequence for ferumoxides-enhanced magnetic resonance (MR) imaging in the detection of hepatocelluar carcinomas (HCCs). Sixteen patients with 25 HCCs underwent MR imaging following intravenous infusion of ferumoxides. All MR studies were performed on a 1.5-T MR system, using a phased-array coil. Ferumoxides (Feridex IV) at a dose of 15 μmol/Kg was slowly infused intravenously, and axial images of seven sequences were obtained 30 minutes after the end of infusion. The MR protocol included fast spin-echo (FSE) with two echo times (TR3333-8571/TE18 and 90-117), singleshot FSE (SSFSE) with two echo times (TR∞/TE39 and 98), T2-weighted gradient-recalled acquisition in the steady state (GRASS) (TR216/TE20), T2-weighted fast multiplanar GRASS (FMPGR) (TR130/TE8.4-9.5), and T2-weighted fast multiplanar spoiled GRASS (FMPSPGR) (TR130/TE8.4-9.5). Contrast-to-noise ratios (CNRs) of HCCs determined during the imaging sequences formed the basis of quantitative analysis, and images were qualitatively assessed in terms of lesion conspicuity and image artifacts. The diagnostic accuracy of all sequences was assessed using receiver operating characteristic (ROC) analysis. Quantitative analysis revealed that the CNRs of T2-weighted FMPGR and T2-weighted FMPSPGR were significantly higher than those of the other sequences, while qualitative analysis showed that image artifacts were prominent at T2-weighted GRASS imaging. Lesion conspicuity was statistically significantly less clear at SSFSE imaging. In term of lesion detection, T-weighted FMPGR, T2- weighted FMPSPGR, and proton density FSE imaging were statistically superior to the others. T2-weighted FMPGR, T2- weighted FMPSPGR, and proton density FSE appear to be the optimal pulse sequences for ferumoxidesenhanced MR imaging in the detection of HCCs

  20. Experimental studies of thorium ion implantation from pulse laser plasma into thin silicon oxide layers

    Science.gov (United States)

    Borisyuk, P. V.; Chubunova, E. V.; Lebedinskii, Yu Yu; Tkalya, E. V.; Vasilyev, O. S.; Yakovlev, V. P.; Strugovshchikov, E.; Mamedov, D.; Pishtshev, A.; Karazhanov, S. Zh

    2018-05-01

    We report the results of experimental studies related to implantation of thorium ions into thin silicon dioxide by pulsed plasma flux expansion. Thorium ions were generated by laser ablation from a metal target, and the ionic component of the laser plasma was accelerated in an electric field created by the potential difference (5, 10 and 15 kV) between the ablated target and a SiO2/Si (0 0 1) sample. The laser ablation system installed inside the vacuum chamber of the electron spectrometer was equipped with a YAG:Nd3  +  laser having a pulse energy of 100 mJ and time duration of 15 ns in the Q-switched regime. The depth profile of thorium atoms implanted into the 10 nm thick subsurface areas together with their chemical state as well as the band gap of the modified silicon oxide at different conditions of implantation processes were studied by means of x-ray photoelectron spectroscopy and reflected electron energy loss spectroscopy methods. Analysis of the chemical composition showed that the modified silicon oxide film contains complex thorium silicates. Depending on the local concentration of thorium atoms, the experimentally established band gaps were located in the range 6.0–9.0 eV. Theoretical studies of the optical properties of the SiO2 and ThO2 crystalline systems were performed by ab initio calculations within hybrid functional. The optical properties of the SiO2/ThO2 composite were interpreted on the basis of the Bruggeman effective medium approximation. A quantitative assessment of the yield of isomeric nuclei in ‘hot’ laser plasma at the early stages of expansion was performed. The estimates made with experimental results demonstrated that the laser implantation of thorium ions into the SiO2 matrix can be useful for further research of low-lying isomeric transitions in a 229Th isotope with energy of 7.8 +/- 0.5 eV.