WorldWideScience

Sample records for pulse pressure variations

  1. Pulse pressure and diurnal blood pressure variation

    DEFF Research Database (Denmark)

    Knudsen, Søren Tang; Poulsen, Per Løgstrup; Hansen, Klavs Würgler

    2002-01-01

    retinopathy, nephropathy, macrovascular disease, PP, and diurnal BP variation in a group of type 2 diabetic patients. METHODS: In 80 type 2 diabetic patients we performed 24-h ambulatory BP (AMBP) and fundus photographs. Urinary albumin excretion was evaluated by urinary albumin/creatinine ratio. Presence...... or absence of macrovascular disease was assessed by an independent physician. RESULTS: Forty-nine patients had no detectable retinal changes (grade 1), 13 had grade 2 retinopathy, and 18 had more advanced retinopathy (grades 3-6). Compared to patients without retinopathy (grade 1), patients with grades 2......BACKGROUND: In nondiabetic subjects pulse pressure (PP) is an independent predictor of cardiovascular disease and microalbuminuria. Reduced circadian blood pressure (BP) variation is a potential risk factor for the development of diabetic complications. We investigated the association between...

  2. The impact of sedation on pulse pressure variation

    Czech Academy of Sciences Publication Activity Database

    Zvoníček, V.; Jurák, Pavel; Halámek, Josef; Kružliak, P.; Vondra, Vlastimil; Leinveber, P.; Cundrle, I.; Pavlík, M.; Suk, P.; Šrámek, V.

    2015-01-01

    Roč. 28, č. 4 (2015), s. 203-207 ISSN 1036-7314 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : pulse pressure variation * sedation * heart lung interactions * mechanical ventilation * brain death * oesophageal pressure Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.479, year: 2015

  3. The effect of positive end-expiratory pressure on pulse pressure ...

    African Journals Online (AJOL)

    The effect of positive end-expiratory pressure on pulse pressure variation. FJ Smith, M Geyser, I Schreuder, PJ Becker. Abstract. Objectives: To determine the effect of different levels of positive end-expiratory pressure (PEEP) on pulse pressure variation (PPV). Design: An observational study. Setting: Operating theatres of a ...

  4. Vasodilation increases pulse pressure variation, mimicking hypovolemic status in rabbits

    Directory of Open Access Journals (Sweden)

    Glauco A Westphal

    2010-01-01

    Full Text Available OBJECTIVE: To test the hypothesis that pulse pressure respiratory variation (PPV amplification, observed in hypovolemia, can also be observed during sodium nitroprusside (SNP-induced vasodilation. INTRODUCTION: PPV is largely used for early identification of cardiac responsiveness, especially when hypovolemia is suspected. PPV results from respiratory variation in transpulmonary blood flow and reflects the left ventricular preload variations during respiratory cycles. Any factor that decreases left ventricular preload can be associated with PPV amplification, as seen in hypovolemia. METHODS: Ten anesthetized and mechanically ventilated rabbits underwent progressive hypotension by either controlled hemorrhage (Group 1 or intravenous SNP infusion (Group 2. Animals in Group 1 (n = 5 had graded hemorrhage induced at 10% steps until 50% of the total volume was bled. Mean arterial pressure (MAP steps were registered and assumed as pressure targets to be reached in Group 2. Group 2 (n = 5 was subjected to a progressive SNP infusion to reach similar pressure targets as those defined in Group 1. Heart rate (HR, systolic pressure variation (SPV and PPV were measured at each MAP step, and the values were compared between the groups. RESULTS: SPV and PPV were similar between the experimental models in all steps (p > 0.16. SPV increased earlier in Group 2. CONCLUSION: Both pharmacologic vasodilation and graded hemorrhage induced PPV amplification similar to that observed in hypovolemia, reinforcing the idea that amplified arterial pressure variation does not necessarily represent hypovolemic status but rather potential cardiovascular responsiveness to fluid infusion.

  5. Noninvasive pulse pressure variation and stroke volume variation to predict fluid responsiveness at multiple thresholds : a prospective observational study

    NARCIS (Netherlands)

    Vos, Jaap Jan; Poterman, Marieke; Papineau Salm, Pieternel; Van Amsterdam, Kai; Struys, Michel M. R. F.; Scheeren, Thomas W. L.; Kalmar, Alain F.

    2015-01-01

    Pulse pressure variation (PPV) and stroke volume variation (SVV) are dynamic preload variables that can be measured noninvasively to assess fluid responsiveness (FR) in anesthetized patients with mechanical ventilation. Few studies have examined the effectiveness of predicting FR according to the

  6. Stroke volume variation compared with pulse pressure variation and cardiac index changes for prediction of fluid responsiveness in mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Randa Aly Soliman

    2015-04-01

    Conclusions: Baseline stroke volume variation ⩾8.15% predicted fluid responsiveness in mechanically ventilated patients with acute circulatory failure. The study also confirmed the ability of pulse pressure variation to predict fluid responsiveness.

  7. Applicability of Pulse Pressure Variation during Unstable Hemodynamic Events in the Intensive Care Unit: A Five-Day Prospective Multicenter Study

    Directory of Open Access Journals (Sweden)

    Bertrand Delannoy

    2016-01-01

    Full Text Available Pulse pressure variation can predict fluid responsiveness in strict applicability conditions. The purpose of this study was to describe the clinical applicability of pulse pressure variation during episodes of patient hemodynamic instability in the intensive care unit. We conducted a five-day, seven-center prospective study that included patients presenting with an unstable hemodynamic event. The six predefined inclusion criteria for pulse pressure variation applicability were as follows: mechanical ventilation, tidal volume >7 mL/kg, sinus rhythm, no spontaneous breath, heart rate/respiratory rate ratio >3.6, absence of right ventricular dysfunction, or severe valvulopathy. Seventy-three patients presented at least one unstable hemodynamic event, with a total of 163 unstable hemodynamic events. The six predefined criteria for the applicability of pulse pressure variation were completely present in only 7% of these. This data indicates that PPV should only be used alongside a strong understanding of the relevant physiology and applicability criteria. Although these exclusion criteria appear to be profound, they likely represent an absolute contraindication of use for only a minority of critical care patients.

  8. Automatic algorithm for monitoring systolic pressure variation and difference in pulse pressure.

    Science.gov (United States)

    Pestel, Gunther; Fukui, Kimiko; Hartwich, Volker; Schumacher, Peter M; Vogt, Andreas; Hiltebrand, Luzius B; Kurz, Andrea; Fujita, Yoshihisa; Inderbitzin, Daniel; Leibundgut, Daniel

    2009-06-01

    Difference in pulse pressure (dPP) reliably predicts fluid responsiveness in patients. We have developed a respiratory variation (RV) monitoring device (RV monitor), which continuously records both airway pressure and arterial blood pressure (ABP). We compared the RV monitor measurements with manual dPP measurements. ABP and airway pressure (PAW) from 24 patients were recorded. Data were fed to the RV monitor to calculate dPP and systolic pressure variation in two different ways: (a) considering both ABP and PAW (RV algorithm) and (b) ABP only (RV(slim) algorithm). Additionally, ABP and PAW were recorded intraoperatively in 10-min intervals for later calculation of dPP by manual assessment. Interobserver variability was determined. Manual dPP assessments were used for comparison with automated measurements. To estimate the importance of the PAW signal, RV(slim) measurements were compared with RV measurements. For the 24 patients, 174 measurements (6-10 per patient) were recorded. Six observers assessed dPP manually in the first 8 patients (10-min interval, 53 measurements); no interobserver variability occurred using a computer-assisted method. Bland-Altman analysis showed acceptable bias and limits of agreement of the 2 automated methods compared with the manual method (RV: -0.33% +/- 8.72% and RV(slim): -1.74% +/- 7.97%). The difference between RV measurements and RV(slim) measurements is small (bias -1.05%, limits of agreement 5.67%). Measurements of the automated device are comparable with measurements obtained by human observers, who use a computer-assisted method. The importance of the PAW signal is questionable.

  9. Pulse pressure and diabetes treatments: Blood pressure and pulse pressure difference among glucose lowering modality groups in type 2 diabetes.

    Science.gov (United States)

    Alemi, Hamid; Khaloo, Pegah; Mansournia, Mohammad Ali; Rabizadeh, Soghra; Salehi, Salome Sadat; Mirmiranpour, Hossein; Meftah, Neda; Esteghamati, Alireza; Nakhjavani, Manouchehr

    2018-02-01

    Type 2 diabetes is associated with higher pulse pressure. In this study, we assessed and compared effects of classic diabetes treatments on pulse pressure (PP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) in patients with type 2 diabetes.In a retrospective cohort study, 718 non-hypertensive patients with type 2 diabetes were selected and divided into 4 groups including metformin, insulin, glibenclamide+metformin, and metformin+insulin. They were followed for 4 consecutive visits lasting about 45.5 months. Effects of drug regimens on pulse and blood pressure over time were assessed separately and compared in regression models with generalized estimating equation method and were adjusted for age, duration of diabetes, sex, smoking, and body mass index (BMI).Studied groups had no significant change in PP, SBP, and DBP over time. No significant difference in PP and DBP among studied groups was observed (PP:P = 0.090; DBP:P = 0.063). Pairwise comparisons of PP, SBP, and DBP showed no statistically significant contrast between any 2 studied groups. Interactions of time and treatment were not different among groups.Our results demonstrate patients using metformin got higher PP and SBP over time. Averagely, pulse and blood pressure among groups were not different. Trends of variation in pulse and blood pressure were not different among studied diabetes treatments.

  10. Non-invasive measurements of pulse pressure variation and stroke volume variation in anesthetized patients using the Nexfin blood pressure monitor.

    Science.gov (United States)

    Stens, Jurre; Oeben, Jeroen; Van Dusseldorp, Ab A; Boer, Christa

    2016-10-01

    Nexfin beat-to-beat arterial blood pressure monitoring enables continuous assessment of hemodynamic indices like cardiac index (CI), pulse pressure variation (PPV) and stroke volume variation (SVV) in the perioperative setting. In this study we investigated whether Nexfin adequately reflects alterations in these hemodynamic parameters during a provoked fluid shift in anesthetized and mechanically ventilated patients. The study included 54 patients undergoing non-thoracic surgery with positive pressure mechanical ventilation. The provoked fluid shift comprised 15° Trendelenburg positioning, and fluid responsiveness was defined as a concomitant increase in stroke volume (SV) >10 %. Nexfin blood pressure measurements were performed during supine steady state, Trendelenburg and supine repositioning. Hemodynamic parameters included arterial blood pressure (MAP), CI, PPV and SVV. Trendelenburg positioning did not affect MAP or CI, but induced a decrease in PPV and SVV by 3.3 ± 2.8 and 3.4 ± 2.7 %, respectively. PPV and SVV returned back to baseline values after repositioning of the patient to baseline. Bland-Altman analysis of SVV and PPV showed a bias of -0.3 ± 3.0 % with limits of agreement ranging from -5.6 to 6.2 %. The SVV was more superior in predicting fluid responsiveness (AUC 0.728) than the PVV (AUC 0.636), respectively. The median bias between PPV and SVV was different for patients younger [-1.5 % (-3 to 0)] or older [+2 % (0-4.75)] than 55 years (P < 0.001), while there were no gender differences in the bias between PPV and SVV. The Nexfin monitor adequately reflects alterations in PPV and SVV during a provoked fluid shift, but the level of agreement between PPV and SVV was low. The SVV tended to be superior over PPV or Eadyn in predicting fluid responsiveness in our population.

  11. Variation in resistance of natural isolates of Staphylococcus aureus to heat, pulsed electric field and ultrasound under pressure.

    Science.gov (United States)

    Rodríguez-Calleja, J M; Cebrián, G; Condón, S; Mañas, P

    2006-05-01

    To study and compare the resistance of 15 Staphylococcus aureus isolates to heat, pulsed electric field (PEF) and ultrasound (UW) under pressure (manosonication, MS). Survival curves to heat (58 degrees C), to PEF (22 kV cm(-1), 2 micros square wave pulses) and to UW under pressure (117 microm, 20 kHz, 200 kPa) were obtained and inactivation parameters (decimal reduction times for heat and UW under pressure, and b-values for PEF) were calculated. A wide resistance variation to heat treatment, but not to PEF and MS, was observed amongst the 15 strains. There was no relationship between the resistances to the three physical agents studied. Staphylococcus aureus was relatively resistant to MS but sensitive to PEF. Heat resistance varied with strain and was positively correlated to carotenoid pigment content. Results would help in defining safe food preservation processes. Care should be taken to choose the most adequate strain of S. aureus to model food preservation processing.

  12. Pulse-to-pulse variations in accreting X-ray pulsars

    Directory of Open Access Journals (Sweden)

    Kretschmar Peter

    2014-01-01

    Full Text Available In most accreting X-ray pulsars, the periodic signal is very clear and easily shows up as soon as data covering sufficient pulse periods (a few ten are available. The mean pulse profile is often quite typical for a given source and with minor variations repeated and recognisable across observations done years or even decades apart. At the time scale of individual pulses, significant pulse-to-pulse variations are commonly observed. While at low energies some of these variations might be explained by absorption, in the hard X-rays they will reflect changes in the accretion and subsequent emission. The amount of these variations appears to be quite different between sources and contains information about the surrounding material as well ass possibly interactions at the magnetosphere. We investigate such variations for a sample of well-known sources.

  13. Patient-ventilator asynchrony affects pulse pressure variation prediction of fluid responsiveness.

    Science.gov (United States)

    Messina, Antonio; Colombo, Davide; Cammarota, Gianmaria; De Lucia, Marta; Cecconi, Maurizio; Antonelli, Massimo; Corte, Francesco Della; Navalesi, Paolo

    2015-10-01

    During partial ventilatory support, pulse pressure variation (PPV) fails to adequately predict fluid responsiveness. This prospective study aims to investigate whether patient-ventilator asynchrony affects PPV prediction of fluid responsiveness during pressure support ventilation (PSV). This is an observational physiological study evaluating the response to a 500-mL fluid challenge in 54 patients receiving PSV, 27 without (Synch) and 27 with asynchronies (Asynch), as assessed by visual inspection of ventilator waveforms by 2 skilled blinded physicians. The area under the curve was 0.71 (confidence interval, 0.57-0.83) for the overall population, 0.86 (confidence interval, 0.68-0.96) in the Synch group, and 0.53 (confidence interval, 0.33-0.73) in the Asynch group (P = .018). Sensitivity and specificity of PPV were 78% and 89% in the Synch group and 36% and 46% in the Asynch group. Logistic regression showed that the PPV prediction was influenced by patient-ventilator asynchrony (odds ratio, 8.8 [2.0-38.0]; P < .003). Of the 27 patients without asynchronies, 12 had a tidal volume greater than or equal to 8 mL/kg; in this subgroup, the rate of correct classification was 100%. Patient-ventilator asynchrony affects PPV performance during partial ventilatory support influencing its efficacy in predicting fluid responsiveness. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The effect of laser pulse shape variations on the adiabat of NIF capsule implosions

    Energy Technology Data Exchange (ETDEWEB)

    Robey, H. F.; MacGowan, B. J.; Landen, O. L.; LaFortune, K. N.; Widmayer, C.; Celliers, P. M.; Moody, J. D.; Ross, J. S.; Ralph, J.; LePape, S.; Berzak Hopkins, L. F.; Spears, B. K.; Haan, S. W.; Clark, D.; Lindl, J. D.; Edwards, M. J. [LLNL, Livermore, California 94550 (United States)

    2013-05-15

    Indirectly driven capsule implosions on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are being performed with the goal of compressing a layer of cryogenic deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain the self-propagating burn wave that is required for fusion power gain greater than unity. These implosions are driven with a temporally shaped laser pulse that is carefully tailored to keep the DT fuel on a low adiabat (ratio of fuel pressure to the Fermi degenerate pressure). In this report, the impact of variations in the laser pulse shape (both intentionally and unintentionally imposed) on the in-flight implosion adiabat is examined by comparing the measured shot-to-shot variations in ρR from a large ensemble of DT-layered ignition target implosions on NIF spanning a two-year period. A strong sensitivity to variations in the early-time, low-power foot of the laser pulse is observed. It is shown that very small deviations (∼0.1% of the total pulse energy) in the first 2 ns of the laser pulse can decrease the measured ρR by 50%.

  15. Using an expiratory resistor, arterial pulse pressure variations predict fluid responsiveness during spontaneous breathing: an experimental porcine study.

    Science.gov (United States)

    Dahl, Michael K; Vistisen, Simon T; Koefoed-Nielsen, Jacob; Larsson, Anders

    2009-01-01

    Fluid responsiveness prediction is difficult in spontaneously breathing patients. Because the swings in intrathoracic pressure are minor during spontaneous breathing, dynamic parameters like pulse pressure variation (PPV) and systolic pressure variation (SPV) are usually small. We hypothesized that during spontaneous breathing, inspiratory and/or expiratory resistors could induce high arterial pressure variations at hypovolemia and low variations at normovolemia and hypervolemia. Furthermore, we hypothesized that SPV and PPV could predict fluid responsiveness under these conditions. Eight prone, anesthetized and spontaneously breathing pigs (20 to 25 kg) were subjected to a sequence of 30% hypovolemia, normovolemia, and 20% and 40% hypervolemia. At each volemic level, the pigs breathed in a randomized order either through an inspiratory and/or an expiratory threshold resistor (7.5 cmH2O) or only through the tracheal tube without any resistor. Hemodynamic and respiratory variables were measured during the breathing modes. Fluid responsiveness was defined as a 15% increase in stroke volume (DeltaSV) following fluid loading. Stroke volume was significantly lower at hypovolemia compared with normovolemia, but no differences were found between normovolemia and 20% or 40% hypervolemia. Compared with breathing through no resistor, SPV was magnified by all resistors at hypovolemia whereas there were no changes at normovolemia and hypervolemia. PPV was magnified by the inspiratory resistor and the combined inspiratory and expiratory resistor. Regression analysis of SPV or PPV versus DeltaSV showed the highest R2 (0.83 for SPV and 0.52 for PPV) when the expiratory resistor was applied. The corresponding sensitivity and specificity for prediction of fluid responsiveness were 100% and 100%, respectively, for SPV and 100% and 81%, respectively, for PPV. Inspiratory and/or expiratory threshold resistors magnified SPV and PPV in spontaneously breathing pigs during hypovolemia

  16. Melodic algorithms for pulse oximetry to allow audible discrimination of abnormal systolic blood pressures.

    Science.gov (United States)

    Chima, Ranjit S; Ortega, Rafael; Connor, Christopher W

    2014-12-01

    An anesthesiologist must remain vigilant of the patient's clinical status, incorporating many independent physiological measurements. Oxygen saturation and heart rate are represented by continuous audible tones generated by the pulse oximeter, a mandated monitoring device. Other important clinical parameters--notably blood pressure--lack any audible representation beyond arbitrarily-configured threshold alarms. Attempts to introduce further continuous audible tones have apparently foundered; the complexity and interaction of these tones have exceeded the ability of clinicians to interpret them. Instead, we manipulate the tonal and rhythmic structure of the accepted pulse oximeter tone pattern melodically. Three melodic algorithms were developed to apply tonal and rhythmic variations to the continuous pulse oximeter tone, dependent on the systolic blood pressure. The algorithms distort the original audible pattern minimally, to facilitate comprehension of both the underlying pattern and the applied variations. A panel of anesthesia practitioners (attending anesthesiologists, residents and nurse anesthetists) assessed these algorithms in characterizing perturbations in cardiopulmonary status. Twelve scenarios, incorporating combinations of oxygen desaturation, bradycardia, tachycardia, hypotension and hypertension, were tested. A rhythmic variation in which additional auditory information was conveyed only at halftime intervals, with every other "beat" of the pulse oximeter, was strongly favored. The respondents also strongly favored the use of musical chords over single tones. Given three algorithms of tones embedded in the pulse oximeter signal, anesthesiologists preferred a melodic tone to signal a significant change in blood pressure.

  17. A search for upstream pressure pulses associated with flux transfer events: An AMPTE/ISEE case study

    Science.gov (United States)

    Elphic, R. C.; Baumjohann, W.; Cattell, C. A.; Luehr, H.; Smith, M. F.

    1994-01-01

    On September 19, 1984, the Active Magnetospheric Particle Tracers Explorers (AMPTE) United Kingdom Satellite (UKS) and Ion Release Module (IRM) and International Sun Earth Explorers (ISEE) 1 and 2 spacecraft passed outbound through the dayside magnetopause at about the same time. The AMPTE spacecraft pair crossed first and were in the near-subsolar magnetosheath for more than an hour. Meanwhile the ISEE pair, about 5 R(sub E) to the south, observed flux transfer event (FTE) signatures. We use the AMPTE UKS and IRM plasma and field observations of magnetosheath conditions directly upstream of the subsolar magnetopause to check whether pressure pulses are responsible for the FTE signatures seen at ISEE. Pulses in both the ion thermal pressure and the dynamic pressure are observed in the magnetosheath early on when IRM and UKS are close to the magnetopause, but not later. These large pulses appear to be related to reconnection going on at the magnetopause nearby. AMPTE magnetosheath data far from the magnetopause do not show a pressure pulse correlation with FTEs at ISEE. Moreover, the magnetic pressure and tension effects seen in the ISEE FTEs are much larger than any pressure effects seen in the magnetosheath. A superposed epoch analysis based on small-amplitude peaks in the AMPTE magnetosheath total static pressure (nkT + B(exp 2)/2 mu(sub 0)) hint at some boundary effects, less than 5 nT peak-to-peak variations in the ISEE 1 and 2 B(sub N) signature starting about 1 min after the pressure peak epoch. However, these variations are much smaller than the standard deviations of the B(sub N) field component. Thus the evidence from this case study suggests that upstream magnetosheath pressure pulses do not give rise to FTEs, but may produce very small amplitude signatures in the magnetic field at the magnetopause.

  18. Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?

    Science.gov (United States)

    Lopez, Rosana; Badel, Eric; Peraudeau, Sebastien; Leblanc-Fournier, Nathalie; Beaujard, François; Julien, Jean-Louis; Cochard, Hervé; Moulia, Bruno

    2014-05-01

    When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices.

  19. Measuring sub-bandage pressure: comparing the use of pressure monitors and pulse oximeters.

    Science.gov (United States)

    Satpathy, A; Hayes, S; Dodds, S R

    2006-03-01

    To test the use of low-cost sub-bandage pressure monitors and pulse oximeters as part of a quality-control measure for graduated compression bandaging in leg ulcer clinics. Twenty-five healthy volunteers (mean age 40 years) providing 50 limbs were bandaged with a four-layer compression bandaging system. The ankle systolic pressure (ASP) was measured using a pulse oximeter (Nellcor NBP-40) before applying the graduated compression bandages. Interface pressure was measured by placing pressure sensors on the skin at three points (2cm above the medial malleolus; the widest part of the calf; and a point midway between them) in the supine and standing positions. The ASP was measured again with the pulse oximeter after the bandage had been applied, and the effect of the bandage on the ASP was recorded. The actual pressure created by the bandage was compared with the required pressure profile. Interface pressures varied with change of position and movement. With the operator blinded to the pressure monitors while applying the bandages, the target pressure of 35-40mmHg at the ankle was achieved in only 36% of limbs ([mean +/- 95% confidence interval]; 32.3 +/- 1.6mmHg [supine]; 38.4 +/- 2.4mmHg [standing position]). With the help of the pressure monitors, the target pressure was achieved in 78% of the limbs. There was no correlation between the pressure monitors and pulse oximeter pressures, demonstrating that the pulse oximeter is not a useful tool for measuring sub-bandage pressures. The results suggest a tool (interface pressure monitors) that is easy to operate should be available as part of quality assurance for treatment, training of care providers and education.

  20. Tensile Strength of Water Exposed to Pressure Pulses

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage

    2012-01-01

    at an extended water-solid interface by imposing a tensile stress pulse which easily causes cavitation. Next, a compressive pulse of duration ~1 ms and a peak intensity of a few bar is imposed prior to the tensile stress pulse. A dramatic increase of the tensile strength is observed immediately after......It is well known that pressurization for an extended period of time increases the tensile strength of water, but little information is available on the effect of pressure pulses of short duration. This is addressed in the present paper where we first measure the tensile strength of water...

  1. Predictive value of pulse pressure variation for fluid responsiveness in septic patients using lung-protective ventilation strategies.

    Science.gov (United States)

    Freitas, F G R; Bafi, A T; Nascente, A P M; Assunção, M; Mazza, B; Azevedo, L C P; Machado, F R

    2013-03-01

    The applicability of pulse pressure variation (ΔPP) to predict fluid responsiveness using lung-protective ventilation strategies is uncertain in clinical practice. We designed this study to evaluate the accuracy of this parameter in predicting the fluid responsiveness of septic patients ventilated with low tidal volumes (TV) (6 ml kg(-1)). Forty patients after the resuscitation phase of severe sepsis and septic shock who were mechanically ventilated with 6 ml kg(-1) were included. The ΔPP was obtained automatically at baseline and after a standardized fluid challenge (7 ml kg(-1)). Patients whose cardiac output increased by more than 15% were considered fluid responders. The predictive values of ΔPP and static variables [right atrial pressure (RAP) and pulmonary artery occlusion pressure (PAOP)] were evaluated through a receiver operating characteristic (ROC) curve analysis. Thirty-four patients had characteristics consistent with acute lung injury or acute respiratory distress syndrome and were ventilated with high levels of PEEP [median (inter-quartile range) 10.0 (10.0-13.5)]. Nineteen patients were considered fluid responders. The RAP and PAOP significantly increased, and ΔPP significantly decreased after volume expansion. The ΔPP performance [ROC curve area: 0.91 (0.82-1.0)] was better than that of the RAP [ROC curve area: 0.73 (0.59-0.90)] and pulmonary artery occlusion pressure [ROC curve area: 0.58 (0.40-0.76)]. The ROC curve analysis revealed that the best cut-off for ΔPP was 6.5%, with a sensitivity of 0.89, specificity of 0.90, positive predictive value of 0.89, and negative predictive value of 0.90. Automatized ΔPP accurately predicted fluid responsiveness in septic patients ventilated with low TV.

  2. Numerical simulation of the pressure pulses produced by a pressure screen foil rotor

    International Nuclear Information System (INIS)

    Feng, M.; Ollivier-Gooch, C.; Gooding, R.W.; Olson, J.A.

    2003-01-01

    Pressure screening is the most industrially efficient and effective means of removing contaminants that degrade the appearance and strength of paper and fractionating fibres for selective treatments and specialty products. A critical design component of a screen is the rotor which produces pressure pulses on the screen cylinder surface to keep the screening apertures clear. To understand the effect of the key design and operating variables for a NACA 0012 foil rotor, a computational fluid dynamic (CFD) simulation tool was developed with FLUENT software, and the numerical results were compared with experimental measurements. The computational results of pressure pulses were shown to be in good agreement with experimental pressure measurements over a wide range of foil tip-speeds, clearances and angles of attack. In addition, it was shown that the magnitude of the pressure pulse peak increases as the rotating speed increases linearly with the square of tip-speed for all the angles of attack studied. The maximum negative pressure pulse occurred for the foil at 5 degrees angle of attack. Flow began to separate from foil surface near the screen plate beyond 10 degrees angle of attack. The positive pressure peak near the leading edge of the foil is completely eliminated for foils operating at a positive angle of attack. The magnitude of the negative pressure peak increased as clearance decreased. In addition to, and more important than, these specific results, we have shown that CFD is a viable tool for the optimal design and operation of rotors in industrial pressure screens. (author)

  3. Pulsed pressure treatment for inactivation of escherichia coli and listeria innocua in whole milk

    Energy Technology Data Exchange (ETDEWEB)

    Buzrul, S; Largeteau, A; Demazeau, G [ICMCB, CNRS, Universite Bordeaux 1, site de l' ENSCPB, 87 avenue du Dr. A. Schweitzer, 33608 PESSAC cedex (France); Alpas, H [Food Engineering Department, Middle East Technical University, 06531, Ankara (Turkey)], E-mail: sbuzrul@metu.edu.tr

    2008-07-15

    E. coli and L. innocua in whole milk were subjected to continuous pressure treatments (300, 350, 400, 450, 500, 550 and 600 MPa) at ambient temperature for 5, 10, 15 and 20 min. These treatments underlined that at moderate pressure values (300, 350 and 400 MPa), increasing the pressurization time from 5 to 20 min did not improve cell death to a great extent. Therefore, pulsed pressure treatments (at 300, 350 and 400 MPa) for 5 min (2.5 min x 2 pulses, 1 min x 5 pulses and 0.5 min x 10 pulses), 10 min (5 min x 2 pulses, 2 min x 5 pulses and 1 min x 10 pulses), 15 min (5 min x 3 pulses, 3 min x 5 pulses and 1.5 min x 10 pulses) and 20 min (10 min x 2 pulses, 5 min x 4 pulses, 4 min x 5 pulses and 2 min x 10 pulses) were applied. As already observed in continuous pressure experiments, in pulsed pressure treatments the inactivation level is improved with increasing pressure level and in addition with the number of applied pulses; however, the effect of pulse number is not additive. Results obtained in this study indicated that pulsed pressure treatments could be used to pasteurize the whole milk at lower pressure values than the continuous pressure treatments. Nevertheless, an optimization appears definetely necessary between the number of pulses and pressure levels to reach the desirable number of log-reduction of microorganisms.

  4. Pulsed pressure treatment for inactivation of escherichia coli and listeria innocua in whole milk

    Science.gov (United States)

    Buzrul, S.; Largeteau, A.; Alpas, H.; Demazeau, G.

    2008-07-01

    E. coli and L. innocua in whole milk were subjected to continuous pressure treatments (300, 350, 400, 450, 500, 550 and 600 MPa) at ambient temperature for 5, 10, 15 and 20 min. These treatments underlined that at moderate pressure values (300, 350 and 400 MPa), increasing the pressurization time from 5 to 20 min did not improve cell death to a great extent. Therefore, pulsed pressure treatments (at 300, 350 and 400 MPa) for 5 min (2.5 min × 2 pulses, 1 min × 5 pulses and 0.5 min × 10 pulses), 10 min (5 min × 2 pulses, 2 min × 5 pulses and 1 min × 10 pulses), 15 min (5 min × 3 pulses, 3 min × 5 pulses and 1.5 min × 10 pulses) and 20 min (10 min × 2 pulses, 5 min × 4 pulses, 4 min × 5 pulses and 2 min × 10 pulses) were applied. As already observed in continuous pressure experiments, in pulsed pressure treatments the inactivation level is improved with increasing pressure level and in addition with the number of applied pulses; however, the effect of pulse number is not additive. Results obtained in this study indicated that pulsed pressure treatments could be used to pasteurize the whole milk at lower pressure values than the continuous pressure treatments. Nevertheless, an optimization appears definetely necessary between the number of pulses and pressure levels to reach the desirable number of log-reduction of microorganisms.

  5. Pulsed pressure treatment for inactivation of escherichia coli and listeria innocua in whole milk

    International Nuclear Information System (INIS)

    Buzrul, S; Largeteau, A; Demazeau, G; Alpas, H

    2008-01-01

    E. coli and L. innocua in whole milk were subjected to continuous pressure treatments (300, 350, 400, 450, 500, 550 and 600 MPa) at ambient temperature for 5, 10, 15 and 20 min. These treatments underlined that at moderate pressure values (300, 350 and 400 MPa), increasing the pressurization time from 5 to 20 min did not improve cell death to a great extent. Therefore, pulsed pressure treatments (at 300, 350 and 400 MPa) for 5 min (2.5 min x 2 pulses, 1 min x 5 pulses and 0.5 min x 10 pulses), 10 min (5 min x 2 pulses, 2 min x 5 pulses and 1 min x 10 pulses), 15 min (5 min x 3 pulses, 3 min x 5 pulses and 1.5 min x 10 pulses) and 20 min (10 min x 2 pulses, 5 min x 4 pulses, 4 min x 5 pulses and 2 min x 10 pulses) were applied. As already observed in continuous pressure experiments, in pulsed pressure treatments the inactivation level is improved with increasing pressure level and in addition with the number of applied pulses; however, the effect of pulse number is not additive. Results obtained in this study indicated that pulsed pressure treatments could be used to pasteurize the whole milk at lower pressure values than the continuous pressure treatments. Nevertheless, an optimization appears definetely necessary between the number of pulses and pressure levels to reach the desirable number of log-reduction of microorganisms

  6. AUTOMATIC DETECTION ALGORITHM OF DYNAMIC PRESSURE PULSES IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Li, Huijun; Xu, Xiaojun

    2015-01-01

    Dynamic pressure pulses (DPPs) in the solar wind are a significant phenomenon closely related to the solar-terrestrial connection and physical processes of solar wind dynamics. In order to automatically identify DPPs from solar wind measurements, we develop a procedure with a three-step detection algorithm that is able to rapidly select DPPs from the plasma data stream and simultaneously define the transition region where large dynamic pressure variations occur and demarcate the upstream and downstream region by selecting the relatively quiet status before and after the abrupt change in dynamic pressure. To demonstrate the usefulness, efficiency, and accuracy of this procedure, we have applied it to the Wind observations from 1996 to 2008 by successfully obtaining the DPPs. The procedure can also be applied to other solar wind spacecraft observation data sets with different time resolutions

  7. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    Science.gov (United States)

    Wain, Louise V; Verwoert, Germaine C; O’Reilly, Paul F; Shi, Gang; Johnson, Toby; Johnson, Andrew D; Bochud, Murielle; Rice, Kenneth M; Henneman, Peter; Smith, Albert V; Ehret, Georg B; Amin, Najaf; Larson, Martin G; Mooser, Vincent; Hadley, David; Dörr, Marcus; Bis, Joshua C; Aspelund, Thor; Esko, Tõnu; Janssens, A Cecile JW; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian’an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U; Webster, Rebecca J; Zhang, Feng; Peden, John F; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hotteng, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I; Trompet, Stella; Bragg-Gresham, Jennifer L; Alizadeh, Behrooz Z; Chambers, John C; Guo, Xiuqing; Lehtimäki, Terho; Kühnel, Brigitte; Lopez, Lorna M; Polašek, Ozren; Boban, Mladen; Nelson, Christopher P; Morrison, Alanna C; Pihur, Vasyl; Ganesh, Santhi K; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco US; Rivadeneira, Fernando; Sijbrands, Eric JG; Uitterlinden, Andre G; Hwang, Shih-Jen; Vasan, Ramachandran S; Wang, Thomas J; Bergmann, Sven; Vollenweider, Peter; Waeber, Gérard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Glazer, Nicole L; Taylor, Kent D; Harris, Tamara B; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Inês; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sõber, Siim; Lu, Xiaowen; Nolte, Ilja M; Penninx, Brenda W; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F; Melander, Olle; O’Donnell, Christopher J; Salomaa, Veikko; d’Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, M Fabiola; Facheris, Maurizio; Collins, Francis S; Bergman, Richard N; Beilby, John P; Hung, Joseph; Musk, A William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S; Navarro, Pau; Wild, Sarah H; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco JC; Willemsen, Gonneke; Parker, Alex N; Rose, Lynda M; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L; Kähönen, Mika; Viikari, Jorma; Döring, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H; ’t Hoen, Peter AC; König, Inke R; Felix, Janine F; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Breteler, Monique; Debette, Stéphanie; DeStefano, Anita L; Fornage, Myriam; Mitchell, Gary F; Smith, Nicholas L; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J; Wichmann, H-Erich; Raitakari, Olli T; Palmas, Walter; Kooner, Jaspal S; Stolk, Ronald P; Jukema, J Wouter; Wright, Alan F; Boomsma, Dorret I; Bandinelli, Stefania; Gyllensten, Ulf B; Wilson, James F; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D; Palmer, Lyle J; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth JF; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J; Oostra, Ben A; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P; Beckmann, Jacques S; Witteman, Jacqueline CM; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B; Psaty, Bruce M; Caulfield, Mark J; Rao, Dabeeru C

    2012-01-01

    Numerous genetic loci influence systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans 1-3. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N=74,064) and follow-up studies (N=48,607), we identified at genome-wide significance (P= 2.7×10-8 to P=2.3×10-13) four novel PP loci (at 4q12 near CHIC2/PDGFRAI, 7q22.3 near PIK3CG, 8q24.12 in NOV, 11q24.3 near ADAMTS-8), two novel MAP loci (3p21.31 in MAP4, 10q25.3 near ADRB1) and one locus associated with both traits (2q24.3 near FIGN) which has recently been associated with SBP in east Asians. For three of the novel PP signals, the estimated effect for SBP was opposite to that for DBP, in contrast to the majority of common SBP- and DBP-associated variants which show concordant effects on both traits. These findings indicate novel genetic mechanisms underlying blood pressure variation, including pathways that may differentially influence SBP and DBP. PMID:21909110

  8. Pulse Pressure: An Indicator of Heart Health?

    Science.gov (United States)

    ... pressure should also be considered alongside pulse pressure values. Higher systolic and diastolic pairs imply higher risk than ... endorse any of the third party products and services advertised. Advertising ... Education and Research. © 1998-2018 Mayo Foundation for Medical ...

  9. Models of brachial to finger pulse wave distortion and pressure decrement.

    Science.gov (United States)

    Gizdulich, P; Prentza, A; Wesseling, K H

    1997-03-01

    To model the pulse wave distortion and pressure decrement occurring between brachial and finger arteries. Distortion reversion and decrement correction were also our aims. Brachial artery pressure was recorded intra-arterially and finger pressure was recorded non-invasively by the Finapres technique in 53 adult human subjects. Mean pressure was subtracted from each pressure waveform and Fourier analysis applied to the pulsations. A distortion model was estimated for each subject and averaged over the group. The average inverse model was applied to the full finger pressure waveform. The pressure decrement was modelled by multiple regression on finger systolic and diastolic levels. Waveform distortion could be described by a general, frequency dependent model having a resonance at 7.3 Hz. The general inverse model has an anti-resonance at this frequency. It converts finger to brachial pulsations thereby reducing average waveform distortion from 9.7 (s.d. 3.2) mmHg per sample for the finger pulse to 3.7 (1.7) mmHg for the converted pulse. Systolic and diastolic level differences between finger and brachial arterial pressures changed from -4 (15) and -8 (11) to +8 (14) and +8 (12) mmHg, respectively, after inverse modelling, with pulse pressures correct on average. The pressure decrement model reduced both the mean and the standard deviation of systolic and diastolic level differences to 0 (13) and 0 (8) mmHg. Diastolic differences were thus reduced most. Brachial to finger pulse wave distortion due to wave reflection in arteries is almost identical in all subjects and can be modelled by a single resonance. The pressure decrement due to flow in arteries is greatest for high pulse pressures superimposed on low means.

  10. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  11. [Correlation of intraocular pressure variation after visual field examination with 24-hour intraocular pressure variations in primary open-angle glaucoma].

    Science.gov (United States)

    Noro, Takahiko; Nakamoto, Kenji; Sato, Makoto; Yasuda, Noriko; Ito, Yoshinori; Ogawa, Shumpei; Nakano, Tadashi; Tsuneoka, Hiroshi

    2014-10-01

    We retrospectively examined intraocular pressure variations after visual field examination in primary open angle glaucoma (POAG), together with its influencing factors and its association with 24-hour intraocular pressure variations. Subjects were 94 eyes (52 POAG patients) subjected to measurements of 24-hour intraocular pressure and of changes in intraocular pressure after visual field examination using a Humphrey Visual Field Analyzer. Subjects were classified into three groups according to the magnitude of variation (large, intermediate and small), and 24-hour intraocular pressure variations were compared among the three groups. Factors influencing intraocular pressure variations after visual field examination and those associated with the large variation group were investigated. Average intraocular pressure variation after visual field examination was -0.28 ± 1.90 (range - 6.0(-) + 5.0) mmHg. No significant influencing factors were identified. The intraocular pressure at 3 a.m. was significantly higher in the large variation group than other two groups (p field examination. Increases in intraocular pressure during the night might be associated with large intraocular pressure variations after visual field examination.

  12. Monitoring of deposits in pipelines using pressure pulse technology

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, Jon S.; Celius, Harald K.

    2005-07-01

    The basis of pressure pulse technology is presented in terms of the water hammer equation, the pipeline pressure drop equation and the equation for speed of sound in multiphase mixtures. The technology can be used for a range of applications, from on-line monitoring of flowing conditions to on-demand measurements and analysis to locate and quantify deposits in wells and pipelines. While pressure pulse measurements are low-cost and easy to implement, the commercial use of pressure pulse technology has resulted from extensive field experience and substantial in-house software development. Simulation tools were used to illustrate the effect of a 2 mm thick deposit, 500 m long and located 375 m from a quick-acting valve. The simulation conditions used are typical for multiphase gas-oil flow along a horizontal 2 km long pipeline from wellhead to manifold. (Author)

  13. Pressure pulses generated by gas released from a breached fuel element

    International Nuclear Information System (INIS)

    Wu, T.S.

    1979-01-01

    In experimental measurements of liquid pressure pulses generated by rapid release of gas from breached fuel elements in a nuclear reactor, different peak pressures were observed at locations equidistant from the origin of the release. Using the model of a submerged spherical bubble with a nonstationary center, this analysis predicts not only that the peak pressure would be higher at a point in front of the advancing bubble than that at a point the same distance behind the bubble origin, but also that the pressure pulse in front of the bubble reaches its peak later than the pulse behind the origin

  14. Improvement of Diurnal Blood Pressure Variation by Azilsartan.

    Science.gov (United States)

    Okamura, Keisuke; Shirai, Kazuyuki; Okuda, Tetsu; Urata, Hidenori

    2018-01-01

    Azilsartan is an angiotensin II receptor blocker with a potent antihypertensive effect. In a multicenter, prospective, open-label study, 265 patients with poor blood pressure control despite treatment with other angiotensin II receptor blockers were switched to 20 mg/day of azilsartan (patients on standard dosages) or 40 mg/day of azilsartan (patients on high dosages). Blood pressure was 149/83 mm Hg before switching and was significantly reduced from 1 month after switching until final assessment (132/76 mm Hg, P < 0.001). The pulse rate was 72/min before switching and increased significantly from 3 months after switching until final assessment (74/min, P < 0.005). A significant decrease of home morning systolic and diastolic pressure was observed from 1 and 3 months, respectively. Home morning blood pressure was 143/82 mm Hg before switching and 130/76 mm Hg at final assessment (P < 0.01). The morning-evening difference of systolic blood pressure decreased from 14.6 to 6.6 mm Hg after switching (P = 0.09). The estimated glomerular filtration rate was significantly decreased at 3, 6, and 12 months after switching, and serum uric acid was significantly increased at 12 months. No serious adverse events occurred. Azilsartan significantly reduced the blood pressure and decreased diurnal variation in patients responding poorly to other angiotensin II receptor blockers.

  15. Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.

    Directory of Open Access Journals (Sweden)

    Zhihua Cui

    Full Text Available The shear swirling flow vibration cementing (SSFVC technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1 the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2 the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.

  16. Pressure heat pumping in the orifice pulse-tube refrigerator

    International Nuclear Information System (INIS)

    Boer, P.C.T. de

    1996-01-01

    The mechanism by which heat is pumped as a result of pressure changes in an orifice pulse-tube refrigerator (OPTR) is analyzed thermodynamically. The thermodynamic cycle considered consists of four steps: (1) the pressure is increased by a factor π 1 due to motion of a piston in the heat exchanger at the warm end of the regenerator; (2) the pressure is decreased by a factor π 2 due to leakage out of the orifice; (3) the pressure is further decreased due to motion of the piston back to its original position; (4) the pressure is increased to its value at the start of the cycle due to leakage through the orifice back into the pulse tube. The regenerator and the heat exchangers are taken to be perfect. The pressure is assumed to be uniform during the entire cycle. The temperature profiles of the gas in the pulse tube after each step are derived analytically. Knowledge of the temperature at which gas enters the cold heat exchanger during steps 3 and 4 provides the heat removed per cycle from this exchanger. Knowledge of the pressure as a function of piston position provides the work done per cycle by the piston. The pressure heat pumping mechanism considered is effective only in the presence of a regenerator. Detailed results are presented for the heat removed per cycle, for the coefficient of performance, and for the refrigeration efficiency as a function of the compression ratio π 1 and the expansion ratio π 2 . Results are also given for the influence on performance of the ratio of specific heats. The results obtained are compared with corresponding results for the basic pulse-tube refrigerator (BPTR) operating by surface heat pumping

  17. Comparison of under-pressure and over-pressure pulse tests conducted in low-permeability basalt horizons at the Hanford Site, Washington State

    International Nuclear Information System (INIS)

    Thorne, P.D.; Spane, F.A. Jr.

    1984-10-01

    Over-pressure pulse tests (pressurized slug tests have been widely used by others for hydraulic characterization of low-permeability ( -8 m/sec) rock formations. Recent field studies of low-permeability basalt horizons at the Hanford Site, Washington, indicate that the under-pressure pulse technique is also a viable test method for hydraulic characterization studies. For over-pressure pulse tests, fluid within the test system is rapidly pressurized and the associated pressure decay is monitored as compressed fluid within the test system expands and flows into the test formation. Under-pressure pulse tests are conducted in a similar manner by abruptly decreasing the pressure of fluid within the test system, and monitoring the associated increase in pressure as fluid flows from the formation into the test system. Both pulse test methods have been used in conjunction with other types of tests to determine the hydraulic properties of selected low-permeability basalt horizons at Hanford test sites. Results from both pulse test methods generally provide comparable estimates of hydraulic properties and are in good agreement with those from other tests

  18. Design of a high-pressure single pulse shock tube for chemical kinetic investigations

    International Nuclear Information System (INIS)

    Tranter, R. S.; Brezinsky, K.; Fulle, D.

    2001-01-01

    A single pulse shock tube has been designed and constructed in order to achieve extremely high pressures and temperatures to facilitate gas-phase chemical kinetic experiments. Postshock pressures of greater than 1000 atmospheres have been obtained. Temperatures greater than 1400 K have been achieved and, in principle, temperatures greater than 2000 K are easily attainable. These high temperatures and pressures permit the investigation of hydrocarbon species pyrolysis and oxidation reactions. Since these reactions occur on the time scale of 0.5--2 ms the shock tube has been constructed with an adjustable length driven section that permits variation of reaction viewing times. For any given reaction viewing time, samples can be withdrawn through a specially constructed automated sampling apparatus for subsequent species analysis with gas chromatography and mass spectrometry. The details of the design and construction that have permitted the successful generation of very high-pressure shocks in this unique apparatus are described. Additional information is provided concerning the diaphragms used in the high-pressure shock tube

  19. Ankle Blood Pressure and Pulse Pressure as Predictors of Cerebrovascular Morbidity and Mortality in a Prospective Follow-Up Study

    Directory of Open Access Journals (Sweden)

    Heikki J. Hietanen

    2010-01-01

    Full Text Available Background and Objective. We examined the association of elevated ankle blood pressure (ABP, together with exercise blood pressure, with incident cerebrovascular (CV morbidity and mortality in a prospective follow-up study of 3,808 patients. The results were compared with pulse pressure, another indicator of arterial stiffness. Methods. Patients with normal ankle and exercise brachial blood pressures were taken as the reference group. Pulse pressure was considered as quartiles with the lowest quartile as the reference category. Results. A total of 170 subjects had a CV event during the follow-up. Multivariate adjusted hazard ratio of a CV event was 2.24 (95% CI 1.43–3.52, <.0001 in patients with abnormal ABP. The pulse pressure was significant only in the model adjusted for age and sex. Conclusion. The risk of a future CV event was elevated already in those patients among whom elevated ABP was the only abnormal finding. As a risk marker, ABP is superior to the pulse pressure.

  20. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    L.V. Wain (Louise); G.C. Verwoert (Germaine); P.F. O'Reilly (Paul); G. Shi (Gang); T. Johnson (Toby); M. Bochud (Murielle); K. Rice (Kenneth); P. Henneman (Peter); A.V. Smith (Albert Vernon); G.B. Ehret (Georg); N. Amin (Najaf); M.G. Larson (Martin); V. Mooser (Vincent); D. Hadley (David); M. Dörr (Marcus); J.C. Bis (Joshua); T. Aspelund (Thor); T. Esko (Tõnu); A.C.J.W. Janssens (Cécile); J.H. Zhao (Jing Hua); S.C. Heath (Simon); M. Laan (Maris); J. Fu (Jingyuan); G. Pistis (Giorgio); J. Luan; G. Lucas (Gavin); N. Pirastu (Nicola); I. Pichler (Irene); A.U. Jackson (Anne); R.J. Webster (Rebecca J.); F.F. Zhang; J. Peden (John); R. Schmidt (Reinhold); T. Tanaka (Toshiko); H. Campbell (Harry); W. Igl (Wilmar); Y. Milaneschi (Yuri); J.J. Hottenga (Jouke Jan); V. Vitart (Veronique); D.I. Chasman (Daniel); S. Trompet (Stella); J.L. Bragg-Gresham (Jennifer L.); B.Z. Alizadeh (Behrooz); J.C. Chambers (John); X. Guo (Xiuqing); T. Lehtimäki (Terho); B. Kuhnel (Brigitte); L.M. Lopez; O. Polasek (Ozren); M. Boban (Mladen); C.P. Nelson (Christopher P.); A.C. Morrison (Alanna); V. Pihur (Vasyl); S.K. Ganesh (Santhi); A. Hofman (Albert); S. Kundu (Suman); F.U.S. Mattace Raso (Francesco); F. Rivadeneira Ramirez (Fernando); E.J.G. Sijbrands (Eric); A.G. Uitterlinden (André); S.J. Hwang; R.S. Vasan (Ramachandran Srini); Y.A. Wang (Ying); S.M. Bergmann (Sven); P. Vollenweider (Peter); G. Waeber (Gérard); J. Laitinen (Jaana); A. Pouta (Anneli); P. Zitting (Paavo); W.L. McArdle (Wendy); H.K. Kroemer (Heyo); U. Völker (Uwe); H. Völzke (Henry); N.L. Glazer (Nicole); K.D. Taylor (Kent); T.B. Harris (Tamara); H. Alavere (Helene); T. Haller (Toomas); A. Keis (Aime); M.L. Tammesoo; Y.S. Aulchenko (Yurii); K-T. Khaw (Kay-Tee); P. Galan (Pilar); S. Hercberg (Serge); G.M. Lathrop (Mark); S. Eyheramendy (Susana); E. Org (Elin); S. Sõber (Siim); X. Lu (Xiaowen); I.M. Nolte (Ilja); B.W.J.H. Penninx (Brenda); T. Corre (Tanguy); C. Masciullo (Corrado); C. Sala (Cinzia); L. Groop (Leif); B.F. Voight (Benjamin); O. Melander (Olle); C.J. O'Donnell (Christopher); V. Salomaa (Veikko); P. d' Adamo (Pio); A. Fabretto (Antonella); F. Faletra (Flavio); S. Ulivi (Shelia); F. Del Greco M (Fabiola); M.F. Facheris (Maurizio); F.S. Collins (Francis); R.N. Bergman (Richard); J.P. Beilby (John); J. Hung (Judy); A.W. Musk (Arthur); M. Mangino (Massimo); S.Y. Shin (So Youn); N. Soranzo (Nicole); H. Watkins (Hugh); A. Goel (Anuj); A. Hamsten (Anders); P. Gider (Pierre); M. Loitfelder (Marisa); M. Zeginigg (Marion); D.G. Hernandez (Dena); S.S. Najjar (Samer); P. Navarro (Pau); S.H. Wild (Sarah); A.M. Corsi (Anna Maria); A. Singleton (Andrew); E.J.C. de Geus (Eco); G.A.H.M. Willemsen (Gonneke); A.N. Parker (Alex); L.M. Rose (Lynda); B.M. Buckley (Brendan M.); D.J. Stott (David. J.); M. Orrù (Marco); M. Uda (Manuela); M.M. van der Klauw (Melanie); X. Li (Xiaohui); J. Scott (James); Y.D.I. Chen (Yii-Der Ida); G.L. Burke (Greg); M. Kähönen (Mika); J. Viikari (Jorma); A. Döring (Angela); T. Meitinger (Thomas); G.S. Davis; J.M. Starr (John); V. Emilsson (Valur); A.S. Plump (Andrew); J.H. Lindeman (Jan H.); P.A.C. 't Hoen (Peter); I.R. König (Inke); J.F. Felix (Janine); R. Clarke; J. Hopewell; H. Ongen (Halit); M.M.B. Breteler (Monique); S. Debette (Stéphanie); A.L. DeStefano (Anita); M. Fornage (Myriam); G.F. Mitchell (Gary); H. Holm (Hilma); K. Stefansson (Kari); G. Thorleifsson (Gudmar); U. Thorsteinsdottir (Unnur); N.J. Samani (Nilesh); M. Preuss (Michael); I. Rudan (Igor); C. Hayward (Caroline); I.J. Deary (Ian); H.E. Wichmann (Heinz Erich); O. Raitakari (Olli); W. Palmas (Walter); J.S. Kooner (Jaspal); R.P. Stolk (Ronald); J.W. Jukema (Jan Wouter); A.F. Wright (Alan); D.I. Boomsma (Dorret); S. Bandinelli (Stefania); U. Gyllensten (Ulf); J.F. Wilson (James); L. Ferrucci (Luigi); M. Farrall (Martin); T.D. Spector (Timothy); L.J. Palmer; J. Tuomilehto (Jaakko); A. Pfeufer (Arne); P. Gasparini (Paolo); D.S. Siscovick (David); D. Altshuler (David); R.J.F. Loos (Ruth); D. Toniolo (Daniela); H. Snieder (Harold); C. Gieger (Christian); P. Meneton (Pierre); N.J. Wareham (Nick); B.A. Oostra (Ben); A. Metspalu (Andres); L.J. Launer (Lenore); R. Rettig (Rainer); D.P. Strachan (David); J.S. Beckmann (Jacques); J.C.M. Witteman (Jacqueline); J.A.P. Willems van Dijk (Ko); E.A. Boerwinkle (Eric); M. Boehnke (Michael); P.M. Ridker (Paul); M.R. Järvelin; A. Chakravarti (Aravinda); J. Erdmann (Jeanette); V. Gudnason (Vilmundur); C. Newton-Cheh (Christopher); D. Levy (Daniel); P. Arora (Pankaj); P. Munroe (Patricia); B.M. Psaty (Bruce); M. Caulfield (Mark); D.C. Rao (Dabeeru C.); P. Elliott (Paul); P. Tikka-Kleemola (Päivi); G.R. Abecasis (Gonçalo); I.E. Barroso (Inês)

    2011-01-01

    textabstractNumerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N =

  1. A Novel Interpretation for Arterial Pulse Pressure Amplification in Health and Disease

    Directory of Open Access Journals (Sweden)

    Manuel R. Alfonso

    2018-01-01

    Full Text Available Arterial pressure waves have been described in one dimension using several approaches, such as lumped (Windkessel or distributed (using Navier-Stokes equations models. An alternative approach consists of modeling blood pressure waves using a Korteweg-de Vries (KdV equation and representing pressure waves as combinations of solitons. This model captures many key features of wave propagation in the systemic network and, in particular, pulse pressure amplification (PPA, which is a mechanical biomarker of cardiovascular risk. The main objective of this work is to compare the propagation dynamics described by a KdV equation in a human-like arterial tree using acquired pressure waves. Furthermore, we analyzed the ability of our model to reproduce induced elastic changes in PPA due to different pathological conditions. To this end, numerical simulations were performed using acquired central pressure signals from different subject groups (young, adults, and hypertensive as input and then comparing the output of the model with measured radial artery pressure waveforms. Pathological conditions were modeled as changes in arterial elasticity (E. Numerical results showed that the model was able to propagate acquired pressure waveforms and to reproduce PPA variations as a consequence of elastic changes. Calculated elasticity for each group was in accordance with the existing literature.

  2. Pulsed operation of high-pressure-sodium discharge lamps

    International Nuclear Information System (INIS)

    Guenther, K.; Kloss, H.G.; Lehmann, T.; Radtke, R.; Serick, F.

    1990-01-01

    Results of spectral and photometric measurements are presented for pulsed operated high-pressure-sodium lamps. Choosing for the colour temperature a value of 3000 K, the output spectrum was optimized with respect to colour rendition and lamp efficacy taking the pulse parameters, the sodium mole fraction, and the cold spot temperature as quantities to be varied. For the nominal rating of 70 W a maximum lamp efficacy of 70 lm/W and a colour rendering index of 40 can be obtained. Further improvements of the colour rendition require an enhanced sodium vapour pressure which can be achieved by operating the lamp at rised cold spot temperature. (orig.)

  3. Pulsed operation of high-pressure-sodium discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K; Kloss, H G; Lehmann, T [Zentrum fuer Forschung und Technologie, Berlin (Germany, F.R.); Radtke, R; Serick, F [Zentralinstitut fuer Elektronenphysik, Berlin (Germany, F.R.)

    1990-01-01

    Results of spectral and photometric measurements are presented for pulsed operated high-pressure-sodium lamps. Choosing for the colour temperature a value of 3000 K, the output spectrum was optimized with respect to colour rendition and lamp efficacy taking the pulse parameters, the sodium mole fraction, and the cold spot temperature as quantities to be varied. For the nominal rating of 70 W a maximum lamp efficacy of 70 lm/W and a colour rendering index of 40 can be obtained. Further improvements of the colour rendition require an enhanced sodium vapour pressure which can be achieved by operating the lamp at rised cold spot temperature. (orig.).

  4. Fluctuation of blood pressure and pulse rate during colostomy irrigation.

    Science.gov (United States)

    Sadahiro, S; Noto, T; Tajima, T; Mitomi, T; Miyazaki, T; Numata, M

    1995-06-01

    The aim of this study was to determine the effects of colostomy irrigation on the vital signs of patients with left colostomy. Twenty-two consecutive patients who underwent abdominoperineal resection for cancer of the lower rectum and had left lower quadrant end colostomy were included in this study. Subjective symptoms, blood pressure, and pulse rate during the first irrigation were investigated. Fluctuation of blood pressure during instillation was 8.0/8.5 mmHg (average) and 25.0/17.9 mmHg during evacuation. Fluctuation of pulse rate was 5.5 per minute (average) during instillation and 11.5 per minute during evacuation. The number of subjects who showed more than 20% fluctuation of systolic pressure was 12 (54.5 percent) and that of diastolic pressure was 14 (63.6 percent). One of 22 patients complained of illness during irrigation. Although colostomy irrigation showed no significant effects on vital signs in the majority of patients, it caused a significant reduction in both blood pressure and pulse rate in a small number of patients. Careful attention should be paid to vital signs considering the possibility of such effects, especially on the initial irrigation.

  5. Ozone formation in pulsed SDBD in a wide pressure range

    Science.gov (United States)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  6. Relationship between Resting Heart Rate, Blood Pressure and Pulse Pressure in Adolescents.

    Science.gov (United States)

    Christofaro, Diego Giulliano Destro; Casonatto, Juliano; Vanderlei, Luiz Carlos Marques; Cucato, Gabriel Grizzo; Dias, Raphael Mendes Ritti

    2017-05-01

    High resting heart rate is considered an important factor for increasing mortality chance in adults. However, it remains unclear whether the observed associations would remain after adjustment for confounders in adolescents. To analyze the relationship between resting heart rate, blood pressure and pulse pressure in adolescents of both sexes. A cross-sectional study with 1231 adolescents (716 girls and 515 boys) aged 14-17 years. Heart rate, blood pressure and pulse pressure were evaluated using an oscillometric blood pressure device, validated for this population. Weight and height were measured with an electronic scale and a stadiometer, respectively, and waist circumference with a non-elastic tape. Multivariate analysis using linear regression investigated the relationship between resting heart rate and blood pressure and pulse pressure in boys and girls, controlling for general and abdominal obesity. Higher resting heart rate values were observed in girls (80.1 ± 11.0 beats/min) compared to boys (75.9 ± 12.7 beats/min) (p ≤ 0.001). Resting heart rate was associated with systolic blood pressure in boys (Beta = 0.15 [0.04; 0.26]) and girls (Beta = 0.24 [0.16; 0.33]), with diastolic blood pressure in boys (Beta = 0.50 [0.37; 0.64]) and girls (Beta = 0.41 [0.30; 0.53]), and with pulse pressure in boys (Beta = -0.16 [-0.27; -0.04]). This study demonstrated a relationship between elevated resting heart rate and increased systolic and diastolic blood pressure in both sexes and pulse pressure in boys even after controlling for potential confounders, such as general and abdominal obesity. A frequência cardíaca de repouso é considerada um importante fator de aumento de mortalidade em adultos. Entretanto, ainda é incerto se as associações observadas permanecem após ajuste para fatores de confusão em adolescentes. Analisar a relação entre frequência cardíaca de repouso, pressão arterial e pressão de pulso em adolescentes dos dois sexos. Estudo transversal

  7. Vascular Stiffness and Increased Pulse Pressure in the Aging Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Jochen Steppan

    2011-01-01

    Full Text Available Aging leads to a multitude of changes in the cardiovascular system, including systolic hypertension, increased central vascular stiffness, and increased pulse pressure. In this paper we will review the effects of age-associated increased vascular stiffness on systolic blood pressure, pulse pressure, augmentation index, and cardiac workload. Additionally we will describe pulse wave velocity as a method to measure vascular stiffness and review the impact of increased vascular stiffness as an index of vascular health and as a predictor of adverse cardiovascular outcomes. Furthermore, we will discuss the underlying mechanisms and how these may be modified in order to change the outcomes. A thorough understanding of these concepts is of paramount importance and has therapeutic implications for the increasingly elderly population.

  8. Numerical Analysis of Through Transmission Pulsed Eddy Current Testing and Effects of Pulse Width Variation

    International Nuclear Information System (INIS)

    Shin, Young Kil; Choi, Dong Myung

    2007-01-01

    By using numerical analysis methods, through transmission type pulsed eddy current (PEC) testing is modeled and PEC signal responses due to varying material conductivity, permeability, thickness, lift-off and pulse width are investigated. Results show that the peak amplitude of PEC signal gets reduced and the time to reach the peak amplitude is increased as the material conductivity, permeability, and specimen thickness increase. Also, they indicate that the pulse width needs to be shorter when evaluating the material conductivity and the plate thickness using the peak amplitude, and when the pulse width is long, the peak time is found to be more useful. Other results related to lift-off variation are reported as well

  9. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    Science.gov (United States)

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.

  10. Single pulse analysis of intracranial pressure for a hydrocephalus implant.

    Science.gov (United States)

    Elixmann, I M; Hansinger, J; Goffin, C; Antes, S; Radermacher, K; Leonhardt, S

    2012-01-01

    The intracranial pressure (ICP) waveform contains important diagnostic information. Changes in ICP are associated with changes of the pulse waveform. This change has explicitly been observed in 13 infusion tests by analyzing 100 Hz ICP data. An algorithm is proposed which automatically extracts the pulse waves and categorizes them into predefined patterns. A developed algorithm determined 88 %±8 % (mean ±SD) of all classified pulse waves correctly on predefined patterns. This algorithm has low computational cost and is independent of a pressure drift in the sensor by using only the relationship between special waveform characteristics. Hence, it could be implemented on a microcontroller of a future electromechanic hydrocephalus shunt system to control the drainage of cerebrospinal fluid (CSF).

  11. Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment

    International Nuclear Information System (INIS)

    Avolio, Alberto P; Butlin, Mark; Walsh, Andrew

    2010-01-01

    The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken in a peripheral limb, the values are generally assumed to reflect the pressure throughout the arterial tree in large conduit arteries. Since the arterial pressure pulse becomes modified as it travels away from the heart towards the periphery, this is generally true for mean and diastolic pressure, but not for systolic pressure, and so pulse pressure. The relationship between central and peripheral pulse pressure depends on propagation characteristics of arteries. Hence, while the sphygmomanometer gives values of two single points on the pressure wave (systolic and diastolic pressure), there is additional information that can be obtained from the time-varying pulse waveform that enables an improved quantification of the systolic load on the heart and other central organs. This topical review will assess techniques of pressure measurement that relate to the use of the cuff sphygmomanometer and to the non-invasive registration and analysis of the peripheral and central arterial pressure waveform. Improved assessment of cardiovascular function in relation to treatment and management of high blood pressure will result from future developments in the indirect measurement of arterial blood pressure that involve the conventional cuff sphygmomanometer with the addition of information derived from the peripheral arterial pulse. (topical review)

  12. Effect of frequency variation on electromagnetic pulse interaction with charges and plasma

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2005-01-01

    The effect of frequency variation (chirp) in an electromagnetic (EM) pulse on the pulse interaction with a charged particle and plasma is studied. Various types of chirp and pulse envelopes are considered. In vacuum, a charged particle receives a kick in the polarization direction after interaction

  13. Simulations of piezoelectric pressure sensor for radial artery pulse measurement

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhay B. [Department of Electronic Science, University of Pune, Pune 411 007 (India); Kalange, Ashok E. [Department of Electronic Science, University of Pune, Pune 411 007 (India); Tuljaram Chaturchand College, Baramati 413 102 (India); Bodas, Dhananjay, E-mail: dhananjay.bodas@gmail.co [Center for Nanobio Sciences, Agharkar Research Institute, Pune 411 004 (India); Gangal, S.A. [Department of Electronic Science, University of Pune, Pune 411 007 (India)

    2010-04-15

    A radial artery pulse is used to diagnose human body constitution (Prakruti) in Ayurveda. A system consisting of piezoelectric sensor (22 mm x 12 mm), data acquisition card and LabView software was used to record the pulse data. The pulse obtained from the sensor was noisy, even though signal processing was done. Moreover due to large sized senor accurate measurements were not possible. Hence, a need was felt to develop a sensor of the size of the order of finger tip with a resonant frequency of the order of 1 Hz. A micromachined pressure sensor based on piezoelectric sensing mechanism was designed and simulated using CoventorWare. Simulations were carried out by varying dimensions of the sensor to optimize the resonant frequency, stresses and voltage generated as a function of applied pressure. All simulations were done with pressure ranging of 1-30 kPa, which is the range used by Ayurvedic practitioners for diagnosis. Preliminary work on fabrication of such a sensor was carried out successfully.

  14. Simulations of piezoelectric pressure sensor for radial artery pulse measurement

    International Nuclear Information System (INIS)

    Joshi, Abhay B.; Kalange, Ashok E.; Bodas, Dhananjay; Gangal, S.A.

    2010-01-01

    A radial artery pulse is used to diagnose human body constitution (Prakruti) in Ayurveda. A system consisting of piezoelectric sensor (22 mm x 12 mm), data acquisition card and LabView software was used to record the pulse data. The pulse obtained from the sensor was noisy, even though signal processing was done. Moreover due to large sized senor accurate measurements were not possible. Hence, a need was felt to develop a sensor of the size of the order of finger tip with a resonant frequency of the order of 1 Hz. A micromachined pressure sensor based on piezoelectric sensing mechanism was designed and simulated using CoventorWare. Simulations were carried out by varying dimensions of the sensor to optimize the resonant frequency, stresses and voltage generated as a function of applied pressure. All simulations were done with pressure ranging of 1-30 kPa, which is the range used by Ayurvedic practitioners for diagnosis. Preliminary work on fabrication of such a sensor was carried out successfully.

  15. Beam-induced pressure variations in a TFTR neutral-beam injector

    International Nuclear Information System (INIS)

    Willis, J.E.; Berkner, K.H.

    1981-10-01

    In neutral-beam injection systems either all or part of the gas flow into the neutralizer comes from the plasma source. When the beam is switched on, ions from the plasma source, which used to contribute to the gas flow, are converted to an energetic beam and are pumped away: hence reducing the gas input to the neutralizer. The large volume of the neutralizer and its high conductance damp out rapid changes; for example, when the gas to the source is first turned on, there is a 230 msec exponential rise time associated with pressure in the neutralizer. The neutralizer in turn acts as a source of gas to the first chamber and the first chamber to the second and so on. Beam dumps become additional sources of gas in the second chamber and target tank as gas molecules are collisionally desorbed from the surface of the dump. A simple analytical model (the equivalent of an electrical RC circuit) of the volumes and conductances of the system has been used to describe the pressure variations. The use of time dependent sources terms in the model gives an estimate of the desorption rate from the dumps and its time variation during a beam pulse

  16. Prediction of electromagnetic pulse generation by picosecond avalanches in high-pressure air

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Yee, J.H.

    1993-01-01

    The gas avalanche switch is a laser-activated, high-voltage switch, consisting of a set of pulse-charged electrodes in a high-pressure gas. Induced electrons from a picosecond-scale laser pulse initiate an avalanche discharge between high-voltage and grounded electrodes. If the voltage, pressure, and dimensions are correct, the rapid avalanche, fueled by the immense number of electrons available in the gas, collapses the applied voltage in picoseconds and generates electromagnetic pulses with widths as short as 1-10 ps and 3 dB bandwidths of 20-120 GHz. With proper voltage or pressure detuning, wider pulses and lower bandwidths occur. In addition to picosecond electromagnetic pulse generation, application of this switch should result in ultra-fast Marx bank pulsers. A number of versions of the switch are possible. The simplest is a parallel plate capacitor, consisting of a gas between two parallel plate conductors. High voltage is applied across the two plates. A parallel plate, Blumlein geometry features a center electrode between two grounded parallel plates. This geometry emits a single pulse in each direction along the parallel plates. A frozen wave geometry with multiple, oppositely charged center electrodes will emit AC pulses. Series switches consisting of gas gaps between two electrodes are also possible

  17. Long-duration nano-second single pulse lasers for observation of spectra from bulk liquids at high hydrostatic pressures

    International Nuclear Information System (INIS)

    Thornton, Blair; Sakka, Tetsuo; Masamura, Tatsuya; Tamura, Ayaka; Takahashi, Tomoko; Matsumoto, Ayumu

    2014-01-01

    The influence of laser pulse duration on the spectral emissions observed from bulk ionic solutions has been investigated for hydrostatic pressures between 0.1 and 30 MPa. Transient pressure, shadowgraph imaging and spectroscopic measurements were performed for single pulses of duration 20 and 150 ns. The transient pressure measurements show that for hydrostatic pressures up to 30 MPa, propagation of the high-pressure shockwave generated by the focused laser causes the local pressure to reduce below ambient levels during the time frame that spectroscopic measurements can be made. The pressure impulse and subsequent reduction in pressure are larger, with the latter lasting longer for the 150 ns pulse compared to a 20 ns pulse of the same energy. The 150 ns pulse generates larger cavities with significant enhancement of the spectral emissions observed compared to the 20 ns duration pulse for pressures up to 30 MPa. The results demonstrate that laser-induced breakdown using a long ns duration pulse offers an advantage over conventional, short ns duration pulses for the analysis of bulk ionic solutions at hydrostatic pressures between 0.1 and 30 MPa. - Highlights: • Long-ns-duration laser pulses enhance the spectra observed from bulk solutions. • Laser-induced shockwaves momentarily reduce pressures to below ambient levels. • 150 ns pulses generate larger cavities than 20 ns pulses of the same energy. • Hydrostatic pressures < 30 MPa have no significant effect on the observed spectra

  18. Tracking a Solar Wind Dynamic Pressure Pulses' Impact Through the Magnetosphere Using the Heliophysics System Observatory

    Science.gov (United States)

    Vidal-Luengo, S.; Moldwin, M.

    2017-12-01

    During northward Interplanetary Magnetic Field (IMF) Bz conditions, the magnetosphere acts as a closed "cavity" and reacts to solar wind dynamic pressure pulses more simply than during southward IMF conditions. Effects of solar wind dynamic pressure have been observed as geomagnetic lobe compressions depending on the characteristics of the pressure pulse and the spacecraft location. One of the most important aspects of this study is the incorporation of simultaneous observations by different missions, such as WIND, CLUSTER, THEMIS, MMS, Van Allen Probes and GOES as well as magnetometer ground stations that allow us to map the magnetosphere response at different locations during the propagation of a pressure pulse. In this study we used the SYM-H as an indicator of dynamic pressure pulses occurrence from 2007 to 2016. The selection criteria for events are: (1) the increase in the index must be bigger than 10 [nT] and (2) the rise time must be in less than 5 minutes. Additionally, the events must occur under northward IMF and at the same time at least one spacecraft has to be located in the magnetosphere nightside. Using this methodology we found 66 pressure pulse events for analysis. Most of them can be classified as step function pressure pulses or as sudden impulses (increase followed immediately by a decrease of the dynamic pressure). Under these two categories the results show some systematic signatures depending of the location of the spacecraft. For both kind of pressure pulse signatures, compressions are observed on the dayside. However, on the nightside compressions and/or South-then-North magnetic signatures can be observed for step function like pressure pulses, meanwhile for the sudden impulse kind of pressure pulses the magnetospheric response seems to be less global and more dependent on the local conditions.

  19. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  20. Hydraulic pressure pulses with elastic and plastic structural flexibility: test and analysis (LWBR Development Program)

    International Nuclear Information System (INIS)

    Schwirian, R.E.

    1978-03-01

    Pressure pulse tests were conducted with a flexible test section in a test vessel filled with room temperature water. The pressure pulses were generated with a drop hammer and piston pulse generator and were of a sufficient magnitude to cause plastic deformation of the test section. Because of the strong pressure relief effect of the deforming test section, pressure pulse magnitudes were below 265 psig in magnitude and had durations of 50 to 55 msecs. Calculations performed with the FLASH-35 bi-linear hysteresis model of structural deformation show good agreement with experiment. In particular, FLASH 35 adequately predicts the decrease in peak pressure and the increase in pulse duration due to elastic and plastic deformation of the test section. Predictions of flexible member motion are good, but are less satisfactory than the pressure pulse results due to uncertainties in the values of yield point and beyond yield stiffness used to model the various flexible members. Coupled with this is a strong sensitivity of the FLASH 35 predictions to the values of yield point and beyond yield stiffness chosen for the various flexible members. The test data versus calculation comparisons presented here provide preliminary qualification for FLASH 35 calculations of transient hydraulic pressures and pressure differentials in the presence of flexible structural members which deform both elastically and plastically

  1. Models of brachial to finger pulse wave distortion and pressure decrement

    NARCIS (Netherlands)

    Gizdulich, P.; Prentza, A.; Wesseling, K.H.

    1997-01-01

    Objective: To model the pulse wave distortion and pressure decrement occurring between brachial and finger arteries. Distortion reversion and decrement correction were also our aims. Methods: Brachial artery pressure was recorded intra-arterially and finger pressure was recorded non-invasively by

  2. Measurement of the pressure pulse from a detonating explosive

    International Nuclear Information System (INIS)

    Bourne, N K; Milne, A M; Biers, R A

    2005-01-01

    A series of experiments has been carried out to determine the pressure pulse exiting from a polymethylmethacrylate (PMMA) plate, of varying thickness, subject to the shock pulse exerted by a detonating charge of fixed mass. This calibration will define a new donor explosive and inert gap material for use in one of the qualification tests for energetic materials, the large scale gap test. The peak pressure was recorded on the central axis of the attenuator using calibrated piezoresistive manganin gauges as a function of the quantity of PMMA applied to the output of the donor charge. The stress history within the PMMA was measured as a function of run distance and the peak pressure plotted against thickness as a calibration. The shock front was known to have curvature and a measurement of this was attempted. The behaviour of the transmitted shock at small gap thicknesses was shown to be anomalous since the front was partially in a reactive and partially within an inert medium

  3. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    Science.gov (United States)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-12-01

    In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La0.4Ca0.6MnO3 target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10-1 mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  4. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, Sizhe; Lu, Xinpei

    2016-09-01

    We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.

  5. A Novel Mobile Phone Application for Pulse Pressure Variation Monitoring Based on Feature Extraction Technology: A Method Comparison Study in a Simulated Environment.

    Science.gov (United States)

    Desebbe, Olivier; Joosten, Alexandre; Suehiro, Koichi; Lahham, Sari; Essiet, Mfonobong; Rinehart, Joseph; Cannesson, Maxime

    2016-07-01

    Pulse pressure variation (PPV) can be used to assess fluid status in the operating room. This measurement, however, is time consuming when done manually and unreliable through visual assessment. Moreover, its continuous monitoring requires the use of expensive devices. Capstesia™ is a novel Android™/iOS™ application, which calculates PPV from a digital picture of the arterial pressure waveform obtained from any monitor. The application identifies the peaks and troughs of the arterial curve, determines maximum and minimum pulse pressures, and computes PPV. In this study, we compared the accuracy of PPV generated with the smartphone application Capstesia (PPVapp) against the reference method that is the manual determination of PPV (PPVman). The Capstesia application was loaded onto a Samsung Galaxy S4 phone. A physiologic simulator including PPV was used to display arterial waveforms on a computer screen. Data were obtained with different sweep speeds (6 and 12 mm/s) and randomly generated PPV values (from 2% to 24%), pulse pressure (30, 45, and 60 mm Hg), heart rates (60-80 bpm), and respiratory rates (10-15 breaths/min) on the simulator. Each metric was recorded 5 times at an arterial height scale X1 (PPV5appX1) and 5 times at an arterial height scale X3 (PPV5appX3). Reproducibility of PPVapp and PPVman was determined from the 5 pictures of the same hemodynamic profile. The effect of sweep speed, arterial waveform scale (X1 or X3), and number of images captured was assessed by a Bland-Altman analysis. The measurement error (ME) was calculated for each pair of data. A receiver operating characteristic curve analysis determined the ability of PPVapp to discriminate a PPVman > 13%. Four hundred eight pairs of PPVapp and PPVman were analyzed. The reproducibility of PPVapp and PPVman was 10% (interquartile range, 7%-14%) and 6% (interquartile range, 3%-10%), respectively, allowing a threshold ME of 12%. The overall mean bias for PPVappX1 was 1.1% within limits of

  6. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kepa, M. W., E-mail: mkepa@staffmail.ed.ac.uk; Huxley, A. D. [SUPA, Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Ridley, C. J.; Kamenev, K. V. [Centre for Science at Extreme Conditions and School of Engineering, University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)

    2016-08-15

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe{sub 2}.

  7. PIEZOELECTRIC WAVEGUIDE SENSOR FOR MEASURING PULSE PRESSURE IN CLOSED LIQUID VOLUMES AT HIGH VOLTAGE ELECTRIC DISCHARGE

    Directory of Open Access Journals (Sweden)

    V. G. Zhekul

    2017-10-01

    Full Text Available Purpose. Investigations of the characteristics of pressure waves presuppose the registration of the total profile of the pressure wave at a given point in space. For these purposes, various types of «pressure to the electrical signal» transmitters (sensors are used. Most of the common sensors are unsuitable for measuring the pulse pressure in a closed water volume at high hydrostatic pressures, in particular to study the effect of a powerful high-voltage pulse discharge on increasing the inflow of minerals and drinking water in wells. The purpose of the work was to develop antijamming piezoelectric waveguide sensor for measuring pulse pressure at a close distance from a high-voltage discharge channel in a closed volume of a liquid. Methodology. We have applied the calibration method as used as a secondary standard, the theory of electrical circuits. Results. We have selected the design and the circuit solution of the waveguide pressure sensor. We have developed a waveguide pulse-pressure sensor DTX-1 with a measuring loop. This sensor makes it possible to study the spectral characteristics of pressure waves of high-voltage pulse discharge in closed volumes of liquid at a hydrostatic pressure of up to 20 MPa and a temperature of up to 80 °C. The sensor can be used to study pressure waves with a maximum amplitude value of up to 150 MPa and duration of up to 80 µs. According to the results of the calibration, the sensitivity of the developed sensor DTX-1 with a measuring loop is 0.0346 V/MPa. Originality. We have further developed the theory of designing the waveguide piezoelectric pulse pressure sensors for measuring the pulse pressure at a close distance from a high-voltage discharge channel in a closed fluid volume by controlling the attenuation of the amplitude of the pressure signal. Practical value. We have developed, created, calibrated, used in scientific research waveguide pressure pulse sensors DTX-1. We propose sensors DTX-1 for sale

  8. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    Energy Technology Data Exchange (ETDEWEB)

    Nurkkala, P.; Hoikkanen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-12-31

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. `grounded` and `with goose neck`). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.). 3 refs.

  9. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    International Nuclear Information System (INIS)

    Nurkkala, P.; Hoikkanen, J.

    1997-01-01

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. 'grounded' and 'with goose neck'). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.)

  10. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    Energy Technology Data Exchange (ETDEWEB)

    Nurkkala, P; Hoikkanen, J [Imatran Voima Oy, Vantaa (Finland)

    1998-12-31

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. `grounded` and `with goose neck`). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.). 3 refs.

  11. Abdominal Obesity Is Characterized by Higher Pulse Pressure: Possible Role of Free Triiodothyronine

    Directory of Open Access Journals (Sweden)

    Giovanni De Pergola

    2012-01-01

    Full Text Available Objective. This study examined whether obesity is characterized by higher 24 h mean pulse pressure (24 h mean SBP-24 h mean DBP and whether free thyroid hormones (FT3 and FT4 have a relationship with 24 h mean pulse pressure. Methods. A total of 231 euthyroid overweight and obese patients, 103 women and 128 men, aged 18–68 yrs, normotensive ( or with recently developed hypertension (, never treated with antihypertensive drugs, were investigated. Fasting insulin, TSH, FT3, FT4, glucose, and lipid serum concentrations were measured. Waist circumference was measured as an indirect parameter of central fat accumulation. Ambulatory blood pressure monitoring (ABPM was performed. Results. 24 h mean pulse pressure (PP showed a significant positive correlation with BMI (, waist circumference (, and FT3 ( and insulin serum levels (. When a multivariate analysis was performed, and 24 h PP was considered as the dependent variable, and waist circumference, FT3, insulin, male sex, and age as independent parameters, 24 h mean PP maintained a significant association only with waist circumference ( and FT3 levels (. Conclusion. Our results suggest that FT3 per se may contribute to higher pulse pressure in obese subjects.

  12. Systolic Blood Pressure Accuracy Enhancement in the Electronic Palpation Method Using Pulse Waveform

    National Research Council Canada - National Science Library

    Sorvoja, H

    2001-01-01

    .... Systolic pressure errors were defined and correlations with other specific values, like pressure rise time, pulse wave velocity, systolic pressure, augmentation, arm circumference and body mass index were calculated...

  13. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    International Nuclear Information System (INIS)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-01-01

    Highlights: • The flip-over effect in PLD is observed up to high deposition pressures. • Consistent congruent transfer of the target composition is generally not correct. • The choice of deposition pressure can change the film composition strongly. • Large compositional changes appear at high off-axis angles and large spot sizes. - Abstract: In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La 0.4 Ca 0.6 MnO 3 target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10 −1 mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  14. Elevated pulse pressure is associated with hemolysis, proteinuria and chronic kidney disease in sickle cell disease.

    Directory of Open Access Journals (Sweden)

    Enrico M Novelli

    Full Text Available A seeming paradox of sickle cell disease is that patients do not suffer from a high prevalence of systemic hypertension in spite of endothelial dysfunction, chronic inflammation and vasculopathy. However, some patients do develop systolic hypertension and increased pulse pressure, an increasingly recognized major cardiovascular risk factor in other populations. Hence, we hypothesized that pulse pressure, unlike other blood pressure parameters, is independently associated with markers of hemolytic anemia and cardiovascular risk in sickle cell disease. We analyzed the correlates of pulse pressure in patients (n  =  661 enrolled in a multicenter international sickle cell trial. Markers of hemolysis were analyzed as independent variables and as a previously validated hemolytic index that includes multiple variables. We found that pulse pressure, not systolic, diastolic or mean arterial pressure, independently correlated with high reticulocyte count (beta  =  2.37, p  =  0.02 and high hemolytic index (beta  =  1.53, p = 0.002 in patients with homozygous sickle cell disease in two multiple linear regression models which include the markers of hemolysis as independent variables or the hemolytic index, respectively. Pulse pressure was also independently associated with elevated serum creatinine (beta  =  3.21, p  =  0.02, and with proteinuria (beta  =  2.52, p  =  0.04. These results from the largest sickle cell disease cohort to date since the Cooperative Study of Sickle Cell Disease show that pulse pressure is independently associated with hemolysis, proteinuria and chronic kidney disease. We propose that high pulse pressure may be a risk factor for clinical complications of vascular dysfunction in sickle cell disease. Longitudinal and mechanistic studies should be conducted to confirm these hypotheses.

  15. Morning pulse pressure is associated more strongly with elevated albuminuria than systolic blood pressure in patients with type 2 diabetes mellitus: post hoc analysis of a cross-sectional multicenter study.

    Science.gov (United States)

    Ushigome, Emi; Fukui, Michiaki; Hamaguchi, Masahide; Matsumoto, Shinobu; Mineoka, Yusuke; Nakanishi, Naoko; Senmaru, Takafumi; Yamazaki, Masahiro; Hasegawa, Goji; Nakamura, Naoto

    2013-09-01

    Recently, focus has been directed toward pulse pressure as a potentially independent risk factor for micro- and macrovascular disease. This study was designed to examine the relationship between pulse pressure taken at home and elevated albuminuria in patients with type 2 diabetes. This study is a post hoc analysis of a cross-sectional multicenter study. Home blood pressure measurements were performed for 14 consecutive days in 858 patients with type 2 diabetes. We investigated the relationship between systolic blood pressure or pulse pressure in the morning or in the evening and urinary albumin excretion using univariate and multivariate analyses. Furthermore, we measured area under the receiver-operating characteristic curve (AUC) to compare the ability to identify elevated albuminuria, defined as urinary albumin excretion equal to or more than 30 mg/g creatinine, of systolic blood pressure or pulse pressure. Morning systolic blood pressure (β=0.339, Ppressure (β=0.378, PAUC for elevated albuminuria in morning systolic blood pressure and morning pulse pressure were 0.668 (0.632-0.705; PAUC of morning pulse pressure was significantly greater than that of morning systolic blood pressure (P=0.040). Our findings implicate that morning pulse pressure is associated with elevated albuminuria in patients with type 2 diabetes, which suggests that lowering morning pulse pressure could prevent the development and progression of diabetic nephropathy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Differing prognostic value of pulse pressure in patients with heart failure with reduced or preserved ejection fraction

    DEFF Research Database (Denmark)

    Jackson, Colette E; Castagno, Davide; Maggioni, Aldo P

    2015-01-01

    ) and 5008 with HF-PEF (828 deaths). Pulse pressure was analysed in quintiles in a multivariable model adjusted for the previously reported Meta-Analysis Global Group in Chronic Heart Failure prognostic variables. Heart failure and reduced ejection fraction patients in the lowest pulse pressure quintile had...... in patients with HF-PEF [ejection fraction (EF) ≥ 50%] and HF-REF. METHODS AND RESULTS: Data from 22 HF studies were examined. Preserved left ventricular ejection fraction (LVEF) was defined as LVEF ≥ 50%. All-cause mortality at 3 years was evaluated in 27 046 patients: 22 038 with HF-REF (4980 deaths......AIMS: Low pulse pressure is a marker of adverse outcome in patients with heart failure (HF) and reduced ejection fraction (HF-REF) but the prognostic value of pulse pressure in patients with HF and preserved ejection fraction (HF-PEF) is unknown. We examined the prognostic value of pulse pressure...

  17. Multi-Pulsed High Hydrostatic Pressure Treatment of Foods

    Directory of Open Access Journals (Sweden)

    Sencer Buzrul

    2015-05-01

    Full Text Available Multi-pulsed high hydrostatic pressure (mpHHP treatment of foods has been investigated for more than two decades. It was reported that the mpHHP treatment, with few exceptions, is more effective than the classical or single-pulsed HHP (spHHP treatment for inactivation of microorganisms in fruit juice, dairy products, liquid whole egg, meat products, and sea foods. Moreover, the mpHHP treatment could be also used to inactivate enzymes in foods and to increase the shelf-life of foods. The effects of the mpHHP treatment of foods are summarized and the differences between the mpHHP and spHHP are also emphasized.

  18. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor.

    Science.gov (United States)

    Nishiyama, Michiko; Sonobe, Masako; Watanabe, Kazuhiro

    2016-09-01

    In this paper, we present a pulse pressure waveform sensor that does not constrain a wearer's daily activity; the sensor uses hetero-core fiber optics. Hetero-core fiber sensors have been found to be sensitive to moderate bending. To detect minute pulse pressure changes from the radial artery at the wrist, we devised a fiber sensor arrangement using three-point bending supports. We analyzed and evaluated the measurement validity using wavelet transformation, which is well-suited for biological signal processing. It was confirmed that the detected pulse waveform had a fundamental mode frequency of around 1.25 Hz over the time-varying waveform. A band-pass filter with a range of frequencies from 0.85 to 1.7 Hz was used to pick up the fundamental mode. In addition, a high-pass filter with 0.85 Hz frequency eliminated arm motion artifacts; consequently, we achieved high signal-to-noise ratio. For unrestricted daily health management, it is desirable that pulse pressure monitoring can be achieved by simply placing a device on the hand without the sensor being noticed. Two types of arrangements were developed and demonstrated in which the pulse sensors were either embedded in a base, such as an armrest, or in a wearable device. A wearable device without cuff pressure using a sensitivity-enhanced fiber sensor was successfully achieved with a sensitivity of 0.07-0.3 dB with a noise floor lower than 0.01 dB for multiple subjects.

  19. Pulse oximeter as a sensor of fluid responsiveness: do we have our finger on the best solution?

    Science.gov (United States)

    Monnet, Xavier; Lamia, Bouchra; Teboul, Jean-Louis

    2005-10-05

    The pulse oximetry plethysmographic signal resembles the peripheral arterial pressure waveform, and the degree of respiratory variation in the pulse oximetry wave is close to the degree of respiratory arterial pulse pressure variation. Thus, it is tempting to speculate that pulse oximetry can be used to assess preload responsiveness in mechanically ventilated patients. In this commentary we briefly review the complex meaning of the pulse oximetry plethysmographic signal and highlight the advantages, limitations and pitfalls of the pulse oximetry method. Future studies including volume challenge must be performed to test whether the pulse oximetry waveform can really serve as a nonivasive tool for the guidance of fluid therapy in patients receiving mechanical ventilation in intensive care units and in operating rooms.

  20. Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum.

    Science.gov (United States)

    García-Parra, J; González-Cebrino, F; Delgado-Adámez, J; Cava, R; Martín-Belloso, O; Élez-Martínez, P; Ramírez, R

    2018-03-01

    Moderate intensity pulse electric fields were applied in plum with the aim to increase bioactive compounds content of the fruit, while high-hydrostatic pressure was applied to preserve the purées. High-hydrostatic pressure treatment was compared with an equivalent thermal treatment. The addition of ascorbic acid during purée manufacture was also evaluated. The main objective of this study was to assess the effects on microorganisms, polyphenoloxidase, color and bioactive compounds of high-hydrostatic pressure, or thermal-processed plum purées made of moderate intensity pulse electric field-treated or no-moderate intensity pulse electric field-treated plums, after processing during storage. The application of moderate intensity pulse electric field to plums slightly increased the levels of anthocyanins and the antioxidant activity of purées. The application of Hydrostatic-high pressure (HHP) increased the levels of bioactive compounds in purées, while the thermal treatment preserved better the color during storage. The addition of ascorbic acid during the manufacture of plum purée was an important factor for the final quality of purées. The color and the bioactive compounds content were better preserved in purées with ascorbic acid. The no inactivation of polyphenoloxidase enzyme with treatments applied in this study affected the stability purées. Probably more intense treatments conditions (high-hydrostatic pressure and thermal treatment) would be necessary to reach better quality and shelf life during storage.

  1. Phylloquinone (vitamin K₁) intake and pulse pressure as a measure of arterial stiffness in older adults.

    Science.gov (United States)

    Vaccaro, Joan A; Huffman, Fatma G

    2013-01-01

    This study examined the relationships among ethnicity/race, lifestyle factors, phylloquinone (vitamin K₁) intake, and arterial pulse pressure in a nationally representative sample of older adults from four ethnic/racial groups: non-Hispanic Whites, non-Hispanic Blacks, Mexican Americans, and other Hispanics. This was a cross-sectional study of U.S. representative sample with data from the National Health and Nutrition Examination Surveys, 2007-2008 and 2009-2010 of adults aged 50 years and older (N = 5296). Vitamin K intake was determined by 24-hour recall. Pulse pressure was calculated as the difference between the averages of systolic blood pressure and diastolic blood pressure. Compared to White non-Hispanics, the other ethnic/racial groups were more likely to have inadequate vitamin K₁ intake. Inadequate vitamin K₁ intake was an independent predictor of high arterial pulse pressure. This was the first study that compared vitamin K₁ inadequacy with arterial pulse pressure across ethnicities/races in U.S. older adults. These findings suggest that vitamin K screening may be a beneficial marker for the health of older adults.

  2. Investigation on the generation characteristic of pressure pulse wave signal during the measurement-while-drilling process

    Science.gov (United States)

    Changqing, Zhao; Kai, Liu; Tong, Zhao; Takei, Masahiro; Weian, Ren

    2014-04-01

    The mud-pulse logging instrument is an advanced measurement-while-drilling (MWD) tool and widely used by the industry in the world. In order to improve the signal transmission rate, ensure the accurate transmission of information and address the issue of the weak signal on the ground of oil and gas wells, the signal generator should send out the strong mud-pulse signals with the maximum amplitude. With the rotary valve pulse generator as the study object, the three-dimensional Reynolds NS equations and standard k - ɛ turbulent model were used as a mathematical model. The speed and pressure coupling calculation was done by simple algorithms to get the amplitudes of different rates of flow and axial clearances. Tests were done to verify the characteristics of the pressure signals. The pressure signal was captured by the standpiece pressure monitoring system. The study showed that the axial clearances grew bigger as the pressure wave amplitude value decreased and caused the weakening of the pulse signal. As the rate of flow got larger, the pressure wave amplitude would increase and the signal would be enhanced.

  3. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-G-P, Alejandro [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Schneider, Christof W., E-mail: christof.schneider@psi.ch [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Lippert, Thomas; Wokaun, Alexander [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland)

    2015-12-01

    Highlights: • The flip-over effect in PLD is observed up to high deposition pressures. • Consistent congruent transfer of the target composition is generally not correct. • The choice of deposition pressure can change the film composition strongly. • Large compositional changes appear at high off-axis angles and large spot sizes. - Abstract: In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La{sub 0.4}Ca{sub 0.6}MnO{sub 3} target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10{sup −1} mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  4. Atmospheric pressure variations and abdominal aortic aneurysm rupture.

    LENUS (Irish Health Repository)

    Killeen, S D

    2012-02-03

    BACKGROUND: Ruptured abdominal aortic aneurysm (RAAA) presents with increased frequency in the winter and spring months. Seasonal changes in atmospheric pressure mirrors this pattern. AIM: To establish if there was a seasonal variation in the occurrence of RAAA and to determine if there was any association with atmospheric pressure changes. METHODS: A retrospective cohort-based study was performed. Daily atmospheric pressure readings for the region were obtained. RESULTS: There was a statistically significant monthly variation in RAAA presentation with 107 cases (52.5%) occurring from November to March. The monthly number of RAAA and the mean atmospheric pressure in the previous month were inversely related (r = -0.752, r (2) = 0.566, P = 0.03), and there was significantly greater daily atmospheric pressure variability on days when patients with RAAA were admitted. CONCLUSION: These findings suggest a relationship between atmospheric pressure and RAAA.

  5. Design of a Continuous Blood Pressure Measurement System Based on Pulse Wave and ECG Signals.

    Science.gov (United States)

    Li, Jian-Qiang; Li, Rui; Chen, Zhuang-Zhuang; Deng, Gen-Qiang; Wang, Huihui; Mavromoustakis, Constandinos X; Song, Houbing; Ming, Zhong

    2018-01-01

    With increasingly fierce competition for jobs, the pressures on people have risen in recent years, leading to lifestyle and diet disorders that result in significantly higher risks of cardiovascular disease. Hypertension is one of the common chronic cardiovascular diseases; however, mainstream blood pressure measurement devices are relatively heavy. When multiple measurements are required, the user experience and the measurement results may be unsatisfactory. In this paper, we describe the design of a signal collection module that collects pulse waves and electrocardiograph (ECG) signals. The collected signals are input into a signal processing module to filter the noise and amplify the useful physiological signals. Then, we use a wavelet transform to eliminate baseline drift noise and detect the feature points of the pulse waves and ECG signals. We propose the concept of detecting the wave shape associated with an instance, an approach that minimizes the impact of atypical pulse waves on blood pressure measurements. Finally, we propose an improved method for measuring blood pressure based on pulse wave velocity that improves the accuracy of blood pressure measurements by 58%. Moreover, the results meet the american medical instrument promotion association standards, which demonstrate the feasibility of our measurement system.

  6. Output Pressure and Pulse-Echo Characteristics of CMUTs as Function of Plate Dimensions

    DEFF Research Database (Denmark)

    Diederichsen, Søren Elmin; Hansen, Jesper Mark Fly; Engholm, Mathias

    2017-01-01

    This paper presents an experimental study of the acoustic performance of Capacitive Micromachined Ultrasonic Transducers (CMUTs) as function of plate dimensions. The objective is to increase the output pressure without decreasingthe pulse-echo signal. The CMUTs are fabricated with a LOCOS process......-to-peak output pressure and pulse-echo signal is obtained for the 9.3μm plate, which still has a moderate pulseecho bandwidth of 60%. The 9.3μm plate results in a 1.9 times higher peak-to-peak output pressure and a 3.6 times higherpulse-echo signal compared to the 2μm plate. By adjusting the plate dimensions...

  7. Pressure variation characteristics at trapping region in oil hydraulic piston pumps

    International Nuclear Information System (INIS)

    Kim, Jong Ki; Jung, Jae Youn; Rho, Byung Joon; Song, Kyu Keun; Oh, Seok Hyung

    2003-01-01

    Pressure variation is one of the major sources on noise emission in the oil hydraulic piston pumps. Therefore, it is necessary to clarify about pressure variation characteristics of the oil hydraulic piston pumps to reduce noise. Pressure variations in a cylinder at trapping region were measured during pump working period with discharge pressures, rotational speeds. The effect of pre-compression of the discharge port with three types valve plates also investigated. It was found that the pressure variation characteristics of oil hydraulic piston pumps deeply related with pre-compression design of the discharge port. Also, it was found that the pressure overshoot at trapping region can reduce by use of pre-compression at the end of the discharge port in valve plate

  8. Aluminum oxide films deposited in low pressure conditions by reactive pulsed dc magnetron sputtering

    CERN Document Server

    Seino, T

    2002-01-01

    The reactive pulsed dc sputtering technique is widely used for the deposition of oxide films. The operating pressure for sputtering is commonly above 0.13 Pa. In this study, however, aluminum oxide (alumina) films were deposited at operating pressures from 0.06 to 0.4 Pa using a sputtering system equipped with a scanning magnetron cathode and a pulsed dc power supply. The pulsed dc power was found to be useful not only to reduce arcing, but also to sustain the discharge at low pressure. The electrical breakdown field, intrinsic stress, O/Al ratio, refractive index, and surface roughness were investigated. Both a low intrinsic stress and an O/Al ratio around the stoichiometry were required to get the film having a high breakdown field. A low operating pressure of 0.1 Pa was found to provide the necessary stress and O/Al ratio targets. A 50-nm-thick alumina film having a maximum breakdown field of 7.4 MV/cm was obtained.

  9. Dual-modality arterial pulse monitoring system for continuous blood pressure measurement.

    Science.gov (United States)

    Wen-Xuan Dai; Yuan-Ting Zhang; Jing Liu; Xiao-Rong Ding; Ni Zhao

    2016-08-01

    Accurate and ambulatory measurement of blood pressure (BP) is essential for efficient diagnosis, management and prevention of cardiovascular diseases (CVDs). However, traditional cuff-based BP measurement methods provide only intermittent BP readings and can cause discomfort with the occlusive cuff. Although pulse transit time (PTT) method is promising for cuffless and continuous BP measurement, its pervasive use is restricted by its limited accuracy and requirement of placing sensors on multiple body sites. To tackle these issues, we propose a novel dual-modality arterial pulse monitoring system for continuous blood pressure measurement, which simultaneously records the pressure and photoplethysmography (PPG) signals of radial artery. The obtained signals can be used to generate a pressure-volume curve, from which the elasticity index (EI) and viscosity index (VI) can be extracted. Experiments were carried out among 7 healthy subjects with their PPG, ECG, arterial pressure wave and reference BP collected to examine the effectiveness of the proposed indexes. The results of this study demonstrate that a linear regression model combining EI and VI has significantly higher BP tracking correlation coefficient as compared to the PTT method. This suggests that the proposed system and method can potentially be used for convenient and continuous blood pressure estimation with higher accuracy.

  10. Variation of the Korotkoff Stethoscope Sounds During Blood Pressure Measurement: Analysis Using a Convolutional Neural Network.

    Science.gov (United States)

    Pan, Fan; He, Peiyu; Liu, Chengyu; Li, Taiyong; Murray, Alan; Zheng, Dingchang

    2017-11-01

    Korotkoff sounds are known to change their characteristics during blood pressure (BP) measurement, resulting in some uncertainties for systolic and diastolic pressure (SBP and DBP) determinations. The aim of this study was to assess the variation of Korotkoff sounds during BP measurement by examining all stethoscope sounds associated with each heartbeat from above systole to below diastole during linear cuff deflation. Three repeat BP measurements were taken from 140 healthy subjects (age 21 to 73 years; 62 female and 78 male) by a trained observer, giving 420 measurements. During the BP measurements, the cuff pressure and stethoscope signals were simultaneously recorded digitally to a computer for subsequent analysis. Heartbeats were identified from the oscillometric cuff pressure pulses. The presence of each beat was used to create a time window (1 s, 2000 samples) centered on the oscillometric pulse peak for extracting beat-by-beat stethoscope sounds. A time-frequency two-dimensional matrix was obtained for the stethoscope sounds associated with each beat, and all beats between the manually determined SBPs and DBPs were labeled as "Korotkoff." A convolutional neural network was then used to analyze consistency in sound patterns that were associated with Korotkoff sounds. A 10-fold cross-validation strategy was applied to the stethoscope sounds from all 140 subjects, with the data from ten groups of 14 subjects being analyzed separately, allowing consistency to be evaluated between groups. Next, within-subject variation of the Korotkoff sounds analyzed from the three repeats was quantified, separately for each stethoscope sound beat. There was consistency between folds with no significant differences between groups of 14 subjects (P = 0.09 to P = 0.62). Our results showed that 80.7% beats at SBP and 69.5% at DBP were analyzed as Korotkoff sounds, with significant differences between adjacent beats at systole (13.1%, P = 0.001) and diastole (17.4%, P < 0

  11. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Lotte [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Buczynska, Anna [Departement of Chemistry, UA, Wilrijk (Belgium); Walgraeve, Christophe [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); Delcloo, Andy [Royal Meteorological Institute, Brussels (Belgium); Potgieter-Vermaak, Sanja [Departement of Chemistry, UA, Wilrijk (Belgium); Molecular Science Institute, School of Chemistry, University of Witwatersrand, Johannesburg (South Africa); Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester (United Kingdom); Van Grieken, Rene [Departement of Chemistry, UA, Wilrijk (Belgium); Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); De Backer, Hugo [Royal Meteorological Institute, Brussels (Belgium); Nemery, Benoit, E-mail: ben.nemery@med.kuleuven.be [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Nawrot, Tim S. [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Centre for Environmental Sciences, Hasselt University, Diepenbeek (Belgium)

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  12. The association between brain-derived neurotrophic factor and central pulse pressure after an oral glucose tolerance test.

    Science.gov (United States)

    Lee, I-Te; Chen, Chen-Huan; Wang, Jun-Sing; Fu, Chia-Po; Lee, Wen-Jane; Liang, Kae-Woei; Lin, Shih-Yi; Sheu, Wayne Huey-Herng

    2018-01-01

    Arterial stiffening blunts postprandial vasodilatation. We hypothesized that brain-derived neurotrophic factor (BDNF) may modulate postprandial central pulse pressure, a surrogate marker for arterial stiffening. A total of 82 non-diabetic subjects received a 75-g oral glucose tolerance test (OGTT) after overnight fasting. Serum BDNF concentrations were determined at 0, 30, and 120min to calculate the area under the curve (AUC). Brachial and central blood pressures were measured using a noninvasive central blood pressure monitor before blood withdrawals at 0 and 120min. With the median AUC of BDNF of 45(ng/ml)∗h as the cutoff value, the central pulse pressure after glucose intake was significantly higher in the subjects with a low BDNF than in those with a high BDNF (63±16 vs. 53±11mmHg, P=0.003), while the brachial pulse pressure was not significantly different between the 2 groups (P=0.099). In a multivariate linear regression model, a lower AUC of BDNF was an independent predictor of a higher central pulse pressure after oral glucose intake (linear regression coefficient-0.202, 95% confidence interval-0.340 to -0.065, P=0.004). After oral glucose challenge, a lower serum BDNF response is significantly associated with a higher central pulse pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Continuous cuff-less blood pressure monitoring based on the pulse arrival time approach: the impact of posture.

    Science.gov (United States)

    Muehlsteff, J; Aubert, X A; Morren, G

    2008-01-01

    There is an unmet need for cuff-less blood pressure (BP) monitoring especially, in personal healthcare applications. The pulse arrival time (PAT) approach might offer a suitable solution to enable comfortable BP monitoring even at beat-level. However, the methodology is based on hemodynamic surrogate measures, which are sensitive to patient activities such as posture changes, not necessarily related to blood pressure variations. In this paper, we analyze the impact of posture on the PAT measure and related hemodynamic parameters such as the pre-ejection period in well-defined procedures. Additionally, the PAT of a monitored subject is investigated in an unsupervised scenario illustrating the complexity of such a measurement. Our results show the failure of blood pressure inference based on simple calibration strategies using the PAT measure only. We discuss opportunities to compensate for the observed effects towards the realization of wearable cuff-less blood pressure monitoring. These findings emphasize the importance of accessing context information in personal healthcare applications, where vital sign monitoring is typically unsupervised.

  14. THE EFFECT OF VARIATION CONCRETE CUBE OF AXIAL LOAD ON ULTRASONIC PULSE VELOCITY TRANSMITTER

    Directory of Open Access Journals (Sweden)

    Faqih Ma’arif

    2015-05-01

    The test result showed that the increase of ultrasonic pulse velocity effect on cube II due to axial load variation was optimum at 0,35P0 and was minimum at 0,7P0, if compared to the one without axial load, the results were 4,17% and 11,60 respectively. The decrease of pulse velocity on cube III due to axial load variation was at 0,25P0 and 0,7P0; if compared to the one without axial load the result were 0,47% and 20,87% respectively. And the increase of ultrasonic pulse velocity effect on cube IV due to axial load variation was optimum at 0,35P0 and was minimum at 0,7P0; if compared to the one without axial load the result were 0,52% and 21,63% respectively. The maximum limit of effective load step at structure experiencing compressive load ranged from 0,35P0 up to 0,4P0. At high stress level, the crack that occurred was spread evenly to the concrete cubic components and was giving an exponential equation y = y= 5,11e0,0467x. The result of analysis of cubes II, III and IV showed that on paired sample t-test 0,00<0,025, the significant value (2-tailed (0,00<(0,025; meaning there was a difference of pulse velocity due to axial load variation on concrete cube.

  15. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration

    International Nuclear Information System (INIS)

    Benedetti, P.A.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In this paper, the effect of laser pulse energy on double-pulse laser induced breakdown spectroscopy signal is studied. In particular, the energy of the first pulse has been changed, while the second pulse energy is held fixed. A systematic study of the laser induced breakdown spectroscopy signal dependence on the interpulse delay is performed, and the results are compared with the ones obtained with a single laser pulse of energy corresponding to the sum of the two pulses. At the same time, the crater formed at the target surface is studied by video-confocal microscopy, and the variation in crater dimensions is correlated to the enhancement of the laser induced breakdown spectroscopy signal. The results obtained are consistent with the interpretation of the double-pulse laser induced breakdown spectroscopy signal enhancement in terms of the changes in ambient gas pressure produced by the shock wave induced by the first laser pulse

  16. Perceived social isolation moderates the relationship between early childhood trauma and pulse pressure in older adults.

    Science.gov (United States)

    Norman, Greg J; Hawkley, Louise; Ball, Aaron; Berntson, Gary G; Cacioppo, John T

    2013-06-01

    Over a million children are subjected to some form of trauma in the United States every year. Early trauma has been shown to have deleterious effects on cardiovascular health in adulthood. However, the presence of strong social relationships as an adult can buffer an individual against many of the harmful effects of early trauma. Furthermore, the perception of social isolation has been shown to be a significant risk factor for the development of cardiovascular disease and is a strong predictor of all cause mortality. One likely mechanism thought to underlie the influence of perceived isolation on health is changes in arterial stiffness. One of the more widely used measures of arterial stiffness in older individuals is pulse pressure. The goal of the present study was to determine whether early childhood trauma is associated with elevations on pulse pressure. Furthermore, this study sought to determine whether perceived social isolation moderates the relationship between early trauma and pulse pressure. Results revealed that individuals with low perceived social isolation displayed no significant relationship between early trauma and pulse pressure. However, individuals who reported higher levels of perceived isolation showed a significant positive association between early trauma and pulse pressure. Therefore, the detrimental effects of early trauma may be partially dependent upon the quality of social relationships as an adult. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    Science.gov (United States)

    Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.

    2012-06-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.

  18. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    International Nuclear Information System (INIS)

    Robert, E; Sarron, V; Riès, D; Dozias, S; Vandamme, M; Pouvesle, J-M

    2012-01-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 10 7 –10 8 cm s −1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications. (paper)

  19. Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges

    International Nuclear Information System (INIS)

    Huo, W. G.; Jian, S. J.; Yao, J.; Ding, Z. F.

    2014-01-01

    In pulsed RF atmospheric pressure glow discharges, the gas breakdown judged by the rapid drop in the amplitude of the pulsed RF voltage is no longer universally true. The steep increment of the plasma-absorbed RF power is proposed to determine the gas breakdown. The averaged plasma-absorbed RF power over a pulse period is used to evaluate effects of the preceding pulsed RF discharge on the breakdown voltage of the following one, finding that the breakdown voltage decreases with the increment in the averaged plasma-absorbed RF power under constant pulse duty ratio. Effects of the pulse off-time on the breakdown voltage and the breakdown delay time are also studied. The obtained dependence of the breakdown voltage on the pulse off-time is indicative of the transitional plasma diffusion processes in the afterglow. The breakdown voltage varies rapidly as the plasma diffuses fast in the region of moderate pulse off-time. The contribution of nitrogen atom recombination at the alumina surface is demonstrated in the prolonged memory effect on the breakdown delay time vs. the pulse off-time and experimentally validated by introducing a trace amount of nitrogen into argon at short and long pulse off-times

  20. Modelling of pulsed RF corona discharges in high-pressure air

    International Nuclear Information System (INIS)

    Auzas, F; Makarov, M; Naidis, G V

    2012-01-01

    An approach to description of pulsed RF corona discharges in high-pressure air is developed, based on the model of a filamentary discharge sustained by an electromagnetic wave guided along the plasma filament. Results of numerical simulation of spatial-temporal discharge dynamics at the quasi-stationary stage are obtained for various values of gas pressure and wave frequency. Experimental data on the discharge length versus the power absorbed by the discharge are presented. Their comparison with simulation results is given. (paper)

  1. Pulse Oximeter Derived Blood Pressure Measurement in Patients With a Continuous Flow Left Ventricular Assist Device.

    Science.gov (United States)

    Hellman, Yaron; Malik, Adnan S; Lane, Kathleen A; Shen, Changyu; Wang, I-Wen; Wozniak, Thomas C; Hashmi, Zubair A; Munson, Sarah D; Pickrell, Jeanette; Caccamo, Marco A; Gradus-Pizlo, Irmina; Hadi, Azam

    2017-05-01

    Currently, blood pressure (BP) measurement is obtained noninvasively in patients with continuous flow left ventricular assist device (LVAD) by placing a Doppler probe over the brachial or radial artery with inflation and deflation of a manual BP cuff. We hypothesized that replacing the Doppler probe with a finger-based pulse oximeter can yield BP measurements similar to the Doppler derived mean arterial pressure (MAP). We conducted a prospective study consisting of patients with contemporary continuous flow LVADs. In a small pilot phase I inpatient study, we compared direct arterial line measurements with an automated blood pressure (ABP) cuff, Doppler and pulse oximeter derived MAP. Our main phase II study included LVAD outpatients with a comparison between Doppler, ABP, and pulse oximeter derived MAP. A total of five phase I and 36 phase II patients were recruited during February-June 2014. In phase I, the average MAP measured by pulse oximeter was closer to arterial line MAP rather than Doppler (P = 0.06) or ABP (P < 0.01). In phase II, pulse oximeter MAP (96.6 mm Hg) was significantly closer to Doppler MAP (96.5 mm Hg) when compared to ABP (82.1 mm Hg) (P = 0.0001). Pulse oximeter derived blood pressure measurement may be as reliable as Doppler in patients with continuous flow LVADs. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. Time-resolved investigation of an asymmetric bipolar pulsed magnetron deposition discharge: Influence of pressure

    NARCIS (Netherlands)

    Dunger, Th.; Welzel, Th.; Welzel, S.; Richter, F.

    2005-01-01

    A bipolar pulsed magnetron deposition discharge has been studied with pulse frequencies of 100 and 150 kHz, respectively. The discharge was operated in an argon/oxygen mixture at different total pressures with a circular magnesium target as cathode. Time-resolved Langmuir double probe measurements

  3. Stress Redistribution Explains Anti-correlated Subglacial Pressure Variations

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Lefeuvre

    2018-01-01

    Full Text Available We used a finite element model to interpret anti-correlated pressure variations at the base of a glacier to demonstrate the importance of stress redistribution in the basal ice. We first investigated two pairs of load cells installed 20 m apart at the base of the 210 m thick Engabreen glacier in Northern Norway. The load cell data for July 2003 showed that pressurisation of a subglacial channel located over one load cell pair led to anti-correlation in pressure between the two pairs. To investigate the cause of this anti-correlation, we used a full Stokes 3D model of a 210 m thick and 25–200 m wide glacier with a pressurised subglacial channel represented as a pressure boundary condition. The model reproduced the anti-correlated pressure response at the glacier bed and variations in pressure of the same order of magnitude as the load cell observations. The anti-correlation pattern was shown to depend on the bed/surface slope. On a flat bed with laterally constrained cross-section, the resulting bridging effect diverted some of the normal forces acting on the bed to the sides. The anti-correlated pressure variations were then reproduced at a distance >10–20 m from the channel. In contrast, when the bed was inclined, the channel support of the overlying ice was vertical only, causing a reduction of the normal stress on the bed. With a bed slope of 5 degrees, the anti-correlation occurred within 10 m of the channel. The model thus showed that the effect of stress redistribution can lead to an opposite response in pressure at the same distance from the channel and that anti-correlation in pressure is reproduced without invoking cavity expansion caused by sliding.

  4. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery - Part 1.

    Science.gov (United States)

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H(2) storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1(st) hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body.

  5. Variation of Pressure Waveforms in Measurements of Extracorporeal Shock Wave Lithotripter

    Science.gov (United States)

    Inose, Naoto; Ide, Masao

    1993-05-01

    In this paper, we describe measurement of variation in pressure waveforms of the acoustic field of an extra-corporeal shock-wave lithotripter (ESWL). Variations in the measured acoustic fields and pressure waveform of an underwater spark-gap-type ESWL with an exhausted spark plug electrode have been reported by researchers using crystal sensors. If the ESWL spark plugs become exhausted, patients feel pain during kidney, biliary stone disintegration. We studied the relationship between exhaustion of electrodes and the variation of pressure waveforms and shock-wave fields of the ESWL using a newly developed hydrophone.

  6. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Ma, W. J., E-mail: wenjun.ma@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Gu, Y. Q. [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Yan, X. Q., E-mail: x.yan@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-08-15

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  7. Explosive Processes on Cathode while Forming Nanosecond Pulsed Discharge of High Pressure

    Directory of Open Access Journals (Sweden)

    A. M. Hashimov

    2012-01-01

    Full Text Available The paper is devoted to research of cathode surfaces with different curvature radius (r = 1–8 mm while forming nanosecond pulsed discharge in dense air. Influence of field and air pressure heterogeneity rate in gas gap on size of micro-craters being formed on working cathode surface after pulsed effect has been shown in the paper. The paper reveals a maximum expansion of separate micro-crater size on cathode surface with small curvature radius.

  8. Spatio-temporal variation of fish taxonomic composition in a South-East Asian flood-pulse system.

    Science.gov (United States)

    Kong, Heng; Chevalier, Mathieu; Laffaille, Pascal; Lek, Sovan

    2017-01-01

    The Tonle Sap Lake (TSL) is a flood-pulse system. It is the largest natural lake in South-East Asia and constitutes one of the largest fisheries over the world, supporting the livelihood of million peoples. Nonetheless, the Mekong River Basin is changing rapidly due to accelerating water infrastructure development (hydropower, irrigation, flood control, and water supply) and climate change, bringing considerable modifications to the annual flood-pulse of the TSL. Such modifications are expected to have strong impacts on fish biodiversity and abundance. This paper aims to characterize the spatio-temporal variations of fish taxonomic composition and to highlights the underlying determinants of these variations. For this purpose, we used data collected from a community catch monitoring program conducted at six sites during 141 weeks, covering two full hydrological cycles. For each week, we estimated beta diversity as the total variance of the site-by-species community matrix and partitioned it into Local Contribution to Beta Diversity (LCBD) and Species Contribution to Beta Diversity (SCBD). We then performed multiple linear regressions to determine whether species richness, species abundances and water level explained the temporal variation in the contribution of site and species to beta diversity. Our results indicate strong temporal variation of beta diversity due to differential contributions of sites and species to the spatial variation of fish taxonomic composition. We further found that the direction, the shape and the relative effect of species richness, abundances and water level on temporal variation in LCBD and SCBD values greatly varied among sites, thus suggesting spatial variation in the processes leading to temporal variation in community composition. Overall, our results suggest that fish taxonomic composition is not homogeneously distributed over space and time and is likely to be impacted in the future if the flood-pulse dynamic of the system is

  9. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    International Nuclear Information System (INIS)

    TROYER, G.L.

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency

  10. Influence of aerobic exercise training on post-exercise responses of aortic pulse pressure and augmentation pressure in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Nobuhiko eAkazawa

    2015-10-01

    Full Text Available Central arterial blood pressure (BP is more predictive of future cardiovascular events than is brachial BP because it reflects the BP load imposed on the left ventricle with greater accuracy. However, little is known about the effects of exercise training on central hemodynamic response to acute exercise. The purpose of the present study was to determine the influence of an aerobic exercise regimen on the response of aortic BP after a single aerobic exercise in postmenopausal women. Nine healthy postmenopausal women (age: 61 ± 2 years participated in a 12-week aerobic exercise training regimen. Before and after the training, each subjects performed a single bout of cycling at ventilatory thresholds for 30 min. We evaluated the post-exercise aortic BP response, which was estimated via the general transfer function from applanation tonometry. After the initial pre-training aerobic exercise session, aortic BP did not change significantly: however, aortic pulse pressure and augmentation pressure were significantly attenuated after the single aerobic exercise session following the 12-week training regimen. The present study demonstrated that a regular aerobic exercise training regimen induced the post-exercise reduction of aortic pulse pressure and augmentation pressure. Regular aerobic exercise training may enhance post-exercise reduction in aortic BP.

  11. Detection of the Thickness Variation of a Stainless Steel sample using Pulsed Eddy Current

    International Nuclear Information System (INIS)

    Cheong, Y. M.; Angani, C. S.; Park, D. G.; Jhong, H. K.; Kim, G. D.; Kim, C. G.

    2008-01-01

    The Pulsed Eddy Current (PEC) system has been developed for the detection of thickness variation of stainless steel. The sample was machined as step configuration using stainless steel for thickness variation from 1mm to 5mm step by step. The LabView computer program was developed to display the variation in the amplitude of the detected pulse by scanning the PECT probe on the flat side of the sample. The pickup Sensor measures the effective magnetic field on the sample, which is the sum of the incident field and the field reflected by the specimen due to the induced eddy currents in the sample. We use the hall sensor for the detection. Usage of hall sensor instead of coil as a field detector improves the detectability and special resolution. This technology can be used in detection of local wall thinning of the pipeline of nuclear power plant

  12. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors

    International Nuclear Information System (INIS)

    Baek, Hyun Jae; Kim, Ko Keun; Kim, Jung Soo; Lee, Boreom; Park, Kwang Suk

    2010-01-01

    A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations

  13. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors.

    Science.gov (United States)

    Baek, Hyun Jae; Kim, Ko Keun; Kim, Jung Soo; Lee, Boreom; Park, Kwang Suk

    2010-02-01

    A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations.

  14. On the Responses of Azeotropes to Pressure Variations

    DEFF Research Database (Denmark)

    Abildskov, Jens; O’Connell, John P.

    2014-01-01

    Systems with azeotropes cannot be separated by simple distillation since the vapor and liquid compositions are the same. Variation of the applied pressure can shift the azeotropic composition out of the range of purification of a single column or may allow pressure swing operation of two columns....... Because of the sensitivity of column size to accurate estimates of the relative volatility, it is important to use reliable phase equilibrium thermodynamics when exploring the possibility of varying pressure to avoid an azeotrope. Based on an analysis of the pressure sensitivity of azeotropic compositions...

  15. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    CERN Document Server

    Troyer, G L

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse r...

  16. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    Science.gov (United States)

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  17. Temporal evolution of electron density in a low pressure pulsed two-frequency (60 MHz/2 MHz) capacitively coupled plasma discharge

    International Nuclear Information System (INIS)

    Sirse, N; Ellingboe, A R; Jeon, M H; Yeom, G Y

    2014-01-01

    Time-resolved electron density, n e , is measured in a low pressure pulsed two-frequency capacitively coupled plasma discharge sustained in Ar and in Ar/CF 4 /O 2 (80 : 10 : 10) gas mixture using a floating resonance hairpin probe. The top electrode is powered by 60 MHz in pulse mode and the bottom electrode is powered by 2 MHz in continuous wave mode. The dependence of time-resolved n e on the low frequency (LF) and high frequency (HF) power levels, operating gas pressure, pulse repetition frequency (PRF) and duty cycle are investigated. It is found that the steady state n e in the long on-phase is greatly influenced by the HF power level and slightly affected by the LF power level in both Ar and Ar/CF 4 /O 2 plasma. The decay time of n e is slow (∼30–90 µs) in the case of Ar plasma and strongly depends on the LF power level, whereas in the case of Ar/CF 4 /O 2 gas mixture it is very fast (∼15 µs) and marginally dependent on LF power level. In Ar plasma the steady state n e is increasing with a rise in operating gas pressure, however, in Ar/CF 4 /O 2 plasma it first increases with gas pressure reaching to the maximum (at 20 mTorr) value and then decreases. The pressure dependence of decay time constant mimics the pressure variation of steady state n e . Furthermore, it is observed that the on-phase electron density is greatly affected by changing the PRF and duty cycle. This effect is more prominent in Ar/CF 4 /O 2 plasma when compared to Ar discharge. In addition, n e is observed to overshoot the steady state densities in the beginning of the on-phase in Ar/CF 4 /O 2 gas mixture, but this effect is either small or absent in the case of Ar plasma. (paper)

  18. Determination of etching parameters for pulsed XeF2 etching of silicon using chamber pressure data

    Science.gov (United States)

    Sarkar, Dipta; Baboly, M. G.; Elahi, M. M.; Abbas, K.; Butner, J.; Piñon, D.; Ward, T. L.; Hieber, Tyler; Schuberth, Austin; Leseman, Z. C.

    2018-04-01

    A technique is presented for determination of the depletion of the etchant, etched depth, and instantaneous etch rate for Si etching with XeF2 in a pulsed etching system in real time. The only experimental data required is the pressure data collected temporally. Coupling the pressure data with the knowledge of the chemical reactions allows for the determination of the etching parameters of interest. Using this technique, it is revealed that pulsed etching processes are nonlinear, with the initial etch rate being the highest and monotonically decreasing as the etchant is depleted. With the pulsed etching system introduced in this paper, the highest instantaneous etch rate of silicon was recorded to be 19.5 µm min-1 for an initial pressure of 1.2 Torr for XeF2. Additionally, the same data is used to determine the rate constant for the reaction of XeF2 with Si; the reaction is determined to be second order in nature. The effect of varying the exposed surface area of Si as well as the effect that pressure has on the instantaneous etch rate as a function of time is shown applying the same technique. As a proof of concept, an AlN resonator is released using XeF2 pulses to remove a sacrificial poly-Si layer.

  19. Blood pressure and pulse rate of apparently healthy adults on land ...

    African Journals Online (AJOL)

    Blood pressure and pulse rate of apparently healthy adults on land and in water: A comparative study. AI Bello, BOA Adegoke, OA Abass, O Addo. Abstract. Objective: The study compared cardiovascular parameters of apparently healthy adults in erect standing posture on land and whilst immersed in water at rest. Methods: ...

  20. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    International Nuclear Information System (INIS)

    Sang Chaofeng; Sun Jizhong; Wang Dezhen

    2010-01-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  1. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    Science.gov (United States)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  2. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  3. Direct injection of high pressure gas : scaling properties of pulsed turbulent jets

    NARCIS (Netherlands)

    Baert, R.S.G.; Klaassen, A.; Doosje, E.

    2010-01-01

    Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection

  4. REFLECTANCE PULSE OXIMETRY AT THE FOREHEAD IMPROVES BY PRESSURE ON THE PROBE

    NARCIS (Netherlands)

    DASSEL, ACM; GRAAFF, R; SIKKEMA, M; ZIJLSTRA, WG; AARNOUDSE, JG

    In this study, we investigated the possibility of improving reflectance (back-scatter) pulse oximetry measurements by pressure applied to the probe. Optimal signal detection, with the probe applied to an easily accessible location, is important to prevent erroneous oxygen saturation readouts. At the

  5. Some characteristics of the digitization pulses from high pressure neon-helium flash tubes

    International Nuclear Information System (INIS)

    Chan, D.S.K.; Leung, S.K.; Ng, L.K.

    1979-01-01

    Characteristics of the digitization output pulses from high pressure neon-helium flash tubes were studied under various operation conditions using square ultra-high voltage pulses. Properties reported by previous workers were compared. Two discharge mechanisms, the Townsend avalanche discharge and the streamer discharge, were observed to occur in sequence in some events. The output waveforms for both discharge mechanisms were studied in detail. The charge induced on a detecting probe was also estimated from the measured data. (Auth.)

  6. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery – Part 1

    Science.gov (United States)

    Purushothaman, B. K.; Wainright, J. S.

    2012-01-01

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H2 storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1st hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body. PMID:22423175

  7. Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension.

    Science.gov (United States)

    Castelain, V; Hervé, P; Lecarpentier, Y; Duroux, P; Simonneau, G; Chemla, D

    2001-03-15

    The purpose of this time-domain study was to compare pulmonary artery (PA) pulse pressure and wave reflection in chronic pulmonary thromboembolism (CPTE) and primary pulmonary hypertension (PPH). Pulmonary artery pressure waveform analysis provides a simple and accurate estimation of right ventricular afterload in the time-domain. Chronic pulmonary thromboembolism and PPH are both responsible for severe pulmonary hypertension. Chronic pulmonary thromboembolism and PPH predominantly involve proximal and distal arteries, respectively, and may lead to differences in PA pressure waveform. High-fidelity PA pressure was recorded in 14 patients (7 men/7 women, 46 +/- 14 years) with CPTE (n = 7) and PPH (n = 7). We measured thermodilution cardiac output, mean PA pressure (MPAP), PA pulse pressure (PAPP = systolic - diastolic PAP) and normalized PAPP (nPAPP = PPAP/MPAP). Wave reflection was quantified by measuring Ti, that is, the time between pressure upstroke and the systolic inflection point (Pi), deltaP, that is, the systolic PAP minus Pi difference, and the augmentation index (deltaP/PPAP). At baseline, CPTE and PPH had similar cardiac index (2.4 +/- 0.4 vs. 2.5 +/- 0.5 l/min/m2), mean PAP (59 +/- 9 vs. 59 +/- 10 mm Hg), PPAP (57 +/- 13 vs. 53 +/- 13 mm Hg) and nPPAP (0.97 +/- 0.16 vs. 0.89 +/- 0.13). Chronic pulmonary thromboembolism had shorter Ti (90 +/- 17 vs. 126 +/- 16 ms, p PPAP (0.26 +/- 0.01 vs. 0.09 +/- 0.07, p < 0.01). Our study indicated that: 1) CPTE and PPH with severe pulmonary hypertension had similar PA pulse pressure, and 2) wave reflection is elevated in both groups, and CPTE had increased and anticipated wave reflection as compared with PPH, thus suggesting differences in the pulsatile component of right ventricular afterload.

  8. Low-pressure pulsed focused ultrasound with microbubbles promotes an anticancer immunological response.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Han-Yi; Lu, Li-An; Kang, Chiao-Wen; Wu, Ming-Fang; Lin, Chun-Yen

    2012-11-11

    High-intensity focused-ultrasound (HIFU) has been successfully employed for thermal ablation of tumors in clinical settings. Continuous- or pulsed-mode HIFU may also induce a host antitumor immune response, mainly through expansion of antigen-presenting cells in response to increased cellular debris and through increased macrophage activation/infiltration. Here we demonstrated that another form of focused ultrasound delivery, using low-pressure, pulsed-mode exposure in the presence of microbubbles (MBs), may also trigger an antitumor immunological response and inhibit tumor growth. A total of 280 tumor-bearing animals were subjected to sonographically-guided FUS. Implanted tumors were exposed to low-pressure FUS (0.6 to 1.4 MPa) with MBs to increase the permeability of tumor microvasculature. Tumor progression was suppressed by both 0.6 and 1.4-MPa MB-enhanced FUS exposures. We observed a transient increase in infiltration of non-T regulatory (non-Treg) tumor infiltrating lymphocytes (TILs) and continual infiltration of CD8+ cytotoxic T-lymphocytes (CTL). The ratio of CD8+/Treg increased significantly and tumor growth was inhibited. Our findings suggest that low-pressure FUS exposure with MBs may constitute a useful tool for triggering an anticancer immune response, for potential cancer immunotherapy.

  9. Effects of Abrupt Variations of Solar Wind Dynamic Pressure on the High-Latitude Ionosphere

    Directory of Open Access Journals (Sweden)

    Igino Coco

    2011-01-01

    Full Text Available We show the results of a statistical study on the effects in the high-latitude ionosphere of abrupt variations of solar wind dynamic pressure, using Super Dual Auroral Radar Network (SuperDARN data in both hemispheres. We find that, during periods of quiet ionospheric conditions, the amount of radar backscatter increases when a variation in the dynamic pressure occurs, both positive (increase of the pressure and negative (decrease of the pressure. We also investigate the behaviour of the Cross-Polar Cap Potential (CPCP during pressure variations and show preliminary results.

  10. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim

    2004-01-01

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure.......Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure....

  11. Measurement of intraocular pressure using the NT-4000: a new non-contact tonometer equipped with pulse synchronous measurement function.

    Science.gov (United States)

    Yaoeda, Kiyoshi; Shirakashi, Motohiro; Fukushima, Atsushi; Funaki, Shigeo; Funaki, Haruko; Ofuchi, Nobutaka; Nakatsue, Tomoko; Abe, Haruki

    2005-06-01

    NT-4000 (Nidek Co. Ltd., Gamagori, Japan) is a new non-contact tonometer (NCT) equipped with pulse synchronous measurement function that can measure intraocular pressure (IOP) synchronized with the ocular pulse. The purpose of this study was to evaluate the usefulness of NT-4000 in normal subjects and in patients with glaucoma and ocular hypertension. This study included 175 eyes of 175 subjects. Firstly, the IOP was measured using NT-4000 without the pulse synchronous measurement function (NTn). Secondly, the IOP at peak, middle, and trough phases of the pulse signal were measured using NT-4000 with the pulse synchronous measurement function (NTp, NTm, NTt, respectively). Additionally, the IOP was measured with Goldmann applanation tonometer (GT). The coefficient of variation (CV) of three readings in the NCT measurements was used to evaluate the intra-session reproducibility. Statistical comparisons were performed using Wilcoxon signed rank test and one-way analysis of variance with Scheffe's test. Linear regression analysis was used to calculate correlation coefficients. P values less than 0.05 were accepted as statistically significant. The CV of NTn, NTp, NTm, and NTt were 6.4%, 5.5%, 4.9%, and 5.2%, respectively. The CV of NTp, NTm, and NTt were significantly smaller than that of NTn (P = 0.007, P < 0.001, P < 0.001, respectively). NTp was significantly higher than NTt (P = 0.038). GT was significantly correlated with NTn, NTp, NTm, and NTt (r = 0.898, P < 0.001; r = 0.912, P < 0.001; r = 0.908, P < 0.001; r = 0.900, P < 0.001, respectively). NT-4000 can detect the fluctuation of IOP associated with the ocular pulse.

  12. Non-invasive aortic systolic pressure and pulse wave velocity estimation in a primary care setting: An in silico study.

    Science.gov (United States)

    Guala, Andrea; Camporeale, Carlo; Ridolfi, Luca; Mesin, Luca

    2017-04-01

    Everyday clinical cardiovascular evaluation is still largely based on brachial systolic and diastolic pressures. However, several clinical studies have demonstrated the higher diagnostic capacities of the aortic pressure, as well as the need to assess the aortic mechanical properties (e.g., by measuring the aortic pulse wave velocity). In order to fill this gap, we propose to exploit a set of easy-to-obtain physical characteristics to estimate the aortic pressure and pulse wave velocity. To this aim, a large population of virtual subjects is created by a validated mathematical model of the cardiovascular system. Quadratic regressive models are then fitted and statistically selected in order to obtain reliable estimations of the aortic pressure and pulse wave velocity starting from the knowledge of the subject age, height, weight, brachial pressure, photoplethysmographic measures and either electrocardiogram or phonocardiogram. The results are very encouraging and foster clinical studies aiming to apply a similar technique to a real population. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. The effects of pulse pressure from seismic water gun technology on Northern Pike

    Science.gov (United States)

    Gross, Jackson A.; Irvine, Kathryn M.; Wilmoth, Siri K.; Wagner, Tristany L.; Shields, Patrick A; Fox, Jeffrey R.

    2013-01-01

    We examined the efficacy of sound pressure pulses generated from a water gun for controlling invasive Northern Pike Esox lucius. Pulse pressures from two sizes of water guns were evaluated for their effects on individual fish placed at a predetermined random distance. Fish mortality from a 5,620.8-cm3 water gun (peak pressure source level = 252 dB referenced to 1 μP at 1 m) was assessed every 24 h for 168 h, and damage (intact, hematoma, or rupture) to the gas bladder, kidney, and liver was recorded. The experiment was replicated with a 1,966.4-cm3 water gun (peak pressure source level = 244 dB referenced to 1 μP at 1 m), but fish were euthanized immediately. The peak sound pressure level (SPLpeak), peak-to-peak sound pressure level (SPLp-p), and frequency spectrums were recorded, and the cumulative sound exposure level (SELcum) was subsequently calculated. The SPLpeak, SPLp-p, and SELcum were correlated, and values varied significantly by treatment group for both guns. Mortality increased and organ damage was greater with decreasing distance to the water gun. Mortality (31%) by 168 h was only observed for Northern Pike exhibiting the highest degree of organ damage. Mortality at 72 h and 168 h postexposure was associated with increasing SELcum above 195 dB. The minimum SELcum calculated for gas bladder rupture was 199 dB recorded at 9 m from the 5,620.8-cm3 water gun and 194 dB recorded at 6 m from the 1,966.4-cm3water gun. Among Northern Pike that were exposed to the large water gun, 100% of fish exposed at 3 and 6 m had ruptured gas bladders, and 86% exposed at 9 m had ruptured gas bladders. Among fish that were exposed to pulse pressures from the smaller water gun, 78% exhibited gas bladder rupture. Results from these initial controlled experiments underscore the potential of water guns as a tool for controlling Northern Pike.

  14. Carbon dioxide reforming of methane by atmospheric pressure pulsed glow discharge: The effect of pulse compression

    International Nuclear Information System (INIS)

    Ghorbanzadeh, A.; Modarresi, H.

    2006-01-01

    Methane reforming by carbon dioxide in atmospheric pressure pulsed glow discharge was examined. The pulse duration of plasma was compressed to ∼50 ns or lower. This compression allowed working at higher frequencies, more than 3 k Hz, without glow to arc transition. The main outlet gases were synthetic gases (H 2 , CO) and C 2 (ethylene, ethane, and acetylene) products. At equal reactants proportion CO 2 /CH 4 =1, about 42 p ercent o f plasma energy went to chemical dissociation while reactant conversions were relatively high, i.e. near 55 p ercent % (CH 4 ) and 42 p ercent ( CO 2 ). At this point, the energy expenditure was less than 3.8 eV per each converted molecule. The reactor energy performance even gets better at higher CO 2 /CH 4 proportions. At CO 2 /CH 4 =5, The conversions of about 65 p ercent a nd 45 p ercent w ere obtained for methane and carbon dioxide respectively, while energy efficiency reached near 45 p ercent . It is discussed that high nonequilibrium state of vibrational energy at short pulses, especially in carbon dioxide, leads to this improvement.

  15. Robust motion artefact resistant circuit for calculation of Mean Arterial Pressure from pulse transit time.

    Science.gov (United States)

    Bhattacharya, Tinish; Gupta, Ankesh; Singh, Salam ThoiThoi; Roy, Sitikantha; Prasad, Anamika

    2017-07-01

    Cuff-less and non-invasive methods of Blood Pressure (BP) monitoring have faced a lot of challenges like stability, noise, motion artefact and requirement for calibration. These factors are the major reasons why such devices do not get approval from the medical community easily. One such method is calculating Blood Pressure indirectly from pulse transit time (PTT) obtained from electrocardiogram (ECG) and Photoplethysmogram (PPG). In this paper we have proposed two novel analog signal conditioning circuits for ECG and PPG that increase stability, remove motion artefacts, remove the sinusoidal wavering of the ECG baseline due to respiration and provide consistent digital pulses corresponding to blood pulses/heart-beat. We have combined these two systems to obtain the PTT and then correlated it with the Mean Arterial Pressure (MAP). The aim was to perform major part of the processing in analog domain to decrease processing load over microcontroller so as to reduce cost and make it simple and robust. We have found from our experiments that the proposed circuits can calculate the Heart Rate (HR) with a maximum error of ~3.0% and MAP with a maximum error of ~2.4% at rest and ~4.6% in motion.

  16. Effects of oxygen gas pressure on properties of iron oxide films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Guo, Qixin; Shi, Wangzhou; Liu, Feng; Arita, Makoto; Ikoma, Yoshifumi; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro

    2013-01-01

    Highlights: ► Pulsed laser deposition is a promising technique for growing iron oxide films. ► Crystal structure of the iron oxide films strongly depends on oxygen gas pressure. ► Optimum of the oxygen gas pressure leads single phase magnetite films with high crystal quality. -- Abstract: Iron oxide films were grown on sapphire substrates by pulsed laser deposition at oxygen gas pressures between 1 × 10 −5 and 1 × 10 −1 Pa with a substrate temperature of 600 °C. Atomic force microscope, X-ray diffraction, Raman spectroscopy, X-ray absorption fine structure, and vibrational sample magnetometer analysis revealed that surface morphology and crystal structure of the iron oxide films strongly depend on the oxygen gas pressure during the growth and the optimum oxygen gas pressure range is very narrow around 1 × 10 −3 Pa for obtaining single phase magnetite films with high crystal quality

  17. On random pressure pulses in the turbine draft tube

    Science.gov (United States)

    Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2017-04-01

    The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.

  18. On the propagation of the pressure pulse due to an unconfined gas cloud explosion

    International Nuclear Information System (INIS)

    Essers, J.A.

    1985-01-01

    A critical analysis of flow models used in computer codes for the simulation of the propagation in air of a pressure pulse due to a gas cloud explosion is presented. In particular, weaknesses of simple linear acoustic model are pointed out, and a more reliable non-linear isentropic model is proposed. A simple one-dimensional theory is used to evaluate as a function of the relative overpressure the speed of an incident normal shock-wave, as well as the strength and speed of the wave after reflection on a simplified rigid obstacle. Results obtained with the different models are compared to those obtained from the full Euler equations. A theoretical analysis of pulse deformation during its propagation is presented, and the ability of each model to correctly simulate that purely non-linear phenomenon is discussed. In particular, the formation of a sharp pressure pulse (shock-up phenomenon) is analyzed in detail. From the analysis, the accuracy of the linear acoustic model for the evaluation of strength and speed of incident and reflected waves is found to be quite poor except for very weak overpressures. Additionally, such a model is completely unable to simulate pulse deformations. As a result, it should be expected to lead to important errors in the simulation of pulse interaction with non-rigid obstacles, even at very weak overpressures. As opposed to that very simple model, the proposed non-linear isentropic model is found to lead to an excellent accuracy in the prediction of all wave characteristics mentioned above and in the simulation of pulse deformation if overpressure is not too large. (author)

  19. Neighborhood Disadvantage and Variations in Blood Pressure

    Science.gov (United States)

    Cathorall, Michelle L.; Xin, Huaibo; Peachey, Andrew; Bibeau, Daniel L.; Schulz, Mark; Aronson, Robert

    2015-01-01

    Purpose: To examine the extent to which neighborhood disadvantage accounts for variation in blood pressure. Methods: Demographic, biometric, and self-reported data from 19,261 health screenings were used. Addresses of participants were geocoded and located within census block groups (n = 14,510, 75.3%). Three hierarchical linear models were…

  20. Pulse pressure and nocturnal fall in blood pressure are predictors of vascular, cardiac and renal target organ damage in hypertensive patients (LOD-RISK study).

    Science.gov (United States)

    García-Ortiz, Luis; Gómez-Marcos, Manuel A; Martín-Moreiras, Javier; González-Elena, Luis J; Recio-Rodriguez, Jose I; Castaño-Sánchez, Yolanda; Grandes, Gonzalo; Martínez-Salgado, Carlos

    2009-08-01

    To analyse the relationship between various parameters derived from ambulatory blood pressure monitoring (ABPM) and vascular, cardiac and renal target organ damage. A cross-sectional, descriptive study. It included 353 patients with short-term or recently diagnosed hypertension. ABPM, carotid intima-media thickness (IMT), Cornell voltage-duration product (Cornell VDP), glomerular filtration rate and albumin/creatinine ratio to assess vascular, cardiac and renal damage. Two hundred and twenty-three patients (63.2%) were males, aged 56.12+/-11.21 years. The nocturnal fall in blood pressure was 11.33+/-8.41, with a dipper pattern in 49.0% (173), nondipper in 30.3% (107), extreme dipper in 12.7% (45) and riser in 7.9% (28). The IMT was lower in the extreme dipper (0.716+/-0.096 mm) and better in the riser pattern (0.794+/-0.122 mm) (P<0.05). The Cornell VDP and albumin/creatinine ratio were higher in the riser pattern (1818.94+/-1798.63 mm/ms and 140.78+/-366.38 mg/g, respectively) than in the other patterns. In the multivariate analysis after adjusting for age, sex and antihypertensive treatment, with IMT as dependent variable the 24-h pulse pressure (beta = 0.003), with Cornell VDP the rest pulse pressure (beta = 12.04), and with the albumin/creatinine ratio the percentage of nocturnal fall in systolic blood pressure (beta = -3.59), the rest heart rate (beta = 1.83) and the standard deviation of 24-h systolic blood pressure (beta = 5.30) remain within the equation. The estimated pulse pressure with ABPM is a predictor of vascular and cardiac organ damage. The nocturnal fall and the standard deviation in 24-h systolic blood pressure measured with the ABPM is a predictor of renal damage.

  1. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  2. Experimental study on vapor explosion induced by pressure pulse in coarse mixing of hot molten metal and water

    International Nuclear Information System (INIS)

    Inoue, A.; Tobita, Y.; Aritomi, M.; Takahashi, M.; Matsuzaki, M.

    2004-01-01

    An experimental study was done to investigate characteristics of metal-water interaction, when a mount of hot liquid metal is injected into the water. The test section is a vertical shock tube of 60mm in inner diameter and 1200mm in length. A special injector which is designed to inject hot metal of controlled volume and flow rate is attached at the top of the tube. When the hot metal is injected in the water and comes down at a position of the test vessel, a trigger pressure pulse is generated at the bottom of the test tube. Local transient pressures along the tube are measured by piezo pressure transducers. The following items were investigated in the experiment; 1) The criteria to cause a vapor explosion, 2) Transient behaviors and propagation characteristics of pressure wave in the mixing region. 3) Effects of triggering pulse, injection temperature and mass of hot molten metal on the peak pressure. The probability of the vapor explosion jumped when the interface temperature at the molten metal-water direct contact is higher than the homogeneous nucleation temperature of water and the triggering pulse becomes larger than 0.9MPa. Two types of the pressure propagation modes are observed, one is the detonative mode with a sharp rise and other is usual pressure mode with a mild rise. (author)

  3. Twenty-Four-Hour Central Pulse Pressure for Cardiovascular Events Prediction in a Low-Cardiovascular-Risk Population: Results From the Bordeaux Cohort.

    Science.gov (United States)

    Cremer, Antoine; Boulestreau, Romain; Gaillard, Prune; Lainé, Marion; Papaioannou, Georgios; Gosse, Philippe

    2018-02-23

    Central blood pressure (BP) is a promising marker to identify subjects with higher cardiovascular risk than expected by traditional risk factors. Significant results have been obtained in populations with high cardiovascular risk, but little is known about low-cardiovascular-risk patients, although the differences between central and peripheral BP (amplification) are usually greater in this population. The study aim was to evaluate central BP over 24 hours for cardiovascular event prediction in hypertensive subjects with low cardiovascular risk. Peripheral and central BPs were recorded during clinical visits and over 24 hours in hypertensive patients with low cardiovascular risk (Systematic Coronary Risk Evaluation ≤5%). Our primary end point is the occurrence of a cardiovascular event during follow-up. To assess the potential interest in central pulse pressure over 24 hours, we performed Cox proportional hazard models analysis and comparison of area under the curves using the contrast test for peripheral and central BP. A cohort of 703 hypertensive subjects from Bordeaux were included. After the first 24 hours of BP measurement, the subjects were then followed up for an average of 112.5±70 months. We recorded 65 cardiovascular events during follow-up. Amplification was found to be significantly associated with cardiovascular events when added to peripheral 24-hour pulse pressure ( P =0.0259). The area under the curve of 24-hour central pulse pressure is significantly more important than area under the curve of office BP ( P =0.0296), and there is a trend of superiority with the area under the curve of peripheral 24-hour pulse pressure. Central pulse pressure over 24 hours improves the prediction of cardiovascular events for hypertensive patients with low cardiovascular risk compared to peripheral pulse pressure. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  4. Bruce and Darlington power pulse and pressure tube integrity programs -status 1995

    Energy Technology Data Exchange (ETDEWEB)

    Field, G J [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Wylie, J [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A

    1996-12-31

    The optimum solution to pressure tube fretting at the inlet of the Bruce and Darlington channels, a concern which became very serious following inspections in early 1992, is to remove the inlet bundle and operate with a 12 fuel bundle channel. During analysis of this operating mode a `power pulse` was identified which could occur during an inlet header break where all the fuel in the channel moved rapidly to the inlet of the channel. The pulse was unacceptable and the units were derated until solutions could be implemented. A number of solutions were identified and each station has begun implementation of their specific solution. Implementation has not been without problems and this paper provides a status report on the progress to date of the long bundle implementation solution for Bruce B and Darlington and the fuelling with the flow solution being implemented at Bruce A. Both types of solution have a significant impact on the original concern, fretting of the pressure tube. (author). 1 ref., 6 figs.

  5. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    International Nuclear Information System (INIS)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O

    2010-01-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N 2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10 15 cm -3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10 11 cm -3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10 8 cm -3 .

  6. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    Energy Technology Data Exchange (ETDEWEB)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O [Laboratoire EM2C, CNRS UPR288, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)

    2010-12-15

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N{sub 2} (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10{sup 15} cm{sup -3} towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10{sup 11} cm{sup -3} produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10{sup 8} cm{sup -3}.

  7. Comparing the Effect of Labetalol versus Morphine on Controlling Blood Pressure and Pulse Rate During Emergence from Anesthesia after Craniotomy

    Directory of Open Access Journals (Sweden)

    Mohammadali Attari

    2017-01-01

    Full Text Available Background: Emergence from anesthesia is associated with sympathetic stimulation, increase in pulse and blood pressure. There are different methods, but the most appropriate method should be selected regarding the differences in nationalities. This study aimed to compare the efficacy of morphine and labetalol in controlling blood pressure and pulse during emergence from anesthesia in brain tumors craniotomy. Materials and Methods: This study was conducted at Al-Zahra Hospital of Isfahan - Iran on 60 patients suffering from brain tumor candidated for craniotomy and randomly classified into two groups of 30. One group received labetalol with dose of 10 mg over 10 min from 45 min before finishing dressing and then 0.75 mg/min until 35 min later; another group received morphine in bolus dose of 0.1 mg/kg during 2–3 min. Blood pressure and pulse were measured every 10 min over 40 min. After operation, they were measured every 5 min over 15 min. Results: The morphine group had higher systolic (133.3 ± 18.8 and diastolic blood pressure (87.1 ± 13.6 (P = 0.021 and 0.028, respectively at extubation and during 45 min before dressing, the diastolic blood pressure was significantly higher in compares with labetalol (75.3 ± 10.5 (P < 0.05. And extubation time was significantly shorter in labetalol group (7.7 ± 0.84 (P < 0.001. Pulse had no significant difference in both groups. In labetalol group, blood pressure and pulse fluctuations were more stable. Conclusion: Administration of labetalol 45 min before finishing dressing can significantly control blood pressure during emergence from anesthesia and also shorten the time of extubation during emergence in patients undergoing craniotomy.

  8. FEASIBILITY STUDY OF PRESSURE PULSING PIPELINE UNPLUGGING TECHNOLOGIES FOR HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    Servin, M. A. [Washington River Protection Solutions, LLC, Richland, WA (United States); Garfield, J. S. [AEM Consulting, LLC (United States); Golcar, G. R. [AEM Consulting, LLC (United States)

    2012-12-20

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging.

  9. Feasibility Study Of Pressure Pulsing Pipeline Unplugging Technologies For Hanford

    International Nuclear Information System (INIS)

    Servin, M. A.; Garfield, J. S.; Golcar, G. R.

    2012-01-01

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging

  10. An in vitro quantification of pressures exerted by earlobe pulse oximeter probes following reports of device-related pressure ulcers in ICU patients .

    Science.gov (United States)

    Goodell, Teresa T

    2012-11-01

    The earlobe often is used to monitor perfusion when pulse oximeter signal quality is impaired in the fingers and toes. Prompted by intermittent occurrences of roughly circular earlobe pressure ulcers among patients in intensive care units, a convenience sample of seven calibrated pulse oximeter probes was used to quantify earlobe pressure exerted by these devices in vitro. All were tested twice with an electronic load cell, a strain gauge with a transducer that transforms the measured force into a readable numerical signal. The probe was clipped to the load cell just as it is clipped to the earlobe in the clinical setting. The probes exerted an average of 0.24 lb (SD 0.6) of force over an area of 0.3 square inches, equal to an average of 20.7 mm Hg (SD 0.6) pressure on tissue. This value exceeds some empirically derived values of capillary perfusion pressure. The occurrence of device-related pressure ulcers, as well pressure ulcers on the ears, has been documented, but little is known about device-related earlobe pressure ulcers or the actual pressure exerted by these devices. Additional in vitro studies are needed to quantify the pressures exerted by these and other probes, and future prevalence and incidence studies should include more detailed pressure ulcer location and device use documentation. Until more is known about the possible role of these devices in the development of pressure ulcers, clinicians should be cognizant of their potential for causing pressure ulcers, particularly in patients whose conditions can compromise skin integrity.

  11. Variations of free gas content in water during pressure fluctuations

    International Nuclear Information System (INIS)

    Keller, A.; Zielke, W.

    1977-01-01

    In this paper an experimental programme is described in order to determine the influence of the cavitation nuclei distribution on cavitation inception. This programme has been used to measure air bubbles dimensions and number and particularly to determine the influence of quick pressure variations on the size on the number of bubbles in a pipe. An optical device counting scattered light is used as a measuring technique. Gas bubbles go through an optical control volume where they receive a high intensity light beam and scatter the light, then led to a photomultiplier; the signals are sorted and counted according to their size. If the number of nuclei, the dimensions of the control volume and the velocity of the water are known, it is possible to determine bubbles concentrations and the bulk modulus of the water. This measuring technique has been applied to a flow in a 140 mm diameter pipe with quick pressure variations from 2 bar to 0-10 bar. During the variations, the void fraction depends on the Reynolds number of the flow and on the gas content of the water. The bulk modulus has been computed with different conditions. Most results concern pressures slightly over the vapor pressure. Air content has a strong influence on cavitation and on water compressibility after a vapor cavity collapse

  12. Consumer acceptance of high-pressure processing and pulsed-electric-field

    DEFF Research Database (Denmark)

    Olsen, Nina Veflen; Grunert, Klaus G.; Sonne, Anne-Mette

    2010-01-01

    New products and new processing techniques are continuously developed in the food industry. While food scientists may focus on the technical novelty and applaud the progress of science, consumers are often conservative and sceptical towards changes. The advantages that a new processing technology...... has to offer, do not necessarily guarantee the success of a product in the market place. Consumer acceptance depends on whether consumers perceive that there are specific benefits associated with the product. This review focuses specifically on how high-pressure processing (HPP) and pulsed...

  13. The effects of balneotherapy on blood pressure and pulse in osteoarthritis patients with hypertension.

    Science.gov (United States)

    Umay, Ebru; Tezelli, Mustafa Kemal; Meshur, Mehmet; Umay, Serkan

    2013-01-01

    Balneotherapy is a treatment modality that uses the physical and chemical effects of water, including thermomineral, acratothermal, and acratopegal waters. Although balneotherapy is an ancient treatment method that has a limited use within current treatment modalities, it is still widely popular with the public. Studies usually have reported that balneotherapy is associated with an increased risk of complications, especially in patients with hypertension (HT). The research team intended this study to evaluate the effects of balneotherapy on peripheral, arterial blood pressure and pulse in osteoarthritis (OA) patients with HT, compared to normotensive patients. For the current study, the research team examined the medical records of 5814 patients who were hospitalized and treated for OA at the team's institution between 2008 and 2010. This examination involved a review of the evaluation form that a nurse had obtained when those patients entered the hospital. This study was done at a balneotherapy hospital. Participants were 2090 individuals, including 1036 (49.6%) with primary (essential) HT and 1054 (50.4%) normotensives, with OA of the lumbosacral region, knee, hand, and foot. All participants received balneotherapy at the same time every day (10:00-10:30 AM) for 20 min/d, 5 d/wk, for a total duration of 15 d. Following balneotherapy, all participants performed an exercise program consisting of range of motion (ROM) and stretching exercises. Measurements of pulse and systolic and diastolic blood pressures were recorded before treatment and after 15 sessions of balneotherapy. Within-group and between-group comparisons of results of pulse and systolic and diastolic blood pressure measurements were performed. The study found a significant reduction after treatment in systolic and diastolic blood pressures in both normotensive and HT participants. Moreover, the reduction in diastolic blood pressure was noted to be greater in the HT group (P = .046). Balneotherapy may

  14. Numerical simulation of atmospheric-pressure helium discharge driven by combined radio frequency and trapezoidal pulse sources

    International Nuclear Information System (INIS)

    Wang Qi; Sun Jizhong; Zhang Jianhong; Ding Zhenfeng; Wang Dezhen

    2010-01-01

    Atmospheric-pressure capacitive discharges driven by combined radio frequency (rf) and trapezoidal pulse sources are investigated using a one-dimensional self-consistent fluid model. The results show that the plasma intensity in the rf discharge can be enhanced drastically when a low duty ratio short pulse source is additionally applied. The mechanism for the increase in the plasma density can be attributed to a strong localized electric field induced by the applied short pulse; the strong electric field generates a great number of high energy electrons and chemically active particles, which subsequently generate more electrons and ions. The rf capacitive discharges with the aid of externally applied short pulses can achieve a high plasma density with better power efficiency.

  15. Responses of azeotropes and relative volatilities to pressure variations

    DEFF Research Database (Denmark)

    Abildskov, Jens; O’Connell, John P.

    2015-01-01

    Mixtures with azeotropes cannot be separated by simple distillation since the vapor and liquid compositions are the same. One option to overcome this limitation is to vary the applied pressure to shift the azeotropic composition out of the range of a single column or use pressure-swing operation...... of two columns. Because operating costs are highly sensitive to the pressure dependence of azeotropic compositions, reliable and accurate phase equilibrium thermodynamic property information is needed to computationally explore pressure variation for such processes. An analysis of property modeling has...... been done for the pressure sensitivity of azeotropic composition, and examples are given of modeling strategies for binary and ternary mixtures. A quantitative criterion for the need to consider nonideality effects in both modeling and parameter regression has been established, based on similarity...

  16. Variational analysis of self-focusing of intense ultrashort pulses in gases

    International Nuclear Information System (INIS)

    Arevalo, E.; Becker, A.

    2005-01-01

    By using perturbation theory we derive an expression for the electrical field of a Gaussian laser beam propagating in a gas medium. This expression is used as a trial solution in a variational method to get quasianalytical solutions for the width, intensity, and self-focusing distance. The approximation gives a better agreement with results of numerical simulations for a broad range of values of the input power than previous analytical results available in the literature. The results apply in the case of ultrashort pulses too

  17. A compact nanosecond pulse generator for DBD tube characterization

    Science.gov (United States)

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  18. Can the use of pulsed direct current induce oscillation in the applied pressure during spark plasma sintering?

    International Nuclear Information System (INIS)

    Salamon, David; Eriksson, Mirva; Nygren, Mats; Shen Zhijian

    2012-01-01

    The spark plasma sintering (SPS) process is known for its rapid densification of metals and ceramics. The mechanism behind this rapid densification has been discussed during the last few decades and is yet uncertain. During our SPS experiments we noticed oscillations in the applied pressure, related to a change in electric current. In this study, we investigated the effect of pulsed electrical current on the applied mechanical pressure and related changes in temperature. We eliminated the effect of sample shrinkage in the SPS setup and used a transparent quartz die allowing direct observation of the sample. We found that the use of pulsed direct electric current in our apparatus induces pressure oscillations with the amplitude depending on the current density. While sintering Ti samples we observed temperature oscillations resulting from pressure oscillations, which we attribute to magnetic forces generated within the SPS apparatus. The described current–pressure–temperature relations might increase understanding of the SPS process.

  19. Improvement of stability of sinusoidally driven atmospheric pressure plasma jet using auxiliary bias voltage

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Kim

    2015-12-01

    Full Text Available In this study, we have proposed the auxiliary bias pulse scheme to improve the stability of atmospheric pressure plasma jets driven by an AC sinusoidal waveform excitation source. The stability of discharges can be significantly improved by the compensation of irregular variation in memory voltage due to the effect of auxiliary bias pulse. From the parametric study, such as the width, voltage, and onset time of auxiliary bias pulse, it has been demonstrated that the auxiliary bias pulse plays a significant role in suppressing the irregular discharges caused by the irregular variation in memory voltage and stable discharge can be initiated with the termination of the auxiliary bias pulse. As a result of further investigating the effects of the auxiliary pulse scheme on the jet stability under various process conditions such as the distance between the jet head and the counter electrode, and carrier gas flow, the jet stability can be improved by adjusting the amplitude and number of the bias pulse depending on the variations in the process conditions.

  20. Signal-Pressure Curves of Cascaded Four-Wave Mixing in Gas-Filled Capillary by fs Pulses

    International Nuclear Information System (INIS)

    Chen Baozhen; Huang Zuqia

    2005-01-01

    The theoretical framework for the cascaded four waves mixing (CFWM) in gas-filled capillary by fs pulses is constructed. Based on the theoretical framework, the signal-pressure curves (SPC) of the CFWM in gas-filled capillary by fs pulses are calculated. With a comparison between the theoretical and experimental SPC we have discussed the influence of the walk-off and phase modulation on the SPC. At the same time, we have discussed the possible origin of the first three peaks of the SPC.

  1. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Padda, H.; King, M.; Gray, R. J.; Powell, H. W.; Gonzalez-Izquierdo, B.; Wilson, R.; Dance, R. J.; MacLellan, D. A.; Butler, N. M. H.; Capdessus, R.; McKenna, P., E-mail: paul.mckenna@strath.ac.uk [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stockhausen, L. C. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja s/n. 37185 Villamayor, Salamanca (Spain); Carroll, D. C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Yuan, X. H. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Borghesi, M. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Neely, D. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom)

    2016-06-15

    Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.

  2. Relations between diabetes, blood pressure and aortic pulse wave velocity in haemodialysis patients

    DEFF Research Database (Denmark)

    Peters, Christian Daugaard; Kjærgaard, Krista Dybtved; Dzeko, Mirela

    (HD) and 32 HD patients with DM (HD+DM). The SphygmoCor system was used for estimation of PWV. HD-duration, age, gender and BP medication were similar in the two groups. Mean DM-duration was 23±11 years and 25(78%) had type 2 DM. HD+DM had higher BMI (26±5 vs. 29±5 kg/m2, p=0.02), systolic BP (142......Diabetes (DM) is common in haemodialysis (HD) patients and affects both blood pressure (BP) and arterial stiffness. Carotid femoral pulse wave velocity (PWV) reflects the stiffness of the aorta and is regarded as a strong risk factor for cardiovascular (CV) mortality in HD patients. However, PWV......±20 vs. 152±21 mmHg, p=0.02) and pulse pressure (65±17 vs. 80±18 mmHg, p2.5 in HD and 12.3±3.1 m/s in HD+DM. The mean PWV difference HD vs. HD+DM was 3.1(1.9-4.3)m/s, p

  3. Computer code for the analysis of destructive pressure generation process during a fuel failure accident, PULSE-2

    International Nuclear Information System (INIS)

    Fujishiro, Toshio

    1978-03-01

    The computer code PULSE-2 has been developed for the analysis of pressure pulse generation process when hot fuel particles come into contact with the coolant in a fuel rod failure accident. In the program, it is assumed that hot fuel fragments mix with the coolant instantly and homogeneously in the failure region. Then, the rapid vaporization of the coolant and transient pressure rise in failure region, and the movement of ejected coolant slugs are calculated. The effect of a fuel-particle size distribution is taken into consideration. Heat conduction in the fuel particles and heat transfer at fuel-coolant interface are calculated. Temperature, pressure and void fraction in the mixed region are calculated from the average enthalpy. With physical property subroutines for liquid sodium and water, the model is usable for both LMFBR and LWR conditions. (auth.)

  4. Pulse Pressure, Instead of Brachium-Ankle Pulse Wave Velocity, is Associated with Reduced Kidney Function in a Chinese Han Population.

    Science.gov (United States)

    Jia, Linpei; Zhang, Weiguang; Ma, Jie; Chen, Xizhao; Chen, Lei; Li, Zuoxiang; Cai, Guangyan; Huang, Jing; Zhang, Jinping; Bai, Xiaojuan; Feng, Zhe; Sun, Xuefeng; Chen, Xiangmei

    2017-01-01

    In this study, we aim to investigate the association between renal function and arterial stiffness in a Chinese Han population, and further to discuss the effects of smoking on renal function. We collected the data of the brachium-ankle pulse wave velocity (baPWV), blood pressure, blood chemistry and smoking status. Then, the multiple linear regression was done to explore the relationship between estimated glomerular filtration (eGFR) and baPWV. Further, the parameters were compared among the four groups divided according to the quartiles of baPWV. Finally, the baPWV, eGFR and albuminuria values were compared between smokers and non-smokers. baPWV is associated with eGFR in the correlation analysis and univariate linear regression model. After adjustment, the pulse pressure (PP) instead of baPWV showed a significant association with eGFR. Nevertheless, the eGFR values differed among the four baPWV groups; the baPWV values were significantly higher in the subjects at the CKD (eGFRfunction. Smokers have worse arterial stiffness and worse renal function. © 2017 The Author(s)Published by S. Karger AG, Basel.

  5. Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies

    Science.gov (United States)

    Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han

    2012-03-01

    Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.

  6. Coherent pulse interrogation system for fiber Bragg grating sensing of strain and pressure in dynamic extremes of materials.

    Science.gov (United States)

    Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; Mielke, Chuck H; Azad, Abul; Marshall, Bruce; La Lone, Brandon M; Henson, Bryan; Smilowitz, Laura

    2015-06-01

    A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals are recorded using a single 35 GHz photodetector and a 50 G Samples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L-4) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.

  7. Effects of Roselle on arterial pulse pressure and left ventricular hypertrophy in hypertensive patients.

    Science.gov (United States)

    Al-Shafei, Ahmad I; El-Gendy, Ola A

    2013-12-01

    To characterize the effects of regular Roselle ingestion on blood pressure and left ventricular hypertrophy (LVH) in patients with established moderate essential hypertension. This non-randomized quasi-experimental study was conducted in Kafr El-Shaikh, Egypt, for 8 weeks, from September 2012 to November 2012. The effects of a 4-week period of regular Roselle ingestion followed by a 4-week recovery period on systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), and heart rates (HR) was studied in 2 equal, gender- and age-matched groups (n=50 each; average age - 50+/-5 years) of normotensive subjects, and patients with moderate essential hypertension. Electrocardiographic assessments of LVH were also made prior to, and at the end of both treatment and recovery periods. Pulse pressure (PP) significantly fell from baseline values by 10.9% (normotensive group [NG]), 21.2% (hypertensive group [HG]); SBP by 10% (NG), 19.6% (HG); DBP by 9.5% (NG), 18.7% (HG), and HR by 14.6% (NG), 17.1% (HG) by the end of week 4 of treatment. Following treatment cessation, SBP, DBP, PP, and HR returned to pretreatment levels over 4 weeks. Before intervention, none of the normotensive subjects, but 14 hypertensive patients showed LVH. However, Roselle treatment was associated with regression of LVH in 10 patients with only 4 patients showing LVH after 4 weeks of treatment. This became 10 patients 4 weeks after ceasing treatment. These findings empirically suggest favorable cardiovascular effects of Roselle in patients with established moderate essential hypertension.

  8. Analysis of physiological (pao/sub 2/, pulse and blood pressure) changes during modified ect under general anaesthesia

    International Nuclear Information System (INIS)

    Shah, M.; Shah, H.A.; Shah, F.S.

    2015-01-01

    To study the changes in physiological parameters i e PAO2, pulse and blood pressure changes during ECT under GA. Study Design: Quasi-experimental study. Place and Duration of Study: Department of Psychiatry and Department of Anaesthesiology, Combined Military Hospital Abbottabad from Sep 2009 to Feb 2010. Patients and Methods: A total of 50 patients with depression were given four separate ECT sessions each. All patients were anaesthetized using propofol 180-200 mg I/V and suxamethonium 50 mg i e 0.75-1 mg per kg I/V without atropine. They were stratified according to physiological changes including PAO2, pulse and blood pressure at 1, 2 and 5 min after ECT. Oxygen saturation was measured using a pulse oximeter, which measures saturations in the range of 65-100%. Results: Age range was 19-65 years; mean 46 years (SD+-13). Mean diastolic BP before ECT was 84.72 that decreased post ECT ie 78.02 and 77.46 and 74.44 at interval of 1, 2 and 5 minute respectively. Post-ECT pulse and PAO2 behaved similarly. Post ECT systolic BP decreased at 1 and 5 minutes. Pulse rate decreased after ECT. Conclusion: ECT under propofol is one of the most effective and safe modality of treatment for psychiatric patients under the supervision of qualified psychiatrists and anaesthesiologists and it gives more stable hemodynamic changes. (author)

  9. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    Science.gov (United States)

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-04

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ.

  10. Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure

    Science.gov (United States)

    Mraihi, A.; Merbahi, N.; Yousfi, M.; Abahazem, A.; Eichwald, O.

    2011-12-01

    This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV-visible-NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.

  11. Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure

    International Nuclear Information System (INIS)

    Mraihi, A; Merbahi, N; Yousfi, M; Abahazem, A; Eichwald, O

    2011-01-01

    This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV–visible–NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.

  12. Dynamics of traveling reaction pulses

    International Nuclear Information System (INIS)

    Dovzhenko, A. Yu.; Rumanov, E. N.

    2007-01-01

    The growth of activator losses is accompanied by the decay of a traveling reaction pulse. In a ring reactor, this propagation threshold is present simultaneously with a threshold related to the ring diameter. The results of numerical experiments with pulses of an exothermal reaction reveal the transition from pulse propagation to a homogeneous hot regime, established regimes with periodic variations of the pulse velocity, and oscillatory decay of the pulse. When the medium becomes 'bistable' as a result of the variation in parameters, this factor does not prevent the propagation of pulses, but leads to changes in the pulse structure

  13. PULSE WAVE VELOCITY AND CENTRAL AORTIC PRESSURE IN OBESE CHILDREN ACCORDING TO THE NON-INVASIVE ARTERIOGRAPHY RESULTS

    Directory of Open Access Journals (Sweden)

    O. V. Kozhevnikova

    2013-01-01

    Full Text Available The article presents information value of non-invasive arteriography, which reveals early signs of cardiovascular pathology formation in children, using a large number of trials in children. The authors examined predictors of cardiovascular catastrophes’ development, confirmed in adults: aortic wall’s stiffness, central aortic pressure and pulse pressure – that have not been sufficiently studied in children yet. The article shows that the high-technology method of non-invasive arteriography allows revealing changes of these parameters in children on the preclinical stage. It also shows their correlation with body mass index, fatty hepatosis, direct correlation of weight gain with connection of pulse wave velocity and central blood pressure and importance of follow-up evaluation of these parameters. Heterogeneity of the group of obese children in terms of these parameters is a premise for development of individual approach to control and prevention of cardiovascular complications’ development risk in childhood.

  14. Systolic Blood Pressure Accuracy Enhancement in the Electronic Palpation Method Using Pulse Waveform

    Science.gov (United States)

    2001-10-25

    adrenalin) or vasodilating (Nipride or Nitromex) medicines. Also painkillers and anesthetics (Oxanest, Diprivan, Fentanyl and Rapifen) may have affected...the measurements. It is hard to distinguish the effects of medication and assess their relation to blood pressure errors and pulse shapes...CONCLUSION During this study, 51 cardiac operated patients were measured to define the effects of arterial stiffening on the accuracy of the

  15. Computation of the effect of pipe plasticity on pressure-pulse propagation in a fluid system

    International Nuclear Information System (INIS)

    Youngdahl, C.K.; Kot, C.A.

    1975-04-01

    A simple computational model is developed for incorporating the effect of elastic-plastic deformation of piping on pressure-transient propagation in a fluid system. A computer program (PLWV) is described that incorporates this structural interaction model into a one-dimensional method-of-characteristics procedure for fluid-hammer analysis. Computed results are shown to be in good agreement with available experimental data. The most significant effect of plastic deformation is to limit the peak pressure of a pulse leaving a pipe to approximately the yield pressure of the pipe, if the pipe is sufficiently long. 7 references. (U.S.)

  16. Pulsed microwave discharge at atmospheric pressure for NOx decomposition

    International Nuclear Information System (INIS)

    Baeva, M; Gier, H; Pott, A; Uhlenbusch, J; Hoeschele, J; Steinwandel, J

    2002-01-01

    A 3.0 GHz pulsed microwave source operated at atmospheric pressure with a pulse power of 1.4 MW, a maximum repetition rate of 40 Hz, and a pulse length of 3.5 μs is experimentally studied with respect to the ability to remove NO x from synthetic exhaust gases. Experiments in gas mixtures containing N 2 /O 2 /NO with typically 500 ppm NO are carried out. The discharge is embedded in a high-Q microwave resonator, which provides a reliable plasma ignition. Vortex flow is applied to the exhaust gas to improve gas treatment. Concentration measurements by Fourier transform infrared spectroscopy confirm an NO x reduction of more than 90% in the case of N 2 /NO mixtures. The admixture of oxygen lowers the reductive potential of the reactor, but NO x reduction can still be observed up to 9% O 2 concentration. Coherent anti-Stokes Raman scattering technique is applied to measure the vibrational and rotational temperature of N 2 . Gas temperatures of about 400 K are found, whilst the vibrational temperature is 3000-3500 K in pure N 2 . The vibrational temperature drops to 1500 K when O 2 and/or NO are present. The randomly distributed relative frequency of occurrence of selected breakdown field intensities is measured by a calibrated, short linear-antenna. The breakdown field strength in pure N 2 amounts to 2.2x10 6 V m -1 , a value that is reproducible within 2%. In the case of O 2 and/or NO admixture, the frequency distribution of the breakdown field strength scatters more and extends over a range from 3 to 8x10 6 V m -1

  17. Pulsed water jet generated by pulse multiplication

    Czech Academy of Sciences Publication Activity Database

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high- pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  18. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai , David ,; Lacoste , Deanna ,; Laux , C.

    2010-01-01

    International audience; In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determine...

  19. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Bhoj, Ananth N [Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801 (United States); Kushner, Mark J [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2007-11-21

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s{sup -1}. The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O{sub 2}/H{sub 2}O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O{sub 3} accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups.

  20. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    International Nuclear Information System (INIS)

    Bhoj, Ananth N; Kushner, Mark J

    2007-01-01

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s -1 . The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O 2 /H 2 O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O 3 accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups

  1. Study on the characteristics of barrier free surface discharge driven by repetitive nanosecond pulses at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Pang; Qiaogen, Zhang [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Kun, He [China Electric Power Research Institute, Beijing 100192 (China); Chunliang, Liu [State Key Laboratory for Physical Electronics and Devices, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-05-15

    Nanosecond pulsed plasma has an enormous potential in many applications. In this paper, the characteristics of barrier free nanosecond pulsed surface discharge are investigated by the use of an actuator with a strip-strip film electrode configuration, including the effect of electrode width and the gap distance on the plasma morphology and electrical characteristics at atmospheric pressure. It was found that it is relative easier to generate a quasi uniform discharge with a thinner electrode width and a smaller gap distance. The underlying physical mechanism was also discussed. Besides that, the influence of airflow on repetitive pulsed surface discharge was examined. By comparing to the discharge produced by two different pulse waveforms in airflows, we found that the discharge driven by a faster pulse behaves more stable. Finally, a model was developed to analyze the interaction of the airflow and the discharge channels.

  2. Variation of sodium on Mercury with solar radiation pressure

    International Nuclear Information System (INIS)

    Potter, A.E.; Morgan, T.H.

    1987-01-01

    It has been suggested that nonthermal Na atoms with velocities in excess of 2.1 km/sec in the Mercury atmosphere can be accelerated off the planet by solar radiation pressure; Na abundance may accordingly be expected to decrease with increasing radiation pressure. While this is confirmed by the present measurements, high resolution line profile measurements on Na emission indicate that very little, if any, of the Na is nonthermal, while the bulk is at a temperature approaching that of the planetary surface. Attention is given to explanations for the observed variation. 11 references

  3. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    International Nuclear Information System (INIS)

    Zhang, Cheng; Shao, Tao; Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-01-01

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs

  4. Virtual cylinder pressure sensor for transient operation in heavy-duty engines

    NARCIS (Netherlands)

    Kulah, S.; Donkers, M.C.F.; Willems, F.P.T.

    2015-01-01

    Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size. In addition, it enables the

  5. Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines

    NARCIS (Netherlands)

    Kulah, S.; Donkers, T.; Willems, F.

    2015-01-01

    Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size.In addition, it enables the

  6. Social support and loneliness in college students: effects on pulse pressure reactivity to acute stress.

    Science.gov (United States)

    O'Donovan, Aoife; Hughes, Brian

    2007-01-01

    Socially supportive relationships at university may buffer against psychological stress in students, particularly in those experiencing loneliness. To examine the relation of social support at university and loneliness with pulse pressure (PP) reactivity to acute psychological stress in a sample of first-year undergraduate students. Sixty-five female, adolescent, first-year university students. Pulse pressure (PP) was calculated as the arithmetic difference between systolic blood pressure and diastolic blood pressure, which were measured during a resting baseline and during a stressful reading task. The difference between baseline and reading task PP represents PP reactivity. The Social Support at University Scale (SSUS) was used to assess social support availability in university, and the Revised UCLA Loneliness Scale was used to assess loneliness. Hierarchical linear regression was used to examine main and interactive effects of SSUS and loneliness on PP change scores, and simple slopes were computed to assist in the interpretation of interaction effects. Social support at university was associated with lower PP reactivity in students reporting medium (t = -2.03, p = .04) or high levels of loneliness (t = -2.93, p = .004), but not in those reporting low levels of loneliness (t = -0.20, p = .83). Psychosocial interventions designed to increase social support available at university, and targeted at students experiencing loneliness may buffer against the harmful effects of acute stressors in lonely first-year students.

  7. Effects of periodic atmospheric pressure variation on radon entry into buildings

    Science.gov (United States)

    Tsang, Y. W.; Narasimhan, T. N.

    1992-06-01

    Using a mathematical model, we have investigated the temporal variations of radon entry into a house basement in the presence of time-dependent periodic variations of barometric pressure as well as a persistent small steady depressurization within the basement. The tool for our investigation is an integral finite difference numerical code which can solve for both diffusive and advective flux of radon in the soil gas which is treated as a slightly compressible fluid. Two different boundary conditions at the house basement are considered: (1) a dirt floor basement so that diffusion is equally or more important than advective transport, and (2) an "impermeable" cement basement except for a 1-cm-wide crack near the perimeter of the basement floor; in which case, advective transport of radon flux dominates. Two frequencies of barometric pressure fluctuation with representative values of amplitudes, based on a Fourier decomposition of barometric pressure data, were chosen in this study: one with a short period of 0.5 hour with pressure amplitude of 50 Pa, the other a diurnal variation with a period of 24 hours with the typical pressure amplitude of 250 Pa. For a homogeneous soil medium with soil permeability to air between 10-13 and 10-10 m2, we predict that the barometric fluctuations increase the radon entry into the basement by up to 120% of the steady radon inflow into the basement owing to a steady depressurization of 5 Pa. If soil permeability heterogeneity is present, such as the presence of a thin layer of higher permeability aggregate immediately below the basement floor, radon flux due to atmospheric pumping is further increased. Effects of pressure pumping on radon entry are also compared to diffusion-only transport when the steady depressurization is absent. It is found that contribution to radon entry is significant for the basement crack configuration. In particular, for pressure pumping at 0.5-hour period and for a homogeneous medium of permeability of 10

  8. Effect of high hydrostatic pressure, ultrasound and pulsed electric fields on milk composition and characteristics

    Directory of Open Access Journals (Sweden)

    Irena Jeličić

    2012-03-01

    Full Text Available High hydrostatic pressure, ultrasonication and pulsed eletrcic fields (PEF belong to novel food processing methods which are mostly implemented in combination with moderate temperatures and/ or in combination with each other in order to provide adequate microbiological quality with minimal losses of nutritional value. All of three mentioned methods have been intensively investigated for the purpose of inactivation and reduction of foodborne microorganisms present in milk and dairy products. However, a large number of scientific researches have been dedicated to investigation of impact of these methods on changes in constituents like milk fat, milk proteins and lactose as well as changes in mechanisms like renneting properties and coagulation of milk. The aim of this research was to give an overview of changes in milk constituents induced by high hydrostatic pressure, ultrasonification and pulsed electric field treatments as well as to suggest how these changes could improve conventional processes in the dairy industry.

  9. Respiratory variation in peak aortic velocity accurately predicts fluid responsiveness in children undergoing neurosurgery under general anesthesia.

    Science.gov (United States)

    Morparia, Kavita G; Reddy, Srijaya K; Olivieri, Laura J; Spaeder, Michael C; Schuette, Jennifer J

    2018-04-01

    The determination of fluid responsiveness in the critically ill child is of vital importance, more so as fluid overload becomes increasingly associated with worse outcomes. Dynamic markers of volume responsiveness have shown some promise in the pediatric population, but more research is needed before they can be adopted for widespread use. Our aim was to investigate effectiveness of respiratory variation in peak aortic velocity and pulse pressure variation to predict fluid responsiveness, and determine their optimal cutoff values. We performed a prospective, observational study at a single tertiary care pediatric center. Twenty-one children with normal cardiorespiratory status undergoing general anesthesia for neurosurgery were enrolled. Respiratory variation in peak aortic velocity (ΔVpeak ao) was measured both before and after volume expansion using a bedside ultrasound device. Pulse pressure variation (PPV) value was obtained from the bedside monitor. All patients received a 10 ml/kg fluid bolus as volume expansion, and were qualified as responders if stroke volume increased >15% as a result. Utility of ΔVpeak ao and PPV and to predict responsiveness to volume expansion was investigated. A baseline ΔVpeak ao value of greater than or equal to 12.3% best predicted a positive response to volume expansion, with a sensitivity of 77%, specificity of 89% and area under receiver operating characteristic curve of 0.90. PPV failed to demonstrate utility in this patient population. Respiratory variation in peak aortic velocity is a promising marker for optimization of perioperative fluid therapy in the pediatric population and can be accurately measured using bedside ultrasonography. More research is needed to evaluate the lack of effectiveness of pulse pressure variation for this purpose.

  10. Arterial compliance in patients with cirrhosis: stroke volume-pulse pressure ratio as simplified index

    DEFF Research Database (Denmark)

    Fuglsang, S; Bendtsen, F; Christensen, E

    2001-01-01

    Arterial function may be altered in patients with cirrhosis. We determined compliance of the arterial tree (C(1)) in relation to systemic and splanchnic hemodynamic derangement and clinical variables. C(1) and the stroke volume-pulse pressure index (SV/PP) were significantly higher (+62% and +40%...... predictors of SV/PP (P abnormalities in the arterial compliance of these patients....

  11. Effects of pulse-to-pulse residual species on discharges in repetitively pulsed discharges through packed bed reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for conversion of toxic and waste gases, and CO2 removal. These discharges are repetitively pulsed having varying flow rates and internal geometries, which results in species from the prior pulse still being in the discharge zone at the time the following discharge pulse occurs. A non-negligible residual plasma density remains, which effectively acts as preionization. This residual charge changes the discharge properties of subsequent pulses, and may impact important PBR properties such as chemical selectivity. Similarly, the residual neutral reactive species produced during earlier pulses will impact the reaction rates on subsequent pulses. We report on results of a computational investigation of a 2D PBR using the plasma hydrodynamics simulator nonPDPSIM. Results will be discussed for air flowing though an array of dielectric rods at atmospheric pressure. The effects of inter-pulse residual species on PBR discharges will be quantified. Means of controlling the presence of residual species in the reactor through gas flow rate, pulse repetition, pulse width and geometry will be described. Comparisons will be made to experiments. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  12. Heart rate and blood pressure variations after transvascular patent ductus arteriosus occlusion in dogs.

    Science.gov (United States)

    De Monte, Valentina; Staffieri, Francesco; Caivano, Domenico; Nannarone, Sara; Birettoni, Francesco; Porciello, Francesco; Di Meo, Antonio; Bufalari, Antonello

    2017-08-01

    The objective of the study was to retrospectively analyse the cardiovascular effects that occurs following the transvascular occlusion of patent ductus arteriosus in dogs. Sixteen anaesthesia records were included. Variables were recorded at the time of placing the arterial introducer, occlusion of the ductus, and from 5 to 60min thereafter, including, among the other, heart rate, systolic, diastolic and mean arterial blood pressure. The maximal percentage variation of the aforementioned physiological parameters within 60min of occlusion, compared with the values recorded at the introducer placing, was calculated. The time at which maximal variation occurred was also computed. Correlations between maximal percentage variation of physiological parameters and the diameter of the ductus and systolic and diastolic flow velocity through it were evaluated with linear regression analysis. Heart rate decreased after occlusion of the ductus with a mean maximal percentage variation of 41.0±14.8% after 21.2±13.7min. Mean and diastolic arterial blood pressure increased after occlusion with a mean maximal percentage variation of 30.6±18.1 and 55.4±27.1% after 19.6±12.1 and 15.7±10.8min, respectively. Mean arterial blood pressure variation had a significant and moderate inverse correlation with diastolic and systolic flow velocity through the ductus. Transvascular patent ductus arteriosus occlusion in anaesthetised dogs causes a significant reduction in heart rate and an increase in diastolic and mean blood arterial pressure within 20min of closure of the ductus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Temporal evolution of atmosphere pressure plasma jets driven by microsecond pulses with positive and negative polarities

    Science.gov (United States)

    Shao, Tao; Yang, Wenjin; Zhang, Cheng; Fang, Zhi; Zhou, Yixiao; Schamiloglu, Edl

    2014-09-01

    Current-voltage characteristics, discharge images, and optical spectra of atmospheric pressure plasma jets (APPJs) are studied using a microsecond pulse length generator producing repetitive output pulses with different polarities. The experimental results show that the APPJs excited by the pulses with positive polarity have longer plume, faster propagation speed, higher power, and more excited species, such as \\text{N}2 , O, He, \\text{N}2+ , than that with the negatively excited APPJs. The images taken using an intensified charge-coupled device show that the APPJs excited by pulses with positive polarity are characterized by a bullet-like structure, while the APPJs excited by pulses with negative polarity are continuous. The propagation speed of the APPJs driven by a microsecond pulse length generator is about tens of km/s, which is similar to the APPJs driven by a kHz frequency sinusoidal voltage source. The analysis shows that the space charge accumulation effect plays an important role during the discharge. The transient enhanced electric field induced by the accumulated ions between the needle-like electrode and the nozzle in the APPJs excited by pulses with negative polarity enhances electron field emission from the cathode, which is illustrated by the bright line on the time-integrated images. This makes the shape of the APPJ excited using pulses with negative polarity different from the bullet-like shape of the APPJs excited by pulses with positive polarity.

  14. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    Science.gov (United States)

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed.

  15. Influence of duration and rate of pulse rise of the applied voltage on ozone concentration in the barrier glow discharge

    International Nuclear Information System (INIS)

    Krasnyj, V.V.; Klosovski, A.V.; Knysh, A.S.; Shvets, O.M.; Taran, V.S.; Tereshin, V.I.

    2005-01-01

    The barrier glow discharge between two planar electrodes, covered with dielectric, is studied under high-voltage pulsed power supply. Wide applications of such type of discharges, in particular, for ozone production, stimulated a number of investigations in this direction. In this work we investigated the dependence of ozone concentration on the duration and the rate of pulse rise of the applied voltage. The thyristor converter circuit with the shortening of input pulses on the base of the saturable throttle was used for the realization of this task. The output pulses with amplitude up to 15 kV, repetition frequency of 1 kHz, pulse duration of 0.3 μs (or 7 μs) and the rate of pulse rise of 0.1 μs were generated with this scheme. Measurements of the ozone concentration produced in the air mixture have shown that its value increased by factor two with variation of the rate of pulse rise from 0.5 μs to 0.1 μs (for pulse duration of 7 μs). The dependence of the ozone concentration on the variation of air mixture pressure in the discharge gap of reactor was investigated also. It was shown proportional increase of the output concentration of ozone with increasing the pressure value. Spectroscopic measurements carried out in the ultraviolet spectrum made it possible to analyze changing the concentration of ozone and nitric components. (author)

  16. Longitudinal variation in pressure injury incidence among long-term aged care facilities.

    Science.gov (United States)

    Jorgensen, Mikaela; Siette, Joyce; Georgiou, Andrew; Westbrook, Johanna I

    2018-05-04

    To examine variation in pressure injury (PI) incidence among long-term aged care facilities and identify resident- and facility-level factors that explain this variation. Longitudinal incidence study using routinely-collected electronic care management data. A large aged care service provider in New South Wales and the Australian Capital Territory, Australia. About 6556 people aged 65 years and older who were permanent residents in 60 long-term care facilities between December 2014 and November 2016. Risk-adjusted PI incidence rates over eight study quarters. Incidence density over the study period was 1.33 pressure injuries per 1000 resident days (95% confidence interval (CI) = 1.29-1.37). Funnel plots were used to identify variation among facilities. On average, 14% of facilities had risk-adjusted PI rates that were higher than expected in each quarter (above 95% funnel plot control limits). Ten percent of facilities had persistently high rates in any three or more consecutive quarters (n = 6). The variation between facilities was only partly explained by resident characteristics in multilevel regression models. Residents were more likely to have higher-pressure injury rates in facilities in regional areas compared with major city areas (adjusted incidence rate ratio = 1.25, 95% CI = 1.04-1.51), and facilities with persistently high rates were more likely to be located in areas with low socioeconomic status (P = 0.038). There is considerable variation among facilities in PI incidence. This study demonstrates the potential of routinely-collected care management data to monitor PI incidence and to identify facilities that may benefit from targeted intervention.

  17. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    Directory of Open Access Journals (Sweden)

    Chin-Ming Huang

    2011-01-01

    Full Text Available This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP and heart rate variability (HRV. The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25±4 yr; 29 men and 31 women were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF and high-frequency (HF components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr (P<.05, but the cold stress significantly increased AIr (P<.01. The spectral energy of RPP did not show any statistical difference in 0∼10 Hz region under both conditions, but in the region of 10∼50 Hz, there was a significant increase (P<.01 in the heat test and a significant decrease in the cold test (P<.01. The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10∼50 Hz (SE10−50 Hz but not in the region of 0∼10 Hz (SE0−10 Hz. The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses.

  18. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    Science.gov (United States)

    Huang, Chin-Ming; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung; Wei, Ching-Chuan; Chen, Chiachung; Liao, Yin-Tzu; Chen, Fun-Jou

    2011-01-01

    This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP) and heart rate variability (HRV). The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25 ± 4 yr; 29 men and 31 women) were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF) and high-frequency (HF) components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr) (P < .05), but the cold stress significantly increased AIr (P < .01). The spectral energy of RPP did not show any statistical difference in 0 ~ 10 Hz region under both conditions, but in the region of 10 ~ 50 Hz, there was a significant increase (P < .01) in the heat test and a significant decrease in the cold test (P < .01). The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10 ~ 50 Hz (SE10−50 Hz) but not in the region of 0 ~ 10 Hz (SE0−10 Hz). The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses. PMID:21113292

  19. Temporary tattoo for wireless human pulse measurement

    Science.gov (United States)

    Pepłowski, Andrzej; Janczak, Daniel; Krzemińska, Patrycja; Jakubowska, Małgorzata

    2016-09-01

    Screen-printed sensor for measuring human pulse was designed and first tests using a demonstrator device were conducted. Various materials and sensors' set ups were compared and the results are presented as the starting point for fabrication of fully functional device. As a screen printing substrate, commercially available temporary tattoo paper was used. Using previously developed nanomaterials-based pastes design of a pressure sensor was printed on the paper and attached to the epidermis. Measurements were aimed at determining sensors impedance constant component and its variability due to pressure wave caused by the human pulse. The constant component was ranging from 2kΩ to 6kΩ and the variations of the impedance were ranging from +/-200Ω to +/-2.5kΩ, depending on the materials used and the sensor's configuration. Calculated signal-to-noise ratio was 3.56:1 for the configuration yielding the highest signal level. As the device's net impedance influences the effectiveness of the wireless communication, the results presented allow for proper design of the sensor for future health-monitoring devices.

  20. Robust Peak Recognition in Intracranial Pressure Signals

    Directory of Open Access Journals (Sweden)

    Bergsneider Marvin

    2010-10-01

    Full Text Available Abstract Background The waveform morphology of intracranial pressure pulses (ICP is an essential indicator for monitoring, and forecasting critical intracranial and cerebrovascular pathophysiological variations. While current ICP pulse analysis frameworks offer satisfying results on most of the pulses, we observed that the performance of several of them deteriorates significantly on abnormal, or simply more challenging pulses. Methods This paper provides two contributions to this problem. First, it introduces MOCAIP++, a generic ICP pulse processing framework that generalizes MOCAIP (Morphological Clustering and Analysis of ICP Pulse. Its strength is to integrate several peak recognition methods to describe ICP morphology, and to exploit different ICP features to improve peak recognition. Second, it investigates the effect of incorporating, automatically identified, challenging pulses into the training set of peak recognition models. Results Experiments on a large dataset of ICP signals, as well as on a representative collection of sampled challenging ICP pulses, demonstrate that both contributions are complementary and significantly improve peak recognition performance in clinical conditions. Conclusion The proposed framework allows to extract more reliable statistics about the ICP waveform morphology on challenging pulses to investigate the predictive power of these pulses on the condition of the patient.

  1. High-pressure single-crystal neutron diffraction (to 20 kbar) using a pulsed source: Preliminary investigation of Tl3PSe4

    International Nuclear Information System (INIS)

    Alkire, R.W.; Larson, A.C.; Vergamini, P.J.; Schirber, J.E.; Morosin, B.

    1985-01-01

    A new technique is described for performing high-pressure single-crystal neutron diffraction [up to 20 kbar (2GPa) at room temperature], using a BeCu pressure cell, an area detector and the Los Alamos National Laboratory pulsed neutron source. Success of this method depends on the increase in information available with a multi-wavelength pulse neutron source, a novel orientation of a cylindrically symmetric pressure cell with its axis coincident with the neutron beam and a specific crystal orientation within the pressure cell. Bragg scattering from the pressure cell is avoided and background for a given 2theta is constant. For a crystal of orthorhombic or higher symmetry oriented with the incident beam passing midway between the major lattice vectors, it will be possible to refine a complete three-dimensional structure with data collected from only one pressure loading. Preliminary investigations of Tl 3 PSe 4 lattice parameters (space group Pcmn) at 15(1)kbar yielded linear compressibilities (. 1000 in kbar -1 ) of Ksub(a) = 1.05(8), Ksub(b) = 1.50(10), Ksub(c) = 1.20(8). The anisotropic compressibility is explained by examination of the ambient-pressure room-temperature structure. (orig.)

  2. Role of regression analysis and variation of rheological data in calculation of pressure drop for sludge pipelines.

    Science.gov (United States)

    Farno, E; Coventry, K; Slatter, P; Eshtiaghi, N

    2018-06-15

    Sludge pumps in wastewater treatment plants are often oversized due to uncertainty in calculation of pressure drop. This issue costs millions of dollars for industry to purchase and operate the oversized pumps. Besides costs, higher electricity consumption is associated with extra CO 2 emission which creates huge environmental impacts. Calculation of pressure drop via current pipe flow theory requires model estimation of flow curve data which depends on regression analysis and also varies with natural variation of rheological data. This study investigates impact of variation of rheological data and regression analysis on variation of pressure drop calculated via current pipe flow theories. Results compare the variation of calculated pressure drop between different models and regression methods and suggest on the suitability of each method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air

    International Nuclear Information System (INIS)

    Yang Dezheng; Wang Wenchun; Jia Li; Nie Dongxia; Shi Hengchao

    2011-01-01

    In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.

  4. Optical pulse characteristics of sonoluminescence at low acoustic drive levels

    Science.gov (United States)

    Arakeri, Vijay H.; Giri, Asis

    2001-06-01

    From a nonaqueous alkali-metal salt solution, it is possible to observe sonoluminescence (SL) at low acoustic drive levels with the ratio of the acoustic pressure amplitude to the ambient pressure being about 1. In this case, the emission has a narrowband spectral content and consists of a few flashes of light from a levitated gas bubble going through an unstable motion. A systematic statistical study of the optical pulse characteristics of this form of SL is reported here. The results support our earlier findings [Phys. Rev. E 58, R2713 (1998)], but in addition we have clearly established a variation in the optical pulse duration with certain physical parameters such as the gas thermal conductivity. Quantitatively, the SL optical pulse width is observed to vary from 10 ns to 165 ns with the most probable value being 82 ns, for experiments with krypton-saturated sodium salt ethylene glycol solution. With argon, the variation is similar to that of krypton but the most probable value is reduced to 62 ns. The range is significantly smaller with helium, being from 22 ns to 65 ns with the most probable value also being reduced to 42 ns. The observed large variation, for example with krypton, under otherwise fixed controllable experimental parameters indicates that it is an inherent property of the observed SL process, which is transient in nature. It is this feature that necessitated our statistical study. Numerical simulations of the SL process using the bubble dynamics approach of Kamath, Prosperetti, and Egolfopoulos [J. Acoust. Soc. Am. 94, 248 (1993)] suggest that a key uncontrolled parameter, namely the initial bubble radius, may be responsible for the observations. In spite of the fact that certain parameters in the numerical computations have to be fixed from a best fit to one set of experimental data, the observed overall experimental trends of optical pulse characteristics are predicted reasonably well.

  5. Optical pulse characteristics of sonoluminescence at low acoustic drive levels

    International Nuclear Information System (INIS)

    Arakeri, Vijay H.; Giri, Asis

    2001-01-01

    From a nonaqueous alkali-metal salt solution, it is possible to observe sonoluminescence (SL) at low acoustic drive levels with the ratio of the acoustic pressure amplitude to the ambient pressure being about 1. In this case, the emission has a narrowband spectral content and consists of a few flashes of light from a levitated gas bubble going through an unstable motion. A systematic statistical study of the optical pulse characteristics of this form of SL is reported here. The results support our earlier findings [Phys. Rev. E >58, R2713 (1998)], but in addition we have clearly established a variation in the optical pulse duration with certain physical parameters such as the gas thermal conductivity. Quantitatively, the SL optical pulse width is observed to vary from 10 ns to 165 ns with the most probable value being 82 ns, for experiments with krypton-saturated sodium salt ethylene glycol solution. With argon, the variation is similar to that of krypton but the most probable value is reduced to 62 ns. The range is significantly smaller with helium, being from 22 ns to 65 ns with the most probable value also being reduced to 42 ns. The observed large variation, for example with krypton, under otherwise fixed controllable experimental parameters indicates that it is an inherent property of the observed SL process, which is transient in nature. It is this feature that necessitated our statistical study. Numerical simulations of the SL process using the bubble dynamics approach of Kamath, Prosperetti, and Egolfopoulos [J. Acoust. Soc. Am. >94, 248 (1993)] suggest that a key uncontrolled parameter, namely the initial bubble radius, may be responsible for the observations. In spite of the fact that certain parameters in the numerical computations have to be fixed from a best fit to one set of experimental data, the observed overall experimental trends of optical pulse characteristics are predicted reasonably well

  6. The physics of pulsed streamer discharge in high pressure air and applications to engine techonologies

    Science.gov (United States)

    Lin, Yung-Hsu

    The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.

  7. Transient effects caused by pulsed gas and liquid injections into low pressure plasmas

    International Nuclear Information System (INIS)

    Ogawa, D; Goeckner, M; Overzet, L; Chung, C W

    2010-01-01

    The fast injection of liquid droplets into a glow discharge causes significant time variations in the pressure, the chemical composition of the gas and the phases present (liquid and/or solid along with gas). While the variations can be large and important, very few studies, especially kinetic studies, have been published. In this paper we examine the changes brought about in argon plasma by injecting Ar (gas), N 2 (gas) hexane (gas) and hexane (liquid droplets). The changes in the RF capacitively coupled power (forward and reflected), electron and ion density (n e , n i ), electron temperature (T e ) and optical emissions were monitored during the injections. It was found that the Ar injection (pressure change only) caused expected variations. The electron temperature reduced, the plasma density increased and the optical emission intensity remained nearly constant. The N 2 and hexane gas injections (chemical composition and pressure changes) also followed expected trends. The plasma densities increased and electron temperature decreased while the optical emissions changed from argon to the injected gas. These all serve to highlight the fact that the injection of evaporating hexane droplets in the plasma caused very little change. This is because the number of injected droplets is too small to noticeably affect the plasma, even though the shift in the chemical composition of the gas caused by evaporation from those same droplets can be very significant. The net conclusion is that using liquid droplets to inject precursors for low pressure plasmas is both feasible and controllable.

  8. Experimental investigations of argon spark gap recovery times by developing a high voltage double pulse generator.

    Science.gov (United States)

    Reddy, C S; Patel, A S; Naresh, P; Sharma, Archana; Mittal, K C

    2014-06-01

    The voltage recovery in a spark gap for repetitive switching has been a long research interest. A two-pulse technique is used to determine the voltage recovery times of gas spark gap switch with argon gas. First pulse is applied to the spark gap to over-volt the gap and initiate the breakdown and second pulse is used to determine the recovery voltage of the gap. A pulse transformer based double pulse generator capable of generating 40 kV peak pulses with rise time of 300 ns and 1.5 μs FWHM and with a delay of 10 μs-1 s was developed. A matrix transformer topology is used to get fast rise times by reducing L(l)C(d) product in the circuit. Recovery Experiments have been conducted for 2 mm, 3 mm, and 4 mm gap length with 0-2 bars pressure for argon gas. Electrodes of a sparkgap chamber are of rogowsky profile type, made up of stainless steel material, and thickness of 15 mm are used in the recovery study. The variation in the distance and pressure effects the recovery rate of the spark gap. An intermediate plateu is observed in the spark gap recovery curves. Recovery time decreases with increase in pressure and shorter gaps in length are recovering faster than longer gaps.

  9. Experimental and theoretical investigations on the dynamic response of EBR-II ducts under pressure pulse loading

    International Nuclear Information System (INIS)

    Chopra, P.S.; Srinivas, S.

    1975-01-01

    In order to assess the potential damage to hexagonal subassembly ducts (cans) that may result from rapid gas release from a failed element the EBR-II project has conducted experiments and analyses. Additional experimental and analytical investigations are now being conducted to assure fail-safety of the ducts. Fail-safety is defined as the ability of a duct to withstand pressure pulses from failed elements during all reactor conditions without damage to adjacent ducts or any other problems in fuel handling. The results of 93 EBR-II duct tests conducted primarily by Koenig have been reported previously. The results of empirical correlations of some of these tests to determine the influence of several variables on the pressure pulse experienced by a duct and on the duct deformation are presented. The variables include the type of gas contained in the simulated element (tube), the element and duct materials, the presence or absence of flow restrictors in the element, and the way gas was released. 8 references. (auth)

  10. Preparation of TiO sub 2 nanoparticles by pulsed laser ablation: Ambient pressure dependence of crystallization

    CERN Document Server

    Matsubara, M; Yamaki, T; Itoh, H; Abe, H

    2003-01-01

    Pulsed laser ablation (PLA) with a KrF excimer laser was used to prepare fine particles of titanium dioxide (TiO sub 2). The ablation in an atmosphere of Ar and O sub 2 (5:5) at total pressures of >= 1 Torr led to the formation of TiO sub 2 nanoparticles composed of anatase and rutile structures without any suboxides. The weight fraction of the rutile/anatase crystalline phases was dependent on the pressure of the Ar/O sub 2 gas. The TiO sub 2 nanoparticles had a spherical shape and their size, ranging from 10 and 14 nm, also appeared to be dependent on the ambient pressure. (author)

  11. Reproducibility of blood pressure variation in older ambulatory and bedridden subjects.

    Science.gov (United States)

    Tsuchihashi, Takuya; Kawakami, Yasunobu; Imamura, Tsuyoshi; Abe, Isao

    2002-06-01

    We investigated the influence of ambulation on the reproducibility of circadian blood pressure variation in older nursing home residents. Ambulatory blood pressure monitoring was performed twice in 37 older nursing home residents. Nursing home in Japan. Subjects included 18 ambulatory nursing home residents who had no limitation on physical activity and 19 bedridden residents who did not participate in physical activity. Twenty-four-hour, daytime, and nighttime blood pressure levels and their variability. The 24-hour and daytime variability of systolic blood pressure (SBP) was significantly greater in ambulatory than in bedridden subjects, whereas nighttime variability was similar. Significant correlations in SBP averaged for the whole day, daytime, and nighttime were observed between the two examinations in ambulatory (r =.80-.83) and bedridden (r =.83-.91) subjects, but the variabilities of SBP for the whole day and during the daytime of the first measurement were correlated with those of the second measurement in bedridden (r =.67 and r =.47, respectively) but not in ambulatory (r =.39 and r =.28, respectively) subjects. Significant correlations were found between the nocturnal SBP changes at two occasions in both ambulatory (r =.50) and bedridden (r =.51) subjects, but the dipper versus nondipper profiles, defined as reduction in SBP of greater than 10% versus not, showed low reproducibility in ambulatory subjects; five ambulatory (28%) and one bedridden (5%) subjects showed divergent profiles between the two examinations. The reproducibility of blood pressure variation in nursing home residents is influenced by ambulation.

  12. Association of pulse wave velocity and pulse pressure with decline in kidney function.

    Science.gov (United States)

    Kim, Chang Seong; Kim, Ha Yeon; Kang, Yong Un; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon; Kim, Soo Wan

    2014-05-01

    The association between arterial stiffness and decline in kidney function in patients with mild to moderate chronic kidney disease (CKD) is not well established. This study investigated whether pulse wave velocity (PWV) and pulse pressure (PP) are independently associated with glomerular filtration rate (GFR) and rapid decline in kidney function in early CKD. Carotid femoral PWV (cfPWV), brachial-ankle PWV (baPWV), and PP were measured in a cohort of 913 patients (mean age, 63±10 years; baseline estimated GFR, 84±18 mL/min/1.73 m(2) ). Estimated GFR was measured at baseline and at follow-up. The renal outcome examined was rapid decline in kidney function (estimated GFR loss, >3 mL/min/1.73 m(2) per year). The median follow-up duration was 3.2 years. Multivariable adjusted linear regression model indicated that arterial PWV (both cfPWV and baPWV) and PP increased as estimated GFR declined, but neither was associated with kidney function after adjustment for various covariates. Multivariable logistic regression analysis found that cfPWV and baPWV were not associated with rapid decline in kidney function (odds ratio [OR], 1.39, 95% confidence interval [CI], 0.41-4.65; OR, 2.51, 95% CI, 0.66-9.46, respectively), but PP was (OR, 1.22, 95% CI, 1.01-1.48; P=.045). Arterial stiffness assessed using cfPWV and baPWV was not correlated with lower estimated GFR and rapid decline in kidney function after adjustment for various confounders. Thus, PP is an independent risk factor for rapid decline in kidney function in populations with relatively preserved kidney function (estimated GFR ≥30 mL/min/1.73 m(2) ). ©2014 Wiley Periodicals, Inc.

  13. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond Protein Extracts.

    Science.gov (United States)

    The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...

  14. Correlation of pulse wave velocity with left ventricular mass in patients with hypertension once blood pressure has been normalized

    Directory of Open Access Journals (Sweden)

    Siu H. Chan

    2012-02-01

    Full Text Available Vascular stiffness has been proposed as a simple method to assess arterial loading conditions of the heart which induce left ventricular hypertrophy (LVH. There is some controversy as to whether the relationship of vascular stiffness to LVH is independent of blood pressure, and which measurement of arterial stiffness, augmentation index (AI or pulse wave velocity (PWV is best. Carotid pulse wave contor and pulse wave velocity of patients (n=20 with hypertension whose blood pressure (BP was under control (<140/90 mmHg with antihypertensive drug treatment medications, and without valvular heart disease, were measured. Left ventricular mass, calculated from 2D echocardiogram, was adjusted for body size using two different methods: body surface area and height. There was a significant (P<0.05 linear correlation between LV mass index and pulse wave velocity. This was not explained by BP level or lower LV mass in women, as there was no significant difference in PWV according to gender (1140.1+67.8 vs 1110.6+57.7 cm/s. In contrast to PWV, there was no significant correlation between LV mass and AI. In summary, these data suggest that aortic vascular stiffness is an indicator of LV mass even when blood pressure is controlled to less than 140/90 mmHg in hypertensive patients. The data further suggest that PWV is a better proxy or surrogate marker for LV mass than AI and the measurement of PWV may be useful as a rapid and less expensive assessment of the presence of LVH in this patient population.

  15. Preliminary investigation of foot pressure distribution variation in men and women adults while standing.

    Science.gov (United States)

    Periyasamy, R; Mishra, A; Anand, Sneh; Ammini, A C

    2011-09-01

    Women and men are anatomically and physiologically different in a number of ways. They differ in both shape and size. These differences could potentially mean foot pressure distribution variation in men and women. The purpose of this study was to analyze standing foot pressure image to obtain the foot pressure distribution parameter - power ratio variation between men and women using image processing in frequency domain. We examined 28 healthy adult subjects (14 men and 14 women) aged between 20 and 45 years was recruited for our study. Foot pressure distribution patterns while standing are obtained by using a PedoPowerGraph plantar pressure measurement system for foot image formation, a digital camera for image capturing, a TV tuner PC-add on card, a WinDvr software for still capture and Matlab software with dedicated image processing algorithms have been developed. Various PedoPowerGraphic parameters such as percentage medial impulse (PMI), fore foot to hind foot pressure distribution ratio (F/H), big toe to fore foot pressure distribution ratio (B/F) and power ratio (PR) were evaluated. In men, contact area was significantly larger in all regions of the foot compared with women. There were significant differences in plantar pressure distribution but there was no significant difference in F/H and B/F ratio. Mean PR value was significantly greater in men than women under the hind foot and fore foot. PMI value was greater in women than men. As compared to men, women have maximum PR variations in the mid foot. Hence there is significant difference at level pfeet can provide suitable guidelines to biomedical engineers and doctor for designing orthotic devices for reliving the area of excessively high pressure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Pulse Pressure, Instead of Brachium-Ankle Pulse Wave Velocity, is Associated with Reduced Kidney Function in a Chinese Han Population

    Directory of Open Access Journals (Sweden)

    Linpei Jia

    2017-03-01

    Full Text Available Background/Aims: In this study, we aim to investigate the association between renal function and arterial stiffness in a Chinese Han population, and further to discuss the effects of smoking on renal function. Methods: We collected the data of the brachium-ankle pulse wave velocity (baPWV, blood pressure, blood chemistry and smoking status. Then, the multiple linear regression was done to explore the relationship between estimated glomerular filtration (eGFR and baPWV. Further, the parameters were compared among the four groups divided according to the quartiles of baPWV. Finally, the baPWV, eGFR and albuminuria values were compared between smokers and non-smokers. Results: baPWV is associated with eGFR in the correlation analysis and univariate linear regression model. After adjustment, the pulse pressure (PP instead of baPWV showed a significant association with eGFR. Nevertheless, the eGFR values differed among the four baPWV groups; the baPWV values were significantly higher in the subjects at the CKD (eGFR<60 mL/min/1.73 m2 and the early CKD stage (eGFR60–80 mL/min/1.73 m2. The baPWV values and the ratio of proteinuria were significantly increased in smokers. Conclusion: PP but not baPWV is a predictor of declined renal function. Smokers have worse arterial stiffness and worse renal function.

  17. Performance Variation of Spent Resin in Mixed Bed From Water Purifying System of Xi'an Pulse Reactor

    International Nuclear Information System (INIS)

    Li Hua; Ma Yan; Xiao Yan; Liu Yueheng; Yang Yongqing

    2010-01-01

    Detailed physical and chemical characteristic analysis was performed on the spent cation and anion resins in the mixed bed from Xi'an Pulse Reactor water purifying system.The exchange performance variations of used resins and the contributions from different factors to the variation were discussed.Based on the obtained information of the impurities in the used resin, the contamination state of the water in the Xi'an Pulse Reactor water pool, the corrosion state of the structural material in the reactor was presented. The spent anion resin almost completely losses its exchange performance,while the remaining exchange capacity in the spent cation resin is still high.The radiation field from the reactor operation contributes little to the degradation of the performance of the resins. The exchange capacity loss of the spent anion resin is due to the exchange of its active groups into abundant carbonate and a certain amount of organics. The impurity amount in the anion and cation exchange resins is low,which suggests(that) the water in the Xi'an Pulse Reactor water pool is little contaminated. A certain extent of corrosion is occurred on the structural material in the swimming pool of the reactor. The results provide important referential data for the operational safety of the water purifying system of similar research reactor. (authors)

  18. Nanosecond pulsed laser nanostructuring of Au thin films: Comparison between irradiation at low and atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Aké, C., E-mail: citlali.sanchez@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico); Canales-Ramos, A. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico); García-Fernández, T. [Universidad Autónoma de la Ciudad de México (UACM), Prolongación San Isidro 151, Col. San Lorenzo Tezonco, México D.F., C.P. 09790 (Mexico); Villagrán-Muniz, M. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico)

    2017-05-01

    Highlights: • Background pressure plays an important role in NPs formation and its characteristics. • The NPs diameter and their size dispersion are smaller when irradiating in vacuum. • The plasmon resonance shifts ∼15 nm to higher frequencies when irradiating in vacuum. • Film partial ablation cannot be neglected for thickness in the range 40–80 nm. • In situ optical techniques monitor the timescale of the process and ablation dynamics. - Abstract: Au thin films with tens of nm in thickness deposited on glass substrates were irradiated with nanosecond UV (355 nm) laser pulses at atmospheric pressure and in vacuum conditions (∼600 and 10{sup −5} Torr). We studied the effect of the laser fluence (200–400 mJ/cm{sup 2}), thickness of the starting film (∼40–80 nm) and surrounding pressure on the partial ablation/evaporation of the films and the morphology of the produced nanoparticles (NPs). The dynamics of NPs formation was studied by measuring in real time the transmission of the samples upon continuous-wave laser exposure, and by means of probe beam deflection technique. The ejection of material from the film as a result of the irradiation was confirmed by time-resolved shadowgraphy technique. Experiments show that the NPs diameter and their size distribution are smaller when the irradiation is performed in vacuum regardless the laser fluence and thickness of the started film. It is also shown that the plasmon band shifts to higher frequencies with lower background pressure. The optical measurements show that the films melt and ablate during the laser pulse, but the transmission of the irradiated areas continues changing during tens of microseconds due to ejection of material and solidification of the remaining gold. Our results indicate that partial ablation cannot be neglected in nanostructuration by ns-pulsed irradiation of thin films when their thickness is in the studied range.

  19. The impact of arm position and pulse pressure on the validation of a wrist-cuff blood pressure measurement device in a high risk population

    Directory of Open Access Journals (Sweden)

    Ali Reza Khoshdel

    2010-03-01

    Hg for SBP and DBP (DESK position resulted in improvement with 75% and 77% of the readings being within 10 mmHg (grade B, respectively. AAMI criteria were not fulfilled due to heterogeneity. The findings also showed that the mismatch between the mercury and wrist-cuff systolic BP readings was directly associated with pulse pressure. In conclusion the DESK position produces the most accurate readings when compared to the mercury device. Although wrist BP measurement may underestimate BP measured compared to a mercury device, an adjustment by 5 and 10 mmHg for SBP and DBP, respectively, creates a valid result with the DESK position. Nevertheless, considering the observed variations and the possible impact of arterial stiffness, individual clinical validation is recommended.Keywords: blood pressure, device validation, position

  20. Multi-Pulse Excitation for Underwater Analysis of Copper-Based Alloys Using a Novel Remote Laser-Induced Breakdown Spectroscopy (LIBS) System.

    Science.gov (United States)

    Guirado, Salvador; Fortes, Francisco J; Laserna, J Javier

    2016-04-01

    In this work, the use of multi-pulse excitation has been evaluated as an effective solution to mitigate the preferential ablation of the most volatile elements, namely Sn, Pb, and Zn, observed during laser-induced breakdown spectroscopy (LIBS) analysis of copper-based alloys. The novel remote LIBS prototype used in this experiments featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS). The remote instrument is capable of performing chemical analysis of submersed materials up to a depth of 50 m. Laser-induced breakdown spectroscopy analysis was performed at air pressure settings simulating the conditions during a real subsea analysis. A set of five certified bronze standards with variable concentration of Cu, As, Sn, Pb, and Zn were used. In SP-LIBS, signal emission is strongly sensitive to ambient pressure. In this case, fractionation effect was observed. Multi-pulse excitation circumvents the effect of pressure over the quantitative analysis, thus avoiding the fractionation phenomena observed in single pulse LIBS. The use of copper as internal standard minimizes matrix effects and discrepancies due to variation in ablated mass. © The Author(s) 2016.

  1. Diagnostics of atmospheric-pressure pulsed-dc discharge with metal and liquid anodes by multiple laser-aided methods

    Science.gov (United States)

    Urabe, Keiichiro; Shirai, Naoki; Tomita, Kentaro; Akiyama, Tsuyoshi; Murakami, Tomoyuki

    2016-08-01

    The density and temperature of electrons and key heavy particles were measured in an atmospheric-pressure pulsed-dc helium discharge plasma with a nitrogen molecular impurity generated using system with a liquid or metal anode and a metal cathode. To obtain these parameters, we conducted experiments using several laser-aided methods: Thomson scattering spectroscopy to obtain the spatial profiles of electron density and temperature, Raman scattering spectroscopy to obtain the neutral molecular nitrogen rotational temperature, phase-modulated dispersion interferometry to determine the temporal variation of the electron density, and time-resolved laser absorption spectroscopy to analyze the temporal variation of the helium metastable atom density. The electron density and temperature measured by Thomson scattering varied from 2.4  ×  1014 cm-3 and 1.8 eV at the center of the discharge to 0.8  ×  1014 cm-3 and 1.5 eV near the outer edge of the plasma in the case of the metal anode, respectively. The electron density obtained with the liquid anode was approximately 20% smaller than that obtained with the metal anode, while the electron temperature was not significantly affected by the anode material. The molecular nitrogen rotational temperatures were 1200 K with the metal anode and 1650 K with the liquid anode at the outer edge of the plasma column. The density of helium metastable atoms decreased by a factor of two when using the liquid anode.

  2. Association of pulse pressure with new-onset atrial fibrillation in patients with hypertension and left ventricular hypertrophy

    DEFF Research Database (Denmark)

    Larstorp, Anne Cecilie K; Ariansen, Inger; Gjesdal, Knut

    2012-01-01

    , and mean arterial pressure. When evaluated in the same model, the predictive effect of systolic and diastolic blood pressures together was similar to that of PP. In this population of patients with hypertension and left ventricular hypertrophy, PP was the strongest single blood pressure predictor of new......Previous studies have found pulse pressure (PP), a marker of arterial stiffness, to be an independent predictor of atrial fibrillation (AF) in general and hypertensive populations. We examined whether PP predicted new-onset AF in comparison with other blood pressure components in the Losartan...... Intervention For Endpoint reduction in hypertension study, a double-blind, randomized (losartan versus atenolol), parallel-group study, including 9193 patients with hypertension and electrocardiographic left ventricular hypertrophy. In 8810 patients with neither a history of AF nor AF at baseline, Minnesota...

  3. Job strain associated with increases in ambulatory blood and pulse pressure during and after work hours among female hotel room cleaners.

    Science.gov (United States)

    Feaster, Matt; Krause, Niklas

    2018-06-01

    Previously documented elevated hypertension rates among Las Vegas hotel room cleaners are hypothesized to be associated with job strain. Job strain was assessed by questionnaire. Ambulatory blood pressure (ABP) was recorded among 419 female cleaners from five hotels during 18 waking hours. Multiple linear regression models assessed associations of job strain with ABP and pulse pressure for 18-h, work hours, and after work hours. Higher job strain was associated with increased 18-h systolic ABP, after work hours systolic ABP, and ambulatory pulse pressure. Dependents at home but not social support at work attenuated effects. Among hypertensive workers, job strain effects were partially buffered by anti-hypertensive medication. High job strain is positively associated with blood pressure among female hotel workers suggesting potential for primary prevention at work. Work organizational changes, stress management, and active ABP surveillance and hypertension management should be considered for integrated intervention programs. © 2018 Wiley Periodicals, Inc.

  4. Local variations in {sup 14}C - How is bomb-pulse dating of human tissues and cells affected?

    Energy Technology Data Exchange (ETDEWEB)

    Stenstroem, Kristina, E-mail: Kristina.Stenstrom@nuclear.lu.s [Lund University, Department of Physics, Division of Nuclear Physics, Box 118, SE-221 00 Lund (Sweden); Skog, Goeran [Lund University, GeoBiosphere Science Centre, Geocentrum II, Soelvegatan 12, SE-223 672 Lund (Sweden); Nilsson, Carl Magnus [Lund University, Department of Physics, Division of Nuclear Physics, Box 118, SE-221 00 Lund (Sweden); Lund University, Department of Medical Radiation Physics, Malmoe University Hospital, SE-205 02 Malmoe (Sweden); Hellborg, Ragnar [Lund University, Department of Physics, Division of Nuclear Physics, Box 118, SE-221 00 Lund (Sweden); Svegborn, Sigrid Leide [Lund University, Department of Medical Radiation Physics, Malmoe University Hospital, SE-205 02 Malmoe (Sweden); Georgiadou, Elisavet [Lund University, Department of Physics, Division of Nuclear Physics, Box 118, SE-221 00 Lund (Sweden); Mattsson, Soeren [Lund University, Department of Medical Radiation Physics, Malmoe University Hospital, SE-205 02 Malmoe (Sweden)

    2010-04-15

    Atmospheric nuclear weapons testing in the late 1950s and early 1960s almost doubled the amount of {sup 14}C in the atmosphere. The resulting {sup 14}C 'bomb-pulse' has been shown to provide useful age information in e.g. forensic and environmental sciences, biology and the geosciences. The technique is also currently being used for retrospective cell dating in man, in order to provide insight into the rate of formation of new cells in the human body. Bomb-pulse dating relies on precise measurements of the declining {sup 14}C concentration in atmospheric CO{sub 2} collected at clean-air sites. However, it is not always recognized that the calculations can be complicated in some cases by significant local variations in the specific activity of {sup 14}C in carbon in the air and foodstuff. This paper presents investigations of local {sup 14}C variations in the vicinities of nuclear installations and laboratories using {sup 14}C. Levels of {sup 14}C in workers using this radioisotope are also discussed.

  5. Central venous pulse pressure analysis using an R-synchronized pressure measurement system.

    Science.gov (United States)

    Fujita, Yoshihisa; Hayashi, Daisuke; Wada, Shinya; Yoshioka, Naoki; Yasukawa, Takeshi; Pestel, Gunther

    2006-12-01

    The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7 mmHg and -0.9+/- 0.5 mmHg, respectively), with a mean pulse pressure of 3.4 mmHg. The difference between the mean CVP and CVP at end-diastole during expiration was 0.58+/- 0.81 mmHg. The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.

  6. Passenger comfort on high-speed trains: effect of tunnel noise on the subjective assessment of pressure variations.

    Science.gov (United States)

    Sanok, Sandra; Mendolia, Franco; Wittkowski, Martin; Rooney, Daniel; Putzke, Matthias; Aeschbach, Daniel

    2015-01-01

    When passing through a tunnel, aerodynamic effects on high-speed trains may impair passenger comfort. These variations in atmospheric pressure are accompanied by transient increases in sound pressure level. To date, it is unclear whether the latter influences the perceived discomfort associated with the variations in atmospheric pressure. In a pressure chamber of the DLR-Institute of Aerospace Medicine, 71 participants (M = 28.3 years ± 8.1 SD) rated randomised pressure changes during two conditions according to a crossover design. The pressure changes were presented together with tunnel noise such that the sound pressure level was transiently elevated by either +6 dB (low noise condition) or +12 dB (high noise condition) above background noise level (65 dB(A)). Data were combined with those of a recent study, in which identical pressure changes were presented without tunnel noise (Schwanitz et al., 2013, 'Pressure Variations on a Train - Where is the Threshold to Railway Passenger Discomfort?' Applied Ergonomics 44 (2): 200-209). Exposure-response relationships for the combined data set comprising all three noise conditions show that pressure discomfort increases with the magnitude and speed of the pressure changes but decreases with increasing tunnel noise. Practitioner Summary: In a pressure chamber, we systematically examined how pressure discomfort, as it may be experienced by railway passengers, is affected by the presence of tunnel noise during pressure changes. It is shown that across three conditions (no noise, low noise (+6 dB), high noise (+12 dB)) pressure discomfort decreases with increasing tunnel noise.

  7. Numerical analysis of transient pressure variation in the condenser of a nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinjun; Zhou, Zijie; Song, Zhao [Xi' an Jiaotong University, Xi' an (China); Lu, Qiankui; Li, Jiafu [Dong Fang Turbine Co., Ltd, Deyang (China)

    2016-02-15

    To research the characteristics of the transient variation of pressure in a nuclear power station condenser under accident condition, a mathematical model was established which simulated the cycling cooling water, heat transfer and pressure in the condenser. The calculation program of transient variation characteristics was established in Fortran language. The pump's parameter, cooling line's organization, check valve's feature and the parameter of siphonic water-collecting well are involved in the cooling water flow's mathematical model. The initial conditions of control volume are determined by the steady state of the condenser. The transient characteristics of a 1000 MW nuclear power station's condenser and cooling water system were examined. The results show that at the condition of plant-power suspension of pump, the cooling water flow rate decreases rapidly and refluxes, then fluctuates to 0. The variation of heat transfer coefficient in the condenser has three stages: at start it decreases sharply, then increases and decreases, and keeps constant in the end. Under three conditions (design, water and summer), the condenser pressure goes up in fluctuation. The time intervals between condenser's pressure signals under three conditions are about 26.4 s, which can fulfill the requirement for safe operation of nuclear power station.

  8. Pulsed high energy synthesis of fine metal powders

    Science.gov (United States)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Repetitively pulsed plasma jets generated by a capillary arc discharge at high stagnation pressure (>15,000 psi) and high temperature (>10,000 K) are utilized to produce 0.1-10 .mu.m sized metal powders and decrease cost of production. The plasma jets impact and atomize melt materials to form the fine powders. The melt can originate from a conventional melt stream or from a pulsed arc between two electrodes. Gas streams used in conventional gas atomization are replaced with much higher momentum flux plasma jets. Delivering strong incident shocks aids in primary disintegration of the molten material. A series of short duration, high pressure plasma pulses fragment the molten material. The pulses introduce sharp velocity gradients in the molten material which disintegrates into fine particles. The plasma pulses have peak pressures of approximately one kilobar. The high pressures improve the efficiency of disintegration. High gas flow velocities and pressures are achieved without reduction in gas density. Repetitively pulsed plasma jets will produce powders with lower mean size and narrower size distribution than conventional atomization techniques.

  9. A variational model of disjoining pressure: Liquid film on a nonplanar surface

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Virnovsky, G.

    2009-06-01

    Variational methods have been successfully used in modelling thin liquid films in numerous theoretical studies of wettability. In this paper, the variational model of the disjoining pressure is extended to the general case of a two-dimensional solid surface. The Helmgoltz free energy functional depends both on the disjoining pressure isotherm and the shape of the solid surface. The augmented Young-Laplace equation (AYLE) is a nonlinear second-order partial differential equation. A number of solutions describing wetting films on spherical grains have been obtained. In the case of cylindrical films, the phase portrait technique describes the entire variety of mathematically feasible solutions. It turns out that a periodic solution, which would describe wave-like wetting films, does not satisfy the Jacobi's condition of the classical calculus of variations. Therefore, such a solution is nonphysical. The roughness of the solid surface significantly affects liquid film stability. AYLE solutions suggest that film rupture is more likely at a location where the pore-wall surface is most exposed into the pore space and the curvature is positive.

  10. [Circadian blood pressure variation under several pathophysiological conditions including secondary hypertension].

    Science.gov (United States)

    Imai, Yutaka; Hosaka, Miki; Satoh, Michihiro

    2014-08-01

    Abnormality of circadian blood pressure (BP) variation, i.e. non-dipper, riser, nocturnal hypertension etc, is brought by several pathophysiological conditions especially by secondary hypertension. These pathophysiological conditions are classified into several categories, i.e. disturbance of autonomic nervous system, metabolic disorder, endocrine disorder, disorder of Na and water excretion (e.g. sodium sensitivity), severe target organ damage and ischemia, cardiovascular complications and drug induced hypertension. Each pathophysiological condition which brings disturbance of circadian BP variation is included in several categories, e.g. diabetes mellitus is included in metabolic disorder, autonomic imbalance, sodium sensitivity and endocrine disorder. However, it seems that unified principle of the genesis of disturbance of circadian BP variation in many pathophysiological conditions is autonomic imbalance. Thus, it is concluded that disturbance of circadian BP variation is not purposive biological behavior but the result of autonomic imbalance which looks as if compensatory reaction such as exaggerated Na-water excretion during night in patient with Na-water retention who reveals disturbed circadian BP variation.

  11. Seasonal and diurnal variations of ocular pressure in ocular hypertensive subjects in Pakistan.

    Science.gov (United States)

    Qureshi, I A; Xiao, R X; Yang, B H; Zhang, J; Xiang, D W; Hui, J L

    1999-05-01

    Studies have been shown that intraocular pressure (IOP) shows a diurnal variation in ocular hypertensive subjects, but the amount of change differs from study to study. In recent years it has been noted that intraocular pressure is a dynamic function and is subjected to many influences both acutely and over the long term. The variability in the results may be due to negligence of factors that can affect IOP. Moreover, seasonal variations in the ocular hypertensive subjects have never been described. After placing control on those factors that can affect IOP, this study investigated seasonal and diurnal variations in IOP of ocular hypertensive subjects. IOP was measured each month over the course of 12 months with the Goldmann applanation tonometer in 91 ocular hypertensive male subjects. To see the diurnal changes, subjects were asked to stay in the hospital for 24 hours. The average IOP in the winter months was higher than those in spring, summer, and autumn. The IOP difference between winter and summer was (mean +/- sem) 2.9 +/- 0.9 mmHg (p < 0.001). The peak of mean IOP in diurnal variation curve (25.7 +/- 1.2 mmHg) appeared in the morning when the subjects had just awaken. The mean diurnal variation was found to be 4.2 +/- 0.6 mmHg (p < 0.001). This study confirms that seasons influence IOP and it shows diurnal variations. As compared to other nations, diurnal variations in ocular hypertensive subjects seem to be somewhat less in Pakistan. Knowledge of the seasonal and diurnal variations in IOP may help glaucoma screeners.

  12. Numerical model for surge and swab pressures on wells with cross-section variation

    Energy Technology Data Exchange (ETDEWEB)

    Fedevjcyk, Joao Victor; Junqueira, Silvio Luiz de Mello; Negrao, Cezar Otaviano Ribeiro [UTFPR - Federal University of Technology - Parana - Curitiba, PR (Brazil)], e-mails: silvio@utfpr.edu.br, negrao@utfpr.edu.br

    2010-07-01

    Drilling is one of the most complex steps in petroleum exploration. The process is accomplished by rotating a drill bit to compress the rock formation. During drilling, a fluid is pumped into the well to lubricate and cool down the drill bit, to clean up the well, to avoid the formation fluid influx to the well and also to stabilize the borehole walls. Fluid circulation, however, can be interrupted for maintenance reasons and the drill pipe can be moved to remove the drill bit. The downward or upward movement of the drill pipe displaces the fluid within the well causing either under pressure (swab) or over pressure (surge), respectively. If the pressure at the well bore overcomes the formation fracture pressure, a loss of circulation can take place. On the other way round, the upward movement may reduce the pressure below the pore pressure and an inflow of fluid to the well (kick) can occur. An uncontrolled kick may cause a blowout with serious damages. The transient flow induced by the axial movement of the drill pipe is responsible for the pressure changes at the well bore. Nevertheless, the well bore cross section variation may modify the pressure change within the pipe. In this paper, the effects of diameter variation of the drilling well on the surge and swab pressures are investigated. The equations that represent the phenomenon (mass and momentum conservation) are discretized by the finite volume method. Despite its non-Newtonian properties, the fluid is considered Newtonian in this first work. The drill pipe is considered closed and the flow is assumed as single-phased, one-dimensional, isothermal, laminar, compressible and transient. A sensitivity analysis of the flow parameters is carried out. The cross-section changes cause the reflection of the pressure wave, and consequently pressure oscillations. (author)

  13. Progress of the ELISE test facility: towards one hour pulses in hydrogen

    Science.gov (United States)

    Wünderlich, D.; Fantz, U.; Heinemann, B.; Kraus, W.; Riedl, R.; Wimmer, C.; the NNBI Team

    2016-10-01

    In order to fulfil the ITER requirements, the negative hydrogen ion source used for NBI has to deliver a high source performance, i.e. a high extracted negative ion current and simultaneously a low co-extracted electron current over a pulse length up to 1 h. Negative ions will be generated by the surface process in a low-temperature low-pressure hydrogen or deuterium plasma. Therefore, a certain amount of caesium has to be deposited on the plasma grid in order to obtain a low surface work function and consequently a high negative ion production yield. This caesium is re-distributed by the influence of the plasma, resulting in temporal instabilities of the extracted negative ion current and the co-extracted electrons over long pulses. This paper describes experiments performed in hydrogen operation at the half-ITER-size NNBI test facility ELISE in order to develop a caesium conditioning technique for more stable long pulses at an ITER relevant filling pressure of 0.3 Pa. A significant improvement of the long pulse stability is achieved. Together with different plasma diagnostics it is demonstrated that this improvement is correlated to the interplay of very small variations of parameters like the electrostatic potential and the particle densities close to the extraction system.

  14. Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production

    DEFF Research Database (Denmark)

    Nielsen, Henriette Boel; Sonne, Anne-Mette; Grunert, Klaus G.

    2009-01-01

    on consumer attitudes towards high-pressure processing (HPP) and pulsed electric field (PEF) processing of food was carried out. In all 97 adults between 20 and 71 years of age participated in 12 focus groups conducted in Slovenia, Hungary, Serbia, Slovakia, Norway and Denmark using a common guideline...

  15. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    International Nuclear Information System (INIS)

    McCarthy, B M; O'Flynn, B; Mathewson, A

    2011-01-01

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  16. Flux transfer events at the dayside magnetopause: Transient reconnection or magnetosheath dynamic pressure pulses?

    International Nuclear Information System (INIS)

    Lockwood, M.

    1991-01-01

    The suggestion is discussed that characteristic particle and field signatures at the dayside magnetopause, termed flux transfer events, are, in at least some cases, due to transient solar wind and/or magnetosheath dynamic pressure increases, rather than time-dependent magnetic reconnection. It is found that most individual cases of FTEs observed by a single spacecraft can, at least qualitatively, be explained by the pressure pulse model, provided a few rather unsatisfactory features of the predictions are explained in terms of measurement uncertainties. The most notable exceptions to this are some two-regime observations made by two satellites simultaneously, one on either side of the magnetopause. However, this configuration has not been frequently achieved for sufficient time, such observations are rare, and the relevant tests are still not conclusive. The strongest evidence that FTEs are produced by magnetic reconnection is the dependence of their occurence on the north-south component of the interplanetary magnetic field (IMF) or of the magnetosheath field. The pressure pulse model provides an explanation for this dependence in the case of magnetosheath FTEs, but does not apply to magnetosphere FTEs. The only surveys of magnetosphere FTEs have not employed the simultaneous IMF, but have shown that their occurence is strongly dependent on the north-south component of the magnetosheath field, as observed earlier/later on the same magnetopause crossing. This paper employs statistics on the variability of the IMF orientation to investigate the effects of IMF changes between the times of the magnetosheath and FTE observations. It is shown that the previously published results are consistent with magnetospheric FTEs being entirely absent when the magentosheath field is northward

  17. Effect of high hydrostatic pressure, ultrasound and pulsed electric fields on milk composition and characteristics

    OpenAIRE

    Irena Jeličić; Katarina Lisak; Rajka Božanić

    2012-01-01

    High hydrostatic pressure, ultrasonication and pulsed eletrcic fields (PEF) belong to novel food processing methods which are mostly implemented in combination with moderate temperatures and/ or in combination with each other in order to provide adequate microbiological quality with minimal losses of nutritional value. All of three mentioned methods have been intensively investigated for the purpose of inactivation and reduction of foodborne microorganisms present in milk and dairy products. ...

  18. Controlling output pulse and prepulse in a resonant microwave pulse compressor

    International Nuclear Information System (INIS)

    Shlapakovski, A.; Artemenko, S.; Chumerin, P.; Yushkov, Yu.

    2013-01-01

    A resonant microwave pulse compressor with a waveguide H-plane-tee-based energy extraction unit was studied in terms of its capability to produce output pulses that comprise a low-power long-duration (prepulse) and a high-power short-duration part. The application of such combined pulses with widely variable prepulse and high-power pulse power and energy ratios is of interest in the research area of electronic hardware vulnerability. The characteristics of output radiation pulses are controlled by the variation of the H-plane tee transition attenuation at the stage of microwave energy storage in the compressor cavity. Results of theoretical estimations of the parameters tuning range and experimental investigations of the prototype S-band compressor (1.5 MW, 12 ns output pulse; ∼13.2 dB gain) are presented. The achievable maximum in the prepulse power is found to be about half the power of the primary microwave source. It has been shown that the energy of the prepulse becomes comparable with that of the short-duration (nanosecond) pulse, while the power of the latter decreases insignificantly. The possible range of variation of the prepulse power and energy can be as wide as 40 dB. In the experiments, the prepulse level control within the range of ∼10 dB was demonstrated.

  19. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses.

    Science.gov (United States)

    Lukač, Nejc; Jezeršek, Matija

    2018-05-01

    When attempting to clean surfaces of dental root canals with laser-induced cavitation bubbles, the resulting cavitation oscillations are significantly prolonged due to friction on the cavity walls and other factors. Consequently, the collapses are less intense and the shock waves that are usually emitted following a bubble's collapse are diminished or not present at all. A new technique of synchronized laser-pulse delivery intended to enhance the emission of shock waves from collapsed bubbles in fluid-filled endodontic canals is reported. A laser beam deflection probe, a high-speed camera, and shadow photography were used to characterize the induced photoacoustic phenomena during synchronized delivery of Er:YAG laser pulses in a confined volume of water. A shock wave enhancing technique was employed which consists of delivering a second laser pulse at a delay with regard to the first cavitation bubble-forming laser pulse. Influence of the delay between the first and second laser pulses on the generation of pressure and shock waves during the first bubble's collapse was measured for different laser pulse energies and cavity volumes. Results show that the optimal delay between the two laser pulses is strongly correlated with the cavitation bubble's oscillation period. Under optimal synchronization conditions, the growth of the second cavitation bubble was observed to accelerate the collapse of the first cavitation bubble, leading to a violent collapse, during which shock waves are emitted. Additionally, shock waves created by the accelerated collapse of the primary cavitation bubble and as well of the accompanying smaller secondary bubbles near the cavity walls were observed. The reported phenomena may have applications in improved laser cleaning of surfaces during laser-assisted dental root canal treatments.

  20. Method for pulse to pulse dose reproducibility applied to electron linear accelerators

    International Nuclear Information System (INIS)

    Ighigeanu, D.; Martin, D.; Oproiu, C.; Cirstea, E.; Craciun, G.

    2002-01-01

    An original method for obtaining programmed beam single shots and pulse trains with programmed pulse number, pulse repetition frequency, pulse duration and pulse dose is presented. It is particularly useful for automatic control of absorbed dose rate level, irradiation process control as well as in pulse radiolysis studies, single pulse dose measurement or for research experiments where pulse-to-pulse dose reproducibility is required. This method is applied to the electron linear accelerators, ALIN-10 of 6.23 MeV and 82 W and ALID-7, of 5.5 MeV and 670 W, built in NILPRP. In order to implement this method, the accelerator triggering system (ATS) consists of two branches: the gun branch and the magnetron branch. ATS, which synchronizes all the system units, delivers trigger pulses at a programmed repetition rate (up to 250 pulses/s) to the gun (80 kV, 10 A and 4 ms) and magnetron (45 kV, 100 A, and 4 ms).The accelerated electron beam existence is determined by the electron gun and magnetron pulses overlapping. The method consists in controlling the overlapping of pulses in order to deliver the beam in the desired sequence. This control is implemented by a discrete pulse position modulation of gun and/or magnetron pulses. The instabilities of the gun and magnetron transient regimes are avoided by operating the accelerator with no accelerated beam for a certain time. At the operator 'beam start' command, the ATS controls electron gun and magnetron pulses overlapping and the linac beam is generated. The pulse-to-pulse absorbed dose variation is thus considerably reduced. Programmed absorbed dose, irradiation time, beam pulse number or other external events may interrupt the coincidence between the gun and magnetron pulses. Slow absorbed dose variation is compensated by the control of the pulse duration and repetition frequency. Two methods are reported in the electron linear accelerators' development for obtaining the pulse to pulse dose reproducibility: the method

  1. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery- Part 2: Cells with Metal Hydride Storage.

    Science.gov (United States)

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A sub-atmospheric pressure nickel hydrogen (Ni-H(2)) battery with metal hydride for hydrogen storage is developed for implantable neuroprosthetic devices. Pressure variations during charge and discharge of the cell are analyzed at different states of charge and are found to follow the desorption curve of the pressure composition isotherm (PCI) of the metal hydride. The measured pressure agreed well with the calculated theoretical pressure based on the PCI and is used to predict the state of charge of the battery. Hydrogen equilibration with the metal hydride during charge/discharge cycling is fast when the pressure is in the range from 8 to 13 psia and slower in the range from 6 to 8 psia. The time constant for the slower hydrogen equilibration, 1.37h, is similar to the time constant for oxygen recombination and therefore pressure changes due to different mechanisms are difficult to estimate. The self-discharge rate of the cell with metal hydride is two times lower in comparison to the cell with gaseous hydrogen storage alone and is a result of the lower pressure in the cell when the metal hydride is used.

  2. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery– Part 2: Cells with Metal Hydride Storage

    Science.gov (United States)

    Purushothaman, B. K.; Wainright, J. S.

    2012-01-01

    A sub-atmospheric pressure nickel hydrogen (Ni-H2) battery with metal hydride for hydrogen storage is developed for implantable neuroprosthetic devices. Pressure variations during charge and discharge of the cell are analyzed at different states of charge and are found to follow the desorption curve of the pressure composition isotherm (PCI) of the metal hydride. The measured pressure agreed well with the calculated theoretical pressure based on the PCI and is used to predict the state of charge of the battery. Hydrogen equilibration with the metal hydride during charge/discharge cycling is fast when the pressure is in the range from 8 to 13 psia and slower in the range from 6 to 8 psia. The time constant for the slower hydrogen equilibration, 1.37h, is similar to the time constant for oxygen recombination and therefore pressure changes due to different mechanisms are difficult to estimate. The self-discharge rate of the cell with metal hydride is two times lower in comparison to the cell with gaseous hydrogen storage alone and is a result of the lower pressure in the cell when the metal hydride is used. PMID:22711974

  3. Can a central blood volume deficit be detected by systolic pressure variation during spontaneous breathing?

    DEFF Research Database (Denmark)

    Dahl, Michael; Hayes, Chris; Steen Rasmussen, Bodil

    2016-01-01

    BACKGROUND: Whether during spontaneous breathing arterial pressure variations (APV) can detect a volume deficit is not established. We hypothesized that amplification of intra-thoracic pressure oscillations by breathing through resistors would enhance APV to allow identification of a reduced card...

  4. NO kinetics in pulsed low-pressure nitrogen plasmas studied by time resolved quantum cascade laser absorption spectroscopy

    NARCIS (Netherlands)

    Welzel, S.; Guaitella, O.; Lazzaroni, C.; Pintassilgo, C.; Rousseau, A.; Röpcke, J.

    2011-01-01

    Time-resolved quantum cascade laser absorption spectroscopy at 1897 cm-1 (5.27 µm) has been applied to study the NO(X) kinetics on the micro- and millisecond time scale in pulsed low-pressure N2/NO dc discharges. Experiments have been performed under flowing and static gas conditions to infer the

  5. Pulse periods and the long-term variations of the X-ray pulsars VELA X-1 and Centaurus X-3

    Science.gov (United States)

    Tsunemi, Hiroshi

    The paper reports recent determinations of the pulse period for two X-ray pulsars, Vela X-1 and Cen X-3, made in 1987 with the All Sky Monitor (ASM) on board the Ginga satellite. The heliocentric pulse periods are 283.09 + or - 0.01 s and 4.8229 + or - 0.0001 s, respectively. These are the longest and shortest values in their respective observational histories. The random walk model for the Vela X-1 pulsar can explain this result as well as those obtained previously. It is also noted that the pulse-period change for the Cen X-3 system shows a 9-yr periodicity. This is probably due to the activity of the companion star rather than to Doppler-shift variations due to a third body or the precession of the neutron star.

  6. Pressure and stress waves in a spallation neutron source mercury target generated by high-power proton pulses

    CERN Document Server

    Futakawa, M; Conrad, H; Stechemesser, H

    2000-01-01

    The international ASTE collaboration has performed a first series of measurements on a spallation neutron source target at the Alternating Gradient Synchrotron (AGS) in Brookhaven. The dynamic response of a liquid mercury target hit by high-power proton pulses of about 40 ns duration has been measured by a laser Doppler technique and compared with finite elements calculations using the ABAQUS code. It is shown that the calculation can describe the experimental results for at least the time interval up to 100 mu s after the pulse injection. Furthermore, it has been observed that piezoelectric pressure transducers cannot be applied in the high gamma-radiation field of a spallation target.

  7. Threshold value of home pulse pressure predicting arterial stiffness in patients with type 2 diabetes: KAMOGAWA-HBP study.

    Science.gov (United States)

    Kitagawa, Noriyuki; Ushigome, Emi; Matsumoto, Shinobu; Oyabu, Chikako; Ushigome, Hidetaka; Yokota, Isao; Asano, Mai; Tanaka, Muhei; Yamazaki, Masahiro; Fukui, Michiaki

    2018-03-01

    This cross-sectional multicenter study was designed to evaluate the threshold value of home pulse pressure (PP) and home systolic blood pressure (SBP) predicting the arterial stiffness in 876 patients with type 2 diabetes. We measured the area under the receiver-operating characteristic curve (AUC) and estimated the ability of home PP to identify arterial stiffness using Youden-Index defined cut-off point. The arterial stiffness was measured using the brachial-ankle pulse wave velocity (baPWV). AUC for arterial stiffness in morning PP was significantly greater than that in morning SBP (P AUC for arterial stiffness in evening PP was also significantly greater than that in evening SBP (P < .001). The optimal cut-off points for morning PP and evening PP, which predicted arterial stiffness, were 54.6 and 56.9 mm Hg, respectively. Our findings indicate that we should pay more attention to increased home PP in patients with type 2 diabetes. ©2018 Wiley Periodicals, Inc.

  8. Diagnosis of a short-pulse dielectric barrier discharge at atmospheric pressure in helium with hydrogen-methane admixtures

    Science.gov (United States)

    Nastuta, A. V.; Pohoata, V.; Mihaila, I.; Topala, I.

    2018-04-01

    In this study, we present results from electrical, optical, and spectroscopic diagnosis of a short-pulse (250 ns) high-power impulse (up to 11 kW) dielectric barrier discharge at atmospheric pressure running in a helium/helium-hydrogen/helium-hydrogen-methane gas mixture. This plasma source is able to generate up to 20 cm3 of plasma volume, pulsed in kilohertz range. The plasma spatio-temporal dynamics are found to be developed in three distinct phases. All the experimental observations reveal a similar dynamic to medium power microsecond barrier discharges, although the power per pulse and current density are up to two orders of magnitude higher than the case of microsecond barrier discharges. This might open the possibility for new applications in the field of gas or surface processing, and even life science. These devices can be used in laboratory experiments relevant for molecular astrophysics.

  9. [The predictive value of dynamic arterial elastance in arterial pressure response after norepinephrine dosage reduction in patients with septic shock].

    Science.gov (United States)

    Liang, F M; Yang, T; Dong, L; Hui, J J; Yan, J

    2017-05-01

    Objective: To assess whether dynamic arterial elastance(Ea(dyn))can be used to predict the reduction of arterial pressure after decreasing norepinephrine (NE) dosage in patients with septic shock. Methods: A prospective observational cohort study was conducted. Thirty-two patients with septic shock and mechanical ventilationwere enrolledfrom January 2014 to December 2015 in ICU of Wuxi People's Hospital of Nanjing Medical University. Hemodynamic parameters were recorded by pulse contour cardiac output(PiCCO)monitoring technology before and after decreasing norepinephrine dosage. Ea(dyn) was defined as the ratio of pulse pressure variation (PPV) to stroke volume variation (SVV). Mean arterial pressure(MAP) variation was calculated after decreasing the dose of NE. Response was defined as a ≥15% decrease of MAP. AUC was plotted to assess the value of Ea(dyn) in predicting MAP response. Results: A total of 32 patients were enrolled in our study, with 13 responding to NE dose decrease where as the other 19 did not. Ea(dyn) was lower in responders than in nonresponders (0.77±0.13 vs 1.09±0.31, P blood pressure variation, diastolic blood pressure variation, systemic vascular resistance variation and MAP variation( r =0.621, P =0.000; r =0.735, P =0.000; r =0.756, P =0.000; r =0.568, P =0.000 respectively). However, stoke volume variation, baseline level of systemic vascular resistance and NE baseline dose were not correlated with Ea(dyn) baseline value( r =0.264, P =0.076; r =0.078, P =0.545; r =0.002, P =0.987 respectively). Ea(dyn)≤0.97 predicted a decrease of MAP when decreasing NE dose, with an area under the receiver-operating characteristic curve of 0.85.The sensitivity was 100.0% and specificity was 73.7%. Conclusions: In septic shock patients treated with NE, Ea(dyn) is an index to predict the decrease of arterial pressure in response to NE dose reduction.

  10. Pulse-wave morphology and pulse-wave velocity in healthy human volunteers

    DEFF Research Database (Denmark)

    Frimodt-Møller, M; Nielsen, A H; Kamper, A-L

    2006-01-01

    as smoking caused significant changes in both PWA and PWV parameters and an inter-arm difference was observed. Intra- and interobserver reproducibility was good. CONCLUSIONS: Pulse-wave measurements by applanation tonometry should be undertaken in the same arm during fasting and smoking abstinence.......OBJECTIVE: Applanation tonometry for pulse-wave analysis (PWA) and determination of pulse-wave velocity (PWV) is a non-invasive method for assessment of the central aortic pressure waveform and indices of arterial stiffness. The objective of this study was to examine the influence of eating...... and smoking on PWA and PWV measurements in order to establish standard examination conditions. Furthermore, intra- and interobserver reproducibility and the effects of varying the site of measurements were observed. MATERIAL AND METHODS: Duplicate measurements of the radial pressure waveform...

  11. Method for detecting and distinguishing between specific types of environmental radiation using a high pressure ionization chamber with pulse-mode readout

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2017-12-19

    An environmental radiation detector for detecting and distinguishing between all types of environmental radiation, including photons, charged particles, and neutrons. A large volume high pressure ionization chamber (HPIC) includes BF.sub.3 gas at a specific concentration to render the radiation detector sensitive to the reactions of neutron capture in Boron-10 isotope. A pulse-mode readout is connected to the ionization chamber capable of measuring both the height and the width of the pulse. The heavy charged products of the neutron capture reaction deposit significant characteristic energy of the reaction in the immediate vicinity of the reaction in the gas, producing a signal with a pulse height proportional to the reaction energy, and a narrow pulse width corresponding to the essentially pointlike energy deposition in the gas. Readout of the pulse height and the pulse width parameters of the signals enables distinguishing between the different types of environmental radiation, such as gamma (x-rays), cosmic muons, and neutrons.

  12. Numerical Study of Photoacoustic Pressure for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Thomas Grosges

    2016-11-01

    Full Text Available A commonly used therapy for cancer is based on the necrosis of cells induced by heating through the illumination of nanoparticles embedded in cells. Recently, the photoacoustic pressure shock induced by the illumination pulse was proved and this points to another means of cell destruction. The purpose of this study is to propose a model of the photoacoustic pressure in cells. The numerical resolution of the problem requires the accurate computation of the electromagnetism, the temperature and the pressure around the nanostructures embedded in a cell. Here, the problem of the interaction between an electromagnetic excitation and a gold nanoparticle embedded in a cell domain is solved. The variations of the thermal and photoacoustic pressures are studied in order to analyze the pressure shock wave inducing the collapse of the cell’s membrane in cancer therapy.

  13. Development of a Cardiovascular Simulator for Studying Pulse Diagnosis Mechanisms

    Directory of Open Access Journals (Sweden)

    Min Jang

    2017-01-01

    Full Text Available This research was undertaken to develop a cardiovascular simulator for use in the study of pulse diagnosis. The physical (i.e., pulse wave transmission and reflection and physiological (i.e., systolic and diastolic pressure, pulse pressure, and mean pressure characteristics of the radial pulse wave were reproduced by our simulator. The simulator consisted of an arterial component and a pulse-generating component. Computer simulation was used to simplify the arterial component while maintaining the elastic modulus and artery size. To improve the reflected wave characteristics, a palmar arch was incorporated within the simulator. The simulated radial pulse showed good agreement with clinical data.

  14. Dependence of the absorption of pulsed CO2-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    International Nuclear Information System (INIS)

    Blazejowski, J.; Gruzdiewa, L.; Rulewski, J.; Lampe, F.W.

    1995-01-01

    The absorption of three lines [P(20), 944.2 cm -1 ; P(14), 949.2 cm -1 ; and R(24), 978.5 cm -1 ] of the pulsed CO 2 laser (00 0 1--10 0 0 transition) by SiH 4 was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO 2 laser. The experimental dependencies show deviations from the phenomenological Beer--Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer--Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials

  15. Respiratory variations in the photoplethysmographic waveform: acute hypovolaemia during spontaneous breathing is not detected

    International Nuclear Information System (INIS)

    Nilsson, Lena; Goscinski, Tomas; Lindenberger, Marcus; Länne, Toste; Johansson, Anders

    2010-01-01

    Recent studies using photoplethysmographic (PPG) signals from pulse oximeters have shown potential to assess hypovolaemia during spontaneous breathing. This signal is heavily filtered and reports are based on respiratory variations in the small pulse synchronous variation of PPG. There are stronger respiratory variations such as respiratory synchronous variation (PPGr) in the baseline of the unfiltered PPG signal. We hypothesized that PPGr would increase during hypovolaemia during spontaneous breathing. Hemodynamic and respiratory data were recorded together with PPG infrared signals from the finger, ear and forearm from 12 healthy male volunteers, at rest and during hypovolaemia created by the application of a lower body negative pressure (LBNP) of 15, 30 and 60 cmH 2 O. Hemodynamic and respiratory values changed significantly. From rest to the LBNP of 60 cmH 2 O systolic blood pressure fell from median (IQR) 116 (16) to 101 (23) mmHg, the heart rate increased from 58 (16) to 73 (16) beats min −1 , and the respiratory rate increased from 9.5 (2.0) to 11.5 (4.0) breaths min −1 . The amplitude of PPGr did not change significantly at any measurement site. The strongest effect was seen at the ear, where the LBNP of 60 cmH 2 O gave an amplitude increase from 1.0 (0.0) to 1.31 (2.24) AU. PPG baseline respiratory variations cannot be used for detecting hypovolaemia in spontaneously breathing subjects

  16. PULSED MOLECULAR BEAM PRODUCTION WITH NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Hagena, Otto-Friedrich

    1963-05-15

    Molecular beam experiments that can be carried out in pulsed operation may be performed at considerably reduced expense for apparatus if, for pulse generation, the gas supply to the beam production system is interrupted as opposed to the usual steady molecular beam. This technique is studied by measuring intensity vs time of molecular beam impulses of varying length, how fast and through which intermediate states the initial intensity of the impulse attains equilibrium, and in which way the intensity of the molecular-beam impulse is affected by the pulse length and by increasing pressure in the first pressure stage. For production of pulses, a magnetically actuated, quick shutting, valve is used whose scaling area is the inlet cone of the nozzle used for the beam generation. The shortest pulses produced had a pulse length of 1.6 ms. (auth)

  17. Regression analysis and transfer function in estimating the parameters of central pulse waves from brachial pulse wave.

    Science.gov (United States)

    Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling

    2017-07-01

    This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  18. Influence of oxygen pressure and aging on LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates

    KAUST Repository

    Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel; David, Adrian; Lin, Weinan; Wu, Tao

    2014-01-01

    The crystal structures of LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates at oxygen pressure of 10−3 millibars or 10−5 millibars, where kinetics of ablated species hardly depend on oxygen background pressure, are compared. Our

  19. Increased pulse pressure is associated with left atrial enlargement in resistant hypertensive patients.

    Science.gov (United States)

    Armario, Pedro; Oliveras, Anna; Hernández-Del-Rey, Raquel; Suárez, Carmen; Martell, Nieves; Ruilope, Luis M; De La Sierra, Alejandro

    2013-02-01

    Resistant hypertension (RH) is frequently associated with a high prevalence of target organ damage, which impairs the prognosis of these patients. Considering cardiac alterations in RH, most attention has been devoted to left ventricular hypertrophy (LVH), but data concerning left atrial enlargement (LAE) is less known. This cross-sectional study assessed the factors associated with LAE, with special focus on blood pressure (BP) estimates obtained by ambulatory blood pressure monitoring (ABPM), in 250 patients with RH, aged 64 ± 11 years. LAE and LVH were observed in 10.0% (95% CI 6.3-13.7) and 57.1% (95% CI 50.8-63.5) of patients, respectively. Compared with patients with normal atrium size, those exhibiting LAE were older, more frequently women, had elevated pulse pressure (PP) measured both at the office and by ABPM, and showed higher prevalence of LVH (83% vs 54%; p = 0.016). In a logistic regression analysis, adjusting for age, gender, body mass index, left ventricular mass index and BP pressure estimates, night-time PP was independently associated with LAE (OR for 5 mmHg = 1.28, 95% CI 1.24-1.32; p = 0.001). In conclusion, besides classical determinants of LAE, such as age and LVH, an elevated night-time PP was independently associated with LAE in patients with RH.

  20. Solar wind dynamic pressure variations and transient magnetospheric signatures

    International Nuclear Information System (INIS)

    Sibeck, D.G.; Baumjohann, W.

    1989-01-01

    Contrary to the prevailing popular view, we find some transient ground events with bipolar north-south signatures are related to variations in solar wind dynamic pressure and not necessarily to magnetic merging. We present simultaneous solar wind plasma observations for two previously reported transient ground events observed at dayside auroral latitudes. During the first event, originally reported by Lanzerotti et al. [1987], conjugate ground magnetometers recorded north-south magetic field deflections in the east-west and vertical directions. The second event was reported by Todd et al. [1986], we noted ground rader observations indicating strong northward then southward ionospheric flows. The events were associated with the postulated signatures of patchy, sporadic, merging of magnetosheath and magnetospheric magnetic field lines at the dayside magnetospause, known as flux transfer events. Conversely, we demonstrate that the event reported by Lanzerotti et al. was accompanied by a sharp increase in solar wind dynamic pressure, a magnetospheric compression, and a consequent ringing of the magnetospheric magnetic field. The event reported by Todd et al. was associated with a brief but sharp increase in the solar wind dynamic pressure. copyright American Geophysical Union 1989

  1. Nonlinear behaviors in a pulsed dielectric barrier discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jiao; Wang Yanhui, E-mail: wangyh@dlut.edu.cn; Wang Dezhen

    2011-08-01

    In this paper, the temporal nonlinear behaviors of pulsed dielectric barrier discharge in atmospheric helium are studied numerically by a one-dimensional fluid model. The results show that the common single-period pulsed discharge with two current pulses per single voltage pulse can take place over a broad parameter range. The rising and falling times of the voltage pulse can affect the discharge characteristics greatly. When the discharge is ignited by a pulse voltage with long rising and falling times, a single-period pulsed discharge with multiple current peaks can be observed. Under appropriate rising and falling times of the voltage pulse, a stable period-two discharge can occur over wide frequency and voltage ranges. Also this period-two discharge can exhibit different current and voltage characteristics with changing the duty cycle. With other parameters fixed, the pulsed DBD could be driven to chaos through period-doubling route by increasing either the falling time or the frequency of voltage pulse.

  2. 24-hour central aortic systolic pressure and 24-hour central pulse pressure are related to diabetic complications in type 1 diabetes - a cross-sectional study

    DEFF Research Database (Denmark)

    Theilade, Simone; Lajer, Maria Stenkil; Hansen, Tine Willum

    2013-01-01

    BACKGROUND: Non-invasive measurements of 24 hour ambulatory central aortic systolic pressure (24 h-CASP) and central pulse pressure (24 h-CPP) are now feasible. We evaluate the relationship between 24 h central blood pressure and diabetes-related complications in patients with type 1 diabetes.......68) and 3.72 (1.85-7.47) and autonomic dysfunction: 3.25 (1.65-6.41), 1.64 (1.12-2.39) and 2.89 (1.54-5.42). CONCLUSIONS: 24 h-CASP and 24 h-CPP was higher in patients vs. controls and increased with diabetic complications independently of covariates. Furthermore, 24 h-CASP was stronger associated....... METHODS: The study was cross-sectional, including 715 subjects: 86 controls (C), 69 patients with short diabetes duration (diabetes (≥ 10 years) and normoalbuminuria (LN), 163...

  3. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    Science.gov (United States)

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  4. Outcome-driven thresholds for ambulatory pulse pressure in 9938 participants recruited from 11 populations

    DEFF Research Database (Denmark)

    Gu, Yu-Mei; Thijs, Lutgarde; Li, Yan

    2014-01-01

    Evidence-based thresholds for risk stratification based on pulse pressure (PP) are currently unavailable. To derive outcome-driven thresholds for the 24-hour ambulatory PP, we analyzed 9938 participants randomly recruited from 11 populations (47.3% women). After age stratification (... interval of the HRs associated with stepwise increasing PP levels crossed unity at 64 mm Hg. While accounting for all covariables, the top tenth of PP contributed less than 0.3% (generalized R(2) statistic) to the overall risk among the elderly. Thus, in randomly recruited people, ambulatory PP does...

  5. Transition between trickle flow and pulse flow in a cocurrent gas-liquid trickle-bed reactor at elevated pressures

    NARCIS (Netherlands)

    Wammes, W.J.A.; Mechielsen, S.J.; Westerterp, K.R.

    1992-01-01

    The effect of reactor pressure in the range of 0.2–2.0 MPa on the transition between the trickle-flow and the pulse-flow regime has been investigated for the non-foaming water—nitrogen and aqueous 40% ethyleneglycol—nitrogen systems. Most models and flow charts which are all based on atmospheric

  6. Spectroscopic and probe measurements of the electron temperature in the plasma of a pulse-periodic microwave discharge in argon

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V., E-mail: vvandreev@mail.ru; Vasileska, I., E-mail: ivonavasileska@yahoo.com; Korneeva, M. A., E-mail: korneevama@mail.ru [Peoples’ Friendship University of Russia (Russian Federation)

    2016-07-15

    A pulse-periodic 2.45-GHz electron-cyclotron resonance plasma source on the basis of a permanent- magnet mirror trap has been constructed and tested. Variations in the discharge parameters and the electron temperature of argon plasma have been investigated in the argon pressure range of 1 × 10{sup –4} to 4 × 10{sup –3} Torr at a net pulsed input microwave power of up to 600 W. The plasma electron temperature in the above ranges of gas pressures and input powers has been measured by a Langmuir probe and determined using optical emission spectroscopy (OES) from the intensity ratios of spectral lines. The OES results agree qualitatively and quantitatively with the data obtained using the double probe.

  7. Comparison of Regression Analysis and Transfer Function in Estimating the Parameters of Central Pulse Waves from Brachial Pulse Wave.

    Science.gov (United States)

    Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin

    2017-01-01

    This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  8. A Pulse Wave Velocity Based Method to Assess the Mean Arterial Blood Pressure Limits of Autoregulation in Peripheral Arteries

    Directory of Open Access Journals (Sweden)

    Ananya Tripathi

    2017-11-01

    Full Text Available Background: Constant blood flow despite changes in blood pressure, a phenomenon called autoregulation, has been demonstrated for various organ systems. We hypothesized that by changing hydrostatic pressures in peripheral arteries, we can establish these limits of autoregulation in peripheral arteries based on local pulse wave velocity (PWV.Methods: Electrocardiogram and plethysmograph waveforms were recorded at the left and right index fingers in 18 healthy volunteers. Each subject changed their left arm position, keeping the right arm stationary. Pulse arrival times (PAT at both fingers were measured and used to calculate PWV. We calculated ΔPAT (ΔPWV, the differences between the left and right PATs (PWVs, and compared them to the respective calculated blood pressure at the left index fingertip to derive the limits of autoregulation.Results: ΔPAT decreased and ΔPWV increased exponentially at low blood pressures in the fingertip up to a blood pressure of 70 mmHg, after which changes in ΔPAT and ΔPWV were minimal. The empirically chosen 20 mmHg window (75–95 mmHg was confirmed to be within the autoregulatory limit (slope = 0.097, p = 0.56. ΔPAT and ΔPWV within a 20 mmHg moving window were not significantly different from the respective data points within the control 75–95 mmHg window when the pressure at the fingertip was between 56 and 110 mmHg for ΔPAT and between 57 and 112 mmHg for ΔPWV.Conclusions: Changes in hydrostatic pressure due to changes in arm position significantly affect peripheral arterial stiffness as assessed by ΔPAT and ΔPWV, allowing us to estimate peripheral autoregulation limits based on PWV.

  9. DNS of transcritical turbulent boundary layers at supercritical pressures under abrupt variations in thermodynamic properties

    Science.gov (United States)

    Kawai, Soshi

    2014-11-01

    In this talk, we first propose a numerical strategy that is robust and high-order accurate for enabling to simulate transcritical flows at supercritical pressures under abrupt variations in thermodynamic properties due to the real fluid effects. The method is based on introducing artificial density diffusion in a physically-consistent manner in order to capture the steep variation of thermodynamic properties in transcritical conditions robustly, while solving a pressure evolution equation to achieve pressure equilibrium at the transcritical interfaces. We then discuss the direct numerical simulation (DNS) of transcritical heated turbulent boundary layers on a zero-pressure-gradient flat plate at supercritical pressures. To the best of my knowledge, the present DNS is the first DNS of zero-pressure-gradient flat-plate transcritical turbulent boundary layer. The turbulent kinetic budget indicates that the compressibility effects (especially, pressure-dilatation correlation) are not negligible at the transcritical conditions even if the flow is subsonic. The unique and interesting interactions between the real fluid effects and wall turbulence, and their turbulence statistics, which have never been seen in the ideal-fluid turbulent boundary layers, are also discussed. This work was supported in part by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists (A) KAKENHI 26709066 and the JAXA International Top Young Fellowship Program.

  10. Relation of pulse pressure to long-distance gait speed in community-dwelling older adults: Findings from the LIFE-P study

    Science.gov (United States)

    Reduced long-distance gait speed, a measure of physical function, is associated with falls, late-life disability, hospitalization/institutionalization and cardiovascular morbidity and mortality. Aging is also accompanied by a widening of pulse pressure (PP) that contributes to ventricular-vascular ...

  11. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    Science.gov (United States)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  12. Interaction of single-pulse laser energy with bow shock in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Hong Yanji

    2014-04-01

    Full Text Available Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier–Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction. The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagnation point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the investigation of the mechanism of the interaction.

  13. Spectrally modified chirped pulse generation of sustained shock waves

    International Nuclear Information System (INIS)

    McGrane, S.D.; Moore, D.S.; Funk, D.J.; Rabie, R.L.

    2002-01-01

    A method is described for generating shock waves with 10-20 ps risetime followed by >200 ps constant pressure, using spectrally modified (clipped) chirped laser pulses. The degree of spectral clipping alters the chirped pulse temporal intensity profile and thereby the time-dependent pressure (tunable via pulse energy) generated in bare and nitrocellulose-coated Al thin films. The method is implementable in common chirped amplified lasers, and allows synchronous probing with a <200 fs pulse

  14. Effectiveness of Pulse Oximetry Versus Doppler for Tourniquet Monitoring.

    Science.gov (United States)

    Wall, Piper L; Buising, Charisse M; Grulke, Lisa; Troester, Alexander; Bianchina, Nicholas; White, Shannon; Freymark, Rosemarie; Hassan, Ali; Hopkins, James W; Renner, Catherine Hackett; Sahr, Sheryl M

    Pulse oximeters are common and include arterial pulse detection as part of their methodology. The authors investigated the possible usefulness of pulse oximeters for monitoring extremity tourniquet arterial occlusion. Tactical Ratcheting Medical Tourniquets were tightened to the least Doppler-determined occluding pressure at mid-thigh or mid-arm locations on one limb at a time on all four limbs of 15 volunteers. A randomized block design was used to determine the placement locations of three pulse oximeter sensors on the relevant digits. The times and pressures of pulsatile signal absences and returns were recorded for 200 seconds, with the tourniquet being tightened only when the Doppler ultrasound and all three pulse oximeters had pulsatile signals present (pulsatile waveform traces for the pulse oximeters). From the first Doppler signal absence to tourniquet release, toe-located pulse oximeters missed Doppler signal presence 41% to 50% of the times (discrete 1-second intervals) and missed 39% to 49% of the pressure points (discrete 1mmHg intervals); fingerlocated pulse oximeters had miss rates of 11% to 15% of the times and 13% to 19% of the pressure points. On toes, the pulse oximeter ranges of sensitivity and specificity for Doppler pulse detection were 71% to 90% and 44% to 51%, and on fingers, the respective ranges were 65% to 77% and 78% to 83%. Use of a pulse oximeter to monitor limb tourniquet effectiveness will result in some instances of an undetected weak arterial pulse being present. If a pulse oximeter waveform is obtained from a location distal to a tourniquet, the tourniquet should be tightened. If a pulsatile waveform is not detected, vigilance should be maintained. 2017.

  15. Variations of the harmonic components of the X-ray pulse profile of PSR B1509–58

    International Nuclear Information System (INIS)

    Pradhan Pragati; Paul Biswajit; Raichur Harsha; Paul Bikash Chandra

    2015-01-01

    We used the Fourier decomposition technique to investigate the stability of the X-ray pulse profile of a young pulsar PSR B1509–58 by studying the relative amplitudes and phase differences of its harmonic components with respect to the fundamental using data from the Rossi X-Ray Timing Explorer. Like most young rotation powered pulsars, PSR B1509–58 has a high spin down rate. It also has less timing noise, allowing accurate measurement of higher order frequency derivatives which in turn helps in the study of the physics of pulsar spin down. Detailed investigation of pulse profiles over the years will help us establish any possible connection between the timing characteristics and the high energy emission characteristics for this pulsar. Furthermore, the study of pulse profiles of short period X-ray pulsars can also be useful when used as a means of interplanetary navigation. The X-ray pulse profile of this source has been analyzed for 15 yr (1996–2011). The long term average amplitudes of the first, second and third harmonics (and their standard deviation for individual measurements) compared to the fundamental are 36.9% (1.7%), 13.4% (1.9%) and 9.4% (1.8%) respectively. Similarly, the phases of the three harmonics (and standard deviations) with respect to the fundamental are 0.36 (0.06), 1.5 (0.2) and 2.5 (0.3) radian respectively. We do not find any significant variation of the harmonic components of the pulse profile in comparison to the fundamental. (research papers)

  16. Atmospheric Pressure Variation is a Delayed Trigger for Aneurysmal Subarachnoid Hemorrhage.

    Science.gov (United States)

    van Donkelaar, Carlina E; Potgieser, Adriaan R E; Groen, Henk; Foumani, Mahrouz; Abdulrahman, Herrer; Sluijter, Rob; van Dijk, J Marc C; Groen, Rob J M

    2018-04-01

    There is an ongoing search for conditions that induce spontaneous subarachnoid hemorrhage (SAH). The seasonal pattern of SAH is shown in a large meta-analysis of the literature, but its explanation remains undecided. There is a clear need for sound meteorologic data to further elucidate the seasonal influence on SAH. Because of the stable and densely monitored atmospheric situation in the north of the Netherlands, we reviewed our unique cohort on the seasonal incidence of SAH and the association between SAH and local atmospheric changes. Our observational cohort study included 1535 patients with spontaneous SAH admitted to our neurovascular center in the north of the Netherlands between 2000 and 2015. Meteorologic data could be linked to the day of the ictus. To compare SAH incidences over the year and to test the association with meteorologic conditions, incidence rate ratios (IRRs) with corresponding 95% confidence intervals (CIs) were used, calculated by Poisson regression analyses. Atmospheric pressure variations were significantly associated with aneurysmal SAH. In particular, the pressure change on the second and third day before the ictus was independently correlated to a higher incidence of aneurysmal SAH (IRR, 1.11; 95% CI, 1.00-1.23). The IRR for aneurysmal SAH in July was calculated 0.67 (95% CI, 0.49-0.92) after adjustment for temperature and atmospheric pressure changes. Atmospheric pressure variations are a delayed trigger for aneurysmal SAH. Also, a significantly decreased incidence of aneurysmal SAH was noted in July. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Models of WO x films growth during pulsed laser deposition at elevated pressures of reactive gas

    Science.gov (United States)

    Gnedovets, A. G.; Fominski, V. Y.; Nevolin, V. N.; Romanov, R. I.; Fominski, D. V.; Soloviev, A. A.

    2017-12-01

    The films of tungsten oxides were prepared by pulsed laser ablation of W target in a reactive gas atmosphere (air of laboratory humidity). Optical analysis and ion signal measurements for the laser plume allowed to recognise a threshold gas pressure that suppresses the deposition of non-scattered atomic flux from the plume. When the pressure exceeds about 40 Pa, the films grow due to the deposition of species that could be formed in collisions of W atoms with reactive molecules (e.g., O2). Kinetic Monte Carlo method was used for modelling film growth. Comparison of the model structures with the experimentally prepared films has shown that the growth mechanism of ballistic deposition at a pressure of 40 Pa could be changed on the diffusion limited aggregation at a pressure of ~100 Pa. Thus, a cauliflower structure of the film transformed to a web-like structure. For good correlation of experimental and model structures of WO x , a dimension of structural elements in the model should coincide with W-O cluster size.

  18. Magnetosphere and ionosphere response to a positive-negative pulse pair of solar wind dynamic pressure

    Science.gov (United States)

    Tian, A.; Degeling, A. W.

    2017-12-01

    Simulations and observations had shown that single positive/negative solar wind dynamic pressure pulse would excite geomagnetic impulsive events along with ionosphere and/or magnetosphere vortices which are connected by field aligned currents(FACs). In this work, a large scale ( 9min) magnetic hole event in solar wind provided us with the opportunity to study the effects of positive-negative pulse pair (△p/p 1) on the magnetosphere and ionosphere. During the magnetic hole event, two traveling convection vortices (TCVs, anti-sunward) first in anticlockwise then in clockwise rotation were detected by geomagnetic stations located along the 10:30MLT meridian. At the same time, another pair of ionospheric vortices azimuthally seen up to 3 MLT first in clockwise then in counter-clockwise rotation were also appeared in the afternoon sector( 14MLT) and centered at 75 MLAT without obvious tailward propagation feature. The duskside vortices were also confirmed in SuperDARN radar data. We simulated the process of magnetosphere struck by a positive-negative pulse pair and it shows that a pair of reversed flow vortices in the magnetosphere equatorial plane appeared which may provide FACs for the vortices observed in ionosphere. Dawn dusk asymmetry of the vortices as well as the global geomagnetism perturbation characteristics were also discussed.

  19. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N.; Martinez-Landeros, V.; Mejia, I.; Aguirre-Tostado, F.S.; Nascimento, C.D.; Azevedo, G. de M; Krug, C.; Quevedo-Lopez, M.A.

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10 −1 to 10 4 Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10 19 to 10 13 cm −3 and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm 2 /V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10 19 to 10 13 cm −3 . • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied

  20. Effects of Acupuncture Stimulation on the Radial artery’s Pressure Pulse Wave in Healthy Young Participants: Protocol for a prospective, single-Arm, Exploratory, Clinical Study

    Directory of Open Access Journals (Sweden)

    Jae-Young Shin

    2016-09-01

    Full Text Available Introduction: This study aims to investigate the effects of acupuncture stimulation on the radial artery’s pressure pulse wave, along with various hemodynamic parameters, and to explore the possible underlying mechanism of pulse diagnosis in healthy participants in their twenties. Methods and analysis: This study is a prospective, si

  1. Suppression of acoustic streaming in tapered pulse tubes

    International Nuclear Information System (INIS)

    Olson, J.R.; Swift, G.W.

    1998-01-01

    In a pulse tube cryocooler, the gas in the pulse tube can be thought of as an insulating piston, transmitting pressure and velocity from the cold heat exchanger to the hot end of the pulse tube. Unfortunately, convective heat transfer can carry heat from the hot end to the cold end and reduce the net cooling power. Here, the authors discuss one driver of such convection: steady acoustic streaming as generated by interactions between the boundary and the oscillating pressure, velocity, and temperature. Using a perturbation method, they have derived an analytical expression for the streaming in a tapered pulse tube with axially varying mean temperature in the acoustic boundary layer limit. The calculations showed that the streaming depends strongly on the taper angle, the ratio of velocity and pressure amplitudes, and the phase between the velocity and pressure, but it depends only weakly on the mean temperature profile and is independent of the overall oscillatory amplitude. With the appropriate tapering of the tube, streaming can be eliminated for a particular operating condition. Experimentally, the authors have demonstrated that an orifice pulse tube cryocooler with the calculated zero-streaming taper has more cooling power than one with either a cylindrical tube or a tapered pulse tube with twice the optimum taper angle

  2. Ambulatory Blood Pressure Monitoring: Five Decades of More Light and Less Shadows

    Science.gov (United States)

    Nobre, Fernando; Mion Junior, Décio

    2016-01-01

    Casual blood pressure measurements have been extensively questioned over the last five decades. A significant percentage of patients have different blood pressure readings when examined in the office or outside it. For this reason, a change in the paradigm of the best manner to assess blood pressure has been observed. The method that has been most widely used is the Ambulatory Blood Pressure Monitoring - ABPM. The method allows recording blood pressure measures in 24 hours and evaluating various parameters such as mean BP, pressure loads, areas under the curve, variations between daytime and nighttime, pulse pressure variability etc. Blood pressure measurements obtained by ABPM are better correlated, for example, with the risks of hypertension. The main indications for ABPM are: suspected white coat hypertension and masked hypertension, evaluation of the efficacy of the antihypertensive therapy in 24 hours, and evaluation of symptoms. There is increasing evidence that the use of ABPM has contributed to the assessment of blood pressure behaviors, establishment of diagnoses, prognosis and the efficacy of antihypertensive therapy. There is no doubt that the study of 24-hour blood pressure behavior and its variations by ABPM has brought more light and less darkness to the field, which justifies the title of this review. PMID:27168473

  3. In vitro measurement of ambient pressure changes using a realistic clinical setup

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    cosine tapered pulse with a center frequency of 4 MHz and an acoustic pressure of 485 kPa was used for excitation. 64 elements were used in receive and the RF data was filtered and beamformed before further processing. To compensate for variations in bubble response and to make the estimates more robust...... flexible offering completely arbitrary excitation and data acquisition, fast and accurate ambient pressure control, and precise timing. More importantly, it resembles a realistic clinical setup using a single array transducer for transmit and receive. The standard signal processing steps usually seen...

  4. Evaluation of the health status of six volunteers from the Mars 500 project using pulse analysis.

    Science.gov (United States)

    Shi, Hong-Zhi; Fan, Quan-Chun; Gao, Jian-Yi; Liu, Jun-Lian; Bai, Gui-E; Mi, Tao; Zhao, Shuang; Liu, Yu; Xu, Dong; Guo, Zhi-Feng; Li, Yong-Zhi

    2017-08-01

    To comprehensively evaluate the health status of 6 volunteers from the Mars 500 Project through analyzing their pulse graphs and determining the changes in cardiovascular function, degree of fatigue and autonomic nervous function. Six volunteers were recruited; all were male aged 26-38 years (average 31.83±4.96 years). Characteristic parameters reflflecting the status of cardiovascular functions were extracted, which included left ventricular contraction, vascular elasticity and peripheral resistance. The degree of fatigue was determined depending on the difference between the calendar age and biological age, which was calculated through the analysis of blood pressure value and characteristic parameters. Based on the values of pulse height variation and pulse time variation on a 30-s pulse graph, autonomic nervous function was evaluated. All parameters examined were marked on an equilateral polygon to form an irregular polygon of the actual fifigure, then health status was evaluated based on the coverage area of the actual fifigure. The results demonstrated: (1) volunteers developed weakened pulse power, increased vascular tension and peripheral resistance, and slight decreased ventricular systolic function; (2) the degree of fatigue was basically mild or moderate; and (3) autonomic nervous function was excited but generally balanced. These volunteers were in the state of sub-health. According to Chinese medicine theories, such symptoms are mainly caused by the weakening of healthy qi, Gan (Liver) failing in free coursing, and disharmony between Gan and Wei (Stomach), which manifests as a weak and string-like pulse.

  5. Ultrasonic and metallographic studies on AISI 4140 steel exposed to hydrogen at high pressure and temperature

    Science.gov (United States)

    Oruganti, Malavika

    This thesis conducts an investigation to study the effects of hydrogen exposure at high temperature and pressure on the behavior of AISI 4140 steel. Piezoelectric ultrasonic technique was primarily used to evaluate surface longitudinal wave velocity and defect geometry variations, as related to time after exposure to hydrogen at high temperature and pressure. Critically refracted longitudinal wave technique was used for the former and pulse-echo technique for the latter. Optical microscopy and scanning electron microscopy were used to correlate the ultrasonic results with the microstructure of the steel and to provide better insight into the steel behavior. The results of the investigation indicate that frequency analysis of the defect echo, determined using the pulse-echo technique at regular intervals of time, appears to be a promising tool for monitoring defect growth induced by a high temperature and high pressure hydrogen-related attack.

  6. A novel pressure variation study on electronic structure, mechanical stability and thermodynamic properties of potassium based fluoroperovskite

    Science.gov (United States)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    The effect of pressure variation on stability, structural parameters, elastic constants, mechanical, electronic and thermodynamic properties of cubic SrKF3 fluoroperovskite have been investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method combined with Quasi-harmonic Debye model in which the phonon effects are considered. The calculated lattice parameters show a prominent decrease in lattice constant and bonds length with the increase in pressure. The application of pressure from 0 to 25 GPa reveals a predominant characteristic associated with widening of bandgap with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. We have successfully computed variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities at pressure and temperature in the range of 0-25 GPa and 0-600 K.

  7. Ejector-Enhanced, Pulsed, Pressure-Gain Combustor

    Science.gov (United States)

    Paxson, Daniel E.; Dougherty, Kevin T.

    2009-01-01

    An experimental combination of an off-the-shelf valved pulsejet combustor and an aerodynamically optimized ejector has shown promise as a prototype of improved combustors for gas turbine engines. Despite their name, the constant pressure combustors heretofore used in gas turbine engines exhibit typical pressure losses ranging from 4 to 8 percent of the total pressures delivered by upstream compressors. In contrast, the present ejector-enhanced pulsejet combustor exhibits a pressure rise of about 3.5 percent at overall enthalpy and temperature ratios compatible with those of modern turbomachines. The modest pressure rise translates to a comparable increase in overall engine efficiency and, consequently, a comparable decrease in specific fuel consumption. The ejector-enhanced pulsejet combustor may also offer potential for reducing the emission of harmful exhaust compounds by making it practical to employ a low-loss rich-burn/quench/lean-burn sequence. Like all prior concepts for pressure-gain combustion, the present concept involves an approximation of constant-volume combustion, which is inherently unsteady (in this case, more specifically, cyclic). The consequent unsteadiness in combustor exit flow is generally regarded as detrimental to the performance of downstream turbomachinery. Among other adverse effects, this unsteadiness tends to detract from the thermodynamic benefits of pressure gain. Therefore, it is desirable in any intermittent combustion process to minimize unsteadiness in the exhaust path.

  8. Status of pulse tube development at CEA/SBT

    International Nuclear Information System (INIS)

    Ravex, A.; Rolland, P.

    1994-01-01

    Interest in the pulse tube comes from its potential for high reliability and low level of induced vibration. A numerical model has been developed to provide a tool for practical design. It has been successfully validated against the experimental results obtained with a single stage double inlet pulse tube which has achieved a temperature of 28 K at a frequency of a few Hz. Further developments have demonstrated the capability of operating a pulse tube at higher frequencies in association with a Stirling pressure oscillator. Current projects include coaxial geometry for miniature pulse tubes with linear resonant pressure oscillators. A 4 K multistaged pulse tube is also in development. (authors). 5 figs., 12 refs

  9. The volume of the carotid bodies and blood pressure variability and pulse pressure in patients with essential hypertension

    International Nuclear Information System (INIS)

    Jaźwiec, P.; Gać, P.; Poręba, M.; Sobieszczańska, M.; Mazur, G.; Poręba, R.

    2016-01-01

    Aim: To assess the relationship between the volume of the carotid bodies (V rCB+lCB ) examined by means of computed tomography angiography (CTA) and blood pressure variability and pulse pressure (PP) in 24-hour ambulatory blood pressure monitoring (ABPM) in patients with essential hypertension. Materials and methods: A group of 52 patients with essential hypertension was examined (mean age: 68.32±12.31 years), the sizes of carotid bodies were measured by means of carotid artery CTA, and 24-hour ABPM was carried out. The 24-hour ABPM established systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), PP, SBP variability (SBPV), and DBP variability (DBPV). Results: SBP, MAP, and SBPV were significantly higher in the group of hypertension patients with V rCB+lCB equal to or above the median than in the group of hypertension patients with V rCB+lCB less than the median, as well as in the group of hypertension patients with oversized carotid bodies, than in the group of hypertension patients with normal V rCB+lCB . Moreover, the PP was statistically significantly higher in the group of hypertension patients with V rCB+lCB equal to or above the median than in the group of hypertension patients with V rCB+lCB less than the median. The existence of statistically significant positive linear relationships was revealed between V rCB+lCB and SBP, PP, and SBPV. A higher body mass index, older age, smoking, and higher V rCB+lCB are independent risk factors increasing SBPV in the research group. Conclusion: A positive relationship between the size of the carotid bodies and variability of the SBP and PP is observed in patients with essential hypertension. - Highlights: • Purpose. Determination of the relationships: V rCB+lCB vs. BPV and V rCB+lCB vs. PP. • Positive linear correlations were documented between V rCB+lCB and SBP, PP and SBPV. • Higher BMI, age, V rCB+lCB and smoking are independent risk factor of increased SBPV.

  10. Respiratory sinus arrhythmia stabilizes mean arterial blood pressure at high-frequency interval in healthy humans.

    Science.gov (United States)

    Elstad, Maja; Walløe, Lars; Holme, Nathalie L A; Maes, Elke; Thoresen, Marianne

    2015-03-01

    Arterial blood pressure variations are an independent risk factor for end organ failure. Respiratory sinus arrhythmia (RSA) is a sign of a healthy cardiovascular system. However, whether RSA counteracts arterial blood pressure variations during the respiratory cycle remains controversial. We restricted normal RSA with non-invasive intermittent positive pressure ventilation (IPPV) to test the hypothesis that RSA normally functions to stabilize mean arterial blood pressure. Ten young volunteers were investigated during metronome-paced breathing and IPPV. Heart rate (ECG), mean arterial blood pressure and left stroke volume (finger arterial pressure curve) and right stroke volume (pulsed ultrasound Doppler) were recorded, while systemic and pulmonary blood flow were calculated beat-by-beat. Respiratory variations (high-frequency power, 0.15-0.40 Hz) in cardiovascular variables were estimated by spectral analysis. Phase angles and correlation were calculated by cross-spectral analysis. The magnitude of RSA was reduced from 4.9 bpm(2) (95% CI 3.0, 6.2) during metronome breathing to 2.8 bpm(2) (95% CI 1.1, 5.0) during IPPV (p = 0.03). Variations in mean arterial blood pressure were greater (2.3 mmHg(2) (95% CI 1.4, 3.9) during IPPV than during metronome breathing (1.0 mmHg(2) [95% CI 0.7, 1.3]) (p = 0.014). Respiratory variations in right and left stroke volumes were inversely related in the respiratory cycle during both metronome breathing and IPPV. RSA magnitude is lower and mean arterial blood pressure variability is greater during IPPV than during metronome breathing. We conclude that in healthy humans, RSA stabilizes mean arterial blood pressure at respiratory frequency.

  11. Measurement of the C2H2 destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    International Nuclear Information System (INIS)

    Rousseau, A; Guaitella, O; Gatilova, L; Hannemann, M; Roepcke, J

    2007-01-01

    The kinetics of destruction of C 2 H 2 is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm -1 ) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C 2 H 2 concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C 2 H 2 depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C 2 H 2 is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO 2 photocatalyst on the C 2 H 2 oxidation rate is reported

  12. Magnitude of long-term non-lithostatic pressure variations in lithospheric processes: insight from thermo-mechanical subduction/collision models

    Science.gov (United States)

    Gerya, Taras

    2014-05-01

    On the one hand, the principle of lithostatic pressure is habitually used in metamorphic geology to calculate paleo-depths of metamorphism from mineralogical pressure estimates given by geobarometry. On the other hand, it is obvious that this lithostatic (hydrostatic) pressure principle should only be valid for an ideal case of negligible deviatoric stresses during the long-term development of the entire tectono-metamorphic system - the situation, which newer comes to existence in natural lithospheric processes. The question is therefore not "Do non-lithostatic pressure variations exist?" but " What is the magnitude of long-term non-lithostatic pressure variations in various lithospheric processes, which can be recorded by mineral equilibria of respective metamorphic rocks?". The later question is, in particular, relevant for various types of high-pressure (HP) and ultrahigh-pressure (UHP) rocks, which are often produced in convergent plate boundary settings (e.g., Hacker and Gerya, 2013). This question, can, in particular, be answered with the use of thermo-mechanical models of subduction/collision processes employing realistic P-T-stress-dependent visco-elasto-brittle/plastic rheology of rocks. These models suggest that magnitudes of pressure deviations from lithostatic values can range >50% underpressure to >100% overpressure, mainly in the regions of bending of rheologically strong mantle lithosphere (Burg and Gerya, 2005; Li et al., 2010). In particular, strong undepresures along normal faults forming within outer rise regions of subducting plates can be responsible for downward water suction and deep hydration of oceanic slabs (Faccenda et al., 2009). Weaker HP and UHP rocks of subduction/collision channels are typically subjected to lesser non-lithostatic pressure variations with characteristic magnitudes ranging within 10-20% from the lithostatic values (Burg and Gerya, 2005; Li et al., 2010). The strength of subducted crustal rocks and the degree of

  13. Study on the Seismic Active Earth Pressure by Variational Limit Equilibrium Method

    Directory of Open Access Journals (Sweden)

    Jiangong Chen

    2016-01-01

    Full Text Available In the framework of limit equilibrium theory, the isoperimetric model of functional extremum regarding the seismic active earth pressure is deduced according to the variational method. On this basis, Lagrange multipliers are introduced to convert the problem of seismic active earth pressure into the problem on the functional extremum of two undetermined function arguments. Based on the necessary conditions required for the existence of functional extremum, the function of the slip surface and the normal stress distribution on the slip surface is obtained, and the functional extremum problem is further converted into a function optimization problem with two undetermined Lagrange multipliers. The calculated results show that the slip surface is a plane and the seismic active earth pressure is minimal when the action point is at the lower limit position. As the action point moves upward, the slip surface becomes a logarithmic spiral and the corresponding value of seismic active earth pressure increases in a nonlinear manner. And the seismic active earth pressure is maximal at the upper limit position. The interval estimation constructed by the minimum and maximum values of seismic active earth pressure can provide a reference for the aseismic design of gravity retaining walls.

  14. Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.

    Science.gov (United States)

    Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo

    2016-04-26

    Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).

  15. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    Directory of Open Access Journals (Sweden)

    R.P. Kelley

    2015-03-01

    Full Text Available An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the 4He detector. A further understanding of this mechanism in the 4He detector will advance the use of this system as a neutron spectrometer. For 252Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a 252Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  16. Charged particle interaction with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, Klaus J.; van Goor, F.A.

    2003-01-01

    It is found that a charged particle can get a net energy gain from the interaction with an electromagnetic chirped pulse. Theoretically, the energy gain increases with the pulse amplitude and with the relative frequency variation in the pulse.

  17. Femtosecond pulsed laser ablation of GaAs

    International Nuclear Information System (INIS)

    Trelenberg, T.W.; Dinh, L.N.; Saw, C.K.; Stuart, B.C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed

  18. Circadian variation of blood pressure in patients with chronic renal failure on continuous ambulatory peritoneal dialysis

    DEFF Research Database (Denmark)

    Clausen, P; Feldt-Rasmussen, B; Ladefoged, Jens

    1995-01-01

    The circadian pattern of blood pressure variation was investigated in 10 patients with advanced chronic renal failure on continuous ambulatory peritoneal dialysis (CAPD) and in an age-matched group of controls without renal disease with similar office blood pressure level. Monitoring was done using....... In patients with chronic renal failure undergoing CAPD, an otherwise unnoticed 24-h hypertension and nocturnal blood pressure elevation can be discovered by use of 24-h blood pressure monitoring and this may indicate a need of earlier start of antihypertensive treatment in CAPD patients with borderline...

  19. Particle-in-cell simulations of multi-MeV pulsed X-ray induced air plasmas at low pressures

    International Nuclear Information System (INIS)

    Ribière, M.; D'Almeida, T.; Gaufridy de Dortan, F. de; Maulois, M.; Delbos, C.; Garrigues, A.; Cessenat, O.; Azaïs, B.

    2016-01-01

    A full kinetic modelling of the charge particles dynamics generated upon the irradiation of an air-filled cavity by a multi-MeV pulsed x-ray is performed. From the calculated radiative source generated by the ASTERIX generator, we calculated the electromagnetic fields generated by x-ray induced air plasmas in a metallic cavity at different pressures. Simulations are carried out based on a Particle-In-Cell interpolation method which uses 3D Maxwell-Vlasov calculations of the constitutive charged species densities of air plasmas at different pressures at equilibrium. The resulting electromagnetic fields within the cavity are calculated for different electron densities up to 4 × 10"1"0" cm"−"3. For each air pressure, we show electronic plasma waves formation followed by Landau damping. As electron density increases, the calculations exhibit space-charged neutralization and return current formation.

  20. General theory for thermal pulses of finite amplitude in nuclear shell-burnings

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education; Fujimoto, M Y

    1978-09-01

    Theory for thermal pulses of nuclear shell-burning is advanced to include the case of finite amplitude. The aims are to predict the progress of thermal pulse quantitatively and to obtain the peak values of the temperature and nuclear energy generation rate without making detailed numerical computation of stellar structure. In order to attain them the physical processes involved in the progress of the pulse are clarified using the concepts of the flatness of the shell source, which destabilizes nuclear burning, and the effect of radiation pressure, which stabilizes it. It is shown that the progress of the pulse can be predicted quantitatively when the pressure and the gravitational potential of the burning shell are specified for the onset stage of the pulse. The pulse height is determined mainly by the initial pressure; the higher initial pressure results in the higher pulse. Mass dependence is also obtained by approximating the gravitational potential by that of white dwarfs. The initial pressure is the quantity which is determined in the course of evolution preceding the pulse. The theory is shown to give a satisfactory agreement with numerical computations for a wide variety of the preceding evolutions, i.e., both for the case of the core in red giant stars and of the accreting white dwarfs.

  1. An experimental investigation on the pressure characteristics of high speed self-resonating pulsed waterjets influenced by feeding pipe diameter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong; Kang, Dong; Ding, Xiao Long; Wang, Xiao Huan; Fang, Zhen Long [School of Power and Mechanical Engineering, Wuhan University, Hubei Province (China)

    2016-11-15

    The destructive power of a continuous waterjet issuing from a nozzle can be greatly enhanced by generating self-resonance in the nozzle assembly to produce a Self-resonating pulsed waterjet (SRPW). To further improve the performance of SRPW, effects of feeding pipe diameter on the pressure characteristics were experimentally investigated by measuring and analyzing the axial pressure oscillation peaks and amplitudes. Four organ-pipe nozzles of different chamber lengths and three feeding pipes of different diameters were employed. Results show that feeding pipe diameter cannot change the feature of SRPW of having an optimum standoff distance, but it slightly changes the oscillating frequency of the jet. It is also found that feeding pipe diameter significantly affects the magnitudes of pressure oscillation peak and amplitude, largely depending on the pump pressure and standoff distance. The enhancement or attenuation of the pressure oscillation peak and amplitude can be differently affected by the same feeding pipe diameter.

  2. Upstream pressure variations associated with the bow shock and their effects on the magnetosphere

    International Nuclear Information System (INIS)

    Fairfield, D.H.; Baumjohann, W.; Paschmann, G.; Luehr, H.; Sibeck, D.G.

    1990-01-01

    Magnetic field enhancements and depressions on the time scales of minutes were frequently observed simultaneously by the AMPTE CCE, GOES 5, and GOES 6 spacecraft in the subsolar magnetosphere. The source of these perturbations has been detected in the high time resolution AMPTE IRM measurements of the kinetic pressure of the solar wind upstream of the bow shock. It is argued that these upstream pressure variations are not inherent in the solar wind but rather are associated with the bow shock. This conclusion follows from the facts that (1) the upstream field strength and the density associated with the perturbations are highly correlated with each other whereas these quantities tend to be anticorrelated in the undisturbed solar wind, and (2) the upstream perturbations occur within the foreshock or at its boundary. The results imply a mode of interaction between the solar wind and the magnetosphere whereby density changes produced in the foreshock subsequently convect through the bow shock and impinge on the magnetosphere. Also velocity decreases deep within the foreshock sometimes reach many tens of kilometers per second and may be associated with further pressure variations as a changing interplanetary field direction changes the foreshock geometry. Upstream pressure perturbations should create significant effects on the magnetopause and at the foot of nearby field lines that lead to the polar cusp ionosphere

  3. Characteristics of pressure wave in common rail fuel injection system of high-speed direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Herfatmanesh

    2016-05-01

    Full Text Available The latest generation of high-pressure common rail equipment now provides diesel engines possibility to apply as many as eight separate injection pulses within the engine cycle for reducing emissions and for smoothing combustion. With these complicated injection arrangements, optimizations of operating parameters for various driving conditions are considerably difficult, particularly when integrating fuel injection parameters with other operating parameters such as exhaust gas recirculation rate and boost pressure together for evaluating calibration results. Understanding the detailed effects of fuel injection parameters upon combustion characteristics and emission formation is therefore particularly critical. In this article, the results and discussion of experimental investigations on a high-speed direct injection light-duty diesel engine test bed are presented for evaluating and analyzing the effects of main adjustable parameters of the fuel injection system on all regulated emission gases and torque performance. Main injection timing, rail pressure, pilot amount, and particularly pilot timing have been examined. The results show that optimization of each of those adjustable parameters is beneficial for emission reduction and torque improvement under different operating conditions. By exploring the variation in the interval between the pilot injection and the main injection, it is found that the pressure wave in the common rail has a significant influence on the subsequent injection. This suggests that special attentions must be paid for adjusting pilot timing or any injection interval when multi-injection is used. With analyzing the fuel amount oscillation of the subsequent injections to pilot separation, it demonstrates that the frequency of regular oscillations of the actual fuel amount or the injection pulse width with the variation in pilot separation is always the same for a specified fuel injection system, regardless of engine speed

  4. Assembly delay line pulse generators

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  5. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Como, N. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Martinez-Landeros, V. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Mejia, I. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Nascimento, C.D.; Azevedo, G. de M; Krug, C. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900 (Brazil); Quevedo-Lopez, M.A., E-mail: mquevedo@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States)

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10{sup −1} to 10{sup 4} Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10{sup 19} to 10{sup 13} cm{sup −3} and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm{sup 2}/V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10{sup 19} to 10{sup 13} cm{sup −3}. • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied.

  6. Effects of laser wavelengths and pulse energy ratio on the emission enhancement in dual pulse LIBS

    International Nuclear Information System (INIS)

    Ahmed, Rizwan; Iqbal, Javed; Baig, M Aslam

    2015-01-01

    We present new studies on the effects of laser wavelengths, pulse energy ratio and interpulse delay between two laser pulses in the collinear dual pulse configuration of laser-induced breakdown spectroscopy (LIBS) on an iron sample in air using the fundamental (1064 nm) and the second harmonics (532 nm) of Nd:YAG lasers. In the dual pulse LIBS, an optimum value of interpulse delay with an appropriate combination of laser wavelengths, and laser pulse energy ratio, yields a 30 times signal intensity enhancement in the neutral iron lines as compared with single pulse LIBS. A comparison in the spatial variations of electron temperature along the axis of the plume expansion in single and double pulse LIBS has also been studied. (letter)

  7. Viscoelastic fingering with a pulsed pressure signal

    International Nuclear Information System (INIS)

    Corvera Poire, E; Rio, J A del

    2004-01-01

    We derive a generalized Darcy's law in the frequency domain for a linear viscoelastic fluid flowing in a Hele-Shaw cell. This leads to an analytic expression for the dynamic permeability that has maxima which are several orders of magnitude larger than the static permeability. We then follow an argument of de Gennes (1987 Europhys. Lett. 2 195) to obtain the smallest possible finger width when viscoelasticity is important. Using this and a conservation law, we obtain the lowest bound for the width of a single finger displacing a viscoelastic fluid. When the driving force consists of a constant pressure gradient plus an oscillatory signal, our results indicate that the finger width varies in time following the frequency of the incident signal. Also, the amplitude of the finger width in time depends on the value of the dynamic permeability at the imposed frequency. When the finger is driven with a frequency that maximizes the permeability, variations in the amplitude are also maximized. This gives results that are very different for Newtonian and viscoelastic fluids. For the former ones the amplitude of the oscillation decays with frequency. For the latter ones on the other hand, the amplitude has maxima at the same frequencies that maximize the dynamic permeability

  8. Implications of Dynamic Pressure Transducer Mounting Variations on Measurements in Pyrotechnic Test Apparatus

    Science.gov (United States)

    Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.

    2009-01-01

    Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.

  9. Subnanosecond breakdown development in high-voltage pulse discharge: Effect of secondary electron emission

    Science.gov (United States)

    Alexandrov, A. L.; Schweigert, I. V.; Zakrevskiy, Dm. E.; Bokhan, P. A.; Gugin, P.; Lavrukhin, M.

    2017-10-01

    A subnanosecond breakdown in high-voltage pulse discharge may be a key tool for superfast commutation of high power devices. The breakdown in high-voltage open discharge at mid-high pressure in helium was studied in experiment and in kinetic simulations. The kinetic model of electron avalanche development was constructed, based on PIC-MCC simulations, including dynamics of electrons, ions and fast helium atoms, produced by ions scattering. Special attention was paid to electron emission processes from cathode, such as: photoemission by Doppler-shifted resonant photons, produced in excitation processes involving fast atoms; electron emission by ions and fast atoms bombardment of cathode; the secondary electron emission (SEE) by hot electrons from bulk plasma. The simulations show that the fast atoms accumulation is the main reason of emission growth at the early stage of breakdown, but at the final stage, when the voltage on plasma gap diminishes, namely the SEE is responsible for subnanosecond rate of current growth. It was shown that the characteristic time of the current growth can be controlled by the SEE yield. The influence of SEE yield for three types of cathode material (titanium, SiC, and CuAlMg-alloy) was tested. By changing the pulse voltage amplitude and gas pressure, the area of existence of subnanosecond breakdown is identified. It is shown that in discharge with SiC and CuAlMg-alloy cathodes (which have enhanced SEE) the current can increase with a subnanosecond characteristic time value as small as τs = 0.4 ns, for the pulse voltage amplitude of 5÷12 kV. An increase of gas pressure from 15 Torr to 30 Torr essentially decreases the time of of current front growth, whereas the pulse voltage variation weakly affects the results.

  10. A study of new pulse auscultation system.

    Science.gov (United States)

    Chen, Ying-Yun; Chang, Rong-Seng

    2015-04-14

    This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT) and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine's pulsing techniques, where pulse signals at places called "cun", "guan" and "chi" of the left hand were measured during lifting (100 g), searching (125 g) and pressing (150 g) actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners' objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  11. Pulse Wave Variation during the Menstrual Cycle in Women with Menstrual Pain

    Directory of Open Access Journals (Sweden)

    Soo Hyung Jeon

    2016-01-01

    Full Text Available Objective. This study is performed to obtain objective diagnostic indicators associated with menstrual pain using pulse wave analysis. Methods. Using a pulse diagnostic device, we measured the pulse waves of 541 women aged between 19 and 30 years, placed in either an experimental group with menstrual pain (n=329 or a control group with little or no menstrual pain (n=212. Measurements were taken during both the menstrual and nonmenstrual periods, and comparative analysis was performed. Results. During the nonmenstrual period, the experimental group showed a significantly higher value in the left radial artery for the radial augmentation index (RAI (p=0.050 but significantly lower values for pulse wave energy (p=0.021 and time to first peak from baseline (T1 (p=0.035 in the right radial artery. During the menstrual period, the experimental group showed significantly lower values in the left radial artery for cardiac diastole and pulse wave area during diastole and significantly higher values for pulse wave area during systole, ratio of systolic phase to the full heartbeat, and systolic-diastolic ratio. Conclusion. We obtained indicators of menstrual pain in women during the menstrual period, including prolonged systolic and shortened diastolic phases, increases in pulse wave energy and area of representative pulse wave, and increased blood vessel resistance.

  12. The influence of substrate temperature and deposition pressure on pulsed laser deposited thin films of CaS:Eu{sup 2+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Nyenge, R.L. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa); Physics Department, Kenyatta University, P.O. Box 43844-0100, Nairobi (Kenya); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa); Ntwaeaborwa, O.M., E-mail: ntwaeab@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa)

    2016-01-01

    The aim of this study was to investigate the influence of substrate temperature and argon deposition pressure on the structure, morphology and photoluminescence emission (PL) properties of pulsed laser deposited thin films of CaS:Eu{sup 2+}. The PL intensity improved significantly upon reaching substrate temperature of 650 °C. The (200) peak gradually became the preferred orientation. The increase in PL intensity as well as surface roughness is attributed to improved crystallinity and higher growth rates, respectively. The best PL intensity as a function of deposition pressure was obtained at an argon pressure of 80 mTorr. The initial increase and eventual drop in PL intensity as deposition pressure increases is ascribed to the changes in growth rates.

  13. Effect of carrier gas pressure on condensation in a supersonic nozzle

    International Nuclear Information System (INIS)

    Wyslouzil, B.E.; Wilemski, G.; Beals, M.G.; Frish, M.B.

    1994-01-01

    Supersonic nozzle experiments were performed with a fixed water or ethanol vapor pressure and varying amounts of nitrogen to test the hypothesis that carrier gas pressure affects the onset of condensation. Such an effect might occur if nonisothermal nucleation were important under conditions of excess carrier gas in the atmospheric pressure range, as has been suggested by Ford and Clement [J. Phys. A 22, 4007 (1989)]. Although a small increase was observed in the condensation onset temperature as the stagnation pressure was reduced from 3 to 0.5 atm, these changes cannot be attributed to any nonisothermal effects. The pulsed nozzle experiments also exhibited two interesting anomalies: (1) the density profiles for the water and ethanol mixtures were shifted in opposite directions from the dry N 2 profile; (2) a long transient period was required before the nozzle showed good pulse-to-pulse repeatability for condensible vapor mixtures. To theoretically simulate the observed onset behavior, calculations of nucleation and droplet growth in the nozzle were performed that took into account two principal effects of varying the carrier gas pressure: (1) the change in nozzle shape due to boundary layer effects and (2) the variation in the heat capacity of the flowing gas. Energy transfer limitations were neglected in calculating the nucleation rates. The trend of the calculated results matched that of the experimental results very well. Thus, heat capacity and boundary layer effects are sufficient to explain the experimental onset behavior without invoking energy transfer limited nucleation. The conclusions about the rate of nucleation are consistent with those obtained recently using an expansion cloud chamber, but are at odds with results from thermal diffusion cloud chamber measurements

  14. STUCTURE OF PULSED BED

    Directory of Open Access Journals (Sweden)

    I. A. Bokun

    2014-01-01

    Full Text Available The structure of pulsed layer is proposed which can be suggested as a state of particulates that is blown by intermittent gas flow with speed which has the force to start material moving. Layer during one cycle is in a suspension, falling down and immobile state resulting in changes of particles arrangement as well as ways of gas flowing through layer. Moreover, it allows carrying out effective interphase heat exchange even adamant real granulation.The process of formation of impact flows is considered aw well as their influence on formation of air bubbles in pulsed layer. At startup of air blast the balance between the force of hydro-dynamic resistance is broken, on one side, and forces of gravity, particles inertia and their links with walls on the other side. The layer is transferred in the state of pulsed pseudo-fluidization, and presents gas-disperse mixture, inside of which impulse of pressure increasing is spreading to all sides as pressure waves (compression. These waves are the sources of impact flows’ formation, the force of which is two times more than during the stationary flow.The waves of pressure are divided into weak and strong ones depending on movement velocity within gas-disperse system. Weak waves are moving with a sound speed and strong ones in active phase of pulsed layer are moving over the speed of sound limit within gas-disperse system. The peculiarity of strong wave is that parameters of system (pressure, density and others are changing in discrete steps.The article describes the regime of layer’s falling down in the passive stage of cycle, which begins after finishing of gas impulse action. And suspension layer of moving up granular material is transferred in the state of falling resulting in change of the layer structure.

  15. Impact of laser pulse duration on the reduction of intraocular pressure during selective laser trabeculoplasty.

    Science.gov (United States)

    Stunf Pukl, Spela; Drnovšek-Olup, Brigita

    2018-02-01

    To evaluate the efficacy of selective laser trabeculoplasty (SLT) to lower intraocular pressure (IOP) in patients with primary open-angle glaucoma (POAG), normal tension glaucoma (NTG) or ocular hypertension (OHT), when performed with laser pulse duration of 1 ns compared with standard 3-5 ns. Bilateral SLT with a 532 nm Q-switched neodymium-doped yttrium aluminium garnet laser was conducted in 30 patients (60 eyes) with POAG (n = 5), NTG (n = 2) or OHT (n = 23). Pulse duration was 1 ns in the right eye (30 eyes; cases) and 3-5 ns in all left eyes (controls). Main outcome measures were IOP at 1 h, 1 day, 8 weeks and 6 months, and the rate of adverse ocular tissue reactions in all eyes. Mean 1 ns and 3-5 ns SLT IOPs were 24.1 and 24.3 mmHg, respectively, at baseline. No statistically significant difference in mean 1 ns and 3-5 ns SLT IOP was observed at 1 h (P = 0.761), 1 day (P = 0.758), 8 weeks (P = 0.352) and 6 months postoperatively (P = 0.879). No significant difference in postoperative anterior chamber inflammation was observed between the eyes (P = 0.529). Treatment with both laser pulse durations resulted in minor ultrastructural changes in the drainage angle. SLT performed with a 1 ns laser pulse duration does not appear to be inferior to SLT performed with the standard 3-5 ns duration at lowering IOP in treatment-naïve patients with POAG, NTG or OHT.

  16. Concerning the generation of very high pressures for EOS studies with ultra-high power laser pulses

    International Nuclear Information System (INIS)

    Wood, L.L.; Keeler, R.N.; Nuckolls, J.H.

    1977-07-01

    The use of basic physical and geometric principles, coupled with current laser technology, seems likely to extend experimental hyperbaric physics investigations from the megabar region into the portions of parameter space in which the ideal (degenerate) Fermi gas approximation is valid for even the highest Z materials. Implosions and speed-multiplying rectilinear stacks of flat plates seem particularly apt techniques for the near-term, transient attainment of pressure of 10 9 atmospheres in the laboratory, and laser-energized pulsed x-ray ''cameras'' appear suitable for analyzing the basic properties of matter under such conditions

  17. Low-frequency pulse profile variation in PSR B2217+47: evidence for echoes from the interstellar medium

    Science.gov (United States)

    Michilli, D.; Hessels, J. W. T.; Donner, J. Y.; Grießmeier, J.-M.; Serylak, M.; Shaw, B.; Stappers, B. W.; Verbiest, J. P. W.; Deller, A. T.; Driessen, L. N.; Stinebring, D. R.; Bondonneau, L.; Geyer, M.; Hoeft, M.; Karastergiou, A.; Kramer, M.; Osłowski, S.; Pilia, M.; Sanidas, S.; Weltevrede, P.

    2018-05-01

    We have observed a complex and continuous change in the integrated pulse profile of PSR B2217+47, manifested as additional components trailing the main peak. These transient components are detected over 6 yr at 150 MHz using the LOw Frequency ARray (LOFAR), but they are not seen in contemporaneous Lovell observations at 1.5 GHz. We argue that propagation effects in the ionized interstellar medium (IISM) are the most likely cause. The putative structures in the IISM causing the profile variation are roughly half-way between the pulsar and the Earth and have transverse radii R ˜ 30 au. We consider different models for the structures. Under the assumption of spherical symmetry, their implied average electron density is \\overline{n}_e ˜ 100 cm-3. Since PSR B2217+47 is more than an order of magnitude brighter than the average pulsar population visible to LOFAR, similar profile variations would not have been identified in most pulsars, suggesting that subtle profile variations in low-frequency profiles might be more common than we have observed to date. Systematic studies of these variations at low frequencies can provide a new tool to investigate the proprieties of the IISM and the limits to the precision of pulsar timing.

  18. The influence of thermal inertia on Mars' seasonal pressure variation and the effect of the weather component

    Science.gov (United States)

    Wood, S. E.; Paige, D. A.

    Using a Leighton-Murray type diurnal and seasonal Mars thermal model, we found that it is possible to reproduce the seasonal variation in daily-averaged pressures (approximately 680-890 Pa) measured by Viking Lander 1 (VL1), during years without global dust storms, with a standard deviation of less than 5 Pa. In this simple model, surface CO2, frost condensation, and sublimation rates at each latitude are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers. An inherent assumption of our model is that the seasonal pressure variation is due entirely to the exchange of mass between the atmosphere and polar caps. However, the results of recent Mars GCM modeling have made it clear that there is a significant dynamical contribution to the seasonal pressure variation. This 'weather' component is primarily due to large-scale changes in atmospheric circulation, and its magnitude depends somewhat on the dust content of the atmosphere. The overall form of the theoretical weather component at the location of VL1, as calculated by the AMES GCM, remains the same over the typical range of Mars dust opacities.

  19. Pressure transients across HEPA filters

    International Nuclear Information System (INIS)

    Gregory, W.; Reynolds, G.; Ricketts, C.; Smith, P.R.

    1977-01-01

    Nuclear fuel cycle facilities require ventilation for health and safety reasons. High efficiency particulate air (HEPA) filters are located within ventilation systems to trap radioactive dust released in reprocessing and fabrication operations. Pressure transients within the air cleaning systems may be such that the effectiveness of the filtration system is questioned under certain accident conditions. These pressure transients can result from both natural and man-caused phenomena: atmospheric pressure drop caused by a tornado or explosions and nuclear excursions initiate pressure pulses that could create undesirable conditions across HEPA filters. Tornado depressurization is a relatively slow transient as compared to pressure pulses that result from combustible hydrogen-air mixtures. Experimental investigation of these pressure transients across air cleaning equipment has been undertaken by Los Alamos Scientific Laboratory and New Mexico State University. An experimental apparatus has been constructed to impose pressure pulses across HEPA filters. The experimental equipment is described as well as preliminary results using variable pressurization rates. Two modes of filtration of an aerosol injected upstream of the filter is examined. A laser instrumentation for measuring the aerosol release, during the transient, is described

  20. Enhancement of laser-induced breakdown spectroscopy (LIBS) Detection limit using a low-pressure and short-pulse laser-induced plasma process.

    Science.gov (United States)

    Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Yan, Jun Jie; Liu, Ji Ping

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.

  1. A Fast Multimodal Ectopic Beat Detection Method Applied for Blood Pressure Estimation Based on Pulse Wave Velocity Measurements in Wearable Sensors.

    Science.gov (United States)

    Pflugradt, Maik; Geissdoerfer, Kai; Goernig, Matthias; Orglmeister, Reinhold

    2017-01-14

    Automatic detection of ectopic beats has become a thoroughly researched topic, with literature providing manifold proposals typically incorporating morphological analysis of the electrocardiogram (ECG). Although being well understood, its utilization is often neglected, especially in practical monitoring situations like online evaluation of signals acquired in wearable sensors. Continuous blood pressure estimation based on pulse wave velocity considerations is a prominent example, which depends on careful fiducial point extraction and is therefore seriously affected during periods of increased occurring extrasystoles. In the scope of this work, a novel ectopic beat discriminator with low computational complexity has been developed, which takes advantage of multimodal features derived from ECG and pulse wave relating measurements, thereby providing additional information on the underlying cardiac activity. Moreover, the blood pressure estimations' vulnerability towards ectopic beats is closely examined on records drawn from the Physionet database as well as signals recorded in a small field study conducted in a geriatric facility for the elderly. It turns out that a reliable extrasystole identification is essential to unsupervised blood pressure estimation, having a significant impact on the overall accuracy. The proposed method further convinces by its applicability to battery driven hardware systems with limited processing power and is a favorable choice when access to multimodal signal features is given anyway.

  2. Analysis of the dynamic response of a double rupture disc assembly to simulated sodium-water reaction pressure pulses

    International Nuclear Information System (INIS)

    Leonard, J.R.

    1980-03-01

    A series of double rupture disc experiments were conducted in 1979 to evaluate the dynamic response characteristics of this pressure relief apparatus. The tests were performed in a facility with water simulating sodium and rising pressure pulses representative of the pressure increase resulting from a water/steam leak from a steam generator into sodium in the intermediate heat transport system of a breeder reactor power plant. Maximum source pressures ranged in magnitude from 50 psi to 800 psi. Dynamic response characteristics of each of the two rupture discs were similar to those observed in larger scale sodium-water experiments conducted in the Series I and Series II Large Leak Test Program at the Energy Technology Engineering Center. The SRI double rupture disc dynamic behavior was found to be consistent and amendable to modelling in the TRANSWRAP II computer code. A series of correlations which represent rupture disc buckling parameters were developed for use in the TRANSWRAP II code. The semi-empirical modeling of the rupture discs in the TRANSWRAP II code showed very good agreement with the experimental results

  3. A Study of New Pulse Auscultation System

    Directory of Open Access Journals (Sweden)

    Ying-Yun Chen

    2015-04-01

    Full Text Available This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine’s pulsing techniques, where pulse signals at places called “cun”, “guan” and “chi” of the left hand were measured during lifting (100 g, searching (125 g and pressing (150 g actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners’ objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  4. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    Science.gov (United States)

    Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-01-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165

  5. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.

    Science.gov (United States)

    Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D

    2015-10-09

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  6. Pulse thermal energy transport/storage system

    Science.gov (United States)

    Weislogel, Mark M.

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  7. Concave pulse shaping of a circularly polarized laser pulse from non-uniform overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Sup [School of Natural Science, UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kulagin, Victor V. [Sternberg Astronomical Institute, Moscow State University, Universitetsky prosp. 13, Moscow, 119992 (Russian Federation); Suk, Hyyong, E-mail: hysuk@gist.ac.kr [Department of Physics and Photon Science, GIST, 123 Cheomdan-gwangiro, Buk-gu, Gwangju, 500-712 (Korea, Republic of)

    2015-03-20

    Pulse shaping of circularly polarized laser pulses in nonuniform overdense plasmas are investigated numerically. Specifically we show by two-dimensional particle-in-cell simulations the generation of a concave pulse front of a circularly polarized, a few tens of petawatt laser pulse from a density-tapered, overdense plasma slab. The concept used for the transverse-directional shaping is the differential transmittance depending on the plasma density, and the laser intensity. For suitable selection of the slab parameters for the concave pulse shaping, we studied numerically the pulse transmittance, which can be used for further parameter design of the pulse shaping. The concavely shaped circularly polarized pulse is expected to add more freedom in controlling the ion-beam characteristics in the RPDA regime. - Highlights: • Laser pulse shaping for a concave front by non-uniform overdense plasma was studied. • Particle-in-cell (PIC) simulations were used for the investigation. • A laser pulse can be shaped by a density-tapered overdense plasma. • The concave and sharp pulse front are useful in many laser–plasma applications. • They are important for ion acceleration, especially in the radiation pressure dominant regime.

  8. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza, E-mail: r-massudi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411 (Iran, Islamic Republic of)

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  9. Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Geir Ringstad

    Full Text Available Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of "true" normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43. Pulse pressure gradients were also similar in patients and healthy controls (P = .26, and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97. Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate

  10. Understanding variation in ecosystem pulse responses to wetting: Benefits of data-model coupling

    Science.gov (United States)

    Jenerette, D.

    2011-12-01

    Metabolic pulses of activity are a common ecological response to intermittently available resources and in water-limited ecosystems these pulses often occur in response to wetting. Net ecosystem CO2 exchange (NEE) in response to episodic wetting events is hypothesized to have a complex trajectory reflecting the distinct responses, or "pulses", of respiration and photosynthesis. To help direct research activities a physiological-based model of whole ecosystem metabolic activity up- and down-regulation was developed to investigate ecosystem energy balance and gas exchange pulse responses following precipitation events. This model was to investigate pulse dynamics from a local network of sites in southern Arizona, a global network of eddy-covariance ecosystem monitoring sites, laboratory incubation studies, and field manipulations. Pulse responses were found to be ubiquitous across ecosystem types. These pulses had a highly variable influence on NEE following wetting, ranging from large net sinks to sources of CO2 to the atmosphere. Much of the variability in pulse responses of NEE could be described through a coupled up- and down-regulation pulse response model. Respiration pulses were hypothesized to occur through a reduction in whole ecosystem activation energy; this model was both useful and corroborated through laboratory incubation studies of soil respiration. Using the Fluxnet eddy-covariance measurement database event specific responses were combined with the pulse model into an event specific twenty-five day net flux calculation. Across all events observed a general net accumulation of CO2 following a precipitation event, with the largest net uptake within deciduous broadleaf forests and smallest within grasslands. NEE pulses favored greater uptake when pre-event ecosystem respiration rates and total precipitation were higher. While the latter was expected, the former adds to previous theory by suggesting a larger net uptake of CO2 when pre-event metabolic

  11. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Mastwijk, H.C.; Knol, J.J.; Quataert, M.C.J.; Vervoort, L.; Plancken, van der I.; Hendrickx, M.E.; Matser, A.M.

    2011-01-01

    Mild heat pasteurization, high pressure processing (HP) and pulsed electric field (PEF) processing of freshly squeezed orange juice were comparatively evaluated examining their impact on microbial load and quality parameters immediately after processing and during two months of storage. Microbial

  12. Load variation effects on the pressure fluctuations exerted on a Kaplan turbine runner

    International Nuclear Information System (INIS)

    Amiri, K; Cervantes, M J; Mulu, B; Raisee, M

    2014-01-01

    Introduction of intermittent electricity production systems like wind power and solar systems to electricity market together with the consumption-based electricity production resulted in numerous start/stops, load variations and off-design operation of water turbines. The hydropower systems suffer from the varying loads exerted on the stationary and rotating parts of the turbines during load variations which they are not designed for. On the other hand, investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of rotating vortex rope (RVR) in the draft tube. The RVR induces oscillating flow both in plunging and rotating modes which results in oscillating force with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. The purpose of this study is to investigate the effect of transient operations on the pressure fluctuations on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors. The model was run in off-cam mode during different load variation conditions to check the runner performance under unsteady condition. The results showed that the transients between the best efficiency point and the high load happens in a smooth way while transitions to/from the part load, where rotating vortex rope (RVR) forms in the draft tube induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode of the RVR

  13. Load variation effects on the pressure fluctuations exerted on a Kaplan turbine runner

    Science.gov (United States)

    Amiri, K.; Mulu, B.; Raisee, M.; Cervantes, M. J.

    2014-03-01

    Introduction of intermittent electricity production systems like wind power and solar systems to electricity market together with the consumption-based electricity production resulted in numerous start/stops, load variations and off-design operation of water turbines. The hydropower systems suffer from the varying loads exerted on the stationary and rotating parts of the turbines during load variations which they are not designed for. On the other hand, investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of rotating vortex rope (RVR) in the draft tube. The RVR induces oscillating flow both in plunging and rotating modes which results in oscillating force with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. The purpose of this study is to investigate the effect of transient operations on the pressure fluctuations on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors. The model was run in off-cam mode during different load variation conditions to check the runner performance under unsteady condition. The results showed that the transients between the best efficiency point and the high load happens in a smooth way while transitions to/from the part load, where rotating vortex rope (RVR) forms in the draft tube induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode of the RVR.

  14. Pulsed-DC selfsputtering of copper

    International Nuclear Information System (INIS)

    Wiatrowski, A; Posadowski, W M; Radzimski, Z J

    2008-01-01

    At standard magnetron sputtering conditions (argon pressure ∼0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (∼550W/cm 2 ). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%

  15. Pulsed-DC selfsputtering of copper

    Science.gov (United States)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-03-01

    At standard magnetron sputtering conditions (argon pressure ~0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (~550W/cm2). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%.

  16. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Duten, X; Redolfi, M; Aggadi, N; Vega, A; Hassouni, K, E-mail: duten@lspm.cnrs.fr [LSPM-CNRS UPR 3407, Universite Paris Nord, 90 Avenue J.B. Clement, 93430 Villetaneuse (France)

    2011-10-19

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  17. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    Science.gov (United States)

    Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.

    2011-10-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  18. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    Duten, X; Redolfi, M; Aggadi, N; Vega, A; Hassouni, K

    2011-01-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  19. Subchannel flow analysis in Candu and ACR pressure tubes with radial and axial diameter variation

    Energy Technology Data Exchange (ETDEWEB)

    Catana, A.; Prodea, L. [RAAN, Institute for Nuclear Research, Arges (Romania); Danila, N.; Prisecaru, I.; Dupleac, D. [Bucharest Univ. Politehnica(Romania)

    2007-07-01

    The Candu (Canada Deuterium Uranium) and ACR (Advanced Candu Reactor) are pressure tubes (PT) heavy water moderated reactors. Candu are heavy water and ACR are light water cooled reactors. The pressure tube is filled with 12 bundles, each consisting of 37 respectively 43 fuel rods. One Candu reactor is in operation at Cernavoda, Romania since 1996. ACR is a proposed advanced Candu. PT diameter variation has a significant impact on the thermal-hydraulic parameters. Almost all thermal-hydraulic parameters change, but some of them have a greater significance. In this work we have considered a set of radial and axial PT diameter variations both for Candu-600 and ACR-700 reactors using various types of fuel bundles. We can conclude the following: 1) some thermal-hydraulic parameters are significantly influenced: critical heat flux (CHF), pressure drop, or void fraction; 2) the most significant parameter CHF is worsening which reduces the safety margin; 3) some fuel types present a better thermal-hydraulic behavior; and 4) fuel bundles with fresh fuel or low burnup have a worse thermal-hydraulic behaviour than those at average burn-up.

  20. Subchannel flow analysis in Candu and ACR pressure tubes with radial and axial diameter variation

    International Nuclear Information System (INIS)

    Catana, A.; Prodea, L.; Danila, N.; Prisecaru, I.; Dupleac, D.

    2007-01-01

    The Candu (Canada Deuterium Uranium) and ACR (Advanced Candu Reactor) are pressure tubes (PT) heavy water moderated reactors. Candu are heavy water and ACR are light water cooled reactors. The pressure tube is filled with 12 bundles, each consisting of 37 respectively 43 fuel rods. One Candu reactor is in operation at Cernavoda, Romania since 1996. ACR is a proposed advanced Candu. PT diameter variation has a significant impact on the thermal-hydraulic parameters. Almost all thermal-hydraulic parameters change, but some of them have a greater significance. In this work we have considered a set of radial and axial PT diameter variations both for Candu-600 and ACR-700 reactors using various types of fuel bundles. We can conclude the following: 1) some thermal-hydraulic parameters are significantly influenced: critical heat flux (CHF), pressure drop, or void fraction; 2) the most significant parameter CHF is worsening which reduces the safety margin; 3) some fuel types present a better thermal-hydraulic behavior; and 4) fuel bundles with fresh fuel or low burnup have a worse thermal-hydraulic behaviour than those at average burn-up

  1. Measurement of the C{sub 2}H{sub 2} destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Guaitella, O [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Gatilova, L [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Hannemann, M [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany); Roepcke, J [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany)

    2007-04-07

    The kinetics of destruction of C{sub 2}H{sub 2} is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm{sup -1}) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C{sub 2}H{sub 2} concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C{sub 2}H{sub 2} depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C{sub 2}H{sub 2} is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO{sub 2} photocatalyst on the C{sub 2}H{sub 2} oxidation rate is reported.

  2. Pressure-Application Device for Testing Pressure Sensors

    Science.gov (United States)

    2002-01-01

    A portable pressure-application device has been designed and built for use in testing and calibrating piezoelectric pressure transducers in the field. The device generates pressure pulses of known amplitude. A pressure pulse (in contradistinction to a steady pressure) is needed because in the presence of a steady pressure, the electrical output of a piezoelectric pressure transducer decays rapidly with time. The device includes a stainless- steel compressed-air-storage cylinder of 500 cu cm volume. A manual hand pump with check valves and a pressure gauge are located at one end of the cylinder. A three-way solenoid valve that controls the release of pressurized air is located at the other end of the cylinder. Power for the device is provided by a 3.7-V cordless-telephone battery. The valve is controlled by means of a pushbutton switch, which activates a 5 V to +/-15 V DC-to-DC converter that powers the solenoid. The outlet of the solenoid valve is connected to the pressure transducer to be tested. Before the solenoid is energized, the transducer to be tested is at atmospheric pressure. When the solenoid is actuated by the push button, pressurized air from inside the cylinder is applied to the transducer. Once the pushbutton is released, the cylinder pressure is removed from the transducer and the pressurized air applied to the transducer is vented, bringing the transducer back to atmospheric pressure. Before this device was used for actual calibration, its accuracy was checked with a NIST (National Institute of Standards and Technology) traceable calibrator and commercially calibrated pressure transducers. This work was done by Wanda Solano of Stennis Space Center and Greg Richardson of Lockheed Martin Corp.

  3. [The source and factors that influence tracheal pulse oximetry signal].

    Science.gov (United States)

    Fan, Xiao-hua; Wei, Wei; Wang, Jian; Mu, Ling; Wang, Li

    2010-03-01

    To investigate the source and factors that influence tracheal pulse oximetry signal. The adult mongrel dog was intubated after anesthesia. The tracheal tube was modified by attaching a disposable pediatric pulse oximeter to the cuff. The chest of the dog was cut open and a red light from the tracheal oximeter was aligned with the deeper artery. The changes in tracheal pulse oxygen saturation (SptO2) signal were observed after the deeper artery was blocked temporarily. The photoplethysmography (PPG) and readings were recorded at different intracuff pressures. The influence of mechanical ventilation on the signal was also tested and compared with pulse oxygen saturation (SpO2). The SptO2 signal disappeared after deeper artery was blocked. The SptO2 signal changed with different intracuff pressures (P signal appeared under 20-60 cm H2O of intracuff pressure than under 0-10 cm H2O of intracuff pressure(P signal under a condition with mechanical ventilation differed from that without mechanical ventilation (P signal is primarily derived from deeper arteries around the trachea, not from the tracheal wall. Both intracuff pressures and mechanical ventilation can influence SptO2 signal. The SptO2 signal under 20-60 cm H2O of intracuff pressure is stronger than that under 0-10 em H2O of intracuff pressure. Mechanical ventilation mainly changes PPG.

  4. Study on the Depth, Rate, Shape, and Strength of Pulse with Cardiovascular Simulator

    Directory of Open Access Journals (Sweden)

    Ju-Yeon Lee

    2017-01-01

    Full Text Available Pulse diagnosis is important in oriental medicine. The purpose of this study is explaining the mechanisms of pulse with a cardiovascular simulator. The simulator is comprised of the pulse generating part, the vessel part, and the measurement part. The pulse generating part was composed of motor, slider-crank mechanism, and piston pump. The vessel part, which was composed with the aorta and a radial artery, was fabricated with silicon to implement pulse wave propagation. The pulse parameters, such as the depth, rate, shape, and strength, were simulated. With changing the mean pressure, the floating pulse and the sunken pulse were generated. The change of heart rate generated the slow pulse and the rapid pulse. The control of the superposition time of the reflected wave generated the string-like pulse and the slippery pulse. With changing the pulse pressure, the vacuous pulse and the replete pulse were generated. The generated pulses showed good agreements with the typical pulses.

  5. High pressure pulsed avalanche discharges: Scaling of required preionization rate for homogeneity

    International Nuclear Information System (INIS)

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E.

    1994-01-01

    Homogeneous high-pressure discharges can be formed by pulsed avalanche breakdown, provided that the individual avalanche heads have diffused to a large enough radius to overlap before streamer breakdown occurs. The overlap condition can be met by using an external mechanism to preionize the neutral gas, e.g., x-rays or uv radiation. There are several scenarios, (1) to preionize the gas, and then trigger the discharge by the sudden application of an electric field, (2) to apply an overvoltage over the discharge and trigger the discharge by external ionization, or (3) to have a continuous rate of external ionization and let the E field rise, with a comparatively long time constant τ, across the breakdown value (E/n) 0 . The authors here study the last of these scenarios, which gives a very efficient use of the preionization source because the avalanche startpoint can accumulate during the pre-avalanche phase. The authors have found that the required avalanche startpoint density N st.p , defined as the density of individual single, or clusters of, electrons at the time when the electric field crosses the breakdown value, scales with pressure and rise time as N st.p ∝ p 21/4 τ -3/4 . This pressure scaling disagrees with the p 3/2 scaling found by Levatter and Lin (J. Appl. Phys. 51(1), 210), while the rise time scaling agrees satisfactorily with their results. For an E field which rises slowly across the breakdown value, the pre-avalanche accumulation of electrons must be taken into account, as well as the fact that the density n e of free electrons becomes larger than the density N st.p of independent avalanche heads: when electron impact ionization closely balances attachment, individual electrons are replaced by clusters of electrons which are too close to form individual avalanche heads

  6. Numerical investigation on the dynamics and evolution mechanisms of multiple-current-pulse behavior in homogeneous helium dielectric-barrier discharges at atmospheric pressure

    Directory of Open Access Journals (Sweden)

    Yuhui Zhang

    2018-03-01

    Full Text Available A systematic investigation on the dynamics and evolution mechanisms of multiple-current-pulse (MCP behavior in homogeneous dielectric barrier discharge (HDBD is carried out via fluid modelling. Inspecting the simulation results, two typical discharge regimes, namely the MCP-Townsend regime and MCP-glow regime, are found prevailing in MCP discharges, each with distinctive electrical and dynamic properties. Moreover, the evolution of MCP behavior with external parameters altering are illustrated and explicitly discussed. It is revealed that the discharge undergoes some different stages as external parameters vary, and the discharge in each stage follows a series of distinctive pattern in morphological characteristics and evolution trends. Among those stages, the pulse number per half cycle is perceived to observe non-monotonic variations with applied voltage amplitude (Vam and gap width (dg increasing, and a merging effect among pulses, mainly induced by the enhanced contribution of sinusoidal component to the total current, is considered responsible for such phenomenon. The variation of incipient discharge peak phase (Φpm is dominated by the value of Vam as well as the proportion of total applied voltage that drops across the gas gap. Moreover, an abnormal, dramatic elevation in Jpm with dg increasing is observed, which could be evinced by the strengthened glow discharge structure and therefore enhanced space charge effect.

  7. Atmospheric pressure, density, temperature and wind variations between 50 and 200 km

    Science.gov (United States)

    Justus, C. G.; Woodrum, A.

    1972-01-01

    Data on atmospheric pressure, density, temperature and winds between 50 and 200 km were collected from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others. These data were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of the irregular atmospheric variations are presented. Time structures of the irregular variations were determined by the analysis of residuals from harmonic analysis of time series data. The observed height variations of irregular winds and densities are found to be in accord with a theoretical relation between these two quantities. The latitude variations (at 50 - 60 km height) show an increasing trend with latitude. A possible explanation of the unusually large irregular wind magnitudes of the White Sands MRN data is given in terms of mountain wave generation by the Sierra Nevada range about 1000 km west of White Sands. An analytical method is developed which, based on an analogy of the irregular motion field with axisymmetric turbulence, allows measured or model correlation or structure functions to be used to evaluate the effective frequency spectra of scalar and vector quantities of a spacecraft moving at any speed and at any trajectory elevation angle.

  8. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  9. Evaluating cost and resource use associated with pulse oximetry screening for critical congenital heart disease: Empiric estimates and sources of variation.

    Science.gov (United States)

    Reeder, Matthew R; Kim, Jaewhan; Nance, Amy; Krikov, Sergey; Feldkamp, Marcia L; Randall, Harper; Botto, Lorenzo D

    2015-11-01

    Newborn screening for critical congenital heart disease (CCHD) using pulse oximetry is being implemented in the United States and internationally; however, few data are available on the associated in-hospital costs and use of resources. Time and motion study in well-baby nurseries at two large urban hospitals in Utah using different approaches to pulse oximetry screening. Two observers recorded the time for each screening step together with provider and equipment characteristics. Structured questionnaire provided additional information on labor and equipment costs. Fifty-three CCHD screens were observed. At site A (n = 22), screening was mostly done by medical assistants (95%) using disposable probes (100%); at site B (n = 31), screening was mostly performed by certified nursing assistants (90%) using reusable probes (90%). Considering only first screens (n = 53), the median screen time was 8.6 min (range: 3.2-23.2), with no significant difference between sites. The overall cost ($ in 2014) of screening per baby was $24.52 at site A and $2.60 at site B. Nearly all the variation in cost (90%) was due to the cost of disposable probes; labor costs were similar between sites. CCHD screening by means of pulse oximetry is reasonably fast for most babies, leading to relative small labor costs with little variation by provider type. The main driver of costs is equipment: in a high throughput setting, reusable probes are currently associated with considerable cost saving compared with disposable probes. As programs expand to universal screening, improved and cheaper technologies could lead to considerable economies of scale. © 2015 Wiley Periodicals, Inc.

  10. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    idea of pressure gain combustion (i.e., combustion with gain in total pressure across the combustor as opposed to pressure-loss combustion experienced in constant pressure devices like conventional gas turbine combustors) is gaining popularity for propulsion devices [2]. Thus pulse combustors, which provide a practical ...

  11. Association of Pulse Pressure with Serum TNF-α and Neutrophil Count in the Elderly

    Directory of Open Access Journals (Sweden)

    Eriko Yamada

    2014-01-01

    Full Text Available Aims. Elevated pulse pressure (PP has been reported to be a risk factor for type 2 diabetes in elderly patients with hypertension. Methods. Cross-sectional relationships of PP with known risk factors for type 2 diabetes and inflammatory markers were examined in 150 elderly community-dwelling women, 79 women (52.7% of whom had hypertension. Results. Systolic blood pressure (standardized β, 0.775, log tumor necrosis factor-α (TNF-α, standardized β, 0.110, age (standardized β, 0.140, and neutrophil count (standardized β, 0.114 emerged as determinants of PP independent of high-sensitivity C-reactive protein, interleukin-6, monocyte count, plasminogen activator inhibitor-1, homeostasis model assessment of insulin resistance, HDL-cholesterol, and adiponectin (R2 = 0.772. Conclusions. The present studies have demonstrated an independent association of higher PP with higher TNF-α, a marker of insulin resistance, and neutrophil count in community-living elderly women and suggest that insulin resistance and chronic low-grade inflammation may in part be responsible for the association between high PP and incident type 2 diabetes found in elderly patients with hypertension.

  12. Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring.

    Directory of Open Access Journals (Sweden)

    Lee O'Sullivan

    Full Text Available Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5 on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX exposed fetuses were growth restricted compared to saline treated controls (SAL at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ~3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.

  13. Controlling the electrical and the optical properties of amorphous IGZO films prepared by using pulsed laser deposition

    International Nuclear Information System (INIS)

    Lee, Minseong; Dho, Joonghoe

    2011-01-01

    We have investigated the effects of substrate temperature and oxygen pressure on the electrical and the optical properties of amorphous InGaZnO4 (a-IGZO) films grown on glass substrates by using pulsed laser deposition. X-ray diffraction and scanning electron microscopy data suggest that the a-IGZO starts to crystallize around ∼600 .deg. C. The electrical resistivity and the carrier density of the a-IGZO film showed large variations with changes in the substrate temperature or the oxygen pressure. The resistivity of the a-IGZO film was minimized at ∼200 .deg. C and ∼10 mTorr. The energy gap estimated from the optical transmittance showed an increasing tendency with increasing of substrate temperature up to ∼200 .deg. C or with increasing of oxygen pressure up to 100 mTorr, and it was about ∼3.0 eV at 200 .deg. C and 10 mTorr. Remarkably, the optical transmittance for the a-IGZO film showed a clear variation in the violet color region with changing of the substrate temperature and oxygen pressure. Our results suggest that both the substrate temperature and the oxygen pressure can be exploited as key parameters to control the electrical and the optical properties of a-IGZO films.

  14. High-energy pulse compressor using self-defocusing spectral broadening in anomalously dispersive media

    DEFF Research Database (Denmark)

    2015-01-01

    (3) with a net positive dispersion. Furthermore, the net positive dispersion in the dispersive unit at least partially compensates for the negative nonlinear phase variation and the negative group-velocity dispersion produced by the bulk quadratic nonlinear medium when the optical pulse passes......A method and a pulse compressor (1) for compressing an optical pulse, wherein the pulse compressor comprising a bulk quadratic nonlinear medium (2) adapted for generating a negative nonlinear phase variation on the optical pulse and having a negative group-velocity dispersion, and a dispersive unit...

  15. Pulsed field losses and intentional quenches of superconducting coils

    International Nuclear Information System (INIS)

    Kim, S.H.

    1983-01-01

    Pulsed field losses of several 5-20 kJ coils have been measured under triangular field variations. The conductors, developed as potential subcables of 25-50 kA cables, consist of Cu wires and NbTi strands with or without CuNi barriers. Losses of soft-soldered subcables are compared with those of well-compacted cables. The coils were quenched intentionally by pulsing the coils above the critical current to observe loss variations due to possible conductor damage. The method of measurements, and effects of soldering and compactness of the conductors on the pulsed field losses will be presented

  16. CSF in the ventricles of the brain behaves as a relay medium for arteriovenous pulse wave phase coupling.

    Directory of Open Access Journals (Sweden)

    William E Butler

    Full Text Available The ventricles of the brain remain perhaps the largest anatomic structure in the human body without established primary purpose, even though their existence has been known at least since described by Aristotle. We hypothesize that the ventricles help match a stroke volume of arterial blood that arrives into the rigid cranium with an equivalent volume of ejected venous blood by spatially configuring cerebrospinal fluid (CSF to act as a low viscosity relay medium for arteriovenous pulse wave (PW phase coupling. We probe the hypothesis by comparing the spatiotemporal behavior of vascular PW about the ventricular surfaces in piglets to internal observations of ventricle wall motions and adjacent CSF pressure variations in humans. With wavelet brain angiography data obtained from piglets, we map the travel relative to brain pulse motion of arterial and venous PWs over the ventricle surfaces. We find that arterial PWs differ in CF phase from venous PWs over the surfaces of the ventricles consistent with arteriovenous PW phase coupling. We find a spatiotemporal difference in vascular PW phase between the ventral and dorsal ventricular surfaces, with the PWs arriving slightly sooner to the ventral surfaces. In humans undergoing neuroendoscopic surgery for hydrocephalus, we measure directly ventricle wall motions and the adjacent internal CSF pressure variations. We find that CSF pressure peaks slightly earlier in the ventral Third Ventricle than the dorsal Lateral Ventricle. When matched anatomically, the peri-ventricular vascular PW phase distribution in piglets complements the endo-ventricular CSF PW phase distribution in humans. This is consistent with a role for the ventricles in arteriovenous PW coupling and may add a framework for understanding hydrocephalus and other disturbances of intracranial pressure.

  17. A piezo-bar pressure probe

    Science.gov (United States)

    Friend, W. H.; Murphy, C. L.; Shanfield, I.

    1967-01-01

    Piezo-bar pressure type probe measures the impact velocity or pressure of a moving debris cloud. It measures pressures up to 200,000 psi and peak pressures may be recorded with a total pulse duration between 5 and 65 musec.

  18. The face of appearance-related social pressure: gender, age and body mass variations in peer and parental pressure during adolescence.

    Science.gov (United States)

    Helfert, Susanne; Warschburger, Petra

    2013-05-17

    Appearance-related social pressure plays an important role in the development of a negative body image and self-esteem as well as severe mental disorders during adolescence (e.g. eating disorders, depression). Identifying who is particularly affected by social pressure can improve targeted prevention and intervention, but findings have either been lacking or controversial. Thus the aim of this study is to provide a detailed picture of gender, weight, and age-related variations in the perception of appearance-related social pressure by peers and parents. 1112 German students between grades 7 and 9 (mean age: M = 13.38, SD = .81) filled in the Appearance-Related Social Pressure Questionnaire (German: FASD), which considers different sources (peers, parents) as well as various kinds of social pressure (e.g. teasing, modeling, encouragement). Girls were more affected by peer pressure, while gender differences in parental pressure seemed negligible. Main effects of grade-level suggested a particular increase in indirect peer pressure (e.g. appearance-related school and class norms) from early to middle adolescence. Boys and girls with higher BMI were particularly affected by peer teasing and exclusion as well as by parental encouragement to control weight and shape. The results suggest that preventive efforts targeting body concerns and disordered eating should bring up the topic of appearance pressure in a school-based context and should strengthen those adolescents who are particularly at risk - in our study, girls and adolescents with higher weight status. Early adolescence and school transition appear to be crucial periods for these efforts. Moreover, the comprehensive assessment of appearance-related social pressure appears to be a fruitful way to further explore social risk-factors in the development of a negative body image.

  19. Comparison of respiratory-induced variations in photoplethysmographic signals

    International Nuclear Information System (INIS)

    Li, Jin; Jin, Jie; Chen, Xiang; Sun, Weixin; Guo, Ping

    2010-01-01

    Photoplethysmography (PPG) is an optical method for detecting blood volume changes in tissue. Respiratory-induced intensity, frequency and amplitude variations are contained in the PPG signal; thus, an understanding of the relationships between all of these variations and respiration is essential to advancing respiration monitoring based on PPG. This study investigated correlations between respiratory-induced variations extracted from PPG and simultaneous respiratory signals. PPG signals were recorded from 28 healthy subjects under eight different conditions. Six respiratory-induced variations, i.e. the period of the systole, diastole and pulse, the amplitude of the systole and diastole, and the intensity variation, were determined from the PPG signal. The results indicate that, compared with the period of the pulse, the period of the systole and diastole correlates weakly with respiration; the amplitude of the diastole has a stronger correlation with respiration than the amplitude of the systole. For men, when the respiratory rate is less than 10 breaths min −1 , the period of the pulse has the strongest correlation with respiration, whereas up to or above 15 breaths min −1 , the intensity variation becomes strongest in the sitting posture, while the amplitude of the diastole is strongest in the supine posture. For women, compared with the other variations, the period of the pulse has nearly the strongest correlation with respiration, independent of respiratory rate or posture

  20. Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut

    2013-01-01

    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.

  1. Statistical analysis of random pulse trains

    International Nuclear Information System (INIS)

    Da Costa, G.

    1977-02-01

    Some experimental and theoretical results concerning the statistical properties of optical beams formed by a finite number of independent pulses are presented. The considered waves (corresponding to each pulse) present important spatial variations of the illumination distribution in a cross-section of the beam, due to the time-varying random refractive index distribution in the active medium. Some examples of this kind of emission are: (a) Free-running ruby laser emission; (b) Mode-locked pulse trains; (c) Randomly excited nonlinear media

  2. Assessing intravascular volume by difference in pulse pressure in pigs submitted to graded hemorrhage.

    Science.gov (United States)

    Pestel, Gunther J; Hiltebrand, Luzius B; Fukui, Kimiko; Cohen, Delphine; Hager, Helmut; Kurz, Andrea M

    2006-10-01

    We assessed changes in intravascular volume monitored by difference in pulse pressure (dPP%) after stepwise hemorrhage in an experimental pig model. Six pigs (23-25 kg) were anesthetized (isoflurane 1.5 vol%) and mechanically ventilated to keep end-tidal CO2 (etCO2) at 35 mmHg. A PA-catheter and an arterial catheter were placed via femoral access. During and after surgery, animals received lactated Ringer's solution as long as they were considered volume responders (dPP>13%). Then animals were allowed to stabilize from the induction of anesthesia and insertion of catheters for 30 min. After stabilization, baseline measurements were taken. Five percent of blood volume was withdrawn, followed by another 5%, and then in 10%-increments until death from exsanguination occurred. After withdrawal of 5% of blood volume, all pigs were considered volume responders (dPP>13%); dPP rose significantly from 6.1+/-3.3% to 19.4+/-4.2%. The regression analysis of stepwise hemorrhage revealed a linear relation between blood loss (hemorrhage in %) and dPP (y=0.99*x+14; R2=0.7764; P<.0001). In addition, dPP was the only parameter that changed significantly between baseline and a blood loss of 5% (P<0.01), whereas cardiac output, stroke volume, heart rate, MAP, central venous pressure, pulmonary artery occlusion pressure, and systemic vascular resistance, respectively, remained unchanged. We conclude that in an experimental hypovolemic pig model, dPP correlates well with blood loss.

  3. How important is the recommended slow cuff pressure deflation rate for blood pressure measurement?

    Science.gov (United States)

    Zheng, Dingchang; Amoore, John N; Mieke, Stephan; Murray, Alan

    2011-10-01

    Cuff pressure deflation rate influences blood pressure (BP) measurement. However, there is little quantitative clinical evidence on its effect. Oscillometric pulses recorded from 75 subjects at the recommended deflation rate of 2-3 mmHg per second were analyzed. Some pulses were removed to realize six faster rates (2-7 times faster than the original). Systolic, diastolic, and mean arterial blood pressures (SBP, DBP, MAP) were determined from the original and six reconstructed oscillometric waveforms. Manual measurement was based on the appearance of oscillometric pulse peaks, and automatic measurement on two model envelopes (linear and polynomial) fitted to the sequence of oscillometric pulse amplitudes. The effects of deflation rate on BP determination and within-subject BP variability were analyzed. For SBP and DBP determined from the manual measurement, different deflation rates resulted in significant changes (both p deflation rate effect (all p > 0.3). Faster deflation increased the within-subject BP variability (all p deflation rate, and for the automatic model-based techniques, the deflation rate had little effect.

  4. Intense microwave pulse propagation through gas breakdown plasmas in a waveguide

    International Nuclear Information System (INIS)

    Byrne, D.P.

    1986-01-01

    High-power microwave pulse-compression techniques are used to generate 2.856 GHz pulses which are propagated in a TE 10 mode through a gas filled section of waveguide, where the pulses interact with self-generated gas-breakdown plasmas. Pulse envelopes transmitted through the plasmas, with duration varying from 2 ns to greater than 1 μs, and peak powers of a few kW to nearly 100 MW, are measured as a function of incident pulse and gas pressure for air, nitrogen, and helium. In addition, the spatial and temporal development of the optical radiation emitted by the breakdown plasmas are measured. For transmitted pulse durations ≥ 100 ns, good agreement is found with both theory and existing measurements. For transmitted pulse duration as short as 2 ns (less than 10 rf cycles), a two-dimensional model is used in which the electrons in the plasma are treated as a fluid whose interactions with the microwave pulse are governed by a self-consistent set of fluid equations and Maxwell's equations for the electromagnetic field. The predictions of this model for air are compared with the experimental results over a pressure range of 0.8 torr to 300 torr. Good agreement is obtained above about 1 torr pressure, demonstrating that microwave pulse propagation above the breakdown threshold can be accurately modeled on this time scale. 63 refs., 44 figs., 2 tabs

  5. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  6. Pressure driven currents near magnetic islands in 3D MHD equilibria: Effects of pressure variation within flux surfaces and of symmetry

    Science.gov (United States)

    Reiman, Allan H.

    2016-07-01

    In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B

  7. Pulse timing for cataclysmic variables

    International Nuclear Information System (INIS)

    Chester, T.J.

    1979-01-01

    It is shown that present pulse timing measurements of cataclysmic variables can be explained by models of accretion disks in these systems, and thus such measurements can constrain disk models. The model for DQ Her correctly predicts the amplitude variation of the continuum pulsation and can also perhaps explain the asymmetric amplitude of the pulsed lambda4686 emission line. Several other predictions can be made from the model. In particular, if pulse timing measurements that resolve emission lines both in wavelength and in binary phase can be made, the projected orbital radius of the white dwarf could be deduced

  8. Pulsed chemical oxygen - iodine laser initiated by a transverse electric discharge

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Yuryshev, Nikolai N

    2001-01-01

    A pulsed chemical oxygen - iodine laser with a volume production of atomic iodine in a pulsed transverse electric discharge is studied. An increase in the partial oxygen pressure was shown to increase the pulse energy with retention of the pulse duration. At the same time, an increase in the iodide pressure and the discharge energy shortens the pulse duration. Pulses with a duration of 6.5 μs were obtained, which corresponds to a concentration of iodine atoms of 1.8 x 10 15 cm -3 . This concentration is close to the maximum concentration attained in studies of both cw and pulsed oxygen-iodine lasers. A specific energy output of 0.9 J litre -1 and a specific power of 75 kW litre -1 were obtained. The ways of increasing these parameters were indicated. It was found that SF 6 is an efficient buffer gas favouring improvements in the energy pulse parameters. (lasers)

  9. Absorption of femtosecond laser pulses by atomic clusters

    International Nuclear Information System (INIS)

    Lin Jingquan; Zhang Jie; Li Yingjun; Chen Liming; Lu Tiezheng; Teng Hao

    2001-01-01

    Energy absorption by Xe, Ar, He atomic clusters are investigated using laser pulses with 5 mJ energy in 150 fs duration. Experimental results show that the size of cluster and laser absorption efficiency are strongly dependent on several factors, such as the working pressure of pulse valve, atomic number Z of the gas. Absorption fraction of Xe clusters is as high as 45% at a laser intensity of 1 x 10 15 W/cm 2 with 20 x 10 5 Pa gas jet backing pressure. Absorption of the atomic clusters is greatly reduced by introducing pre-pulses. Ion energy measurements confirm that the efficient energy deposition results in a plasma with very high ion temperature

  10. Generation of high shock pressures by laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P. (GRECO ILM, Laboratoire d' Energetique et Detonique, E.N.S.M.A., 86 - Poitiers (France))

    1984-11-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 ..mu..m wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined.

  11. Generation of high shock pressures by laser pulses

    International Nuclear Information System (INIS)

    Romain, J.P.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 μm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined

  12. Synchronized Pulsed dc - dc Converter as Maximum Power Position Tracker with Wide Load and Insolation Variation for Stand Alone PV System

    International Nuclear Information System (INIS)

    Hardik, P. Desai; Ranjan Maheshwari

    2011-01-01

    This paper investigates the interest focused on employing parallel connected dc-dc converter with high tracking effectiveness under wide variation in environmental conditions (Insolation) and wide load variation. dc-dc converter is an essential part of the stand alone PV system. Paper also presents an approach on how duty cycle for maximum power position (MPP) is adjusted by taking care of varying load conditions and without iterative steps. Synchronized PWM pulses are employed for the converter. High tracking efficiency is achieved with continuous input and inductor current. In this approach, the converter can he utilized in buck as well in boost mode. The PV system simulation was verified and experimental results were in agreement to the presented scheme. (authors)

  13. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  14. Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties

    Directory of Open Access Journals (Sweden)

    W. Z. Liu

    2011-06-01

    Full Text Available Single crystalline ZnO nanowires were fabricated on Si (100 substrates by catalyst-free high-pressure pulsed laser deposition. It is found that the nanowires start to form when the substrate temperature and growth pressure exceed the critical values of 700 oC and 700 Pa, and their size strongly depends on these growth conditions. That is, the aspect ratio of the nanowires decreases with increasing temperature or decreasing pressure. Such a size dependence on growth conditions was discussed in terms of surface migration and scattering of ablated atoms. Room-temperature photoluminescence spectrum of ZnO nanowires shows a dominant near-band-edge emission peak at 3.28 eV and a visible emission band centered at 2.39 eV. Temperature-dependent photoluminescence studies reveal that the former consists of the acceptor-bound exciton and free exciton emissions; while the latter varies in intensity with the aspect ratio of the nanowires and is attributed to the surface-mediated deep level emission.

  15. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    Science.gov (United States)

    Rahimi, Eesa; Şendur, Kürşat

    2018-02-01

    Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  16. Pulse testing in the presence of wellbore storage and skin effects

    Energy Technology Data Exchange (ETDEWEB)

    Ogbe, D.O.; Brigham, W.E.

    1984-08-01

    A pulse test is conducted by creating a series of short-time pressure transients in an active (pulsing) well and recording the observed pressure response at an observation (responding) well. Using the pressure response and flow rate data, the transmissivity and storativity of the tested formation can be determined. Like any other pressure transient data, the pulse-test response is significantly influenced by wellbore storage and skin effects. The purpose of this research is to examine the influence of wellbore storage and skin effects on interference testing in general and on pulse-testing in particular, and to present the type curves and procedures for designing and analyzing pulse-test data when wellbore storage and skin effects are active at either the responding well or the pulsing well. A mathematical model for interference testing was developed by solving the diffusivity equation for radial flow of a single-phase, slightly compressible fluid in an infinitely large, homogeneous reservoir. When wellbore storage and skin effects are present in a pulse test, the observed response amplitude is attenuated and the time lag is inflated. Consequently, neglecting wellbore storage and skin effects in a pulse test causes the calculated storativity to be over-estimated and the transmissivity to be under-estimated. The error can be as high as 30%. New correlations and procedures are developed for correcting the pulse response amplitude and time lag for wellbore storage effects. Using these correlations, it is possible to correct the wellbore storage-dominated response amplitude and time lag to within 3% of their expected values without wellbore storage, and in turn to calculate the corresponding transmissivity and storativity. Worked examples are presented to illustrate how to use the new correction techniques. 45 references.

  17. Determination of pseudo multi-pulse production rate in GM counters by correlation analysis between signal pulses

    International Nuclear Information System (INIS)

    Hashimoto, Kengo; Ueda, Taizou

    1996-01-01

    A technique, based on the correlation analysis of signal pulses in time sequence, is proposed to determine the production rate of the pseudo multi-pulse in Geiger-Mueller (GM) counter. With a multi-channel scaler initiated by a signal pulse, subsequent pulses are recorded in sequence. The production of the multi-pulse increases the counting probability immediately after the initiation. By examining the deviation of the measured probability from the ideal counting probability, the production rate and the average lag time to produce the multi-pulse can be determined. By the use of the present technique, the production rate and the average lag time were obtained for the various GM tubes. These results indicate that the consumption of the quench gas results in a significant increase in the production rate but little variation in the lag time, and that the lag time strongly depends on the tube diameter. (author)

  18. Does the pulse pressure in people of European, African and South Asian descent differ? A systematic review and meta-analysis of UK data

    NARCIS (Netherlands)

    Agyemang, C.; Bhopal, R.; Redekop, W. K.

    2007-01-01

    The aim of this study was to assess whether the pulse pressures (PPs) in people of African and South Asian descent differ from those of the European-origin White (henceforth, White) in the UK. A systematic literature review was carried out using MEDLINE 1966-2006 and EMBASE 1980-2006. The

  19. Variation in ebmental quantification by X-ray fluorescence analysis in crystalline materials when applying pressure in sample preparation

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; De Ita de la Torre, A.; Chavez R, A.

    2000-01-01

    In this work making use of the diffraction and fluorescence techniques its were determined the presence of elements in a known compound ZrSiO 4 under different pressure conditions. At preparing the samples it were applied different pressures from 1600 until 350 k N/m 2 and it is detected the apparent variations in concentration in the Zr and Si elements. (Author)

  20. An investigation of pulsed high density plasmas

    International Nuclear Information System (INIS)

    Timmermans, C.J.

    1984-01-01

    In this thesis a wall-stabilized argon cascade arc is studied at values of pulsed pressure up to 14 bar and a pulsed current range up to 2200 A with a time duration of about 2 ms. The basic plasma is a CW cascade arc with a 5 mm diameter plasma column and a length of 90 mm, which operates at a 60 A DC current and at one atmosphere filling pressure. The author starts with an extensive summary of the CW arc investigations. After a brief introduction of the basic transport equations the mass equations of the constituent particles are treated using the extended collisional radiative model. The energy balance equations and the momentum balance are discussed. The electron density is determined from measurements of the continuum radiation. The final chapter contains the experimental results on the electron temperatures and electron densities in the pressure and current pulsed plasma. Attention is given to the deviations from local thermodynamic equilibrium values of the ground level densities of the different argon systems. (Auth.)

  1. Effect of laser pulse shaping parameters on the fidelity of quantum logic gates.

    Science.gov (United States)

    Zaari, Ryan R; Brown, Alex

    2012-09-14

    The effect of varying parameters specific to laser pulse shaping instruments on resulting fidelities for the ACNOT(1), NOT(2), and Hadamard(2) quantum logic gates are studied for the diatomic molecule (12)C(16)O. These parameters include varying the frequency resolution, adjusting the number of frequency components and also varying the amplitude and phase at each frequency component. A time domain analytic form of the original discretized frequency domain laser pulse function is derived, providing a useful means to infer the resulting pulse shape through variations to the aforementioned parameters. We show that amplitude variation at each frequency component is a crucial requirement for optimal laser pulse shaping, whereas phase variation provides minimal contribution. We also show that high fidelity laser pulses are dependent upon the frequency resolution and increasing the number of frequency components provides only a small incremental improvement to quantum gate fidelity. Analysis through use of the pulse area theorem confirms the resulting population dynamics for one or two frequency high fidelity laser pulses and implies similar dynamics for more complex laser pulse shapes. The ability to produce high fidelity laser pulses that provide both population control and global phase alignment is attributed greatly to the natural evolution phase alignment of the qubits involved within the quantum logic gate operation.

  2. Simulation of microbubble response to ambient pressure changes

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    The theory on microbubbles clearly indicates a relation between the ambient pressure and the acoustic behavior of the bubble. The purpose of this study was to optimize the sensitivity of ambient pressure measurements, using the subharmonic component, through microbubble response simulations....... The behaviour of two different contrast agents was investigated as a function of driving pulse and ambient overpressure, pov. Simulations of Levovist using a rectangular driving pulse show an almost linear reduction in the subharmonic component as pov is increased. For a 20 cycles driving pulse, a reduction...... is not completely linear as a function of the ambient pressure....

  3. GENERATION OF HIGH SHOCK PRESSURES BY LASER PULSES

    OpenAIRE

    Romain , J.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 µm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of ...

  4. Development and testing of pulsed and rotating detonation combustors

    Science.gov (United States)

    St. George, Andrew C.

    Detonation is a self-sustaining, supersonic, shock-driven, exothermic reaction. Detonation combustion can theoretically provide significant improvements in thermodynamic efficiency over constant pressure combustion when incorporated into existing cycles. To harness this potential performance benefit, countless studies have worked to develop detonation combustors and integrate these devices into existing systems. This dissertation consists of a series of investigations on two types of detonation combustors: the pulse detonation combustor (PDC) and the rotating detonation combustor (RDC). In the first two investigations, an array of air-breathing PDCs is integrated with an axial power turbine. The system is initially operated with steady and pulsed cold air flow to determine the effect of pulsed flow on turbine performance. Various averaging approaches are employed to calculate turbine efficiency, but only flow-weighted (e.g., mass or work averaging) definitions have physical significance. Pulsed flow turbine efficiency is comparable to steady flow efficiency at high corrected flow rates and low rotor speeds. At these conditions, the pulse duty cycle expands and the variation of the rotor incidence angle is constrained to a favorable range. The system is operated with pulsed detonating flow to determine the effect of frequency, fill fraction, and rotor speed on turbine performance. For some conditions, output power exceeds the maximum attainable value from steady constant pressure combustion due to a significant increase in available power from the detonation products. However, the turbine component efficiency estimated from classical thermodynamic analysis is four times lower than the steady design point efficiency. Analysis of blade angles shows a significant penalty due to the detonation, fill, and purge processes simultaneously imposed on the rotor. The latter six investigations focus on fundamental research of the RDC concept. A specially-tailored RDC data

  5. Reliability of blood pressure parameters for dry weight estimation in hemodialysis patients.

    Science.gov (United States)

    Susantitaphong, Paweena; Laowaloet, Suthanit; Tiranathanagul, Khajohn; Chulakadabba, Adhisabandh; Katavetin, Pisut; Praditpornsilpa, Kearkiat; Tungsanga, Kriang; Eiam-Ong, Somchai

    2013-02-01

    Chronic volume overload resulting from interdialytic weight gain and inadequate fluid removal plays a significant role in poorly controlled high blood pressure. Although bioimpedance has been introduced as an accurate method for assessing hydration status, the instrument is not available in general hemodialysis (HEMO) centers. This study was conducted to explore the correlation between hydration status measured by bioimpedance and blood pressure parameters in chronic HEMO patients. Multifrequency bioimpedance analysis was used to determine pre- and post-dialysis hydration status in 32 stable HEMO patients. Extracellular water/total body water (ECW/TBW) determined by sum of segments from bioimpedance analysis was used as an index of hydration status. The mean age was 57.9 ± 16.4 years. The mean dry weight and body mass index were 57.7 ± 14.5 kg and 22.3 ± 4.7 kg/m(2), respectively. Pre-dialysis ECW/TBW was significantly correlated with only pulse pressure (r = 0.5, P = 0.003) whereas post-dialysis ECW/TBW had significant correlations with pulse pressure, systolic blood pressure, and diastolic blood pressure (r = 0.6, P = 0.001, r = 0.4, P = 0.04, r = -0.4, and P = 0.02, respectively). After dialysis, the mean values of ECW/TBW, systolic blood pressure, mean arterial pressure, and pulse pressure were significantly decreased. ECW/TBW was used to classify the patients into normohydration (≤ 0.4) and overhydration (>0.4) groups. Systolic blood pressure, mean arterial pressure, and pulse pressure significantly reduced after dialysis in the normohydration group but did not significantly change in the overhydration group. Pre-dialysis pulse pressure, post-dialysis pulse pressure, and post-dialysis systolic blood pressure in the overhydration group were significantly higher than normohydration group. Due to the simplicity and cost, blood pressure parameters, especially pulse pressure, might be a simple reference for clinicians to determine hydration status in HEMO

  6. A comparison between the pathophysiology of multiple sclerosis and normal pressure hydrocephalus: is pulse wave encephalopathy a component of MS?

    Science.gov (United States)

    Bateman, Grant A; Lechner-Scott, Jeannette; Lea, Rodney A

    2016-09-22

    It has been suggested there is a chronic neurodegenerative disorder, underlying the pathophysiology of multiple sclerosis (MS), which is distinct from the more obvious immune-mediated attack on the white matter. Limited data exists indicating there is an alteration in pulse wave propagation within the craniospinal cavity in MS, similar to the findings in normal pressure hydrocephalus (NPH). It is hypothesized MS may harbor pulse wave encephalopathy. The purpose of this study is to compare blood flow and pulse wave measurements in MS patients with a cohort of NPH patients and control subjects, to test this hypothesis. Twenty patients with MS underwent magnetic resonance (MR) flow quantification techniques. Mean blood flow and stroke volume were measured in the arterial inflow and venous out flow from the sagittal (SSS) and straight sinus (ST). The arteriovenous delay (AVD) was defined. The results were compared with both age-matched controls and NPH patients. In MS there was a 35 % reduction in arteriovenous delay and a 5 % reduction in the percentage of the arterial inflow returning via the sagittal sinus compared to age matched controls. There was an alteration in pulse wave propagation, with a 26 % increase in arterial stroke volume but 30 % reduction in SSS and ST stroke volume. The AVD and blood flow changes were in the same direction to those of NPH patients. There are blood flow and pulsation propagation changes in MS patients which are similar to those of NPH patients. The findings would be consistent with an underlying pulse wave encephalopathy component in MS.

  7. Fiber-Optic Pressure Sensor With Dynamic Demodulation Developed

    Science.gov (United States)

    Lekki, John D.

    2002-01-01

    Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.

  8. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution.

    Science.gov (United States)

    Liu, Yunbo; Wear, Keith A; Harris, Gerald R

    2017-10-01

    Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high-intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement variation and signal analysis, still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small polyvinylidene fluoride capsule hydrophone and two fiberoptic hydrophones. The focal waveform and beam distribution of a single-element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveforms. Compressional pressure (p + ), rarefactional pressure (p - ) and focal beam distribution were compared up to 10.6/-6.0 MPa (p + /p - ) (1.05 MHz) and 20.65/-7.20 MPa (3.3 MHz). The effects of spatial averaging, local non-linear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed a variation of no better than 10%-15% among hydrophones during HITU pressure characterization. Published by Elsevier Inc.

  9. Noise Pulses in Large Area Optical Modules

    International Nuclear Information System (INIS)

    Aiello, Sebastiano; Leonora, Emanuele; Giordano, Valentina

    2013-06-01

    A great number of large area photomultipliers are widely used in neutrino and astro-particle detector to measure Cherenkov light in medium like water or ice. The key element of these detectors are the so-called 'optical module', which consist in photodetectors closed in a transparent pressure-resistant container to protect it and ensure good light transmission. The noise pulses present on the anode of each photomultiplier affect strongly the performance of the detector. A large study was conducted on noise pulses of large area photomultipliers, considering time and charge distributions of dark pulses, prepulses, delayed pulses, and after pulses. The contribution to noise pulses due to the presence of the external glass spheres was also studied, even comparing two vessels of different brands. (authors)

  10. Sound velocity variation as function of polarization state in Lead Zirconate Titanate (PZT) Ceramics

    International Nuclear Information System (INIS)

    Essolaani, W; Farhat, N

    2012-01-01

    There are several ultrasonic techniques to measure the sound velocity, for example, the pulse-echo method. In such method, the size of transducer used to measure the sound velocity must be in the same order of the sample size. If not, the incompatibility of sizes becomes an error source of the sound velocity measurement. In this work, the Laser Induced Pressure Pulse (LIPP) method is used as ultrasonic method. This method has been very useful for studying the spatial distribution of charges and polarization in dielectrics. We take advantage of the fact that the method allows the sound velocity measurement, to study its variation as function of polarization state in (PZT) ceramics. In a sample with a known thickness e, the sound velocity ν is deduced from the measurement of the transit time T. The sound velocity depends on the elastic constants which in turn they depend on poling conditions. Thus, the variation of the sound velocity is related to the direction and the amplitude of the polarization.

  11. MHD-Stabilization of Axisymmetric Mirror Systems Using Pulsed ECRH

    International Nuclear Information System (INIS)

    Post, R.F.

    2010-01-01

    This paper, part of a continuing study of means for the stabilization of MHD interchange modes in axisymmertric mirror-based plasma confinement systems, is aimed at a preliminary look at a technique that would employ a train of plasma pressure pulses produced by ECRH to accomplish the stabilization. The purpose of using sequentially pulsed ECRH rather than continuous-wave ECRH is to facilitate the localization of the heated-electron plasma pulses in regions of the magnetic field with a strong positive field-line curvature, e. g. in the 'expander' region of the mirror magnetic field, outside the outermost mirror, or in other regions of the field with positive field-line curvature. The technique proposed, of the class known as 'dynamic stabilization,' relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. As will also be discussed in the paper, the plasma pulses, when produced in regions of the confining having a negative gradient, create transient electric potentials of ambipolar origin, an effect that was studied in 1964 in The PLEIDE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulses for a time determined by ion inertia. It is suggested that it may be possible to use this result of pulsed ECRH not only to help to stabilize the plasma but also to help plug mirror losses in a manner similar to that employed in the Tandem Mirror.

  12. Effect of power modulation on properties of pulsed capacitively coupled radiofrequency discharges

    International Nuclear Information System (INIS)

    Samara, V; Bowden, M D; Braithwaite, N St J

    2010-01-01

    We describe measurements of plasma properties of pulsed, low pressure, capacitively coupled discharges operated in argon. The study aims to determine the effect of modulating the radiofrequency power during the discharge part of the pulse cycle. Measurements of local electron density and optical emission were made in capacitively coupled rf discharges generated in a Gaseous Electronics Conference (GEC) reference reactor. Gas pressure was in the range 7-70 Pa, rf power in the range 1-100 W and pulse durations in the range 10 μs-100 ms. The results indicate that the ignition and afterglow decay processes in pulsed discharges can be controlled by modulating the shape of applied radiofrequency pulse.

  13. Optimizing the Thermoacoustic Pulse Tube Refrigerator Performances

    Directory of Open Access Journals (Sweden)

    E. V. Blagin

    2014-01-01

    Full Text Available The article deals with research and optimization of the thermoacoustic pulse tube refrigerator to reach a cryogenic temperature level. The refrigerator is considered as a thermoacoustic converter based on the modified Stirling cycle with helium working fluid. A sound pressure generator runs as a compressor. Plant model comprises an inner heat exchanger, a regenerative heat exchanger, a pulse tube, hot and cold heat exchangers at its ends, an inertial tube with the throttle, and a reservoir. A model to calculate the pulse tube thermoacoustic refrigerator using the DeltaEC software package has been developed to be a basis for calculation techniques of the pulse tube refrigerator. Momentum, continuity, and energy equations for helium refrigerant are solved according to calculation algorithm taking into account the porosity of regenerator and heat exchangers. Optimization of the main geometric parameters resulted in decreasing temperature of cold heat exchanger by 41,7 K. After optimization this value became equal to 115,01 K. The following parameters have been optimized: diameters of the feeding and pulse tube and heat exchangers, regenerator, lengths of the regenerator and pulse and inertial tubes, as well as initial pressure. Besides, global minimum of temperatures has been searched at a point of local minima corresponding to the optimal values of abovementioned parameters. A global-local minima difference is 0,1%. Optimized geometric and working parameters of the thermoacoustic pulse tube refrigerator are presented.

  14. A ‘frozen electric-field’ approach to simulate repetitively pulsed nanosecond plasma discharges and ignition of hydrogen–air mixtures

    International Nuclear Information System (INIS)

    Nagaraja, Sharath; Yang, Vigor

    2014-01-01

    High-fidelity modelling of nanosecond repetitively pulsed discharges (NRPDs) is burdened by the multiple time and length scales and large chemistry mechanisms involved, which prohibit detailed analyses and parametric studies. In the present work, we propose a ‘frozen electric-field’ modelling approach to expedite the NRPD simulations without adverse effects on the solution accuracy. First, a burst of nanosecond voltage pulses is simulated self-consistently until the discharge reaches a stationary state. The calculated spatial distributions and temporal evolution of the electric field, electron density and electron energy during the last pulse are then stored in a library and the electrical characteristics of subsequent pulses are frozen at these values. This strategy allows the timestep for numerical integration to be increased by four orders of magnitude (from 10 −13 to 10 −9  s), thereby significantly improving the computational efficiency of the process. Reduced calculations of a burst of 50 discharge pulses show good agreement with the predictions from a complete plasma model (electrical characteristics calculated during each pulse). The error in species densities is less than 20% at the centre of the discharge volume and about 30% near the boundaries. The deviations in temperature, however, are much lower, at 5% in the entire domain. The model predictions are in excellent agreement with measured ignition delay times and temperatures in H 2 –air mixtures subject to dielectric barrier NRPD over a pressure range of 54–144 Torr with equivalence ratios of 0.7–1.2. The OH density increases with pressure and triggers low-temperature fuel oxidation, which leads to rapid temperature rise and ignition. The ignition delay decreases by a factor of 2, with an increase in pressure from 54 to 144 Torr. In contrast, an increase in the H 2 –air equivalence ratio from 0.7 to 1.2 marginally decreases the ignition delay by about 20%. This behaviour is

  15. Peripheral arterial volume distensibility: significant differences with age and blood pressure measured using an applied external pressure

    International Nuclear Information System (INIS)

    Zheng, Dingchang; Murray, Alan

    2011-01-01

    A new arterial distensibility measurement technique was assessed in 100 healthy normotensive subjects. Arterial transmural pressures on the whole right arm were reduced with a 50 cm long cuff inflated to 10, 20, 30 and 40 mmHg. The electrocardiogram, and finger and ear photoplethysmograms were recorded simultaneously. Arm pulse propagation time, pulse wave velocity (PWV) and arterial volume distensibility were determined. With a 40 mmHg reduction in transmural pressure, arm pulse propagation time increased from 61 to 83 ms, PWV decreased from 12 to 8 m s −1 and arterial distensibility increased from 0.102% to 0.232% per mmHg (all P < 0.0001). At all cuff pressures, arterial distensibility was significantly related to resting mean arterial pressure (MAP), diastolic blood pressure (DBP) and age, and for systolic blood pressure at 30 and 40 mmHg (all P < 0.05). At 40 mmHg cuff pressure, arterial distensibility fell by 54% for a MAP increase from 75 to 105 mmHg, 57% for a DBP increase from 60 to 90 mmHg and 47% for an age increase from 20 to 70 years. These changes were more than double than those without cuff pressure. Our technique showed that systemic volume distensibility of the peripheral arm artery reduced with age, with a greater effect at higher external and lower transmural pressures

  16. Local Intraarterial Thrombolysis: In Vitro Comparison Between Automatic and Manual Pulse-Spray Infusion

    International Nuclear Information System (INIS)

    Froelich, Jens J.; Freymann, Christina; Hoppe, Martin; Thiel, Thomas; Wagner, H. Joachim; Barth, Klemens H.; Klose, Klaus J.

    1996-01-01

    Purpose: Manual and automatic pulse-spray infusion techniques are compared in vitro to evaluate the efficacy of thrombolysis and the distribution of urokinase and saline solution within thrombus using a pulse-spray catheter. Methods: A pulse-spray catheter was introduced into a human thrombus within a stenotic flow model. Automatic and manual pulsed infusion of urokinase and automatic pulsed infusion of saline solution were compared. To quantify the efficacy of thrombolysis, pressure gradients were recorded proximal and distal to the thrombus and during the course of infusion. Distribution of infused urokinase was assessed radiographically. Results: The fastest and most homogeneous dissolution of the thrombus was achieved with automatic pulsed infusion of urokinase, shown by decreasing transthrombotic pressure gradients (p < 0.001, Wilcoxon, matched pairs). Manual pulsed infusion of urokinase or saline solution resulted in inhomogeneous thrombus dissolution and delayed thrombolysis. Conclusion: Application of automatic pulse-spray injectors seems beneficial for more effective and homogeneous intraarterial pulse-spray thrombolysis when compared with conventional manual pulsed technique

  17. Performance of large-scale helium refrigerators subjected to pulsed heat load from fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, R.; Ghosh, P.; Chowdhury, K. [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur (India)

    2012-07-01

    The immediate effect of pulsed heat load from fusion devices in helium refrigerators is wide variation in mass flow rate of low pressure stream returning to the cold-box. In this paper, a four expander based modified Claude cycle has been analyzed in quasi steady and dynamic simulations using Aspen HYSYS to identify critical equipment that may be affected due to such flow rate fluctuations at the return stream and their transient performance. Additional constraints on process parameters over steady state design have been identified. Suitable techniques for mitigation of fluctuation of return stream have also been explored. (author)

  18. Performance of large-scale helium refrigerators subjected to pulsed heat load from fusion devices

    International Nuclear Information System (INIS)

    Dutta, R.; Ghosh, P.; Chowdhury, K.

    2012-01-01

    The immediate effect of pulsed heat load from fusion devices in helium refrigerators is wide variation in mass flow rate of low pressure stream returning to the cold-box. In this paper, a four expander based modified Claude cycle has been analyzed in quasi steady and dynamic simulations using Aspen HYSYS to identify critical equipment that may be affected due to such flow rate fluctuations at the return stream and their transient performance. Additional constraints on process parameters over steady state design have been identified. Suitable techniques for mitigation of fluctuation of return stream have also been explored. (author)

  19. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    International Nuclear Information System (INIS)

    Perez, J A; Riascos, H; Caicedo, J C; Cabrera, G; Yate, L

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser (λ = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  20. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J A; Riascos, H [Departamento de Fisica, Universidad Tecnologica de Pereira, Grupo plasma Laser y Aplicaciones A.A 097 (Colombia); Caicedo, J C [Grupo pelIculas delgadas, Universidad del Valle, Cali (Colombia); Cabrera, G; Yate, L, E-mail: jcaicedoangulo@gmail.com [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain)

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser ({lambda} = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  1. Self-consistent model for pulsed direct-current N2 glow discharge

    International Nuclear Information System (INIS)

    Liu Chengsen

    2005-01-01

    A self-consistent analysis of a pulsed direct-current (DC) N 2 glow discharge is presented. The model is based on a numerical solution of the continuity equations for electron and ions coupled with Poisson's equation. The spatial-temporal variations of ionic and electronic densities and electric field are obtained. The electric field structure exhibits all the characteristic regions of a typical glow discharge (the cathode fall, the negative glow, and the positive column). Current-voltage characteristics of the discharge can be obtained from the model. The calculated current-voltage results using a constant secondary electron emission coefficient for the gas pressure 133.32 Pa are in reasonable agreement with experiment. (authors)

  2. Permeability - Fluid Pressure - Stress Relationship in Fault Zones in Shales

    Science.gov (United States)

    Henry, P.; Guglielmi, Y.; Morereau, A.; Seguy, S.; Castilla, R.; Nussbaum, C.; Dick, P.; Durand, J.; Jaeggi, D.; Donze, F. V.; Tsopela, A.

    2016-12-01

    Fault permeability is known to depend strongly on stress and fluid pressures. Exponential relationships between permeability and effective pressure have been proposed to approximate fault response to fluid pressure variations. However, the applicability of these largely empirical laws remains questionable, as they do not take into account shear stress and shear strain. A series of experiments using mHPP probes have been performed within fault zones in very low permeability (less than 10-19 m2) Lower Jurassic shale formations at Tournemire (France) and Mont Terri (Switzerland) underground laboratories. These probes allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. In addition, in the Mont-Terri experiment, passive pressure sensors were installed in observation boreholes. Fracture transmissivity was estimated from single borehole pulse test, constant pressure injection tests, and cross-hole tests. It is found that the transmissivity-pressure dependency can be approximated with an exponential law, but only above a pressure threshold that we call the Fracture Opening Threshold (F.O.P). The displacement data show a change of the mechanical response across the F.O.P. The displacement below the F.O.P. is dominated by borehole response, which is mostly elastic. Above F.O.P., the poro-elasto-plastic response of the fractures dominates. Stress determinations based on previous work and on the analysis of slip data from mHPPP probe indicate that the F.O.P. is lower than the least principal stress. Below the F.O.P., uncemented fractures retain some permeability, as pulse tests performed at low pressures yield diffusivities in the range 10-2 to 10-5 m2/s. Overall, this dual behavior appears consistent with the results of CORK experiments performed in accretionary wedge decollements. Results suggest (1) that fault zones become highly permeable when approaching the critical Coulomb threshold (2

  3. Pulsed corona generation using a diode-based pulsed power generator

    Science.gov (United States)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  4. Hydraulic testing in granite using the sinusoidal variation of pressure

    International Nuclear Information System (INIS)

    Black, J.H.; Holmes, D.C.; Noy, D.J.

    1982-09-01

    Access to two boreholes at the Carwynnen test site in Cornwall enabled the trial of a number of innovative approaches to the hydrogeology of fractured crystalline rock. These methods ranged from the use of seisviewer data to measure the orientation of fractures to the use of the sinusoidal pressure technique to measure directional hydraulic diffusivity. The testing began with a short programme of site investigation consisting of borehole caliper and seisviewer logging followed by some single borehole hydraulic tests. The single borehole hydraulic testing was designed to assess whether the available boreholes and adjacent rock were suitable for testing using the sinusoidal method. The main testing methods were slug and pulse tests and were analysed using the fissured porous medium analysis proposed in Barker and Black (1983). Derived hydraulic conductivity (K) ranged from 2 x 10 -12 m/sec to 5 x 10 -7 m/sec with one near-surface zone of high K being perceived in both boreholes. The results were of the form which is typical of fractured rock and indicated a combination of high fracture frequency and permeable granite matrix. The results are described and discussed. (author)

  5. Polymorphisms in the WNK1 gene are associated with blood pressure variation and urinary potassium excretion.

    Directory of Open Access Journals (Sweden)

    Stephen Newhouse

    Full Text Available WNK1--a serine/threonine kinase involved in electrolyte homeostasis and blood pressure (BP control--is an excellent candidate gene for essential hypertension (EH. We and others have previously reported association between WNK1 and BP variation. Using tag SNPs (tSNPs that capture 100% of common WNK1 variation in HapMap, we aimed to replicate our findings with BP and to test for association with phenotypes relating to WNK1 function in the British Genetics of Hypertension (BRIGHT study case-control resource (1700 hypertensive cases and 1700 normotensive controls. We found multiple variants to be associated with systolic blood pressure, SBP (7/28 tSNPs min-p = 0.0005, diastolic blood pressure, DBP (7/28 tSNPs min-p = 0.002 and 24 hour urinary potassium excretion (10/28 tSNPs min-p = 0.0004. Associations with SBP and urine potassium remained significant after correction for multiple testing (p = 0.02 and p = 0.01 respectively. The major allele (A of rs765250, located in intron 1, demonstrated the strongest evidence for association with SBP, effect size 3.14 mmHg (95%CI:1.23-4.9, DBP 1.9 mmHg (95%CI:0.7-3.2 and hypertension, odds ratio (OR: 1.3 [95%CI: 1.0-1.7].We genotyped this variant in six independent populations (n = 14,451 and replicated the association between rs765250 and SBP in a meta-analysis (p = 7 x 10(-3, combined with BRIGHT data-set p = 2 x 10(-4, n = 17,851. The associations of WNK1 with DBP and EH were not confirmed. Haplotype analysis revealed striking associations with hypertension and BP variation (global permutation p10 mmHg reduction and risk for hypertension (OR<0.60. Our data indicates that multiple rare and common WNK1 variants contribute to BP variation and hypertension, and provide compelling evidence to initiate further genetic and functional studies to explore the role of WNK1 in BP regulation and EH.

  6. Full-field wrist pulse signal acquisition and analysis by 3D Digital Image Correlation

    Science.gov (United States)

    Xue, Yuan; Su, Yong; Zhang, Chi; Xu, Xiaohai; Gao, Zeren; Wu, Shangquan; Zhang, Qingchuan; Wu, Xiaoping

    2017-11-01

    Pulse diagnosis is an essential part in four basic diagnostic methods (inspection, listening, inquiring and palpation) in traditional Chinese medicine, which depends on longtime training and rich experience, so computerized pulse acquisition has been proposed and studied to ensure the objectivity. To imitate the process that doctors using three fingertips with different pressures to feel fluctuations in certain areas containing three acupoints, we established a five dimensional pulse signal acquisition system adopting a non-contacting optical metrology method, 3D digital image correlation, to record the full-field displacements of skin fluctuations under different pressures. The system realizes real-time full-field vibration mode observation with 10 FPS. The maximum sample frequency is 472 Hz for detailed post-processing. After acquisition, the signals are analyzed according to the amplitude, pressure, and pulse wave velocity. The proposed system provides a novel optical approach for digitalizing pulse diagnosis and massive pulse signal data acquisition for various types of patients.

  7. The Toulouse pulsed magnet facility

    International Nuclear Information System (INIS)

    2006-01-01

    The 'Laboratoire National des Champs Magnetiques Pulses' (LNCMP) is an international user facility providing access to pulsed magnetic fields up to and beyond 60 T. The laboratory disposes of 10 magnet stations equipped with long-pulse magnets operating in the 35-60 T range and a short-pulse system reaching magnetic fields in excess of 70 T. The experimental infrastructure includes various high and low-temperature systems ranging from ordinary flow-type cryostats to dilution refrigerators reaching 50 mK, as well as different types of high-pressure cells. Experimental techniques include magnetization, transport, luminescence, IR-spectroscopy and polarimetry. The LNCMP pursues an extensive in-house research program focussing on all technological and scientific aspects of pulsed magnetic fields. Recent technical developments include the implementation of 60 T rapid-cooling coils, an 80 T prototype, a pulsed dipole magnet for optical investigations of dilute matter and a transportable horizontal access magnet for small angle x-ray scattering experiments. Scientific activities cover a variety of domains, including correlated electron systems, magnetism, semiconductors and nanoscience

  8. Blood Pressure Variation Throughout Pregnancy According to Early Gestational BMI: A Brazilian Cohort

    Directory of Open Access Journals (Sweden)

    Fernanda Rebelo

    2015-04-01

    Full Text Available Background: The maternal cardiovascular system undergoes progressive adaptations throughout pregnancy, causing blood pressure fluctuations. However, no consensus has been established on its normal variation in uncomplicated pregnancies. Objective: To describe the variation in systolic blood pressure (SBP and diastolic blood pressure (DBP levels during pregnancy according to early pregnancy body mass index (BMI. Methods: SBP and DBP were measured during the first, second and third trimesters and at 30-45 days postpartum in a prospective cohort of 189 women aged 20-40 years. BMI (kg/m2 was measured up to the 13th gestational week and classified as normal-weight (<25.0 or excessive weight (≥25.0. Longitudinal linear mixed-effects models were used for statistical analysis. Results: A decrease in SBP and DBP was observed from the first to the second trimester (βSBP=-0.394; 95%CI: -0.600- -0.188 and βDBP=-0.617; 95%CI: -0.780- -0.454, as was an increase in SBP and DBP up to 30-45 postpartum days (βSBP=0.010; 95%CI: 0.006-0.014 and βDBP=0.015; 95%CI: 0.012-0.018. Women with excessive weight at early pregnancy showed higher mean SBP in all gestational trimesters, and higher mean DBP in the first and third trimesters. Excessive early pregnancy BMI was positively associated with prospective changes in SBP (βSBP=7.055; 95%CI: 4.499-9.610 and in DBP (βDBP=3.201; 95%CI: 1.136-5.266. Conclusion: SBP and DBP decreased from the first to the second trimester and then increased up to the postpartum period. Women with excessive early pregnancy BMI had higher SBP and DBP than their normal-weight counterparts throughout pregnancy, but not in the postpartum period.

  9. Pulsed beams as field probes for precision measurement

    International Nuclear Information System (INIS)

    Hudson, J. J.; Ashworth, H. T.; Kara, D. M.; Tarbutt, M. R.; Sauer, B. E.; Hinds, E. A.

    2007-01-01

    We describe a technique for mapping the spatial variation of static electric, static magnetic, and rf magnetic fields using a pulsed atomic or molecular beam. The method is demonstrated using a beam designed to measure the electric dipole moment of the electron. We present maps of the interaction region, showing sensitivity to (i) electric field variation of 1.5 V/cm at 3.3 kV/cm with a spatial resolution of 15 mm; (ii) magnetic field variation of 5 nT with 25 mm resolution; (iii) radio-frequency magnetic field amplitude with 15 mm resolution. This diagnostic technique is very powerful in the context of high-precision atomic and molecular physics experiments, where pulsed beams have not hitherto found widespread application

  10. Pulse pressure is not an independent predictor of outcome in type 2 diabetes patients with chronic kidney disease and anemia

    DEFF Research Database (Denmark)

    Theilade, S; Claggett, B; Hansen, T W

    2015-01-01

    Pulse pressure (PP) remains an elusive cardiovascular risk factor with inconsistent findings. We clarified the prognostic value in patients with type 2 diabetes, chronic kidney disease (CKD) and anemia in the Trial to Reduce cardiovascular Events with Aranesp (darbepoetin alfa) Therapy. In 4038......, CKD and anemia, PP did not independently predict cardiovascular events or ESRD. This may reflect confounding by aggressive antihypertensive treatment, or PP may be too rough a risk marker in these high-risk patients....

  11. Short pulse mid-infrared amplifier for high average power

    CSIR Research Space (South Africa)

    Botha, LR

    2006-09-01

    Full Text Available High pressure CO2 lasers are good candidates for amplifying picosecond mid infrared pulses. High pressure CO2 lasers are notorious for being unreliable and difficult to operate. In this paper a high pressure CO2 laser is presented based on well...

  12. Study of plasma wall interactions in the long-pulse NB-heated discharges of JT-60U towards steady-state operation

    International Nuclear Information System (INIS)

    Takenaga, H.; Asakura, N.; Higashijima, S.; Nakano, T.; Kubo, H.; Konoshima, S.; Oyama, N.; Isayama, A.; Ide, S.; Fujita, T.; Miura, Y.

    2005-01-01

    Long time scale variation of plasma-wall interactions and its impact on particle balance, main plasma performance and particle behavior have been investigated in ELMy H-mode plasmas by extending the discharge pulse and the neutral beam heating pulse to 65 s and 30 s, respectively. The wall pumping rate starts to decrease in the latter phase by repeating the long-pulse discharges with 60% of Greenwald density sustained by gas-puffing. After several discharges, the wall inventory is saturated in the latter phase and, consequently, the density increases with neutral beam fuelling only. The edge pressure in the main plasma is reduced and ELMs are close to the type III regime under conditions of wall saturation. The intensities of C II emission near the X-point and CD band emission in the inner divertor start to increase before the wall saturates and continue to increase after the wall is saturated

  13. Modeling of Trichel pulses in negative corona

    International Nuclear Information System (INIS)

    Napartovich, A.P.; Akishev, Yu. S.; Deryugin, A.A.; Kochetov, I.V.; Pan'kin, M.V.; Trushkin, N.I.

    1998-01-01

    Results are reported of detailed numerical studies of Trichel pulse formation for dry air in short-gap coronas. Continuity equations for electrons, positive and negative ions, and the Poisson equation averaged over the current cross section were solved numerically with appropriate boundary conditions. The results of numerical simulation make it possible to analyze in detail the trailing edge of the Trichel pulse and the inter-pulse pause determining the period between pulses. In particular, the variations of the total number of negative ions in the corona spacing occurring under typical conditions of a pulsating corona, proved to be quite insignificant. A comparison with experiments demonstrated a reasonable agreement both for the shape of the pulse and for the average characteristics of the negative corona. (J.U.)

  14. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    Directory of Open Access Journals (Sweden)

    Rahimi Eesa

    2018-02-01

    Full Text Available Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse’s spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  15. Bacteria killing effect of pulsed plasmas in oxygen+air at atmospheric pressure

    International Nuclear Information System (INIS)

    Akan, T.

    2005-01-01

    Bacteria Killing Method. The high voltage pulsed plasma is a non-equilibrium plasma and generates UV photons, ozone and active oxygen. The aim of this paper is to present a simple device to generate plasma able to kill efficiently bacteria. One of the probes charged with bacteria, was kept as a control probes (not exposed to the pulsed plasma), the rest of the probes were exposed to the pulsed plasma and afterwards compared with above mentioned control probe (reference sample). During treatment the bacteria were exposed to the active atoms, molecules, charged particles and photons generated by the pulsed plasma. The temperature of the support of samples with bacteria exposed to plasma increased during the treatment with only 1-2 degrees. Full killing time of Staphylococcus species as low as 3 minutes have been obtained quite easily

  16. Effect of pressure variation on structural, elastic, mechanical, optoelectronic and thermodynamic properties of SrNaF3 fluoroperovskite

    Science.gov (United States)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-12-01

    The effect of pressure variation on structural, electronic, elastic, mechanical, optical and thermodynamic characteristics of cubic SrNaF3 fluoroperovskite have been investigated by employing first-principles method within the framework of gradient approximation (GGA). For the total energy calculations, we have used the full-potential linearized augmented plane wave (FP-LAPW) method. Thermodynamic properties are computed in terms of quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which mechanical stability of SrNaF3 fluoroperovskite remains valid. A prominent decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 25 GPa. The effect of increase in pressure on band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on set of isotropic elastic parameters and their related properties are numerically estimated for SrNaF3 polycrystalline aggregate. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is observed as pressure is increased from 0 to 25 GPa. We have successfully obtained variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities with pressure and temperature in the range of 0-25 GPa and 0-600 K. All the calculated optical properties such as the complex dielectric function ɛ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n(ω), reflectivity R(ω), and effective number of electrons n eff, via sum rules shift towards the higher energies under the application of pressure.

  17. Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra

    Science.gov (United States)

    López-Claros, M.; Dell'Aglio, M.; Gaudiuso, R.; Santagata, A.; De Giacomo, A.; Fortes, F. J.; Laserna, J. J.

    2017-07-01

    There is a growing interest in the development of sensors use in exploration of the deep ocean. Techniques for the chemical analysis of submerged solids are of special interest, as they show promise for subsea mining applications where a rapid sorting of materials found in the sea bottom would improve efficiency. Laser-Induced Breakdown Spectroscopy (LIBS) has demonstrated potential for this application thanks to its unique capability of providing the atomic composition of submerged solids. Here we present a study on the parameters that affect the spectral response of metallic targets in an oceanic pressure environment. Following laser excitation of the solid, the plasma persistence and the cavitation bubble size are considerably reduced as the hydrostatic pressure increases. These effects are of particular concern in dual pulse excitation as reported here, where a careful choice of the interpulse timing is required. Shadowgraphic images of the plasma demonstrate that cavitation bubbles are formed early after the plasma onset and that the effect of hydrostatic pressure is negligible during the early stage of plasma expansion. Contrarily to what is observed at atmospheric pressure, emission spectra observed at high pressures are characterized by self-absorbed atomic lines on continuum radiation resulting from strong radiative recombination in the electron-rich confined environment. This effect is much less evident with ionic lines due to the much higher energy of the levels involved and ionization energy of ions, as well as to the lower extent of absorption effects occurring in the inner part of the plasma, where ionized species are more abundant. As a result of the smaller shorter-lived cavitation bubble, the LIBS intensity enhancement resulting from dual pulse excitation is reduced when the applied pressure increases.

  18. Influence of oxygen pressure and aging on LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates

    KAUST Repository

    Park, Jihwey

    2014-02-24

    The crystal structures of LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates at oxygen pressure of 10−3 millibars or 10−5 millibars, where kinetics of ablated species hardly depend on oxygen background pressure, are compared. Our results show that the interface between LaAlO3 and SrTiO3 is sharper when the oxygen pressure is lower. Over time, the formation of various crystalline phases is observed while the crystalline thickness of the LaAlO3 layer remains unchanged. X-ray scattering as well as atomic force microscopy measurements indicate three-dimensional growth of such phases, which appear to be fed from an amorphous capping layer present in as-grown samples.

  19. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates contractile dysfunction of pressure-overloaded heart in mice.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ogata

    Full Text Available Chronic left ventricular (LV pressure overload causes relative ischemia with resultant LV dysfunction. We have recently demonstrated that low-intensity pulsed ultrasound (LIPUS improves myocardial ischemia in a pig model of chronic myocardial ischemia through enhanced myocardial angiogenesis. In the present study, we thus examined whether LIPUS also ameliorates contractile dysfunction in LV pressure-overloaded hearts.Chronic LV pressure overload was induced with transverse aortic constriction (TAC in mice. LIPUS was applied to the whole heart three times in the first week after TAC and was repeated once a week for 7 weeks thereafter (n = 22. Animals in the control groups received the sham treatment without LIPUS (n = 23. At 8 weeks after TAC, LV fractional shortening was depressed in the TAC-Control group, which was significantly ameliorated in the TAC-LIPUS group (30.4±0.5 vs. 36.2±3.8%, P<0.05. Capillary density was higher and perivascular fibrosis was less in the LV in the TAC-LIPUS group than in the TAC-Control group. Myocardial relative ischemia evaluated with hypoxyprobe was noted in the TAC-Control group, which was significantly attenuated in the TAC-LIPUS group. In the TAC-LIPUS group, as compared with the control group, mRNA expressions of BNP and collagen III were significantly lower (both P<0.05 and protein expressions of VEGF and eNOS were significantly up-regulated associated with Akt activation (all P<0.05. No adverse effect related to the LIPUS therapy was noted.These results indicate that the LIPUS therapy ameliorates contractile dysfunction in chronically pressure-overloaded hearts through enhanced myocardial angiogenesis and attenuated perivascular fibrosis. Thus, the LIPUS therapy may be a promising, non-invasive treatment for cardiac dysfunction due to chronic pressure overload.

  20. CO2-Tea pulse clipping using pulsed high voltage preionization for high spatial resolution I.R. Lidar systems

    Directory of Open Access Journals (Sweden)

    Gasmi Taieb

    2018-01-01

    Full Text Available An extra-cavity CO2-TEA laser pulse clipper for high spatial resolution atmospheric monitoring is presented. The clipper uses pulsed high voltageto facilitate the breakdown of the gas within the clipper cell. Complete extinction of the nitrogen tail, that degrades the range resolution of LIDARS, is obtained at pressures from 375 up to 1500 Torr for nitrogen and argon gases whereas an attenuation coefficient of almost 102 is achieved for helium. Excellent energy stability and pulse width repeatability were achieved using high voltage pre-ionized gas technique.

  1. CO2-Tea pulse clipping using pulsed high voltage preionization for high spatial resolution I.R. Lidar systems

    Science.gov (United States)

    Gasmi, Taieb

    2018-04-01

    An extra-cavity CO2-TEA laser pulse clipper for high spatial resolution atmospheric monitoring is presented. The clipper uses pulsed high voltageto facilitate the breakdown of the gas within the clipper cell. Complete extinction of the nitrogen tail, that degrades the range resolution of LIDARS, is obtained at pressures from 375 up to 1500 Torr for nitrogen and argon gases whereas an attenuation coefficient of almost 102 is achieved for helium. Excellent energy stability and pulse width repeatability were achieved using high voltage pre-ionized gas technique.

  2. Central blood pressure and pulse wave velocity: relationship to target organ damage and cardiovascular morbidity-mortality in diabetic patients or metabolic syndrome. An observational prospective study. LOD-DIABETES study protocol.

    Science.gov (United States)

    Gómez-Marcos, Manuel A; Recio-Rodríguez, José I; Rodríguez-Sánchez, Emiliano; Castaño-Sánchez, Yolanda; de Cabo-Laso, Angela; Sánchez-Salgado, Benigna; Rodríguez-Martín, Carmela; Castaño-Sánchez, Carmen; Gómez-Sánchez, Leticia; García-Ortiz, Luis

    2010-03-18

    Diabetic patients show an increased prevalence of non-dipping arterial pressure pattern, target organ damage and elevated arterial stiffness. These alterations are associated with increased cardiovascular risk.The objectives of this study are the following: to evaluate the prognostic value of central arterial pressure and pulse wave velocity in relation to the incidence and outcome of target organ damage and the appearance of cardiovascular episodes (cardiovascular mortality, myocardial infarction, chest pain and stroke) in patients with type 2 diabetes mellitus or metabolic syndrome. This is an observational prospective study with 5 years duration, of which the first year corresponds to patient inclusion and initial evaluation, and the remaining four years to follow-up. The study will be carried out in the urban primary care setting. Consecutive sampling will be used to include patients diagnosed with type 2 diabetes between 20-80 years of age. A total of 110 patients meeting all the inclusion criteria and none of the exclusion criteria will be included. Patient age and sex, family and personal history of cardiovascular disease, and cardiovascular risk factors. Height, weight, heart rate and abdominal circumference. Laboratory tests: hemoglobin, lipid profile, creatinine, microalbuminuria, glomerular filtration rate, blood glucose, glycosylated hemoglobin, blood insulin, fibrinogen and high sensitivity C-reactive protein. Clinical and 24-hour ambulatory (home) blood pressure monitoring and self-measured blood pressure. Common carotid artery ultrasound for the determination of mean carotid intima-media thickness. Electrocardiogram for assessing left ventricular hypertrophy. Ankle-brachial index. Retinal vascular study based on funduscopy with non-mydriatic retinography and evaluation of pulse wave morphology and pulse wave velocity using the SphygmoCor system. The medication used for diabetes, arterial hypertension and hyperlipidemia will be registered, together

  3. Estimated carotid-femoral pulse wave velocity has similar predictive value as measured carotid-femoral pulse wave velocity

    DEFF Research Database (Denmark)

    Greve, Sara V; Blicher, Marie K; Kruger, Ruan

    2016-01-01

    BACKGROUND: Carotid-femoral pulse wave velocity (cfPWV) adds significantly to traditional cardiovascular risk prediction, but is not widely available. Therefore, it would be helpful if cfPWV could be replaced by an estimated carotid-femoral pulse wave velocity (ePWV) using age and mean blood pres...... that these traditional risk scores have underestimated the complicated impact of age and blood pressure on arterial stiffness and cardiovascular risk....

  4. Biomarkers of inflammation and endothelial dysfunction as predictors of pulse pressure and incident hypertension in type 1 diabetes

    DEFF Research Database (Denmark)

    Ferreira, Isabel; Hovind, Peter; Schalkwijk, Casper G

    2018-01-01

    AIMS/HYPOTHESIS: Vascular inflammation and endothelial dysfunction are thought to contribute to arterial stiffening and hypertension. This study aims to test this hypothesis with longitudinal data in the context of type 1 diabetes. METHODS: We investigated, in an inception cohort of 277 individuals...... with type 1 diabetes, the course, tracking and temporal inter-relationships of BP, specifically pulse pressure (a marker of arterial stiffening) and hypertension, and the following biomarkers of systemic and vascular inflammation/endothelial dysfunction: C-reactive protein (CRP), soluble intracellular...... endothelial dysfunction and inflammation in the development of premature arterial stiffening and hypertension in type 1 diabetes....

  5. Diurnal variation in the performance of rapid response systems: the role of critical care services-a review article.

    Science.gov (United States)

    Sundararajan, Krishnaswamy; Flabouris, Arthas; Thompson, Campbell

    2016-01-01

    The type of medical review before an adverse event influences patient outcome. Delays in the up-transfer of patients requiring intensive care are associated with higher mortality rates. Timely detection and response to a deteriorating patient constitute an important function of the rapid response system (RRS). The activation of the RRS for at-risk patients constitutes the system's afferent limb. Afferent limb failure (ALF), an important performance measure of rapid response systems, constitutes a failure to activate a rapid response team (RRT) despite criteria for calling an RRT. There are diurnal variations in hospital staffing levels, the performance of rapid response systems and patient outcomes. Fewer ward-based nursing staff at night may contribute to ALF. The diurnal variability in RRS activity is greater in unmonitored units than it is in monitored units for events that should result in a call for an RRT. RRT events include a significant abnormality in either the pulse rate, blood pressure, conscious state or respiratory rate. There is also diurnal variation in RRT summoning rates, with most activations occurring during the day. The reasons for this variation are mostly speculative, but the failure of the afferent limb of RRT activation, particularly at night, may be a factor. The term "circadian variation/rhythm" applies to physiological variations over a 24-h cycle. In contrast, diurnal variation applies more accurately to extrinsic systems. Circadian rhythm has been demonstrated in a multitude of bodily functions and disease states. For example, there is an association between disrupted circadian rhythms and abnormal vital parameters such as anomalous blood pressure, irregular pulse rate, aberrant endothelial function, myocardial infarction, stroke, sleep-disordered breathing and its long-term consequences of hypertension, heart failure and cognitive impairment. Therefore, diurnal variation in patient outcomes may be extrinsic, and more easily modifiable

  6. New method for remote and repeatable monitoring of intraocular pressure variations.

    Science.gov (United States)

    Margalit, Israel; Beiderman, Yevgeny; Skaat, Alon; Rosenfeld, Elkanah; Belkin, Michael; Tornow, Ralf-Peter; Mico, Vicente; Garcia, Javier; Zalevsky, Zeev

    2014-02-01

    We present initial steps toward a new measurement device enabling high-precision, noncontact remote and repeatable monitoring of intraocular pressure (IOP)-based on an innovative measurement principle. Using only a camera and a laser source, the device measures IOP by tracking the secondary speckle pattern trajectories produced by the reflection of an illuminating laser beam from the iris or the sclera. The device was tested on rabbit eyes using two different methods to modify IOP: via an infusion bag and via mechanical pressure. In both cases, the eyes were stimulated with increasing and decreasing ramps of the IOP. As IOP variations changed the speckle distributions reflected back from the eye, data were recorded under various optical configurations to define and optimize the best experimental configuration for the IOP extraction. The association between the data provided by our proposed device and that resulting from controlled modification of the IOP was assessed, revealing high correlation (R2=0.98) and sensitivity and providing a high-precision measurement (5% estimated error) for the best experimental configuration. Future steps will be directed toward applying the proposed measurement principle in clinical trials for monitoring IOP with human subjects.

  7. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  8. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity

    International Nuclear Information System (INIS)

    Wang, Shang; Larin, K V; Li, Jiasong; Vantipalli, S; Twa, M D; Manapuram, R K; Aglyamov, S; Emelianov, S

    2013-01-01

    Accurate non-invasive assessment of tissue elasticity in vivo is required for early diagnostics of many tissue abnormalities. We have developed a focused air-pulse system that produces a low-pressure and short-duration air stream, which can be used to excite transient surface waves (SWs) in soft tissues. System characteristics were studied using a high-resolution analog pressure transducer to describe the excitation pressure. Results indicate that the excitation pressure provided by the air-pulse system can be easily controlled by the air source pressure, the angle of delivery, and the distance between the tissue surface and the port of the air-pulse system. Furthermore, we integrated this focused air-pulse system with phase-sensitive optical coherence tomography (PhS-OCT) to make non-contact measurements of tissue elasticity. The PhS-OCT system is used to assess the group velocity of SW propagation, which can be used to determine Young’s modulus. Pilot experiments were performed on gelatin phantoms with different concentrations (10%, 12% and 14% w/w). The results demonstrate the feasibility of using this focused air-pulse system combined with PhS-OCT to estimate tissue elasticity. This easily controlled non-contact technique is potentially useful to study the biomechanical properties of ocular and other tissues in vivo. (letter)

  9. DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application

    Science.gov (United States)

    Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang

    2018-01-01

    Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.

  10. Validation of the Nonin 8600V Pulse Oximeter for heart rate and oxygen saturation measurements in rats.

    Science.gov (United States)

    Bernard, Susan L; An, Dowon; Glenny, Robb W

    2004-05-01

    This report validates the use and limitations of the Nonin Pulse Oximeter for measuring heart rate and oxygen saturation in rats. Eight anesthetized Sprague-Dawley rats were intubated and catheterized. Oxygen saturation was directly measured from arterial blood by using a Radiometer OSM3 Hemoximeter adjusted for rat blood as well as indirectly by using the Nonin Pulse Oximeter. Oxygen saturation was changed by varying the level of inhaled oxygen. Heart rate was measured in two ways: 1) by using the signal from the Nonin Pulse Oximeter and 2) by counting the pressure pulses from the transduced blood pressure. There was excellent agreement between heart rate values measured by the Nonin Pulse Oximeter and that measured by counting the pulses from the arterial blood pressure recording. The Nonin Pulse Oximeter underestimated oxygen saturations by about 3% to 5% compared to the Hemoximeter. Overall, the pulse oximeter reflected important trends in oxygen saturations, making it a useful tool for laboratory animal medicine.

  11. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters

    NARCIS (Netherlands)

    Vervoort, L.; Plancken, van der I.; Grauwet, T.; Timmermans, R.A.H.; Mastwijk, H.C.; Matser, A.M.; Hendrickx, M.E.; Loey, van A.

    2011-01-01

    The impact of thermal, high pressure (HP) and pulsed electric field (PEF) processing for mild pasteurization of orange juice was compared on a fair basis, using processing conditions leading to an equivalent degree of microbial inactivation. Examining the effect on specific chemical and biochemical

  12. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  13. Effects of pressure and temperature on sintering of Cr-doped Al2O3 by pulsed electric current sintering process

    Science.gov (United States)

    Dang, K. Q.; Nanko, M.

    2011-03-01

    The aluminium oxide crystal, Al2O3, which contains a small amount of chromium, Cr, is called ruby. Pulsed electric current sintering (PECS) was applied to sinter ruby polycrystals. Cr2O3-Al2O3 powder mixture prepared by drying an aqueous slurry containing amounts of Al2O3 and Cr(NO3)3 was consolidated by PECS process. The PECS process was performed in vacuum at sintering temperature raging from 1100 to 1300°C with heating rate of 2 K/min under applied uniaxial pressure varied from 40 to 100 MPa. This study found that highly densified and transparent Cr-doped Al2O3 can be obtained by the PECS process with the high applied pressure at sintering temperature of 1200°C.

  14. Pulsed dc self-sustained magnetron sputtering

    International Nuclear Information System (INIS)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-01-01

    The magnetron sputtering has become one of the commonly used techniques for industrial deposition of thin films and coatings due to its simplicity and reliability. At standard magnetron sputtering conditions (argon pressure of ∼0.5 Pa) inert gas particles (necessary to sustain discharge) are often entrapped in the deposited films. Inert gas contamination can be eliminated during the self-sustained magnetron sputtering (SSS) process, where the presence of the inert gas is not a necessary requirement. Moreover the SSS process that is possible due to the high degree of ionization of the sputtered material also gives a unique condition during the transport of sputtered particles to the substrate. So far it has been shown that the self-sustained mode of magnetron operation can be obtained using dc powering (dc-SSS) only. The main disadvantage of the dc-SSS process is its instability related to random arc formation. In such case the discharge has to be temporarily extinguished to prevent damaging both the magnetron source and power supply. The authors postulate that pulsed powering could protect the SSS process against arcs, similarly to reactive pulsed magnetron deposition processes of insulating thin films. To put this concept into practice, (i) the high enough plasma density has to be achieved and (ii) the type of pulsed powering has to be chosen taking plasma dynamics into account. In this article results of pulsed dc self-sustained magnetron sputtering (pulsed dc-SSS) are presented. The planar magnetron equipped with a 50 mm diameter and 6 mm thick copper target was used during the experiments. The maximum target power was about 11 kW, which corresponded to the target power density of ∼560 W/cm 2 . The magnetron operation was investigated as a function of pulse frequency (20-100 kHz) and pulse duty factor (50%-90%). The discharge (argon) extinction pressure level was determined for these conditions. The plasma emission spectra (400-410 nm range) and deposition

  15. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    Science.gov (United States)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  16. Experimental study and modelisation of a pulse tube refrigerator

    International Nuclear Information System (INIS)

    Ravex, A.; Rolland, P.; Liang, J.

    1992-01-01

    A test bench for pulse tube refrigerator characterization has been built. In various configurations (basic pulse tube, orifice pulse tube and double inlet pulse tube), the ultimate temperature and the cooling power have been measured as a function of pressure wave amplitude and frequency for various geometries. A lowest temperature of 28 K has been achieved in a single staged double inlet configuration. A modelisation taking into account wall heat pumping, enthalpy flow and regenerator inefficiency is under development. Preliminary calculation results are compared with experimental data

  17. Method for estimating off-axis pulse tube losses

    Science.gov (United States)

    Fang, T.; Mulcahey, T. I.; Taylor, R. P.; Spoor, P. S.; Conrad, T. J.; Ghiaasiaan, S. M.

    2017-12-01

    Some Stirling-type pulse tube cryocoolers (PTCs) exhibit sensitivity to gravitational orientation and often exhibit significant cooling performance losses unless situated with the cold end pointing downward. Prior investigations have indicated that some coolers exhibit sensitivity while others do not; however, a reliable method of predicting the level of sensitivity during the design process has not been developed. In this study, we present a relationship that estimates an upper limit to gravitationally induced losses as a function of the dimensionless pulse tube convection number (NPTC) that can be used to ensure that a PTC would remain functional at adverse static tilt conditions. The empirical relationship is based on experimental data as well as experimentally validated 3-D computational fluid dynamics simulations that examine the effects of frequency, mass flow rate, pressure ratio, mass-pressure phase difference, hot and cold end temperatures, and static tilt angle. The validation of the computational model is based on experimental data collected from six commercial pulse tube cryocoolers. The simulation results are obtained from component-level models of the pulse tube and heat exchangers. Parameter ranges covered in component level simulations are 0-180° for tilt angle, 4-8 for length to diameter ratios, 4-80 K cold tip temperatures, -30° to +30° for mass flow to pressure phase angles, and 25-60 Hz operating frequencies. Simulation results and experimental data are aggregated to yield the relationship between inclined PTC performance and pulse tube convection numbers. The results indicate that the pulse tube convection number can be used as an order of magnitude indicator of the orientation sensitivity, but CFD simulations should be used to calculate the change in energy flow more accurately.

  18. Evaluation of the effect of systolic blood pressure and pulse pressure on cognitive function: the Women's Health and Aging Study II.

    Directory of Open Access Journals (Sweden)

    Sevil Yasar

    Full Text Available Evidence suggests that elevated systolic blood pressure (SBP and pulse pressure (PP in midlife is associated with increased risk for cognitive impairment later in life. There is mixed evidence regarding the effects of late life elevated SBP or PP on cognitive function, and limited information on the role of female gender.Effects of SBPand PPon cognitive abilities at baseline and over a 9-year period were evaluated in 337 non-demented community-dwelling female participants over age 70 in the Women's Health and Aging Study II using logistic and Cox proportional hazards regression analyses. Participants aged 76-80 years with SBP≥160 mmHg or PP≥84 mmHg showed increased incidence of impairment on Trail Making Test-Part B (TMT, Part B, a measure of executive function, over time when compared to the control group that included participants with normal and pre-hypertensive SBP (<120 and 120-139 mmHg or participants with low PP (<68 mmHg (HR = 5.05 [95%CI = 1.42, 18.04], [HR = 5.12 [95%CI = 1.11; 23.62], respectively. Participants aged 70-75 years with PP≥71 mmHg had at least a two-fold higher incidence of impairment on HVLT-I, a measure of verbal learning, over time when compared to participants with low PP (<68 mmHg (HR = 2.44 [95%CI = 1.11, 5.39].Our data suggest that elevated SBP or PP in older non-demented women increases risk for late-life cognitive impairment and that PP could be used when assessing the risk for impairment in cognitive abilities. These results warrant further, larger studies to evaluate possible effects of elevated blood pressure in normal cognitive aging.

  19. Improving a variation of the DSC technique for measuring the boiling points of pure compounds at low pressures

    International Nuclear Information System (INIS)

    Troni, Kelly L.; Damaceno, Daniela S.; Ceriani, Roberta

    2016-01-01

    Highlights: • Improvement of a variation of the DSC technique for boiling points at low pressures. • Use of a ballpoint pen ball over the pinhole of the DSC crucible. • Effects of configuration variables of the DSC technique accounted by factorial design. • An optimized region was obtained and tested for selected compounds. - Abstract: This study aims to improve a variation of the differential scanning calorimetry (DSC) technique for measuring boiling points of pure compounds at low pressures. Using a well-known n-paraffin (n-hexadecane), experimental boiling points at a pressure of 3.47 kPa with u(P) = 0.07 kPa were obtained by using a variation of the DSC technique, which consists of placing samples inside hermetically sealed aluminum crucibles, with a pinhole (diameter of 0.8 mm) made on the lid and a tungsten carbide ball with a diameter of 1.0 mm over it. Experiments were configured at nine different combinations of heating rates (K·min"−"1) and sample sizes (mg) following a full factorial design (2"2 trials plus a star configuration and three central points). Individual and combined effects of these two independent variables on the difference between experimental and estimated boiling points (NIST Thermo Data Engine v. 5.0 – Aspen Plus v. 8.4) were investigated. The results obtained in this work reveal that although both factors affect individually the accuracy of this variation of the DSC technique, the effect of heating rate is the most important. An optimized region of combinations of heating rate and sample size for determining boiling points of pure compounds at low pressures was obtained using the response-surface methodology (RSM). Within this optimized region, a selected condition, combining a heating rate of 24.52 K·min"−"1 and a sample size of (4.6 ± 0.5) mg, was tested for six different compounds (92.094–302.37 g mol"−"1) comprising four fatty compounds (tributyrin, monocaprylin, octanoic acid and 1-octadecanol), glycerol and n

  20. Estimation of pulses in ultrasound B-scan images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1991-01-01

    It is shown, based on an expression for the received pressure field in pulsed medical ultrasound systems, that a common one-dimensional pulse can be estimated from individual A-lines. An autoregressive moving average (ARMA) model is suggested for the pulse, and an estimator based on the prediction...... error method is derived. The estimator is used on a segment of an A-line, assuming that the pulse does not change significantly inside the segment. Several examples of the use of the estimator on synthetic data measured from a tissue phantom and in vitro data measured from a calf's liver are given....... They show that a pulse can be estimated even at moderate signal-to-noise ratios...

  1. DETERMINANTS OF SUBOPTIMAL BLOOD PRESSURE CONTROL IN HYPERTENSIVE PATIENTS: 24-HOUR AMBULATORY BLOOD PRES-SURE MONITORING

    Directory of Open Access Journals (Sweden)

    Mansoor Moazenzadeh

    2010-12-01

    Full Text Available Abstract    INTRODUCTION: The study was conducted to define the determinants of suboptimal blood pressure (BP control among hypertensive patients under treatment and explore a predictive model for detecting the patients at risk for increased BP.    METHODS: We enrolled 97 patients (40 males, 57 females under treatment for hypertension between June 2006 and May 2007 in Shafa hospital, Kerman, Iran. BP was measured at clinic twice within 5-minute intervals. After setting up ambulatory blood pressure monitoring (ABPM, BP was measured at 30-minute intervals during the day and 60-minute intervals during the night. The frequency of increased BP (more than 140/90 mmHg was included in a regression model as dependent variable and all the others such as age, sex, body mass index (BMI, drugs and baseline clinical measurements as the predictors.    RESULTS: Increased BP was detected in 44% (95% CI: 38.79%-49.65% of all measurements during 24-hour monitoring. The frequency of increased BP had a significant relationship with BMI (b=0.35, P=0.001. Clinic's pulse pressure was a significant predicting factor for BP increase (P=0.02.    CONCLUSION: BMI and pulse pressure are the best predictors for being hypertensive during lifetime. Ineffective treatment of hypertension is frequent among the hypertensive patients.      Keywords: Blood pressure control, Pulse pressure, Ambulatory blood pressure monitoring (ABPM, BMI.

  2. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  3. Blood Pressure vs. Heart Rate

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Blood Pressure vs. Heart Rate (Pulse) Updated:Nov 13,2017 ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  4. Modeling of Pulsed Direct-Current Glow Discharge

    International Nuclear Information System (INIS)

    Du Mu; Zheng Yaru; Fan Yujia; Zhang Nan; Liu Chengsen; Wang Dezhen

    2010-01-01

    A self-consistent model was adopted to study the time evolution of low-voltage pulsed DC glow discharge. The distributions of electric field, ion density and electron density in nitrogen were investigated in our simulation, and the temporal shape of the discharge current was also obtained. Our results show that the dynamic behaviors of the discharge depends strongly on the applied pulse voltage, and the use of higher pulse voltages results in a significantly increase of discharge current and a decrease of discharge delay time. The current-voltage characteristic calculated by adjusting secondary electron emission coefficient for different applied pulse voltage under the gas pressure of 1 Torr is found in a reasonable agreement with the experimental results.

  5. Disinfection effect of non-thermal atmospheric pressure plasma for foodborne bacteria

    Science.gov (United States)

    Pervez, Mohammad Rasel; Inomata, Takanori; Ishijima, Tatsuo; Kakikawa, Makiko; Uesugi, Yoshihiko; Tanaka, Yasunori; Yano, Toshihiro; Miwa, Shoji; Noguchi, Akinori

    2015-09-01

    Non-thermal atmospheric pressure plasma (NAPP) exposure can be a suitable alternative for bacteria inactivation in food processing industry. Specimen placed in the enclosure are exposed to various reactive radicals produced within the discharge chamber. It is also exposed to the periodic variation of the electric field strength in the chamber. Dielectric barrier discharge is produced by high voltage pulse (Vpp = 18 kV, pulse width 20 μs, repetition frequency 10 kHz) in a polypropylene box (volume = 350 cm3) using helium as main feed gas. Inactivation efficiency of NAPP depends on the duration of NAPP exposure, applied voltage pulse strength and type, pulse duration, electrode separation and feed gas composition. In this study we have investigated inactivation of Bacillus lichenformis spore as an example of food borne bacteria. Keeping applied voltage, electrode configuration and total gas flow rate constant, spores are exposed to direct NAPP for different time duration while O2 concentration in the feed gas composition is varied. 10 minutes NAPP exposure resulted in ~ 3 log reduction of Bacillus lichenformis spores for 1% O2concentration (initial concentration ~ 106 / specimen). This work is supported by research and development promotion grant provided by the Hokuriku Industrial Advancement Center.

  6. Pulse triggering mechanism of air proportional counters

    International Nuclear Information System (INIS)

    Aoyama, T.; Mori, T.; Watanabe, T.

    1983-01-01

    This paper describes the pulse triggering mechanism of a cylindrical proportional counter filled with air at atmospheric pressure for the incidence of β-rays. Experimental results indicate that primary electrons created distantly from the anode wire by a β-ray are transformed into negative ions, which then detach electrons close to the anode wire and generate electron avalanches thus triggering pulses, while electrons created near the anode wire by a β-ray directly trigger a pulse. Since a negative ion pulse is triggered by a single electron detached from a negative ion, multiple pulses are generated by a large number of ions produced by the incidence of a single β-ray. It is therefore necessary not to count pulses triggered by negative ions but to count those by primary electrons alone when use is made of air proportional counters for the detection of β-rays. (orig.)

  7. Laser induced fluorescence in nanosecond repetitively pulsed discharges for CO2 conversion

    Science.gov (United States)

    Martini, L. M.; Gatti, N.; Dilecce, G.; Scotoni, M.; Tosi, P.

    2018-01-01

    A CO2 nanosecond repetitively pulsed discharge (NRP) is a harsh environment for laser induced fluorescence (LIF) diagnostics. The difficulties arise from it being a strongly collisional system in which the gas composition, pressure and temperature, have quick and strong variations. The relevant diagnostic problems are described and illustrated through the application of LIF to the measurement of the OH radical in three different discharge configurations, with gas mixtures containing CO2 + H2O. These range from a dielectric barrier NRP with He buffer gas, a less hostile case in which absolute OH density measurement is possible, to an NRP in CO2+H2O, where the full set of drawbacks is at work. In the last case, the OH density measurement is not possible with laser pulses and detector time resolution in the ns time scale. Nevertheless, it is shown that with a proper knowledge of the collisional rate constants involved in the LIF process, a collisional energy transfer-LIF methodology is still applicable to deduce the gas composition from the analysis of LIF spectra.

  8. Variations in pulmonary artery occlusion pressure to estimate changes in pleural pressure.

    Science.gov (United States)

    Bellemare, Patrick; Goldberg, Peter; Magder, Sheldon A

    2007-11-01

    A readily available assessment of changes in pleural pressure would be useful for ventilator and fluid management in critically ill patients. We examined whether changes in pulmonary artery occlusion pressure (Ppao) adequately reflect respiratory changes in pleural pressure as assessed by changes in intraesophageal balloon pressure (Peso). We studied patients who had a pulmonary catheter and esophageal balloon surrounding a nasogastric tube as part of their care (n=24). We compared changes in Ppao (dPpao) to changes in Peso (dPeso) by Bland-Altman and regression analysis. Adequacy of balloon placement was assessed by performing Mueller maneuvers and adjusting the position to achieve a ratio of dPeso to change in tracheal pressure (dPtr) of 0.85 or higher. This was achieved in only 14 of the 24 subjects. We also compared dCVP to dPeso. The dPpao during spontaneous breaths and positive pressure breaths gave a good estimate of Peso but generally underestimated dPeso (bias=2.2 +8.2 and -3.9 cmH2O for the whole group). The dCVP was not as good a predictor (bias=2.9 +10.3 and -4.6). In patients who have a pulmonary artery catheter in place dPpao gives a lower estimate of changes in pleural pressure and may be more reliable than dPeso. The dCVP is a less reliable predictor than changes in pleural pressure.

  9. The influence of pressure ratio on the regenerator performance

    Science.gov (United States)

    Lin, Y.; Zhu, S.

    2017-12-01

    For a multi-stage pulse tube refrigerator with displacer, improving the regenerator efficiency is important. A displacer can get higher operating pressure ratio compared with inertance tube. The pressure ratio and porosity influence on the regenerator performance with is discussed, and CFD simulation is done on a two-stage pulse tube refrigerator with displacer to show that mass flow rate and pressure wave relation in the regenerator can be realized by a step-displacer.

  10. Sources of measurement variation in blood pressure in large-scale epidemiological surveys with follow-up

    DEFF Research Database (Denmark)

    Andersen, Ulla Overgaard; Henriksen, Jens H; Jensen, Gorm

    2002-01-01

    The Copenhagen City Heart Study (CCHS) is a longitudinal epidemiological study of 19698 subjects followed up since 1976. Variation in blood pressure (BP) measurement in the first three CCHS surveys is evaluated by assessing two components, systematic variation and random variation [daytime...... min rest, with the cuff around the non-dominating arm, in accordance with recommended guidelines. The participation rate fell from 74% in survey 1 to 63% in survey 3. Significant non-response bias with respect to BP values was not found. No daytime variability was noted either in systolic (SBP...... and plasma cholesterol. SBP was 5-10 mmHg higher in diabetics (p = 0.000-0.04) than in age- and sex-matched non-diabetics. DBP did not differ between the two groups. Smokers from the age of 50 years had a 2-4 mmHg lower SBP (p = 0.000-0.01) and 1-3 mmHg lower DBP (p = 0.000-0.005) than had non...

  11. Ozone Production Using Pulsed Dielectric Barrier Discharge in Oxygen

    OpenAIRE

    Samaranayake, W. J. M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2000-01-01

    The production of ozone was investigated using a dielectric barrier discharge in oxygen, and employing short-duration pulsed power. The dependence of the ozone concentration (parts per million, ppm) and ozone production yield (g(O3)/kWh) on the peak pulsed voltage (17.5 to 57.9 kV) and the pulse repetition rate (25 to 400 pulses/s, pps) were investigated. In the present study, the following parameters were kept constant: a pressure of 1.01×105 Pa, a temperature of 26±4°C a gas flow rate of 3....

  12. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    International Nuclear Information System (INIS)

    Eslami, E.; Barjasteh, A.; Morshedian, N.

    2015-01-01

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap

  13. Investigation of effect of blood pressure and heart rate changes in different positions (lying and sitting on hypotension incidence rate after spinal anesthesia in patients undergoing caesarean section

    Directory of Open Access Journals (Sweden)

    Nahid Manouchehrian

    2016-07-01

    Full Text Available Due to the relatively high prevalence of hypotension (20% -40% after spinal anesthesia as well as the adverse effects of hypotension on mother and baby, it is better to prevent hypotension as much as possible. Therefore, this study is aimed to determine the relationship between postural blood pressure and heart rate changes and hypotension incidence rate after spinal anesthesia in cesarean section.63 women aging18 to 45years old with fullterm pregnancy, who were candidate for caesarean section with spinal anesthesia, entered the study. Afterwards, the diastolic, systolic, and mean arterial pressures as well as the heart rate (pulse in different positions (sitting, lying, and left lateral were measured. After spinal anesthesia, the patients' blood pressure was measured and recorded every minute until the10thmin, then every 3 minute until the15thmin, and then every 5 minute until the end of cesarean section. Data analysis was performed using SPSS (ver. 19 software, descriptive statistics, one-way ANOVA, and post hoc Bonferroni test. In this study, the hypotension incidence rate was 30% and the orthostatic variation rate of the systolic blood pressure in more than half of the people was between 4.39 to 13.49psi, which showed the highest variation compared to the diastolic pressure, mean arterial blood pressure (or: mean arterial pressure [MAP], and heart(pulse. Considering the correlation coefficient of 0.27, the systolic blood pressure in the lateral position has the highest relationship with the incidence of hypotension. The postural systolic blood pressure changes in patients prior to the spinal anesthesia can be a predictive factor for the post-spinal hypotension incidence.

  14. Non-storm irregular variation of the Dst index

    Directory of Open Access Journals (Sweden)

    S. Nakano

    2012-01-01

    Full Text Available The Dst index has a long-term variation that is not associated with magnetic storms. We estimated the long-term non-storm component of the Dst variation by removing the short-term variation related to magnetic storms. The results indicate that the variation of the non-storm component includes not only a seasonal variation but also an irregular variation. The irregular long-term variation is likely to be due to an anti-correlation with the long-term variation of solar-wind activity. In particular, a clear anti-correlation is observed between the non-storm component of Dst and the long-term variation of the solar-wind dynamic pressure. This means that in the long term, the Dst index tends to increase when the solar-wind dynamic pressure decreases. We interpret this anti-correlation as an indication that the long-term non-storm variation of Dst is influenced by the tail current variation. The long-term variation of the solar-wind dynamic pressure controls the plasma sheet thermal pressure, and the change of the plasma sheet thermal pressure would cause the non-storm tail current variation, resulting in the non-storm variation of Dst.

  15. Self-sustained Oscillation Pulsed Air Blowing System for Energy Saving

    Institute of Scientific and Technical Information of China (English)

    CAI Maolin; XU Weiqing

    2010-01-01

    Currently, many studies have been made for years on dimensions of pneumatic nozzle, which influence the flow characteristic of blowing system. For the purpose of outputting the same blowing force, the supply pressure could be reduced by decreasing the ratio of length to diameter of nozzle. The friction between high speed air and pipe wall would be reduced if the nozzle is designed to be converging shape comparing with straight shape. But the volume flow and pressure, discussed in these studies, do not describe energy loss of the blowing system directly. Pneumatic power is an innovative principle to estimate pneumatic system's energy consumption directly. Based on the above principle, a pulse blowing method is put forward for saving energy. A flow experiment is carried out, in which the high speed air flows from the pulse blowing system and continuous blowing system respectively to a plate with grease on top. Supply pressure and the volume of air used for removing the grease are measured to calculate energy consumption. From the experiment result, the pulse blowing system performs to conserve energy comparing with the continuous blowing system. The frequency and duty ratio of pulse flow influence the blowing characteristic. The pulse blowing system performs to be the most efficient at the specified frequency and duty ratio. Then a pneumatic self-oscillated method based on air operated valve is put forward to generate pulse flow. A simulation is made about dynamic modeling the air operated valve and calculating the motion of the valve core and output pressure. The simulation result verifies the system to be able to generate pulse flow, and predicts the key parameters of the frequency and duty ratio measured by experiment well. Finally, on the basis of simplifying and solution of the pulse blowing system's mathematic model, the relationship between system's frequency duty ratio and the dimensions of components is simply described with four algebraic equations. The

  16. Impact of Mental and Physical Stress on Blood Pressure and Pulse Pressure under Normobaric versus Hypoxic Conditions

    Science.gov (United States)

    Trapp, Michael; Trapp, Eva-Maria; Egger, Josef W.; Domej, Wolfgang; Schillaci, Giuseppe; Avian, Alexander; Rohrer, Peter M.; Hörlesberger, Nina; Magometschnigg, Dieter; Cervar-Zivkovic, Mila; Komericki, Peter; Velik, Rosemarie; Baulmann, Johannes

    2014-01-01

    Objective Hypobaric hypoxia, physical and psychosocial stress may influence key cardiovascular parameters including blood pressure (BP) and pulse pressure (PP). We investigated the effects of mild hypobaric hypoxia exposure on BP and PP reactivity to mental and physical stress and to passive elevation by cable car. Methods 36 healthy volunteers participated in a defined test procedure consisting of a period of rest 1, mental stress task (KLT-R), period of rest 2, combined mental (KLT-R) and physical task (bicycle ergometry) and a last period of rest both at Graz, Austria (353 m asl) and at the top station Dachstein (2700 m asl). Beat-to-beat heart rate and BP were analysed both during the test procedures at Graz and at Dachstein and during passive 1000 m elevation by cable car (from 1702 m to 2700 m). Results A significant interaction of kind of stress (mental vs. combined mental and physical) and study location (Graz vs. Dachstein) was found in the systolic BP (p = .007) and PP (p = .002) changes indicating that during the combined mental and physical stress task sBP was significantly higher under hypoxic conditions whereas sBP and PP were similar during mental stress both under normobaric normoxia (Graz) and under hypobaric hypoxia (Dachstein). During the passive ascent in cable car less trivialization (psychological coping strategy) was associated with an increase in PP (p = .004). Conclusion Our data show that combined mental and physical stress causes a significant higher raise in sBP and PP under hypoxic conditions whereas isolated mental stress did not affect sBP and PP under hypoxic conditions. PP-reaction to ascent in healthy subjects is not uniform. BP reactions to ascent that represents an accumulation of physical (mild hypobaric hypoxia) and psychological stressors depend on predetermined psychological traits (stress coping strategies). Thus divergent cardiovascular reactions can be explained by applying the multidimensional aspects of the

  17. Impact of mental and physical stress on blood pressure and pulse pressure under normobaric versus hypoxic conditions.

    Directory of Open Access Journals (Sweden)

    Michael Trapp

    Full Text Available Hypobaric hypoxia, physical and psychosocial stress may influence key cardiovascular parameters including blood pressure (BP and pulse pressure (PP. We investigated the effects of mild hypobaric hypoxia exposure on BP and PP reactivity to mental and physical stress and to passive elevation by cable car.36 healthy volunteers participated in a defined test procedure consisting of a period of rest 1, mental stress task (KLT-R, period of rest 2, combined mental (KLT-R and physical task (bicycle ergometry and a last period of rest both at Graz, Austria (353 m asl and at the top station Dachstein (2700 m asl. Beat-to-beat heart rate and BP were analysed both during the test procedures at Graz and at Dachstein and during passive 1000 m elevation by cable car (from 1702 m to 2700 m.A significant interaction of kind of stress (mental vs. combined mental and physical and study location (Graz vs. Dachstein was found in the systolic BP (p = .007 and PP (p = .002 changes indicating that during the combined mental and physical stress task sBP was significantly higher under hypoxic conditions whereas sBP and PP were similar during mental stress both under normobaric normoxia (Graz and under hypobaric hypoxia (Dachstein. During the passive ascent in cable car less trivialization (psychological coping strategy was associated with an increase in PP (p = .004.Our data show that combined mental and physical stress causes a significant higher raise in sBP and PP under hypoxic conditions whereas isolated mental stress did not affect sBP and PP under hypoxic conditions. PP-reaction to ascent in healthy subjects is not uniform. BP reactions to ascent that represents an accumulation of physical (mild hypobaric hypoxia and psychological stressors depend on predetermined psychological traits (stress coping strategies. Thus divergent cardiovascular reactions can be explained by applying the multidimensional aspects of the biopsychosocial concept.

  18. Pulsed power accelerator for material physics experiments

    Directory of Open Access Journals (Sweden)

    D. B. Reisman

    2015-09-01

    Full Text Available We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM, circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  19. Aortic-Brachial Pulse Wave Velocity Ratio: A Measure of Arterial Stiffness Gradient Not Affected by Mean Arterial Pressure.

    Science.gov (United States)

    Fortier, Catherine; Desjardins, Marie-Pier; Agharazii, Mohsen

    2018-03-01

    Aortic stiffness, measured by carotid-femoral pulse wave velocity (cf-PWV), is used for the prediction of cardiovascular risk. This mini-review describes the nonlinear relationship between cf-PWV and operational blood pressure, presents the proposed methods to adjust for this relationship, and discusses a potential place for aortic-brachial PWV ratio (a measure of arterial stiffness gradient) as a blood pressure-independent measure of vascular aging. PWV is inherently dependent on the operational blood pressure. In cross-sectional studies, PWV adjustment for mean arterial pressure (MAP) is preferred, but still remains a nonoptimal approach, as the relationship between PWV and blood pressure is nonlinear and varies considerably among individuals due to heterogeneity in genetic background, vascular tone, and vascular remodeling. Extrapolations from the blood pressure-independent stiffness parameter β (β 0 ) have led to the creation of stiffness index β, which can be used for local stiffness. A similar approach has been used for cardio-ankle PWV to generate a blood pressure-independent cardio-ankle vascular index (CAVI). It was recently demonstrated that stiffness index β and CAVI remain slightly blood pressure-dependent, and a more appropriate formula has been proposed to make the proper adjustments. On the other hand, the negative impact of aortic stiffness on clinical outcomes is thought to be mediated through attenuation or reversal of the arterial stiffness gradient, which can also be influenced by a reduction in peripheral medium-sized muscular arteries in conditions that predispose to accelerate vascular aging. Arterial stiffness gradient, assessed by aortic-brachial PWV ratio, is emerging to be at least as good as cf-PWV for risk prediction, but has the advantage of not being affected by operating MAP. The negative impacts of aortic stiffness on clinical outcomes are proposed to be mediated through attenuation or reversal of arterial stiffness gradient

  20. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    International Nuclear Information System (INIS)

    Teramoto, Yoshiyuki; Ono, Ryo; Oda, Tetsuji

    2012-01-01

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N 2 discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N 2 discharge pulse is estimated to be 2.9 - 9.8 × 10 13 atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 × 10 16 atoms/J. The energy efficiency of atomic nitrogen production in N 2 discharge is constant against the discharge energy, while that in N 2 /O 2 discharge increases with discharge energy. In the N 2 /O 2 discharge, two-step process of N 2 dissociation plays significant role for atomic nitrogen production.

  1. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring.

    Science.gov (United States)

    Dagdeviren, Canan; Su, Yewang; Joe, Pauline; Yona, Raissa; Liu, Yuhao; Kim, Yun-Soung; Huang, YongAn; Damadoran, Anoop R; Xia, Jing; Martin, Lane W; Huang, Yonggang; Rogers, John A

    2014-08-05

    The ability to measure subtle changes in arterial pressure using devices mounted on the skin can be valuable for monitoring vital signs in emergency care, detecting the early onset of cardiovascular disease and continuously assessing health status. Conventional technologies are well suited for use in traditional clinical settings, but cannot be easily adapted for sustained use during daily activities. Here we introduce a conformal device that avoids these limitations. Ultrathin inorganic piezoelectric and semiconductor materials on elastomer substrates enable amplified, low hysteresis measurements of pressure on the skin, with high levels of sensitivity (~0.005 Pa) and fast response times (~0.1 ms). Experimental and theoretical studies reveal enhanced piezoelectric responses in lead zirconate titanate that follow from integration on soft supports as well as engineering behaviours of the associated devices. Calibrated measurements of pressure variations of blood flow in near-surface arteries demonstrate capabilities for measuring radial artery augmentation index and pulse pressure velocity.

  2. Potential of high isostatic pressure and pulsed electric fields for the processing of potato and pea proteins:structural and techno-functional characterization in model solutions and plant tissue

    OpenAIRE

    Baier, Anne Kathrin

    2016-01-01

    The aim of this thesis was to evaluate the potential of high isostatic pressure and pulsed electric fields for the production of high quality plant proteins. Induced changes in protein solutions and plant tissue of potato and pea were analyzed by means of structural and techno-functional characterization as well as by investigation of diffusion and extractions procedures. The application of high isostatic pressure provides a gentle alternative to conventional heat preservation. Especially ...

  3. Central blood pressure and pulse wave velocity: relationship to target organ damage and cardiovascular morbidity-mortality in diabetic patients or metabolic syndrome. An observational prospective study. LOD-DIABETES study protocol

    Directory of Open Access Journals (Sweden)

    Castaño-Sánchez Carmen

    2010-03-01

    Full Text Available Abstract Background Diabetic patients show an increased prevalence of non-dipping arterial pressure pattern, target organ damage and elevated arterial stiffness. These alterations are associated with increased cardiovascular risk. The objectives of this study are the following: to evaluate the prognostic value of central arterial pressure and pulse wave velocity in relation to the incidence and outcome of target organ damage and the appearance of cardiovascular episodes (cardiovascular mortality, myocardial infarction, chest pain and stroke in patients with type 2 diabetes mellitus or metabolic syndrome. Methods/Design Design: This is an observational prospective study with 5 years duration, of which the first year corresponds to patient inclusion and initial evaluation, and the remaining four years to follow-up. Setting: The study will be carried out in the urban primary care setting. Study population: Consecutive sampling will be used to include patients diagnosed with type 2 diabetes between 20-80 years of age. A total of 110 patients meeting all the inclusion criteria and none of the exclusion criteria will be included. Measurements: Patient age and sex, family and personal history of cardiovascular disease, and cardiovascular risk factors. Height, weight, heart rate and abdominal circumference. Laboratory tests: hemoglobin, lipid profile, creatinine, microalbuminuria, glomerular filtration rate, blood glucose, glycosylated hemoglobin, blood insulin, fibrinogen and high sensitivity C-reactive protein. Clinical and 24-hour ambulatory (home blood pressure monitoring and self-measured blood pressure. Common carotid artery ultrasound for the determination of mean carotid intima-media thickness. Electrocardiogram for assessing left ventricular hypertrophy. Ankle-brachial index. Retinal vascular study based on funduscopy with non-mydriatic retinography and evaluation of pulse wave morphology and pulse wave velocity using the SphygmoCor system. The

  4. Ram Pressure Stripping Made Easy: An Analytical Approach

    Science.gov (United States)

    Köppen, J.; Jáchym, P.; Taylor, R.; Palouš, J.

    2018-06-01

    The removal of gas by ram pressure stripping of galaxies is treated by a purely kinematic description. The solution has two asymptotic limits: if the duration of the ram pressure pulse exceeds the period of vertical oscillations perpendicular to the galactic plane, the commonly used quasi-static criterion of Gunn & Gott is obtained which uses the maximum ram pressure that the galaxy has experienced along its orbit. For shorter pulses the outcome depends on the time-integrated ram pressure. This parameter pair fully describes the gas mass fraction that is stripped from a given galaxy. This approach closely reproduces results from SPH simulations. We show that typical galaxies follow a very tight relation in this parameter space corresponding to a pressure pulse length of about 300 Myr. Thus, the Gunn & Gott criterion provides a good description for galaxies in larger clusters. Applying the analytic description to a sample of 232 Virgo galaxies from the GoldMine database, we show that the ICM provides indeed the ram pressures needed to explain the deficiencies. We also can distinguish current and past strippers, including objects whose stripping state was unknown.

  5. Investigating Pulsed Discharge Polarity Employing Solid-State Pulsed Power Electronics

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    condition plays an important role in maintaining the desired performance. Investigating the system parameters contributed to the generated pulses is an effective way in improving the system performance further ahead. One of these parameters is discharge polarity which has received less attention....... In this paper, effects of applied voltage polarity on plasma discharge have been investigated in different mediums at atmospheric pressure. The experiments have been conducted based on high voltage DC power supply and high voltage pulse generator for point-to-point and point-to-plane geometries. Furthermore......, the influence of electric field distribution is analyzed using Finite Element simulations for the employed geometries and mediums. The experimental and simulation results have verified the important role of the applied voltage polarity, employed geometry and medium of the system on plasma generation....

  6. Numerical and experimental study of pulse-jet cleaning in fabric filters

    DEFF Research Database (Denmark)

    O. Andersen, B.; Nielsen, N. F.; Walther, J. H.

    2016-01-01

    Pulse-jet cleaning and understanding of the complex physics are essential when designing fabric filters used for air pollution control. Today, low-pressure cleaning is of particular interest due to demand for reduced compressed air consumption. Pulse-jet cleaned fabric filters have been studied......-pressure fabric filters (2 bar) is studied using a full three-dimensional (3D) CFD model. Experimental results obtained in a pilot-scale test filter with 28 bags, in length of 10 m and in general full-scale dimensions of the cleaning system are used to verify the reliability of the present CFD model....... The validated CFD model reveals the strong compressible effects, a highly transient behaviour, the formation of compressible vortex rings and the shock cell phenomenon within the overexpanded supersonic jet. The cleaning nozzles and venturi design aid or oppose the pulse-pressure within the bags, and this plays...

  7. MgxZn1-xO(0≤x<0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition

    International Nuclear Information System (INIS)

    Lorenz, M.; Kaidashev, E.M.; Rahm, A.; Nobis, Th.; Lenzner, J.; Wagner, G.; Spemann, D.; Hochmuth, H.; Grundmann, M.

    2005-01-01

    Mg x Zn 1-x O nanowires with Mg-content x from 0 to 0.2 have been grown by high-pressure pulsed-laser deposition (PLD) on gold-covered sapphire single crystals. The PLD process allows for a unique wide-range control of morphology, diameter, and composition of the Mg x Zn 1-x O nanowires. The diameter of single ZnO wires could be varied between about 50 and 3000 nm, and the Mg content x of Mg x Zn 1-x O wire arrays was controlled via the PLD gas pressure. The microscopic homogeneity of Mg content is displayed by cathodoluminescence (CL) imaging of the excitonic peak energy. The fluctuation of CL peak energy between individual wires is about an order of magnitude smaller than the alloy broadening

  8. Superconductivity and its pressure variation in GaAs

    International Nuclear Information System (INIS)

    Nirmala Louis, C.; Jayam, Sr. Gerardin; Amalraj, A.

    2005-01-01

    The electronic band structure, metallization, phase transition and superconducting transition of gallium arsenide under pressure are studied using TB-LMTO method. Metallization occurs via indirect closing of band gap between Γ and X points. GaAs becomes superconductor under high pressure but before that it undergoes structural phase transition from ZnS phase to NaCl phase. The ground state properties are analyzed by fitting the calculated total energies to the Birch-Murnaghan's equation of state. The superconducting transition temperatures (T c ) obtained as a function of pressure for both the ZnS and NaCl structures and GaAs comes under the class of pressure induced superconductor. When pressure is increased T c increases in both the normal and high pressure structures. The dependence of T c on electron-phonon mass enhancement factor λ shows that GaAs is an electron-phonon-mediated superconductor. Also it is found that GaAs retained in their normal structure under high pressure give appreciably high T c . (author)

  9. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    Science.gov (United States)

    Barni, R.; Biganzoli, I.; Dell'Orto, E.; Riccardi, C.

    2014-11-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma.

  10. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Barni, R; Biganzoli, I; Dell'Orto, E; Riccardi, C

    2014-01-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma

  11. Thermal behavior variations in coating thickness using pulse phase thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Chung, Yoonjae; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of)

    2016-08-15

    This paper presents a study on the use of pulsed phase thermography in the measurement of thermal barrier coating thickness with a numerical simulation. A multilayer heat transfer model was used to analyze the surface temperature response acquired from one-sided pulsed thermal imaging. The test sample comprised four layers: the metal substrate, bond coat, thermally grown oxide and the top coat. The finite element software, ANSYS, was used to model and predict the temperature distribution in the test sample under an imposed heat flux on the exterior of the TBC. The phase image was computed with the use of the software MATLAB and Thermofit Pro using a Fourier transform. The relationship between the coating thickness and the corresponding phase angle was then established with the coating thickness being expressed as a function of the phase angle. The method is successfully applied to measure the coating thickness that varied from 0.25 mm to 1.5 mm.

  12. Reconstruction of Attosecond Pulse Trains Using an Adiabatic Phase Expansion

    International Nuclear Information System (INIS)

    Varju, K.; Gustafsson, E.; Johnsson, P.; Mauritsson, J.; L'Huillier, A.; Mairesse, Y.; Agostini, P.; Breger, P.; Carre, B.; Merdji, H.; Monchicourt, P.; Salieres, P.; Frasinski, L.J.

    2005-01-01

    We propose a new method to reconstruct the electric field of attosecond pulse trains. The phase of the high-order harmonic emission electric field is Taylor expanded around the maximum of the laser pulse envelope in the time domain and around the central harmonic in the frequency domain. Experimental measurements allow us to determine the coefficients of this expansion and to characterize the radiation with attosecond accuracy over a femtosecond time scale. The method gives access to pulse-to-pulse variations along the train, including the timing, the chirp, and the attosecond carrier envelope phase

  13. TiN coating on steel by pulsed capillary discharge

    International Nuclear Information System (INIS)

    Avaria, G; Favre, M; Bhuyan, H; Wyndham, E; Kelly, H; Grondona, D; Marquez, A

    2006-01-01

    The characteristic geometry of a pulsed capillary discharge (PCD)[1] establishes natural conditions for the formation of plasma jets, which expand in the chamber's neutral gas. A locally stored capacitor, coaxial with the capillary, is pulse charged to a maximum of -10kV, giving a current pulse of ∼10ns, ∼2kA. The discharge is operated in nitrogen, in a continuous pulsing mode, at a frequency of 50 Hz and pressures of 0.3 to 1 Torr. The coating produced by these plasma jets on substrates of AISI 304 stainless steel have been studied. The chamber's anode is made of titanium, which interacts with the nitrogen plasma producing TiN coatings on the substrates. The results are presented for the plasma characterization at different discharge pressures and times, as well as SEM, EDS and AFM analysis of deposits made. This characterization was carried out using Langmuir double probes, which provide data on the electronic temperature and density in the plasma jet. At the same time spectrographic studies of the plasma were carried out, and the presence of ionized atoms of titanium and nitrogen were observed. An inverse relation between the pressure of nitrogen present in the chamber and the thickness of the coating over steel was found, as well as a direct relationship between the temperature and plasma densities with the thickness of the deposit (CW)

  14. Characterization of the pulse plasma source

    International Nuclear Information System (INIS)

    Milosavljevic, V; Karkari, S K; Ellingboe, A R

    2007-01-01

    Characterization of the pulse plasma source through the determination of the local thermodynamic equilibrium (LTE) threshold is described. The maximum electron density measured at the peak in discharge current is determined by the width of the He II Paschen alpha spectral line, and the electron temperature is determined from the ratios of the relative intensities of spectral lines emitted from successive ionized stages of atoms. The electron density and temperature maximum values are measured to be 1.3 x 10 17 cm -3 and 19 000 K, respectively. These are typical characteristics for low-pressure, pulsed plasma sources for input energy of 15.8 J at 130 Pa pressure in helium-argon mixture. The use of LTE-based analysis of the emission spectra is justified by measurement of the local plasma electron density at four positions in the discharge tube using a floating hairpin resonance probe. The hairpin resonance probe data are collected during the creation and decay phases of the pulse. From the spatio-temporal profile of the plasma density a 60 μs time-window during which LTE exists throughout the entire plasma source is determined

  15. Influence of Individual Differences on the Calculation Method for FBG-Type Blood Pressure Sensors.

    Science.gov (United States)

    Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun; Kobayashi, Yuka

    2016-12-28

    In this paper, we propose a blood pressure calculation and associated measurement method that by using a fiber Bragg grating (FBG) sensor. There are several points at which the pulse can be measured on the surface of the human body, and when a FBG sensor located at any of these points, the pulse wave signal can be measured. The measured waveform is similar to the acceleration pulse wave. The pulse wave signal changes depending on several factors, including whether or not the individual is healthy and/or elderly. The measured pulse wave signal can be used to calculate the blood pressure using a calibration curve, which is constructed by a partial least squares (PLS) regression analysis using a reference blood pressure and the pulse wave signal. In this paper, we focus on the influence of individual differences from calculated blood pressure based on each calibration curve. In our study, the calculated blood pressure from both the individual and overall calibration curves were compared, and our results show that the calculated blood pressure based on the overall calibration curve had a lower measurement accuracy than that based on an individual calibration curve. We also found that the influence of the individual differences on the calculated blood pressure when using the FBG sensor method were very low. Therefore, the FBG sensor method that we developed for measuring the blood pressure was found to be suitable for use by many people.

  16. Geo-Effective Heliophysical Variations and Human Physiological State

    Science.gov (United States)

    Dimitrova, S.

    2006-03-01

    A group of 86 volunteers was examined on each working day in autumn 2001 and in spring 2002. These periods were chosen because of maximal expected geomagnetic activity. There were 26 persons in the group on a drug treatment, mainly because of hypertension. Systolic and diastolic blood pressure and heart rate were registered. Pulse pressure was calculated. Data about subjective psycho-physiological complaints of the persons examined were also gathered. Altogether 2799 recordings were obtained and analyzed. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The factors were as follows: 1) geomagnetic activity estimated by H-component of the local geomagnetic field and divided into five levels; 2) gender - males and females; 3) presence of medication. Post hoc analysis was performed to elicit the significance of differences in the factors' levels. The average arterial blood pressure, pulse pressure and the percentage of the persons in the group with subjective psycho-physiological complaints were found to increase significantly with the increase of geomagnetic activity. The maximal increment of systolic and diastolic blood pressure was 10-11% and for pulse pressure 13.6%. Analyses revealed that females and persons on a medication were more sensitive to the increase of geomagnetic activity than respectively males and persons with no medication.

  17. Properties of low-pressure drift chambers

    International Nuclear Information System (INIS)

    Breskin, A.; Trautner, N.

    1976-01-01

    Drift chambers operated with methylal vapour or ethylene at pressures in the range of 10-110 torr are described. A systematic study of position resolution, pulse height and rise time shows that especially for ethylene they are strongly influenced by electron diffusion. Intrinsic position resolution was found to be at least as good as found at atmospheric pressure. A relative pulse height resolution of 10% was obtained with 5.5 MeV alpha-particles. A simple mathematical model which can describe the processes in the drift chamber is presented. (Auth.)

  18. Numerical modeling and experimental validation of seismic uplift pressure variations in cracked concrete dams

    Energy Technology Data Exchange (ETDEWEB)

    Javanmardi, F.; Leger, P. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Civil, Mining and Geological Engineering; Tinawi, R. [Quebec Univ., Montreal, PQ (Canada)

    2004-07-01

    Concrete dams could sustain cracking and damage during maximum design earthquakes (MDE). Dam safety guidelines are established so that dams maintain a stable condition following MDE oscillatory motions. In this study, a theoretical model was developed to calculate the uplift pressure variations along concrete cracks with moving walls. The proposed model was verified using experimental crack test data. The model was applied in a finite element computer program for dynamic analysis of gravity dams considering hydro-mechanical water-crack coupling. An analysis of a typical 90 metre dam subjected to low and high frequency sinusoidal accelerations demonstrated that water can penetrate into part of a seismically initiated crack. Pressure tends to develop in a region close to the crack mouth, therefore detrimental effects for the global dam stability are unlikely to occur. The study showed that the seismic uplift force during the heel crack opening mode is small compared to the dam weight. This preliminary study suggests that the critical sliding safety factors (SSF) of the dam against downstream sliding could be computed by considering zero uplift pressure in the crack region subjected to tensile opening. 14 refs., 1 tab., 7 figs.

  19. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings

    OpenAIRE

    Cheng, Chung-Chieh; Wright, E. M.; Moloney, J. V.

    2000-01-01

    We present a model that elucidates the physics underlying the generation of an electromagnetic pulse from a femtosecond laser induced plasma channel. The radiation pressure force from the laser pulse spatially separates the ionized electrons from the heavier ions and the induced dipole moment subsequently oscillates at the plasma frequency and radiates an electromagnetic pulse.

  20. Mathematical model and simulation of the hydrodynamic of air-pulsed sieve plate columns

    International Nuclear Information System (INIS)

    Hannappel, J.; Pfeifer, W.; Rathjen, E.

    1979-02-01

    In this work the dynamic flow events in an air pulsed sieve plate column are described by a simulation model. The model consists of a system of differential equations. The pressure built up by the pulsed air is brought to equilibrium with the pressure losses of the oscillating liquid column in the pulsation tube and in the column. In case of definition of the a) column geometry, b) integral holdup of the column, c) density of the participating phases, d) control times of the pulsed air valves, e) pulse repetition frequency and pulsed air reservoir pressure the height of oscillation and hence the intensity of pulsation are calculated. It is shown by a concrete example that 1) the oscillation of the liquid column in the pulsation tube and in the column is sinusoidal in all cases; 2) generation of a defined pulsation is restricted to the range between 0.3 and 3 Hz; 3) the amount of air needed for pulsation depends on the geometry of the column and in the intensity of pulsation. It can be optimized by appropriate selection of the diameter of the pulsation tube. (orig.) [de

  1. The influence of work- and home-related stress on the levels and diurnal variation of ambulatory blood pressure and neurohumoral factors in employed women.

    Science.gov (United States)

    Kario, Kazuomi; James, Gary D; Marion, RoseMerie; Ahmed, Mustafa; Pickering, Thomas G

    2002-07-01

    The purpose of this study was to examine the effects of self-reported perceived stress at work and home on the levels, variation and co-variation of ambulatory blood pressure (BP), pulse rate (PR) and urinary catecholamine, cortisol, and aldosterone excretion measured at work, home and during sleep in women employed outside the home. The subjects of the study were 134 women (mean age 34.4 +/- 9.6 years, range 18 to 64 years) who were employed in managerial, technical or clerical positions at the same work place. Perceived stress at work and home was self-reported on a scale from 0 (low) to 10 (high). BP, PR and the urinary rates of excretion of epinephrine, norepinephrine, cortisol and aldosterone were averaged in the daily work environment from 11 AM to 3 PM, in the daily home environment from approximately 6 PM to 10 PM, and during sleep from approximately 10 PM to 6 AM the following morning. The results showed that systolic and diastolic BP (SBP and DBP) and the rates of urinary catecholamine, cortisol, and aldosterone excretion measured in the work environment were significantly higher than corresponding measurements taken in the home environment. SBP measured at work was also positively correlated with the difference in perceived stress between work and home (p home environment were positively correlated with stress at home. When the subjects were divided into groups based on whether the work or home environment was perceived to be most stressful, women reporting greater stress at work (n=85) had higher work SBP (p work DBP (p home environment to be more stressful (n=34). There were no differences in the urinary hormonal excretion rates between these perceived-stress groups. Among women with greater perceived stress at home, the home-stress score was positively correlated with sleep SBP level (r = 0.310, p home pulse rate ( r= 0.414, p work stress may increase ambulatory BP levels throughout the day, while home stress may induce additional sympathetic

  2. Beat-to-Beat Blood Pressure Monitor

    Science.gov (United States)

    Lee, Yong Jin

    2012-01-01

    This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes.

  3. PULSE INTENSITY MODULATION AND THE TIMING STABILITY OF MILLISECOND PULSARS: A CASE STUDY OF PSR J1713+0747

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Ryan M. [CSIRO Astronomy and Space Science, Box 76, Epping, NSW 1710 (Australia); Cordes, James M., E-mail: ryan.shannon@csiro.au, E-mail: cordes@astro.cornell.edu [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States)

    2012-12-10

    Most millisecond pulsars, like essentially all other radio pulsars, show timing errors well in excess of what is expected from additive radiometer noise alone. We show that changes in amplitude, shape, and pulse phase for the millisecond pulsar J1713+0747 cause this excess error. These changes appear to be uncorrelated from one pulse period to the next. The resulting time of arrival (TOA) variations are correlated across a wide frequency range and is observed with different backend processors on different days, confirming that they are intrinsic in origin and not an instrumental effect or caused by strongly frequency-dependent interstellar scattering. Centroids of single pulses show an rms phase variation Almost-Equal-To 40 {mu}s, which dominates the timing error and is the same phase jitter phenomenon long known in slower spinning, canonical pulsars. We show that the amplitude modulations of single pulses are modestly correlated with their arrival time fluctuations. We also demonstrate that single-pulse variations are completely consistent with arrival time variations of pulse profiles obtained by integrating N pulses such that the arrival-time error decreases proportional to 1/{radical}N. We investigate methods for correcting TOAs for these pulse-shape changes, including multi-component TOA fitting and principal component analysis. These techniques are not found to improve the timing precision of the observations. We conclude that when pulse-shape changes dominate timing errors, the timing precision of PSR J1713+0747 can be only improved by averaging over a larger number of pulses.

  4. A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source

    Science.gov (United States)

    Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de

    2017-06-01

    A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.

  5. The relationship of age-adjusted Charlson comorbidity ındex and diurnal variation of blood pressure.

    Science.gov (United States)

    Kalaycı, Belma; Erten, Yunus Turgay; Akgün, Tunahan; Karabag, Turgut; Kokturk, Furuzan

    2018-03-05

    Charlson Comorbidity index (CCI) is a scoring system to predict prognosis and mortality. It exhibits better utility when combined with age, age-adjusted Charlson Comorbidity Index (ACCI). The aim of this study was to evaluate the relationship between ACCI and diurnal variation of blood pressure parameters in hypertensive patients and normotensive patients. We enrolled 236 patients. All patients underwent a 24-h ambulatory blood pressure monitoring (ABPM) for evaluation of dipper or non-dipper pattern. We searched the correlation between ACCI and dipper or non-dipper pattern and other ABPM parameters. To further investigate the role of these parameters in predicting survival, a multivariate analysis using the Cox proportional hazard model was performed. 167 patients were in the hypertensive group (87 patients in non-dipper status) and 69 patients were in the normotensive group (41 patients in non-dipper status) of all study patients. We found a significant difference and negative correlation between AACI and 24-h diastolic blood pressure (DBP), awake DBP, awake mean blood pressure (MBP) and 24-h MBP and awake systolic blood pressure(SBP). Night decrease ratio of blood pressure had also a negative correlation with ACCI (p = 0.003, r = -0.233). However, we found a relationship with non-dipper pattern and ACCI in the hypertensive patients (p = 0.050). In multivariate Cox analysis sleep MBP was found related to mortality like ACCI (p = 0.023, HR = 1.086, %95 CI 1.012-1.165) Conclusion: ACCI was statistically significantly higher in non-dipper hypertensive patients than dipper hypertensive patients while ACCI had a negative correlation with blood pressure. Sleep MBP may predict mortality.

  6. Field assessment of the use of borehole pressure transients to measure the permeability of fractured rock masses

    International Nuclear Information System (INIS)

    Forster, C.B.; Gale, J.E.

    1981-06-01

    A field experiment to evaluate the transient pressure pulse technique as a method of determining the in-situ hydraulic conductivity of low permeability fractured rock was made. The experiment attempted to define: the radius of influence of a pressure pulse-test in fractured rock and the correlation between pressure-pulse tests and steady-state flow tests performed in five boreholes drilled in fractured granite. Twenty-five test intervals, 2 to 3 m in length, were isolated in the boreholes, using air-inflated packers. During pressure pulse and steady-state tests, pressures were monitored in both the test and observation cavities. Rock-mass conductivities were calculated from steady-state test results and were found to range from less than 10 - 11 to 10 - 7 cm/sec. However, there was no consistent correlation between the steady-state conductivity and the pressure pulse decay characteristics of individual intervals. These conflicting test results can be attributed to the following factors: differences in volumes of rock affected by the test techniques; effects of equipment configuration and compliance; and complexity of the fracture network. Although the steady-state flow tests indicate that hydraulic connections exist between most of the test cavities, no pressure responses were noted in the observation cavities (located at least 0.3 m from the test cavities) during the pulse tests. This does not mean, however, that the pressure-pulse radius of influence is <0.3 m, because the observation cavities were too large (about 7 liters). The lack of correlation between steady-state conductivities and the corresponding pressure pulse decay times does not permit use of existing single-fracture type curves to analyze pulse tests performed in multiple-fracture intervals. Subsequent work should focus on the detailed interpretation of field results with particular reference to the effects of the fracture system at the test site

  7. Heavy particle detection characteristics of an MWPC operating at low (1 <= p <= 30 mbar) gas pressures

    International Nuclear Information System (INIS)

    Moeller, G.; Presser, G.; Staehler, J.

    1981-01-01

    Pulse heights, timing properties and detection efficiencies of an MWPC were measured with 5.5 MeV alpha particles for different counting gases at low pressures. The pulse heights show a striking nonmonotonic dependence on the gas pressure that can be explained by a simple model of the amplification process at high reduced electric fields. The consequences of the observed pressure dependence of pulse heights for the detection of heavy ions with low pressure MWPCs are discussed. (orig.)

  8. Mechanism for the generation of cavitation maxima by pulsed ultrasound

    International Nuclear Information System (INIS)

    Flynn, H.G.; Church, C.C.

    1984-01-01

    A train of 1-MHz pulses can generate maxima of cavitation activity at pulse lengths of 6 and 60 ms and at pressure amplitudes, P/sub A/, between 5.4 and 9.4 bars (or intensities between 10 and 30 W/cm 2 ). Generation of maxima at P/sub A/ between these limits on pressure amplitude implies that the increase in cavitation activity originates from gas nuclei with radii lying in a critical size range centered at about 0.08 μm. The mechanism proposed for this phenomenon suggests that nuclei in this critical range are unstabilized nuclei generated in one pulse and surviving to the next with an appreciable fraction of the survivors lying in the critical range. Transient cavities that grow from such small nuclei are shown to behave as isolated mechanical systems that on reaching maximum size collapse as imploding spheres. The maximum pressures reached in such imploding cavities would then approximate those calculated for the spherical collapse of cavities. The occurrence of the observed maxima is ascribed to the spherical collapse of transient cavities. 17 references, 5 figures

  9. Experimental study on performance of pulsed liquid jet pump

    International Nuclear Information System (INIS)

    Xu Weihui; Gao Chuanchang; Qin Haixia

    2010-01-01

    The device performance characteristics of transformer type pulsed liquid pump device were experimentally studied. The effects of the area ratio, work pressure and pulse parameters on the performance of the pulsed liquid jet pump device were performed in the tests. The potency of pulsed jet on improving the performance of the liquid jet pump device was also studied through the comparison with invariable jet pump at the same conditions. The results show that the pulsed jet can significantly improve the performance of transformer type jet pump devices. Area ratio and pulse parameters are the critical factors to the performance of the pulsed liquid jet pump device. The jet pump device performances are significantly improved by reducing the area ratio or by increasing the pulsed frequency. The flux characteristics of the pulsed liquid jet pump device presents the typical negative linear,the potency of pulsed jet in improving the performance of jet pump device with small area ratio can be more significant. The efficiency curve of pulsed liquid jet pump is similar to the parabola. At higher pulsed frequency, the top efficiency point of the pulsed jet pump moves to the higher flow ratio. The high efficiency area of the pulsed jet pump also is widened with the increase of the pulsed frequency. (authors)

  10. Spots on electrodes and images of a gap during pulsed discharges in an inhomogeneous electric field at elevated pressures of air, nitrogen and argon

    International Nuclear Information System (INIS)

    Shao, Tao; Yang, Wenjin; Zhang, Cheng; Yan, Ping; Tarasenko, Victor F; Beloplotov, Dmitry V; Lomaev, Mikhail I; Sorokin, Dmitry A

    2014-01-01

    Pulsed discharge in a nonuniform electric field accompanied by the appearance of bright spots due to explosive electron emission on electrodes has been investigated. The experiments were carried out using three experimental setups, a voltage pulse duration at a matched load of 2 ns, 40 ns, and 130 ns, respectively. Data on the formation of electrode spots during diffuse discharges in tube-plate or needle-plate gap configurations filled with gases at elevated pressures (air, nitrogen and argon) were obtained. It was found that in the air and other gases, bright spots arise on the flat electrode, and on the negative polarity of the electrode with a small radius of curvature, during the direction change of the current through the gap and the increase of the voltage pulse duration. It was shown that at the positive polarity of the electrode with a small radius of curvature, bright spots on the flat electrode arise due to the participation of the dynamic displacement current in the gap conductance. (paper)

  11. A new mathematical model of wrist pulse waveforms characterizes patients with cardiovascular disease - A pilot study.

    Science.gov (United States)

    He, Dianning; Wang, Lu; Fan, Xiaobing; Yao, Yang; Geng, Ning; Sun, Yingxian; Xu, Lisheng; Qian, Wei

    2017-10-01

    The purpose of this study was to analyze and compare a series of measured radial pulse waves as a function of contact pressure for young and old healthy volunteers, and old patients with cardiovascular disease. The radial pulse waves were detected with a pressure sensor and the contact pressure of the sensor was incremented by 20gf during the signal acquisition. A mathematical model of radial pulse waveform was developed by using two Gaussian functions modulated by radical functions and used to fit the pulse waveforms. Then, a ratio of area (r A ) and a ratio of peak height (r PH ) between percussion wave and dicrotic wave as a function of contact pressure were calculated based on fitted parameters. The results demonstrated that there was a maximum for waveform peak height, a minimum for r A (r A min ) and a minimum for r PH (r PH min ) appeared as contact pressure varied. On average, older patients had higher peak amplitude and a significantly smaller r A min (pmathematical model had moderate to strong positive linear correlations (r=0.66 to 0.84, pmodel. The receiver operating characteristic (ROC) analysis showed that the r A min calculated with the model and the contact pressure measured at the r A min had good diagnostic accuracy to distinguish healthy volunteers vs. diseased patients. Therefore, using the mathematical model to quantitatively analyze the radial pulse waveforms as a function of contact pressure could be useful in the diagnosis of cardiovascular diseases. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    International Nuclear Information System (INIS)

    Walsh, J L; Liu, D X; Iza, F; Kong, M G; Rong, M Z

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O 2 by helium metastables is significantly more efficient than electron dissociative excitation of O 2 , electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O 2 plasmas for excited atomic oxygen based chemistry. (fast track communication)

  13. Correlation between intrasac pressure measurements of a pressure sensor and an angiographic catheter during endovascular repair of abdominal aortic aneurysm

    Directory of Open Access Journals (Sweden)

    Pierre Galvagni Silveira

    2008-01-01

    Full Text Available PURPOSE: To establish a correlation between intrasac pressure measurements of a pressure sensor and an angiographic catheter placed in the same aneurysm sac before and after its exclusion by an endoprosthesis. METHODS: Patients who underwent endovascular abdominal aortic aneurysm repair and received an EndoSureTM wireless pressure sensor implant between March 19 and December 11, 2004 were enrolled in the study. Simultaneous readings of systolic, diastolic, mean, and pulse pressure within the aneurysm sac were obtained from the catheter and the sensor, both before and after sac exclusion by the endoprosthesis (Readings 1 and 2, respectively. Intrasac pressure measurements were compared using Pearson's correlation and Student's t test. Statistical significance was set at p0.05, mean (p>0.05, and pulse (p0.05 by the sensor. CONCLUSION: The excellent agreement between intrasac pressure readings recorded by the catheter and the sensor justifies use of the latter for detection of post-exclusion abdominal aortic aneurysm pressurization.

  14. Cylinder Pressure-based Combustion Control with Multi-pulse Fuel Injection

    NARCIS (Netherlands)

    Luo, X.; Wang, S.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With an increased number of fuel injection pulses, the control problem in diesel engines becomes complex. Consisting of multiple single-input single-output (SISO) controllers, the conventional control strategy shows unsatisfactory dynamic performance in tracking combustion load and phase reference

  15. DURATION LIMIT OF LASER PULSES EMITTED FROM A Ce-DOPED CRYSTAL SHORT CAVITY

    Directory of Open Access Journals (Sweden)

    Le Hoang Hai

    2017-11-01

    Full Text Available Based on the rate equation set for broadband cavities, the dependence of pulse duration on cavity and pumping parameters is analyzed. The cavity uses a Ce-doped crystal as a gain medium. Computation results show the variation of the pulse width with the change of cavity length, mirror reflectivity, pumping energy and pumping pulse duration. A significant influence of multiple-pulse operation in limiting pulse duration is realized and a pulse-width of the order 200 ps is found to be the limit for the direct generation of ultraviolet single picosecond pulses from a Ce:LLF short cavity.

  16. Exploiting ecology in drug pulse sequences in favour of population reduction.

    Directory of Open Access Journals (Sweden)

    Marianne Bauer

    2017-09-01

    Full Text Available A deterministic population dynamics model involving birth and death for a two-species system, comprising a wild-type and more resistant species competing via logistic growth, is subjected to two distinct stress environments designed to mimic those that would typically be induced by temporal variation in the concentration of a drug (antibiotic or chemotherapeutic as it permeates through the population and is progressively degraded. Different treatment regimes, involving single or periodical doses, are evaluated in terms of the minimal population size (a measure of the extinction probability, and the population composition (a measure of the selection pressure for resistance or tolerance during the treatment. We show that there exist timescales over which the low-stress regime is as effective as the high-stress regime, due to the competition between the two species. For multiple periodic treatments, competition can ensure that the minimal population size is attained during the first pulse when the high-stress regime is short, which implies that a single short pulse can be more effective than a more protracted regime. Our results suggest that when the duration of the high-stress environment is restricted, a treatment with one or multiple shorter pulses can produce better outcomes than a single long treatment. If ecological competition is to be exploited for treatments, it is crucial to determine these timescales, and estimate for the minimal population threshold that suffices for extinction. These parameters can be quantified by experiment.

  17. Title: variations and sensitivities of some blood pressure monitors ...

    African Journals Online (AJOL)

    Blood pressure is the pressure exerted by circulating blood upon the walls of blood vessels. Accuracy in blood pressure meters is of essence to health, especially in blood pressure monitoring and treatment. The aim of this research was to compare the readings and the sensitivities of some blood pressure monitors in use ...

  18. A scalable variational inequality approach for flow through porous media models with pressure-dependent viscosity

    Science.gov (United States)

    Mapakshi, N. K.; Chang, J.; Nakshatrala, K. B.

    2018-04-01

    Mathematical models for flow through porous media typically enjoy the so-called maximum principles, which place bounds on the pressure field. It is highly desirable to preserve these bounds on the pressure field in predictive numerical simulations, that is, one needs to satisfy discrete maximum principles (DMP). Unfortunately, many of the existing formulations for flow through porous media models do not satisfy DMP. This paper presents a robust, scalable numerical formulation based on variational inequalities (VI), to model non-linear flows through heterogeneous, anisotropic porous media without violating DMP. VI is an optimization technique that places bounds on the numerical solutions of partial differential equations. To crystallize the ideas, a modification to Darcy equations by taking into account pressure-dependent viscosity will be discretized using the lowest-order Raviart-Thomas (RT0) and Variational Multi-scale (VMS) finite element formulations. It will be shown that these formulations violate DMP, and, in fact, these violations increase with an increase in anisotropy. It will be shown that the proposed VI-based formulation provides a viable route to enforce DMP. Moreover, it will be shown that the proposed formulation is scalable, and can work with any numerical discretization and weak form. A series of numerical benchmark problems are solved to demonstrate the effects of heterogeneity, anisotropy and non-linearity on DMP violations under the two chosen formulations (RT0 and VMS), and that of non-linearity on solver convergence for the proposed VI-based formulation. Parallel scalability on modern computational platforms will be illustrated through strong-scaling studies, which will prove the efficiency of the proposed formulation in a parallel setting. Algorithmic scalability as the problem size is scaled up will be demonstrated through novel static-scaling studies. The performed static-scaling studies can serve as a guide for users to be able to select

  19. Damping Effect of an Unsaturated-Saturated System on Tempospatial Variations of Pressure Head and Specific Flux

    Science.gov (United States)

    Yang, C.; Zhang, Y. K.; Liang, X.

    2014-12-01

    Damping effect of an unsaturated-saturated system on tempospatialvariations of pressurehead and specificflux was investigated. The variance and covariance of both pressure head and specific flux in such a system due to a white noise infiltration were obtained by solving the moment equations of water flow in the system and verified with Monte Carlo simulations. It was found that both the pressure head and specific flux in this case are temporally non-stationary. The variance is zero at early time due to a deterministic initial condition used, then increases with time, and approaches anasymptotic limit at late time.Both pressure head and specific flux arealso non-stationary in space since the variance decreases from source to sink. The unsaturated-saturated systembehavesasa noise filterand it damps both the pressure head and specific flux, i.e., reduces their variations and enhances their correlation. The effect is stronger in upper unsaturated zone than in lower unsaturated zone and saturated zone. As a noise filter, the unsaturated-saturated system is mainly a low pass filter, filtering out the high frequency components in the time series of hydrological variables. The damping effect is much stronger in the saturated zone than in the saturated zone.

  20. Pressure tunable cascaded third order nonlinearity and temporal pulse switching

    DEFF Research Database (Denmark)

    Eilenberger, Falk; Bache, Morten; Minardi, Stefano

    2013-01-01

    Effects based on the χ(3)-nonlinearity are arguably the most commonly discussed nonlinear interactions in photonics. In the description of pulse propagation, however, the generation of the third harmonic (TH) is commonly neglected, because it is strongly phase mismatched in most materials...