Sample records for pulse modulation

  1. Pulse shaping using a spatial light modulator

    CSIR Research Space (South Africa)

    Botha, N


    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  2. New pulse modulator with low switching frequency

    Directory of Open Access Journals (Sweden)

    Golub V. S.


    Full Text Available The author presents an integrating pulse modulator (analog signal converter with the pulse frequency and duration modulation similar to sigma-delta modulation (with low switching frequency, without quantization. The modulator is characterized by the absence of the quantization noise inherent in sigma-delta modulator, and a low switching frequency, unlike the pulse-frequency modulator. The modulator is recommended, in particular, to convert signals at the input of the class D power amplifier.

  3. Analysis of Pulse Modulated Control Systems (Ⅲ) Stability of Systems with Pulse Frequency Modulation and Systems with Combined Pulse Frequency and Pulse Width Modulation




    Sufficient conditions for finite pulse stability of interconnected systems with combined pulse frequency and pulse width modulation are developed in this paper using a direct method. The stability criteria established provide upper bounds on the number of pulses emitted by each modulator. The results are also applicable to those systems which contain a finite number of pulse frequency modulators and a finite number of combined pulse frequency and pulse width modulators

  4. Solid-state pulse forming module with adjustable pulse duration (United States)

    Wang, Langning; Liu, Jinliang; Qiu, Yongfeng; Chu, Xu; Zhang, Qingmeng


    A new solid-state pulse forming module is described in this paper. The pulse forming module is fabricated on a glass ceramic substrate, with the dimension of 250 mm × 95 mm × 4 mm. By changing the copper strips used in the pulse forming modules, the pulse duration of the obtained pulsed can range from 80 ns to 140 ns. Both the simulation and tests show that the pulse forming module has a good pulse forming ability. Under a high voltage in microsecond's time, the new pulse forming modules can hold off a voltage up to 25 kV higher than that of the previous study. In addition, future optimization for the field enhancement near the thin electrode edge has been proposed and simulated.

  5. Pulse amplitude modulated chlorophyll fluorometer

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias; Wu, Jie


    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  6. Improving Stability of Pulse Modulator Technology

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Li-feng; ZHU; Zhi-bin; LIU; Bao-jie; YANG; Sheng


    In high voltage pulse modulator,the RD loop and the primary winding of the pulse transformer is parallel,and the negative peak loop and the PFN is parallel.When the modulator is running,the resistor temperature of RD loops and the resistor temperature of reverse peak loop are too high,exceeding 100℃.It can work normally,

  7. Optimal pseudorandom pulse position modulation ladar waveforms. (United States)

    Fluckiger, David U; Boland, Brian F; Marcus, Eran


    An algorithm for generating optimal pseudorandom pulse position modulation (PRPPM) waveforms for ladar ranging is presented. Bistatic ladar systems using Geiger-mode avalanche photodiodes require detection of several pulses in order to generate sufficient target statistics to satisfy some detection decision rule. For targets with large initial range uncertainty, it becomes convenient to transmit a pulse train with large ambiguity range. One solution is to employ a PRPPM waveform. An optimal PRPPM waveform will have minimal sidelobes: equivalent to 1 or 0 counts after the pulse correlation filter (compression). This can be accomplished by generating PRPPM pulse trains with optimal or minimal sidelobe autocorrelation.

  8. Theoretical analysis of pulse modulation of semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Xu Baoxi; Zhan Yushu; Guo Siji


    Rate equations of Gaussian shape pulse modulated semiconductor lasers are solved by Runge--Kutta method, and the results are analyzed. The formulae for calculating the delay time, pulse width of laser pulse and maximum bit-rate of Gaussian shape pulse modulation are derived. The experimental results of modulation pattern effects are given.

  9. Wireline equalization using pulse-width modulation

    NARCIS (Netherlands)

    Schrader, J.H.R.; Klumperink, Eric A.M.; Visschers, J.L.; Nauta, Bram


    Abstract-High-speed data links over copper cables can be effectively equalized using pulse-width modulation (PWM) pre-emphasis. This provides an alternative to the usual 2-tap FIR filters. The use of PWM pre-emphasis allows a channel loss at the Nyquist frequency of ~30dB, compared to ~20dB for a

  10. Coherent pulse position modulation quantum cipher

    Energy Technology Data Exchange (ETDEWEB)

    Sohma, Masaki; Hirota, Osamu [Quantum ICT Research Institute, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610 (Japan)


    On the basis of fundamental idea of Yuen, we present a new type of quantum random cipher, where pulse position modulated signals are encrypted in the picture of quantum Gaussian wave form. We discuss the security of our proposed system with a phase mask encryption.

  11. Single pulse TMS differentially modulates reward behavior. (United States)

    Stanford, Arielle D; Luber, Bruce; Unger, Layla; Cycowicz, Yael M; Malaspina, Dolores; Lisanby, Sarah H


    Greater knowledge of cortical brain regions in reward processing may set the stage for using transcranial magnetic stimulation (TMS) as a treatment in patients with avolition, apathy or other drive-related symptoms. This study examined the effects of single pulse (sp) TMS to two reward circuit targets on drive in healthy subjects. Fifteen healthy subjects performed the monetary incentive delay task (MID) while receiving fMRI-guided spTMS to either inferior parietal lobe (IPL) or supplemental motor area (SMA). The study demonstrated decreasing reaction times (RT) for increasing reward. It also showed significant differences in RT modulation for TMS pulses to the IPL versus the SMA. TMS pulses during the delay period produced significantly more RT slowing when targeting the IPL than those to the SMA. This RT slowing carried over into subsequent trials without TMS stimulation, with significantly slower RTs in sessions that had targeted the IPL compared to those targeting SMA. The results of this study suggest that both SMA and IPL are involved in reward processing, with opposite effects on RT in response to TMS stimulation. TMS to these target cortical regions may be useful in modulating reward circuit deficits in psychiatric populations.

  12. Chaotic carrier pulse position modulation communication system and method (United States)

    Abarbanel, Henry D. I.; Larson, Lawrence E.; Rulkov, Nikolai F.; Sushchik, Mikhail M.; Tsimring, Lev S.; Volkovskii, Alexander R.


    A chaotic carrier pulse position modulation communication system and method is disclosed. The system includes a transmitter and receiver having matched chaotic pulse regenerators. The chaotic pulse regenerator in the receiver produces a synchronized replica of a chaotic pulse train generated by the regenerator in the transmitter. The pulse train from the transmitter can therefore act as a carrier signal. Data is encoded by the transmitter through selectively altering the interpulse timing between pulses in the chaotic pulse train. The altered pulse train is transmitted as a pulse signal. The receiver can detect whether a particular interpulse interval in the pulse signal has been altered by reference to the synchronized replica it generates, and can therefore detect the data transmitted by the receiver. Preferably, the receiver predicts the earliest moment in time it can expect a next pulse after observation of at least two consecutive pulses. It then decodes the pulse signal beginning at a short time before expected arrival of a pulse.

  13. Laser pulse modulation instabilities in partially stripped plasma

    Institute of Scientific and Technical Information of China (English)

    Hu Qiang-Lin; Liu Shi-Bing; Jiang Yi-Jian


    The laser pulse modulation instabilities in partially stripped plasma were discussed based on the phase and group velocities of the laser pulse and the two processes that modulation instabilities excited. The excitation condition and growth rate of the modulation instability were obtained. It was found that the positive chirp and competition between normal and abnormal dispersions play important roles in the modulation instability. In the partially stripped plasma,the increased positive chirp enhances the modulation instability, and the dispersion competition reduces it.

  14. Excitation of spin echo by pulses with linear frequency modulation (United States)

    Baruzdin, S. A.


    The excitation of a spin echo by two pulses with linear frequency modulation, upon which the pulse parameters ensure maximal compression of the response in time, is considered. The frequency of the excitation pulses was changed by a step law, approximating its linear rise. The transfer matrix of the state of the spin system for pulses with linear frequency modulation is found by solving the Bloch equations. The shape of the envelope of the spin echo in thin magnetic cobalt films, as well as the dependence of the echo amplitude on the parameters of the excitation pulses, is determined. The amplitudes of the excitation pulses, which ensure the excitation of the echo maximal amplitude for various values of the frequency deviation, are found. It is shown that the use of pulses with linear frequency modulation makes it possible to obtain the same echo amplitude as with the use of simple excitation pulses for a substantially smaller amplitude and power of excitation pulses.

  15. Modeling and Analysis of Pulse Skip Modulation

    Institute of Scientific and Technical Information of China (English)


    The state space average model and the large signal models of Pulse Skip Modulation (PSM) mode are given in this paper. Farther more, based on these models and simulations of PSM converter circuits, the analysis of the characteristics of PSM converter is described in this paper, of which include efficiency, frequency spectrum analysis, output voltage ripple, response speed and interference rejection capability. Compared with PWM control mode, PSM converter has high efficiency, especially with light loads, quick response, good interference rejection and good EMC characteristic. Improved PSM slightly, it could be a kind of good independent regulating mode during the whole operating process for a DC-DC converter. Finally, some experimental results are also presented in this paper.

  16. Modulational instability of short pulses in long optical fibers

    DEFF Research Database (Denmark)

    Shukla, P. K.; Juul Rasmussen, Jens


    The effect of time-derivative nonlinearity is incorporated into the study of the modulational instability of heat pulses propagating through long optical fibers. Conditions for soliton formation are discussed......The effect of time-derivative nonlinearity is incorporated into the study of the modulational instability of heat pulses propagating through long optical fibers. Conditions for soliton formation are discussed...

  17. Coherence control of pulse trains by spectral phase modulation (United States)

    Ding, Chaoliang; Koivurova, Matias; Turunen, Jari; Setälä, Tero; Friberg, Ari T.


    We propose a technique to control the spectral and temporal coherence properties of pulsed beams of light via time-dependent manipulation of the spectral phase. Modulation schemes for the generation of partially coherent pulse trains from a train of fully coherent pulses are presented. The feasibility of experimental realization of the method is confirmed by numerical estimates.

  18. Global synchronization of parallel processors using clock pulse width modulation (United States)

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.


    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  19. Energy detection UWB system based on pulse width modulation

    Directory of Open Access Journals (Sweden)

    Song Cui


    Full Text Available A new energy detection ultra-wideband system based on pulse width modulation is proposed. The bit error rate (BER performance of this new system is slightly worst than that of a pulse position modulation (PPM system in additive white Gaussian noise channels. In multipath channels, this system does not suffer from cross-modulation interference as PPM, so it can achieve better BER performance than PPM when cross-modulation interference occurs. In addition, when synchronisation errors occur, this system is more robust than PPM.

  20. Laser pulse spectral shaping based on electro-optic modulation

    Institute of Scientific and Technical Information of China (English)

    Yanhai Wang; Jiangfeng Wang; You'en Jiang; Yan Bao; Xuechun Li; Zunqi Lin


    A new spectrum shaping method, based on electro-optic modulation, to alleviate gain narrowing in chirped pulse amplification (CPA) system, is described and numerically simulated. Near-Fourier transform-limited seed laser pulse is chirped linearly through optical stretcher. Then the chirped laser pulse is coupled into integrated waveguide electro-optic modulator driven by an aperture-coupled-stripline (ACSL) electricalwaveform generator, and the pulse shape and amplitude are shaped in time domain. Because of the directrelationship between frequency interval and time interval of the linearly chirped pulse, the laser pulse spectrum is shaped correspondingly. Spectrum-shaping examples are modeled numerically to determine the spectral resolution of this technique. The phase error introduced in this method is also discussed.

  1. Modulational instability of few cycle pulses in optical fibers

    CERN Document Server

    Sarma, Amarendra K


    We investigate the modulational instability of a mathematical model [based on the model proposed by T. Brabec and F. Krausz, Phys.Rev. Lett. 78, 3282(1997)] appropriate for few cycle optical pulses with pulse duration as short as one carrier oscillation cycle in the context of a standard silica fiber operating at the telecommunication wavelength 1550 nm.

  2. Optical Pulse Generation with Self-Cascaded Electroabsorption Modulator

    Institute of Scientific and Technical Information of China (English)

    WU Jian; QiU Ji-Fang; ZHOU Guang-Tao; XU Kun; LIN Jin-Tong


    A novel scheme for pulse generation with a self-cascaded electroabsorption modulator is presented and experi mentally demonstrated at 10 GHz.In the case of optimal tuning of time delay in the fibre loop,the improvement of 50% on pulsewidth with improved extinction ratio is obtained and the narrowest pulse generated with this method is about 11 ps.

  3. Design of compact Marx module with square pulse output (United States)

    Liu, Hongwei; Xie, Weiping; Yuan, Jianqiang; Wang, Lingyun; Ma, Xun; Jiang, Ping


    Compact pulsed power system based on compact Marx generator is widely used in terms of drive resistance and capacitive loads. This system usually adopts high performance components such as high energy density capacitors, compact switches, and integrated structure. Traditional compact Marx generator can only output double-exponential pulse profile. In this paper a compact, low-impedance Marx module which can output rectangular pulse profile is design and tested. This module has multiple circuits of different discharge frequencies in parallel to generate quasi-rectangular pulse. Discharge characteristic of an ideal module with infinite branches is calculated theoretically. A module with two branches has been designed and tested. Test results show that the impedance of the module is 1.2 Ω. When charging voltage is 100.6 kV and load resistance is 1 Ω, the peak output pulse is 45.2 kV voltage, the peak power is about 2 GW, the pulse width is about 130 ns, and the rise time is about 35 ns. The energy density and power density of the module are 15 kJ/m3 and 140 GW/m3, respectively.

  4. High-power pulse trains excited by modulated continuous waves

    CERN Document Server

    Wang, Yan; Li, Lu; Malomed, Boris A


    Pulse trains growing from modulated continuous waves (CWs) are considered, using solutions of the Hirota equation for solitons on a finite background. The results demonstrate that pulses extracted from the maximally compressed trains can propagate preserving their shape and forming robust arrays. The dynamics of double high-power pulse trains produced by modulated CWs in a model of optical fibers, including the Raman effect and other higher-order terms, is considered in detail too. It is demonstrated that the double trains propagate in a robust form, with frequencies shifted by the Raman effect.

  5. Electro-Optical Modulator Bias Control Using Bipolar Pulses (United States)

    Farr, William; Kovalik, Joseph


    An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulse-position modulation (PPM) optical data-communication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an "on" period and the power transmitted during an "off" period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal. The upper part of Figure 1 schematically depicts a Mach-Zehnder modulator. The signal applied to the electro-optical crystal consists of a radio-frequency modulating pulse signal, VRF, superimposed on a DC bias Vbias. Maximum extinction occurs during the off (VRF = 0) period if Vbias is set at a value that makes the two optical paths differ by an odd integer multiple of a half wavelength so that the beams traveling along the two paths interfere destructively at the output beam splitter. Assuming that the modulating pulse signal VRF has a rectangular waveform, maximum transmission occurs during the "on" period if the amplitude of VRF is set to a value, V , that shifts the length of the affected optical path by a half wavelength so that now the two beams interfere constructively at the output beam splitter. The modulating pulse signal is AC-coupled from an amplifier to the electro-optical crystal. Sometimes, two successive pulses occur so close in time that the operating point of the amplifier drifts, one result being that there is not enough time for the signal level to return to ground between pulses. Also, the

  6. Modulation techniques for deep-space pulse-position modulation (PPM) optical communication (United States)

    Rayman, Marc D.; Robinson, Deborah L.


    The extremely energy-efficient pulse-position modulation (PPM) format is being actively developed as a basis for optical communications with deep-space probes. Attention is presently given to different modulation schemes for the efficient production of laser pulses over a broad range of repetition rates. Both Q-switching and cavity dumping modulation methods are available for the envisioned diode-pumped Nd:YAG laser source. Numerical calculation results are presented for cavity-dumping.

  7. Modulated coupled nanowires for ultrashort pulses

    CERN Document Server

    Solntsev, Alexander S


    We predict analytically and confirm with numerical simulations that inter-mode dispersion in nanowire waveguide arrays can be tailored through periodic waveguide bending, facilitating flexible spatio-temporal reshaping without break-up of femtosecond pulses. This approach allows simulta- neous and independent control of temporal dispersion and spatial diffraction that are often strongly connected in nanophotonic structures.

  8. Very-short-pulse modulator using asymmetric thyristors (United States)

    Perol, P.


    The development of a semiconductor delay-line modulator for a 40-nsec/pulse 10-kHz-repetition-rate coaxial magnetron radar used to monitor airport runway traffic is reported and illustrated with circuit diagrams, output spectra, and photographs. The problems presented by the design specifications are indicated, and the solutions adopted (asymmetric press-packed thyristors and ferrite pulse transformer) are explained. Pulse widths and peak powers with 16 nf of delay line and a 2.5-kV charge at the level of the modulator are found to be 120 nsec and 58 kW without truncation and 40 nsec and 50-51 kW with truncation, the latter corresponding to an efficiency of 17 percent. The pulse leading edges have dI/dt at the transformer primary = 1.8 kA/microsec and dV/dt at the magnetron = 160 kV/microsec.

  9. Pulse-Width-Modulating Driver for Brushless dc Motor (United States)

    Salomon, Phil M.


    High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.

  10. Modulated Pulsed Laser Sources for Imaging Lidars (United States)


    manufactured by QPC. This C-mount device has a monolithic semiconductor amplifier allowing the package to output up to 1.5 Watts at 1064 nm with linewidths ɘ.1...pulsed driver based on the avalanche transistor circuit being used for gain switching, a 1064 nm DFB laser manufactured by QPC and a DBR -style laser...available now that may provide the needed power. An example of such a laser is the QPC C-mount monolithic oscillator/amplifier which can output 1.5

  11. Impacts of cross-phase modulation on modulation instability of Airy pulses (United States)

    Cheng, Yingkai; Fu, Xiquan; Bai, Yanfeng


    The modulation instability (MI) of Airy pulses with the influence of cross-phase modulation is studied based on the coupled nonlinear Schrödinger equations in nonlinear media. The main lobe of Airy pulses can be manifested as breakup of MI under interaction with higher power pumped solitons, although the power of Airy pulses is small. By comparing the main lobe's gain spectrum of MI, the gain spectrum has gradually improved with the increase of power of pumped solitons. The gain spectrum of MI of the main lobe is inversely proportional to the truncation coefficient, and then it gradually approaches to that of Gauss pulses with the truncation coefficient increasing to 1. For the side lobes of Airy pulses, there are similar MI but smaller gain spectrum than the main lobe when the pumped solitons is overlapping with corresponding ones of Airy pulses.

  12. Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MQW laser/MQW electroabsorption modulator (United States)

    Takada, A.; Sato, K.; Saruwatari, M.; Yamamoto, M.


    Actively modelocked pulses are generated from a 1.59 micron MQW laser integrated with an MQW electroabsorption modulator driven at the monolithic cavity frequency. The pulse width is controlled from 39 ps to 0.55 ps by changing the inverse bias voltage applied to the electroabsorption modulator and by linear pulse compression using a fiber.

  13. Spatially modulated laser pulses for printing electronics. (United States)

    Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto


    The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.

  14. Digital Pulse Modulation Amplifier (PMA) systems based on PEDEC control

    DEFF Research Database (Denmark)

    Nielsen, Karsten


    The paper extends previous research and presents a suite of novel high efficiency digital PMA topologies based on Pulse Edge Delay Error Correction (PEDEC). The practical results are very encouraging, showing that digital modulator performance is maintained throughout the subsequent power convers...... conversion. The topologies are believed to be the first implemented digital PMA systems including effective power stage error correction....

  15. Spatiotemporal vector pulse shaping of femtosecond laser pulses with a multi-pass two-dimensional spatial light modulator. (United States)

    Esumi, Y; Kabir, M D; Kannari, F


    A novel non-interferometric vector pulse-shaping scheme is developed for femtosecond laser pulses using a two-dimensional spatial light modulator (2D-SLM). By utilizing spatiotemporal pulse shaping obtainable by the 2D-SLM, we demonstrate spatiotemporal vector pulse shaping for the first time.

  16. Two-mode dynamics in pulse-modulated control systems

    DEFF Research Database (Denmark)

    Zhusubaliyev, Z.T.; Yanochkina, O.O.; Mosekilde, Erik


    as an example the paper provides a survey of three new mechanisms of torus bifurcation that can be observed in pulse-modulated control systems. The paper concludes with a discussion of the influence that operation in the torus regimes will have on the efficiency of the converter......Pulse-modulated converter systems play an important role in modern power electronics. Systems of this type also deserve considerable theoretical interest because of the complex interplay they exhibit between ordinary (smooth) bifurcations and so-called border-collision bifurcations generated...... by the switching dynamics. Particularly interesting are the unusual transitions to torus dynamics, i.e., to a mode of behavior in which the regular switching dynamics is modulated by another oscillatory mode that may arise through instability in the feedback control. Using the model of a two-level DC/DC converter...

  17. Femtosecond pulse shaping by modulating the refractive index modulation of volume holographic grating. (United States)

    Yan, Xiaona; Dai, Ye; Gao, Zixuan; Chen, Yuanyuan; Yang, Xihua; Ma, Guohong


    Based on the modified Kogelnik's coupled-wave theory, time- and frequency-domain diffractions of a femtosecond pulse from transmitted volume holographic gratings (VHGs) are theoretically studied. Results show that when the refractive index modulation of the VHG changes in a certain range, the number of temporal diffracted pulse will evolve from one to two, then to three, and this pulse number evolution is periodic. This particular phenomenon can be explained by diffraction intensity spectrum and the overmodulation effect of refractive index modulation of transmitted VHG. Moreover, we find centers of all temporal diffracted pulses translate along the negative time axis, and the translation is irrelevant to the refractive index modulations. We will use time delay of volume grating to give a reasonable explanation.

  18. Soft demodulation to the optical pulse position modulated signals (United States)

    Zhou, Tian-hua; Chen, Wei-biao


    The optical Pulse Position Modulation (PPM) is applied widely in Free Space Optical communication (FSO) with the low average power and the high peak power. The transmitted PPM information depends on the location of the coming optical pulse signals in fixed period. Both receiver and transmitter should been kept in time slot synchronization and frame synchronization in demodulation. Because the channel is very complex, the received optical pulse width will be stretched randomly. We design and realize one digital PPM modulation receiver with high sensitivity using the technology of PMT, A/D converter, and DSP. It is suitable to the total digital optical receiver with random time slots and random pulse width. The paper will mainly discuss the realization of the soft demodulation behind A/D converter. The key of PPM digital soft modulation is the establishment of the synchronization that involves the segment synchronization, the fame synchronization and the bit synchronization. The synchronization can be obtained by seeking for the frame head in data frames. Based on the estimation of received waveform characteristics, we adopt a matched filter without the best factors firstly. Thereafter, their errors will be self-adapted while finding the synchronization head. Considering the real-time need, we choose the reduced mode of maximum likelihood function judgment finally. In the experiments, results with high sensitivity and low bit error rate have been achieved.

  19. Optimal space communication techniques. [a discussion of delta modulation, pulse code modulation, and phase locked systems (United States)

    Schilling, D. L.


    Encoding of video signals using adaptive delta modulation (DM) was investigated, along with the error correction of DM encoded signals corrupted by thermal noise. Conversion from pulse code modulation to delta modulation was studied; an expression for the signal to noise ratio of the DM signal derived was achieved by employing linear, 2-sample, interpolation between sample points. A phase locked loop using a nonlinear processor in lieu of a loop filter is discussed.

  20. Pulse Power Hybrid Energy Storage Module Development Program (United States)


    simulation results were shown in Fig. 11.) 28 14. One of the two reference MatLab Simulink models for the study of the effect of HESMs and a pulsed load...the Megawatt Power Module 44 25 Block diagram of the MPM system - two flywheels per skid configuration 45 26 MatLab Simulink model of a two...Network McKttile Fig. 14. One of the two reference MatLab Simulink models for the study of the effect of HESMs and a pulsed load on a ship’s power

  1. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore


    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  2. 10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation

    DEFF Research Database (Denmark)

    Hu, Hao; Mulvad, Hans Christian Hansen; Peucheret, Christophe


    to compensate the chirp. The non-linear pulse compression stages are based on self-phase modulation (SPM) in dispersion-flattened highly non-linear fibers (DF-HNLF). The pulse source is tunable over the C-band with negligible pedestal. © 2011 Optical Society of America....... the high pulse quality. The pulse source is based on a linear pulse compression stage followed by two polarization-independent non-linear pulse compression stages. The linear pulse compression stage relies on a phase modulator, which is used to generate linear chirp and followed by a dispersive element...

  3. Pulse plasma sintering of a tungsten/steel divertor module

    Energy Technology Data Exchange (ETDEWEB)

    Kruszewski, Mirosław J., E-mail:; Ciupiński, Łukasz; Rosiński, Marcin; Michalski, Andrzej; Kurzydłowski, Krzysztof J.


    Highlights: • W/WL10 and WL10/steel joints were fabricated via pulse plasma sintering. • Fe interlayer successfully compensated thermal stresses at the WL10/steel joint. • Maximum temperature of a single stage sintering of the module was established. • Better accuracy in machining of W and WL10 elements is needed. -- Abstract: The paper presents the preliminary evaluation of the potential of a pulse plasma sintering (PPS) technique for the fabrication of a He-cooled modular divertor with a multiple-jet cooling module. In this work the W and WL10 elements were directly bonded by PPS. Examination of the microstructure revealed some minor defects at the interface, but the overall quality of the joint was good with no cracks or delamination being detected. To reduce the thermal stress gradient a thin transition layer of iron was used at the WL10/steel interface. In addition an attempt was made to fabricate the complete module by a single sintering process. The microstructures of the fabricated modules were examined and the findings were reported.

  4. Fractal Reference Signals in Pulse-Width Modulation (United States)

    Lurie, Boris; Lurie, Helen


    A report proposes the use of waveforms having fractal shapes reminiscent of sawteeth (in contradistinction to conventional regular sawtooth waveforms) as reference signals for pulse-width modulation in control systems for thrusters of spacecraft flying in formation. Fractal reference signals may also be attractive in some terrestrial control systems - especially those in which pulse-width modulation is used for precise control of electric motors. The report asserts that the use of fractal reference signals would enable the synchronous control of several variables of a spacecraft formation, such that consumption of propellant would be minimized, intervals between thruster firings would be long (as preferred for performing scientific observations), and delays in controlling large-thrust maneuvers for retargeting would be minimized. The report further asserts that whereas different controllers would be needed for different modes of operation if conventional pulsewidth modulation were used, the use of fractal reference signals would enable the same controller to function nearly optimally in all regimes of operation, so that only this one controller would be needed.

  5. High extinction amplitude modulation in ultrashort pulse shaping

    CERN Document Server

    Lin, Yen-Wei


    We explored the issues related to the resolution and the modulation extinction when filtering the spectrum of a UV femtosecond laser with a standard ultrashort pulse shaper. We have learned that a higher pulse shaping resolution often requires a larger working beam size or a higher density grating for greater dispersion. However, these approaches also introduce more optical errors and degrade the extinction. In this work, we examined specifics of each component to determine the best configuration of our spectral filtering setup. As a proof-of-concept demonstration, we utilized elements available as standard products and achieved 100 GHz filtering resolution with high extinction at the UV-A wavelength, which is superb in this wavelength range. The high extinction spectral filtering is especially important while modifying a broadband laser for the optical control of molecule's internal state.

  6. Three-dimensional optical storage in fused silica using modulated femtosecond pulses

    Institute of Scientific and Technical Information of China (English)

    Qing Liu(刘青); Guanghua Cheng(程光华); Yishan Wang(王屹山); Zhao Cheng(程昭); Wei Zhao(赵卫); Guofu Chen(陈国夫)


    Three-dimensional bitwise optical recording with a density of 500 Gb/cm3 in fused silica using a Ti:sapphire femtosecond laser modulated by binary digits is demonstrated. Laser pulses modulation is realized by modulating two circuits of trigger pulses signal which are used to control laser pulses trapping and switching out from cavity, respectively. Bits are optically readout in both a parallel reading (phase-contrast) and a serial reading (confocal-type) methods. The method for modulating laser pulses can also be used in all of pulsed laser systems which operate in cavity-dumping configuration.

  7. Dual-Pulse Pulse Position Modulation (DPPM) for Deep-Space Optical Communications: Performance and Practicality Analysis (United States)

    Li, Jing; Hylton, Alan; Budinger, James; Nappier, Jennifer; Downey, Joseph; Raible, Daniel


    Due to its simplicity and robustness against wavefront distortion, pulse position modulation (PPM) with photon counting detector has been seriously considered for long-haul optical wireless systems. This paper evaluates the dual-pulse case and compares it with the conventional single-pulse case. Analytical expressions for symbol error rate and bit error rate are first derived and numerically evaluated, for the strong, negative-exponential turbulent atmosphere; and bandwidth efficiency and throughput are subsequently assessed. It is shown that, under a set of practical constraints including pulse width and pulse repetition frequency (PRF), dual-pulse PPM enables a better channel utilization and hence a higher throughput than it single-pulse counterpart. This result is new and different from the previous idealistic studies that showed multi-pulse PPM provided no essential information-theoretic gains than single-pulse PPM.

  8. Pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K


    This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,

  9. Current mode pulse width modulation/pulse position modulation based on phase lock loop (United States)

    Wisartpong, Pichet; Silaphan, Vorapong; Kurutach, Sunee; Wardkein, Paramote


    In this paper, the fully integrated CMOS current mode PLL with current input injects at the place of input or output of the loop filter without summing amplifier circuit. It functions as PPM and PWM circuit is present. In addition, its frequency response is an analysis which electronic tuning BPF and LPF are obtained. The proposed circuit has been designed with 0.18 μm CMOS technology. The simulation results of this circuit can be operated at 2.5 V supply voltage, at center frequency 100 MHz. The linear range of input current can be adjusted from 43 μA to 109 μA, and the corresponding duty cycle of pulse width output is from 93% to 16% and the normalized pulse position is from 0.93 to 0.16. The power dissipation of this circuit is 4.68 mW with the total chip area is 28 μm × 60 μm.

  10. Isolated PDM and PWM DC-AC SICAMs[Pulse Density Modulated; Pulse Width Modulated

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.


    In this report a class of isolated PDM and PWM DC-AC SICAMs is described, which introduce the audio reference only in the output stage. AC-DC power supply is implemented in its simplest form: diode rectifier followed by a medium-size charge-storage capacitor. Isolation from the AC mains is achieved using a high frequency (HF) transformer, receiving the HF voltage pulses from the input 'inverter' stage and transferring them to the output 'rectifier+inverter' stage, which can use either PDM or PWM. The latter stage is then interfaced to the load using an output low-pass filter. Each of the dedicated stages is discussed in detail. Measurements on the master/slave PWM DC-AC SICAM prototype are presented to help benchmarking the performance of this class of SICAMs and identify the advantages and drawbacks. (au)

  11. Nonlinear Pulse Compression and Reshaping Using Cross-Phase Modulation in a Dispersion-Shifted Fiber

    Institute of Scientific and Technical Information of China (English)

    S.; W.; Chan; K.; K.; Chow; C.; Shu


    Nonlinear pulse compression has been demonstrated by cross-phase modulation in a dispersion-shifted fiber. The output is obtained from filtering of the broadened optical spectrum and a pulse width reduction from 61 to 28 ps is achieved.

  12. Pulse Power Modulator development for the CLIC Damping Ring Kickers

    CERN Document Server

    Holma, Janne


    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity (10-34 – 10-35 cm-2s-1) and a nominal centre-of-mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve the very low emittance, through synchrotron radiation, needed for the luminosity requirements of CLIC. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the DR kickers must provide extremely flat, high-voltage pulses: the 2 GHz specification called for a 160 ns duration flat-top of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. In order to meet these demanding specifications, a combination of broadband impedance matching, optimized electrical circuit layout and advanced control techniques is required. A solid-state modulator, the inductive adder, is the most promising approach to meeting the demanding specifications...

  13. Arbitrary waveform modulated pulse EPR at 200 GHz (United States)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi


    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  14. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse (United States)

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.


    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  15. Spectral Compression of Intense Femtosecond Pulses by Self Phase Modulation in Silica Glass

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zhou, Binbin; Bache, Morten


    We experimentally demonstrate spectral compression of mJ fs pulses by self phase modulation in silica glass. Spectral narrowing by factor 2.4 of near-transform-limited pulses is shown, with good agreement between experiment and numerical simulation.......We experimentally demonstrate spectral compression of mJ fs pulses by self phase modulation in silica glass. Spectral narrowing by factor 2.4 of near-transform-limited pulses is shown, with good agreement between experiment and numerical simulation....

  16. Simulation calculation of 24kV long pulse TESLA modulator

    Institute of Scientific and Technical Information of China (English)

    TAO Xiao-Ping; Stefan CHOROBA


    A 24 kV long pulse modulator is designed for DESY's TESLA Test Facility (TIF). This modulator,with a 120 kV, 1.7 ms width pulse output, is used to drive a Thomson TH1801 multibeam klystron. In order to make waveform flatness of the klystron voltage less than ±0.5%, it is necessary to use a bouncer circuit. This paper gives the Pspice simulation results of the 24 kV long pulse TESLA modulator.

  17. High-Quality Ultrashort Pulse Generation Utilizing a Self-Phase Modulation-Based Reshaper

    Institute of Scientific and Technical Information of China (English)


    An ultrashort 10-GHz pulse generation scheme was successfully demonstrated using a bulk material InGaAsP electroabsorption modulator to generate the seed pulse. A self-phase modulation-based reshaper was used after the adiabatic soliton compression in a comb-like dispersion profiled fiber. Experiments and simulations confirm that the reshaper effectively removes the pulse pedestal and improves the pulse extinction ratio. As a result, the 10-GHz pulse had no pedestal, a high extinction ratio, and a pulse width of only 1.4 ps.

  18. Study of lower ionosphere by pulse cross-modulation method (United States)

    Chernogor, L. F.


    Three installations in the U.S.S.R. use cross-modulation to study the lower ionosphere from the Earth. Soviet work developed in the following directions: (1) simultaneous use of a number of independent methods; (2) use of broadband apparatus operating in the 1 to 6 MHz band; (3) utilization of both stationary and mobile installations; and (4) utilization of high powers (10 to 100 MW per pulse). Theoretical principle, as well as measurement and processing methods are described. Possibilities and errors of the method are considered. Information on the lower portion of the ionosphere, including the C layer can be collected in the daytime as well as the base of the ionosphere at 75 km at night. A better method for systematic studies of the D region is the partial reflections method.

  19. Pulse-modulation imaging-review and performance analysis. (United States)

    Chen, D G; Matolin, D; Bermak, A; Posch, C


    In time-domain or pulse-modulation (PM) imaging, the incident light intensity is not encoded in amounts of charge, voltage, or current as it is in conventional image sensors. Instead, the image data are represented by the timing of pulses or pulse edges. This method of visual information encoding optimizes the phototransduction individually for each pixel by abstaining from imposing a fixed integration time for the entire array. Exceptionally high dynamic range (DR) and improved signal-to-noise ratio (SNR) are immediate benefits of this approach. In particular, DR is no longer limited by the power-supply rails as in conventional complementary metal-oxide semiconductor (CMOS) complementary metal-oxide semiconductor active pixel sensors, thus providing relative immunity to the supply-voltage scaling of modern CMOS technologies. In addition, PM imaging naturally supports pixel-parallel analog-to-digital conversion, thereby enabling high temporal resolution/frame rates or an asynchronous event-based array readout. The applications of PM imaging in emerging areas, such as sensor network, wireless endoscopy, retinal prosthesis, polarization imaging, and energy harvesting are surveyed to demonstrate the effectiveness of PM imaging in low-power, high-performance machine vision, and biomedical applications of the future. The evolving design innovations made in PM imaging, such as high-speed arbitration circuits and ultra-compact processing elements, are expected to have even wider impacts in disciplines beyond CMOS image sensors. This paper thoroughly reviews and classifies all common PM image sensor architectures. Analytical models and a universal figure of merit - image quality and dynamic range to energy complexity factor are proposed to quantitatively assess different PM imagers across the entire spectrum of PM architectures.

  20. Red and blue pulse timing control for pulse width modulation light dimming of light emitting diodes for plant cultivation. (United States)

    Shimada, Aoi; Taniguchi, Yoshio


    A pulse width modulation (PWM) light dimming system containing red and blue light emitting diodes was designed and constructed. Cultivation of the plant Arabidopsis thaliana under various light dimming wave patterns was compared. Control of the pulse timing (phase of wave pattern) between red and blue light in PWM light dimming was examined. Different plant growth was obtained by changing the phase of red and blue pulses. Pulse timing control of PWM light dimming for plant cultivation has the potential to act as a method for probing photosynthesis. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. A New Selective Harmonic Elimination Pulse- Width and Amplitude Modulation (SHEPWAM) for Drive Applications

    DEFF Research Database (Denmark)

    Ghoreishy, Hoda; Varjani, Ali Yazdian; Mohamadian, Mustafa


    Compared to the conventional selective harmonic elimination-pulse width modulation (SHE-PWM), the selective harmonic elimination-pulse width and amplitude modulation (SHE-PWAM) control strategy results in significant improvements in the performance of CHB inverters. This fact is due to considerin...

  2. Picosecond optical pulse generation at gigahertz rates by direct modulation of a semiconductor laser (United States)

    Auyeung, J.


    We report the generation of picosecond pulses by the direct modulation of a buried heterostructure GaAlAs diode laser. Pulse width of 28 ps is achieved at a repetition frequency of 2.5 GHz. Pulse width dependence on the experimental parameters is described.

  3. Characterization of a High Efficiency, Ultrashort Pulse Shaper Incorporating a Reflective 4096-Element Spatial Light Modulator. (United States)

    Field, Jeffrey J; Planchon, Thomas A; Amir, Wafa; Durfee, Charles G; Squier, Jeff A


    We demonstrate pulse shaping via arbitrary phase modulation with a reflective, 1×4096 element, liquid crystal spatial light modulator (SLM). The unique construction of this device provides a very high efficiency when the device is used for phase modulation only in a prism based pulse shaper, namely 85%. We also present a single shot characterization of the SLM in the spatial domain and a single shot characterization of the pulse shaper in the spectral domain. These characterization methods provide a detailed picture of how the SLM modifies the spectral phase of an ultrashort pulse.

  4. Impact of Spectral Filter on Phase Modulation Pulse in Fiber Front End System

    Institute of Scientific and Technical Information of China (English)

    LI Jing; JING Feng; WANG Jian-Jun; XU Dang-Peng; LIN Hong-Huan; GENG Yuan-Chao; LI Ming-Zhong; DENG Ying; ZHU Na; ZHANG Rui


    The transmission characteristics of phase modulation pulse transmitted through the filter in the power amplifier are investigated theoretically and experimentally. The narrow bandpass filter can induce large temporal modula-tion depth for the phase modulation pulse and induce double amplitude modulation(AM)if the frequency shift is lower than half bandwidth of the signal spectrum. We should choose a wider bandwidth filter to minimize the impact of the filter on the output pulse and suppress the amplified spontaneous emission(ASE) for the power fiber amplifier. These results are of benefit to the design of the fiber front end system.

  5. Testing a scale pulsed modulator for an IEC neutron source into a resistive load

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E [Los Alamos National Laboratory; Wheat, Robert M [Los Alamos National Laboratory; Aragonez, Robert [Los Alamos National Laboratory


    A 1/10th scaled prototype pulse modulator for an Inertial Electrostatic Confinement (IEC) neutron source has been designed and tested at Los Alamos National Laboratory (LANL). The scaled prototype modulator is based on a solid-state Marx architecture and has an output voltage of 13 kV and an output current of 10 A. The modulator has a variable pulse width between 50 {micro}s and 1 ms with < 5% droop at all pulse widths. The modulator operates with a duty factor up to 5% and has a maximum pulse repetition frequency of 1 kHz. The use of a solid-state Marx modulator in this application has several potential benefits. These benefits include variable pulse width and amplitude, inherent switch overcurrent and transient overvoltage protection, and increased efficiency over DC supplies used in this application. Several new features were incorporated into this design including inductorless charging, fully snubberless operation, and stage fusing. The scaled prototype modulator has been tested using a 1 k{Omega} resistive load. Test results are given. Short (50 {micro}s) and long (1 ms) pulses are demonstrated as well as high duty factor operation (1 kHz rep rate at a 50 {micro}s pulse width for a 5% duty factor). Pulse agility of the modulator is demonstrated through turning the individual Marx stages on and off in sequence producing ramp, pyramid, and reverse pyramid waveforms.

  6. Enhanced soliton-effect pulse compression by cross-phase modulation in optical fibers

    Institute of Scientific and Technical Information of China (English)

    曹文华; 刘颂豪


    A new method is proposed to enhance the soliton-effect compression of optical pulses. It consists of copropagating two optical pulses with close wavelengths in the anomalous group-velocity dispersion regime of single-mode fibers. Numerical simulations show that, as compared with the traditional single pulse compression method, cross-phase modulation can not only dramatically increase the compression ratio but also decrease the optimum fiber length. The effects of initial pulse-width mismatch, Raman self-scattering, and pulse walk-off on the pulse compression are also discussed.

  7. Compact Pulse Width Modulation Circuitry for Silicon Photomultiplier Readout (United States)

    Bieniosek, M F; Olcott, P D; Levin, C S


    The adoption of solid state photo-detectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analog channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTC), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal to noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analog switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid state photomultiplier (PS-SSPM). Results show a 4×4 array 0.9mm×0.9mm×15mm of LYSO crystals being identified on the 5mm×5mm PS-SSPM at room temperature with no degradation for 2-fold multiplexing. In principle, much larger multiplexing ratios are

  8. Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module (United States)


    Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module by Gregory K Ovrebo ARL-TR-7210...ARL-TR-7210 February 2015 Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module Gregory K... Bipolar Transistor (IGBT) Power Module 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory K Ovrebo 5d

  9. Attitude Control of Satellite With Pulse-Width Pulse- Frequency (PWPF Modulator Using Generalized Incremental Predictive Control

    Directory of Open Access Journals (Sweden)

    Ehsan Chegeni


    Full Text Available In this paper, we use generalized incremental predictive control (GIPC to stabilize attitude of satellite. We compare Generalized Predictive Control (GPC with GIPC algorithm and present that GIPC has better performance. The three-axis attitude control systems are activated in pulse mode. Consequently, a modulation of the torque command is compelling in order to avoid high non-linear control action. This work considers the Pulse-Width Pulse-Frequency modulator (PWPF is composed of a Schmitt trigger, a first order filter, and a feedback loop. PWPF modulator has several advantages over classical bang-bang controllers such as close to linear operation, high accuracy, and reduced propellant consumption

  10. Pulsed klystrons with feedback controlled mod-anode modulators

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A [Los Alamos National Laboratory; Baca, David M [Los Alamos National Laboratory; Jerry, Davis L [Los Alamos National Laboratory; Rees, Daniel E [Los Alamos National Laboratory


    This paper describes a fast rise and fall, totem-pole mod-anode modulators for klystron application. Details of these systems as recently installed utilizing a beam switch tube ''on-deck'' and a planar triode ''off-deck'' in a grid-catch feedback regulated configuration will be provided. The grid-catch configuration regulates the klystron mod-anode voltage at a specified set-point during switching as well as providing a control mechanism that flat-top regulates the klystron beam current during the pulse. This flat-topped klystron beam current is maintained while the capacitor bank droops. In addition, we will review more modern on-deck designs using a high gain, high voltage planar triode as a regulating and switching element. These designs are being developed, tested, and implemented for the Los Alamos Neutron Science Center (LANSCE) accelerator refurbishment project, ''LANSCE-R''. An advantage of the planar triode is that the tube can be directly operated with solid state linear components and provides for a very compact design. The tubes are inexpensive compared to stacked semiconductor switching assemblies and also provide a linear control capability. Details of these designs are provided as well as operational and developmental results.

  11. Solid-state pulse modulator using Marx generator for a medical linac electron-gun (United States)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae


    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  12. A new pulse modulation adaptive controller (PMAC) applied to HVAC systems

    Energy Technology Data Exchange (ETDEWEB)

    Salsbury, T.I. [Johnson Controls Inc., Milwaukee (United States)


    The paper proposes a new switching control law (pulse modulation adaptive controller, PMAC) that implements pulse-width-pulse-frequency modulation. Pulse durations are determined to maintain the amplitude of variation in the controlled variable at or below a user-defined level. In addition to providing quantifiable control performance, PMAC can reduce component wear by issuing fewer switches than conventional control schemes. The control law is developed around a first-order system characterization but incorporates an adaptive loop, which allows application to a wide range of non-first-order and also time-variant systems. Test results are presented from applying PMAC to both simulated and real HVAC systems. (author)

  13. Suppression of stimulated Brillouin scattering with phase modulator in soliton pulse compression

    Institute of Scientific and Technical Information of China (English)

    Bo Lü; Taorong Gong; Ming Chen; Muguang Wang; Tangjun Li; Genxiang Chen; Shuisheng Jian


    A phase modulator is employed in the scheme of soliton pulse compression with dispersion shifted fiber (DSF). Stimulated Brillouin scattering (SBS) effect, as a negative influence here, can be dramatically suppressed after optical phase modulation. The experimental result shows that the launched power required for high-order soliton pulse compression has been significantly increased by 11 dB under the condition of 100-MHz phase modulation. Accordingly, the experiment of picosecond pulse compression generated from electro-absorption sampling window (EASW) has also been implemented.

  14. Modulation of ionization on laser frequency in ultra-short pulse intense laser-gas-target

    Institute of Scientific and Technical Information of China (English)

    Hu Qiang-Lin; Liu Shi-Bing


    Based on the dispersion relation of intense laser pulse propagating in gradually ionized plasma, this paper discusses the frequency modulation induced by ionization of an ultra-short intense laser pulse interacting with a gas target.The relationship between the frequency modulation and the ionization rate, the plasmas frequency variation, and the polarization of atoms (ions) is analysed. The numerical results indicate that, at high frequency, the polarization of atoms (ions) plays a more important role than plasma frequency variation in modulating the laser frequency, and the laser frequency variation is different at different positions of the laser pulse.

  15. GPU-based parallel clustered differential pulse code modulation (United States)

    Wu, Jiaji; Li, Wenze; Kong, Wanqiu


    Hyperspectral remote sensing technology is widely used in marine remote sensing, geological exploration, atmospheric and environmental remote sensing. Owing to the rapid development of hyperspectral remote sensing technology, resolution of hyperspectral image has got a huge boost. Thus data size of hyperspectral image is becoming larger. In order to reduce their saving and transmission cost, lossless compression for hyperspectral image has become an important research topic. In recent years, large numbers of algorithms have been proposed to reduce the redundancy between different spectra. Among of them, the most classical and expansible algorithm is the Clustered Differential Pulse Code Modulation (CDPCM) algorithm. This algorithm contains three parts: first clusters all spectral lines, then trains linear predictors for each band. Secondly, use these predictors to predict pixels, and get the residual image by subtraction between original image and predicted image. Finally, encode the residual image. However, the process of calculating predictors is timecosting. In order to improve the processing speed, we propose a parallel C-DPCM based on CUDA (Compute Unified Device Architecture) with GPU. Recently, general-purpose computing based on GPUs has been greatly developed. The capacity of GPU improves rapidly by increasing the number of processing units and storage control units. CUDA is a parallel computing platform and programming model created by NVIDIA. It gives developers direct access to the virtual instruction set and memory of the parallel computational elements in GPUs. Our core idea is to achieve the calculation of predictors in parallel. By respectively adopting global memory, shared memory and register memory, we finally get a decent speedup.

  16. Transmission Bandwidth Expansion of SI-POF Using WDM-Pulse-Position Modulations

    Institute of Scientific and Technical Information of China (English)

    Katsumi; Takano; Eiji; Matsumoto; Kiyoshi; Nakagawa


    WDM-Pulse-position modulation technique in SI-POF transmission is proposed to overcome the limitation from mode dispersion. It can expand the flat transmission bandwidth to 80MHz with 100m-fiber length.

  17. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device (United States)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti


    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  18. Total Ionizing Dose Test Report for the UC1823A Pulse Width Modulator (United States)

    Chen, Dakai; Forney, James


    The purpose of this study is to examine the total ionizing dose susceptibility for the UC1823A pulse width modulator manufactured by Texas Instruments, Inc. The part is suspected to be vulnerable to enhanced low dose rate sensitivity (ELDRS).

  19. A Waveguide Based, High Power Pockels Cell Modulator for Sub-Nanosecond Pulse Slicing Project (United States)

    National Aeronautics and Space Administration — The Goal of this STTR is to develop a high speed, high power, waveguide based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key...

  20. A megawatt solid-state modulator for high repetition rate pulse generation (United States)

    Wang, Y.; Pribyl, P.; Gekelman, W.


    A novel solid-state modulator capable of generating rapid consecutive power pulses is constructed to facilitate experiments on plasma interaction with high power microwave pulses. The modulator is designed to output a 100 kHz tone burst, which consists of up to 10 pulses, each with 1 μs duration and 1 MW peak power. The pulses are formed by discharging a total of 480 μF capacitors through 24 synchronized MOSFETs and 6 step-up transformers. The highly modular design, as a replacement of an old single-pulse version used in earlier experiments which employs a pulse forming network, brings great flexibility and wide potential to its application. A systematic cost-effectiveness analysis is also presented.

  1. Synchronization and Coherent Combining of Two Pulsed Fiber Ring Lasers Based on Direct Phase Modulation

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Lin; ZHOU Pu; MA Hao-Tong; CHEN Zi-Lun; LI Xiao; XU Xiao-Jun; LIU Ze-Jin


    We demonstrate a scalable architecture for coherent combining of pulsed fiber ring lasers based on mutual injection and direct phase modulation. By direct phase modulation in the common arm of two ring lasers, synchronous pulsed lasers can be generated and coherent combining of the two synchronous lasers is obtained. Two pulsed fiber ring lasers are coherently combined with 0.55 μJ pulse energy and 10μs pulse duration at a repetition rate of 27.5 kHz. Experimental results show that the two fiber ring lasers are phase locked with an invariable phase difference of π and have good temporal synchronization and spatial coherence. The combining efficiency of the two pulsed fiber laser reaches 90% and the fringe contrast is larger than 40%. Neither active phase control nor polarization control is used in our experiment and this method can be extended to combine more beams and higher repetition rate scaling up to higher power.

  2. Frequency Properties Research of Elevator Drive System with Direct Torque Control-Pulse with Modulation

    Directory of Open Access Journals (Sweden)

    A. S. Koval


    Full Text Available In the article problems of frequency properties research for electric drive system with direct torque control and pulse width modulator are described. The mathematical description of elevator is present. Simplified mathematical description of direct torque control - pulse width modulator electric drive system is shown. Transfer functions for torque and speed loops are determined. Logarithmic frequency characteristics are computed. Damping properties of elevator drive system are estimated.

  3. Self-phase modulation of a single-cycle THz pulse

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, M. C.


    We demonstrate self-phase modulation (SPM) of a single-cycle THz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the THz pulse. Electron heating leads to an ultrafast reduction of the plasma frequency, which...

  4. Control of high power IGBT modules in the active region for fast pulsed power converters

    CERN Document Server

    Cravero, J M; Garcia Retegui, R; Maestri, S; Uicich, G


    At CERN, fast pulsed power converters are used to supply trapezoidal current in different magnet loads. These converters perform output current regulation by using a high power IGBT module in its ohmic region. This paper presents a new strategy for pulsed current control applications using a specifically designed IGBT driver.

  5. Frequency Stepped Pulse Train Modulated Wind Sensing Lidar

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Pedersen, Anders Tegtmeier; Rottwitt, Karsten


    In this paper a wind sensing lidar utilizing a Frequency Stepped Pulse Train (FSPT) is demonstrated. One of the advantages in the FSTP lidar is that it enables direct measurement of wind speed as a function of distance from the lidar. Theoretically the FSPT lidar continuously produces measurements...... as is the case with a CW lidar, but at the same time with a spatial resolution, and without the range ambiguity originating from e.g. clouds. The FSPT lidar utilizes a frequency sweeping source for generation of the FSPT. The source generates a pulse train where each pulse has an optical carrier frequency...... of frequency shifts corresponding to a specific distance. The spatial resolution depends on the repetition rate of the pulses in the pulse train. Directional wind measurements are shown and compared to a CW lidar measurement. The carrier to noise ratio of the FSPT lidar compared to a CW lidar is discussed...

  6. Dual temporal pitch percepts from acoustic and electric amplitude-modulated pulse trains. (United States)

    McKay, C M; Carlyon, R P


    Two experiments examined the perception of unmodulated and amplitude-modulated pulse trains by normally hearing listeners and cochlear implantees. Four normally hearing subjects listened to acoustic pulse trains, which were band-pass filtered between 3.9 and 5.3 kHz. Four cochlear implantees, all postlinguistically deaf users of the Mini System 22 implant, listened to current pulse trains produced at a single electrode position. In the first experiment, a set of nine loudness-balanced unmodulated stimuli with rates between 60 and 300 Hz were presented in a multidimensional scaling task. The resultant stimulus spaces for both subject groups showed a single dimension associated with the rate of the stimuli. In the second experiment, a set of ten loudness-balanced modulated stimuli was constructed, with carrier rates between 140 and 300 Hz, and modulation rates between 60 and 150 Hz. The modulation rates were integer submultiples of the carrier rates, and each modulation period consisted of one higher-intensity pulse and one or more identical lower-intensity pulses. The modulation depth of each stimulus was adjusted so that its pitch was judged to be higher or lower 50% of the time than that of an unmodulated pulse train having a rate equal to the geometric mean of the carrier and modulation rates. A multidimensional scaling task with these ten stimuli resulted in two-dimensional stimulus spaces, with dimensions corresponding to carrier and modulation rates. A further investigation with one normally hearing subject showed that the perceptual weighting of the two dimensions varied systematically with modulation depth. It was concluded that, when filtered appropriately, acoustic pulse trains can be used to produce percepts in normal listeners that share common features with those experienced by subjects listening through one channel of a cochlear implant, and that the central auditory system can extract two temporal patterns arising from the same cochlear location.

  7. All-optical DAC using counter-propagating optical and electrical pulses in a Mach-Zehnder modulator. (United States)

    Lowery, Arthur James


    A novel method of converting binary-level electrical pulses into multi-level optical pulses using only a conventional traveling-wave optical modulator is presented. The method provides low inter-pulse interference due to the counter-propagating pulses, low amplitude noise, and a timing jitter determined chiefly by the quality of the optical pulse source. The method only requires one electrical drive per modulator and provides low-jitter variable-amplitude optical pulses that are suitable for shaping into a wide variety of modulation formats using a programmable optical filter.

  8. Study on Pulse Skip Modulation Mode in Smart Power Integrated Circuits and Its Test Technology

    Institute of Scientific and Technical Information of China (English)

    LUO Ping


    @@ Up to now, the popular control modes for smart power integrated circuit (SPIC) are PWM and PFM.PWM bases on constant frequency variable width (CFVW) control pulse, whereas, PFM bases on constant width variable frequency (CWVF) control pulse. PWM converter has low efficiency with light loads and high amplitude harmonic. On the other hand,the control circuit and filter for PFM are much complex. This dissertation proposes a novel modulation mode named pulse skip modulation (PSM)for SPIC converter, which bases on constant width constant frequency (CWCF) control pulse. It is shown that PSM converter would improve its efficiency and suppress EMI. It also has quick response speed, good interfere rejection and strong robust. Furthermore, it is easy to realize PSM control circuit. The modulating theories of PSM are firstly studied in the world according to the author's investigation.

  9. A novel variable polarity welding power based on high-frequency pulse modulation

    Institute of Scientific and Technical Information of China (English)

    Qiu Ling; Yang Chunli; Fan Chenglei; Lin Sanbao; Wu Yun


    A new type of variable polarity welding power modulated with high-frequency pulse current is developed.Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current.Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.

  10. Temporally modulated phase retrieval method for weak temporal phase measurement of laser pulses

    CERN Document Server

    Qiao, Zhi; Wang, Xiaochao; Jing, Yuanyuan; Fan, Wei; Lin, Zunqi


    The measurement of weak temporal phase for picosecond and nanosecond laser pulses is important but quite difficult. We propose a simple iterative algorithm, which is based on a temporally movable phase modulation process, to retrieve the weak temporal phase of laser pulses. This unambiguous method can achieve a high accuracy and simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform-limited. Detailed analysis shows that this iterative method has valuable potential applications in the characterization of pulses with weak temporal phase.

  11. Amplification of Frequency-Modulated Similariton Pulses in Length-Inhomogeneous Active Fibers

    Directory of Open Access Journals (Sweden)

    I. O. Zolotovskii


    Full Text Available The possibility of an effective gain of the self-similar frequency-modulated (FM wave packets is studied in the length-inhomogeneous active fibers. The dynamics of parabolic pulses with the constant chirp has been considered. The optimal profile for the change of the group-velocity dispersion corresponding to the optimal similariton pulse amplification has been obtained. It is shown that the use of FM pulses in the active (gain and length-inhomogeneous optical fibers with the normal group-velocity dispersion can provide subpicosecond optical pulse amplification up to the energies higher than 1 nJ.

  12. Analysis of Symmetrical Pulse Width Modulation Strategies for Matrix Converters

    DEFF Research Database (Denmark)

    Larsen, K.B.; Jorgensen, A.H.; Helle, Lars


    This paper presents a new and easy way to understand the derivation of the modulation functions for matrix converters. It is shown how the duty cycles can be calculated using techniques known from the back-to-back (B2B) voltage source inverter (VSI), thus making the subject accessible to people...... with prior knowledge in standard drives. A new modulation strategy is presented minimizing harmonic distortion compared to the standard double-sided space vector modulation for matrix converters. An improvement to an existing modulator is also presented where the proposed modification improves the harmonic...... performance. The strategies are compared both analytically and by the use of both simulations and measurements on a 12 kW matrix converter prototype.It is found that the proposed modulator has superior performance compared to modulators with equal switching frequencies and an equal number of switchings....

  13. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    CERN Document Server

    del-Castillo-Negrete, D


    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across m...

  14. Shaping the output pulse of a linear-transformer-driver module.

    Energy Technology Data Exchange (ETDEWEB)

    Long, Finis W.; McKee, G. Randall; Stoltzfus, Brian Scott; Woodworth, Joseph Ray; McKenney, John Lee; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John L.; Stygar, William A.; Savage, Mark Edward; LeChien, Keith, R.; Van De Valde, David M. (EG& G, Albuquerque, NM)


    We demonstrate that a wide variety of current-pulse shapes can be generated using a linear-transformer-driver (LTD) module that drives an internal water-insulated transmission line. The shapes are produced by varying the timing and initial charge voltage of each of the module's cavities. The LTD-driven accelerator architecture outlined in [Phys. Rev. ST Accel. Beams 10, 030401 (2007)] provides additional pulse-shaping flexibility by allowing the modules that drive the accelerator to be triggered at different times. The module output pulses would be combined and symmetrized by water-insulated radial-transmission-line impedance transformers [Phys. Rev. ST Accel. Beams 11, 030401 (2008)].

  15. Acousto-optic modulation by pulsed optical excitation: implications to imaging in turbid media. (United States)

    Paul, Joseph S; Sen, Deep; Dokos, Socrates


    We show that the transient response of acoustically modulated optical flux in a turbid medium irradiated by a pulsed point source of light is delayed in time relative to the light-alone flux obtained in the absence of acoustic modulation. The time delay is shown to result from an initial phase of flux reversal, as determined by the time point of the input pulse onset with reference to the ultrasound cycle. Both the time delay and amplitude of modulation are shown to be dependent on the effective attenuation coefficient of the medium. Application of a periodic train of excitation pulses spaced at equal intervals at, or in multiples of, the ultrasound period enables a time-locked detection of the modulated light, without the deleterious effects caused by speckle artifacts.

  16. Photonic Crystal Fano Laser: Terahertz Modulation and Ultrashort Pulse Generation

    DEFF Research Database (Denmark)

    Mørk, Jesper; Chen, Yaohui; Heuck, Mikkel


    We suggest and analyze a laser with a mirror realized by Fano interference between a waveguide and a nanocavity. For small-amplitude modulation of the nanocavity resonance, the laser can be modulated at frequencies exceeding 1 THz, not being limited by carrier dynamics as for conventional lasers....

  17. Effects of continuous-wave, pulsed, and sinusoidal-amplitude-modulated microwaves on brain energy metabolism. (United States)

    Sanders, A P; Joines, W T; Allis, J W


    A comparison of the effects of continuous-wave, sinusoidal-amplitude-modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague-Dawley rats (175-225 g). Brain NADH fluorescence, adenosine triphosphate (ATP) concentration, and creatine phosphate (CP) concentration were determined as a function of modulation frequency. Brain temperatures of animals were maintained between -0.1 and -0.4 degrees C from the preexposure temperature when subjected to as much as 20 mW/cm2 (average power) CW, pulsed, or sinusoidal-amplitude modulated 591-MHz radiation for 5 min. Sinusoidal-amplitude-modulated exposures at 16-24 Hz showed a trend toward preferential modulation frequency response in inducing an increase in brain NADH fluorescence. The pulse-modulated and sinusoidal-amplitude-modulated (16 Hz) microwaves were not significantly different from CW exposures in inducing increased brain NADH fluorescence and decreased ATP and CP concentrations. When the pulse-modulation frequency was decreased from 500 to 250 pulses per second the average incident power density threshold for inducing an increase in brain NADH fluorescence increased by a factor of 4--ie, from about 0.45 to about 1.85 mW/cm2. Since brain temperature did not increase, the microwave-induced increase in brain NADH and decrease in ATP and CP concentrations was not due to hyperthermia. This suggests a direct interaction mechanism and is consistent with the hypothesis of microwave inhibition of mitochondrial electron transport chain function of ATP production.

  18. Nanosecond electric pulses modulate skeletal muscle calcium dynamics and contraction (United States)

    Valdez, Chris; Jirjis, Michael B.; Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.


    Irreversible electroporation therapy is utilized to remove cancerous tissues thru the delivery of rapid (250Hz) and high voltage (V) (1,500V/cm) electric pulses across microsecond durations. Clinical research demonstrated that bipolar (BP) high voltage microsecond pulses opposed to monophasic waveforms relieve muscle contraction during electroporation treatment. Our group along with others discovered that nanosecond electric pulses (nsEP) can activate second messenger cascades, induce cytoskeletal rearrangement, and depending on the nsEP duration and frequency, initiate apoptotic pathways. Of high interest across in vivo and in vitro applications, is how nsEP affects muscle physiology, and if nuances exist in comparison to longer duration electroporation applications. To this end, we exposed mature skeletal muscle cells to monopolar (MP) and BP nsEP stimulation across a wide range of electric field amplitudes (1-20 kV/cm). From live confocal microscopy, we simultaneously monitored intracellular calcium dynamics along with nsEP-induced muscle movement on a single cell level. In addition, we also evaluated membrane permeability with Yo-PRO-1 and Propidium Iodide (PI) across various nsEP parameters. The results from our findings suggest that skeletal muscle calcium dynamics, and nsEP-induced contraction exhibit exclusive responses to both MP and BP nsEP exposure. Overall the results suggest in vivo nsEP application may elicit unique physiology and field applications compared to longer pulse duration electroporation.

  19. Performance characteristics of an induction linac magnetic pulse compression modulator at multi-kilohertz pulse repetition frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, S.E.; Chambers, F.W.; Deadrick, F.J. [and others


    The ETA-II linear induction accelerator utilizes four pulse power conditioning chains. Magnetic pulse compression modulators (MAG1-Ds) form the last stage of each chain. A single power conditioning chain is used to drive the injector; the remaining three are used to drive 60 accelerator cells. Nominal parameters of the MAG1-D are an output voltage of greater than 120 kV, pulse width of 70 ns, and an output impedance of 2 ohms. Our operations goal for ETA-II is stable high average power operation at 5 kHz PRF. We have begun upgrading and characterizing the power conditioning chain on our High Average Power Test Stand (HAPTS). On HAPTS, the pulse to pulse amplitude stability has been improved to less than 0.7% (one sigma) and of order 3-5 ns random jitter about a systematic timing variation. In this paper we describe the status of our work to achieve the this paper we describe the status of our work to achieve the average power operation of ETA-II

  20. Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

    CERN Document Server

    Wu, Zilu; Krinsky, Sam; Loos, Henrik; Murphy, James; Shaftan, Timur; Sheehy, Brian; Shen, Yuzhen; Wang, Xijie; Yu Li Hua


    High Gain Harmonic Generation (HGHG), because it produces longitudinally coherent pulses derived from a coherent seed, presents remarkable possibilities for manipulating FEL pulses. If spectral phase modulation imposed on the seed modulates the spectral phase of the HGHG in a deterministic fashion, then chirped pulse amplification, pulse shaping, and coherent control experiments at short wavelengths become possible. In addition, the details of the transfer function will likely depend on electron beam and radiator dynamics and so prove to be a useful tool for studying these. Using the DUVFEL at the National Synchrotron Light Source at Brookhaven National Laboratory, we present spectral phase analyses of both coherent HGHG and incoherent SASE ultraviolet FEL radiation, applying Spectral Interferometry for Direct Electric Field Reconstruction (SPIDER), and assess the potential for employing compression and shaping techniques.

  1. Comparative study of SVPWM (space vector pulse width modulation) & SPWM (sinusoidal pulse width modulation) based three phase voltage source inverters for variable speed drive (United States)

    Ahmed, Waheed; Usman Ali, Syed M.


    We have performed comparative studies of Space Vector Pulse Width Modulation (SVPWM) and Sinusoidal Pulse Width Modulation (SPWM) techniques utilizing MATLAB tools. During these investigations, we carried out intensive simulations, comprehensively analyzed the obtained results and compared the harmonic density, power factor (PF), & switching losses of SVPWM and SPWM. It has been observed during investigations that if the switching frequency is high then losses due to harmonics are negligible, thus based on obtained results we suggested that the SVPWM technique is a more reliable solution. Because SVPWM utilizes DC bus voltage more efficiently, generates less Total Harmonic Distortion (THD) and has higher output quality it provides flexible control of output voltage and output frequency for Variable Speed Drive (VSD).

  2. A Pulse Power Modulator System for Commercial High Power Ion Beam Surface Treatment Applications

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, D.M.; Cockreham, B.D.; Dragt, A.J.; Ives, H.C.; Neau, E.L.; Reed, K.W.; White, F.E.


    The Ion Beam Surface Treatment (lBESTrM) process utilizes high energy pulsed ion beams to deposit energy onto the surface of a material allowing near instantaneous melting of the surface layer. The melted layer typically re-solidifies at a very rapid rate which forms a homogeneous, fine- grained structure on the surface of the material resulting in significantly improved surface characteristics. In order to commercialize the IBESTTM process, a reliable and easy-to-operate modulator system has been developed. The QM-I modulator is a thyratron-switched five-stage magnetic pulse compression network which drives a two-stage linear induction adder. The adder provides 400 kV, 150 ns FWHM pulses at a maximum repetition rate of 10 pps for the acceleration of the ion beam. Special emphasis has been placed upon developing the modulator system to be consistent with long-life commercial service.

  3. Detecting Fleeting MRI Signals with Frequency-Modulated Pulses (United States)

    Kobayashi, Naoharu; Idiyatullin, Djaudat; Corum, Curtis; Moeller, Steen; Chamberlain, Ryan; O'Connell, Robert; Nixdorf, Donald R.; Garwood, Michael


    We describe a fundamentally different approach to MRI referred to as SWIFT (sweep imaging with Fourier transformation). SWIFT exploits time-shared RF excitation and signal acquisition, allowing capture of signal from spins with extremely short transverse relaxation time, T2*. The MR signal is acquired in gaps inserted into a broadband frequency-swept excitation pulse, which results in acquisition delays of only 1 – 2 microseconds. In SWIFT, 3D k-space is sampled in a radial manner, whereby one projection of the object is acquired in the gaps of each frequency-swept pulse, allowing a repetition time (TR) on the order of the pulse length (typically 1 – 3 milliseconds). Since the orientation of consecutive projections varies in a smooth manner (i.e., only small increments in the values of the x, y, z gradients occur from view to view), SWIFT scanning is close to inaudible and is insensitive to gradient timing errors and eddy currents. SWIFT images can be acquired in scan times similar to and sometimes faster than conventional 3D gradient echo techniques. With its ability to capture signals from ultrashort T2* spins, SWIFT promises to expand the role of MRI in areas of research where MRI previously played no or negligible role. In this article, we show wood and tooth images obtained with SWIFT as examples of materials with ultrashort T2*. Early experience suggests SWIFT can play a role in materials science and porous media research. PMID:22661791

  4. Optical 40 GHz pulse source module based on a monolithically integrated mode locked DBR laser (United States)

    Huettl, B.; Kaiser, R.; Kroh, M.; Schubert, C.; Jacumeit, G.; Heidrich, H.


    In this paper the performance characteristics of compact optical 40 GHz pulse laser modules consisting of a monolithic mode-locked MQW DBR laser on GaInAsP/InP are reported. The monolithic devices were fabricated as tunable multi-section buried heterostructure lasers. A DBR grating is integrated at the output port of an extended cavity in order to meet the standardized ITU wavelength channels allocated in the spectral window around 1.55 μm in optical high speed communication networks. The fabricated 40 GHz lasers modules not only emit short optical pulses (< 1.5 ps) with very low amplitude noise (<1.5 %) and phase noise levels (timing jitter: 50 fs) but also enable good pulse-to-pulse phase and long-term stability. A wavelength tuning range of 6 nm is possible and large locking bandwidths between 100 ... 260 MHz are observed. All data have been achieved by operating the lasers in a hybrid mode-locking scheme with a required minimum micro-wave power of only 12 dBm for pulse synchronization. Details on laser chip architecture and module performance are summarized and the results of a stable and error free module performance in first 160 Gb/s (4 x 40 Gb/s OTDM) RZ-DPSK transmission experiments are presented.

  5. Self-phase modulation of a single-cycle THz pulse

    Directory of Open Access Journals (Sweden)

    Hoffmann M. C.


    Full Text Available We demonstrate self-phase modulation (SPM of a single-cycle THz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the THz pulse. Electron heating leads to an ultrafast reduction of the plasma frequency, which results in a strong modification of the THz-range dielectric function of the material. THz SPM is observed directly in the time domain as a characteristic reshaping of single-cycle THz pulse. In the frequency domain, it corresponds to a strong frequency-dependent refractive index nonlinearity of n-GaAs, which is found to be both positive and negative within the broad spectrum of the THz pulse. The spectral position of zero nonlinearity is defined by the electron momentum relaxation rate. Nonlinear spectral broadening and compression of the single-cycle THz pulse was also observed.

  6. A driving pulse edge modulation technique and its complex programming logic devices implementation

    Institute of Scientific and Technical Information of China (English)

    Xiao CHEN; Dong-chang QU; Yong GUO; Guo-zhu CHEN


    With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insulated gate bipolar transistors (IGBTs). By modulating the density and width of the pulse trains, without regulating the hardware circuit, the slope of the gate driving voltage is controlled to change the switching speed. This technique is used in the driving circuit based on complex programmable logic devices (CPLDs), and the switching voltage spike of IGBTs can be restrained through software, which is easier and more flexible to adjust. Experimental results demonstrate the effectiveness and practicability of the proposed method.

  7. Hybrid Design Optimization of High Voltage Pulse Transformers for Klystron Modulators

    CERN Document Server

    Sylvain, Candolfi; Davide, Aguglia; Jerome, Cros


    This paper presents a hybrid optimization methodology for the design of high voltage pulse transformers used in klystron modulators. The optimization process is using simplified 2D FEA design models of the 3D transformer structure. Each intermediate optimal solution is evaluated by 3D FEA and correction coefficients of the 2D FEA models are derived. A new optimization process using 2D FEA models is then performed. The convergence of this hybrid optimal design methodology is obtained with a limited number of time consuming 3D FEA simulations. The method is applied to the optimal design of a monolithic high voltage pulse transformer for the CLIC klystron modulator.


    DEFF Research Database (Denmark)


    (v¿e?); a state feedback block A with compensation; a reference shaping block $i(R) to modify the pulsed reference $i(v¿r?) for optimized error estimation; a difference block to generate an error signal and a compensator $i(C) to shape this error. The invention makes it possible to implement practical digital...

  9. Pulse modulators for the VEPP-5 injection complex klystron power supply

    CERN Document Server

    Akimov, A V; Bak, P A; Kot, N H; Yudin, V D


    In the complex VEPP-5 preinjector the klystrons are supplied by the modulators with a pulse power of 150 MW,a voltage of 47.5 kV, a primary current of 6.3 kA and a pulse duration of 3.5 mu s. During the long time operation some disadvantages in the design have been revealed and proper improvements were made. The modulator design with the taking into account all the resent changes is described and test results are presented. At present,three modulators are supplying three klystrons 5045 (production of SLAC Lab.,USA) and the forth modulator is tested with a dummy load in the nominal mode of operation.

  10. A scheme of pulse compression lidar with enhanced modulated bandwidth for detection through scattering media (United States)

    Yang, Cheng-hua; Zhang, Yong; Jin, Chen-fei; Xu, Lu; Yang, Xu; Wang, Qiang; Liu, Yue-hao; Zhao, Yuan


    This paper presents a scheme of pulse compression lidar with enhanced electrical modulated bandwidth. An ultra-wideband linear frequency modulated signal with a bandwidth of 50 GHz is generated using femtosecond laser and superimposed linear chirp fiber Bragg gratings in the transmitter, which separates the echo of the target from the backward scattered noise with low modulated frequency. An optical pulse compression system based on a negative dispersion fiber Bragg grating is used to compress the ultra-wideband linear frequency modulated signal in the receiver. SNR and range resolution of the proposed scheme are numerically simulated to prove its feasibility. The simulation results indicate that an enhancement of SNR by 15.8 dB can be achieved using the scheme, and the range resolution of the scheme increases from 0.68 m to 0.0027 m. It is therefore concluded that the proposed scheme is suitable for detection through scattering media.

  11. Transformation of the frequency-modulated continuous-wave field into a train of short pulses by resonant filters

    CERN Document Server

    Shakhmuratov, R N


    The resonant filtering method transforming frequency modulated radiation field into a train of short pulses is proposed to apply in optical domain. Effective frequency modulation can be achieved by electro-optic modulator or by resonant frequency modulation of the filter with a narrow absorption line. Due to frequency modulation narrow-spectrum CW radiation field is seen by the resonant filter as a comb of equidistant spectral components separated by the modulation frequency. Tuning narrow-bandwidth filter in resonance with $n$-th spectral component of the comb transforms the radiation field into bunches of pulses with $n$ pulses in each bunch. The transformation is explained by the interference of the coherently scattered resonant component of the field with the whole comb. Constructive interference results in formation of pulses, while destructive interference is seen as dark windows between pulses. It is found that the optimal thickness of the resonant filter is several orders of magnitude smaller than the...

  12. Numerical Simulation of Ultrafast Laser Pulse Propagation in Tenuous Plasmas:Envelope Evolving and Modulation

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Yu; XIE Bai-Song


    We propose an effective and useful numerical simulation scheme for the investigation of the ultra-fast laser pulses in tenuous plasmas. The accuracy of the method is tested by numerical examples. We check some special examples to investigate the laser envelope evolving and modulation in plasmas. Asymmetric two-peak modulation structure is found and its underlying physics is analyzed. The advantages and shortages of the method are also discussed.

  13. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation (United States)

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.


    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.


    DEFF Research Database (Denmark)


    A digital switching power amplifier with Multivariable Enhanced Cascade Controlled (MECC) includes a modulator, a switching power stage and a low pass filter. In the first preferred embodiment an enhanced cascade control structure local to the switching power stage is added, characterised by havi...... and feedback path A to determine stable self-oscillating conditions. An implemented 250W example MECC digital power amplifier has proven superior performance in terms of audio performance (0.005 % distortion, 115 dB dynamic range) and efficiency (92 %).......A digital switching power amplifier with Multivariable Enhanced Cascade Controlled (MECC) includes a modulator, a switching power stage and a low pass filter. In the first preferred embodiment an enhanced cascade control structure local to the switching power stage is added, characterised by having...

  15. Equalization of Skin Effect Loss Dominated Channels using Pulse-Width Modulation (PWM) Pre-Emphasis

    NARCIS (Netherlands)

    Schrader, J.H.R.; Klumperink, Eric A.M.; Visschers, J.L.; Nauta, Bram

    A digital transmitter pre-emphasis technique is presented that is based on pulse-width modulation, instead of finite impulse response (FIR) filtering. The technique fits well to future high-speed low-voltage CMOS processes. A 0.13μm CMOS transmitter achieves more than 5Gb/s (2-PAM) over 25m of

  16. Pulse Width Modulator Controller Design for a Brushless DC Motor Position Servo. (United States)


    performance. This thesis involves computer aided design of a functionally robust brushless dc motor position controller using pulse width modulation...Recent interest in positioning cruise missile flight control surfaces using electromechanical actuation has prompted a detailed study of brushless dc ... motor performance in such an application. While the superior response characteristics of these electronically commutated motors are particularly well

  17. Clipper circuit of pulse modulator used for klystron-5045 power supply

    CERN Document Server

    Akimov, A V


    While the operation of modulator to the pulsed transformer of klystron-5045, current through the primary winding of the pulse transformer (PT) continues to flow even upon the end of the klystron voltage operating pulse. This is determined by an energy stored in magnetizing inductance. The prolongation of magnetizing current passing process simultaneously with the premature choking of thyratron can cause high voltage of inverse polarity at the klystron, which cause the destruction of the cathode. We have considered the possibility of shortening time of magnetizing current passage for the charge of reasonable choice of clipper circuit parameters. The behavior of clipper circuit was studied in modulators used for the VEPP-5 (BINP, Russia) preinjector klystron power supply. The optimum operation run of the circuit was selected and its design features are described.

  18. Optimized Pulse Width Modulation for transformerless active-NPC inverters

    DEFF Research Database (Denmark)

    Achilladelis, Nikolaos; Koutroulis, Eftichios; Blaabjerg, Frede


    The transformerless DC/AC inverter topologies are employed in Photovoltaic systems in order to improve the power conversion efficiency, power density and cost. The Active-Neutral Point Clamped (Active-NPC) transformerless inverters have the advantage of achieving better thermal balance among...... their power semiconductors. In this paper, a new modulation technique is proposed for optimally controlling the power switches employed in transformerless Active-NPC inverters. The design results demonstrate that compared to the existing PWM strategies, using the proposed method results in lower total power...

  19. Adaptive Light Modulation for Improved Resolution and Efficiency in All-Optical Pulse-Echo Ultrasound. (United States)

    Alles, Erwin J; Colchester, Richard J; Desjardins, Adrien E


    In biomedical all-optical pulse-echo ultrasound systems, ultrasound is generated with the photoacoustic effect by illuminating an optically absorbing structure with a temporally modulated light source. Nanosecond range laser pulses are typically used, which can yield bandwidths exceeding 100 MHz. However, acoustical attenuation within tissue or nonuniformities in the detector or source power spectra result in energy loss at the affected frequencies and in a reduced overall system efficiency. In this work, a laser diode is used to generate linear and nonlinear chirp optical modulations that are extended to microsecond time scales, with bandwidths constrained to the system sensitivity. Compared to those obtained using a 2-ns pulsed laser, pulse-echo images of a phantom obtained using linear chirp excitation exhibit similar axial resolution (99 versus 92 μm, respectively) and signal-to-noise ratios (SNRs) (10.3 versus 9.6 dB). In addition, the axial point spread function (PSF) exhibits lower sidelobe levels in the case of chirp modulation. Using nonlinear (time-stretched) chirp excitations, where the nonlinearity is computed from measurements of the spectral sensitivity of the system, the power spectrum of the imaging system was flattened and its bandwidth broadened. Consequently, the PSF has a narrower axial extent and still lower sidelobe levels. Pulse-echo images acquired with time-stretched chirps as optical modulation have higher axial resolution (64 μm) than those obtained with linear chirps, at the expense of a lower SNR (6.8 dB). Using a linear or time-stretched chirp, the conversion efficiency from optical power to acoustical pressure improved by a factor of 70 or 61, respectively, compared to that obtained with pulsed excitation.

  20. Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator. (United States)

    Adany, Peter; Price, E Shane; Johnson, Carey K; Zhang, Run; Hui, Rongqing


    A voltage-controlled birefringent cell based on ceramic PMN-PT material is used to enable fast intensity modulation of femtosecond laser pulses in the 800 nm wavelength window. The birefringent cell based on a PMN-PT compound has comparatively high electro-optic response, allowing for a short interaction length of 3 mm and thus very small size, low attenuation of 0.16 dB, and negligible broadening for 100 fs optical pulses. As an application example, agile wavelength tuning of optical pulses is demonstrated using the soliton self-frequency shift in a photonic crystal fiber. By dynamically controlling the optical power into the fiber, this system switches the wavelength of 100 fs pulses from 900 nm to beyond 1120 nm with less than 5 micros time. In addition, a feedback system stabilizes the wavelength drift against external conditions resulting in high wavelength stability.

  1. Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges (United States)

    Zhang, Jie; Guo, Ying; Huang, Xiaojiang; Zhang, Jing; Shi, Jianjun


    The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(α)-gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge. supported by National Natural Science Foundation of China (Nos. 11475043 and 11375042)

  2. UWB multi-pulse position modulation for high data-rate wireless application

    Institute of Scientific and Technical Information of China (English)

    WANG Ye-qiu; LU Ying-hua; ZHANG Hong-xin; HE Peng-fei; ZHANG Li-kun


    A new ultra-wide band (UWB) modulation scheme called L-ary ultra-wide band time hopping multi-pulse position modulation (UWB-TH-MPPM) is proposed for high data-rate wireless application, which can provide better communication performance. The constant weight code is introduced to construct the MPPM signal and the comparison between MPPM and single pulse position modulation (SPPM) is done in three aspects, namely, power efficiency, bandwidth efficiency, and probability of symbol error, respectively. The theoretical analysis and the numerical results show that when the constant weight code is appropriately chosen, MPPM can achieve lower probability of symbol error and higher power efficiency than SPPM at the cost of more bandwidth under the same condition.The proposed MPPM can be a good candidate in UWB system design.

  3. Higher-order modulations of fs laser pulses for GHz frequency domain photon migration system. (United States)

    Lin, Huang-Yi; Cheng, Nanyu; Tseng, Sheng-Hao; Chan, Ming-Che


    Except the fundamental modulation frequency, by higher-order-harmonic modulations of mode-locked laser pulses and a simple frequency demodulation circuit, a novel approach to GHz frequency-domain-photon-migration (FDPM) system was reported. With this novel approach, a wide-band modulation frequency comb is available without any external modulation devices and the only electronics to extract the optical attenuation and phase properties at a selected modulation frequency in FDPM systems are good mixers and lock-in devices. This approach greatly expands the frequency range that could be achieved by conventional FDPM systems and suggests that our system could extract much more information from biological tissues than the conventional FDPM systems. Moreover, this demonstration will be beneficial for discerning the minute change of tissue properties.

  4. High efficiency WCDMA power amplifier with Pulsed Load Modulation (PLM) technique (United States)

    Liao, Shu-Hsien

    In wireless communication, high data rate complex modulation is used for spectral efficiency. However, power efficiency of power amplifier degrades when complex modulation is applied. Therefore, efficiency enhancement is necessary to maintain the performance. However, conventional efficiency enhancement schemes are nonlinear and performance improvement can only be optimized over a small range of power level. In order to preserve linearity and power efficiency, we propose a new digital power amplification technique "Pulsed Load Modulation (PLM)" for high efficiency and linear amplification. The PLM technique realizes load impedance modulation in digital fashion which is insensitive to device nonlinearity. Furthermore, the optimum power efficiency can be maintained over a wide range of output power. In this work, a PLM power amplifier module has been fabricated and to demonstrate the ability of PLM to provide high efficiency and linear amplification.

  5. Short optical pulse generated by integrated MQW DBR laser/EA-modulator (United States)

    Chen, Young-Kai; Tanbun-Ek, Tawee; Logan, Ralph A.; Tate, A. R.; Sergent, A. M.; Wecht, K. W.; Sciortino, Paul F., Jr.; Raybon, Gregory; Froberg, Nan M.; Johnson, Anthony M.


    We report on the generation of short optical pulses by utilizing the non-linear absorption characteristics of a multiple quantum well (MQW) electro-absorption modulator, which is monolithically integrated with a MQW wavelength-tunable distributed Bragg reflector (DBR) laser on a single chip. Optical pulses as short as 39 ps and 15 ps have been generated at a repetition rate of 3 GHz and 10 GHz, respectively, with a broad tuning range of 5.4 nm near 1554 nm lasing wavelength.

  6. Prototype of Pulse Width Modulation Generator Based on Timer 555 and IRF 40

    Directory of Open Access Journals (Sweden)

    Wahyu Sapto Aji


    Full Text Available In many applications such of DC motor speed regulation commonly needed DC to DC voltage conversion. The method that frequently use for DC to DC conversion is using chopper circuit. In chopper circuit a DC voltage source being chopped at constant frequency but with variable duty cycle (in this case it’s called as Pulse Width Modulation, PWM. In this research a circuit chopper has been design successfully. The circuit uses 555 timer IC as PWM pulse shaper and IRF 40 power Mosfet as switch device. This circuit prototype successfully tested to drive a 12 watt DC motor at 1200 rpm with voltage at 12 V.

  7. Isolated PWM DC-AC SICAM with an active capacitive voltage clamp[Pulse Density Modulated; Pulse Width Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.


    In this report an isolated PWM DC-AC SICAM with an active capacitive voltage clamp is presented. AC-DC power supply is implemented in its simplest form: diode rectifier followed by a medium-size charge-storage capacitors and possibly with an EMC filter on the mains entrance. Isolation from the AC mains is achieved using a high frequency (HF) transformer, whose voltages are not audio-modulated. The latter simplifies the design and is expected to have many advantages over the approach where the transformer voltages are modulated in regards to the audio signal reference. Input stage is built as a DC-AC inverter (push-pull, half-bridge or a full-bridge) and operated with 50% duty cycle, with all the challenges to avoid transformer saturation and obtain symmetrical operation. On the secondary side the output section is implemented as rectifier+inverter AC-AC stage, i.e. a true bidirectional bridge, which operation is aimed towards amplification of the audio signal. In order to solve the problem with the commutation of the load current, a dead time between the incoming and outgoing bidirectional switch is implemented, while a capacitive voltage clamp is used to keep the induced overvoltage to reasonable levels. The energy stored in the clamping capacitor is not wasted as in the dissipative clamps, but is rather transferred back to the primary side for further processing using an auxiliary isolated single-switch converter, i.e. an active clamping technique is used. (au)

  8. Single-shot laser pulse reconstruction based on self-phase modulated spectra measurements (United States)

    Anashkina, Elena A.; Ginzburg, Vladislav N.; Kochetkov, Anton A.; Yakovlev, Ivan V.; Kim, Arkady V.; Khazanov, Efim A.


    We report a method for ultrashort pulse reconstruction based only on the pulse spectrum and two self-phase modulated (SPM) spectra measured after pulse propagation through thin media with a Kerr nonlinearity. The advantage of this method is that it is a simple and very effective tool for characterization of complex signals. We have developed a new retrieval algorithm that was verified by reconstructing numerically generated fields, such as a complex electric field of double pulses and few-cycle pulses with noises, pedestals and dips down to zero spectral intensity, which is challenging for commonly used techniques. We have also demonstrated a single-shot implementation of the technique for the reconstruction of experimentally obtained pulses. This method can be used for high power laser systems operating in a single-shot mode in the optical, near- and mid-IR spectral ranges. The method is robust, low cost, stable to noise, does not require a priori information, and has no ambiguity related to time direction.

  9. Design and development of a prototype 25 kV, 10 A long pulse Marx modulator for high power klystron (United States)

    Acharya, Mahesh; Shrivastava, Purushottam


    Research, design, and development of high average power modulators for the proposed Indian Spallation Neutron Source are in progress at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of 25 kV, 10 A, 1 ms Marx modulator at repetition rate of 1 Hz has been designed and developed which serves as a proof of principle and technology assessment stage for further development of high repetition rate high voltage high average power modulators. Insulated Gate Bipolar Transistor (IGBT) based modules of 2.8 kV switching capability have been used as main modules. The modulator had 8.2% droop in output voltage pulse without any droop compensation circuit. A droop compensation involving 15 corrector modules has been used to reduce the droop up to 1%. We have used IGBT based 250 V switches to realize the corrector module. A microcontroller based control unit was designed and developed for triggering the main and corrector modules. With this control unit, programmable output pulse has been achieved. Electrical isolation between high voltage circuits and control circuit has been achieved by the use of fiber optic based control signal transmission. Output pulses of 1 ms pulse width, 800 ns rise time, and 5 μs fall time have been achieved. The modulator has advantages of modular design, adjustable pulse width, adjustable rise time, and fall time.

  10. Periodic modulation in pulse arrival times from young pulsars: a renewed case for neutron star precession

    CERN Document Server

    Kerr, Matthew; Johnston, Simon; Shannon, Ryan


    In a search for periodic variation in the arrival times of pulses from 151 young, energetic pulsars, we have identified seven cases of modulation consistent with one or two harmonics of a single fundamental with time-scale 0.5-1.5 yr. We use simulations to show that these modulations are statistically significant and of high quality (sinusoidal) even when contaminated by the strong stochastic timing noise common to young pulsars. Although planetary companions could induce such modulation, the large implied masses and 2:1 mean motion resonances challenge such an explanation. Instead, the modulation is likely to be intrinsic to the pulsar, arising from quasi-periodic switching between stable magnetospheric states, and we propose that precession of the neutron star may regulate this switching.

  11. Sliding mode pulse-width modulation technique for direct torque controlled induction motor drive (United States)

    Bounadja, M.; Belarbi, A. W.; Belmadani, B.


    This paper presents a novel pulse-width modulation technique based sliding mode approach for direct torque control of an induction machine drive. Methodology begins with a sliding mode control of machine's torque and stator flux to generate the reference voltage vector and to reduce parameters sensitivity. Then, the switching control of the three-phase inverter is developed using sliding mode concept to make the system tracking reference voltage inputs. The main features of the proposed methodologies are the high tracking accuracy and the much easier implementation compared to the space vector modulation. Simulations are carried out to confirm the effectiveness of proposed control algorithms.

  12. Multiple-load series resonant inverter for induction cooking application with pulse density modulation

    Indian Academy of Sciences (India)



    Multiple-load induction cooking applications are suitable used when multi-output inverters or multi-inverters are needed for multiple-load operation. Some common approaches and modifications are needed in inverter configuration for multiple-load application. This paper presents an inverter configuration with two loads by using pulse density modulation control technique. It allows the output power control of each load independently with constant switching frequency and constant duty ratio. The pulse density modulation control technique is obtained using phase on–off control between two legs of the inverter to reduce acoustic noise. Thetwo-load three-leg inverter configuration provides reduction of the component count for extension of multiple loads. The control technique provides a wide range of output power control. In addition, it can achieve efficient and stable zero voltage switching operation in the whole load range. The proposed control scheme is simulated and experimentally verified with two-load inverter configuration.

  13. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns. (United States)

    Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla


    The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Variable Voltage Source Inverter with controlled frequency spectrum based on Random Pulse Width Modulation

    Directory of Open Access Journals (Sweden)

    Muhammad Farrukh Yaqub


    Full Text Available This paper presents a new method for single phase variable voltage inverter based on Random Pulse Width Modulation. In Random Pulse Width Modulation based inverter, the frequency spectrum of the output current and voltage waveforms becomes continuous because of the randomization of the switching function of the devices controlling the output voltages. This paper establishes a theory that if the distributions of the random numbers generated by the random source are kept within certain limit with respect to the peak value of reference sinusoidal waveform, the frequency spectrum can be controlled. On the basis of the results, a novel drive using variable tap changing transformer (optional and adaptive random number generator, to control the ratio between the numbers generated by the random source and the reference waveform has been suggested that will guarantee a better power quality profile for a broad range of output voltages.

  15. Modulated Pulses Based High Spatial Resolution Distributed Fiber System for Multi-Parameter Sensing

    CERN Document Server

    Zhang, Jingdong; Zhou, Huan; Li, Yang; Liu, Min; Huang, Wei


    We demonstrate a hybrid distributed fiber sensing system for multi-parameter detection. The integration of phase-sensitive optical time domain reflectometry ({\\Phi}-OTDR) and Brillouin optical time domain reflectometry (B-OTDR) enables measurement of vibration, temperature and strain. Exploiting the fast changing property of vibration and the static property of temperature and strain, the laser pulse width and intensity are modulated and then injected into the single-mode sensing fiber proportionally, so that the three concerned parameters can be extracted simultaneously by only one photo-detector and data acquisition channel. Combining with advanced data processing methods, the modulation of laser pulse brings additional advantages because of trade and balance between the backscattering light power and nonlinear effect noise, which enhances the signal-to-noise ratio, and enables sub-meter level spatial resolution together with long sensing distance. The proposed method realizes up to 4.8 kHz vibration sensin...

  16. Novel Active Bouncer Topology for Klystron Modulators based on Pulsed Transformers

    CERN Document Server

    AUTHOR|(CDS)2079689; Aguglia, Davide; Viarouge, Philippe; Cros, Jérôme


    Active droop compensation systems, so called active bouncers, for klystron modulators based on monolithic pulse transformers perform the regulation of the output pulse voltage while simultaneously withstand all the primary current of the modulator. This imposes the utilization of high power semiconductors which can produce high switching losses and degrade the overall system efficiency. In order to overcome this issue, this paper proposes a new active bouncer topology based on the parallel connection of two different power converters: the first one is in charge of handling the majority of the primary current at high efficiency, and the second one is used to fine tune the bouncer voltage via a high bandwidth converter rated at a fraction of the first parallel connected converter. Detailed comparison between a classical active bouncer and two variants of the proposed topology are presented and based on numerical simulations.

  17. All-optical short pulse translation through cross-phase modulation in a VO₂ thin film. (United States)

    Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing


    VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.

  18. Analisys of alternatives for sidelobe reduction in linearly frequency modulated pulses

    Directory of Open Access Journals (Sweden)

    Jorge Torres Gómez


    Full Text Available Taking The present article deals with the topic of windowing techniques for sidelobe reduction inlinearly frequency modulated (LFM pulses compressed by an adapted filter. Main characteristics ofwindow´s techniques are presented; focusing on those that improves the window´s performance. Designsare simulated in a Graphic User Interface in MatLab and Simulink to conform it on FPGA. Simulationof carried out softwares allows the selection of the best choice as the case of interest.

  19. Effect of stochastic modulation of inter-pulse interval during stimulated isokinetic leg extension


    Efe Anil Aksöz; Marco Laubacher; Stuart Binder-Macleod; Hunt, Kenneth J


    Recumbent cycling exercise achieved by functional electrical stimulation (FES) of the paralyzed leg muscles is effective for cardiopulmonary and musculoskeletal conditioning after spinal cord injury, but its full potential has not yet been realized. Mechanical power output and efficiency is very low and endurance is limited due to early onset of muscle fatigue. The aim of this work was to compare stochastic modulation of the inter-pulse interval (IPI) to constant-frequency stimulation during ...

  20. Decoupling of excitation and receive coils in pulsed magnetic resonance using sinusoidal magnetic field modulation (United States)

    Tseytlin, Mark; Epel, Boris; Sundramoorthy, Subramanian; Tipikin, Dmitriy; Halpern, Howard J.


    In pulsed magnetic resonance, the excitation power is many orders of magnitude larger than that induced by the spin system in the receiving coil or resonator. The receiver must be protected during and immediately after the excitation pulse to allow for the energy stored in the resonator to dissipate to a safe level. The time during which the signal is not detected, the instrumental dead-time, can be shortened by using magnetically decoupled excitation and receive coils. Such coils are oriented, with respect to each other, in a way that minimizes the total magnetic flux produced by one coil in the other. We suggest that magnetically decoupled coils can be isolated to a larger degree by tuning them to separate frequencies. Spins are excited at one frequency, and the echo signal is detected at another. Sinusoidal magnetic field modulation that rapidly changes the Larmor frequency of the spins between the excitation and detection events is used to ensure the resonance conditions for both coils. In this study, the relaxation times of trityl-CD3 were measured in a field-modulated pulsed EPR experiment and compared to results obtained using a standard spin echo method. The excitation and receive coils were tuned to 245 and 256.7 MHz, respectively. Using an available rapid-scan, cross-loop EPR resonator, we demonstrated an isolation improvement of approximately 20-30 dB due to frequency decoupling. Theoretical analysis, numerical simulations, and proof-of-concept experiments demonstrated that substantial excitation-detection decoupling can be achieved. A pulsed L-band system, including a small volume bi-modal resonator equipped with modulation coils, was constructed to demonstrate fivefold dead-time reduction in comparison with the standard EPR experiment. This was achieved by detuning of the excitation and receive coils by 26 MHz and using sinusoidal modulation at 480 kHz.

  1. Single pulse TMS-induced modulations of resting brain neurodynamics encoded in EEG phase. (United States)

    Stamoulis, Catherine; Oberman, Lindsay M; Praeg, Elke; Bashir, Shahid; Pascual-Leone, Alvaro


    Integration of electroencephalographic (EEG) recordings and transcranial magnetic stimulation (TMS) provides a useful framework for quantifying stimulation-induced modulations of neural dynamics. Amplitude and frequency modulations by different TMS protocols have been previously investigated, but the study of stimulation-induced effects on EEG phase has been more limited. We examined changes in resting brain dynamics following single TMS pulses, focusing on measures in the phase domain, to assess their sensitivity to stimulation effects. We observed a significant, approximately global increase in EEG relative phase following prolonged (>20 min) single-pulse TMS. In addition, we estimated higher rates of phase fluctuation from the slope of estimated phase curves, and higher numbers of phase resetting intervals following TMS over motor cortex, particularly in frontal and centro-parietal/parietal channels. Phase changes were only significantly different from their pre-TMS values at the end of the stimulation session, which suggests that prolonged single-pulse TMS may result in cumulative changes in neural activity reflected in the phase of the EEG. This is a novel result, as prior studies have reported only transient stimulation-related effects in the amplitude and frequency domains following single-pulse TMS.

  2. The influence of pre-melting in laser drilling with temporally modulated pulse (United States)

    Duan, Wenqiang; Wang, Kedian; Dong, Xia; Mei, Xuesong; Wang, Wenjun; Fan, Zhengjie; Lv, Jing


    Laser drilling by temporally modulated pulse is a promising technique and has many advantages compared with normal pulse drilling. In this work, the effect of modulated pulse comprising pre-heating front and sharp trail was mainly studied. The function of the former was to pre-melt the radiated material, and the latter was to expel the liquid melt from the molten pool, thus to form a blind hole. While the trail subpulse was kept constant, the difference in the pre-heating subpulse parameter could cause a considerable influence on the hole quality and drilling efficiency. The depth and volume of the molten pool were proportional to the pre-heating energy, and inversely proportional to the pre-heating duration. With pre-heating subpulses of proper parameters, the sharp trail subpulse was very effective in expelling the melt liquid, leaving only a small quantity of melt to re-solidify as the recast layer, which was observably thinner compared with the holes drilled using the normal pulse mode. In the pre-melting process, the directional melt flow and heat conduction were found to be the reasons why the deep melting phenomenon had occurred.

  3. Absolute frequency synthesis of pulsed coherent light waves through phase-modulation active optical feedback. (United States)

    Shimizu, K; Horiguchi, T; Koyamada, Y


    A novel method for the broadband absolute frequency synthesis of pulsed coherent lightwaves is demonstrated. It is based on pulse recirculation around an active optical feedback ring containing a delay-line fiber, an external phase modulator, an acousto-optic frequency shifter (AOFS), and a high-finesse Fabry-Perot étalon. The modulation frequency F(M) and the frequency shift F(AO) that are due to AOFS are designed so that their sum or difference equals the free-spectral range of the étalon and F(AO) is set at larger than the half-width at full maximum of its resonant peaks. If one of the peak frequencies is tuned to the frequency of the initial pulse, the frequency of the recirculating pulse jumps to the next peak for each round trip. In the experiment the absolute frequency is synthesized over a frequency span of 700 GHz around the initial stabilized frequency of the master laser.

  4. Dynamic Voltage Restorer Based on Space Vector Pulse Width Modulation Technique

    Directory of Open Access Journals (Sweden)

    B.N S P Venkatesh


    Full Text Available Power Quality problems encompass a wide range of disturbances such as voltage sags, swells, flicker,harmonics distortion and interruptions. The strategic deployment of custom power devices has been proposed asone of the means to protect sensitive loads from power quality problems such as voltage sags and swells. The Dynamic Voltage Restorer (DVR is a power electronic device that is used to inject 3-phase voltage in series and in synchronism with the distribution feeder voltages in order to compensate voltage sag and similarly itreacts quickly to inject the appropriate voltage component (negative voltage magnitude in order to compensate voltage swell. The principal component of the DVR is a voltage source inverter that generates three phase voltages and provides the voltage support to a sensitive load during voltage sags and swells. Pulse Width Modulation Technique is very critical for proper control of DVR. Sinusoidal Pulse Width Modulation (SPWM and Space Vector Pulse Width Modulation (SVPWM control techniques are used for controlling the DVR. Inthis work, the operation of DVR is presented and the control technique used for voltage source inverter is Space Vector PWM technique. Space vector PWM can utilize the better dc voltage and generates the fewer harmonic in inverter output voltage than Sinusoidal PWM technique. This work describes the DVR based on Space Vector PWM which provides voltage support to sensitive loads and is simulated by using MATLAB/SIMULINK. Simulation results show that the control approach is able to compensate for any type of voltage sags and swells.

  5. Pulse re-shaping by using a liquid crystal spatial light modulator and deflector for producing a specific waveform

    Institute of Scientific and Technical Information of China (English)

    Jun Kang; Wei Zhang; Hui Wei; Shaohe Chen; Jianqiang Zhu


    @@ A new shaping method for producing nanosecond pulses with specific shape is introduced. When a Gaussian laser pulse passes through an electro-optic deflector, it has been scanned as a line on the focal plane according to time precedence. Through controlling the intensity of transmitted light on each pixel of the liquid crystal spatial light modulator (LCSLM), various complicated pulses can be easily produced. Using this method, various specific shaped pulses with pulse duration varying from 750 ps to 5 ns are achieved.

  6. Pulse (United States)

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the person's heart is pumping. Pulse ... rate gives information about your fitness level and health.

  7. Investigation on Nyquist pulse generation using a single dual-parallel Mach-Zehnder modulator. (United States)

    Wu, Jian; Zang, Jizhao; Li, Yan; Kong, Deming; Qiu, Jifang; Zhou, Siyuan; Shi, Jindan; Lin, Jintong


    The generation of Nyquist pulses with a dual parallel Mach-Zehnder modulator (DPMZM) driven by a single RF signal is demonstrated theoretically and experimentally. A complete theoretical analysis is developed and the limitation of the proposed scheme is also discussed. It is theoretically proved that Nyquist pulses with a spectrum of 5 flat comb lines can be generated using a single DPMZM, which is also verified with simulation. 7 flat comb lines in frequency domain can also be obtained if a large RF driving voltage is applied to DPMZM but the generated waveforms won't present a sinc-shape. This scheme is further investigated experimentally. 40 GHz Nyquist pulses with full-width-at-half-maximum (FWHM) less than 4.65 ps, signal-to-noise ratio (SNR) better than 29.5 dB, and normalized root-mean-square error (NRMSE) less than 2.4% are generated. It is found that a tradeoff exists between the insertion loss of the DPMZM and the deviation of generated pulses. The tunability of repetition rate is experimentally verified by generation of 1 GHz to 40 GHz Nyquist pulses with SNR better than 28.4 dB and NRMSE less than 6.15%.


    Energy Technology Data Exchange (ETDEWEB)



    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the 8-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, a damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95kV. The damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. This paper discusses the modulator design, construction and operation.

  9. Pulse position modulation for a subcarrier-multiplexed optical fiber transmission system (United States)

    Wickramasinghe, V. R.; Ghassemlooy, Zabih F.


    Subcarrier multiplexed (SCM) optical network s offer a near to medium term alternative solution over high cost, evolving digital technology to distribute broadband services. Majority of existing systems are based on analogue optical transmission techniques and their principle disadvantage is the sensitivity to noise and system nonlinearities. Therefore, conventional SCM systems impose stringent noise and linearity requirements and as a result their performance is limited. A simple and attractive solution is to introduce an appropriate second stage modulator in order to improve the receiver sensitivity, hence the system performance.In this paper a SCM optical transmission system employing pulse position modulation as a second stage modulator, for transmission of video, audio and data channels is reported. Signal to noise ratio measurements obtained shows an improvement in optical receiver sensitivity compared with standard SCM systems.

  10. [An integral chip for the multiphase pulse-duration modulation used for voltage changer in biomedical microprocessor systems]. (United States)

    Balashov, A M; Selishchev, S V


    An integral chip (IC) was designed for controlling the step-down pulse voltage converter, which is based on the multiphase pulse-duration modulation, for use in biomedical microprocessor systems. The CMOS technology was an optimal basis for the IC designing. An additional feedback circuit diminishes the output voltage dispersion at dynamically changing loads.

  11. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.


    We investigate the self-phase modulation (SPM) of a single-cycle terahertz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the terahertz pulse, leading to an ultrafast reduction of the plasma frequency, and ...

  12. Short-pulse cross-phase modulation in an electromagnetically-induced-transparency medium

    CERN Document Server

    Feizpour, Amir; Steinberg, Aephraim M


    Electromagnetically-induced transparency (EIT) has been proposed as a way to greatly enhance cross-phase modulation, with the possibility of leading to few-photon-level optical nonlinearities. This enhancement grows as the transparency window width, \\Delta_EIT, is narrowed. Decreasing \\Delta_EIT, however, increases the response time of the effect, suggesting that for pulses of a given duration, there could be a fundamental limit to the strength of the nonlinearity. We show that in the regimes of most practical interest - narrow EIT windows perturbed by short signal pulses- the enhancement offered by EIT is not only in the magnitude of the nonlinear phase shift but in fact also in its increased duration. That is, for the case of signal pulses much shorter (temporally) than the inverse EIT bandwidth, the narrow window serves to prolong the effect of the passing signal pulse, leading to an integrated phase shift that grows linearly with \\Delta_EIT even though the peak phase shift may saturate; the continued grow...

  13. PHz-wide Supercontinua of Nondispersing Subcycle Pulses Generated by Extreme Modulational Instability (United States)

    Tani, F.; Travers, J. C.; Russell, P. St. J.


    Modulational instability (MI) of 500 fs, 5μJ pulses, propagating in gas-filled hollow-core kagome photonic crystal fiber, is studied numerically and experimentally. By tuning the pressure and launched energy, we control the duration of the pulses emerging as a consequence of MI and hence are able to study two regimes: the classical MI case leading to few-cycle solitons of the nonlinear Schrödinger equation; and an extreme case leading to the formation of nondispersing subcycle pulses (0.5 to 2 fs) with peak intensities of order 1014Wcm-2. Insight into the two regimes is obtained using a novel statistical analysis of the soliton parameters. Numerical simulations and experimental measurements show that, when a train of these pulses is generated, strong ionization of the gas occurs. This extreme MI is used to experimentally generate a high energy (>1μJ) and spectrally broad supercontinuum extending from the deep ultraviolet (320 nm) to the infrared (1300 nm).

  14. Pulsed ytterbium-doped fibre laser with a combined modulator based on single-wall carbon nanotubes (United States)

    Khudyakov, D. V.; Borodkin, A. A.; Lobach, A. S.; Vartapetov, S. K.


    This paper describes an all-normal-dispersion pulsed ytterbium-doped fibre ring laser mode-locked by a nonlinear combined modulator based on single-wall carbon nanotubes. We have demonstrated 1.7-ps pulse generation at 1.04 μm with a repetition rate of 35.6 MHz. At the laser output, the pulses were compressed to 180 fs. We have examined an intracavity nonlinear modulator which utilises nonlinear polarisation ellipse rotation in conjunction with a saturable absorber in the form of a polymer-matrix composite film containing single-wall carbon nanotubes.

  15. Pulsed ytterbium-doped fibre laser with a combined modulator based on single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Khudyakov, D V; Borodkin, A A; Vartapetov, S K [Physics Instrumentation Center, A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Troitsk, Moscow Region (Russian Federation); Lobach, A S [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)


    This paper describes an all-normal-dispersion pulsed ytterbium-doped fibre ring laser mode-locked by a nonlinear combined modulator based on single-wall carbon nanotubes. We have demonstrated 1.7-ps pulse generation at 1.04 μm with a repetition rate of 35.6 MHz. At the laser output, the pulses were compressed to 180 fs. We have examined an intracavity nonlinear modulator which utilises nonlinear polarisation ellipse rotation in conjunction with a saturable absorber in the form of a polymer-matrix composite film containing single-wall carbon nanotubes. (lasers)

  16. Development of Pulse Position Modulation/Optical CDMA (PPM/O-CDMA) for Gb/s Fiber Optic Networking

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V; Lennon, W J


    Pulse position modulation (PPM) in lasercom systems is known to provide potential advantages over other modulation schemes. [1]. In PPM, a periodic time frame is established and data is transmitted by placing a pulse in any one of several subintervals (or ''slots'') within each frame. In PPM/O-CDMA all users use the same frame structure and each transmits its unique address code in place of the PPM pulse. The advantage of PPM as a pulsed signal format is that (1) a single pulse can transmit multiple bits during each frame; (2) decoding (determining which subinterval contains the pulse) is by comparison rather than threshold tests (as in on-off-keying); (3) each user transmits in only a small fraction of the frame, hence the multi-access interference (MAI) of any user statistically spreads over the entire frame time, reducing the chance of overlap with any other user; and (4) under an average power constraint, increasing frame time increases the peak pulse power (i.e., PPM trades average power for peak power). The most straightforward approach to implementing PPM/O-CDMA data modulator inserts the PPM pulse modulation first, then imposes the O-CDMA coding. A pulsed PPM modulator converts bits (words) into pulse positions. In the case of wavelength/time (W/T) matrix codes, multi-wavelength pulses are generated at the beginning of each frame, at the frame rate. For M-ary PPM, a block of k bits represents M = 2{sup k} unique interval positions in the frame corresponding to M-l specific time delays (the zero delay is also a position). PPM modulation is achieved by shifting the initial pulse into an interval position with delay D(i) (i=0,1,2,..,M-1). The location of a pulse position (selection of a delay) therefore identifies a unique k-bit word in the frame. At the receiver, determining which delay occurs relative to the frame start time decodes the data word. The probability of pulse overlap between two users decreases with M, which therefore

  17. RF-modulated pulsed fiber optic lidar transmitter for improved underwater imaging and communications (United States)

    Kimpel, F.; Chen, Y.; Fouron, J.-L.; Akbulut, M.; Engin, D.; Gupta, S.


    We present results on the design, development and initial testing of a fiber-optic based RF-modulated lidar transmitter operating at 532nm, for underwater imaging application in littoral waters. The design implementation is based on using state-of-the-art high-speed FPGAs, thereby producing optical waveforms with arbitrary digital-RF-modulated pulse patterns with carrier frequencies >= 3GHz, with a repetition rate of 0.5-1MHz, and with average powers >=5W (at 532nm). Use of RF-modulated bursts above 500MHz, instead of single optical pulse lidar detection, reduces the effect of volumetric backscatter for underwater imaging application, leading to an improved signal-to-noise-ratio (SNR) and contrast, for a given range. Initial underwater target detection tests conducted at Patuxent River Naval Air Station, MD, in a large water-tank facility, validates the advantages of this hybrid-lidar-radar (HLR) approach for improved underwater imaging, over a wide range of turbidity levels and both white and black targets. The compact, robust and power-efficient fiber laser architecture lends very well to lidar sensor integration on unmanned-underwater-vehicle (UUV) platforms. HLR transmitters can also provide similar advantages in active-sensing situations dominated by continuous backscatter, e.g. underwater communications, imaging through smoke and fire environment, rotor-craft landing in degraded visual environment, and pointing-tracking of active-EO sensors through fog.

  18. Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders (United States)

    Milanović, Veljko; Kasturi, Abhishek; Atwood, Bryan; Su, Yu; Limkrailassiri, Kevin; Nettleton, John E.; Goldberg, Lew; Cole, Brian J.; Hough, Nathaniel


    A highly compact and low power consuming Q-switch module was developed based on a fast single-axis MEMS mirror, for use in eye-safe battery-powered laser range finders The module's 1.6mm x 1.6mm mirror has cost than the traditional Electro-Optical Q-Switch. Because pulse-on-demand capability is required, resonant mirrors cannot be used to achieve the needed performance. Instead, a fast point-to-point analog single-axis tilt actuator was designed with a custom-coated high reflectance (HR) mirror to withstand the high intra-cavity laser fluence levels. The mirror is bonded on top of the MEMS actuator in final assembly. A compact MEMS controller was further implemented with the capability of autonomous on-demand operation based on user-provided digital trigger. The controller is designed to receive an external 3V power supply and a digital trigger and it consumes ~90mW during the short switching cycle and ~10mW in standby mode. Module prototypes were tested in a laser cavity and demonstrated high quality laser pulses with duration of ~20ns and energy of over 3mJ.

  19. Scaling in film growth by pulsed laser deposition and modulated beam deposition. (United States)

    Lee, Sang Bub


    The scalings in film growth by pulsed laser deposition (PLD) and modulated beam deposition (MBD) were investigated by Monte Carlo simulations. In PLD, an atomic pulse beam with a period t(0) were deposited instantaneously on a substrate, whereas in MBD, adatoms were deposited during a short time interval t(1) (0≤t(1)≤t(0)) within each period. If t(1)=0, MBD will be identical to PLD and, if t(1)=t(0), MBD will become usual molecular beam epitaxy (MBE). Specifically, logarithmic scaling was investigated for the nucleation density reported for PLD, and the scaling of island density was studied regarding the growth for 0MBE growth was observed as t(1) increased. The phase diagram was also presented.

  20. Phase-Modulated Nonresonant Laser Pulses Can Selectively Convert Enantiomers in a Racemic Mixture

    DEFF Research Database (Denmark)

    Thomas, Esben Folger; Henriksen, Niels Engholm


    Deracemization occurs when a racemic molecular mixture is transformed into a mixture containing an excess of a single enantiomer. Recent advances in ultrafast laser technology hint at the possibility of using shaped pulses to generate deracemization via selective enantiomeric conversion; however......-modulated, nonresonant, linearly polarized Gaussian laser pulses that can selectively deracemize a racemic mixture of 3D-oriented, 3,5-difluoro-3',5'-dibromobiphenyl (F2H3C6-C6H3Br2) molecules, the laser-induced dynamics of which are well studied experimentally. These results strongly suggest that designing a closed......-loop coherent control scheme based on this methodology may lead to the first-ever achievement of enantiomeric conversion via coherent laser light in a laboratory setting....

  1. High-fidelity pulse density modulation in neuromorphic electric circuits utilizing natural heterogeneity (United States)

    Utagawa, Akira; Asai, Tetsuya; Amemiya, Yoshihito

    Hospedales et al. have recently proposed a neural network model of the “vestibulo-ocular reflex” (VOR) in which a common input was given to multiple nonidentical spiking neurons that were exposed to uncorrelated temporal noise, and the output was represented by the sum of these neurons. Although the function of the VOR network is equivalent to pulse density modulation, the neurons' non-uniformity and temporal noises given to the neurons were shown to improve the output spike's fidelity to the analog input. In this paper, we propose a CMOS analog circuit for implementing the VOR network that exploits the non-uniformity of real MOS devices. Through extensive laboratory experiments using discrete MOS devices, we show that the output's fidelity to the input pulses is clearly improved by using multiple neuron circuits, in which the non-uniformity is naturally embedded into the devices.

  2. 40 Gb/s Pulse Generation Using Gain Switching of a Commercially Available Laser Module

    DEFF Research Database (Denmark)

    Nørregaard, Jesper; Hanberg, Jesper; Franck, Thorkild


    between the microwave substrate and the RF feed-through in the wall of the module. The module is build as a 14 pin butterfly package with the RF feed-through designed as a coplanar 50 ohm impedance port. Included in the module are a built-in optical isolator, a thermistor, a thermo-electric cooler...... to ease RF connection. The laser die is connected to a gold plated AlN microwave substrate that also acts as a heat spreader. The microwave substrate contains an impedance matching resistor for the RF signal as well as a bias-T for the DC bias. 50 ohm Flexguide technology is used for the interconnection......, and a photodiode for optical power monitoring.The RF input port was connected to the driver circuit using a coplanar microwave probe. A DC bias and a large signal modulation at 10 GHz was applied to the module to generate chirped pulses. A linear as well as a non-linear soliton compression was used with optical...

  3. Analysis of intra-pulse frequency-modulated, low probability of interception, radar signals

    Indian Academy of Sciences (India)



    In this paper, we investigate the problem of analysis of low probability of interception (LPI) radar signals with intra-pulse frequency modulation (FM) under low signal-to-noise ratio conditions from the perspective of an airborne electronic warfare (EW) digital receiver. EW receivers are designed to intercept andanalyse threat radar signals of different classes, received over large dynamic range and operating independently over large geographical spread to advice host aircraft to undertake specified actions. For an EW receiver, primary challenges in interception and analysis of LPI radar signals are low received power, intra-pulse modulations,multi-octave frequency range, wide signal bandwidth, long pulse width, vast and multi-parametric search space, etc. In the present work, a method based on match filterbank localization and Taylor’s seriesapproximation for analysing the entire family of intra-pulse FM radar signals is proposed. The method involves progressive, joint time–frequency (TF) localization of the signal of interest (SOI), under piecewise linearity andcontinuity assumptions on instantaneous frequency, to effectively capture local TF signatures. Detection is by information-theoretic criterion based hypotheses testing, while estimation and classification are based on polynomial approximation. Fine signal analysis is followed by synthetic reconstruction of the received signal slope. Detection, estimation and classification performances for the prominent FM radar signal classes are quantified based on simulation study statistics. Stagewise implementation of analysis and FM slope reconstruction,in realistic radar threat scenarios, is demonstrated for the potential SOIs. Subject discussion is organized from the perspective of practical EW system design and presented within the realm of signal processing architecture of concurrent EW digital receivers.Keywords. Digital receiver (DRx); electronic warfare (

  4. Nanosecond Pulse Shaping with Fiber-Based Electro-Optical Modulators and a Double-Pass Tapered Amplifier

    CERN Document Server

    Rogers, Charles E


    We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  5. Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors (United States)

    Marko, Matthew David; Shevach, Glenn


    A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions. PMID:28076418

  6. Laboratory manual for pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K


    Designed to complement a range of power electronics study resources, this unique lab manual helps students to gain a deep understanding of the operation, modeling, analysis, design, and performance of pulse-width modulated (PWM) DC-DC power converters.  Exercises focus on three essential areas of power electronics: open-loop power stages; small-signal modeling, design of feedback loops and PWM DC-DC converter control schemes; and semiconductor devices such as silicon, silicon carbide and gallium nitride. Meeting the standards required by industrial employers, the lab manual combines program

  7. DC link current simulation of voltage source inverter with random space vector pulse width modulation

    Directory of Open Access Journals (Sweden)

    Chen Guoqiang


    Full Text Available Aiming at analysis complexity, a simulation model is built and presented to analyze and demonstrate the characteristics of the direct current (DC link current of the three-phase two-level inverter with the random space vector pulse width modulation (SVPWM strategy. The developing procedure and key subsystems of the simulation model are given in detail. Several experiments are done using the simulation model. The results verify the efficiency and convenience of the simulation model and show that the random SVPWM scheme, especially the random switching frequency scheme, can efficiently suppress the harmonic peaks of the DC link current.

  8. Improved Switching Performance Analysis of Space Vector Pulse Width Modulation on Field Programmable Gate Array

    Directory of Open Access Journals (Sweden)

    Nagalingam RAJESWARAN


    Full Text Available Nowadays VLSI (Very Large Scale Integration technology is being successfully implemented by using Pulse Width Modulation (PWM in applications like power electronics and drives. The main problems in PWM viz. harmonic distortion and switching speed are overcome by implementing the Space-Vector PWM (SVPWM technique by using the Xilinx tool VHDL (Verilog High Speed Integrated Circuit (VHSIC Hardware Description Language and tested in programmable Integrated Circuits of Field Programmable Gate Array (FPGA. The results are provided along with simulation analysis in terms of hardware utilization and schematic, power report, computing time and usage of memory.

  9. Transference & Retrieval of Pulse-code modulation Audio over Short Messaging Service

    CERN Document Server

    Khan, Muhammad Fahad


    The paper presents the method of transferring PCM (Pulse-Code Modulation) based audio messages through SMS (Short Message Service) over GSM (Global System for Mobile Communications) network. As SMS is text based service, and could not send voice. Our method enables voice transferring through SMS, by converting PCM audio into characters. Than Huffman coding compression technique is applied in order to reduce numbers of characters which will latterly set as payload text of SMS. Testing the said method we develop an application using J2me platform

  10. Implementation of pulse interval modulation based on dualmapping technique for optical wireless communications

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tie-ying; WANG Hong-xing; HU Hao; CONG Pei-sheng


    Aiming at implementing the digital pulse interval modulation (DPIM) for optical wireless communications (OWC), a dual-mapping technique is presented. The scheme of DPIM train based upon the dual-mapping technique is given. Its slot error rate is derived for the avalanche photonic diode (APD) receiver model, and is compared with that of classical DPIM. Simulation results show that the dual-mapping DPIM (D-DPIM), which has a fixed slot length, only has marginally inferior error performance, but can solve waiting slots or buffer overflowing in comparison with DPIM. Hence, it is suitable for the optical wireless communication systems.

  11. Effect of stochastic modulation of inter-pulse interval during stimulated isokinetic leg extension

    Directory of Open Access Journals (Sweden)

    Efe Anil Aksöz


    Full Text Available Recumbent cycling exercise achieved by functional electrical stimulation (FES of the paralyzed leg muscles is effective for cardiopulmonary and musculoskeletal conditioning after spinal cord injury, but its full potential has not yet been realized. Mechanical power output and efficiency is very low and endurance is limited due to early onset of muscle fatigue. The aim of this work was to compare stochastic modulation of the inter-pulse interval (IPI to constant-frequency stimulation during an isokinetic leg extension task similar to FES-cycling. Seven able-bodied subjects participated: both quadriceps muscles were stimulated (n = 14 with two activation patterns (P1-constant frequency, P2-stochastic IPI. There was significantly higher power output with P2 during the first 30 s (p = 0.0092, the last 30 s (p = 0.018 and overall (p = 0.0057, but there was no overall effect on fatiguability when stimulation frequency was randomly modulated.

  12. Effect of Stochastic Modulation of Inter-Pulse Interval During Stimulated Isokinetic Leg Extension (United States)

    Aksöz, Efe Anil; Laubacher, Marco; Binder-Macleod, Stuart; Hunt, Kenneth J.


    Recumbent cycling exercise achieved by functional electrical stimulation (FES) of the paralyzed leg muscles is effective for cardiopulmonary and musculoskeletal conditioning after spinal cord injury, but its full potential has not yet been realized. Mechanical power output and efficiency is very low and endurance is limited due to early onset of muscle fatigue. The aim of this work was to compare stochastic modulation of the inter-pulse interval (IPI) to constant-frequency stimulation during an isokinetic leg extension task similar to FES-cycling. Seven able-bodied subjects participated: both quadriceps muscles were stimulated (n = 14) with two activation patterns (P1-constant frequency, P2-stochastic IPI). There was significantly higher power output with P2 during the first 30 s (p = 0.0092), the last 30 s (p = 0.018) and overall (p = 0.0057), but there was no overall effect on fatiguability when stimulation frequency was randomly modulated. PMID:27990242

  13. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes (United States)

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi


    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  14. Highly precise and accurate terahertz polarization measurements based on electro-optic sampling with polarization modulation of probe pulses. (United States)

    Nemoto, Natsuki; Higuchi, Takuya; Kanda, Natsuki; Konishi, Kuniaki; Kuwata-Gonokami, Makoto


    We have developed an electro-optic (EO) sampling method with polarization modulation of probe pulses; this method allows us to measure the direction of a terahertz (THz) electric-field vector with a precision of 0.1 mrad in a data acquisition time of 660 ms using a 14.0-kHz repetition rate pulsed light source. Through combination with a THz time-domain spectroscopy technique, a time-dependent two-dimensional THz electric field was obtained. We used a photoelastic modulator for probe-polarization modulation and a (111)-oriented zincblende crystal as the EO crystal. Using the tilted pulse front excitation method with stable regeneratively amplified pulses, we prepared stable and intense THz pulses and performed pulse-by-pulse analog-to-digital conversion of the signals. These techniques significantly reduced statistical errors and enabled sub-mrad THz polarization measurements. We examined the performance of this method by measuring a wire-grid polarizer as a sample. The present method will open a new frontier of high-precision THz polarization sensitive measurements.

  15. Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation (United States)

    Vermeulen, Nathalie; Castelló-Lurbe, David; Cheng, JinLuo; Pasternak, Iwona; Krajewska, Aleksandra; Ciuk, Tymoteusz; Strupinski, Wlodek; Thienpont, Hugo; Van Erps, Jürgen


    We experimentally demonstrate a negative Kerr nonlinearity for quasiundoped graphene. Hereto, we introduce the method of chirped-pulse-pumped self-phase modulation and apply it to graphene-covered silicon waveguides at telecom wavelengths. The extracted Kerr-nonlinear index for graphene equals n2 ,gr=-10-13 m2 /W . Whereas the sign of n2 ,gr turns out to be negative in contrast to what has been assumed so far, its magnitude is in correspondence with that observed in earlier experiments. Graphene's negative Kerr nonlinearity strongly impacts how graphene should be exploited for enhancing the nonlinear response of photonic (integrated) devices exhibiting a positive nonlinearity. It also opens up the possibility of using graphene to annihilate unwanted nonlinear effects in such devices, to develop unexplored approaches for establishing Kerr processes, and to extend the scope of the "periodic poling" method often used for second-order nonlinearities towards third-order Kerr processes. Because of the generic nature of the chirped-pulse-pumped self-phase modulation method, it will allow fully characterizing the Kerr nonlinearity of essentially any novel (2D) material.

  16. Optical Receiver for Coherently Detected Pulse-Position Modulated Signals in the Presence of Atmospheric Turbulence (United States)

    Munoz Fernandez, M.; Vilnrotter, V. A.


    Performance analysis and experimental verification of a coherent free-space optical communications receiver in the presence of simulated atmospheric turbulence is presented. Bit-error rate (BER) performance of ideal coherent detection is analyzed in Section II, and the laboratory equipment and experimental setup used to carry out these experiments are described. The key components include two lasers operating at a 1064-nm wavelength for use with coherent detection, a 16-element (4 x 4) focal-plane detector array, and a data acquisition and signal processing assembly needed to sample and collect the data and analyze the results. The detected signals are combined using the least-mean-square (LMS) algorithm. In Section III, convergence of the algorithm for experimentally obtained signal tones in the presence of atmospheric turbulence is demonstrated. In Section IV, adaptive combining of experimentally obtained heterodyned pulse-position modulated (PPM) signals with pulse-to-pulse coherence, in the presence of simulated spatial distortions resembling atmospheric turbulence, is demonstrated. The adaptively combined PPM signals are phased up via an LMS algorithm suitably optimized to operate with PPM in the presence of additive shot noise. A convergence analysis of the algorithm is presented, and results with both computer-simulated and experimentally obtained PPM signals are analyzed.

  17. Adaptive Bessel-autocorrelation of ultrashort pulses with phase-only spatial light modulators (United States)

    Huferath-von Luepke, Silke; Bock, Martin; Grunwald, Ruediger


    Recently, we proposed a new approach of a noncollinear correlation technique for ultrashort-pulsed coherent optical signals which was referred to as Bessel-autocorrelator (BAC). The BAC-principle combines the advantages of Bessellike nondiffracting beams like stable propagation, angular robustness and self-reconstruction with the principle of temporal autocorrelation. In comparison to other phase-sensitive measuring techniques, autocorrelation is most straightforward and time-effective because of non-iterative data processing. The analysis of nonlinearly converted fringe patterns of pulsed Bessel-like beams reveals their temporal signature from details of fringe envelopes. By splitting the beams with axicon arrays into multiple sub-beams, transversal resolution is approximated. Here we report on adaptive implementations of BACs with improved phase resolution realized by phase-only liquid-crystal-on-silicon spatial light modulators (LCoS-SLMs). Programming microaxicon phase functions in gray value maps enables for a flexible variation of phase and geometry. Experiments on the diagnostics of few-cycle pulses emitted by a mode-locked Ti:sapphire laser oscillator at wavelengths around 800 nm with 2D-BAC and angular tuned BAC were performed. All-optical phase shift BAC and fringe free BAC approaches are discussed.

  18. Modeling and calibration of pulse-modulation based ToF imaging systems (United States)

    Süss, Andreas; Varga, Gabor; Marx, Michael; Fürst, Peter; Gläsener, Stefan; Tiedke, Wolfram; Jung, Melanie; Spickermann, Andreas; Hosticka, Bedrich J.


    Conversely to the continuous wave indirect time-of-flight (CW-iToF) imaging scheme, pulsed modulation ToF (PM-iToF) imaging is a promising depth measurement technique for operation at high ambient illumination. It is known that non-linearity and finite charge-transfer speed impact trueness and precision of ToF systems.1-3 As pulses are no Eigenfunctions to the shutter system, this issue is especially pronounced in pulsed modulation.2, 3 Despite these effects, it is possible to find analytical expressions founded on physical observations that map scenery parameters such as depth information, reflectance and ambient light level to sensor output.3, 4 In the application, the inverse of this map has to be evaluated. In PM-iToF, an inverse function cannot be yielded in a direct manner, as models proposed in the literature were transcendental.3, 4 For a limited range an approximating linearization can be performed to yield depth information.5 To extend the usable range, recently, an alternative approach that indirectly approximates the inverse function was presented.6 This method was founded on 1D doping concentration profiles, which, however, are typically not made available to end users. Also, limitations of the 1D approximation as well as stability are yet to be explored. This work presents a calibration methodology that copes with detector insufficiencies such as finite charge transfer speed. Contrarily to the state of the art, no prior knowledge on details of the underlying devices is required. The work covers measurement setup, a benchmark of various calibration schemes and deals with issues such as overfitting or defect pixels.

  19. Non-photic modulation of phase shifts to long light pulses. (United States)

    Antle, Michael C; Sterniczuk, Roxanne; Smith, Victoria M; Hagel, Kimberly


    Circadian rhythms can be reset by both photic and non-photic stimuli. Recent studies have used long light exposure to produce photic phase shifts or to enhance non-photic phase shifts. The presence or absence of light can also influence the expression of locomotor rhythms through masking; light during the night attenuates locomotor activity, while darkness during the day induces locomotor activity in nocturnal animals. Given this dual role of light, the current study was designed to examine the relative contributions of photic and non-photic components present in a long light pulse paradigm. Mice entrained to a light/dark cycle were exposed to light pulses of various durations (0, 3, 6, 9, or 12 h) starting at the time of lights-off. After the light exposure, animals were placed in DD and were either left undisturbed in their home cages or had their wheels locked for the remainder of the subjective night and subsequent subjective day. Light treatments of 6, 9, and 12 h produced large phase delays. These treatments were associated with decreased activity during the nocturnal light and increased activity during the initial hours of darkness following light exposure. When the wheels were locked to prevent high-amplitude activity, the resulting phase delays to the light were significantly attenuated, suggesting that the activity following the light exposure may have contributed to the overall phase shift. In a second experiment, telemetry probes were used to assess what effect permanently locking the wheels had on the phase shift to the long light pulses. These animals had phase shifts fully as large as animals without any form of wheel lock, suggesting that while non-photic events can modulate photic phase shifts, they do not play a role in the full phase-shift response observed in animals exposed to long light pulses. This paradigm will facilitate investigations into non-photic responses of the mouse circadian system.

  20. Space Vector Pulse Width Modulation Strategy for Single-Phase Three-Level CIC T-source Inverter

    DEFF Research Database (Denmark)

    Shults, Tatiana E.; Husev, Oleksandr O.; Blaabjerg, Frede


    This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance of the inver......This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance...... of the inverter, the strategy was compared the traditional pulse-width modulation. It is shown that the approach proposed has fewer switching states and does not suffer from neutral point misbalance....

  1. Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561 (Japan); Terashita, F [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561 (Japan); Nonaka, H [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561 (Japan); Ogino, A [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561 (Japan); Nagata, T [Department of Microbiology and Immunology, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Hamamatsu 431-3192 (Japan); Koide, Y [Department of Microbiology and Immunology, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Hamamatsu 431-3192 (Japan); Nanko, S [Nissin Inc., 10-7 Kamei-cho, Takarazuka 665-0047 (Japan); Kurawaki, I [GMA Co. Ltd., 3898-1, Asaba, Fukuroi, 437-1101 (Japan); Nagatsu, M [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561 (Japan)


    The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 x 10{sup 6} and 3.0 x 10{sup 6} were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 deg. C below that of CW SWPs under the same average microwave power.

  2. Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization (United States)

    Xu, L.; Terashita, F.; Nonaka, H.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.


    The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 × 106 and 3.0 × 106 were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 °C below that of CW SWPs under the same average microwave power.

  3. Control Scheme of Z-Source Inverter Based BLDC Motor Drive System Using Modified Pulse Width Modulation Techniq

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar,


    Full Text Available A modified pulse width modulation technique for Z-source inverter based BLDC motor is proposed and analyzed in this project.The Z-source inverter can be used as Buck/Boost converter with lower cost and high efficiency. BLDC motors are used in electric vehicles where portability and efficiency are required. This drive system provides advantages of both BLDC motors and Z-source inverter, and can be used in fuel cell system and other adjustable speed drive application. In this project principle of modified pulse width modulation technique is implemented and simulated. The model of a three phase Z-source inverter has been discussed based on modified pulse with modulation technique. The simulation of Z-source inverter based BLDC motor is done using the MATLAB/SIMULINK.

  4. Evaluation of functional reliability indices for DC-link capacitors in pulse-width modulation converters

    Directory of Open Access Journals (Sweden)

    Gorpinich Alexander


    Full Text Available The impact of kHz range harmonics on the power losses, thermal stress, and lifetime reduction of the dc-link capacitors in pulse-width modulation (PWM converters was investigated. Expressions to evaluate the mean time to failure, survival probability, and unavailability of aging failure for dc-link capacitors are presented. The dc-link capacitors failures due to accelerated insulation aging were modeled using Weibull and normal distribution. A case study with the Siemens SINAMICS S120 frequency converter for driving of rolling mill leveler shows that the failures of motor modules due to breakdown of electrolytic dc-link capacitors registered for the time frame from May 2012 to October 2012 can be caused by the increased ambient temperature and additional heating due to high-frequency components of the ripple current. As a possible solution to improve reliability of motor modules, the four AVX FFVE4I0227K film capacitors instead of nine EPCOS B43564 electrolytic capacitors in dc-link were recommended.

  5. Pulse width and height modulation for multi-level resistance in bi-layer TaOx based RRAM (United States)

    Alamgir, Zahiruddin; Beckmann, Karsten; Holt, Joshua; Cady, Nathaniel C.


    Mutli-level switching in resistive memory devices enables a wide range of computational paradigms, including neuromorphic and cognitive computing. To this end, we have developed a bi-layer tantalum oxide based resistive random access memory device using Hf as the oxygen exchange layer. Multiple, discrete resistance levels were achieved by modulating the RESET pulse width and height, ranging from 2 kΩ to several MΩ. For a fixed pulse height, OFF state resistance was found to increase gradually with the increase in the pulse width, whereas for a fixed pulse width, the increase in the pulse height resulted in drastic changes in resistance. Resistive switching in these devices transitioned from Schottky emission in the OFF state to tunneling based conduction in the ON state, based on I-V curve fitting and temperature dependent current measurements. These devices also demonstrated endurance of more than 108 cycles with a satisfactory Roff/Ron ratio and retention greater than 104 s.

  6. Frequency modulated few-cycle optical pulse trains induced controllable ultrafast coherent population oscillations in three-level atomic systems

    CERN Document Server

    Kumar, Parvendra


    We report a study on the ultrafast coherent population oscillations (UCPO) in sodium atoms induced by the frequency modulated few-cycle optical pulse trains. The phenomenon of UCPO is investigated by numerically solving the appropriate density matrix equations beyond the rotating wave approximation. We demonstrate that the quantum state of the atoms and the frequency of UCPO may be controlled by controlling the number of pulses in the pulse trains and the pulse repetition time respectively. Moreover, the robustness of population transfer against the variation of laser pulse parameters is also investigated. The proposed scheme may be useful for the creation of atomic beam in selected quantum state for desired time duration and may have potential applications in ultrafast optical switching.

  7. Pulse intensity modulation and the timing stability of millisecond pulsars: A case study of PSR J1713+0747

    CERN Document Server

    Shannon, Ryan M


    Most millisecond pulsars, like essentially all other radio pulsars, show timing errors well in excess of what is expected from additive radiometer noise alone. We show that changes in amplitude, shape and pulse phase for the millisecond pulsar J1713+0747 cause this excess error. These changes appear to be uncorrelated from one pulse period to the next. The resulting time of arrival variations are correlated across a wide frequency range and are observed with different backend processors on different days, confirming that they are intrinsic in origin and not an instrumental effect or caused by strongly frequency dependent interstellar scattering. Centroids of single pulses show an rms phase variation \\approx 40 microsec, which dominates the timing error and is the same phase jitter phenomenon long known in slower spinning, canonical pulsars. We show that the amplitude modulations of single pulses are modestly correlated with their arrival time fluctuations. We also demonstrate that single-pulse variations are ...

  8. Spectral broadening of 25 fs laser pulses via self-phase modulation in a neon filled hollow core fibre

    Energy Technology Data Exchange (ETDEWEB)

    Weichert, Stefan


    The goal of this work was the realisation of a setup for spectral broadening and subsequent compression of 25 fs laser pulses provided by a commercial Ti:Sapphire based CPA laser system by means of the hollow core fibre chirped mirror compressor technique. For the spectral broadening a vessel containing the hollow waveguide filled with a noble gas serving as the nonlinear medium was set up and an alignment procedure was developed. Neon was chosen as the nonlinear medium for the self-phase modulation of the pulses. With this setup spectral broadening, sufficient for supporting sub 5 fs pulses, was observed. The spectra at different input energies and neon gas pressures were measured and the stability of these and their respective Fourier transform-limited pulses determined in order to find an operating point. For the compression of the self-phase modulated pulses a chirped mirror compressor was designed and set up, but not tested yet. The layout of a single-shot intensity autocorrelator capable of estimating the pulse duration of sub 10 fs pulses was given.

  9. Supercontinuum generation enhanced by conventional Raman amplification at pumping by nanosecond pulses from a directly modulated DFB laser (United States)

    Rojas-Laguna, Roberto; Gutiérrez-Gutiérrez, Jaime; Kuzin, Evgeny A.; Ibarra-Escamilla, Baldemar; Mendoza-Vázquez, Sergio; Estudillo-Ayala, Julián Moisés; Haus, Joseph W.


    We investigated spectral broadening in a standard fiber using a nanosecond directly modulated DFB laser (λ=1549 nm), amplified by a two stage Erbium-doped fiber amplifier. The amplifier provided amplification of 2-mW peak power input pulses to 100-W peak power output pulses. In other hand, the directly modulation of DFB lasers caused transient oscillations at the beginning of pulses. In our case pulses consisted of a 2-ns transient part followed by a steady-state plateau. We used a monochromator to measure the spectrum at the fiber output. A fast photodetector was placed at the monochromator output and pulse shapes were measured for different wavelengths. This technique allowed the separate measurement of different parts in output pulses spectrum. We used the SMF-28 fiber with the standard dispersion of 20 ps/nm-km for our wavelength. We made measurements of the output spectra for three fiber lengths: 0.6-km, 4.46-km and 9.15-km; finding that the initial transient part of a pulse shows supercontinuum generation whereas the plateau results in conventional Raman amplification of this supercontinuum.

  10. Controlling DC-DC converters by chaos-based pulse width modulation to reduce EMI

    Energy Technology Data Exchange (ETDEWEB)

    Li Hong [Department of Mathematics and Computer Science, FernUniversitaet in Hagen, 58084 Hagen (Germany)], E-mail:; Zhang Bo [School of Electric Power, South China University of Technology, Guangzhou (China); Li Zhong; Halang, Wolfgang A. [Department of Mathematics and Computer Science, FernUniversitaet in Hagen, 58084 Hagen (Germany); Chen Guanrong [Department of Electronic Engineering, City University of Hong Kong, Hong Kong (China)


    In this paper, periodic and chaotic behaviors of DC-DC converters under certain parametric conditions are simulated, experimentally verified, and analyzed. Motivated by the work of J.H.B. Deane and D.C. Hamill in 1996, where chaotic phenomena are useful in suppressing electromagnetic interference (EMI) by adjusting the parameters of the DC-DC converter and making it operate in chaos, a chaos-based pulse width modulation (CPWM) is proposed to distribute the harmonics of the DC-DC converters continuously and evenly over a wide frequency range, thereby reducing the EMI. The output waves and spectral properties of the EMI are simulated and analyzed as the carrier frequency or amplitude changes with regard to different chaotic maps. Simulation and experimental results are given to illustrate the effectiveness of the proposed CPWM, which provides a good example of applying chaos theory in engineering practice.

  11. A Long-Pulse Modulator for the TESLA Test Facility (TTF)

    CERN Document Server

    Kaesler, W


    The long-pulse (1.6 ms) klystron modulator for TTF is a hardtube pulser using a Bouncer-circuit for droop compensation. It is built up with new advanced components representing industrial standards. The on-/off switch is a rugged 12 kV IGCT-stack with a fast 4kA turn-off capability. The 100 kJ storage capacitor bank contains only three capacitors with self-healing, segmented PP-foil technology. A new 100 kA solid-state switch based on light triggered thyristors (LTT) replaced the standard ignitrons as crowbar switches. The 300 kW high voltage power supply is based on modern switched mode technology.

  12. A dynamic CMOS multiplier for analog VLSI based on exponential pulse-decay modulation (United States)

    Massengill, Lloyd W.


    A clocked, charge-based, CMOS modulator circuit is presented. The circuit, which performs a semilinear multiplication function, has applications in arrayed analog VLSI architectures such as parallel filters and neural network systems. The design presented is simple in structure, uses no operational amplifiers for the actual multiplication function, and uses no power in the static mode. Two-quadrant weighting of an input signal is accomplished by control of the magnitude and decay time of an exponential current pulse, resulting in the delivery of charge packets to a shared capacitive summing bus. The cell is modular in structure and can be fabricated in a standard CMOS process. An analytical derivation of the operation of the circuit, SPICE simulations, and MOSIS fabrication results are presented. The simulation studies indicate that the circuit is inherently tolerant to temperature effects, absolute device sizing errors, and clock-feedthrough transients.


    Institute of Scientific and Technical Information of China (English)

    LIU Rong; PAN Huachen; CHEN Ying


    A hybrid control strategy has been designed and developed for the electro-hydraulic position servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work condition is poor and a large flow rate is required. It is difficult to control the GPCM system because the system is discrete. With consideration of the stability and speediness of the GPCM position servo control system, a control strategy is developed through the theoretical and experimental analyses. The control strategy integrates the merits of Bang-Bang control, PID control and fuzzy control. With this hybrid control strategy, the electro hydraulic control system has good performances, and the servo control is carried out with GPCM through on-offvalves.

  14. Voltage Sag Mitigation Using Pulse Width Modulation Switched Autotransformer through Matlab Simulation

    Directory of Open Access Journals (Sweden)

    P. Shyam Kiran


    Full Text Available In this paper, a new voltage sag compensator for critical loads in electrical distribution system discussed. The proposed scheme employs a Pulse width modulation ac-ac converter along with a auto transformer. During a disturbance such as voltage sag, the proposed scheme supplies the missing voltage and helps in maintaining the rated voltage at the terminals of the critical load. Under normal condition the approach work in bypass mode and delivering utility power directly to load. The proposed system has less number of switching devices and has good compensating capability in comparison to commonly used compensators. Simulation analysis of three-phase compensator is performed in MATLAB/SIMULINK and performance analysis of the system is presented for various levels of sag and swell.

  15. A pulse-frequency modulation sensor using memristive-based inhibitory interconnections. (United States)

    Kavehei, Omid; Lee, Sang-Jin; Cho, Kyoung-Rok; Al-Sarawi, Said; Abbott, Derek


    This paper proposes a programmable inhibitory interconnection network between pixels in an array of novel low-voltage Schmitt-trigger-based PFM sensors that will be of interest for future applications in memristor-based early vision processing. In addition, a new low-power inverter-based pulse-frequency modulation (PFM) design and its integration with the network is also presented. To ensure no change in the memristors conductance in the network, the CMOS imager was designed for low voltage operation. That has resulted in a significant power reduction, better than 60%, and a comparable linear dynamic range when compared to published designs in the literature. The design was performed using a 0.13 um Samsung Electronics standard CMOS process, using 0.75 V supply voltage.


    DEFF Research Database (Denmark)


    A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end...

  17. Ultra-low-power wireless transmitter for neural prostheses with modified pulse position modulation. (United States)

    Goodarzy, Farhad; Skafidas, Stan E


    An ultra-low-power wireless transmitter for embedded bionic systems is proposed, which achieves 40 pJ/b energy efficiency and delivers 500 kb/s data using the medical implant communication service frequency band (402-405 MHz). It consumes a measured peak power of 200 µW from a 1.2 V supply while occupying an active area of 0.0016 mm(2) in a 130 nm technology. A modified pulse position modulation technique called saturated amplified signal is proposed and implemented, which can reduce the overall and per bit transferred power consumption of the transmitter while reducing the complexity of the transmitter architectures, and hence potentially shrinking the size of the implemented circuitry. The design is capable of being fully integrated on single-chip solutions for surgically implanted bionic systems, wearable devices and neural embedded systems.

  18. Predictive Pulse Pattern Current Modulation Scheme for Harmonic Reduction in Three-Phase Multidrive Systems

    DEFF Research Database (Denmark)

    Davari, Pooya; Yang, Yongheng; Zare, Firuz


    of them can lead to the cancellation of specific harmonics. This paper proposes a new cost-effective harmonic mitigation solution for multi-drive systems using a predictive pulse pattern current modulation control strategy. The proposed technique applies suitable interaction among parallel drive units......The majority of the industrial motor drive systems are equipped with the conventional line-commutated front-end rectifiers, and being one of the main sources of harmonics in the power line. While a parallel combination of these drive units elevates current quality issues, a proper arrangement...... at the rectification stage to synthesize sinusoidal input currents. The input voltage sensing is avoided in order to minimize the number of required sensors, and the grid synchronization also has been implemented based on a common Phase-Locked-Loop (PLL) using the DC-link capacitor voltage ripple. Experimental results...

  19. Harmonics Reduction of Multilevel Inverter Drive Using Sine Carrier Pulse Width Modulation Techniques

    Directory of Open Access Journals (Sweden)

    S. Ebanezar Pravin


    Full Text Available The main objective of this paper is to control the speed of an induction motor by using seven level diode clamped multilevel inverter and improve the high quality sinusoidal output voltage with reduced harmonics. The presented scheme for diode clamped multilevel inverter is sine carrier Pulse Width Modulation control. An open loop speed control can be achieved by using V/ƒ method. This method can be implemented by changing the supply voltage and frequency applied to the three phase induction motor at constant ratio. The presented system is an effective replacement for the conventional method which has high switching losses, its result ends in a poor drive performance. The simulation result portrays the effective control in the motor speed and an enhanced drive performance through reduction in total harmonic distortion (THD. The effectiveness of the system is verified through simulation using PSIM6.1 Simulink package.

  20. Comparison of WDM/Pulse-Position-Modulation (WDM/PPM) with Code/Pulse-Position-Swapping (C/PPS) Based on Wavelength/Time Codes

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V


    Pulse position modulation (PPM) signaling is favored in intensity modulated/direct detection (IM/DD) systems that have average power limitations. Combining PPM with WDM over a fiber link (WDM/PPM) enables multiple accessing and increases the link's throughput. Electronic bandwidth and synchronization advantages are further gained by mapping the time slots of PPM onto a code space, or code/pulse-position-swapping (C/PPS). The property of multiple bits per symbol typical of PPM can be combined with multiple accessing by using wavelength/time [W/T] codes in C/PPS. This paper compares the performance of WDM/PPM and C/PPS for equal wavelengths and bandwidth.

  1. Inter-island optical link demonstration using high-data-rate pulse-position modulation (United States)

    Bacher, Michael; Arnold, Felix; Thieme, Björn


    The growing data-rate demand on satellite communication systems has led to the increased interest in optical space communication solutions for uplinks and downlinks between satellites and ground stations. As one example for applications that benefit from higher data-rates offered by optical links, RUAG Space studied an uplink scenario from an Unmanned Aerial Vehicle (UAV) to a Geostationary Orbit (GEO), under the European Space Agency project formally known as "Optical Communications Transceiver for Atmospheric Links" (OCTAL). Particularly suitable for optical links through turbulent atmospheres are robust Pulse Position Modulation (PPM) schemes. Communication electronics using a Multi-Pulse PPM (MPPM) scheme have been developed, increasing the data-rate compared to traditional PPM at a constant peak-to-average ratio while allowing a widely configurable data-rate range. The communication system was tested together with a newly developed receiver and transmitter at a wavelength of 1055nm in a field test campaign on the Canary Islands, where the transmitter telescope was located on La Palma while the receiver was installed within the ESA Optical Ground Station on Tenerife. The nearly horizontal link between the two islands with a link distance of 142km allowed validation of relevant system performances under stringent atmospheric conditions. A data-rate of more than 360Mbps could be demonstrated using MPPM, while nearly 220Mbps could be achieved with traditional PPM, well exceeding the targeted data-rate of the studied UAV-to-GEO scenario. Following an introduction on the applied MPPM schemes, the architecture of the test setup is described, different modulation schemes are compared and the test results of this Inter-Island Test Campaign performed in October 2012 are presented.

  2. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete


    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, an anthropomorfized archive of a past intimacy and an all-encompassing immersive environment modulating continuously in real space-time....

  3. Analysis and Minimization of Output Current Ripple for Discontinuous Pulse-Width Modulation Techniques in Three-Phase Inverters

    Directory of Open Access Journals (Sweden)

    Gabriele Grandi


    Full Text Available This paper gives the complete analysis of the output current ripple in three-phase voltage source inverters considering the different discontinuous pulse-width modulation (DPWM strategies. In particular, peak-to-peak current ripple amplitude is analytically evaluated over the fundamental period and compared among the most used DPWMs, including positive and negative clamped (DPWM+ and DPWM−, and the four possible combinations between them, usually named as DPWM0, DPWM1, DPWM2, and DPWM3. The maximum and the average values of peak-to-peak current ripple are estimated, and a simple method to correlate the ripple envelope with the ripple rms is proposed and verified. Furthermore, all the results obtained by DPWMs are compared to the centered pulse-width modulation (CPWM, equivalent to the space vector modulation to identify the optimal pulse-width modulation (PWM strategy as a function of the modulation index, taking into account the different average switching frequency. In this way, the PWM technique providing for the minimum output current ripple is identified over the whole modulation range. The analytical developments and the main results are experimentally verified by current ripple measurements with a three-phase PWM inverter prototype supplying an induction motor load.

  4. Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay. (United States)

    Han, Weina; Jiang, Lan; Li, Xiaowei; Wang, Qingsong; Li, Hao; Lu, YongFeng


    We demonstrate that the polarization-dependent anisotropy of the laser-induced periodic surface structure (LIPSS) on silicon can be adjusted by designing a femtosecond laser pulse train (800 nm, 50 fs, 1 kHz). By varying the pulse delay from 100 to 1600 fs within a double pulse train to reduce the deposited pulse energy, which weakens the directional surface plasmon polarition (SPP)-laser energy coupling based on the initial formed ripple structure, the polarization-dependent geometrical morphology of the LIPSS evolves from a nearly isotropic circular shape to a somewhat elongated elliptical shape. Meanwhile, the controllable anisotropy of the two-dimensional scanned-line widths with different directions is achieved based on a certain pulse delay combined with the scanning speed. This can effectively realize better control over large-area uniform LIPSS formation. As an example, we further show that the large-area LIPSS can be formed with different scanning times under different pulse delays.

  5. Implementations of artificial neural networks using current-mode pulse width modulation technique. (United States)

    El-Masry, E I; Yang, H K; Yakout, M A


    The use of a current-mode pulse width modulation (CM-PWM) technique to implement analog artificial neural networks (ANNs) is presented. This technique can be used to efficiently implement the weighted summation operation (WSO) that are required in the realization of a general ANN. The sigmoidal transformation is inherently performed by the nonlinear transconductance amplifier, which is a key component in the current integrator used in the realization of WSO. The CM-PWM implementation results in a minimum silicon area, and therefore is suitable for very large scale neural systems. Other pronounced features of the CM-PWM implementation are its easy programmability, electronically adjustable gains of neurons, and modular structures. In this paper, all the current-mode CMOS circuits (building blocks) required for the realization of CM-PWM ANNs are presented and simulated. Four modules for modular design of ANNs are introduced. Also, it is shown that the CM-PWM technique is an efficient method for implementing discrete-time cellular neural networks (DT-CNNs). Two application examples are given: a winner-take-all circuit and a connected component detector.

  6. Noise-immunity processing of digital multilevel pulse-amplitude modulation signals

    Directory of Open Access Journals (Sweden)

    A. S. Makarenko


    Full Text Available Introduction. The main properties and features of spectral-effective multi-level pulse amplitude modulation digital signals at coherent reception are presented. It is shown that the phase locked loop circuit (PLL circuit used in the receiver is able to work at SNR > 5 dB.Object of the paper. We propose a new scheme of noise compensator at an intermediate frequency, allowing us to obtain increasing of SNR on 15–25 dB when error of PLL is equal zero. The noise compensator has the gain 8–18 dB at error of PLL = 33° that is able to work at SNR = 5 dB. As result, we can obtain a required SNR for determined BER in systems with multi-level PAM.Conclusions. This technical solution makes a spectrally-efficient system using multi-level amplitude modulation is also energy efficient, forward-looking and competitive. The power transmitters of cell phones and radio relay lines of mobile communication systems can be reduced by 10 times or at the same transmitter power improvement the quality of communication or range is presented.

  7. Coherent lidar modulated with frequency stepped pulse trains for unambiguous high duty cycle range and velocity sensing in the atmosphere

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Mohr, Johan Jacob


    Range unambiguous high duty cycle coherent lidars can be constructed based on frequency stepped pulse train modulation, even continuously emitting systems could be envisioned. Such systems are suitable for velocity sensing of dispersed targets, like the atmosphere, at fast acquisition rates...

  8. Microprocessor-Controlled Pulsed NQR Spectrometer for Automatic Acquisition of Zeeman Perturbed Nuclear Quadrupole Spin Echo Envelope Modulations (ZSEEM ) (United States)

    Reddy, Narsimha; Bhavsar, Arun; Narasimhan, P. T.


    A simple microprocessor-controlled pulsed NQR spectrometer system has been developed with the capability to acquire Zeeman perturbed spin echo envelope modulations (ZSEEM). The CPU of the system is based on the Intel Corporation 8085 A microprocessor. The performance of the spectrometer is illustrated with the presentation of ZSEEM spectra of NaClO3 and KClO3.

  9. A new method for compensation of the effect of charging transformer's leakage inductance on PFN voltage regulation in Klystron pulse modulators (United States)

    Patel, Akhil; Kale, Umesh; Shrivastava, Purushottam


    The Line type modulators have been widely used to generate high voltage rectangular pulses to power the klystron for high power RF generation. In Line type modulator, the Pulse Forming Network (PFN) which is a cascade combination of lumped capacitors and inductors is used to store the electrical energy. The charged PFN is then discharged into a klystron by firing a high voltage Thyratron switch. This discharge generates a high voltage rectangular pulse across the klystron electrodes. The amplitude and phase of Klystron's RF output is governed by the high voltage pulse amplitude. The undesired RF amplitude and phase stability issues arises at the klystron's output due to inter-pulse and during the pulse amplitude variations. To reduce inter-pulse voltage variations, the PFN is required to be charged at the same voltage after every discharge cycle. At present, the combination of widely used resonant charging and deQing method is used to regulate the pulse to pulse PFN voltage variations but the charging transformer's leakage inductance puts an upper bound on the regulation achievable by this method. Here we have developed few insights of the deQing process and devised a new compensation method to compensate this undesired effect of charging transformer's leakage inductance on the pulse to pulse PFN voltage stability. This compensation is accomplished by the controlled partial discharging of the split PFN capacitor using a low voltage MOSFET switch. Theoretically, very high values of pulse to pulse voltage stability may be achieved using this method. This method may be used in deQing based existing modulators or in new modulators, to increase the pulse to pulse voltage stability, without having a very tight bound on charging transformer's leakage inductance. Given a stable charging power supply, this method may be used to further enhance the inter-pulse voltage stability of modulators which employ the direct charging, after replacing the direct charging with the

  10. PSCAD modeling of a two-level space vector pulse width modulation algorithm for power electronics education

    Directory of Open Access Journals (Sweden)

    Ahmet Mete Vural


    Full Text Available This paper presents the design details of a two-level space vector pulse width modulation algorithm in PSCAD that is able to generate pulses for three-phase two-level DC/AC converters with two different switching patterns. The presented FORTRAN code is generic and can be easily modified to meet many other kinds of space vector modulation strategies. The code is also editable for hardware programming. The new component is tested and verified by comparing its output as six gating signals with those of a similar component in MATLAB library. Moreover the component is used to generate digital signals for closed-loop control of STATCOM for reactive power compensation in PSCAD. This add-on can be an effective tool to give students better understanding of the space vector modulation algorithm for different control tasks in power electronics area, and can motivate them for learning.

  11. Exposure to ELF-pulse modulated X band microwaves increases in vitro human astrocytoma cell proliferation. (United States)

    Pérez-Castejón, C; Pérez-Bruzón, R N; Llorente, M; Pes, N; Lacasa, C; Figols, T; Lahoz, M; Maestú, C; Vera-Gil, A; Del Moral, A; Azanza, M J


    Common concern about the biological effects of electromagnetic fields (EMF) is increasing with the expansion of X-band microwaves (MW). The purpose of our work was to determine whether exposure to MW pulses in this range can induce toxic effects on human astrocytoma cells. Cultured astrocytoma cells (Clonetics line 1321N1) were submitted to 9.6 GHz carrier, 90% amplitude modulated by extremely low frequency (ELF)-EMF pulses inside a Gigahertz Transversal Electromagnetic Mode cell (GTEM-cell). Astrocytoma cultures were maintained inside a GTEM-incubator in standard culture conditions at 37+/-0.1 degrees C, 5% CO2, in a humidified atmosphere. Two experimental conditions were applied with field parameters respectively of: PW 100-120 ns; PRF 100-800 Hz; PRI 10-1.25 ms; power 0.34-0.60 mW; electric field strength 1.25-1.64 V/m; magnetic field peak amplitude 41.4-54.6 microOe. SAR was calculated to be 4.0 x 10-4 W/Kg. Astrocytoma samples were grown in a standard incubator. Reaching 70-80% confluence, cells were transferred to a GTEM-incubator. Experimental procedure included exposed human astrocytoma cells to MW for 15, 30, 60 min and 24 h and unexposed sham-control samples. Double blind method was applied. Our results showed that cytoskeleton proteins, cell morphology and viability were not modified. Statistically significant results showed increased cell proliferation rate under 24h MW exposure. Hsp-70 and Bcl-2 antiapoptotic proteins were observed in control and treated samples, while an increased expression of connexin 43 proteins was found in exposed samples. The implication of these results on increased proliferation is the subject of our current research.

  12. Modulated Pulse Generations in a Laser-diode-pumped Passively Q-switched Intracavity-frequency-doubling Nd∶YVO4 Laser

    Institute of Scientific and Technical Information of China (English)

    郑加安; 赵圣之; 陈磊


    The investigative results of modulated pulse output from an LD end-pumped passively Q-switched intracavity-frequency-doubling Nd∶YVO4/KTP laser with Cr4+∶YAG saturable absorber are presented. The numerical stimulations of these modulated pulses are carried out basing on the rate equations. It indicated that the modulations are attribute to the frequency beating of two eigenstates of the resonant polarized modes. The theoretical calculations are in good agreement with the experimental observations.

  13. Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband (United States)

    Nekoogar, Faranak [San Ramon, CA; Dowla, Farid U [Castro Valley, CA


    The multi-pulse frequency shifted technique uses mutually orthogonal short duration pulses o transmit and receive information in a UWB multiuser communication system. The multiuser system uses the same pulse shape with different frequencies for the reference and data for each user. Different users have a different pulse shape (mutually orthogonal to each other) and different transmit and reference frequencies. At the receiver, the reference pulse is frequency shifted to match the data pulse and a correlation scheme followed by a hard decision block detects the data.

  14. A micropower supervisor for wireless nodes with a digital pulse frequency modulator battery monitor (United States)

    Carloni, Mirko; d'Aparo, Rocco; Scorrano, Pierpaolo; Naticchia, Berardo; Conti, Massimo


    In the last few years the increased development of wireless technologies led to the development of micropower devices with power management and real time power control, aimed to maximize the battery life time.1 The main and simplest method to estimate residual battery life time is by voltage measurement. This kind of measurement is simple but is useless in many cases, especially when long term Lithium-Thionyl chloride batteries are used, since its voltage is flat for more than 90% of the battery discharge. In this case, a current control should be used. However, these kinds of devices have various problems as a limited range of measurement and not negligible quiescent current that may distort the measurements. In this work we developed a micropower supervisor for wireless sensor nodes with a charge battery monitor, whose features are aimed at solving the problems just described. The current measured by a sense resistor, is filtered by a super-capacitor, amplified by a current sense amplifier and then fed to a voltage to pulse frequency modulator. In this way, the charge consumption can be estimated without the saturation of the current sense amplifier, even if the wireless node consumes time limited high current spikes, for example during transmission.

  15. A monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter

    CERN Document Server

    Xiong, Chi; Proesel, Jonathan E; Orcutt, Jason S; Haensch, Wilfried; Green, William M J


    Silicon photonics promises to address the challenges for next-generation short-reach optical interconnects. Growing bandwidth demand in hyper-scale data centers and high-performance computing motivates the development of faster and more-efficient silicon photonics links. While it is challenging to raise the serial line rate, further scaling of the data rate can be realized by, for example, increasing the number of parallel fibers, increasing the number of wavelengths per fiber, and using multi-level pulse-amplitude modulation (PAM). Among these approaches, PAM has a unique advantage because it does not require extra lasers or a costly overhaul of optical fiber cablings within the existing infrastructure. Here, we demonstrate the first fully monolithically integrated silicon photonic four-level PAM (PAM-4) transmitter operating at 56 Gb/s and demonstrate error-free transmission (bit-error-rate < 10$^{-12}$) up to 50 Gb/s without forward error correction. The superior PAM-4 waveform is enabled by optimizatio...

  16. Negative Kerr nonlinearity of graphene as seen via chirped-pulse-pumped self-phase modulation

    CERN Document Server

    Vermeulen, Nathalie; Cheng, JinLuo; Pasternak, Iwona; Krajewska, Aleksandra; Ciuk, Tymoteusz; Strupinski, Wlodek; Thienpont, Hugo; Van Erps, Jurgen


    We experimentally demonstrate a negative Kerr nonlinearity for quasi-undoped graphene. Hereto, we introduce the method of chirped-pulse-pumped self-phase modulation and apply it to graphene-covered silicon waveguides at telecom wavelengths. The extracted Kerr-nonlinear index for graphene equals n2,gr = -10^(-13) m^2/W. Whereas the sign of n2,gr turns out to be negative in contrast to what has been assumed so far, its magnitude is in correspondence with that observed in earlier experiments. Graphene's negative Kerr nonlinearity strongly impacts how graphene should be exploited for enhancing the nonlinear response of photonic (integrated) devices exhibiting a positive nonlinearity. It also opens up the possibility of using graphene to annihilate unwanted nonlinear effects in such devices, to develop unexplored approaches for establishing Kerr processes, and to extend the scope of the "periodic poling" method often used for second-order nonlinearities towards third-order Kerr processes. Because of the generic na...

  17. Investigating emotional top down modulation of ambiguous faces by single pulse TMS on early visual cortices

    Directory of Open Access Journals (Sweden)

    Zachary Adam Yaple


    Full Text Available Top-down processing is a mechanism in which memory, context and expectation are used to perceive stimuli. For this study we investigated how emotion content, induced by music mood, influences perception of happy and sad emoticons. Using single pulse TMS we stimulated right occipital face area (rOFA, primary visual cortex (V1 and vertex while subjects performed a face-detection task and listened to happy and sad music. At baseline, incongruent audio-visual pairings decreased performance, demonstrating dependence of emotion while perceiving ambiguous faces. However, performance of face identification decreased during rOFA stimulation regardless of emotional content. No effects were found between Cz and V1 stimulation. These results suggest that while rOFA is important for processing faces regardless of emotion, V1 stimulation had no effect. Our findings suggest that early visual cortex activity may not integrate emotional auditory information with visual information during emotion top-down modulation of faces.

  18. Pulse width modulation-based temperature tracking for feedback control of a shape memory alloy actuator. (United States)

    Ayvali, Elif; Desai, Jaydev P


    This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories.

  19. Analysis of LAPAN-IPB image lossless compression using differential pulse code modulation and huffman coding (United States)

    Hakim, P. R.; Permala, R.


    LAPAN-A3/IPB satellite is the latest Indonesian experimental microsatellite with remote sensing and earth surveillance missions. The satellite has three optical payloads, which are multispectral push-broom imager, digital matrix camera and video camera. To increase data transmission efficiency, the multispectral imager data can be compressed using either lossy or lossless compression method. This paper aims to analyze Differential Pulse Code Modulation (DPCM) method and Huffman coding that are used in LAPAN-IPB satellite image lossless compression. Based on several simulation and analysis that have been done, current LAPAN-IPB lossless compression algorithm has moderate performance. There are several aspects that can be improved from current configuration, which are the type of DPCM code used, the type of Huffman entropy-coding scheme, and the use of sub-image compression method. The key result of this research shows that at least two neighboring pixels should be used for DPCM calculation to increase compression performance. Meanwhile, varying Huffman tables with sub-image approach could also increase the performance if on-board computer can support for more complicated algorithm. These results can be used as references in designing Payload Data Handling System (PDHS) for an upcoming LAPAN-A4 satellite.


    Directory of Open Access Journals (Sweden)

    Hiram Ponce


    Full Text Available Most of machine-operated industrial processes implement electric machinery as their work sources, implying the necessary improvement of control techniques and power electronics drivers. Many years have passed since the control conflicts related to induction motors have been overcome through torque-flux control techniques so their advantages over direct current motors have made them to be the most common electric actuator found behind industrial automation. In fact, induction motors can be easily operated using a Direct Torque Control (DTC. Since, it is based on a hysteresis control of the torque and flux errors, its performance is characterized by a quick reaching of the set point, but also a high ripple on both torque and flux. In order to enhance that technique, this study introduces a novel hybrid fuzzy controller with artificial hydrocarbon networks (FMC that is used in a Space Vector Pulse Width Modulation (SVPWM technique, so-called FMC-SVPWM-DTC. In fact, this study describes the proposal and its design method. Experimental results over a velocity-torque cascade topology proved that the proposed FMC-SVPWM-DTC responses highly effective almost suppressing rippling in torque and flux. It also performed a faster speed response than in a conventional DTC. In that sense, the proposed FMC-SVPWM-DTC can be used an alternative approach for controlling induction motors.

  1. Optimum design of phase opposition disposition pulse width modulation logic circuit for switching seven level cascaded half bridge inverter

    Directory of Open Access Journals (Sweden)

    Nentawe Y. Goshwe


    Full Text Available Theevolution of multilevel inverters (MLIs has made it possible to extract power from direct current (DC sources to alternating current (AC power. This paper presents the design of a novel phase opposition disposition pulse width modulation scheme (PODPWM logic circuit for a conventional single phase seven level cascaded H-Bridge (CHB inverter using Matlab/Simulink. The minimum switching logic circuit for the single phase seven level CHB inverter was obtained by modeling the logic equations that could be used with any number of levels depending on the number of modulating and carrier signals involved. The reduction in total harmonic distortion (THD of the output voltage for the MLI using low switching frequency at different modulation indixes is also investigated. The logic equations have made it easier to design a PODPWM circuit for any CHB inverter and the logic gates designed gave an optimum THD value of 16.73 % at modulation index of 0.20.

  2. Study on self-frequency-shift of femtosecond pulse in nonlinear dispersion medium using time-resolved cross-phase modulation method

    Institute of Scientific and Technical Information of China (English)

    赵应桥; 朱鹤元; 刘建华; 孙迭篪; 李富铭


    A time-resolved cross-phase modulation method combined with a modified nonlinear Schrodinger equation is used to study the effects of nonlinear response time on the propagation of ultrashort pulses in nonlinear dispersion media. Evolution of cross-phase modulation spectrum with the different time delay between the probe pulse and pump pulse is simulated using split-step Fourier method. It is shown that both normal self-frequency-shift-red-shift and abnormal self-frequency-shift-blue-shift can occur in the frequency domain for the probe pulse, and a satisfactory theoretical interpretation is given.

  3. Control over few-photon pulses by a time-periodic modulation of the photon emitter coupling (United States)

    Pletyukhov, Mikhail; Pedersen, Kim G. L.; Gritsev, Vladimir


    We develop a Floquet scattering formalism for the description of quasistationary states of microwave photons in a one-dimensional waveguide interacting with a nonlinear cavity by means of a periodically modulated coupling. This model is inspired by the recent progress in engineering of tunable coupling schemes with superconducting qubits. We argue that our model can realize the quantum analog of an optical chopper. We find strong periodic modulations of the transmission and reflection envelopes in the scattered few-photon pulses, including photon compression and blockade, as well as dramatic changes in statistics. Our theoretical analysis allows us to explain these nontrivial phenomena as arising from nonadiabatic memory effects.

  4. Generation of ultrahigh frequency air microplasma in a magnetic loop and effects of pulse modulation on operation (United States)

    Taghioskoui, Mazdak; Perlow, Joshua; Zaghloul, Mona; Montaser, Akbar


    An atmospheric pressure air microplasma (APAMP) source was developed under ambient conditions using a magnetic loop at an operating frequency of 740 MHz. A self-igniting, stable APAMP was generated at 9.5 W. Pulse modulation (PM) was applied to the ultra high frequency signal. The effects of PM on self-ignition and operation of the APAMP source were studied by using a square wave modulating signal in the frequency range of 5-30 KHz. With the application of PM on the APAMP, in the best case, the plasma self-ignites and is sustained at 2.5 W.

  5. Observation of a Long-Wavelength Hosing Modulation of a High-Intensity Laser Pulse in Underdense Plasma (United States)

    Kaluza, M. C.; Mangles, S. P. D.; Thomas, A. G. R.; Najmudin, Z.; Dangor, A. E.; Murphy, C. D.; Collier, J. L.; Divall, E. J.; Foster, P. S.; Hooker, C. J.; Langley, A. J.; Smith, J.; Krushelnick, K.


    We report the first experimental observation of a long-wavelength hosing modulation of a high-intensity laser pulse. Side-view images of the scattered optical radiation at the fundamental wavelength of the laser reveal a transverse oscillation of the laser pulse during its propagation through underdense plasma. The wavelength of the oscillation λhosing depends on the background plasma density ne and scales as λhosing˜ne-3/2. Comparisons with an analytical model and two-dimensional particle-in-cell simulations reveal that this laser hosing can be induced by a spatiotemporal asymmetry of the intensity distribution in the laser focus which can be caused by a misalignment of the parabolic focusing mirror or of the diffraction gratings in the pulse compressor.

  6. Mask-Free Patterning of High-Conductivity Metal Nanowires in Open Air by Spatially Modulated Femtosecond Laser Pulses. (United States)

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Liu, Yang; Dong, Xianzi; Qu, Liangti; Duan, Xuanming; Lu, Yongfeng


    A novel high-resolution nanowire fabrication method is developed by thin-film patterning using a spatially modulated femtosecond laser pulse. Deep subwavelength (≈1/13 of the laser wavelength) and high conductivity (≈1/4 of the bulk gold) nanowires are fabricated in the open air without using masks, which offers a single-step arbitrary direct patterning approach for electronics, plasmonics, and optoelectronics nanodevices.

  7. GABAergic inhibition modulates intensity sensitivity of temporally patterned pulse trains in the inferior collicular neurons in big brown bats. (United States)

    Luan, Rui-Hong; Wu, Fei-Jian; Jen, Philip H-S; Sun, Xin-De


    The echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals with duration, amplitude, repetition rate, and sweep structure changing systematically during interception of their prey. In the present study, the sound stimuli of temporally patterned pulse trains at three different pulse repetition rates (PRRs) were used to mimic the sounds received during search, approach, and terminal stages of echolocation. Electrophysiological method was adopted in recordings from the inferior colliculus (IC) of midbrain. By means of iontophoretic application of bicuculline, the effect of GABAergic inhibition on the intensity sensitivity of IC neurons responding to three different PRRs of 10, 30 and 90 pulses per second (pps) was examined. The rate-intensity functions (RIFs) were acquired. The dynamic range (DR) of RIFs was considered as a criterion of intensity sensitivity. Comparing the average DR of RIFs at different PRRs, we found that the intensity sensitivity of some neurons improved, but that of other neurons decayed when repetition rate of stimulus trains increased from 10 to 30 and 90 pps. During application of bicuculline, the number of impulses responding to the different pulse trains increased under all stimulating conditions, while the DR differences of RIFs at different PRRs were abolished. The results indicate that GABAergic inhibition was involved in modulating the intensity sensitivity of IC neurons responding to pulse trains at different PRRs. Before and during bicuculline application, the percentage of changes in responses was maximal in lower stimulus intensity near to the minimum threshold (MT), and decreased gradually with the increment of stimulus intensity. This observation suggests that GABAergic inhibition contributes more effectively to the intensity sensitivity of the IC neurons responding to pulse trains at lower sound level.

  8. The High Time Resolution Universe Survey - V: Single-pulse energetics and modulation properties of 315 pulsars

    CERN Document Server

    Burke-Spolaor, S; Bailes, M; Bates, S D; Bhat, N D R; Burgay, M; Champion, D J; D'Amico, N; Keith, M J; Kramer, M; Levin, L; Possenti, S Milia A; Stappers, B; van Straten, W


    We report on the pulse-to-pulse energy distributions and phase-resolved modulation properties for catalogued pulsars in the southern High Time Resolution Universe intermediate-latitude survey. We selected the 315 pulsars detected in a single-pulse search of this survey, allowing a large sample unbiased regarding any rotational parameters of neutron stars. We found that the energy distribution of many pulsars is well-described by a log-normal distribution, with few deviating from a small range in log-normal scale and location parameters. Some pulsars exhibited multiple energy states corresponding to mode changes, and implying that some observed "nulling" may actually be a mode-change effect. PSRJ1900-2600 was found to emit weakly in its previously-identified "null" state. We found evidence for another state-change effect in two pulsars, which show bimodality in their nulling time scales; that is, they switch between a continuous-emission state and a single-pulse-emitting state. Large modulation occurs in many ...

  9. Hybrid pulse position modulation and binary phase shift keying subcarrier intensity modulation for free space optics in a weak and saturated turbulence channel. (United States)

    Faridzadeh, Monire; Gholami, Asghar; Ghassemlooy, Zabih; Rajbhandari, Sujan


    In this paper a hybrid modulation scheme based on pulse position modulation (PPM) and binary phase shift keying subcarrier intensity modulation (BPSK-SIM) schemes for free-space optical communications is proposed. The analytical bit error rate (BER) performance is investigated in weak and saturated turbulence channels and results are verified with the simulation data. Results show that performance of PPM-BPSK-SIM is superior to BPSK-SIM in all turbulence regimes; however, it outperforms 2-PPM for the turbulence variance σ(1)(2)>0.2. PPM-BPSK-SIM offers a signal-to-noise ratio (SNR) gain of 50 dB in the saturation regime compared to BPSK at a BER of 10(-6). The SNR gain in comparison to PPM improves as the strength of the turbulence level increases.

  10. Design and Simulation of Dc-Dc Converter for Fuel Cell Operated Vehicle with Single Reference Six Pulse Modulation

    Directory of Open Access Journals (Sweden)



    Full Text Available : Even though electrical vehicle concept is introduced in early 1800’s, it gained importance in past couple of decades due to growing conscience on environmental aspects. Different types of electrical vehicles are manufactured in the past centuries and now onboard generation is seems to be promising by fulfilling the needs of a vehicle. Fuel cells or fuel cell stack produces typically 32-68V of EMF, which has to be conditioned before it fed to motor. The conditioning involves two stages DCDC conversion and then to DC-AC conversion .DC-AC conversion is done through inverter. For DC-DC to conversion various topologies are proposed such as fly back, forward, buck-boost are proposed. This paper deals with the front end DC-DC converter and inverter switching. A hybrid modulation scheme is used to produce pulses to switch the source end full bridge rectifier and inverter at load end. In this modulation scheme high frequency pulses given to full bridge rectifier and 33% modulation scheme based pulses are produced for inverter switching.

  11. Liquid mixing enhanced by pulse width modulation in a Y-shaped jet configuration (United States)

    Xia, Qingfeng; Zhong, Shan


    In this paper, mixing between two fluid streams, which are injected into a planar mixing channel via a Y-shaped confluence section at the same volume flow rate, is studied experimentally. The injection of the two fluid streams is controlled by two separate solenoid valves, which are operated with a phase difference of 180°, using pulse width modulation. The experiments are conducted using water at a mean Reynolds number between 83 and 250, a range of pulsation frequencies and two duty cycles (25 and 50%). Both particle-image velocimetry and planar laser-induced fluorescence technique are used to visualize the flow patterns and to quantify the mixing degree in the mixing channel. This experiment shows that the pulsation of each jet produces vortical structures, which promotes mixing via vortex entrainment and vortex breakup, and at the same time the mixing is also greatly enhanced by sequential segmentation produced by a 180° out-of-phase pulsation of the two jets. This mixing enhancement method is effective at a Reynolds number greater than 125 with a mixing degree of 0.9 being achieved. For the Reynolds numbers studied in the present experiments, an optimal frequency exists, which corresponds to a Strouhal number in the range of 0.5-2. Furthermore, at a given mean Reynolds number a lower duty cycle is found to produce a better mixing due to the resultant higher instantaneous Reynolds number in the jet flow. It is also found that pulsation of only one jet can produce a similar mixing effect.

  12. Pulse oximeter using a gain-modulated avalanche photodiode operated in a pseudo lock-in light detection mode (United States)

    Miyata, Tsuyoshi; Iwata, Tetsuo; Araki, Tsutomu


    We propose a reflection-type pulse oximeter, which employs two pairs of a light-emitting diode (LED) and a gated avalanche photodiode (APD). One LED is a red one with an emission wavelength λ = 635 nm and the other is a near-infrared one with that λ = 945 nm, which are both driven with a pulse mode at a frequency f (=10 kHz). Superposition of a transistor-transistor-logic (TTL) gate pulse on a direct-current (dc) bias, which is set so as not exceeding the breakdown voltage of each APD, makes the APD work in a gain-enhanced operation mode. Each APD is gated at a frequency 2f (=20 kHz) and its output signal is fed into a laboratory-made lock-in amplifier that works in synchronous with the pulse modulation signal of each LED at a frequency f (=10 kHz). A combination of the gated APD and the lock-in like signal detection scheme is useful for the reflection-type pulse oximeter thanks to the capability of detecting a weak signal against a large background (BG) light.

  13. Development of a Novel Non-Equilibrium Pulsed Plasma Ignition Module for High Altitude Turbojets Project (United States)

    National Aeronautics and Space Administration — An experimental research program focusing on design, development, and testing of a novel nonequilibrium plasma ignition module is proposed. The ignition module will...

  14. A Pulsed Coding Technique Based on Optical UWB Modulation for High Data Rate Low Power Wireless Implantable Biotelemetry

    Directory of Open Access Journals (Sweden)

    Andrea De Marcellis


    Full Text Available This paper reports on a pulsed coding technique based on optical Ultra-wideband (UWB modulation for wireless implantable biotelemetry systems allowing for high data rate link whilst enabling significant power reduction compared to the state-of-the-art. This optical data coding approach is suitable for emerging biomedical applications like transcutaneous neural wireless communication systems. The overall architecture implementing this optical modulation technique employs sub-nanosecond pulsed laser as the data transmitter and small sensitive area photodiode as the data receiver. Moreover, it includes coding and decoding digital systems, biasing and driving analogue circuits for laser pulse generation and photodiode signal conditioning. The complete system has been implemented on Field-Programmable Gate Array (FPGA and prototype Printed Circuit Board (PCB with discrete off-the-shelf components. By inserting a diffuser between the transmitter and the receiver to emulate skin/tissue, the system is capable to achieve a 128 Mbps data rate with a bit error rate less than 10−9 and an estimated total power consumption of about 5 mW corresponding to a power efficiency of 35.9 pJ/bit. These results could allow, for example, the transmission of an 800-channel neural recording interface sampled at 16 kHz with 10-bit resolution.

  15. Reaching white-light radiation source of ultrafast laser pulses with tunable peak power using nonlinear self-phase modulation in neon gas (United States)

    Tawfik, Walid


    A source of white-light radiation that generates few-cycle pulses with controlled peak power values has been developed. These ultrafast pulses have been observed by spectral broadening of 32 fs pulses through nonlinear self-phase modulation in a neon-filled hollow-fiber then compressed with a pair of chirped mirrors for dispersion compensation. The observed pulses reached transform-limited duration of 5.77 fs and their peak power values varied from 57 GW up to 104 GW at repetition rate of 1 kHz. Moreover, the applied method is used for a direct tuning of the peak power of the output pulses through varying the chirping of the input pulses at different neon pressures. The observed results may give an opportunity to control the ultrafast interaction dynamics on the femtosecond time scale and facilitate the regeneration of attosecond pulses.

  16. Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability.

    Directory of Open Access Journals (Sweden)

    Stephen J Beebe

    Full Text Available It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs, determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0-80 kV/cm and short (15 ns or long (150 ns rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE to determine mitochondria membrane potentials (ΔΨm. Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death.

  17. Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability. (United States)

    Beebe, Stephen J; Chen, Yeong-Jer; Sain, Nova M; Schoenbach, Karl H; Xiao, Shu


    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0-80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death.

  18. A novel scheme to generate 40-GHz CSRZ pulse trains using a 10-GHz dual-parallel Mach-Zehnder modulator

    Institute of Scientific and Technical Information of China (English)

    Yanfei Xing; Caiyun Lou


    A new technique to generate 40-GHz carrier-suppressed return-to-zero (CSRZ) optical pulse trains using only a 10-GHz dual-parallel Mach-Zehnder modulator (MZM) is presented and experimentally demonstrated. The spectrum of the generated CSRZ pulses is calculated by simulation and compared with conventional MZM-based RZ and CSRZ pulse trains. The experimental results demonstrate that CSRZ pulse trains are obtained, and that the carrier and the unwanted 20-GHz low-frequency component are suppressed by 25 dB. The technique can also be extended to 160-GHz CSRZ pulse generation when 40-GHz devices are employed.%@@ A new technique to generate 40-GHz carrier-suppressed return-to-zero (CSRZ) optical pulse trains using only a 10-GHz dual-parallel Mach-Zehnder modulator (MZM) is presented and experimentally demonstrated. The spectrum of the generated CSRZ pulses is calculated by simulation and compared with conventional MZM-based RZ and CSRZ pulse trains. The experimental results demonstrate that CSRZ pulse trains are obtained, and that the carrier and the unwanted 20-GHz low-frequency component are suppressed by 25 dB. The technique can also be extended to 160-GHz CSRZ pulse generation when 40-GHz devices are employed.

  19. Visualization and analysis of modulated pulses in magnetic resonance by joint time-frequency representations. (United States)

    Köcher, S S; Heydenreich, T; Glaser, S J


    We study the utility of joint time-frequency representations for the analysis of shaped or composite pulses for magnetic resonance. Such spectrograms are commonly used for the visualization of shaped laser pulses in optical spectroscopy. This intuitive representation provides additional insight compared to conventional approaches, which exclusively show either temporal or spectral information. We focus on the short-time Fourier transform, which provides not only amplitude but also phase information. The approach is illustrated for broadband inversion pulses, multiple quantum excitation and broadband heteronuclear decoupling. The physical interpretation and validity of the approach is discussed.

  20. The matching pursuit approach based on the modulated Gaussian pulse for efficient guided-wave damage inspection (United States)

    Hong, Jin-Chul; Sun, Kyung Ho; Kim, Yoon Young


    The success of the guided-wave damage inspection technology depends not only on the generation and measurement of desired waveforms but also on the signal processing of the measured waves, but less attention has been paid to the latter. This research aims to develop an efficient signal processing technique especially suitable for the current guided-wave technology. To achieve this objective, the use of a two-stage matching pursuit approach based on the Gabor dictionary is proposed. Instead of truncated sine pulses commonly used in waveguide inspection, Gabor pulses, the modulated Gaussian pulses, are chosen as the elastic energy carrier to facilitate the matching pursuit algorithm. To extract meaningful waves out of noisy signals, a two-stage matching pursuit strategy is developed, which consists of the following: rough approximations with a set of predetermined parameters characterizing the Gabor pulse, and fine adjustments of the parameters by optimization. The parameters estimated from measured longitudinal elastic waves can be then directly used to assess not only the location but also the size of a crack in a rod. For the estimation of the crack size, in particular, Love's theory is incorporated in the matching pursuit analysis. Several experiments were conducted to verify the validity of the proposed approach in damage assessment.

  1. High-power Microwave Pulse Compression of Klystrons by Phase-Modulation of High-Q Storage Cavities

    CERN Document Server

    Bossart, Rudolf; Mourier, J; Syratchev, I V; Tanner, L


    At the CERN linear electron accelerators LIL and CTF, the peak RF power from the 3GHz-klystrons was doubled by means of LIPS microwave pulse compressors. To produce constant RF power from the cavity-based pulse compressors, the klystrons were driven by a fast RF-phase modulation program. For the CLIC Test Facility CTF3, a new type of a Barrel Open Cavity (BOC) with a high quality factor Q0 has been developed. Contrary to LIPS with two resonant cavities, BOC operates with a single cavity supporting two orthogonal resonant modes TM 10,1,1 in the same cavity. For both LIPS and BOC storage cavities, it is important that the RF power reflected back to the klystron is minimal. This implies that the resonant frequencies, Q-factors and coupling factors of the two resonant modes of a pulse compressor are closely matched, and that the resonant frequencies are accurate to within a few KHz. The effects of small differences between the two orthogonal modes of the BOC cavity have been investigated. The dynamic pulse respon...

  2. Zero-Chirp Return-to-Zero Pulses Generation with Two Single-Driver z-Cut Mach-Zehnder Modulators

    Institute of Scientific and Technical Information of China (English)

    QIN Xi; CAO Ji-Hong; ZHANG Feng; WANG Mu-Guang; ZHANG Jian-Yong; JIAN Shui-Sheng


    A novel method is proposed to suppress the frequency chirp of single-driver z-cut Mach-Zehnder modulators.Theoretical analysis shows that by multiplying the output pulses of a half clock frequency driving single-driver z-cut modulator with the one delayed odd multiple bit duration,the frequency chirp can be removed entirely,and return-to-zero(RZ)pulses with duty cycles of about 25% and 56% are obtained.An experimental scheme is proposed to validate the proposed method.The experimental results show that perfect 40 GHz zero-chirp RZ pulses can be obtained by using this scheme.

  3. Experimental study of propagation characteristics of a pulse-modulated surface-wave argon plasma at atmospheric pressure (United States)

    Chen, Chuan-Jie; Li, Shou-Zhe; Wu, Yue; Li, Zhen-Ye; Zhang, Jialiang; Wang, Yong-Xing


    An atmospheric-pressure, pulse-modulated surface wave argon plasma is investigated with respect to its propagation of the ionization front. The time-resolved photographs about the advance of the ionization front are taken using a high speed camera. The ionization front velocity and its rise time when propagating along the discharge tube are measured with respect to a series of values of input power, duty ratio, and the pulse repetition frequency. The interpretations are given on the basis of the ionization and diffusion processes. And it is also found that the reduced electric field and memory effect from previous discharge impose the influence on both the ionization front velocity and its rise time strongly.

  4. Broadband atomic-layer MoSsub>2sub> optical modulators for ultrafast pulse generations in the visible range. (United States)

    Zhang, Yuxia; Yu, Haohai; Zhang, Rui; Zhao, Gang; Zhang, Huaijin; Chen, Yanxue; Mei, Liangmo; Tonelli, Mauro; Wang, Jiyang


    Visible lasers are a fascinating regime, and their significance is illustrated by the 2014 Noble prizes in physics and chemistry. With the development of blue laser diodes (LDs), the LD-pumped solid-state visible lasers become a burgeoning direction today. Constrained by the scarce visible optical modulators, the solid-state ultrafast visible lasers are rarely realized. Based on the bandgap structure and optoelectronic properties of atomic-layer MoSsub>2sub>, it can be proposed that MoSsub>2sub> has the potential as a visible optical modulator. Here, by originally revealing layer-dependent nonlinear absorption of the atomic-layer MoSsub>2sub> in the visible range, broadband atomic-layer MoSsub>2sub> optical modulators for the visible ultrafast pulse generation are developed and selected based on the proposed design criteria for novel two-dimensional (2D) optical modulators. By applying the selected MoSsub>2sub> optical modulators in the solid-state praseodymium lasers, broadband mode-locked ultrafast lasers from 522 to 639 nm are originally realized. We believe that this Letter should promote the development of visible ultrafast photonics and further applications of 2D optoelectronic materials.

  5. Pulse-modulated second harmonic imaging microscope quantitatively demonstrates marked increase of collagen in tumor after chemotherapy (United States)

    Raja, Anju M.; Xu, Shuoyu; Sun, Wanxin; Zhou, Jianbiao; Tai, Dean C. S.; Chen, Chien-Shing; Rajapakse, Jagath C.; So, Peter T. C.; Yu, Hanry


    Pulse-modulated second harmonic imaging microscopes (PM-SHIMs) exhibit improved signal-to-noise ratio (SNR) over conventional SHIMs on sensitive imaging and quantification of weak collagen signals inside tissues. We quantify the spatial distribution of sparse collagen inside a xenograft model of human acute myeloid leukemia (AML) tumor specimens treated with a new drug against receptor tyrosine kinase (ABT-869), and observe a significant increase in collagen area percentage, collagen fiber length, fiber width, and fiber number after chemotherapy. This finding reveals new insights into tumor responses to chemotherapy and suggests caution in developing new drugs and therapeutic regimens against cancers.

  6. 软开关脉宽调制变频技术%Soft-Switching Technique in Pulse Width Modulation Inverters

    Institute of Scientific and Technical Information of China (English)

    陈国呈; 谷口胜则; 中村博人


    In this paper, a new soft-switching inverter using a minimum number of devices, and a new PWM (pulse-width modulation)method suitable for 3-phase soft-switching inverters are proposed. The circuit is used as an interface between the DC supply and the conventional voltage source of a PWM inverter. The number of switching operations can be reduced by using the PWM strategy. Increasing the amplitude of the fundamental component contained in the output waveform results in an effective utilization of the DC supply, a reduction of nominated capacity of the inverter elements, and a reduction of switching loss in the switching devices.

  7. Pulse-Density Modulation with an Ensemble of Single-Electron Circuits Employing Neuronal Heterogeneity to Achieve High Temporal Resolution (United States)

    Kikombo, Andrew Kilinga; Asai, Tetsuya; Amemiya, Yoshihito

    We investigated the implications of static noises in a pulse-density modulator based on Vestibulo-ocular Reflex model. We constructed a simple neuromorphic circuit consisting of an ensemble of single-electron devices and confirmed that static noises (heterogeneity in circuit parameters) introduced into the network indeed played an important role in improving the fidelity with which neurons could encode signals whose input frequencies are higher than the intrinsic response frequencies of single neurons. Through Monte-Carlo based computer simulations, we demonstrated that the heterogeneous network could corectly encode signals with input frequencies as high as 1 GHz, twice the range for single (or a network of homogeneous) neurons.

  8. Swarming Speed Control for DC Permanent Magnet Motor Drive via Pulse Width Modulation Technique and DC/DC Converter

    Directory of Open Access Journals (Sweden)

    A.S. Oshaba


    Full Text Available This study presents an approach for the speed control of a permanent magnet DC motor drive via Pulse Width Modulation (PWM technique and a DC/DC converter. The Particle Swarm Optimization (PSO technique is used to minimize a time domain objective function and obtain the optimal controller parameters. The performance of the proposed technique has been evaluated using various types of disturbances including load torque variations. Simulation results illustrate clearly the robustness of the controller and validity of the design technique for controlling the speed of permanent magnet motors.

  9. Application of chaotic pulse width modulation control for suppressing electromagnetic interference in a half-bridge converter

    Directory of Open Access Journals (Sweden)

    Yuhong Song


    Full Text Available It was proposed in the former research that chaos control can be used to suppress electromagnetic interference (EMI in DC–DC converters. Analysis on a half-bridge converter is detailed in this study. Here, the practical example of the power supply of personal computers is given to show that, with an external chaotic signal to a pulse width modulation control circuit, the proposed approach can reduce EMI by reducing the amplitudes of power signals such as transformer current and output inductor currents at multiples of fundamental frequency.

  10. [Pulse-modulated Electromagnetic Radiation of Extremely High Frequencies Protects Cellular DNA against Damaging Effect of Physico-Chemical Factors in vitro]. (United States)

    Gapeyev, A B; Lukyanova, N A


    Using a comet assay technique, we investigated protective effects of. extremely high frequency electromagnetic radiation in combination with the damaging effect of X-ray irradiation, the effect of damaging agents hydrogen peroxide and methyl methanesulfonate on DNA in mouse whole blood leukocytes. It was shown that the preliminary exposure of the cells to low intensity pulse-modulated electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20-min exposure, modulation frequencies of 1 and 16 Hz) caused protective effects decreasing the DNA damage by 20-45%. The efficacy of pulse-modulated electromagnetic radiation depended on the type of genotoxic agent and increased in a row methyl methanesulfonate--X-rays--hydrogen peroxide. Continuous electromagnetic radiation was ineffective. The mechanisms of protective effects may be connected with an induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated electromagnetic radiation.

  11. Paralleled Phase Shifted Carrier Pulse Width Modulation (PSCPWM) Schemes - A Fundamental Analysis

    DEFF Research Database (Denmark)

    Christensen, Frank Schwartz; Frederiksen, Thomas Mansachs; Nielsen, Karsten


    The paper presents a fundamental analysis of modulation schemes and their spectral aspects for a range of powerstage topologies, from a simple 2-level switching leg to more complex multi-level switching topologies. A family of modulation schemes are introduced and the double Fourier series based...

  12. Noise signals and carrier modulation arising in electrical cables during nuclear pulse irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Both, E.; Bruemmer, H. P.; Lascaro, C. P.; Newberg, J.; Schlosser, W.


    Electrical noise signals generated in coaxial and other cables by pulsed nuclear radiation were measured as a function of applied voltage and exposure history. In consecutive exposures the signal magnitude and polarity was found to be strongly affected by training and memory effects. Unexpectedly large signals in the cable shield were identified as the cause for oscillatory signals in the center conductor and for the occurrence of parasitic leakage currents in nearby conductors. A r-f signal transmitted through RG62 A/U cable undergoes a temporary attenuation during the radiation pulse while it passes through RG59 B/U without measurable degradation. Definite rules are given for minimizing cable noise signals in nuclear pulse radiation measurements. (auth)

  13. Enhanced pulse compression induced by the interaction between the third-order dispersion and the cross-phase modulation in birefringent fibres

    Institute of Scientific and Technical Information of China (English)

    徐文成; 陈伟成; 张书敏; 罗爱平; 刘颂豪


    In this paper, we report on the enhanced pulse compression due to the interaction between the positive third-order dispersion (TOD) and the nonlinear effect (cross-phase modulation effect) in birefringent fibres. Polarization soliton compression along the slow axis can be enhanced in a birefringent fibre with positive third-order dispersion. while the polarization soliton compression along the fast axis can be enhanced in the fibre with negative third-order dispersion.Moreover, there is an optimal third-order dispersion parameter for obtaining the optimal pulse compression.Redshifted initial chirp is helpful to the pulse compression, while blueshifted chirp is detrimental to the pulse compression. There is also an optimal chirp parameter to reach maximum pulse compression. The optimal pulse compression for TOD parameters under different N-order solitons is also found.

  14. Resolution enhancement using pulse width modulation in digital micromirror device-based point-array scanning pattern exposure (United States)

    Kuo, Hung-Fei; Huang, Yi-Jun


    Digital-mask lithography systems, with a digital micromirror device (DMD) as their central piece, have been widely used for defining patterns on printed circuit board (PCB). This study designed optical module parameters for point-array projection lithography based on field tracing technique to improve the quality of the aerial image on the exposure plane. In the realized optical module for the point-array projection lithography, a DMD was used as the dynamic digital-mask, and a 405-nm-wavelength laser was used to illuminate the DMD. The laser was then focused through the micro-lens array in the optical module to form a point array and was projected onto a dynamic scanning stage. By calculating the beam-overlapping rate, stage velocity, spot diameter, and DMD frame rate and programming them into the stage- and DMD-synchronized controller, the point array formed line patterns on the photoresist. Furthermore, using pulse width modulation (PWM) technique to operate the activation periods of the DMD mirrors effectively controlled the exposure and achieved a feature linewidth of less than 10 μm.

  15. Realization of ICA for Pulsed Neural Networks Based on Delta-Sigma Modulation and Their Hardware Implementation (United States)

    Hotta, Hirohisa; Murahashi, Yoshimitsu; Doki, Shinji; Okuma, Shigeru

    In order to ride on the strength of paralell operation a feature of neural network, it is preferable that all neuron is implemented on hardware. Formerly, we combine Neural Network and ΔΣ modulation, which is a method of converting to 1bit pulsed signal. Then we succeeded to configurate “a Pulsed Neural Network based on ΔΣ modulation(DSM-PNN)", which keep the circuit scale as same as to operate precisely. In last paper, we proposed hardware implementation methods of DSM-PNN with GHA learning rule and show its availability in linear operation. However, since neural networks are characterized by nonlinear map, signals needs to be treated with sufficient precision, also in nonlinear operation. In this paper, in order to shows that the 1-bit signal processing by DSM-PNN can be available, even when it includes nonlinear operation, we proposed the technique of realizing algorithm of ICA including nonlinear operation in DSM-PNN and confirm the performance of it.

  16. Thermal NDE of thick GRP panels by means of a Pulse Modulated Lock-In Thermography technique

    Directory of Open Access Journals (Sweden)

    Pitarresi G.


    Full Text Available This work describes the development and implementation of an infrared thermal NDE procedure for the evaluation of subsurface defects. The approach is called Pulse-Modulated Lock-In Thermography (PMLT and is based on the analysis of the frequency response of the measured temperature and comparison with the carrier frequencies launched by the external heat delivering source. The heat deposited on the object is in particular modulated as a train of square waves. This is easily achieved by periodically shuttering the heat source. The temperature is then sampled throughout the deposition of a few square waves. A lock-in algorithm is then implemented able to selectively filter out components at the main carrier frequencies of the heating signal and evaluate the phase information. Defected areas at different depths can be marked based on phase contrast, by using data from a single experiment as in Pulsed-Phase Thermography. An artificially defected thick GRP panel typical of naval monolithic hull structures, is investigated to validate the proposed technique. Experimental data have confirmed the potentials of PMLT as a flexible IR NDT approach, and its ability to be implemented by means of low cost heating and IR equipments.

  17. Automatic Frequency Identification under Sample Loss in Sinusoidal Pulse Width Modulation Signals Using an Iterative Autocorrelation Algorithm

    Directory of Open Access Journals (Sweden)

    Alejandro Said


    Full Text Available In this work, we present a simple algorithm to calculate automatically the Fourier spectrum of a Sinusoidal Pulse Width Modulation Signal (SPWM. Modulated voltage signals of this kind are used in industry by speed drives to vary the speed of alternating current motors while maintaining a smooth torque. Nevertheless, the SPWM technique produces undesired harmonics, which yield stator heating and power losses. By monitoring these signals without human interaction, it is possible to identify the harmonic content of SPWM signals in a fast and continuous manner. The algorithm is based in the autocorrelation function, commonly used in radar and voice signal processing. Taking advantage of the symmetry properties of the autocorrelation, the algorithm is capable of estimating half of the period of the fundamental frequency; thus, allowing one to estimate the necessary number of samples to produce an accurate Fourier spectrum. To deal with the loss of samples, i.e., the scan backlog, the algorithm iteratively acquires and trims the discrete sequence of samples until the required number of samples reaches a stable value. The simulation shows that the algorithm is not affected by either the magnitude of the switching pulses or the acquisition noise.

  18. Design and Simulation of Control Technique for Permanent Magnet Synchronous Motor Using Space Vector Pulse Width Modulation (United States)

    Khan, Mansoor; Yong, Wang; Mustafa, Ehtasham


    After the rapid advancement in the field of power electronics devices and drives for last few decades, there are different kinds of Pulse Width Modulation techniques which have been brought to the market. The applications ranging from industrial appliances to military equipment including the home appliances. The vey common application for the PWM is three phase voltage source inverter, which is used to convert DC to AC in the homes to supply the power to the house in case electricity failure, usually named as Un-interrupted Power Supply. In this paper Space Vector Pulse Width Modulation techniques is discussed and analysed under the control technique named as Field Oriented Control. The working and implementation of this technique has been studied by implementing on the three phase bridge inverter. The technique is used to control the Permanente Magnet Synchronous Motor. The drive system is successfully implemented in MATLAB/Simulink using the mathematical equation and algorithm to achieve the satisfactory results. PI type of controller is used to tuned ers of the motothe parametr i.e. torque and current.

  19. Shaping frequency correlations of ultrafast pulse-pumped modulational instability in gas-filled hollow-core PCF

    CERN Document Server

    Finger, Martin A; Russell, Philip St J; Chekhova, Maria V


    We vary the time-frequency mode structure of ultrafast pulse-pumped modulational instability (MI) in an argon-filled hollow-core kagom\\'e-style PCF by adjusting the pressure, pump pulse chirp, fiber length and parametric gain. Compared to solid-core systems, the pressure dependent dispersion landscape brings increased flexibility to the tailoring of frequency correlations. The resulting mode content is characterized by measuring the multimode second-order correlation function g(2) and by directly observing frequency correlations in single-shot MI spectra. We show that, from such measurements, the shapes and weights of time-frequency Schmidt (TFS) modes can be extracted and that the number of modes directly influences the shot-to-shot pulse-energy and spectral-shape fluctuations in MI. Using this approach we are able to change the number of TFS modes from 1.3 (g(2) = 1.75) to 4 (g(2) = 1.25) using only a single fiber.

  20. Extending the high-order harmonic generation cutoff by means of self-phase-modulated chirped pulses (United States)

    Neyra, E.; Videla, F.; Pérez-Hernández, J. A.; Ciappina, M. F.; Roso, L.; Torchia, G. A.


    In this letter we propose a complementary approach to extend the cutoff in high-order harmonic generation (HHG) spectra beyond the well established limits. Inspired by techniques normally used in the compression of ultrashort pulses and supercontinuum generation, we show this extension can be achieved by means of a nonlinear phenomenon known as self-phase-modulation (SPM). We demonstrated that relatively long optical pulses, around 100 fs full-width half maximum (FWHM), non linearly chirped by SPM, are able to produce a considerable extension in the HHG cutoff. We have also shown it is possible control this extension by setting the length of the nonlinear medium. Our study was supported by the numerical integration of the time-dependent Schrödinger equation joint with a complete classical analysis of the electron dynamic. Our approach can be considered as an alternative to the utilization of optical parametric amplification (OPA) and it can be easily implemented in usual facilities with femtosecond laser systems. This technique also preserves the harmonic yield in the zone of the plateau delimited by I p   +  3.17Up law, even when the driven pulses contain larger wavelength components.

  1. High-temperature potentiometry: modulated response of ion-selective electrodes during heat pulses. (United States)

    Chumbimuni-Torres, Karin Y; Thammakhet, Chongdee; Galik, Michal; Calvo-Marzal, Percy; Wu, Jie; Bakker, Eric; Flechsig, Gerd-Uwe; Wang, Joseph


    The concept of locally heated polymeric membrane potentiometric sensors is introduced here for the first time. This is accomplished in an all solid state sensor configuration, utilizing poly(3-octylthiophene) as the intermediate layer between the ion-selective membrane and underlying substrate that integrates the heating circuitry. Temperature pulse potentiometry (TPP) gives convenient peak-shaped analytical signals and affords an additional dimension with these sensors. Numerous advances are envisioned that will benefit the field. The heating step is shown to give an increase in the slope of the copper-selective electrode from 31 to 43 mV per 10-fold activity change, with a reproducibility of the heated potential pulses of 1% at 10 microM copper levels and a potential drift of 0.2 mV/h. Importantly, the magnitude of the potential pulse upon heating the electrode changes as a function of the copper activity, suggesting an attractive way for differential measurement of these devices. The heat pulse is also shown to decrease the detection limit by half an order of magnitude.

  2. Tandem-pulsed acousto-optics: an analytical framework of modulated high-contrast speckle patterns

    NARCIS (Netherlands)

    Resink, S.G.; Steenbergen, W.


    Recently we presented acousto-optic (AO) probing of scattering media using addition or subtraction of speckle patterns due to tandem nanosecond pulses. Here we present a theoretical framework for ideal (polarized, noise-free) speckle patterns with unity contrast that links ultrasound-induced optical

  3. A theoretical analysis for gigabit/second pulse code modulation of semiconductor lasers

    DEFF Research Database (Denmark)

    Danielsen, Magnus


    Investigation of the rate equations of a semiconductor laser suggests that bit rates of 3-4 Gbit/s can be achieved. Delay, ringing transients, and charge-storage effects can be removed by adjusting the dc-bias current and the peak and width of the current pulse to values prescribed by simple...

  4. Urinary (1)H Nuclear Magnetic Resonance Metabolomic Fingerprinting Reveals Biomarkers of Pulse Consumption Related to Energy-Metabolism Modulation in a Subcohort from the PREDIMED study. (United States)

    Madrid-Gambin, Francisco; Llorach, Rafael; Vázquez-Fresno, Rosa; Urpi-Sarda, Mireia; Almanza-Aguilera, Enrique; Garcia-Aloy, Mar; Estruch, Ramon; Corella, Dolores; Andres-Lacueva, Cristina


    Little is known about the metabolome fingerprint of pulse consumption. The study of robust and accurate biomarkers for pulse dietary assessment has great value for nutritional epidemiology regarding health benefits and their mechanisms. To characterize the fingerprinting of dietary pulses (chickpeas, lentils, and beans), spot urine samples from a subcohort from the PREDIMED study were stratified using a validated food frequency questionnaire. Urine samples of nonpulse consumers (≤4 g/day of pulse intake) and habitual pulse consumers (≥25 g/day of pulse intake) were analyzed using a (1)H nuclear magnetic resonance (NMR) metabolomics approach combined with multi- and univariate data analysis. Pulse consumption showed differences through 16 metabolites coming from (i) choline metabolism, (ii) protein-related compounds, and (iii) energy metabolism (including lower urinary glucose). Stepwise logistic regression analysis was applied to design a combined model of pulse exposure, which resulted in glutamine, dimethylamine, and 3-methylhistidine. This model was evaluated by a receiver operating characteristic curve (AUC > 90% in both training and validation sets). The application of NMR-based metabolomics to reported pulse exposure highlighted new candidates for biomarkers of pulse consumption and the impact on energy metabolism, generating new hypotheses on energy modulation. Further intervention studies will confirm these findings.

  5. Modulation of the characteristics of complex holographic gratings under an additional laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Kucherenko, M G; Rusinov, A P; Fedorov, D S [Orenburg State University, Orenburg (Russian Federation)


    Recording of elementary holographic gratings in polymer films and solutions coloured with organic dyes has been investigated. Possible mechanisms of modifying a recorded grating by an additional laser pulse are considered. A theoretical model is proposed to describe the processes of recording/relaxation and modification of gratings recorded on triplet states of photochrome molecules; the predictions of this model are found to be in good agreement with the experimental data. (holography)

  6. Spectrum of the nonstationary electromyographic signal modelled with integral pulse frequency modulation and its application to estimating neural drive information. (United States)

    Jiang, Ning; Parker, Philip A; Englehart, Kevin B


    The spectrum of nonstationary electromyographic signal (EMG) is investigated, from which the error for neural drive information estimation from nonstationary EMG is studied in terms of signal-to-noise ratio (SNR), in analytical, numerical simulation, and experimental work. The signal refers to the neural drive information embedded within the nonstationary EMG, and noise refers to other portions of EMG that induce error in the estimation. The analytical expressions for the SNRs of force-modulated EMG with both single and multiple motor units (MU) are derived based on a sinusoidal integral pulse frequency modulation (IPFM) model. It is shown that the previously developed SNR expressions for stationary (unmodulated) EMG are special cases of the formulas presented here. The SNR results obtained from numerical simulated EMG agree very well with the analytical result. Results from nonstationary (modulated) surface EMG obtained from seven subjects also match the analytical and simulation results reasonably well. The results obtained from this work establish an analytical framework in studying and estimating the neural drive information contained in the EMG in the context of anisotonic and isometric contractions. Through the analytical study, the effects of different physiological parameters are identified, thus providing theoretical guidelines for developing advanced signal processing methods for nonstationary EMG in applications such as prosthesis control.

  7. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M.; Obara, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others


    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  8. Novel Scheme for Multiple Channel Pulse Generation from a Single Laser Diodefor 10 Gbit/s Based WDM Systems Using RZ Modulation Format

    Institute of Scientific and Technical Information of China (English)

    H.; C.; Bao; Y.; J.; Wen; H.; F.; Liu


    A new technique for the generation of multi-channel optical pulse from a single laser diode (LD) is presented in this paper. 35 channel pulse source with 6.5 GHz repetition rate per channel and 32.5 GHz channel spacing was generated from a subharmonically hybrid mode-locked two section monolithic laser with enhanced amplitude modulation. The obtained pulse source exhibits high extinction ratio (>10 dB) and low level of root mean square (RMS) phase noise (<0.11 rad) over all channels from 1556 nm to 1565...

  9. Novel Scheme for Multiple Channel Pulse Generation from a Single Laser Diodefor 10 Gbit/s Based WDM Systems Using RZ Modulation Format

    Institute of Scientific and Technical Information of China (English)

    H. C. Bao; Y. J. Wen; H. F. Liu


    A new technique for the generation of multi-channel optical pulse from a single laser diode (LD) is presented in this paper. 35 channel pulse source with 6.5 GHz repetition rate per channel and 32.5 GHz channel spacing was generated from a subharmonically hybrid mode-locked two section monolithic laser with enhanced amplitude modulation. The obtained pulse source exhibits high extinction ratio (>10 dB) and low level of root mean square (RMS)phase noise (<0.11 rad) over all channels from 1556 nm to 1565 nm.

  10. Passive decoy-state quantum key distribution using weak coherent pulses with modulator attenuation

    Institute of Scientific and Technical Information of China (English)

    李源; 鲍皖苏; 李宏伟; 周淳; 汪洋


    Passive decoy-state quantum key distribution is more desirable than the active one in some scenarios. It is also affected by the imperfections of the devices. In this paper, the influence of modulator attenuation on the passive decoy-state method is considered. We introduce and analyze the unbalanced Mach–Zehnder interferometer, briefly, and combining with the virtual source and imaginary unitary transformation, we characterize the passive decoy-state method using a weak coherent photon source with modulator attenuation. According to the attenuation parameterδ, the pass efficiencies are given. Then, the key generation rate can be acquired. From numerical simulations, it can be seen that modulator attenuation has a non-negligible influence on the performance of passive-state QKD protocol. Based on the research, the analysis method of virtual source and imaginary unitary transformation are preferred in analyzing passive decoy state protocol, and the passive decoy-state method is better than the active one and is close to the active vacuum+weak decoy state under the condition of having the same modulator attenuation.

  11. Passive decoy-state quantum key distribution using weak coherent pulses with modulator attenuation (United States)

    Li, Yuan; Bao, Wan-Su; Li, Hong-Wei; Zhou, Chun; Wang, Yang


    Passive decoy-state quantum key distribution is more desirable than the active one in some scenarios. It is also affected by the imperfections of the devices. In this paper, the influence of modulator attenuation on the passive decoy-state method is considered. We introduce and analyze the unbalanced Mach-Zehnder interferometer, briefly, and combining with the virtual source and imaginary unitary transformation, we characterize the passive decoy-state method using a weak coherent photon source with modulator attenuation. According to the attenuation parameter δ, the pass efficiencies are given. Then, the key generation rate can be acquired. From numerical simulations, it can be seen that modulator attenuation has a nonnegligible influence on the performance of passive-state QKD protocol. Based on the research, the analysis method of virtual source and imaginary unitary transformation are preferred in analyzing passive decoy state protocol, and the passive decoy-state method is better than the active one and is close to the active vacuum + weak decoy state under the condition of having the same modulator attenuation. Project supported by the National Natural Science Foundation of China (Grant No. 11304397).

  12. Modular space-vector pulse-width modulation for nine-switch converters

    DEFF Research Database (Denmark)

    Dehghan, Seyed Mohammad; Amiri, Arash; Mohamadian, Mustafa


    Recently, nine-switch inverter (NSI) has been presented as a dual-output inverter with constant frequency (CF) or different frequency (DF) operation modes. However, the CF mode is more interesting because of its lower switching device rating. This study proposes a new space-vector modulation (SVM...

  13. Pulse-Width-Modulation of Neutral-Point-Clamped Sparse Matrix Converter

    DEFF Research Database (Denmark)

    Loh, P.C.; Blaabjerg, Frede; Gao, F.


    literature. Addressing the afore-described issues, this paper focuses on the operational mode analysis of a three-level sparse matrix converter implemented using a neutral-point-clamped inversion stage, and  the design of a number of PWM and modulation ratio compensation schemes for controlling the converter...

  14. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system. (United States)

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro


    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.


    Directory of Open Access Journals (Sweden)

    M. Shankar


    Full Text Available This study proposes a novel control design of Unified Power Quality Conditioner (UPQC. This design is enabled by a control framework that employs Genetic Algorithm which determines optimum points and angle for filtering and Space Vector Pulse Width Modulation Technique (SVPWM to offer significant flexibility to optimize waveform. In addition the same framework integrates the major functions of the UPQC with ease to unify the treatments of several power quality problems including system harmonics in the supply voltage and load current, sags/swells in the supply voltage, variations in the load demands and poor power factor at the supply side. Simulation studies on a three phase power distribution system are used to verify the performance and implementation of this control design with the UPQC.

  16. Impact Of The Pulse Width Modulation On The Temperature Distribution In The Armature Of A Solenoid Valve

    Directory of Open Access Journals (Sweden)

    Goraj R.


    Full Text Available In order to estimate the inductive power set in the armature of the high-speed solenoid valve (HSV during the open loop control (OLC using pulse width modulation (PWM an analytical explicit formula has been derived. The simplifications taken both in the geometry and in the physical behavior of the HSV were described. The inductive power was calculated for different boundary conditions and shown as a function of the frequency of the coil current. The power set in the armature was used as an input to the thermal calculation. The thermal calculation had an objective to estimate the time dependent temperature distribution in the armature of the HSV. All the derivation steps were presented and the influence of different boundary conditions was shown and discussed. The increase of the temperature during the heating with inductive power has been evaluated both in the core and on the side surface of the HSV.

  17. Impact Of The Pulse Width Modulation On The Temperature Distribution In The Armature Of A Solenoid Valve (United States)

    Goraj, R.


    In order to estimate the inductive power set in the armature of the high-speed solenoid valve (HSV) during the open loop control (OLC) using pulse width modulation (PWM) an analytical explicit formula has been derived. The simplifications taken both in the geometry and in the physical behavior of the HSV were described. The inductive power was calculated for different boundary conditions and shown as a function of the frequency of the coil current. The power set in the armature was used as an input to the thermal calculation. The thermal calculation had an objective to estimate the time dependent temperature distribution in the armature of the HSV. All the derivation steps were presented and the influence of different boundary conditions was shown and discussed. The increase of the temperature during the heating with inductive power has been evaluated both in the core and on the side surface of the HSV.

  18. One-Dimensional Fluid Model of Pulse Modulated Radio-Frequency SiH4/N2/O2 Discharge

    Institute of Scientific and Technical Information of China (English)

    王燕; 刘相梅; 宋远红; 王友年


    Driven by pulse modulated radio-frequency plasma in capacitively coupled discharge are studied by source, the behavior of SiH4/N2/02 using a one-dimensional fluid model. Totally, 48 different species (electrons, ions, neutrals, radicals and excited species) are involved in this simulation. Time evolution of the particle densities and electron temperature with different duty cycles are obtained, as well as the electronegativity nsiH-3 /ne of the main negative ion (Sill3 ). The results show that, by reducing the duty cycle, higher electron temperature and particle density can be achieved for the same average dissipated power, and the ion energy can also be effectively reduced, which will offer evident improvement in plasma deposition processes compared with the case of continuous wave discharge.

  19. A simplified method for estimation of iron loss in wound toroidal cores energised by pulse width modulated voltage sources (United States)

    Tutkun, Nedim; Moses, Anthony J.


    Recently the strip wound toroidal cores have increasingly been used in switching mode and uninterruptible power supplies for a wide range of industrial applications. Therefore, the prediction of iron loss increase in such magnetic cores energised by non-sinusoidal voltage excitation is important step in the design of electromagnetic devices. In this investigation, a loss increase was estimated by determination of unknown constants in a previously developed loss separation model using genetic algorithms. Also the skin effect of flux density was taken into account for estimation of power loss under pulse width modulated voltage sources. The results obtained are in good agreement with the measured results in wound toroids at various flux densities.

  20. Time-Domain Quaternary-Weighted Pulse Width Modulation Driving Method for Active Matrix Organic Light-Emitting Diode Displays (United States)

    Park, Hyun-Sang; Kuk, Seung-Hee; Han, Min-Koo


    We proposed a new digital driving method and its pixel structure for active matrix organic light-emitting diode (AMOLED) displays employing time-domain quaternary-weighted pulse width modulation. In the new digital driving method, the luminance of AMOLED displays is accurately determined by averaging photon flux to the desired level over a frame period. The proposed pixel was verified by spice simulation and the output linearity between the grayscale and the OLED current was successfully achieved. In the proposed digital driving pixel, the timing margin was increased and the effect on luminance of AMOLED displays by the troublesome variation of the thin-film transistors (TFTs) was suppressed without additional compensation schemes.

  1. A 13.56-mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission. (United States)

    Kiani, Mehdi; Ghovanloo, Maysam


    A fully-integrated near-field wireless transceiver has been presented for simultaneous data and power transmission across inductive links, which operates based on pulse delay modulation (PDM) technique. PDM is a low-power carrier-less modulation scheme that offers wide bandwidth along with robustness against strong power carrier interference, which makes it suitable for implantable neuroprosthetic devices, such as retinal implants. To transmit each bit, a pattern of narrow pulses are generated at the same frequency of the power carrier across the transmitter (Tx) data coil with specific time delays to initiate decaying ringing across the tuned receiver (Rx) data coil. This ringing shifts the zero-crossing times of the undesired power carrier interference on the Rx data coil, resulting in a phase shift between the signals across Rx power and data coils, from which the data bit stream can be recovered. A PDM transceiver prototype was fabricated in a 0.35- μm standard CMOS process, occupying 1.6 mm(2). The transceiver achieved a measured 13.56 Mbps data rate with a raw bit error rate (BER) of 4.3×10(-7) at 10 mm distance between figure-8 data coils, despite a signal-to-interference ratio (SIR) of -18.5 dB across the Rx data coil. At the same time, a class-D power amplifier, operating at 13.56 MHz, delivered 42 mW of regulated power across a separate pair of high-Q power coils, aligned with the data coils. The PDM data Tx and Rx power consumptions were 960 pJ/bit and 162 pJ/bit, respectively, at 1.8 V supply voltage.

  2. Receiver Architecture for 12.5 Gb/s 16-ary Pulse Position Modulation (PPM) Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Gagliardi, R M; Hernandez, V J; Bennett, C V


    PPM is a signaling scheme that enables the transmission of multiple bits per symbol [1]. It has found favor in the regime of free space optical communications ('FSO' or 'Lasercom'); however, PPM has yet to be widely applied to fiber optic-based communications. Its limitation in fiber results from the exceedingly high bandwidth requirements needed to electronically process a directly detected pulse, especially as the symbol rate increases and the pulse width correspondingly decreases. As a solution, we introduced the concept of a virtual quadrant receiver for receiving 1.25 Gb/s 4-ary PPM, where photonic processing reduced the number of required electronic components [2]. In this paper, we extend these photonic process techniques to a 16-ary, 12.5 Gb/s (10 Gb/s plus 8B/10B line coding) PPM communications system for fiber optic avionics, wherein much of the receiver processing is enabled by techniques based on planar lightwave circuits (PLCs). The architecture is applicable to higher input data rates and M-ary PPM. In the following, we present the PPM encoding and decoding architectures and numerically simulated results.

  3. Self-phase modulation of an ultra-short laser pulse from laser breakdown plasma (United States)

    Zhang, Yongsheng; Yan, Lixin; Zheng, Guoxin; Wang, Lijun; Liu, Jingru


    The detailed dynamic of an atom in a laser field with strength comparable to the atomic electric field is rich in physics and potential applications. Laser-breakdown plasma-induced spectral shifting in supersonic rare gases jet has been investigated with a sub-picosecond KrF excimer laser focused to peak intensity in the region of 10 15W/cm2. A 1.4mm diameter gas jet target was used in the experiment to minimize the refraction of the laser beam and thus a well-defined focused region was obtained. The typical quasi-periodic spectral shifting structures for helium and argon have been measured at various gas densities. For gas densities below 1x10 20cm -3,both spectral red-shift and blue-shift were observed, indicating the gas is partially ionized, in contrast to the predominantly blue shifted as the gas densities grows high and fully ionized. Compared to the other ultra-short pulse measurement methods, qualitative information about the pulse can be deduced by observing their spectrum after interacting with rare gas.

  4. Phase-dependent spectral control of pulsed modulation instability via dichromatic seed fields

    CERN Document Server

    Brinkmann, Maximilian; Fallnich, Carsten


    We investigated experimentally and numerically the spectral control of modulation instability (MI) dynamics via the initial phase relation of two weak seed fields. Specifically, we show how second-order modulation instability dynamics exhibit phase-dependent anti-correlated growth rates of adjacent spectral sidebands. This effect enables a novel method to control MI-based frequency conversion: in contrast to first-order MI dynamics, which exhibit a uniform phase dependence of the growth rates, second-order MI dynamics allow to redistribute the spectral energy, leading to an asymmetric spectrum. Therefore, the presented findings should be very attractive to different applications, such as phase-sensitive amplification or supercontinuum generation initiated by MI.

  5. Fabrication of High-Voltage Bridge Rectifier Modules for Pulse Power Applications (United States)


    ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: RDRL-SED-P 2800 Powder Mill Road Adelphi, MD 20783-1138 8. PERFORMING...3 Table 2 Version 3 module encapsulants & adhesives ..................................................................15 1 1. Introduction...substrate to the heat sink. A set of holes was drilled through the heat sink to allow the resulting pocket to be partially filled with encapsulant for

  6. Spectral Shearing of Quantum Light Pulses by Electro-Optic Phase Modulation. (United States)

    Wright, Laura J; Karpiński, Michał; Söller, Christoph; Smith, Brian J


    Frequency conversion of nonclassical light enables robust encoding of quantum information based upon spectral multiplexing that is particularly well-suited to integrated-optics platforms. Here we present an intrinsically deterministic linear-optics approach to spectral shearing of quantum light pulses and show it preserves the wave-packet coherence and quantum nature of light. The technique is based upon an electro-optic Doppler shift to implement frequency shear of heralded single-photon wave packets by ±200  GHz, which can be scaled to an arbitrary shift. These results demonstrate a reconfigurable method to controlling the spectral-temporal mode structure of quantum light that could achieve unitary operation.

  7. Intrinsic modulation of pulse-coupled integrate-and-fire neurons (United States)

    Coombes, S.; Lord, G. J.


    Intrinsic neuromodulation is observed in sensory and neuromuscular circuits and in biological central pattern generators. We model a simple neuronal circuit with a system of two pulse-coupled integrate-and-fire neurons and explore the parameter regimes for periodic firing behavior. The inclusion of biologically realistic features shows that the speed and onset of neuronal response plays a crucial role in determining the firing phase for periodic rhythms. We explore the neurophysiological function of distributed delays arising from both the synaptic transmission process and dendritic structure as well as discrete delays associated with axonal communication delays. Bifurcation and stability diagrams are constructed with a mixture of simple analysis, numerical continuation and the Kuramoto phase-reduction technique. Moreover, we show that, for asynchronous behavior, the strength of electrical synapses can control the firing rate of the system.

  8. Calculus of the Power Spectral Density of Ultra Wide Band Pulse Position Modulation Signals Coded with Totally Flipped Code

    Directory of Open Access Journals (Sweden)

    DURNEA, T. N.


    Full Text Available UWB-PPM systems were noted to have a power spectral density (p.s.d. consisting of a continuous portion and a line spectrum, which is composed of energy components placed at discrete frequencies. These components are the major source of interference to narrowband systems operating in the same frequency interval and deny harmless coexistence of UWB-PPM and narrowband systems. A new code denoted as Totally Flipped Code (TFC is applied to them in order to eliminate these discrete spectral components. The coded signal transports the information inside pulse position and will have the amplitude coded to generate a continuous p.s.d. We have designed the code and calculated the power spectral density of the coded signals. The power spectrum has no discrete components and its envelope is largely flat inside the bandwidth with a maximum at its center and a null at D.C. These characteristics make this code suited for implementation in the UWB systems based on PPM-type modulation as it assures a continuous spectrum and keeps PPM modulation performances.

  9. Functional design and implementation with on-line programmable technology in optical fiber communication pulse code modulation test system (United States)

    Xu, Yuan; Ding, Huan; Gao, Youtang


    In order to complete the functional design in the fiber optical communication pulse code modulation test system, taking advantage of CPLD / FPGA and SOPC technology, software solutions used to design system hardware features and control functions, thereby the whole system could attain optimisation in the logic control as well as encoding and decoding functional designs on the motherboard, enabling this system fulfill the capacities varying from simple digital simulation transmission modulate to the high speed fiber optical communication network information encoding and decoding functions. Simultaneously the application of logarithmic pressure companding technique, PCM encoding and decoding system to improve the small signal quantizing SNR(Signal-to-Noise Ratio), TP3067 adopting A rate thirteen broken lines to carry on signal pressure companding. When the signal at a certain stage, the quantizing SNR is invariable(as signal receives uniform quantization in this phase, therefore the quantizing SNR drops along with signal amplititude decreasing). Test results are as follows: ideal various signal encoding and decoding system waveforms, high performance parameters , achieve the desired designing aim, a entirely new approach to realize different kinds of information encoding and decoding model building and implementation, saving development costs, improving design efficiency, satisfactory actual results, stable operation.

  10. rTPPM: Towards Improving Solid-State NMR Two-Pulse Phase-Modulation Heteronuclear Dipolar Decoupling Sequence by Refocusing

    DEFF Research Database (Denmark)

    Equbal, Asif; Paul, Subhradip; Mithu, Venus Singh


    We present here a simple refocused modification, r TPPM, of the Two-Pulse Phase-Modulation (TPPM) heteronuclear decoupling method, which improves decoupling and makes the sequence much more robust with respect to essential experimental parameters. The modified sequence is compared with the establ...

  11. Virtual-vector-based space vector pulse width modulation of the DC-AC multilevel-clamped multilevel converter (MLC2)

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Busquets-Monge, Sergio; Blaabjerg, Frede;


    This work presents the development of the space vector pulse width modulation (SVPWM) of a new multi-level converter topology. First, the proposed converter and its natural space vector diagram are presented. Secondly, a modified space vector diagram based on the virtual-vectors technique is show...

  12. Analysis of nonlinear optical and dynamic gain effects of moderate-power, pulse-position-modulated, erbium-doped fiber amplifiers for deep-space applications. (United States)

    Yao, Haomin; Wright, Malcolm W; Marciante, John R


    Lasers for use in deep-space applications such as interplanetary optical communications employ multiwatt resonantly pumped dual-clad erbium-doped fiber amplifiers and the pulse-position modulation scheme. Nonlinear optical effects and dynamic gain effects often impair their performance and limit their operational range. These effects are analyzed theoretically and numerically with a time-dependent two-level propagation model, respectively. Self-phase modulation and stimulated Raman scattering are found to limit the usable data format space. In operational regimes free from nonlinear effects, dynamic gain effects such as the variation in the output pulse energy and square-pulse distortion are quantified. Both are found to primarily depend on the symbol duration and can be as large as 28% and 21%, respectively.

  13. Colossal magneto-optical modulation at terahertz frequencies by counterpropagating femtosecond laser pulses in Tbsub>3sub>Gasub>5sub>Osub>12sub>. (United States)

    Mikhaylovskiy, Rostislav V; Subkhangulov, Ruslan R; Rasing, Theo; Kimel, Alexey V


    Single-frequency terahertz modulation of the magneto-optical Faraday effect with a record amplitude of the polarization rotation of ∼0.5° is achieved using a slab of the etalon Faraday rotator crystal Tbsub>3sub>Gasub>5sub>Osub>12sub>. The modulation is the result of the interaction of two counterpropagating laser pulses via the optical Kerr effect. The frequency of the modulation is determined by the applied magnetic field and is continuously tunable in a terahertz frequency range between 0 and 0.7 THz.

  14. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing. (United States)

    Cordette, S; Vedadi, A; Shoaie, M A; Brès, C-S


    We propose and experimentally demonstrate an all-optical Nyquist sinc-shaped pulse train source based on intensity modulation and four-wave mixing. The proposed scheme allows for the tunability of the bandwidth and the full flexibility of the repetition rate in the limit of the electronic bandwidth of the modulators used through the flexible synthesis of rectangular frequency combs. Bandwidth up to 360 GHz at 40 GHz rate and up to 45 frequency lines at 5 GHz rate are demonstrated with 40 GHz modulators.

  15. Tailored RF Pulse Modulation for RF Refocussed Variable Flip Angle MRI (United States)

    Shah, Ajit S.; Ortendahl, Douglas A.; Carlson, Joseph W.; Kramer, David M.; Crooks, Larry E.


    Advances in Magnetice Resonance Imaging (MRI) techniques have recently made MRI the imaging modality of choice for many applications of clinical imaging. MRI provides the diagnosing clinician a non-invasive method for obtaining soft tissue differentiation with sub-millimeter resolution. Clinical MRI techniques include 3-dimensional imaging, spectroscopic imaging, arterial angiography and cardiac imaging. One MRI technique which has recently gained popularity is a class of protocols known as variable/partial flip angle MRI. Partial flip angle MRI techniques are useful because of their ability to vary contrast between tissues and/or maintain a particular level of contrast with a reduction in acquisition time [1]. Variable flip angle techniques differ from conventional MRI protocols in that the initial RF excitation/rotation pulse is not constrained to a 90 degree rotation of the longitudinal magnetization. Instead, the initial excitation flip angle is calculated to provide improved contrast between two tissues and/or maximize the intensity of a particular tissue. For tissues with reduced TR/T1 ratios, variable flip angle techniques may also be used to increase the image signal to noise within a localized region.

  16. On the Pulse Intensity Modulation of PSR B0823+26

    CERN Document Server

    Young, N J; Weltevrede, P; Lyne, A G; Kramer, M


    We investigate the radio emission behaviour of PSR B0823+26, a pulsar which is known to undergo pulse nulling, using an 153-d intensive sequence of observations. The pulsar is found to exhibit both short (~min) and unusually long-term (~hours or more) nulls, which not only suggest that the source possesses a distribution of nulling timescales, but that it may also provide a link between conventional nulling pulsars and longer-term intermittent pulsars. Despite seeing evidence for periodicities in the pulsar radio emission, we are uncertain whether they are intrinsic to the source, due to the influence of observation sampling on the periodicity analysis performed. Remarkably, we find evidence to suggest that the pulsar may undergo pre-ignition periods of 'emission flickering', that is rapid changes between radio-on (active) and -off (null) emission states, before transitioning to a steady radio-emitting phase. We find no direct evidence to indicate that the object exhibits any change in spin-down rate between ...

  17. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections (United States)

    Sun, Xiaoli; Abshire, James B.


    seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.

  18. Phase-dependent spectral control of pulsed modulation instability via dichromatic seed fields (United States)

    Brinkmann, Maximilian; Kues, Michael; Fallnich, Carsten


    We investigated experimentally and numerically the spectral control of modulation instability (MI) dynamics via the initial phase relation of two weak seed fields. Specifically, we show how second-order MI dynamics exhibit phase-dependent anti-correlated growth rates of adjacent spectral sidebands. This effect enables a novel method to control MI-based frequency conversion: in contrast to first-order MI dynamics, which exhibit a uniform phase dependence of the growth rates, second-order MI dynamics allow to redistribute the spectral energy, leading to an asymmetric spectrum. Therefore, the presented findings should be very attractive to different applications, such as phase-sensitive amplification or supercontinuum generation initiated by MI.

  19. Response Analysis on Electrical Pulses under Severe Nuclear Accident Temperature Conditions Using an Abnormal Signal Simulation Analysis Module

    Directory of Open Access Journals (Sweden)

    Kil-Mo Koo


    Full Text Available Unlike design basis accidents, some inherent uncertainties of the reliability of instrumentations are expected while subjected to harsh environments (e.g., high temperature and pressure, high humidity, and high radioactivity occurring in severe nuclear accident conditions. Even under such conditions, an electrical signal should be within its expected range so that some mitigating actions can be taken based on the signal in the control room. For example, an industrial process control standard requires that the normal signal level for pressure, flow, and resistance temperature detector sensors be in the range of 4~20 mA for most instruments. Whereas, in the case that an abnormal signal is expected from an instrument, such a signal should be refined through a signal validation process so that the refined signal could be available in the control room. For some abnormal signals expected under severe accident conditions, to date, diagnostics and response analysis have been evaluated with an equivalent circuit model of real instruments, which is regarded as the best method. The main objective of this paper is to introduce a program designed to implement a diagnostic and response analysis for equivalent circuit modeling. The program links signal analysis tool code to abnormal signal simulation engine code not only as a one body order system, but also as a part of functions of a PC-based ASSA (abnormal signal simulation analysis module developed to obtain a varying range of the R-C circuit elements in high temperature conditions. As a result, a special function for abnormal pulse signal patterns can be obtained through the program, which in turn makes it possible to analyze the abnormal output pulse signals through a response characteristic of a 4~20 mA circuit model and a range of the elements changing with temperature under an accident condition.

  20. Tribological and structural properties of titanium nitride and titanium aluminum nitride coatings deposited with modulated pulsed power magnetron sputtering (United States)

    Ward, Logan

    The demand for economical high-performance materials has brought attention to the development of advanced coatings. Recent advances in high power magnetron sputtering (HPPMS) have shown to improve tribological properties of coatings. These coatings offer increased wear and oxidation resistance, which may facilitate the use of more economical materials in harsh applications. This study demonstrates the use of novel forms of HPPMS, namely modulated pulsed-power magnetron sputtering (MPPMS) and deep oscillation magnetron sputtering (DOMS), for depositing TiN and Ti1-xAlxN tribological coatings on commonly used alloys, such as Ti-6Al-4V and Inconel 718. Both technologies have been shown to offer unique plasma characteristics in the physical vapor deposition (PVD) process. High power pulses lead to a high degree of ionization compared to traditional direct-current magnetron sputtering (DCMS) and pulsed magnetron sputtering (PMS). Such a high degree of ionization was previously only achievable by cathodic arc deposition (CAD); however, CAD can lead to increased macroparticles that are unfavorable in high friction and corrosive environments. MPPMS, DOMS, and other HPPMS techniques offer unique plasma characteristics and have been shown to produce coatings with refined grain structure, improved density, hardness, adhesion, and wear resistance. Using DOMS and MPPMS, TiN and Ti1-xAlxN coatings were deposited using PMS to compare microstructures and tribological performance. For Ti1-xAlxN, two sputtering target compositions, Ti 0.5Al0.5 and Ti0.3Al0.7, were used to evaluate the effects of MPPMS on the coating's composition and tribological properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize microstructure and crystallographic texture. Several tribological properties were evaluated including: wear rate, coefficient of friction, adhesion, and nanohardness. Results show that substrate

  1. A pulse-width modulated, high reliability charge controller for small photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, K. [Morningstar Corp., Olney, MD (United States); Welsh, D. [Morningstar Corp., Encinitas, CA (United States)


    This report presents the results of a development effort to design, test and begin production of a new class of small photovoltaic (PV) charge controllers. Sandia National Laboratories provided technical support, test data and financial support through a Balance-of-System Development contract. One of the objectives of the development was to increase user confidence in small PV systems by improving the reliability and operating life of the system controllers. Another equally important objective was to improve the economics of small PV systems by extending the battery lifetimes. Using new technology and advanced manufacturing techniques, these objectives were accomplished. Because small stand-alone PV systems account for over one third of all PV modules shipped, the positive impact of improving the reliability and economics of PV systems in this market segment will be felt throughout the industry. The results of verification testing of the new product are also included in this report. The initial design goals and specifications were very aggressive, but the extensive testing demonstrates that all the goals were achieved. Production of the product started in May at a rate of 2,000 units per month. Over 40 Morningstar distributors (5 US and 35 overseas) have taken delivery in the first 2 months of shipments. Initial customer reactions to the new controller have been very favorable.

  2. FPGA Based Sinusoidal Pulse Width Modulated Waveform Generation for Solar (PV) Rural Home Power Inverter

    CERN Document Server

    Singh, S N


    With the increasing concern about global environmental protection and energy demand due to rapid growth of population in developing countries and the diminishing trend of resources of conventional grid supply, the need to produce freely available pollution free natural energy such as solar/wind energy has been drawing increasing interest in every corner of the world. In an effort to utilize these energies effectively through Power converter, a great deal of research is being carried out by different researchers / scientist and engineers at different places in the world to meet the increasing demand of load. The study presents methodology to integrate solar (PV) energy (which is freely available in every corner of the world) with grid source and supplement the existing grid power in rural houses during its cut off or restricted supply period. In order to get consistency in supply a DG is also added as a standby source in the proposed integration of network. The software using novel Direct PWM modulation strate...

  3. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate (United States)

    McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall


    Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of

  4. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features (United States)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong


    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle

  5. Research on Internal Relation Between Virtual Space Vector Pulse Width Modulation Strategy and Carrier Sinusoidal Pulse Width Modulation Strategy for Three-Level Neutral Point Clamped Converter%三电平NPC变流器虚拟空间矢量调制策略与载波调制策略的内在关系研究

    Institute of Scientific and Technical Information of China (English)

    李宁; 王跃; 蒋应伟; 雷万钧; 王兆安


    分析了虚拟空间矢量调制(virtual space vector pulse width modulation,VSVPWM)策略的基本原理,推导了三电平 VSVPWM 策略与单相双调制波三电平正弦脉冲宽度调制(sinusoidal pulse width modulation,SPWM)策略的内在联系,建立了两者间的调制波等效关系。应用调制波等效关系分析了 VSVPWM 策略的输出电压总谐波畸变率(total harmonic distortion,THD)、直流电压利用率和开关器件损耗。最后,提出了基于调制波等效关系的三电平VSVPWM快速实现方案。仿真和实验结果验证了理论分析的正确性。%In the modulation strategies for three-level NPC converter, neutral point voltage control under the entire modulation index and full power factor can be achieved by virtual space vector pulse width modulation (VSVPWM) strategy. In this paper the basic principle of VSVPWM is analyzed, then the internal relation between three-level VSVPWM strategy and single-phase dual modulation based three-level sinusoidal pulse width modulation (SPWM) strategy is derived and the modulation-wave equivalence between the two modulation strategies is established. Using the established modulation-wave equivalent relation, the total harmonic distortion (THD) of output voltage, DC voltage utilization rate and switch device losses under VSVPWM strategy are analyzed. Finally, a fast implementation of three-level VSVPWM strategy based on modulation-wave equivalence is proposed. The correctness of the theoretical analysis is verified by both results from simulation and experiments.

  6. Packet error rate analysis of digital pulse interval modulation in intersatellite optical communication systems with diversified wavefront deformation. (United States)

    Zhu, Jin; Wang, Dayan; Xie, Wanqing


    Diversified wavefront deformation is an inevitable phenomenon in intersatellite optical communication systems, which will decrease system performance. In this paper, we investigate the description of wavefront deformation and its influence on the packet error rate (PER) of digital pulse interval modulation (DPIM). With the wavelet method, the diversified wavefront deformation can be described by wavelet parameters: coefficient, dilation, and shift factors, where the coefficient factor represents the depth, dilation factor represents the area, and shift factor is for location. Based on this, the relationship between PER and wavelet parameters is analyzed from a theoretical viewpoint. Numerical results illustrate the validity of theoretical analysis: PER increases with the depth and area and decreases if location gets farther from the center of the optical antenna. In addition to describing diversified deformation, the advantage of the wavelet method over Zernike polynomials in computational complexity is shown via numerical example. This work provides a feasible method for the description along with influence analysis of diversified wavefront deformation from a practical viewpoint and will be helpful for designing optical systems.

  7. A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 Cells (United States)

    Li, Xin; Xu, Haoxiang; Lei, Tao; Yang, Yuefan; Jing, Da; Dai, Shuhui; Luo, Peng; Xu, Qiaoling


    Glutamate-induced excitotoxicity is common in the pathogenesis of many neurological diseases. A pulsed electromagnetic field (PEMF) exerts therapeutic effects on the nervous system, but its specific mechanism associated with excitotoxicity is still unknown. We investigated the role of PEMF exposure in regulating glutamate-induced excitotoxicity through the endocannabinoid (eCB) system. PEMF exposure improved viability of HT22 cells after excitotoxicity and reduced lactate dehydrogenase release and cell death. An eCB receptor 1 (CB1R) specific inhibitor suppressed the protective effects of PEMF exposure, even though changes in CB1R expression were not observed. Elevation of N-arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) following PEMF exposure indicated that the neuroprotective effects of PEMF were related to modulation of the eCB metabolic system. Furthermore, CB1R/ERK signaling was shown to be an important downstream pathway of PEMF in regulating excitotoxicity. These results suggest that PEMF exposure leads to neuroprotective effects against excitotoxicity by facilitating the eCB/CB1R/ERK signaling pathway. Therefore, PEMF may be a potential physical therapeutic technique for preventing and treating neurological diseases. PMID:28220060

  8. Modulation of conidia production and expression of the gene bbrgs1 from Beauveria bassiana by oxygen pulses and light. (United States)

    Rodriguez-Gomez, Divanery; Marcial-Quino, Jaime; Loera, Octavio


    Light and oxidant states affect the conidiation in diverse fungi, although the response has not been described when both stimuli are applied simultaneously. Conidial production and quality in Beauveria bassiana were analysed under four conditions for a wild-type (wt) strain and a previously isolated mutant (mt): normal atmosphere (21% O2; NA) or oxygen-enriched pulses (26% O2; OEP), with either light (L) or darkness (D). The response was complemented by following the expression of the bbrgs1 gene, encoding a regulator of the G-protein signal associated to conidia production. Conidiation was not significantly affected in the mutant strain by any condition (highest value with NA-L: 2.7×10(8)concm(-2)). Relative to maximal levels under NA (NA-D: 4×10(7)concm(2)), the wt strain diminished conidiation by 34-fold under OEP. The expression of bbrgs1 was higher (up to 188 times) in the mutant strain in every condition relative to the wt strain, in fact expression levels were consistent with the conidiation yields between strains. Viability and hydrophobicity were less affected by culture conditions, although pathogenicity parameters improved in conidia from OEP. The response to OEP, either with light or darkness, was strain-dependent for conidial production, viability, hydrophobicity and infectivity of conidia, then these parameters could be modulated in mass production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Dynamics of wide and snake-like pulses in coupled Schrödinger equations with full-modulated nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Yomba, Emmanuel, E-mail:; Zakeri, Gholam-Ali, E-mail:


    We investigate the existence of various solitary wave solutions in coupled Schrödinger equations with specific cubic and quintic nonlinearities. This system arises in wave propagation in fiber optics with focusing and defocusing with modulated nonlinearities. We obtain front–front, bright–bright, dark–dark, and dark–bright like solitons using a direct approach, and then, by reducing the system of equations to a single auxiliary equation of a Duffing-type ordinary differential equation, we provide a large class of Jacobi-elliptic solutions. These solutions are presented in the exact form and analyzed. We find a class of wide localized and snake-like (in both space and time) vector solitons. One of the novel aspects of this study is that we have shown that the qualitative behavior of the solutions is independent of the choice of similarity variables. Numerical results show that the solutions of the above system are stable with up to 10% white noises. - Highlights: • Dynamics of wide and snake-like pulses is analyzed for coupled Schrödinger equations. • Qualitative appearance of solutions is analyzed using various similarity variables. • Effect of change in parameter-values on dynamics of the solutions is investigated. • Vectors front–front, bright–bright, dark–dark and dark–bright solitons are obtained.

  10. Simplified flexible-PON upstream transmission using pulse position modulation at ONU and DSP-enabled soft-combining at OLT for adaptive link budgets. (United States)

    Liu, Xiang; Effenberger, Frank; Chand, Naresh


    We demonstrate a flexible modulation and detection scheme for upstream transmission in passive optical networks using pulse position modulation at optical network unit, facilitating burst-mode detection with automatic decision threshold tracking, and DSP-enabled soft-combining at optical line terminal. Adaptive receiver sensitivities of -33.1 dBm, -36.6 dBm and -38.3 dBm at a bit error ratio of 10(-4) are respectively achieved for 2.5 Gb/s, 1.25 Gb/s and 625 Mb/s after transmission over a 20-km standard single-mode fiber without any optical amplification.

  11. Investigation of the effects of continuous-wave, pulse- and amplitude-modulated microwaves on single excitable cells of Chara corallina. (United States)

    Liu, L M; Garber, F; Cleary, S F


    Single internodal excitable cells of Chara corallina were exposed to CW, pulse-modulated and sinusoidally modulated S-band microwave fields in a temperature-controlled waveguide exposure chamber. All electrical measurements were made external to the waveguide (ie, under no impressed microwave field). The dependent variables measured before, during, and after exposure to the S-band microwave fields included: resting potential, amplitude of the action potential, rise and decay time of the action potential, conduction velocity, and excitability. Cells maintained at 22 +/- 0.1 degrees C during exposure showed no consistent or statistically significant microwave-dependent alterations in any of the dependent variables.

  12. Tandem electro-absorption modulators integrated with DFB laser by ultra-low-pressure selective-area-growth MOCVD for 10 GHz optical short-pulse generation (United States)

    Zhao, Q.; Pan, J. Q.; Zhang, J.; Zhou, G. T.; Wu, J.; Wang, L. F.; Wang, W.


    A novel device of tandem multiple quantum wells (MQWs) electroabsorption modulators (EAMs) monolithically integrated with DFB laser is fabricated by ultra-low-pressure (22 mbar) selective area growth (SAG) MOCVD technique. Experimental results exhibit superior device characteristics with low threshold of 19 mA, output light power of 4.5 mW, and over 20 dB extinction ratio when coupled into a single mode fiber. Moreover, over 10 GHz modulation bandwidth is developed with a driving voltage of 2 V. Using this sinusoidal voltage driven integrated device, 10GHz repetition rate pulse with a width of 13.7 ps without any compression elements is obtained.

  13. Ergodic channel capacity of spatial correlated multiple-input multiple-output free space optical links using multipulse pulse-position modulation (United States)

    Wang, Huiqin; Wang, Xue; Cao, Minghua


    The spatial correlation extensively exists in the multiple-input multiple-output (MIMO) free space optical (FSO) communication systems due to the channel fading and the antenna space limitation. Wilkinson's method was utilized to investigate the impact of spatial correlation on the MIMO FSO communication system employing multipulse pulse-position modulation. Simulation results show that the existence of spatial correlation reduces the ergodic channel capacity, and the reception diversity is more competent to resist this kind of performance degradation.

  14. Virtual-vector-based space vector pulse width modulation of the DC-AC multilevel-clamped multilevel converter (MLC2)

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Busquets-Monge, Sergio; Blaabjerg, Frede


    This work presents the development of the space vector pulse width modulation (SVPWM) of a new multi-level converter topology. First, the proposed converter and its natural space vector diagram are presented. Secondly, a modified space vector diagram based on the virtual-vectors technique is shown....... Simulation results by using a space vector approach are presented. Special emphasis is given on the total harmonic distortion (THD) by making a comparison with those of the classical NPC topologies....

  15. 基于脉冲跳变的空间矢量脉冲宽度调制策略%Novel space vector pulse width modulation based on pulse-shifting

    Institute of Scientific and Technical Information of China (English)

    林城美; 王公宝; 汪光森; 李卫超; 崔小鹏


    针对二极管钳位型单相九电平逆变器,分析其工作原理,提取了逆变器工作的有效开关状态。根据伏秒平衡原理和两矢量三段式调制规律,提出了一种基于脉冲跳变的空间矢量脉冲宽度调制( space vector pulse width modulation,SVPWM)策略。通过分析所有开关周期脉冲的跳变情况,给出了脉冲类型的判断条件,并根据脉冲类型计算起始和终止电压矢量及其作用时间;同时,应用FPGA设计了模块化SVPWM控制系统,并对该控制系统进行了时钟与资源消耗评估。性能分析结果表明,该调制策略计算速度快、资源消耗小。最后,仿真与实验结果验证了所提调制策略的正确性和有效性,而且能够有效地均衡电容电压。%The operating principle of diode-clamped single phase 9-level inverter was analyzed firstly, and its useful switching vectors of the inverter were obtained. A novel space vector pulse width modulation ( SVPWM) was presented based on pulse-shifting, according to volt-second balance principle and two-vector modulation rule. By analyzing the pulse-shifting condition within one normal switching period, the criterion for judging pulse type was also proposed. Based on different pulse type, the computing method of the start and end voltage vector were different, and their dwell time were also different. The SVPWM control system was implemented using a field programmable gate array ( FPGA) circuit as the hardware simulation platform, whose clock and resource utilization are evaluated. The simulation and experimental results demonstrate that the presented control strategy has good control effect, and balances the capacitor voltages better.

  16. An Efficient Space Vector Pulse Width Modulation with BFO Based Self Tuning PI Controller for Shunt Active Power Filter

    Directory of Open Access Journals (Sweden)

    P. Saravanan


    Full Text Available This research study mainly focuses on using an efficient control strategy for extracting reference currents of shunt active filters under non linear load conditions. In recent decades, the utilization of highly automatic electric equipments has resulted in enormous economic loss. Thus, the power suppliers as well as the power consumers are very much concerned about the power quality issues and compensation approaches. In order to deal with this issue, Active Power Filter (APF has been considered as an attractive solution due to its significant harmonic compensation. But, the performance of APF is not consistent and is varies based on the output of the controller techniques. An efficient (id-id control strategy is used in this approach for attaining utmost profit from grid-interfacing inverters installed in transmission systems. The voltages are controlled through the PI controller which is further tuned by an optimization approach. Bacterial Forge Optimization (BFO is used in this approach for tuning the PI controller for the optimal value. The inverter used in this approach can be considered as a Shunt Active Power Filter (SAPF to compensate non linear load current harmonics. In order to improve the overall performance of the system, Space Vector Pulse Width Modulation (SVPWM is used in this proposed approach which regulates power frequency and produces good circularity through DC-AC part. SVPWM also eliminates the 3rd order harmonics and minimizes the 5th order harmonics effectively. The integration of (id-id control strategy and SVPWM has been proposed in this research study. Simulation results are carried out in MATLAB/Simulink and the performance of the proposed approach is compared with other control strategies. This research studies shows unique approach for attaining maximum benefits from RES with suppression of current harmonics.

  17. An optical pulse width modulation generator based on the injection-locking property of single mode FP-LD (United States)

    Tran, Quoc Hoai; Nakarmi, Bikash; Won, Yong Hyub


    A novel simple optical pulse width modulation generator (OPWMG) based on injection-locking property of a single mode FP-LD (SMFP-LD) has been proposed and experimentally verified. The OPWMG consists of a SMFP-LD (which acts as comparator), an optical sinusoidal wave source (analog input), and a continuous optical beam (control signal). The power required for fully injection-locking the SMFP-LD acts as the referent power whereas the combination power of continuous optical beam and analog optical sinusoidal signals work as control signals for changing the duty cycle of the proposed OPWMG. The presence of only continuous optical beam is not sufficient to suppress the dominant mode of SMFP-LD with high ON/OFF contrast ratio; however, the application of additional sinusoidal wave of constant amplitude and frequency, the dominant mode of SMFP-LD can be suppressed for the certain time window. Since, injection-locking power is dependent with the combined power of input injected continuous beam and sinusoidal optical wave, the time window of injection-locking can be varied by changing input beam power which provides different duty cycle of 13% to 68% at the output. Current available schemes for generating PWM signals are in electrical domain, hence, they need to convert electrical signals into optical domain by using expensive O/E converters for application in optical control and signal processing. The proposed OPWMG scheme has several advantages, such as low cost, low power consumption (~0.5 mW) which can be used for various applications where the effect of EMI/EMR is considered as an important factor such as control circuit for high voltage converters in power plant and electrical vehicles.

  18. Design of a 20 kV Solid State Marx Pulse Modulator%20 kV固态Marx脉冲调制器研制

    Institute of Scientific and Technical Information of China (English)

    冯宗明; 冯元伟; 李洪涛; 丁明军


    A 20 kV solid-state Marx pulse modulator is developed.The modulator is com-posed of eight-stage Marx modules in series,each of which adopts two independently con-trolled insulated gate bipolar transistors (ICBTs) for charging and discharging to its energy storage capacitor.It takes high voltage silicon stack for capacitor charging isolation and switch-driven isolation for each stage of the Marx module.With push/pull PCB structure, the Marx modules are easy to maintenance and replacement.Experimental results show that the 20 kV solid-state Marx modulator can generate output pulse with voltage more than 20 kV,pulse width of 10μs,raise/fall time of 300 ns at a load of 20 kΩ.Without strengthen cool,the pulse repetition rate is up to 1 kHz in burst mode.%阐述了20 kV固态Marx脉冲调制器的设计原理、结构特点及驱动控制方法。该系统由8级模块串联而成,每级模块的储能电容、高压充电和固态开关驱动供电均采用高压硅堆隔离,Marx模块采用两只独立控制的高压绝缘栅双极型晶体管(insulated gate bipolar tran-sistor,IGBT)对模块的储能电容实现充电和放电。IGBT 驱动电路采用高压硅堆隔离供电、光纤传输触发脉冲和高性能IGBT驱动模块TD350设计构成。驱动电路具备完善的欠压、过流和过压保护功能。Marx模块采用插拔式结构,维护快捷简便。脉冲源在无强化散热措施条件下,输出方形高压脉冲幅度大于20 kV,脉冲宽度为10μs,脉冲前后沿均为300 ns,重复频率可达1 kHz。

  19. Inter-beat intervals of cardiac-cell aggregates during exposure to 2.45 GHz CW, pulsed, and square-wave-modulated microwaves. (United States)

    Seaman, R L; DeHaan, R L


    Inter-beat intervals of aggregated cardiac cells from chicken embryos were studied during 190 s exposures to 2.45 GHz microwaves in an open-ended coaxial device. Averaged specific-absorption rates (SARs) and modulation conditions were 1.2-86.9 W/kg continuous-wave (CW), 1.2-12.2 W/kg pulse modulation (PW, duty cycle approximately 11%), and 12.0-43.5 W/kg square-wave modulation (duty cycle = 50%). The inter-beat interval decreased during microwave exposures at 42.0 W/kg and higher when CW or square-wave modulation was used, which is consistent with established effects of elevated temperatures. However, increases in the inter-beat interval during CW exposures at 1.2-12.2 W/kg, and decreases in the inter-beat interval after PW exposures at 8.4-12.2 W/kg, are not consistent with simple thermal effects. Analysis of variance indicated that SAR, modulation, and the modulation-SAR interaction were all significant factors in altering the inter-beat interval. The latter two factors indicated that the cardiac cells were affected by athermal as well as thermal effects of microwave exposure.

  20. Cellular Levels of Signaling Factors Are Sensed by β-actin Alleles to Modulate Transcriptional Pulse Intensity

    Directory of Open Access Journals (Sweden)

    Alon Kalo


    Full Text Available The transcriptional response of β-actin to extra-cellular stimuli is a paradigm for transcription factor complex assembly and regulation. Serum induction leads to a precisely timed pulse of β-actin transcription in the cell population. Actin protein is proposed to be involved in this response, but it is not known whether cellular actin levels affect nuclear β-actin transcription. We perturbed the levels of key signaling factors and examined the effect on the induced transcriptional pulse by following endogenous β-actin alleles in single living cells. Lowering serum response factor (SRF protein levels leads to loss of pulse integrity, whereas reducing actin protein levels reveals positive feedback regulation, resulting in elevated gene activation and a prolonged transcriptional response. Thus, transcriptional pulse fidelity requires regulated amounts of signaling proteins, and perturbations in factor levels eliminate the physiological response, resulting in either tuning down or exaggeration of the transcriptional pulse.

  1. Performance Analysis of an Alternative to Trellis Coded Modulation for Waveforms Transmitted over a Channel with Pulse-Noise Interference (United States)


    signal in one set has its antipodal signal in the other. One advantage of biorthogonal modulation over orthogonal modulation for the same data rate... antipodal signal vectors have better distance properties than orthogonal ones, biorthogonal modulation performs slightly better than orthogonal

  2. A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges (United States)

    Zheng, B. C.; Wu, Z. L.; Wu, B.; Li, Y. G.; Lei, M. K.


    A spatially averaged, time-dependent global plasma model has been developed to describe the reactive deposition of a TiAlSiN thin film by modulated pulsed power magnetron sputtering (MPPMS) discharges in Ar/N2 mixture gas, based on the particle balance and the energy balance in the ionization region, and considering the formation and erosion of the compound at the target surface. The modeling results show that, with increasing the N2 partial pressure from 0% to 40% at a constant working pressure of 0.3 Pa, the electron temperature during the strongly ionized period increases from 4 to 7 eV and the effective power transfer coefficient, which represents the power fraction that effectively heats the electrons and maintains the discharge, increases from about 4% to 7%; with increasing the working pressure from 0.1 to 0.7 Pa at a constant N2 partial pressure of 25%, the electron temperature decreases from 10 to 4 eV and the effective power transfer coefficient decreases from 8% to 5%. Using the modeled plasma parameters to evaluate the kinetic energy of arriving ions, the ion-to-neutral flux ratio of deposited species, and the substrate heating, the variations of process parameters that increase these values lead to an enhanced adatom mobility at the target surface and an increased input energy to the substrate, corresponding to the experimental observation of surface roughness reduction, the microstructure transition from the columnar structure to the dense featureless structure, and the enhancement of phase separation. At higher N2 partial pressure or lower working pressure, the modeling results demonstrate an increase in electron temperature, which shifts the discharge balance of Ti species from Ti+ to Ti2+ and results in a higher return fraction of Ti species, corresponding to the higher Al/Ti ratio of deposited films at these conditions. The modeling results are well correlated with the experimental observation of the composition variation and the microstructure

  3. Evolution of Hyperbolic-Secant Pulses Towards Cross-Phase Modulation Induced Optical Wave Breaking and Soliton or Soliton Trains Generation in Quintic Nonlinear Fibers (United States)

    Zhong, Xian-Qiong; Zhang, Xiao-Xia; Du, Xian-Tong; Liu, Yong; Cheng, Ke


    The approximate analytical frequency chirps and the critical distances for cross-phase modulation induced optical wave breaking (OWB) of the initial hyperbolic-secant optical pulses propagating in optical fibers with quintic nonlinearity (QN) are presented. The pulse evolutions in terms of the frequency chirps, shapes and spectra are numerically calculated in the normal dispersion regime. The results reveal that, depending on different QN parameters, the traditional OWB or soliton or soliton pulse trains may occur. The approximate analytical critical distances are found to be in good agreement with the numerical ones only for the traditional OWB whereas the approximate analytical frequency chirps accords well with the numerical ones at the initial evolution stages of the pulses. Supported by the Postdoctoral Fund of China under Grant No. 2011M501402, the Key Project of Chinese Ministry of Education under Grant No. 210186, the Major Project of Natural Science Supported by the Educational Department of Sichuan Province under Grant No. 13ZA0081, the Key Project of National Natural Science Foundation of China under Grant No 61435010, and the National Natural Science Foundation of China under Grant No. 61275039

  4. Electron dynamics and optical properties modulation of monolayer MoS2 by femtosecond laser pulse: a simulation using time-dependent density functional theory (United States)

    Su, Xiaoxing; Jiang, Lan; Wang, Feng; Su, Gaoshi; Qu, Liangti; Lu, Yongfeng


    In this study, we adopted time-dependent density functional theory to investigate the optical properties of monolayer MoS2 and the effect of intense few-cycle femtosecond laser pulses on these properties. The electron dynamics of monolayer MoS2 under few-cycle and multi-cycle laser irradiation were described. The polarization direction of the laser had a marked effect on the energy absorption and electronic excitation of monolayer MoS2 because of anisotropy. Change in the polarization direction of few-cycle pulse changed the absorbed energy by a factor over 4000. Few-cycle pulse showed a higher sensitivity to the electronic property of material than multi-cycle pulse. The modulation of the dielectric properties of the material was observed on the femtosecond time scale. The negative divergence appeared in the real part of the function at low frequencies and photoinduced blue shift occurred due to Burstein-Moss effect. The irradiation of femtosecond laser caused the dielectric response within the infrared region and introduced anisotropy to the in-plane optical properties. Laser-based engineering of optical properties through controlling transient electron dynamics expands the functionality of MoS2 and has potential applications in direction-dependent optoelectronic devices.

  5. The integral pulse frequency modulation model with time-varying threshold: application to heart rate variability analysis during exercise stress testing. (United States)

    Bailón, Raquel; Laouini, Ghailen; Grao, César; Orini, Michele; Laguna, Pablo; Meste, Olivier


    In this paper, an approach for heart rate variability analysis during exercise stress testing is proposed based on the integral pulse frequency modulation (IPFM) model, where a time-varying threshold is included to account for the nonstationary mean heart rate. The proposed technique allows the estimation of the autonomic nervous system (ANS) modulating signal using the methods derived for the IPFM model with constant threshold plus a correction, which is shown to be needed to take into account the time-varying mean heart rate. On simulations, this technique allows the estimation of the ANS modulation on the heart from the beat occurrence time series with lower errors than the IPFM model with constant threshold (1.1% ± 1.3% versus 15.0% ± 14.9%). On an exercise stress testing database, the ANS modulation estimated by the proposed technique is closer to physiology than that obtained from the IPFM model with constant threshold, which tends to overestimate the ANS modulation during the recovery and underestimate it during the initial rest.

  6. Tandem electroabsorption modulators integrated with DFB laser by ultra-low-pressure selective-area-growth MOCVD for 10 GHz optical short pulse generation (United States)

    Zhao, Q.; Pan, J. Q.; Zhang, J.; Zhou, G. T.; Wu, J.; Wang, L. F.; Wang, W.


    A novel device of tandem MQW EAMs monolithically integrated with a DFB laser is fabricated by an ultra-low-pressure (22 mbar) selective area growth MOCVD technique. Experimental results exhibit superior device characteristics with low threshold of 19 mA, output light power of 4.5 mW, and over 20 dB extinction ratio when coupled to a single mode fibre. Moreover, over 10 GHz modulation bandwidth is developed with a driving voltage of 2 V. Using this sinusoidal voltage driven integrated device, 10 GHz repetition rate pulse with an actual width of 13.7 ps without any compression elements is obtained.

  7. Fiber transmission and generation of ultrawideband pulses by direct current modulation of semi-conductor lasers and chirp-to-intensity conversion

    DEFF Research Database (Denmark)

    Company Torres, Victor; Prince, Kamau; Tafur Monroy, Idelfonso


    Optical pulses generated by current modulation of semiconductor lasers are strongly frequency chirped. This effect has been considered pernicious for optical communications. We take advantage of this effect for the generation of ultrawideband microwave signals by using an optical filter to achieve...... chirp-to-intensity conversion. We also experimentally achieve propagation through a 20 km nonzero dispersion shifted fiber with no degradation of the signal at the receiver. Our method constitutes a prospective low-cost solution and offers integration capabilities with fiber...

  8. Bunch stabilization using rf phase modulation in the Intense Pulse Neutron Source (IPNS) Rapid Cycling Synchrotron (RCS).

    Energy Technology Data Exchange (ETDEWEB)

    Brumwell, F. R.; Dooling, J. C.; McMichael, G. E.


    Phase modulation (PM) is used to increase the current limit in the IPNS RCS. A device referred to as a scrambler introduces a small oscillating phase between the two RCS rf cavities at approximately twice the synchrotrons frequency, f{sub s}. The modulation introduced by the scrambler generates longitudinal oscillations in the bunch at 2f{sub s}. Modulations in the bunch are also observed transversely indicating a coupling between longitudinal and transverse motion. Comparing PM with amplitude modulation (AM), coupling to the beam is roughly equivalent at 2f{sub s}.

  9. Ultrafast pulse generation from erbium-doped fiber laser modulated by hybrid organic-inorganic halide perovskites (United States)

    Jiang, Guobao; Miao, Lili; Yi, Jun; Huang, Bin; Peng, Wei; Zou, Yanhong; Huang, Huihui; Hu, Wei; Zhao, Chujun; Wen, Shuangchun


    We report the nonlinear optical responses of organic-inorganic halide perovskite CH3NH3PbI3 and its application in ultrafast pulse generation from an erbium-doped fiber laser in the optical communication band. By adopting the Z-scan technique, the third-order nonlinear optical responses of the organic-inorganic halide perovskites have been characterized. An ultrafast optical pulse with a pulse width of 661 fs centered at a wavelength of 1555 nm has been delivered via the nonlinear optical material introduced into the fiber laser cavity. Our experimental results confirm that the organic-inorganic halide perovskite possesses obvious third-order nonlinear optical responses in the C-band window and manifests its application potential in nonlinear optoelectronic devices.

  10. Research on the pulse position modulation technology for UWB system%超宽带系统的脉位调制技术研究

    Institute of Scientific and Technical Information of China (English)



    UWB is different with other traditional wireless communication technology.Some factors are studied that affect the pulse position modulation of UWB signal.It gives a brief introduction about characters of UWB,modulation and demodulation principles and merits,and focuses on analysis of modulation and demodulation principles of non-carrier TH-PPM.Finally,by theory,in combination with matlab simulation,it is concluded that period of time-hopping code will effect modulation.%超宽带是一种与传统无线通信技术有所区别的通信,针对影响超宽带脉位调制技术的因素进行了研究,简要介绍了超宽带的技术特征、调制解调原理和技术优点,重点分析了无载波的TH-PPM信号调制与解调的原理,最后通过理论研究,结合脉位调制的matlab仿真实验,得出跳时码周期对脉位调制的影响。

  11. All Solid-State Pulsed Magnetron Modulator Based on MARX Generator%基于MARX发生器的全固态磁控管调制器

    Institute of Scientific and Technical Information of China (English)

    印长豹; 高龙; 刘凯


    This paper proposes an implementation method of a magnetron modulator, in which the MARX generator, with the capacitors charging in parallel and discharging in series, can bring about high-voltage pulse output. The working principles of the MARX generator is presented. The selection methods and the efficient protective functions of crucial devices and parameters are analyzed in detail. Various performances of the MARX modulator versus the original modulator are compared. The advantages of MARX generator as the magnetron modulator are given. The experimental data and waveform prove that the MARX generator modulator system can meet the needs of the magnetron modulator.%结合磁控管调制器的特点,提出一种磁控管调制器的实现方法:电容器并联充电串联放电的MARX发生器方式实现高压脉冲输出.介绍了MARX发生器的具体工作原理,详细分析了各关键器件、参数的选择方法及快速的保护功能,比较MARX调制器与原有调制器的各项性能,阐述MARX发生器作为磁控管调制器的优势所在,并通过最终实验数据及波形说明基于MARX发生器的磁控管调制器系统完全满足磁控管调制器的要求,并有其明显的优势,是非常理想的一种磁控管调制器.

  12. Generating shaped femtosecond pulses in the far infrared using a spatial light modulator and difference frequency generation

    CSIR Research Space (South Africa)

    Botha, N


    Full Text Available , Ch, Sharpe-Tudoran, C, Winter, M. & Baumert, T. 2003. Compact, robust, and flexible setup for femtosecond pulse shaping. Review of scientific instruments, 75:4950-4953. 3. Cavallari, M, Gale, G.M, Hache, F, Pavlov, L.I & Rousseau, E 1995. Mid infra...

  13. BRIEF COMMUNICATIONS: Influence of intracavity stimulated Raman scattering on self-modulation of a ring laser emitting ultrashort pulses (United States)

    Yashkir, Yu N.; Yashkir, O. V.


    An investigation is made of the generation of ultrashort pulses in a ring laser in the presence of intracavity nonlinear losses due to stimulated Raman scattering. A numerical analysis of the attractors of the problem is used in a study of typical lasing regimes: stable, unstable regular, and unstable irregular (optical turbulence). A change in the nonlinearity parameter reveals also "intermittence" regions. An analysis is made of the influence of feedback provided by the Stokes radiation on the localization of an instability region.

  14. Experimental Demonstration of the Effectiveness of Electromagnetically Induced Transparency for Enhancing Cross-Phase Modulation in the Short-Pulse Regime (United States)

    Dmochowski, Greg; Feizpour, Amir; Hallaji, Matin; Zhuang, Chao; Hayat, Alex; Steinberg, Aephraim M.


    We present an experiment using a sample of laser-cooled Rb atoms to show that cross-phase modulation schemes continue to benefit from electromagnetically induced transparency (EIT) even as the transparency window is made narrower than the signal bandwidth (i.e., for signal pulses much shorter than the response time of the EIT system). Addressing concerns that narrow EIT windows might not prove useful for such applications, we show that while the peak phase shift saturates in this regime, it does not drop, and the time-integrated effect continues to scale inversely with EIT window width. This integrated phase shift is an important figure of merit for tasks such as the detection of single-photon-induced cross-phase shifts. Only when the window width approaches the system's dephasing rate γ does the peak phase shift begin to decrease, leading to an integrated phase shift that peaks when the window width is equal to 4 γ .

  15. PWM脉宽调制实现电机的恒速驱动%The Driver of Constant Speed Motor Based on PWM Pulse Width Modulation

    Institute of Scientific and Technical Information of China (English)



    现在许多单片机具有PWM脉宽调制功能,结合单片机的定时器、计数器,我们可以很方便的实现电机的恒速驱动。本文以编码器为反馈信号,构成了电机恒速转动的闭环系统。%Now many Single Chip Microcomputer with PWM pulse width modulation,combined with Single Chip Microcomputer timer and counter,we can easily achieve the constant speed drive motor.In this paper,encoder acts as feedback signal,constitutes a constant speed motor rotating closed-loop system.

  16. Analysis and Speed Ripple Mitigation of a Space Vector Pulse Width Modulation-Based Permanent Magnet Synchronous Motor with a Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Xing Liu


    Full Text Available A method is proposed for reducing speed ripple of permanent magnet synchronous motors (PMSMs controlled by space vector pulse width modulation (SVPWM. A flux graph and mathematics are used to analyze the speed ripple characteristics of the PMSM. Analysis indicates that the 6P (P refers to pole pairs of the PMSM time harmonic of rotor mechanical speed is the main harmonic component in the SVPWM control PMSM system. To reduce PMSM speed ripple, harmonics are superposed on a SVPWM reference signal. A particle swarm optimization (PSO algorithm is proposed to determine the optimal phase and multiplier coefficient of the superposed harmonics. The results of a Fourier decomposition and an optimized simulation model verified the accuracy of the analysis as well as the effectiveness of the speed ripple reduction methods, respectively.

  17. Characteristics and energy distribution of modulated multi-pulse injection modes based diesel HCCI combustion and their effects on engine thermal efficiency and emissions

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; SU Wanhua; WANG Hui; HUANG Haozhong


    Cycle fuel energy distribution and combustion characteristics of early in-cylinder diesel homogenous charge compression ignition (HCCI) combustion organized by modulated multi-pulse injection modes are studied by the engine test.It is found that heat loss due to unburned fuel droplets and CO emission can be decreased effectively by injection mode regulation,and thermal efficiency can be potentially increased by 4%-12%.From the analyses of combustion process,it is also found that diesel HCCI combustion is a process with a finite reaction rate and is very sensitive to injection timing and injection mode.At injection timing of-90℃A ATDC,extra low NOx emissions can be obtained along with high thermal efficiency.

  18. Temperature effects on Microalgal Photosynthesis-Light responses measured by O2 production, Pulse-Amplitude-Modulated Fluorescence, and 14C assimilation

    DEFF Research Database (Denmark)

    Hancke, Kasper; Hancke, Torunn; Olsen, Lasse M.


    photosynthetic rate (PCmax) was strongly stimulated by temperature, reached an optimum for Pro. minimum only (20oC–25oC), and showed a similar relative temperature response for the three applied methods, with Q10 ranging from 1.7 to 3.5. The maximum light utilization coefficient (alfaC) was insensitive......Short-term temperature effects on photosynthesis were investigated by measuring O2 production, PSII-fluorescence kinetics, and 14C-incorporation rates in monocultures of the marine phytoplankton species Prorocentrum minimum (Pavill.) J. Schiller (Dinophyceae), Prymnesium parvum f. patelliferum ( J...... or decreased slightly with increasing temperature. Absolute rates of O2 production were calculated from pulse-amplitude-modulated (PAM) fluorometry measurements in combination with biooptical determination of absorbed quanta in PSII. The relationship between PAM-based O2 production and measured O2 production...

  19. Transient analysis and control of bias magnetic state in the transformer of on-line pulse-width-modulation switching full bridge direct current-direct current converter (United States)

    Chen, Jiaxin; Guo, Youguang; Zhu, Jianguo; Wei Lin, Zhi


    This paper presents a finite element analysis (FEA) based method for analyzing and controlling the bias magnetic state of the transformer of a pulse-width-modulation (PWM) switching full bridge dc-dc converter. A field-circuit indirect coupling method for predicting the transient bias magnetic state is introduced first. To increase flexibility of the proposed method, a novel transformer model which can address not only its basic input-output characteristic, but also the nonlinear magnetizing inductance, is proposed. Both the asymmetric characteristic and the variable laws of the current flowing through the two secondary windings during the period of PWM switching-off state are highlighted. Finally, the peak magnetizing current controlled method based on the on-line magnetizing current computation is introduced. Analysis results show that this method can address the magnetic saturation at winding ends, and hence many previous difficulties, such as the start-up process and asymmetry of power electronics, can be easily controlled.

  20. Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation. (United States)

    Li, Zhe; Erkılınç, M Sezer; Pachnicke, Stephan; Griesser, Helmut; Bouziane, Rachid; Thomsen, Benn C; Bayvel, Polina; Killey, Robert I


    An experimental demonstration of direct-detection single-sideband Nyquist-pulse-shaped 16-QAM subcarrier modulated (Nyquist-SCM) transmission implementing a receiver-based signal-signal beat interference (SSBI) cancellation technique is described. The performance improvement with SSBI mitigation, which compensates for the nonlinear distortion caused by square-law detection, was quantified by simulations and experiments for a 7 × 25 Gb/s WDM Nyquist-SCM signal with a net optical information spectral density (ISD) of 2.0 (b/s)/Hz. A reduction of 3.6 dB in the back-to-back required OSNR at the HD-FEC threshold was achieved. The resulting reductions in BER in single channel and WDM transmission over distances of up to 800 km of uncompensated standard single-mode fiber (SSMF) achieved are presented.

  1. Pulse-width modulation for small heat pump installations - Phase 4; Pulsbreitenmodulation fuer Kleinwaermepumpenanlagen. Phase 4: Erweiterung der PBM-Regler fuer Kombianlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M.; Shafai, E. [Eidgenoessische Technische Hochschule (ETH), Institut fuer Mess- und Regeltechnik, Zuerich (Switzerland); Gabathuler, H.R.; Mayer, H. [Gabathuler AG, Beratende Ingenieure, Diessenhofen (Switzerland)


    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of the fourth phase of a project that investigated three types of pulse-width modulation (PWM) controllers that were developed during its first two phases. A third phase monitored the controllers when used in a simulated environment and for a real-life heat pump. The report discusses the fourth phase of the project, in which the controller was further developed and tested using the building emulation developed in the third phase. The functioning of the self-regulating controller and its use of meteorological data is described and the savings to be made in heating costs are discussed.

  2. Simulation of Electromagnetic Propulsion System Driven by Paralleled Multi-module Pulse Transformers%多模块脉冲变压器并联驱动电磁推进系统仿真

    Institute of Scientific and Technical Information of China (English)

    李海涛; 董亮; 王亮; 吴锐; 王豫


    为了探索多模块脉冲变压器并联的脉冲功率源用于电磁推进系统的可行性,建立了多模块脉冲变压器并联电路及其驱动电磁推进系统的数学模型,仿真分析了多模块脉冲变压器并联输出特性、多模块并联下电磁推进系统的推进特性,以及放电时脉冲变压器过电压的限制措施等.脉冲变压器模块数为20,储能100kJ,理想情况下仿真得到的抛体发射速度达到1.5km/s,发射效率为12.6%.仿真结果表明,多模块脉冲变压器并联作为脉冲电源用于电磁推进系统是可行的,有利于电磁发射系统体积的减小,对脉冲变压器过电压抑制可引入非线性电阻.%To explore the feasibility of applying pulsed power supply with paralleled multi-module pulse transformers in electromagnetic propulsion system, the multi-module pulse transformers parallel circuit and the mathematical model of electromagnetic propulsion system were established. The output characteristics of paralleled multi-module pulse transformers and the propulsive characteristics of the electromagnetic propulsion system based on paralleled multi- module were simulated and analyzed. The overvoltage restrictions of pulse transformer at the time of discharge was also analyzed. The number of pulse transformer modules is 20, and the stored energy is 100 kJ. In ideal situation,the simulated launch-speed of the projectile is 1.5 km/s,and the launch efficiency is 12.6%. It is feasible that paralleled multi-module pulse transformers used as pulsed power is applied to electromagnetic propulsion system ,and it is beneficial to decreasing the volume of whole device. Non-linear resistor can be used for pulse transformer overvoltage suppression.

  3. Paired-Pulse Parietal-Motor Stimulation Differentially Modulates Corticospinal Excitability across Hemispheres When Combined with Prism Adaptation. (United States)

    Schintu, Selene; Martín-Arévalo, Elisa; Vesia, Michael; Rossetti, Yves; Salemme, Romeo; Pisella, Laure; Farnè, Alessandro; Reilly, Karen T


    Rightward prism adaptation ameliorates neglect symptoms while leftward prism adaptation (LPA) induces neglect-like biases in healthy individuals. Similarly, inhibitory repetitive transcranial magnetic stimulation (rTMS) on the right posterior parietal cortex (PPC) induces neglect-like behavior, whereas on the left PPC it ameliorates neglect symptoms and normalizes hyperexcitability of left hemisphere parietal-motor (PPC-M1) connectivity. Based on this analogy we hypothesized that LPA increases PPC-M1 excitability in the left hemisphere and decreases it in the right one. In an attempt to shed some light on the mechanisms underlying LPA's effects on cognition, we investigated this hypothesis in healthy individuals measuring PPC-M1 excitability with dual-site paired-pulse TMS (ppTMS). We found a left hemisphere increase and a right hemisphere decrease in the amplitude of motor evoked potentials elicited by paired as well as single pulses on M1. While this could indicate that LPA biases interhemispheric connectivity, it contradicts previous evidence that M1-only MEPs are unchanged after LPA. A control experiment showed that input-output curves were not affected by LPA per se. We conclude that LPA combined with ppTMS on PPC-M1 differentially alters the excitability of the left and right M1.

  4. High-frequency modelling of a three-phase pulse width modulation inverter towards the dc bus considering line and controller harmonics

    Directory of Open Access Journals (Sweden)

    Saeid Haghbin


    Full Text Available Closed-form analytical formulas are provided to calculate the dc bus harmonics of a three-phase sinusoidal pulse width modulation (SPWM inverter. The harmonic analysis is performed by using a double Fourier series approach to determine the dc bus current frequency spectrum. For an arbitrary modulation index and load power factor, the full harmonic components of the inverter dc side current are calculated. Based on the developed analytical model, an equivalent circuit is proposed for the inverter harmonic analysis towards the dc bus. Moreover, the impacts of line harmonics and zero sequence injection in controller towards the dc bus are presented. The results show that the 5th and 7th ac line harmonics on the dc side current is appearance of the 6th harmonic in the dc side. The impact of zero sequence injection to the controller on the dc side is negligible. In addition to analytical formulation, different simulations and extensive measurements performed which the results verified the presented analytical framework.

  5. A Sliding Surface-Regulated Current-Mode Pulse-Width Modulation Controller for a Digital Signal Processor-Based Single Ended Primary Inductor Converter-Type Power Factor Correction Rectifier

    National Research Council Canada - National Science Library

    Hsin-Jang Shieh; Ying-Zuo Chen


    To efficiently supply wide-range DC voltage from a pulse-width modulation (PWM) rectifier, this paper presents a single-phase, full-wave, diode-bridge, single-ended primary-inductor converter-type (SEPIC-type...

  6. Pulse-width modulation pre-emphasis applied in a wireline transmitter, achieving 33 dB loss compensation at 5-Gb/s in 0.13-/spl mu/m CMOS

    NARCIS (Netherlands)

    Schrader, J.H.R.; Klumperink, E.A.M.; Visschers, J.L.; Nauta, B.


    A transmitter pre-emphasis technique for copper cable equalization is presented that is based on pulse-width modulation (PWM). This technique is an alternative to the usual 2-tap symbol-spaced FIR (SSF) pre-emphasis. The technique uses timing resolution instead of amplitude resolution to adjust the

  7. Hunting for right and left parietal hot spots using single-pulse TMS: modulation of visuospatial perception during line bisection judgment in the healthy brain. (United States)

    Salatino, Adriana; Poncini, Marisa; George, Mark S; Ricci, Raffaella


    A series of studies have consistently reproduced left neglect-like bias on line length estimation tasks in healthy participants by applying transcranial magnetic stimulation (TMS) over the right posterior parietal cortex (PPC), while no significant changes have been reported when stimulating the left PPC. However, a notable inter-individual variability in the right parietal site where TMS modulates visuospatial perception can be observed, and no general agreement exists on how to identify the optimal parietal site of stimulation. In the present study, we propose a new site-finding TMS protocol to easily identify the optimum parietal location, or "hot spot," where TMS may modulate visuospatial perception on a line length estimation task (the Landmark task). Single-pulse TMS at 115% of motor threshold was applied 150 ms after the visual stimulus onset over nine different sites of a 3 cm × 3 cm grid, centred over right or left PPC (P4 and P3 according to the 10-20 EEG system, respectively) in eight healthy participants. Stimulation of right PPC induced a significant left neglect-like bias, when the coil was applied over the most posterior and dorso-posterior sites. Unexpectedly, TMS over left PPC also produced left neglect-like bias. However, in this case significant effects were found when targeting the most anterior and dorso-anterior portions of the grid. These results are discussed in relation to recent findings on neural networks underlying spatial cognition. The hunting protocol we propose might offer an economical and easy-to-use tool to functionally identify the optimal parietal site where TMS can modulate visuospatial perception, in healthy subjects and possibly in post-stroke patients undergoing repetitive transcranial magnetic stimulation treatment.

  8. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete


    and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality......“Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...

  9. Arsenic toxicity in the water weed Wolffia arrhiza measured using Pulse Amplitude Modulation Fluorometry (PAM) measurements of photosynthesis. (United States)

    Ritchie, Raymond J; Mekjinda, Nutsara


    Accumulation of arsenic in plants is a serious South-east Asian environmental problem. Photosynthesis in the small aquatic angiosperm Wolffia arrhiza is very sensitive to arsenic toxicity, particularly in water below pH 7 where arsenite (As (OH)3) (AsIII) is the dominant form; at pH >7 AsO4(2-) (As(V) predominates). A blue-diode PAM (Pulse Amplitude Fluorometer) machine was used to monitor photosynthesis in Wolffia. Maximum gross photosynthesis (Pgmax) and not maximum yield (Ymax) is the most reliable indicator of arsenic toxicity. The toxicity of arsenite As(III) and arsenate (H2AsO4(2-)) As(V) vary with pH. As(V) was less toxic than As(III) at both pH 5 and pH 8 but both forms of arsenic were toxic (>90% inhibition) at below 0.1molm(-3) when incubated in arsenic for 24h. Arsenite toxicity was apparent after 1h based on Pgmax and gradually increased over 7h but there was no apparent effect on Ymax or photosynthetic efficiency (α0).

  10. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard


    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....

  11. Pulse pattern modulated strategy for harmonic current components reduction in three-phase AC-DC converters

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede


    Generated harmonic current as a consequence of employing power electronics converter is known as an important power quality issue in distribution networks. From industry point of view complying with international standards is mandatory, however cost and efficiency are two other important features......, which need to be considered in order to be competitive in the market. Therefore, having a flexibility to meet various requirements imposed by the standard recommendations or costumer needs is at most desirable. This makes the generated harmonic current mitigation a challenging task especially with three......-phase diode bridge rectifier, which still is preferred in many power electronic systems. This paper addresses a novel current modulation strategy using a single-switch boost three-phase diode bridge rectifier. The proposed method can selectively mitigate current harmonics, which makes it suitable...

  12. Pulse Pattern-Modulated Strategy for Harmonic Current Components Reduction in Three-Phase AC–DC Converters

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede


    Generated harmonic current as a consequence of employing power electronics converter is known as an important power quality issue in distribution networks. From industry point of view complying with international standards is mandatory, however cost and efficiency are two other important features......, which need to be considered in order to be competitive in the market. Therefore, having a flexibility to meet various requirements imposed by the standard recommendations or costumer needs is at most desirable. This makes the generated harmonic current mitigation a challenging task especially with three......-phase diode bridge rectifier, which still is preferred in many power electronic systems. This paper addresses a novel current modulation strategy using a single-switch boost three-phase diode bridge rectifier. The proposed method can selectively mitigate current harmonics, which makes it suitable...

  13. Gigahertz optical modulation. (United States)

    Riesz, R P; Biazzo, M R


    Light pulses from a mode-locked He-Ne laser have been modulated by a LiTaO(3) electrooptic crystal mounted on a thin film substrate. The crystal was driven by pulses from a GaAs Gunn effect diode. Amplitude modulation of 20% has been achieved at 2 GHz for a single pass through the modulator.

  14. Dynamics of wide and snake-like pulses in coupled Schrödinger equations with full-modulated nonlinearities (United States)

    Yomba, Emmanuel; Zakeri, Gholam-Ali


    We investigate the existence of various solitary wave solutions in coupled Schrödinger equations with specific cubic and quintic nonlinearities. This system arises in wave propagation in fiber optics with focusing and defocusing with modulated nonlinearities. We obtain front-front, bright-bright, dark-dark, and dark-bright like solitons using a direct approach, and then, by reducing the system of equations to a single auxiliary equation of a Duffing-type ordinary differential equation, we provide a large class of Jacobi-elliptic solutions. These solutions are presented in the exact form and analyzed. We find a class of wide localized and snake-like (in both space and time) vector solitons. One of the novel aspects of this study is that we have shown that the qualitative behavior of the solutions is independent of the choice of similarity variables. Numerical results show that the solutions of the above system are stable with up to 10% white noises.

  15. On the modulation effect of pulsing and static magnetic fields and mechanical vibrations on barley seed hydration. (United States)

    Amyan, Armine; Ayrapetyan, Sinerik


    The changes of wet and dry weights of barley seed in different periods of swelling were studied in seeds treated with Extremely Low Frequency Electromagnetic Fields (ELF EMF), Static Magnetic Fields (SMF) and Mechanical Vibrations (MV) in cold (4 degrees C) and warm (20 degrees C) distilled water as well as in seeds non-treated (control). The metabolic dependent seed hydration, dry weight loss and water binding in seed were modulated by preliminary EMF, SMF and MV-induced treatment of distilled water. The specific electrical conductivity (SEC) of control and treated distilled water was measured before the seed incubation. Frequency and intensity "windows" (i.e. range of frequency or intensity) for the effect of EMF, MV and SMF (correspondingly) on seed hydration, solubility and water binding in seed were studied. These "windows" were different in various phases of seed swelling. It is suggested that water structure modification is the result of valence angle changes (SMF and EMF) and dipole molecules vibration (EMF and MV) has different effects on the process of hydration, solubility and water binding in seed. These results are important from the point of understanding the mechanisms of the biological effect of EMF, as well as from the point of agriculture.

  16. Assembly delay line pulse generators

    CERN Document Server


    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  17. Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses. (United States)

    Nguyen, Dat; Piracha, Mohammad Umar; Mandridis, Dimitrios; Delfyett, Peter J


    Self-phase modulation in fiber amplifiers can significantly degrade the quality of compressed pulses in chirped pulse amplification systems. Parabolic pulses with linear frequency chirp are suitable for suppressing nonlinearities, and to achieve high peak power pulses after compression. In this paper, we present an active time domain technique to generate parabolic pulses for chirped pulse amplification applications. Pulses from a mode-locked laser are temporally stretched and launched into an amplitude modulator, where the drive voltage is designed using the spectral shape of the input pulse and the transfer function of the modulator, resulting in the generation of parabolic pulses. Experimental results of pulse shaping with a pulse train from a mode-locked laser are presented, with a residual error of less than 5%. Moreover, an extinction ratio of 27 dB is achieved, which is ideal for chirped pulse amplification applications.

  18. Reduce Adverse Effects of Laparoscopic Cholecystectomy with Pulse Width Modulated LED Light (625 nm, 76 Hz, 23% Duty Cycle). (United States)

    Redkin, Alexander V; Vdovin, Victor V; Vakhtel, Victor M; Lukyanovich, Pavel A; Malkina, Natalia A


    Reducing adverse effects in laparoscopic cholecystectomy (LCE) is important to avoid complications. After removal, the porta hepatis and gallbladder bed of liver were treated with pulse width modulated (PWM) red LED light with parameters λ = 625 ± 5 nm, full width at half maximum 17 nm, 76 Hz, duty cycle 23%, 15-30 mW/cm(2), and 0.9-1.8 J/cm(2). The changes of eight blood parameters were studied: red blood cell, hemoglobin, white blood cell, erythrocyte sedimentation rate (ESR), bilirubin, aspartate transaminase (AST), alanine transaminase (ALT), and amylase. Other current methods of reducing undesirable effects of LCE significantly affect surgery and are not commonly used in practice. Before LCE, 263 patients were randomized into the control and test groups. Patients in the test group were treated with light radiated for 2 min during the surgery on the bed of the removed gallbladder and porta hepatis. Blood samples were taken before surgery and on the third day after surgery, studied, and compared by nonparametric statistical methods. The test group revealed significant reduction in postsurgery gain of levels of ALT, AST, and ESR compared with the control group. Treatment of the removed gallbladder bed and porta hepatis by red LED PWM radiation during LCE significantly reduces the adverse effects of surgery while increasing its time insignificantly and does not affect the surgical best practices deployed.

  19. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions (United States)

    Ajay Kumar, M.; Srikanth, N.


    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  20. 基于SVPWM的VIENNA整流器研究%Study on the VIENNA Rectifier Based on Space Vector Pulse Width Modulation

    Institute of Scientific and Technical Information of China (English)

    王正; 谭国俊; 曾维俊; 柳萌


    分析了三相三开关三电平(VIENNA)整流器的工作原理,研究了其空间矢量脉宽调制(SVPWM)的实现方法,提出了此整流器的矢量控制策略.采用电压外环和电流内环的双闭环控制,实现了VIENNA整流器的高性能特性.基于Matlab仿真平台,搭建了VIENNA整流器的仿真模型,仿真结果表明,该整流器能实现良好的动态性能和稳态性能.%The working principle of three-phase three-switch three-level (VIENNA) rectifier was analyzed, and its implement method of space vector pulse width modulation (SVPWM) was researched. On that basis, the vector control strategy of VIENNA was proposed. It achieved the high performance characteristics of VIENNA rectifier by using dual closed loop with voltage outer loop and current inner loop. Furthermore, based on the platform of Matlab simulation,the simulation model of VIENNA rectifier was built. The simulation results show that the rectifier can achieve both good dynamic performance and good static performance.

  1. Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method (United States)

    Megayanti, Meti; Panatarani, Camellia; Joni, I. Made


    Microheater is the main component in gas sensor characterized by their sensitivity, selectivity, and time response of gas sensor which is depend on the microheater temperature stability. A Cu microheater was developed and utilized AT-Mega 8535 controller using a PWM (pulse width modulation) method. This control system is interfaced to the PC to observe the real time temperature response of the microheater. Three initial resistance (R0) variations of microheater were developed in an open loop control system. The power characteristic of designed microheater depends on the specified microheater initial resistance. The smaller R0, the less power required to reach a temperature setting value. The developed microheater was designed to reach a temperature setting value of 250°C having resistance 0.531 Ω for 1.979 Watt and 0.265 Ω for 1.072 Watt respectively. The results of the investigation on the control performances shows microheater-control system achieved operating temperature up to 250°C. The response of the temperature control shows smallest R0 resulted in a high stability with short settling time, short delay time and small ripple for temperature setting values higher than 150°C. The obtained error of microheater temperature with R0 = 0.265 is 8.596 %. It is concluded that the developed microheater can be utilized as a component of a gas sensor.

  2. 基于超宽带能量检测方案的数字脉冲间隔调制%Energy-detection based ultra-wideband communication using digital pulse interval modulation

    Institute of Scientific and Technical Information of China (English)

    晋本周; 张盛; 程永生; 林孝康


    The digital pulse interval modulation (DPIM) is indtroduced into energy-detection based ultra-wideband (UWB) communication systems and the performance of DPIM is studied. The modulation scheme suitable for impulse radio UWB channel is presented. DPIM transmission capacity based on the definition is analyzed and is compared with on-off keying (OOK) and pulse position modulation (PPM). Expressions of slot error probability and packet error probability are derived for DPIM. Numerical results of different modulations in one of IEEE 802. 15. 3a models show that, for certain modulation orders (e. G. , 4-DPIM vs 2-PPM), DPIM is superior to PPM in both error performance and transmission capacity. Furthermore, compared with (X)K, DPIM, with a high modulation order, achieves a better error performance at the cost of certain transmission capacity.%将数字脉冲间隔调制(digital pulse interval modulation,DPIM)引入到基于能量检测方案的超宽带(ultra-wideband,UWB)通信系统中,详细研究了DPIM的性能.给出了适合于脉冲UWB信道的DPIM方案,定义了该调制方式的传输容量并与开关键控( on-off keying,OOK)和脉冲位置调制(pulse position modulation,PPM)做比较.推导出该调制方式的误时隙率和误包率.给出了不同调制方式在IEEE 802.15.3a信道环境下的数值结果,结果表明存在某些调制阶数(如4-DPIM对2-PPM),能够使得DPIM在传输容量和包差错性能上均优于PPM.另外与OOK相比,高阶DPIM可以在损失一些传输容量条件下取得更好的包差错性能.

  3. 对线性调频脉冲压缩雷达的多载波调制转发干扰%Multi-carrier Modulation Repeater Jamming against Linear Frequency Modulated Pulse-compression Radar

    Institute of Scientific and Technical Information of China (English)

    王杰贵; 张鹏程


    目前对线性调频(LFM)脉冲压缩雷达转发欺骗干扰主要通过移频调制转发和采样直接转发实现,常规转发干扰样式简单,干扰信号规律性强、复杂度低。该文提出一种基于间歇采样的多载波调制转发新型干扰样式。首先引用码片的概念对间歇采样过程重新建模,在此基础上,通过对当前采样码片附加不同移频量,结合多载波并行调制体制对其进行串并转换,利用不同次转发信号各子载波间的干扰累积,实现对LFM脉冲压缩雷达的数量、幅度、空间分布可控的逼真假目标干扰。仿真表明该干扰样式比移频干扰和直接转发干扰具有更好的干扰效果。%Repeater deception jamming against Linear Frequency Modulated (LFM) pulse-compression radar is realized by frequency-shift repeater and direct repeater jamming so far. Conventional repeater jamming type is simple. Regularity of jamming signal is strong and complexity is low. A new repeater jamming type with multi-carrier modulation based on intermittent sampling is proposed. Firstly, the model of intermittent sampling is rebuilt with the code chip concept. Based on this, lifelike false targets with the quantity, amplitude and space distribution which can be controlled are produced by attaching different frequency-shift component to the present sampling code chip, deserializing signal used multi-carrier parallel modulation system and utilizing the accumulation of different times repeater signal jamming effect among sub-carriers. The simulation results show that the new jamming type has better performance than frequency-shift jamming and direct repeater jamming.

  4. Logic Pulse Width Modulation Method for Converter%变换器的逻辑脉冲宽度调制方法

    Institute of Scientific and Technical Information of China (English)

    魏毅立; 周金生; 罗家涛; 张自雷


    分析了单相半桥DC-AC变换器的逻辑脉冲宽度调制( LPWM)控制方法,阻感负载电流为正和为负情形下IGBT的导通状态,进而分别给出了等效电路。其方法是根据负载的电流的正负而开放或封锁对应的IGBT的门极脉冲。在单相半桥DC-AC变换器的LPWM基础上,分析了三相桥式DC-AC变换器的LPWM控制方法和SVPWM的LPWM控制方法, LPWM控制方法的优点是减少了一半的门极驱动损耗,除电流过零点以外无需再加死区,提高了开关频率,增强了系统的安全性。然后再通过Matlab仿真软件对LPWM仿真,验证了LPWM控制方法正确性。%The logic pulse width modulation ( LPWM) control method for single-phase half bridge DC-AC convert-er, and the on-off state of IGBT under the circumstance of inductive load with the load current as positive and nega-tive respectively have been analyzed in this paper, so as to present the equivalent circuits.This method is to open or close the corresponding IGBT trigger pulse according to the load current being positive or negative.In addition, based on the LPWM control method for the single-phase half bridge DC-AC converter, LPWM control methods for the three-phase bridge DC-AC converter and SVPWM control method have been also analyzed.The advantage of LP-WM control method is to reduce half of the switching loss.No dead zone is need to add up except for the current pass-ing through the zero point, so as to improve the switch frequency and enhance the system safety.Simulation results based on Matlabverify the correctness of LPWM control method.

  5. Electron density modulation in a pulsed dual-frequency (2/13.56 MHz) dual-antenna inductively coupled plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sirse, Nishant, E-mail: [Plasma Research Laboratory, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Mishra, Anurag [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Y. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeunggi-do 440-746 (Korea, Republic of); Ellingboe, Albert R. [Plasma Research Laboratory, School of Physical Sciences, Dublin City University, Dublin 9, Ireland and Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)


    The electron density, n{sub e}, modulation is measured experimentally using a resonance hairpin probe in a pulsed, dual-frequency (2/13.56 MHz), dual-antenna, inductively coupled plasma discharge produced in argon-C{sub 4}F{sub 8} (90–10) gas mixtures. The 2 MHz power is pulsed at a frequency of 1 kHz, whereas 13.56 MHz power is applied in continuous wave mode. The discharge is operated at a range of conditions covering 3–50 mTorr, 100–600 W 13.56 MHz power level, 300–600 W 2 MHz peak power level, and duty ratio of 10%–90%. The experimental results reveal that the quasisteady state n{sub e} is greatly affected by the 2 MHz power levels and slightly affected by 13.56 MHz power levels. It is observed that the electron density increases by a factor of 2–2.5 on increasing 2 MHz power level from 300 to 600 W, whereas n{sub e} increases by only ∼20% for 13.56 MHz power levels of 100–600 W. The rise time and decay time constant of n{sub e} monotonically decrease with an increase in either 2 or 13.56 MHz power level. This effect is stronger at low values of 2 MHz power level. For all the operating conditions, it is observed that the n{sub e} overshoots at the beginning of the on-phase before relaxing to a quasisteady state value. The relative overshoot density (in percent) depends on 2 and 13.56 MHz power levels. On increasing gas pressure, the n{sub e} at first increases, reaching to a maximum value, and then decreases with a further increase in gas pressure. The decay time constant of n{sub e} increases monotonically with pressure, increasing rapidly up to 10 mTorr gas pressure and at a slower rate of rise to 50 mTorr. At a fixed 2/13.56 MHz power level and 10 mTorr gas pressure, the quasisteady state n{sub e} shows maximum for 30%–40% duty ratio and decreases with a further increase in duty ratio.

  6. Performance comparison of various pulse position modulation in wireless laser communication%无线激光通信类脉冲位置调制性能比较

    Institute of Scientific and Technical Information of China (English)

    柯熙政; 陈锦妮


    为了比较各种类脉冲位置调制性能,对类脉冲位置调制的编码结构、平均发射功率、带宽需求、传信率、功率谱密度、信道容量等进行了比较,分析了其性能特点及使用场合.结果表明,开关键控调制方式容易实现,但功率利用率低;脉冲位置调制方式提高了功率利用率,但是带宽效率差,同时需要符号同步;数字脉冲间隔调制结构复杂,缩短了符号长度,带宽效率高,不需要符号同步;双头脉冲间隔调制方式提高了带宽效率和传输容量,不需要符号同步,大大简化系统实现复杂度.%In order to compare the performance of various types of pulse position modulation, the coding structure, average transmitted power, bandwidth requirements, transmission rate, power spectral density and channel capacity were compared. Their characteristics and application fields were analyzed. The results show that, on off keying is easy to implement, but power utilization ratio is too low; pulse position modulation improves power utilization ratio but bandwidth availability ratio is low and it need symbol synchronization; digital pulse interval modulation shortens the length of the symbols, it has high bandwidth availability ratio and does not need symbol synchronization, but it is too complex; dual header pulse interval modulation improves the bandwidth efficiency and transmission capacity and do not need symbol synchronization, greatly simplify the complexity of the system implementation.

  7. 二极管钳位式三电平逆变器SVPWM控制策略研究%Control Strategy Study of Diode-Clamp Three-Level Inverter Based on Space Vector Pulse Width Modulation

    Institute of Scientific and Technical Information of China (English)



    空间矢量脉宽调制在多电平逆变器的控制中应用广泛,但是随着电平数增加,控制算法渐趋复杂化。提出了三电平空间矢量脉宽调制控制方法,将三电平电压矢量区变换为由两电平空间矢量区构成,从而通过使用两电平空间矢量脉宽调制方法简化了控制算法。该方法理论上可应用于更高电平逆变器的控制中,仿真验证了方法的可行性。%Space vector pulse width modulation is widely applied in control of multi-level inverters, but following increasing of level number, the control algorithm becomes more and more complicated. Three-level space vector pulse width modulation control method was raised to transfer three-level voltage vector zone to two-level space vector zones, so as to simplify the control algorithm with two-level space vector pulse modulation method. The method on the theory can be used to control much higher level inverters and simulation has verified feasibility of the method.

  8. Comparison of Two Fast Space Vector Pulse Width Modulation Algorithms%两种快速的空间矢量脉宽调制算法比较

    Institute of Scientific and Technical Information of China (English)

    范必双; 谭冠政; 樊绍胜; 王玉凤


    A comparison is made between two fast space vector pulse width modulation (SVPWM) algorithms: the 60° non-orthogonal coordinate SVPWM and the 45° rotating coordinate SVPWM. New general methods of the 60° and 45° algorithms for any level SVPWM are also provided, which need only the angle and the modulation depth to generate and arrange the final vector sequence. The analysis shows the latter offers better flexibility with fewer calculations and is well suited for digital implementation. Both methods are implemented in a field programmable gate array (FPGA) with very high speed integrated circuit hardware description language (VHDL) and compared on the basis of implementation complexity and logic resources required. Simulation results show the overwhelm in advantages of the 45° rotating coordinate SVPWM in brevity and efficiency. Finally, the experimental test results for a three-level neutral-point-clamped (NPC) inverter are presented.%对60°非正交坐标系和45°旋转坐标系这两种快速空间矢量脉宽调制算法(space vector pulse width modulation, SVPWM)进行比较,目的是为工程技术人员在这两种SVPWM算法之间选择时提供一个理论和实践的参考。提出了一种新的针对这两种方法的任意多电平调制通用算法,只需角度和调制比两个信号就能够决定最终的矢量开关顺序。理论分析结果表明,45°旋转坐标系 SVPWM 比60°非正交坐标系SVPWM更简单,计算量小,更适合于数字实现。两种算法都以硬件的方式在FPGA上用VHDL语言编程实现,并对实现的复杂度和逻辑资源占用这两方面进行比较。仿真结果表明,45°旋转坐标系下的SVPWM算法比60°坐标系下的SVPWM算法在简洁性和资源占用方面具有明显的优势。最后,在一个三电平中点箝位型逆变器上对所提的两种通用算法进行了实验验证。

  9. On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering: A global plasma model and experiments (United States)

    Zheng, B. C.; Meng, D.; Che, H. L.; Lei, M. K.


    The modulated pulsed power magnetron sputtering (MPPMS) discharge processes are numerically modeled and experimentally investigated, in order to explore the effect of the pressure on MPPMS discharges as well as on the microstructure of the deposited thin films. A global plasma model has been developed based on a volume-averaged global description of the ionization region, considering the loss of electrons by cross-B diffusion. The temporal variations of internal plasma parameters at different pressures from 0.1 to 0.7 Pa are obtained by fitting the model to duplicate the experimental discharge data, and Cu thin films are deposited by MPPMS at the corresponding pressures. The surface morphology, grain size and orientation, and microstructure of the deposited thin films are investigated by scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. By increasing the pressure from 0.1 to 0.7 Pa, both the ion bombardment energy and substrate temperature which are estimated by the modeled plasma parameters decrease, corresponding to the observed transition of the deposited thin films from a void free structure with a wide distribution of grain size (zone T) into an underdense structure with a fine fiber texture (zone 1) in the extended structure zone diagram (SZD). The microstructure and texture transition of Cu thin films are well-explained by the extended SZD, suggesting that the primary plasma processes are properly incorporated in the model. The results contribute to the understanding of the characteristics of MPPMS discharges, as well as its correlation with the microstructure and texture of deposited Cu thin films.

  10. Pulse width modulation algorithm and simulation based on linear motor%直线电机脉宽调制算法及仿真研究

    Institute of Scientific and Technical Information of China (English)

    林峰; 邓小雷


    为解决目前常规空间矢量脉宽调制( SVPWM)算法存在的计算繁琐、难以数字化实现的缺点,在综合分析永磁直线同步电机(PMLSM)控制原理的基础上,提出了一种用于永磁直线同步电机的新型SVPWM快速算法.该算法通过永磁直线同步电机位移传感器的检测值完成扇区判断与开关工作时间的计算.最后,通过Matlab/Simulink建立了仿真模型.仿真结果表明,该算法效果良好,解决了常规SVPWM算法由于反正切函数运算而导致系统响应慢、控制精度低的问题,具有一定的实用性与可行性.%In order to solve the problem of computational complexity and reduce the difficulty on implementing digitization with space vector pulse width modulation (SVPWM) , a novel rapid algorithm for SVPWM was proposed based on the comprehensive analysis of the control principle of permanent magnet linear synchronous motor (PMLSM). The sector judgment and the calculation of switching time can be calculated based on the data from the displacement sensor of PMLSM. Finally, the model of the algorithm was established in Matlab/ Simulink. The simulation results show that the novel algorithm is practical and feasible, the problems of low response and low control accuracy from inverse tangent calculation in conventional SVPWM is solved.


    Hancke, Kasper; Hancke, Torunn B; Olsen, Lasse M; Johnsen, Geir; Glud, Ronnie N


    Short-term temperature effects on photosynthesis were investigated by measuring O2 production, PSII-fluorescence kinetics, and (14) C-incorporation rates in monocultures of the marine phytoplankton species Prorocentrum minimum (Pavill.) J. Schiller (Dinophyceae), Prymnesium parvum f. patelliferum (J. C. Green, D. J. Hibberd et Pienaar) A. Larsen (Coccolithophyceae), and Phaeodactylum tricornutum Bohlin (Bacillariophyceae), grown at 15°C and 80 μmol photons · m(-2)  · s(-1) . Photosynthesis versus irradiance curves were measured at seven temperatures (0°C-30°C) by all three approaches. The maximum photosynthetic rate (P(C) max ) was strongly stimulated by temperature, reached an optimum for Pro. minimum only (20°C-25°C), and showed a similar relative temperature response for the three applied methods, with Q10 ranging from 1.7 to 3.5. The maximum light utilization coefficient (α(C) ) was insensitive or decreased slightly with increasing temperature. Absolute rates of O2 production were calculated from pulse-amplitude-modulated (PAM) fluorometry measurements in combination with biooptical determination of absorbed quanta in PSII. The relationship between PAM-based O2 production and measured O2 production and (14) C assimilation showed a species-specific correlation, with 1.2-3.3 times higher absolute values of P(C) max and α(C) when calculated from PAM data for Pry. parvum and Ph. tricornutum but equivalent for Pro. minimum. The offset seemed to be temperature insensitive and could be explained by a lower quantum yield for O2 production than the theoretical maximum (due to Mehler-type reactions). Conclusively, the PAM technique can be used to study temperature responses of photosynthesis in microalgae when paying attention to the absorption properties in PSII.

  12. Linear transformer driver for pulse generation (United States)

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A


    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  13. Linear transformer driver for pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A


    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  14. Control of high power pulse extracted from the maximally compressed pulse in a nonlinear optical fiber

    CERN Document Server

    Yang, Guangye; Jia, Suotang; Mihalache, Dumitru


    We address the possibility to control high power pulses extracted from the maximally compressed pulse in a nonlinear optical fiber by adjusting the initial excitation parameters. The numerical results show that the power, location and splitting order number of the maximally compressed pulse and the transmission features of high power pulses extracted from the maximally compressed pulse can be manipulated through adjusting the modulation amplitude, width, and phase of the initial Gaussian-type perturbation pulse on a continuous wave background.

  15. Development of a Wearable Pulse Monitoring Module Based on Zigbee Technology%基于Zigbee技术的穿戴式脉搏波检测模块的研制

    Institute of Scientific and Technical Information of China (English)

    杨易华; 吴效明; 岑人经


    This paper introduces a new wearable pulse detection module based on Zigbee technology. Pulse signal was detected using pressure sensor, then preprocessed and sent to CC2430 for analog-to-digital conversion, after that the data were judged and processed. Then, the data were transmitted to PC by using wireless sensor network formed by Zigbee technology,and received,displayed,analyzed with a care-software. The module realized the wireless real-time detection for pulse with miniaturization, low-power and portable for family care.%介绍了一种新型的基于Zigbee技术的穿戴式脉搏波检测模块.利用压力传感器提取出脉搏波信号,经过预处理后,送至CC2430进行模数转换,对数据进行判断和处理,再利用Zigbee技术组成的无线传感器网络把数据打包发送到PC机,然后由监护软件对数据进行处理、分析和显示.该模块实现了脉搏波的无线实时检测,具有微型化、低功耗等特点,适用于家庭的便携式移动监护.

  16. Pulse Compression Realization of Radar Linear Frequency Modulation Signal Via CUDA%基于CUDA的雷达线性调频信号脉冲压缩实现

    Institute of Scientific and Technical Information of China (English)

    江艳阳; 黄双华; 刘峰; 白海东


    This paper uses the GPU as the platform of radar simulation and introduces the CUDA technology to realize the algorithm of pulse compression of radar linear frequency modulation signal,and compares the CPU algorithm.The simulation result indicates that the algorithm of CUDA gets a higher operation rate than the CPU on the pulse compression.%利用图形处理器(GPU)作为雷达仿真平台,采用统一计算设备架构(CUDA)技术,实现雷达线性调频信号脉冲压缩算法,并与CPU算法进行比较。实验结果表明利用CUDA技术实现的脉冲压缩算法取得了比CPU算法明显较高的运算效率。

  17. 一种宽脉冲高重频浮动板调制器的设计%Design of a Wide-Pulse and High-Frequency Floating Deck Modulator

    Institute of Scientific and Technical Information of China (English)



    浮动板调制器具有输出波形好、功率小、电压较低、波形变化灵活等特点,在中小功率控制极微波管中被广泛应用.介绍了一种采用功率MOSFET串联组成调制开关的应用于行波管发射机的40kHz/2 kV固态浮动板调制器的设计,对调制器的电路拓扑进行了简要的概述,对调制器的关键器件即MOSFET开关管的选择、宽脉冲传输、开关管的驱动电路、调制器的保护电路及散热/绝缘设计等进行了较为详细的介绍.还就调制器抗打火设计进行了分析.最后给出了调制器的测试波形.%Floating deck modulator(FDM) has many advantages such as perfect output wave, low power, low voltage, and flexible wave variety. So it is widely used in middle and small power microwave tube. A solid state 40 kHz/2 kV floating deck modulator for travelling-wave tube transmitter using series power MOS-FETs as the modulating switches is described in this paper. The modulator circuit topology is briefed. The selection of MOSFET switching transistor which is the key part of the modulator, the wide pulse transmission, the driving circuit of switching transistor, the protection circuit for the modulator, and the cooling/insulation design are introduced in detail. The design against high-voltage sparking is also analysed. In the end, the modulation wave results are given.

  18. High-speed pulse-shape generator, pulse multiplexer (United States)

    Burkhart, Scott C.


    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  19. The action of pulse-modulated GSM radiation increases regional changes in brain activity and c-Fos expression in cortical and subcortical areas in a rat model of picrotoxin-induced seizure proneness. (United States)

    López-Martín, E; Bregains, J; Relova-Quinteiro, J L; Cadarso-Suárez, C; Jorge-Barreiro, F J; Ares-Pena, F J


    The action of the pulse-modulated GSM radiofrequency of mobile phones has been suggested as a physical phenomenon that might have biological effects on the mammalian central nervous system. In the present study, GSM-exposed picrotoxin-pretreated rats showed differences in clinical and EEG signs, and in c-Fos expression in the brain, with respect to picrotoxin-treated rats exposed to an equivalent dose of unmodulated radiation. Neither radiation treatment caused tissue heating, so thermal effects can be ruled out. The most marked effects of GSM radiation on c-Fos expression in picrotoxin-treated rats were observed in limbic structures, olfactory cortex areas and subcortical areas, the dentate gyrus, and the central lateral nucleus of the thalamic intralaminar nucleus group. Nonpicrotoxin-treated animals exposed to unmodulated radiation showed the highest levels of neuronal c-Fos expression in cortical areas. These results suggest a specific effect of the pulse modulation of GSM radiation on brain activity of a picrotoxin-induced seizure-proneness rat model and indicate that this mobile-phone-type radiation might induce regional changes in previous preexcitability conditions of neuronal activation.

  20. Research of reduced common-mode voltage technique with nonzero vector pulse width modulation for three-phase inverters%三相逆变器的无零矢量共模电压抑制技术研究

    Institute of Scientific and Technical Information of China (English)

    章勇高; 邝光健; 龙立中


    The common-mode suppression techniques with nonzero vector pulse width modulation (NZPWM) for three-phase inverters are studied. They are random state pulse width modulation (RSPWM), active zero state PWM1 (AZSPWM1), active zero state PWM3 (AZSPWM3) and near state PWM (NSPWM). Firstly, the operation areas of modulation factor and reference voltage vector with different modulation strategies are analyzed. The results show that RSPWM has a smaller operation area than other three NZPWM and is suitable for the application with lower modulation ratio. Secondly, the DC voltage utilization rate and output harmonic of different NZPWM are researched and compared with that of traditional space vector modulation (SVM) by using theoretical analysis and simulation. The results show that AZPWM1, AZPWM3 and NSPWM can not only suppress the common mode voltage of three-phase inverters efficiently, but also maintain high DC voltage utilization rate. However, three-phase inverters with NSPWM have the higher output harmonic comparing with the traditional SVM. The research results provide theoretical basis and instruction for the selection of common mode voltage suppression technique with NZPWM for three-phase inverters and its further study.%  研究了三相逆变器的 RSPWM、AZSPWM1、AZSPWM3和 NSPWM 无零矢量共模电压抑制技术。首先,分析了不同调制策略的调制因数和参考电压矢量的工作区间,说明了 RSPWM 的工作区间较小,适用于低调制比工作场合。再次,利用理论分析和仿真方法,研究了无零矢量调制策略的直流电压利用率和输出谐波特性,并与传统 SVM 调制策略比较。结果表明,AZSPWM1、AZSPWM3和 NSPWM 调制策略能够有效地抑制三相逆变器共模电压,同时保持了较高的直流电压利用率。但相对 SVM 调制策略,三相逆变器的输出谐波含量有所增大。研究结果为三相逆变器的无零矢量共模电压抑制技术的选用及进一步研究提供了理论依据和指导。

  1. Digital Communication Using Chaotic Pulse Generators

    CERN Document Server

    Rulkov, N F; Tsimring, L S; Volkovskii, A R; Abarbanel, Henry D I; Larson, L; Yao, K


    Utilization of chaotic signals for covert communications remains a very promising practical application. Multiple studies indicated that the major shortcoming of recently proposed chaos-based communication schemes is their susceptibility to noise and distortions in communication channels. In this talk we discuss a new approach to communication with chaotic signals, which demonstrates good performance in the presence of channel distortions. This communication scheme is based upon chaotic signals in the form of pulse trains where intervals between the pulses are determined by chaotic dynamics of a pulse generator. The pulse train with chaotic interpulse intervals is used as a carrier. Binary information is modulated onto this carrier by the pulse position modulation method, such that each pulse is either left unchanged or delayed by a certain time, depending on whether ``0'' or ``1'' is transmitted. By synchronizing the receiver to the chaotic pulse train we can anticipate the timing of pulses corresponding to ...

  2. Interference Resilient Sigma Delta-Based Pulse Oximeter. (United States)

    Shokouhian, Mohsen; Morling, Richard; Kale, Izzet


    Ambient light and optical interference can severely affect the performance of pulse oximeters. The deployment of a robust modulation technique to drive the pulse oximeter LEDs can reduce these unwanted effects and increases the resilient of the pulse oximeter against artificial ambient light. The time division modulation technique used in conventional pulse oximeters can not remove the effect of modulated light coming from surrounding environment and this may cause huge measurement error in pulse oximeter readings. This paper presents a novel cross-coupled sigma delta modulator which ensures that measurement accuracy will be more robust in comparison with conventional fixed-frequency oximeter modulation technique especially in the presence of pulsed artificial ambient light. Moreover, this novel modulator gives an extra control over the pulse oximeter power consumption leading to improved power management.

  3. Spectral Analysis using Linearly Chirped Gaussian Pulse Stacking

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huan; WANG An-Ting; XU Li-Xin; MING Hai


    We analyze the spectrum of a stacked pulse with the technique of linearly chirped Gaussian pulse stacking.Our results show that there are modulation structures in the spectrum of the stacked pulse. The modulation frequencies are discussed in detail. By applying spectral analysis, we find that the intensity fluctuation cannot be smoothed by introducing an optical amplitude filter.

  4. 一种带约束的电压空间矢量脉宽调制方法%A Novel Method of Space Vector Pulse Width Modulation With Constraints

    Institute of Scientific and Technical Information of China (English)

    吴德会; 夏晓昊; 李钷


    为解决传统调制方法中的最小脉宽问题,提出了一种带约束的电压空间矢量脉宽调制(space vector pulse width modulation,SVPWM)方法。首先,建立新的三相桥臂坐标,取消了扇区的划分和判断;其次,将基本电压空间矢量由8个减小为3个,并将其作用时间与三相桥臂的导通时间一一对应;再次,通过增加约束条件,将传统 SVPWM 方法的调制过程及其结果离散化,从而避免了窄脉宽的出现;最后,给出了一种快速的计算策略,其计算量仅与 SVPWM方法一个扇区的计算量基本相同。相对于 SVPWM 方法,所提方法调制的基波与杂波在频谱上的分布更清晰,低次谐波较少,有利于进行低通滤波处理,更适合较高电压和较大电流的逆变要求。仿真及实验结果均验证了该方法的可行性。%To solve the problem of the minimum pulse width in traditional modulation methods, a space vector pulse width modulation (SVPWM) method with constraints is proposed. Firstly, a three-phase bridge-arm coordinate is established to cancel the traditional sector division and the judgment;secondly, the number of basic voltage space vectors is reduced from 8 to 3, and their actuation durations correspond to the on-times of three-phase bridge-arms respectively;thirdly, by means of adding constraint conditions the modulation process of traditional SVPWM and modulation results are discretized to prevent the appearance of narrow pulse width;finally a fast computational strategy is given and its calculated amount is basically same as to the calculated amount for one sector by SVPWM method. Relative to SVPWM method, the distribution of the fundamental wave and clutters modulated by the proposed method on the frequency spectrum is more clear and there are less low-order harmonics, so it is favorable to implement low-pass filtering, thus the proposed method is more suitable for PV inverters with higher voltage and

  5. Detection and visualization to Doppler sensitive sonar pulses

    NARCIS (Netherlands)

    Bertrand, D.B.; IJsselmuide, S.P. van; Beerens, S.P.


    In anti-submarine warfare, the use of Doppler sensitive sonar pulses is common practice. In particular, the wideband Doppler sensitive PTFM pulse (Pulse Train Frequency Modulation) is a powerful tool for detection in reverberation limited conditions. Nevertheless, this pulse is not operationally

  6. Design and Implementation of Magnetic Switch for Pulsed Power Conditioning Modules%磁开关在强脉冲能源模块中的设计和应用

    Institute of Scientific and Technical Information of China (English)

    刘刚; 李黎; 林福昌; 曾晗; 蔡礼; 齐向东


    When two-electrode gap spark switch is applied in pulsed power conditioning module,it needs the trigger generator outputs a high frequency and high voltage pulsed waveform.To guarantee triggering reliability and protect other key components of the power conditioning module,such as preionization branch and Xenon lamp,magnetic switch is required to insulate the high triggering voltage in the main discharging circuit.In this paper,starting from the analysis of the working principle of the discharging circuit,we present the solution of Fe-based nanocrystalline alloy switch,provide the foundations of theory calculation and the method of material selection for the design and implementation of this magnetic switch.Via the performance tests in pulsed power conditioning module,the results prove that the magnetic switch can effectively isolate 100 kV high-voltage pulse.The saturation time is about 0.3 μs,and the saturated inductance of this magnetic switch is only 0.6 μH.This paper will perform the function of reference in engineering design and application of magnetic switches applied to large pulsed power apparatus.%强脉冲能源模块主放电回路中使用两电极开关时,必须借助触发装置输出1个高频高压脉冲施加在开关电极两端形成过压触发。为了保证开关的可靠触发以及保护能源模块中的预电离支路和氙灯负载等关键元件,主放电回路中必须加磁开关以隔离触发高压。因而该文从分析实际主放电回路的工作原理入手,提出了采用铁基纳米晶的磁开关应用于能源模块主放电回路的解决方案,给出了设计和实现磁开关的理论计算依据和材料选择方法。通过对磁开关实物在能源模块样机上的性能实测,证明磁开关能够有效地隔离100kV的脉冲高压,在额定工况下的饱和时间为0.3μs,饱和电感为0.6μH。该研究为磁开关在大型脉冲功率装置中的工程设计和应用提供了参考。

  7. Design of Cascading Pulse Width Modulation Rectifier Based on CPS-SPWM%基于CPS-SPWM级联型脉冲宽度调制整流器设计

    Institute of Scientific and Technical Information of China (English)

    于鹏; 季振东; 赵剑锋


    在建立级联型H桥脉冲宽度调制(pulse width modulation,PWM)变换器的平均模型的基础上,对单极性和双极性调制算法谐波特性进行分析,提出基于左、右桥臂独立调制的级联型调制算法;分析了级联型直流侧电压不均衡的原理及调节方法,给出基于调制比重构的直流侧平衡控制算法.MATLAB/Simulink软件仿真验证了所提出调制策略以及控制策略的有效性.

  8. 不同周期载频调制二进制编码激励脉冲压缩仿真研究%Simulation Study on Pulse Compression by Bi-phase Coded Excitation with Carrier Modulation

    Institute of Scientific and Technical Information of China (English)

    吴何珍; 刘政一


    In order to introduce the digital encoded technology to the seismic detection, the author studied coded excitation digital simulation and grasped the rules and characters of coded excitation, which is based on the basic coded excitation principle. By modulation launching of coded excitation signal, the author also did simulation research on pulse compression of received signal. Furthermore, the author processed pulse compression with 13 bit signal excitation transducer with one to five units code element (by launching of 13 bit signal excitation transducer with one to five units code element). The author did the power spectrum analyses and analyzed the influence on different excitation signal and its pulse compression result by transducer.%本文为将编码技术引入地震探测中,在分析编码激励基本原理的基础上,开展了编码激励的数值模拟研究,掌握编码激励的规律和特点.通过激励编码信号的调制发射,对接收信号进行脉冲压缩的仿真研究.其次通过单位码元载有1至5个载频周期个数的13位Barker码调制信号激励换能器(通过发射载有1至5个载频周期的13位Barker码调制信号来激励换能器),对接收信号进行脉冲压缩仿真研究和频谱分析,分析了换能器性能对编码激励信号及其脉冲压缩结果的影响.

  9. Discovery of a 36 ks Phase Modulation in the Hard X-ray Pulses from the Magnetar 1E 1547.0$-$5408

    CERN Document Server

    Makishima, Kazuo; Murakami, Hiroaki; Furuta, Yoshihiro; Nakano, Toshio; Sasano, Makoto; Nakazawa, Kazuhiro


    The Suzaku data of the highly variable magnetar 1E 1547.0$-$5408, obtained during the 2009 January activity, were reanalyzed. The 2.07 s pulsation of the 15--40 keV emission detected with the HXD was found to be phase modulated, with a period of $36.0^{+4.5}_{-2.5}$ ks and an amplitude of $0.52 \\pm 0.14$ s. The modulation waveform is suggested to be more square-wave like rather than sinusoidal. While the effect was confirmed with the 10--14 keV XIS data, the modulation amplitude decreased towards lower energies, becoming consistent with 0 below 4 keV. After the case of 4U 0142+61, this makes the 2nd example of this kind of behavior detected from magnetars. The effect can be interpreted as a manifestation of free precession of this magnetar, which is suggested to be oblately deformed under the presence of strong toroidal field of $\\sim 10^{16}$ G.

  10. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus


    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  11. 基于并联SOA的全光广播式超宽带脉冲形状调制技术%Research on all-optical broadcasting ultra-wideband pulse shape modulation based on multiple semiconductor optical amplifiers

    Institute of Scientific and Technical Information of China (English)

    马晓璐; 李培丽; 郑加金; 张一; 朱天阳


    基于半导体光放大器(SOA)中交叉增益调制(XGM)效应,采用SOA的并联结构,提出了一种全光产生广播式超宽带(UWB)脉冲形状调制(PSM)信号的方案.该方案同时产生三路超宽带PSM信号,具有多用户传输数据的能力,可为多址通信作理论基础;采用相向的工作方式可以改善输出信号的消光比.利用OptiSystem7.0软件对方案进行仿真,分析了输入信号脉冲宽度、输入光功率和波长对产生的超宽带PSM信号的影响,对信号的传输特性进行了研究.结果表明,本文方案对输入信号脉冲宽度和输入光波长具有良好的容忍度,并且给出了输入光功率的优化范围.%An all-optical broadcasting ultra-wideband (UWB) pulse shape modulation (PSM) technology based on the cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA) has been demonstrated.In this novel scheme,two wideband traveling wave SOAs are used,and the structure of the parallel SOAs is adopted to generate the PSM signals.and three kinds of ultra-wideband PSM signals are generated at the smae time.As a consequence,this new scheme has the ability to transmit data among multiple users,and can be used as a theoretical basis of multiple accuess communication.As the opposite working way is used.the scheme has an advantage in improving the extinction ratio (ER) of the output three ultra-wideband PSM signals.By using the software of OptiSystem7.0,the impacts of the input signal pulse width,the optical power and the wavelength of the laser on the generated three kinds of ultrawideband PSM signal are numberically simulated and studied.In addition,the transmission characteristics of the generated PSM signal are discussed.The results show that the PSM signal has a good toleration to the pulse width,and the optimized ranges of other parameters are presented.

  12. Synchronization and coherent combining of two pulsed fiber lasers

    Institute of Scientific and Technical Information of China (English)


    We demonstrate a scalable architecture for coherent combining of pulsed fiber lasers.A new method for generating synchronous pulsed fiber lasers by direct phase modulation is proposed and investigated.It is shown that phase modulated mutually coupled laser array can be a steady synchronous pulsed fiber laser source.The synchronous pulsed fiber lasers are coherently combined with an invariable phase difference of π in adjacent lasers.Neither active phase control nor polarization control is taken in our experiment.

  13. 空间矢量脉宽调制( SVPWM)技术的仿真与分析%Simulation and Analysis of Space Vector Pulse Width Modulation Technique

    Institute of Scientific and Technical Information of China (English)

    张成; 王心坚; 李良璋; 孙泽昌


      By analyzing the basic principle of flux tracking and voltage space vector synthesis , the DC voltage utilization ratio of space vector pulse width modulation (SVPWM) was analyzed theoretically.The PMSM speed regulating system model adopting SVPWM technique was built in Matlab /Simulink environment.And the simulation results show that SVPWM yields a circular magnetic field in motor space .The harmonics of output voltage distribute mainly around integer multiples of carrier frequency , and higher modulation index yields a low-er voltage total harmonic distortion.%  基于SVPWM的磁链跟踪和电压矢量合成原理,理论分析了SVPWM的直流电压利用率,在Matlab/Simulink中建立SVPWM及永磁同步电机调速系统的仿真模型。仿真结果表明, SVPWM可在电机空间实现圆形磁场,输出电压谐波集中在载波频率整数倍附近,较高的调制比可获得较小的电压谐波畸变。

  14. Displacement damage in bit error ratio performance of on-off keying, pulse position modulation, differential phase shift keying, and homodyne binary phase-shift keying-based optical intersatellite communication system. (United States)

    Liu, Yun; Zhao, Shanghong; Gong, Zizheng; Zhao, Jing; Dong, Chen; Li, Xuan


    Displacement damage (DD) effect induced bit error ratio (BER) performance degradations in on-off keying (OOK), pulse position modulation (PPM), differential phase-shift keying (DPSK), and homodyne binary phase shift keying (BPSK) based systems were simulated and discussed under 1 MeV neutron irradiation to a total fluence of 1×1012  n/cm2 in this paper. Degradation of main optoelectronic devices included in communication systems were analyzed on the basis of existing experimental data. The system BER degradation was subsequently simulated and the variations of BER with different neutron irradiation location were also achieved. The result shows that DD on an Er-doped fiber amplifier (EDFA) is the dominant cause of system degradation, and a BPSK-based system performs better than the other three systems against DD. In order to improve radiation hardness of communication systems against DD, protection and enhancement of EDFA are required, and the use of a homodyne BPSK modulation scheme is a considered choice.

  15. Pulse Voltammetry. (United States)

    Osteryoung, Janet


    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  16. Evidence for a 36 ks phase modulation in the hard X-ray pulses from the magnetar 1E 1547.0-5408 (United States)

    Makishima, Kazuo; Enoto, Teruaki; Murakami, Hiroaki; Furuta, Yoshihiro; Nakano, Toshio; Sasano, Makoto; Nakazawa, Kazuhiro


    The Suzaku data for the highly variable magnetar 1E 1547.0-5408, obtained during the 2009 January activity, were reanalyzed. The 2.07 s pulsation, detected in the 15-40 keV HXD data, was found to exhibit phase modulation, which can be modeled by a sinusoid with a period of 36.0^{+4.5}_{-2.5}ks and an amplitude of 0.52 ± 0.14 s. While the effect is also seen in the 10-14 keV XIS data, the modulation amplitude decreased towards lower energies, becoming consistent with 0 below 4 keV. After the case of 4U 0142+61, this makes the second example of this kind of behavior detected from magnetars. The effect can be interpreted as a manifestation of torque-free precession of this magnetar, which is suggested to be prolately deformed under the presence of a strong toroidal field of ˜1016 G.

  17. ELF wave generation in the ionosphere using pulse modulated HF heating: initial tests of a technique for increasing ELF wave generation efficiency

    Directory of Open Access Journals (Sweden)

    R. Barr

    Full Text Available This paper describes the results of a preliminary study to determine the effective heating and cooling time constants of ionospheric currents in a simulated modulated HF heating, `beam painting' configuration. It has been found that even and odd harmonics of the fundamental ELF wave used to amplitude modulate the HF heater are sourced from different regions of the ionosphere which support significantly different heating and cooling time constants. The fundamental frequency and its odd harmonics are sourced in a region of the ionosphere where the heating and cooling time constants are about equal. The even harmonics on the other hand are sourced from regions of the ionosphere characterised by ratios of cooling to heating time constant greater than ten. It is thought that the even harmonics are sourced in the lower ionosphere (around 65 km where the currents are much smaller than at the higher altitudes around 78 km where the currents at the fundamental frequency and odd harmonics maximise.

    Key words. Electromagnetics (antennae · Ionosphere (active experiments · Radio science (non linear phenomena

  18. Long-Term Anti-Allodynic Effect of Immediate Pulsed Radiofrequency Modulation through Down-Regulation of Insulin-Like Growth Factor 2 in a Neuropathic Pain Model

    Directory of Open Access Journals (Sweden)

    Chun-Chang Yeh


    Full Text Available Pulsed radiofrequency (PRF is effective in the treatment of neuropathic pain in clinical practice. Its application to sites proximal to nerve injury can inhibit the activity of extra-cellular signal-regulated kinase (ERK for up to 28 days. The spared nerve injury (SNI+ immPRF group (immediate exposure to PRF for 6 min after SNI exhibited a greater anti-allodynic effect compared with the control group (SNI alone or the SNI + postPRF group (application of PRF for 6 min on the 14th day after SNI. Insulin-like growth factor 2 (IGF2 was selected using microarray assays and according to web-based gene ontology annotations in the SNI + immPRF group. An increase in IGF2 and activation of ERK1/2 were attenuated by the immPRF treatment compared with an SNI control group. Using immunofluorescent staining, we detected co-localized phosphorylated ERK1/2 and IGF2 in the dorsal horn regions of rats from the SNI group, where the IGF2 protein predominantly arose in CD11b- or NeuN-positive cells, whereas IGF2 immunoreactivity was not detected in the SNI + immPRF group. Taken together, these results suggest that PRF treatment immediately after nerve injury significantly inhibited the development of neuropathic pain with a lasting effect, most likely through IGF2 down-regulation and the inhibition of ERK1/2 activity primarily in microglial cells.

  19. Compressive spectrum sensing of radar pulses based on photonic techniques. (United States)

    Guo, Qiang; Liang, Yunhua; Chen, Minghua; Chen, Hongwei; Xie, Shizhong


    We present a photonic-assisted compressive sampling (CS) system which can acquire about 10(6) radar pulses per second spanning from 500 MHz to 5 GHz with a 520-MHz analog-to-digital converter (ADC). A rectangular pulse, a linear frequency modulated (LFM) pulse and a pulse stream is respectively reconstructed faithfully through this system with a sliding window-based recovery algorithm, demonstrating the feasibility of the proposed photonic-assisted CS system in spectral estimation for radar pulses.

  20. Pulse compression by use of deformable mirrors. (United States)

    Zeek, E; Maginnis, K; Backus, S; Russek, U; Murnane, M; Mourou, G; Kapteyn, H; Vdovin, G


    An electrostatically deformable, gold-coated, silicon nitride membrane mirror was used as a phase modulator to compress pulses from 92 to 15 fs. Both an iterative genetic algorithm and single-step dispersion compensation based on frequency-resolved optical gating calibration of the mirror were used to compress pulses to within 10% of the transform limit. Frequency-resolved optical gating was used to characterize the pulses and to test the range of the deformable-mirror-based compressor.

  1. Fast Heat Pulse Propagation by Turbulence Spreading

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola


    The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...

  2. Fast Heat Pulse Propagation by Turbulence Spreading

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola


    The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...

  3. 复合材料蜂窝板脉冲热像检测和调制热像检测的比较研究%Comparative study on pulsed thermography and modulated thermography of composite honeycomb panels

    Institute of Scientific and Technical Information of China (English)

    郭兴旺; 许文浩


    为了探索适合复合材料蜂窝板缺陷检测的红外热像检测法及热像信号处理方法,对蜂窝板的脉冲热像检测(PT)、调制热像检测(MT)及几种热像信号处理方法的缺陷检测能力进行了比较。在脉冲热像检测中,用脉冲相位法进行热像序列处理,并与最佳原始热像进行比较。在调制热像检测中,提出用离散傅里叶级数法和相关系数法进行热像序列处理,并与经典的四点法进行比较。研究结果表明,在蜂窝板脱粘缺陷的检测中,调制热像法的检测效果好于脉冲热像法。在调制热像法的信号处理中,离散傅里叶级数法和相关系数法的应用效果均好于四点法。在最佳调制频率下,以"调制热像-离散傅里叶级数"法进行蜂窝板脱粘缺陷的检测具有最大的缺陷探测能力。%To investigate the optimal infrared thermography testing technique and thermographic data processing methods for the flaw inspection of composite honeycomb panels,the defect detection capabilities of pulsed thermography(PT),modulated thermography(MT) and several thermographic data processing algorithms were compared.In PT,pulsed phase thermography(PPT) was applied to the thermographic signal processing,and compared with the best raw image.In MT,discrete Fourier series(DFS) and correlation coefficient(CC) algorithm were newly proposed to process the experimental data,and compared with the classical Four-point method.The obtained results indicate that,MT is better than PT for debonding inspection of honeycomb panels.The effects of both DFS and CC are better than Four-point method for signal processing of MT.At the best modulation frequency,the MT-DFS method shows the maximum detection capability for debondings in honeycomb panels.

  4. 基于延迟锁定环技术的数字脉宽调制器的设计与实现%The Design and Implementation of a Delay Lock Loop Digital Pulse Width Modulator

    Institute of Scientific and Technical Information of China (English)

    宋慧滨; 梁雷; 王永平; 李菲; 孙伟峰


    A novel digital pulse width modulator( DPWM) architecture that based on DLL technology is introduced, which applies to switched-mode power supply( SMPS) . The delay line of this DPWM take advantage of the program-mable delay unit(PDU)and the DLL technology to eliminate the influence of process,temperature and voltage, which improve the linearity of PWM dramatically. This DPWM is well suited for FPGA or custom chip implementa-tion. The IC occupying only 0.045 7 mm2 silicon area is implemented in a CMOS 0.18μm process,the measure re-sults meet with the demand and the DPWM can fit the engineering application.%介绍了一种新型的基于数字延迟锁定环DLL( Delay Lock Loop)技术的混合数字脉宽调制器DPWM( Digital Pulse Width Modulator)结构,该结构用可编程延迟单元PDU( Programmable Delay Unit)构成延迟线,通过DLL调节算法,动态地调整PDU的延迟时间,从而消除了延迟线的延迟时间受工艺、温度、工作电压的影响,提高了PWM的调节线性度,适用于数字控制开关式电源SMPS( Switched-Mode Power Supply),可以大幅度的提升系统的性能。同时,此种结构的DPWM适合FPGA验证和流片实现。采用CMOS 0.18μm工艺对所提出的结构进行了设计与实现,DPWM占用面积0.0457 mm2,芯片测试结果非常好,可以进行工程应用。

  5. A Space Vector Pulse Width Modulation Based Optimization Control Strategy for Hybrid Cascaded 7-Level Inverter%基于SVPWM调制的混合级联七电平逆变器优化控制策略

    Institute of Scientific and Technical Information of China (English)

    耿俊利; 梁晖; 金渊


    The working modes of hybrid cascaded 7-level inverter with dead zone are analyzed and analysis results show that there are different jumping situations of inverter voltage under different working modes. On this basis, based on space vector pulse width modulation (SVPWM) strategy an optimal control method is proposed. In the premise that the supporting capacitor voltage is under the control, through analyzing the jumping of output voltage level and the valve action times corresponding to the charging/discharging process of supporting capacity voltage switching in each interval an optimal control strategy to reduce the jumping of output voltage is put forward; besides, the output voltage loss due to the existence of dead zone time is analyzed and calculated according to the principle of volt-second balance, and the dead zone compensation for its modulation wave is performed. The effectiveness of the proposed control strategy is validated by results of simulation and experiments.%分析混合级联七电平逆变器带死区时的工作模式,不同工作模式下其逆变器电压的跳变情况不同。在此基础上,提出了基于空间矢量脉冲调制(space vector pulse width modulation,SVPWM)策略的优化控制方法。以控制支撑电容电压为前提,通过对每个区间支撑电容充放电切换过程所对应的开关动作次数、输出电压电平跳变情况的分析,提出了一种减小输出电压跳变的优化控制策略;此外,分析了死区时间的存在所带来的输出电压损失,根据伏秒平衡原理进行计算,并对其调制波进行死区补偿。仿真及实验结果验证了该控制策略的有效性。

  6. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas


    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  7. Implementation of Carrier-Based Simple Boost Pulse Width Modulation (PWM) for Z-Source Inverter (ZSI) using Field Programming Gate Array (FPGA) (United States)

    Muhammad, M.; Rasin, Z.; Jidin, A.


    In recent years, the research on the Z-source inverter (ZSI) has received a wide acceptance due to its attractive solution for example in the renewable energy interface that requires voltage boost capability. The conventional inverter circuit based on the SPWM technique for example does not able to fully utilize its DC input voltage to produce a greater output voltage. The ZSI shoot-through implementation in high switching frequency requires a processor with fast sampling and high precision. In simulation, this can be easily carried out with the available advanced engineering software. In the hardware implementation however, the processor used is not only handle the switching, but also needs to read the data obtained by the sensor, voltage and current control, information display etc. This limits the capacity that can be used to implement the switching fast sampling with high precision. The aims of this work are to implement high precision of carrier-based simple boost PWM for ZSI using FPGA and to verify its real time hardware implementation. The high precision of PWM control algorithm based on the FPGA platform is verified by comparing the simulation results with the experimental results for different modulation index and boost factor, and a good agreement is concluded. It is observed that the application of FPGA reduces complexity, increases speed and the design of the switching technique can be altered without having to modify the hardware implementation.

  8. FPGA based pulsed NQR spectrometer (United States)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.


    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  9. Direct Torque Control of Asynchronism Motor Based on Space Vector Pulse Width Modulation%基于SVPWM的感应电机直接转矩控制方法的研究

    Institute of Scientific and Technical Information of China (English)

    高中臣; 张爱玲; 陈晨


    To reduce the low speed torque ripple of induction motor and keep constant switch frequency, this paper proposed a new control strategy on the basis of direct torque control (DTC),which uses Space Vector Pulse Width Modulation instead of switch table.The experiment and simulation results show that it can reduce the torque ripple,and improve the waveform of stator flux and current.%针对传统直接转矩控制开关频率不恒定及低速时的转矩脉动大的缺点,采用了基于SVPWM的直接转矩控制方法.根据转矩和定子磁链的误差确定应该施加的参考电压矢量,然后利用电压空间矢量脉宽调制(SVPWM)的方法合成该矢量.仿真和实验结果表明,基于SVPWM的直接转矩控制(SVPWM-DTC)能够有效减小转矩脉动,改善磁链和电流波形.

  10. Non-Fragile H∞Control for Random Pulse Width Modulation of DCM Boost Converter%DCM Boost变换器随机PWM非脆弱H∞控制

    Institute of Scientific and Technical Information of China (English)

    冉华军; 李翔; 肖鹏


    引入两模态马尔科夫链随机PWM策略到DCM Boost变换器,推导建立了变换器的离散随机跳变模型,并基于随机跳变系统非脆弱H∞控制理论为Boost变换器设计了非脆弱H∞控制器,利用Simulink软件平台设计仿真电路进行验证。仿真分析表明,设计的控制器改善了Boost变换器的EMI品质,对控制器参数摄动表现出非脆弱性,使整个变换器系统具有较好的鲁棒性。%The two-state-Markov-chain random pulse width modulation (PWM) scheme was introduced into the DCM Boost converter. This paper derived the random discrete-time jumping model of the converter and designed the non-fragile H∞ con-troller based on non-fragile H∞ control theory of stochastic jumping system. The simulation was done to check the validity of non-fragile H∞controller on the Simulink platform. The simulation analysis indicates that the designed controller has improved the EMI quality of Boost converter along with non-fragility to its parameters uncertainty, and with better robust for the whole converter system.

  11. Effect of atmospheric turbulence on the bit error probability of a space to ground near infrared laser communications link using binary pulse position modulation and an avalanche photodiode detector (United States)

    Safren, H. G.


    The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.

  12. Direct modulation of 56 Gbps duobinary-4-PAM

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Vegas Olmos, Juan José; Mao, Bangning;


    This paper reports on the direct modulation of externally modulated laser and transmission through single mode fiber of a 56 Gbps duobinary-4-pulse amplitude modulation signal through 10 GHz class optics....

  13. 脉冲激光与电刺激治疗系统音频信号处理模块的研制%Design of Pulse Laser and Electrotherapy System Audio Signal Processing Module

    Institute of Scientific and Technical Information of China (English)

    黄俊杰; 黄时俊; 黄丹阳; 陈仲本


    目的:设计一款基于TMS320VC5402 DSP的音频信号处理模块,用于采集处理多模式脉冲激光与电刺激治疗系统的音乐信号,探讨不同频率成分的音频信号对治疗高血压的影响,实现多模式脉冲激光与电刺激治疗高血压治疗处方的多样化.方法:使用音频编解码芯片TLV320AIC23B实现对多模式脉冲激光与电刺激治疗系统的音乐信号的采集,利用高性能数字信号处理芯片TMS320VC5402对采集的信号进行相应的信号分析与处理.通过数字信号处理技术得到新的治疗处方应用于多模式脉冲激光与电刺激治疗系统,用于探讨不同频率成分的音频信号对治疗高血压的影响.结果:设计的硬件平台稳定可靠,可实时采集音频信号,可用于寻找对高血压治疗的有效频率成分.结论:该设计可实时采集音频信号,并运用各种信号处理的手段,产生不同的高血压治疗处方,为寻找有效治疗高血压的音频频率成分提供了可靠稳定的硬件平台.%Objective:To design an audio signal processing module based on DSP TMS320VC5402 used to sample and process audio signal from multi-mode pulse laser and electrotherapy system, discuss different frequency components of audio signal influence hypertension treatment and achieve hypertension treatment prescription for multi-mode pulse laser and electrotherapy system of diversification. Methods: We use audio codec TLV320AIC23B for sampling audio signal from multi-mode pulse laser and electrotherapy system, and use high performance digital signal processing chip TMS320VC5402 for analyzing and processing audio signal. Through digital signal processing technology to generate new treatment prescription applied in multi-mode pulse laser and electrotherapy system, is used to explore different frequency components of audio signal influence hypertension treatment. Results: The design of hardware platform is stable and reliable, which can sample real-time audio

  14. Linear transformer driver for pulse generation with fifth harmonic (United States)

    Mazarakis, Michael G.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Volkov, Sergey N.; Kondratiev, Sergey S.; Alexeenko, Vitaly M.; Bayol, Frederic; Demol, Gauthier; Stygar, William A.; Leckbee, Joshua; Oliver, Bryan V.; Kiefer, Mark L.


    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first, second, and third power delivery module. The first power delivery module sends a first energy in the form of a first pulse to the load. The second power delivery module sends a second energy in the form of a second pulse to the load. The third power delivery module sends a third energy in the form of a third pulse to the load. The linear transformer driver is configured to form a flat-top pulse by the superposition of the first, second, and third pulses. The first, second, and third pulses have different frequencies.

  15. Linear transformer driver for pulse generation with fifth harmonic

    Energy Technology Data Exchange (ETDEWEB)

    Mazarakis, Michael G.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Volkov, Sergey N.; Kondratiev, Sergey S.; Alexeenko, Vitaly M.; Bayol, Frederic; Demol, Gauthier; Stygar, William A.; Leckbee, Joshua; Oliver, Bryan V.; Kiefer, Mark L.


    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first, second, and third power delivery module. The first power delivery module sends a first energy in the form of a first pulse to the load. The second power delivery module sends a second energy in the form of a second pulse to the load. The third power delivery module sends a third energy in the form of a third pulse to the load. The linear transformer driver is configured to form a flat-top pulse by the superposition of the first, second, and third pulses. The first, second, and third pulses have different frequencies.

  16. Pulse front control with adaptive optics (United States)

    Sun, B.; Salter, P. S.; Booth, M. J.


    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  17. Pulsed thermoelectricity (United States)

    Apostol, M.; Nedelcu, M.


    A special mechanism of thermoelectric transport is described, consisting of pulses of charge carriers which "fly" periodically through the external circuit from the hot end of the sample to the cold end, with a determined duration of the "on" and "off" times of the electric contacts, while maintaining continuously the thermal contacts. It is shown that such a "resonant" ideal thermogenerator may work cyclically, with the same efficiency quotient as the ideal efficiency quotient of the thermoelectric devices operated in the usual stationary transport regime but the electric flow and power are increased, as a consequence of the concentration of the charge carriers on pulses of small spatial extent. The process is reversible, in the sense that it can be operated either as a thermoelectric generator or as an electrothermal cooler.

  18. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew J. (R.J. Lee Group, Inc., Monroeville, PA); Faraone, Kevin M. (BWX Technologies, Inc., Lynchburg, VA); Norris, Jerome T.


    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  19. Numerical simulation for characterizing femtosecond optical pulses with the SPIDER algorithm

    Institute of Scientific and Technical Information of China (English)

    Chai Lu; He Tie-Ying; Gao Feng; Wang Qing-Yue; Xing Qi-Rong; Zhang Zhi-Gang


    In this article based on the spectral phase interferometry for direct electric-field reconstruction (SPIDER), the femtosecond pulses with various phase characters are numerically simulated. The spectral phases and amplitudes of the transform-limited pulse, the linear chirped pulse, the cubic dispersion pulse, the quartic dispersion pulse, the self-phase modulation pulse and the pulses with the combination of different chirped characters are retrieved. These characterized pulses are applicable to the real-time measurement as samples for diagnosing the chirped characters of pulses quickly.

  20. Design of fuzzy' pulse width modulation controller with accuracy and energy retrenchment applied to spacecraft%航天器精确节能模糊脉冲调宽控制器的设计

    Institute of Scientific and Technical Information of China (English)

    周尹强; 徐炼新; 姜玉宪


    为实现航天器精确、节能的姿态或轨道控制,提出一种采用脉冲宽度调制PWM(Pulse Width Modulation)与模糊比例微分PD(Proportional Differential)控制相结合的模糊PD-PWM控制器.其中PWM能将开关型控制转化为相应的精确线性控制,而模糊PD控制在能量消耗限制不同情况下可实现两种快速、节能的控制过程.在分析大气层外拦截器EKV(Extra-atmospheric Kill Vehicle)处于目标捕获和末制导阶段对姿控系统的不同性能要求的基础上,以EKV姿控系统为例介绍了模糊PD-PWM控制器的设计和优化过程.说明了模糊PD控制器隶属度函数的设计、待优化参数的选择以及模糊控制规则的设计,重点叙述了遗传算法GA(Genetic Algorithms)中适应度函数的设计方法,并对隶属度函数进行了优化.仿真结果证明优化后的控制器能满足EKV不同阶段姿态控制要求,具有精确、节能的特点.

  1. PULSE COLUMN (United States)

    Grimmett, E.S.


    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  2. ADRF experiments using near n.pi pulse strings. [Adiabatic Demagnetization due to Radio Frequency pulses (United States)

    Rhim, W. K.; Burum, D. P.; Elleman, D. D.


    Adiabatic demagnetization (ADRF) can be achieved in a dipolar coupled nuclear spin system in solids by applying a string of short RF pulses and gradually modulating the pulse amplitudes or pulse angles. This letter reports an adiabatic inverse polarization effect in solids and a rotary spin echo phenomenon observed in liquids when the pulse angle is gradually changed across integral multiples of pi during a string of RF pulses. The RF pulse sequence used is illustrated along with the NMR signal from a CaF2 single crystal as observed between the RF pulses and the rotary spin echo signal observed in liquid C6F6 for n = 2. The observed effects are explained qualitatively on the basis of average Hamiltonian theory.

  3. Propagation of pulse fluctuations in single-mode fibers. (United States)

    Marcuse, D


    An earlier paper [Applied Optics 19, 1653 (1980)] dealt with the ensemble averages of pulses propagating in single-mode fibers. In this paper we discuss pulse fluctuations. The light pulses are generated by modulation of the power of a continuously operating light source consisting of N discrete sinusoidal frequencies randomly phased relative to each other. The fixed amplitudes of the sinusoidal frequency components of the source are adjusted to fit into a Gaussian envelope, and the modulating pulse has a Gaussian distribution in time. This mathematical model approximates a laser light source operating in several free-running longitudinal modes. We find that the fluctuations of the modulated light pulses can die out if the pulses travel a long distance in a dispersive fiber, provided the spacings between the sinusoidal frequency components of the light source are larger than the spectral width of the modulating signal. If the source frequency components are spaced more closely than the spectral width of the modulating pulse, fluctuations persist indefinitely independent of fiber length. However, in a practical system, whose input pulse is only about half as short as the output pulse, fluctuations are practically unaffected by transmission through a fiber.

  4. Pulse reshaping in nearly resonant interaction of femtosecond pulses with dense rubidium vapor (United States)

    Vdović, Silvije; Skenderović, Hrvoje; Pichler, Goran


    Propagation of intense femtosecond pulses resonant with the atomic rubidium vapor results in phenomenon known as conical emission. The origin of this phenomenon is connected with self-phase modulation in time domain accompanied with spatial self-focusing for blue-detuned pulses. When the laser central wavelength is red-detuned the self-defocusing occurs. Using frequency-resolved optical gating measurements and simple modeling of pulse propagation within the linear dispersion theory it is shown that the retrieved phase of the propagated pulse, and the associated instantaneous frequency, shows evidence of both linear dispersion and self-phase modulation. These results are consistent with the theory of the intensity dependent nonlinear refraction index in medium where linear dispersion contributes significantly to pulse reshaping.

  5. Research on pulsed-modulation-based eddy current evaluation of subsurface corrosion in defect metallic structures%脉冲调制涡流检测金属构件亚表面腐蚀缺陷研究

    Institute of Scientific and Technical Information of China (English)

    闫贝; 李勇; 李达; 刘相彪; 李一力; 陈振茂; 王钧


    Subsurface corrosion defect severely influences the integrity of crucial components of in-service apparatus.In light of this,this paper proposes a new pulsed eddy current technique (PEC),namely pulsed-modulation-based eddy current technique (PMEC),and intensively inves-tigates its advantages regarding inspection and evaluation of subsurface corrosion defect in metal-lic structures.The correlations of PMEC signals and their features with subsurface corrosion in different depths are firstly analyzed via the finite element analysis based on the numerical PMEC model established using reduced magnetic vector potential method.The advantages of PMEC over PEC are identified via simulations.In parallel,an experimental system implementing PMEC as well as PEC is built up.Through experiments,PMEC and PEC are further compared regarding inspection of subsurface corrosion defect in conductors.The experimental results are found to be in agreement with those from simulations.The results from both simulations and experiments in-dicate that compared with PEC,PMEC has higher sensitivity to subsurface corrosion defect in metallic structures.%亚表面腐蚀缺陷严重影响在役装备关键金属构件的完整性。本文提出一种新型脉冲涡流检测技术,即脉冲调制涡流检测技术,探究该技术在金属构件亚表面腐蚀缺陷检测和评估中的技术优势。首先,基于退化磁矢位法,建立了脉冲调制涡流检测金属构件亚表面腐蚀缺陷的高效有限元仿真模型,仿真分析了脉冲调制涡流检测信号及其特征与金属构件亚表面腐蚀缺陷深度间的关联规律,探究了该技术的优势性。同时,搭建了脉冲调制涡流/脉冲涡流双检测试验系统,通过试验,进一步探究两种技术在金属构件亚表面腐蚀缺陷检测中的优劣,试验结果验证了仿真分析结论。研究表明,对于金属构件亚表面腐蚀缺陷检测,脉冲调制涡流检测技术较脉冲

  6. Pulse Code Modulation Telemetry: Properties of Various Binary Modulation Types (United States)


    appendix A. Selection of Prenodulation Filter The best premodulation filter is the widest linear phase filter which allows the RF spvctral occupancy...and sample (F/S) bit detector. The bit error rates achieved while using linear phase filters were repeatedly as good or better than the bit error rates...premodulation filter used was a 5-pole linear phase filter with the -3 dB roll-off point at 800 kHz for all eight spectra. The 99% power bandwidth versus

  7. Bipolar pulse forming line (United States)

    Rhodes, Mark A.


    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  8. Digital-Analog Converter Based on Pulse Width Modulated Force Feedback in Sigma-Delta Accelerometer%Σ△微加速度计中基于脉宽调制的力反馈回路

    Institute of Scientific and Technical Information of China (English)

    陶呈瑶; 邓康发


    针对微加速度计接口电路的Sigma-Delta(撞驻)数字反馈系统,提出了一种基于脉宽调制( PWM)的力反馈回路:利用模拟低通滤波器将PWM波解调成模拟输出信号,具有滤波和数模转换功能。首先建立微加速度计撞驻闭环反馈系统的Simulink模型并进行了系统级仿真。之后采用Filter Solutions滤波器设计软件确定三阶低通巴特沃斯滤波器,并采用Pspice仿真软件进行电路级仿真。最后将制作的PCB版电路进行测试:PWM波通过力反馈回路能还原成高保真度的模拟信号,输出信号和输入信号的频率相对误差小于0.36%,等效DAC分辨率为8 bit。试验表明,此方案结构简单、成本低,能以较低电路复杂度实现高精度的模拟信号输出。%Aiming at the Sigma-Delta(Σ△) digital force feedback system in Mcro-accelerometer interface circuit,this paper presents a force feedback loop based on Pulse Width Modulator(PWM). The PWM wave can be translated into output analog singal using low pass filter,indicating that this circuit has a dual function of filter and digital to analog conversion( DAC) . Firstly,Σ△closed loop feedback system was simulated in Simulink model for system level simulation,then Filter Solutions software was used for designing three-order Butterworth low pass filter,and Pspice software was adopted for circuit level simulation. Finally electronic circuit was made by PCB and then tested. Through the force back loop,the wave can be successfully translate to undistorted analog signal,and the maximun relative error is below 0. 36% compared to the input signal,the equivalent DAC resolution is 8 bit. This experiment shows that this method has the advantages of simple structure,low cost,and easy way to produce high precise output analog signal.

  9. Excimer Laser Pulse Compress With Pulse Feedback

    Institute of Scientific and Technical Information of China (English)


    <正>To attain a shorter laser pulse, a compressing technique called pulse feedback was developed from the saturation gain switch applied to the amplification in a discharge pumping excimer laser cavity. It can


    Institute of Scientific and Technical Information of China (English)

    肖健; 王中阳; 徐至展


    The spectrum evolution of a few-cycle optical pulse in a resonant two-level atom medium is studied theoretically by using the full Maxwell-Bloch equations. On the propagating pulse, significantly much faster oscillation components separated with the main pulse appear due to strong self-phase modulation and pulse reshaping. In this case, ideal selfinduced transparency cannot occur for a 2r pulse. The spectrum of the 4r pulse shows an evident oscillatory feature because of the continuum interference of the separate pulses. For larger pulse areas, continuum generation from near ultraviolet to infrared occurs.

  11. Plasma optical modulators for intense lasers (United States)

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie


    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm-2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations.

  12. Pulsed Optics (United States)

    Hirlimann, C.

    Optics is the field of physics which comprises knowledge on the interaction between light and matter. When the superposition principle can be applied to electromagnetic waves or when the properties of matter do not depend on the intensity of light, one speaks of linear optics. This situation occurs with regular light sources such as light bulbs, low-intensity light-emitting diodes and the sun. With such low-intensity sources the reaction of matter to light can be characterized by a set of parameters such as the index of refraction, the absorption and reflection coefficients and the orientation of the medium with respect to the polarization of the light. These parameters depend only on the nature of the medium. The situation changed dramatically after the development of lasers in the early sixties, which allowed the generation of light intensities larger than a kilowatt per square centimeter. Actual large-scale short-pulse lasers can generate peak powers in the petawatt regime. In that large-intensity regime the optical parameters of a material become functions of the intensity of the impinging light. In 1818 Fresnel wrote a letter to the French Academy of Sciences in which he noted that the proportionality between the vibration of the light and the subsequent vibration of matter was only true because no high intensities were available. The intensity dependence of the material response is what usually defines nonlinear optics.

  13. Molecular wakes for ultrashort laser pulses

    Institute of Scientific and Technical Information of China (English)


    The molecular wake-assisted interaction between two collinear femotosecond laser pulses is investigated in air,which leads to the generation of a controllable 1.8 mJ super-continuum pulse with an elongated self-guided channel due to the cross-phase modulation of the impulsively aligned diatomic molecules in air. For two parallel launched femtosecond laser pulses with a certain spatial separation,controllable attraction and repulsion of the pulses are observed due to the counter-balance among molecular wakes,Kerr and plasma effects,where the molecular wakes show a longer interaction distance than the others to control the propagation of the intense ultrashort laser pulses.

  14. Experimental research of pulsed chirp effect on the small-scale self-focusing

    Institute of Scientific and Technical Information of China (English)


    The chirped optical pulses undergoing self-focusing and splitting into multiple filamentation passing through a Kerr medium-carbon disulfide (CS2) are studied experimentally and numerically. At the particular spatial position, modulation growth takes place from the experimental result. The process of modulation growth with different pulsed chirp is analyzed. It is found that with the pulsed chirp in-creasing (equal to the pulse width increasing), modulation growth of chirped opti-cal pulses is delayed and the average input power also increases. The simulation results are in agreement with the experimental results.

  15. Multiple-beam pulse shaping and preamplification

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.B.; VanWonterghem, B.W.; Burkhart, S.C.; Davin, J.M.


    Glass fusion laser systems typically use a master oscillator-power amplifier (MOPA) architecture, where control of the optical pulse temporal and spatial parameters is accomplished mainly in the master oscillator and low power optics. The pulses from this low power ``front end`` are amplified in the power amplifier, which modifies the pulse shape temporally and spatially. Nonlinear frequency conversion crystals following the amplifier further change the pulse before it reaches the target. To effectively control the optical pulse on target for different types of experiments, and compensate for nonlinearity in the preceding optics, the front end system must be versatile enough to easily control many pulse parameters over a large range. The front end pulse generation system described in this article represents a new approach to this problem. The proposed National Ignition Facility (NIF) has 192 beamlines, each of which requires an input pulse of up to 12 Joules in around 4 ns equivalent square pulse length. Considerations of laser architecture for supplying each of these beamlines from a central oscillator system were crucial in the design of the front end. Previous lasers have used bulk optics to split a single oscillator signal and report beams to multiple amplifier chains. A key idea in the current design is to replace bulk optic transport with fibers, eliminating large opto-mechanical subsystems. Another important concept is convenient pulse forming using low voltage integrated optic modulators. The integrated optic and fiber optic concepts resulted in the current pulse generation designs for NEF. An important advantage is that each of the beamlines can have an independently controlled temporal pulse shape, which provides for precise balance of instantaneous power on target.

  16. Modulation properties of VCSEL with intracavity modulator (United States)

    van Eisden, J.; Yakimov, M.; Tokranov, V.; Varanasi, M.; Mohammed, E. M.; Young, I. A.; Oktyabrsky, S.


    We have studied the modulation properties of VCSEL with intracavity multiple quantum well (MQW) electroabsorption modulator integrated into the top distributed Bragg reflector (DBR) [1]. Small signal analysis of rate equations for loss modulation shows an intrinsic high-frequency roll-off slope of 1/ω instead of 1/ω2 in directly modulated laser diodes, and consequently bandwidths in excess of 40 GHz are obtainable with this configuration [2]. Possible limiting factors to high bandwidth were examined by fitting high frequency characteristics to a multi-pole transfer function, and include RC delay and carrier drift-limited time of flight (TOF) in the modulator intrinsic region. Intracavity loss modulation shows a strong (+20dB) relaxation oscillation resonant feature in both theory and experiment. As demonstrated, this feature can be significantly reduced in amplitude using parasitics. We have extracted relative contribution of TOF and parasitic capacitance by varying the modulator intrinsic region width (105 and 210 nm) and lateral size of the modulator (18 and 12μm). It was estimated that the small size modulator exhibits parasitics f -3dB at 8GHz. To estimate the carrier TOF contribution to bandwidth limits, low temperature growth of a 210 nm absorber i-region and MQW was employed to reduce photogenerated carrier lifetime. Bandwidth limitations were found to be mostly due to diode and metallization capacitances, in addition to one pole set by the optoelectronic resonance frequency. We have used p-modulation doping of the gain region to increase the relaxation frequency. Pronounced active Q-switching was observed, yielding pulse widths of 40 ps at a 4 GHz rate.

  17. Numerical study on pulse trapping in birefringent photonic crystal fibers

    Institute of Scientific and Technical Information of China (English)

    YAO Yan-yan; LI Shu-guang; FU Bo; ZHANG Lei; ZHANG Mei-yan


    Using an adaptive split-step Fourier method, the coupled nonlinear Schrodinger equations have been numerically solved in this paper. The nonlinear propagation of an ultrashort optical pulse in the birefringent photonic crystal fibers is investigated numerically. It is found that the phenomenon of pulse trapping occurs when the incident pulse is deviating from the principal axis of the fiber with some angle. Owing to the bireffingence effect, the incident pulse can be regarded as twoorthogonal polarized pulses. The phenomenon of pulse trapping occurs because of the cross phase modulation (XPM) between the two components. As a result, the bandwidth of the supercontinuum (SC) decreases compared with the case that the incident pulse is input along the principal axis. When the polarization direction of the incident pulse is parallel to the fast axis, the bandwidth of the supercontinuum is maximaL

  18. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail:; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)


    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  19. Near-Nyquist optical pulse generation with fiber optical parametric amplification. (United States)

    Vedadi, Armand; Shoaie, Mohammad Amin; Brès, Camille-Sophie


    A novel method using optical fiber parametric amplification and phase modulation is proposed in order to generate Nyquist pulses. Using parabolic pulses as a pump, we show theoretically that it is possible to generate Nyquist pulses. Furthermore, we show that by using a sinusoidal pump (pump intensity modulated by an RF tone), it is possible to obtain pulses with characteristics that are close to Nyquist limited pulses. We demonstrate experimentally the generation of bandwidth limited pulses with full width half maximum of 14 ps at 10 GHz repetition rate. We also discuss limitations of this method and means to overcome these limitations.

  20. 部分相干方形平顶电磁脉冲光束经相位调制透镜的聚焦特性%Focusing Characteristics of Partially Coherent Square Flat-Topped Electromagnetic Pulsed Beams Focused by a Phase Modulated Lens

    Institute of Scientific and Technical Information of China (English)

    张国文; 陶华; 蒲继雄; 卢兴强; 马伟新


    Unified theory of coherence and polarization of stationary beams is applied to pulsed light beams research. Partially coherent square flat-topped electromagnetic pulsed beams have been constructed, and analytical expressions for cross-spectral density matrix of a class of the pulsed light beams focused by a phase modulated lens have been derived. A detailed study on effects of phase distortion radii, phase distortion depth, phase modulated position and correlation length on spectral density in focused filed is carried on. It is shown that local phase modulation will produce another spectral density peak in the focused field, and correlation parameter of source and phase modulation parameters determine the value of intensity peak, and make it shift in some cases. Especially when parameters of correlation of the source are chosen to be some values, a focal switch phenomenon will occur. Change of spatial coherent length of the source produces the spatially focal shift and pulse time correlation length also produces spectral density peak shift on frequency.%将稳态场的相干偏振统一理论应用于脉冲光束的研究.构建了部分相干方形平顶电磁脉冲光束,并推导出该光束经相位调制透镜后聚焦的交叉谱密度函数表达式.详细探讨了相位调制尺寸、调制深度、调制中心位置以及光束相关长度等对聚焦场光谱强度的影响.研究结果表明,局域相位调制会导致在聚焦场中产生另一光谱强度峰值,光束的相关参数和相位调制参数决定该光谱强度峰值大小,并在一定情况下使之发生移动.特别是当光源相关参数和相位调制参数处于某临界值时,会发生光谱强度峰值开关现象.同时发现,空间相关长度导致光束发生空间焦移,而脉冲时间相关长度导致光谱强度峰值在频率上的移动.

  1. Modulation of whistlers (United States)

    Sivokon', V. P.; Bogdanov, V. V.; Druzhin, G. I.; Cherneva, N. V.; Kubyshkin, A. V.; Sannikov, D. V.; Agranat, I. V.


    Analysis of the experimental data obtained at Paratunka observatory (53.02° N, 158.65° E; L = 2.3) has revealed a nonstandard form of whistlers involving spectral lines that are symmetric with respect to the whistler. We have shown that this form is most likely due to the amplitude modulation of whistlers by electromagnetic pulses with a length of around 1 s and carrier frequency of around 1.1 kHz. We have suggested that these pulses could be emitted by the auroral electrojet modified by heating radiation from the HAARP facility (62.30° N, 145.30° W; L > 4.2).

  2. Programmable pulse generator

    CERN Document Server

    Xue Zhi Hua; Duan Xiao Hui


    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  3. Synchronous pulse generation in a multicavity fiber laser system (United States)

    Gómez-Pavón, L. C.; Martí-Panameño, E.; Gómez-de la Fuente, O.; Luis-Ramos, A.


    We report the experimental synchronous pulse generation in a multicavity fiber laser system with two Erbium-doped fiber laser cavities. We have demonstrated that through the evanescent fields interaction between one cavity with active modulation and other one in continuous wave it is possible to generate more intense pulses in both cavities. Moreover, the synchronous pulse generation between cavities is achieved with an appropriate selection of pump intensity, modulation frequency and coupling ratio. We found that the pulse intensity is 2.5 times greater and the pulse duration lowers than a single Erbium-doper fiber laser. Furthermore, by means of the synchronous diagram we determined the synchronization strength in temporal pulse emission between cavities.

  4. Optimization of the LCLS Single Pulse Shutter

    Energy Technology Data Exchange (ETDEWEB)

    Adera, Solomon; /Georgia Tech., Atlanta /SLAC


    A mechanical shutter which operates on demand is used to isolate a single pulse from a 120 Hz X-ray source. This is accomplished with a mechanical shutter which is triggered on demand with frequencies ranging from 0 to 10 Hz. The single pulse shutter is an iron blade that oscillates on a pivot in response to a force generated by a pair of pulsed electromagnets (current driven teeter-totter). To isolate an individual pulse from the X-ray beam, the motion of the mechanical shutter should be synchronized in such a way that it allows a single pulse to pass through the aperture and blocks the other incoming pulses. Two consecutive pulses are only {approx} 8 ms apart and the shutter is required to complete one full cycle such that no two pulses pass through the opening. Also the opening of the shutter blade needs to be at least 4 mm so that a 1 mm diameter rms Gaussian beam can pass through without modulation. However, the 4 mm opening is difficult to obtain due to blade rebound and oscillation of the blade after colliding with the electromagnet. The purpose of this project is to minimize and/or totally eliminate the rebound of the shutter blade in pursuit of maximizing the aperture while keeping the open window interval < {approx}12 ms.

  5. Controlled supercontinuum generation for optimal pulse compression : a time-warp analysis of nonlinear propagation of ultra-broad-band pulses

    NARCIS (Netherlands)

    Spanner, M; Pshenichnikov, M; Olvo, [No Value; Ivanov, M


    We describe the virtues of the pump-probe approach for controlled supercontinuum generation in nonlinear media, using the example of pulse compression by cross-phase modulation in dielectrics. Optimization of a strong (pump) pulse and a weak (probe) pulse at the input into the medium opens the route

  6. Dependence of adiabatic population transfer on pulse profile

    Indian Academy of Sciences (India)

    S Dasgupta; T kushwaha; D Goswami


    Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant. We study the effect of ultrafast shaped pulses for two-level systems, by density-matrix approach. However, we find that adiabaticity depends simultaneously on pulse profile as well as the frequency modulation under non-resonant conditions.

  7. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild


    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  8. Observation of soliton pulse compression in photonic crystal waveguides

    CERN Document Server

    Colman, P; Combrié, S; Sagnes, I; Wong, C W; De Rossi, A


    We demonstrate soliton-effect pulse compression in mm-long photonic crystal waveguides resulting from strong anomalous dispersion and self-phase modulation. Compression from 3ps to 580fs, at low pulse energies(~10pJ), is measured via autocorrelation.

  9. Realization of DVCCTA Based Versatile Modulator

    Directory of Open Access Journals (Sweden)

    Neeta Pandey


    Full Text Available A Differential Voltage Current Conveyor Transconductance Amplifier (DVCCTA based versatile modulator is proposed which can work as an amplitude modulator, frequency modulator, delta modulator, and sigma delta modulator. The modulator operational scheme uses pulse generator as a core and its output is used as carrier signal. A DVCCTA based pulse generator is proposed first and subsequently configured as different modulators. Compact realization is the key feature of the proposed circuit as it uses two DVCCTA; a grounded resistor and a grounded capacitor hence are appropriate for IC realization. The functionality of the proposed circuit is verified through SPICE simulations using TSMC 0.25 μm CMOS process model parameters. The performance parameters such as power dissipation and noise for various modulator schemes are also obtained.

  10. Unsplit bipolar pulse forming line (United States)

    Rhodes, Mark A.


    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  11. Nonlinear and Dispersive Optical Pulse Propagation (United States)

    Dijaili, Sol Peter

    In this dissertation, there are basically four novel contributions to the field of picosecond pulse propagation and measurement. The first contribution is the temporal ABCD matrix which is an analog of the traditional ABCD ray matrices used in Gaussian beam propagation. The temporal ABCD matrix allows for the easy calculation of the effects of linear chirp or group velocity dispersion in the time domain. As with Gaussian beams in space, there also exists a complete Hermite-Gaussian basis in time whose propagation can be tracked with the temporal ABCD matrices. The second contribution is the timing synchronization between a colliding pulse mode-locked dye laser and a gain-switched Fabry-Perot type AlGaAs laser diode that has achieved less than 40 femtoseconds of relative timing jitter by using a pulsed optical phase lock loop (POPLL). The relative timing jitter was measured using the error voltage of the feedback loop. This method of measurement is accurate since the frequencies of all the timing fluctuations fall within the loop bandwidth. The novel element is a broad band optical cross-correlator that can resolve femtosecond time delay errors between two pulse trains. The third contribution is a novel dispersive technique of determining the nonlinear frequency sweep of a picosecond pulse with relatively good accuracy. All the measurements are made in the time domain and hence there is no time-bandwidth limitation to the accuracy. The fourth contribution is the first demonstration of cross -phase modulation in a semiconductor laser amplifier where a variable chirp was observed. A simple expression for the chirp imparted on a weak signal pulse by the action of a strong pump pulse is derived. A maximum frequency excursion of 16 GHz due to the cross-phase modulation was measured. A value of 5 was found for alpha _{xpm} which is a factor for characterizing the cross-phase modulation in a similar manner to the conventional linewidth enhancement factor, alpha.

  12. Extreme Value Statistical Characterization of Time Domain Pulse-to-Pulse Measurements

    CERN Document Server

    AUTHOR|(SzGeCERN)712364; Arpaia, Pasquale; Martino, Michele


    An analytical method, based on Extreme Value Theory (EV T), for predicting the worst case repeatability of time domain pulse-to-pulse measurements, modeled as independent and identically distributed random variables, is proposed. The method allows the use of the noise level of a measurement system for predicting the upcoming peak values over a given number of independent observations. The proposed analytical model is compared against simulated distributions generated in Matlab, highlighting satisfying match for any sample size.The simulations are based on a case study on the characterization of a pulsed power supply for the klystron modulators of the Compact LInear Collider (CLIC) under study at CERN.

  13. Ultrafast pulse generation with black phosphorus

    CERN Document Server

    Li, Diao; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei


    Black phosphorus has been recently rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of black phosphorus thin films, indicating that both linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness. Then we employ the nonlinear optical property of black phosphorus for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 {\\mu}m. Our results underscore relatively large optical nonlinearity in black phosphorus and its prospective for ultrafast pulse generation, paving the way to black phosphorus based nonlinear and ultrafast photonics applications (e.g., ultrafast all-optical switches/modulators, frequency converters etc.).

  14. RANCHERO explosive pulsed power experiments

    CERN Document Server

    Goforth, J H; Armijo, E V; Atchison, W L; Bartos, Yu; Clark, D A; Day, R D; Deninger, W J; Faehl, R J; Fowler, C M; García, F P; García, O F; Herrera, D H; Herrera, T J; Keinigs, R K; King, J C; Lindemuth, I R; López, E; Martínez, E C; Martínez, D; McGuire, J A; Morgan, D; Oona, H; Oro, D M; Parker, J V; Randolph, R B; Reinovsky, R E; Rodríguez, G; Stokes, J L; Sena, F C; Tabaka, L J; Tasker, D G; Taylor, A J; Torres, D T; Anderson, H D; Broste, W B; Johnson, J B; Kirbie, H C


    The authors are developing the RANCHERO high explosive pulsed power (HEPP) system to power cylindrically imploding solid-density liners for hydrodynamics experiments. Their near-term goal is to conduct experiments in the regime pertinent to the Atlas capacitor bank. That is, they will attempt to implode liners of ~50 g mass at velocities approaching 15 km/sec. The basic building block of the HEPP system is a coaxial generator with a 304.8 mm diameter stator, and an initial armature diameter of 152 mm. The armature is expanded by a high explosive (HE) charge detonated simultaneously along its axis. The authors have reported a variety of experiments conducted with generator modules 43 cm long and have presented an initial design for hydrodynamic liner experiments. In this paper, they give a synopsis of their first system test, and a status report on the development of a generator module that is 1.4 m long. (6 refs).

  15. Properties of water surface discharge at different pulse repetition rates

    Energy Technology Data Exchange (ETDEWEB)

    Ruma,; Yoshihara, K. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Hosseini, S. H. R., E-mail:; Sakugawa, T.; Akiyama, H. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Akiyama, M. [Department of Electrical and Electronic Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Lukeš, P. [Institute of Plasma Physics, AS CR, Prague, Prague 18200 (Czech Republic)


    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  16. CIM—Compact intensity modulation (United States)

    Bleuel, M.; Lang, E.; Gähler, R.; Lal, J.


    Compact intensity modulation (CIM), a new method to modulate the intensity of a neutron beam is demonstrated. CIM allows the production of arbitrary signals where the focus point can be chosen and changed without any constraints. A novel feature in this technique compared to spin echo techniques is that the neutron polarization is kept parallel or anti-parallel to the static fields during the passage through the magnetic fields and the beating pattern at the detector is produced by an amplitude modulation (AM) of the adiabatic RF-spin flippers rather than Larmor precession like in neutron spin echo (NSE) instruments; thus, the achievable contrast is very high and the instrument resolution can be changed very quickly. This gives the fascinating possibility at pulsed neutron sources to sweep the modulation frequency of the flippers in order to increase dynamic resolution range during the same neutron pulse.

  17. Radial pulse (image) (United States)

    ... heart. The arteries are the vessels with the "pulse", a rhythmic pushing of the blood in the ... a refilling of the heart chamber. To determine heart rate, one feels the beats at a pulse point ...

  18. Wrist pulse (image) (United States)

    To measure the pulse at the wrist, place the index and middle finger over the underside of the opposite wrist, below the base ... firmly with flat fingers until you feel the pulse in the radial artery.

  19. Plasma-blueshift spectral shear interferometry for characterization of ultimately short optical pulses. (United States)

    Verhoef, Aart J; Mitrofanov, Alexander; Zheltikov, Aleksei; Baltuska, Andrius


    We introduce a bandwidth-unlimited, dispersion- and shear-self-calibrated, timing-jitter-free pulse measurement technique based on a quasi-linear temporal phase modulation in a gas weakly ionized by a long pump pulse. Results of a 5 fs pulse characterization are reported.

  20. Compression of realistic laser pulses in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, John


    Dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap fiber is studied numerically. The performance of ideal parabolic input pulses is compared to pulses from a narrowband picosecond oscillator broadened by self-phase modulation during...

  1. A new RF tagging pulse based on the Frank poly-phase perfect sequence

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Greferath, Marcus; Ringgaard, Steffen


    Radio frequency (RF) spectrally selective multiband pulses or tagging pulses, are applicable in a broad range of magnetic resonance methods. We demonstrate through simulations and experiments a new phase-modulation-only RF pulse for RF tagging based on the Frank poly-phase perfect sequence...

  2. Pulse-Width Jitter Measurement for Laser Diode Pulses

    Institute of Scientific and Technical Information of China (English)

    TANG Jun-Hua; WANG Yun-Cai


    @@ Theoretical analysis and experimental measurement of pulse-width jitter of diode laser pulses are presented. The expression of pulse power spectra with all amplitude jitter, timing jitter and pulse-width jitter is deduced.

  3. Optical pulse generation system for the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Penko, F; Braucht,; Browning, D; Crane, J K; Dane, B; Deadrick, F; Dreifuerst, G; Henesian, M; Jones, B A; Kot, L; Laumann, C; Martinez, M; Moran, B; Rothenberg, J E; Skulina, K; Wilcox, R B


    We describe the Optical Pulse Generation (OPG) system for the National Ignition Facility ( NIF ). The OPG system begins with the Master Oscillator Room ( MOR ) where the initial, seed pulse for the entire laser system is produced and properly formatted to enhance ignition in the target. The formatting consists of temporally shaping the pulse and adding additional bandwidth to increase the coupling of the laser generated x-rays to the high density target plasma. The pulse produced in the MOR fans out to 48 identical preamplifier modules where it is amplified by a factor of ten billion and spatially shaped for injection into the 192 main amplifier chai

  4. Propagation of Complex Laser Pulses in Optically Dense Media (United States)

    Fetterman, M. R.; Davis, J. C.; Goswami, D.; Yang, W.; Warren, W. S.


    Ultrafast laser pulses with complex envelopes (amplitude and frequency modulated) are used to excite an optically dense column of rubidium vapor. Pulse reshaping, stimulated emission dynamics, and residual electronic excitation in the Rb vapor are all shown to depend strongly on the laser pulse shape. Pulses that produce adiabatic passage in the optically thin limit exhibit more complex behavior in optically thick samples, including an unexpected dependence on the sign of the frequency sweep. Numerical solutions of the Maxwell-Bloch equations are shown to account for our results.

  5. Modulations in the light of the firefly

    Indian Academy of Sciences (India)

    Anurup Gohain Barua


    Continuous light could be produced from the firefly by making it inhale vapours of ethyl acetate. Here we perform such a control experiment on the Indian species of the firefly Luciola praeusta Kiesenwetter 1874 (Coleoptera : Lampyridae : Luciolinae), and analyse the light in the microsecond time scale. The amplitude of the continuous train of triangular pulses is apparently altered in accordance with the instantaneous values of a hypothetical signal, which exhibits pulse amplitude modulation (PAM). In addition to sampling in amplitude, this scheme apparently provides sampling in time, representing pulse width modulation (PWM). A Fourier transform spectrum of this waveform shows the `carrier’ frequency and the accompanying `side bands’.

  6. Radar transponder operation with compensation for distortion due to amplitude modulation (United States)

    Ormesher, Richard C [Albuquerque, NM; Tise, Bertice L [Albuquerque, NM; Axline, Jr., Robert M.


    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  7. Advanced Pulse Width Technique in Impedance Source Cascaded Multilevel Inverter with Asymmetric Topology

    Directory of Open Access Journals (Sweden)

    Rajnish Kumar Sharma


    Full Text Available In this research, a single phase Z-source cascading Multilevel Inverter, Nine-level inverter topologies with a trinary DC sources are offered. The recommended topologies are expanded by cascading a full bridge inverter with dissimilar DC sources. This paper recommends advanced pulse with modulation technique as a switching scheme. In this PWM technology, trapezoidal modulation technique is used as variable amplitude pulse width modulation. These topologies compromise reduced harmonics present in the output voltage and superior root mean square (RMS values of the output voltages linked with the traditional trapezoidal pulse width modulation. The simulation of proposed circuit is carried out by using MATLAB/SIMULINK.

  8. Photonic multi-shape UWB pulse generation using a semiconductor optical amplifier-based nonlinear optical loop mirror

    Institute of Scientific and Technical Information of China (English)

    Luo Bo-Wen; Dong Jian-Ji; Yu Yuan; Yang Ting; Zhang Xin-Liang


    We propose and demonstrate a scheme to implement photonic multi-shape ultra-wideband (UWB) signal generation using a semiconductor optical amplifier (SOA) based nonlinear optical loop mirror (NOLM).By employing the cross phase modulation (XPM) effect,cross gain modulation (XGM),or both,multi-shape UWB waveforms are generated including monocycle,doublet,triplet,and quadruplet pulses.Both the shapes and polarities of the generated pulses are flexible to adjust,which may be very useful in UWB pulse shape modulation and pulse polarity modulation.

  9. Implementation of Pulse Radar Waveform Based on Software Radio Platform


    Wang Dong; Dong Jian; Xiao Shunping


    Based on the frequency and phase modulated signal, the authors design some commonly-used pulse radar baseband waveform, such as linear frequency modulated waveform, nonlinear frequency modulated waveform, Costas waveform, Barker coding waveform and multi-phase coded waveform, and the authors compare their performance, such as the peak side lobe ratio, the Rayleigh resolution in time and distance resolution. Then, based on the software radio platform NI PXIe-5644R, the authors design the timin...

  10. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter


    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  11. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter


    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  12. Shaped pulse electric-field construction and interferometric characterization: The SPECIFIC method

    CERN Document Server

    Coughlan, Matthew A; Weber, Stefan M; Bowlan, Pamela; Trebino, Rick; Levis, Robert J


    A method is reported for creating, generating, and measuring parametrically shaped pulses for time-bandwidth product >>5, which consists of a parametric pulse-shaping algorithm, a spatial light modulation system and a single shot interferometric characterization scheme (SEA TADPOLE) . The utilization of these tools marks the inception of a new method called SPECIFIC, shaped-pulse electric-field construction and interferometric characterization, capable of producing complex shaped laser pulses for coherent control experiments.

  13. Robust Short-Pulse, High-Peak-Power Laser Transmitter for Optical Communications (United States)

    Wright, Malcolm W.


    We report on a pulsed fiber based master oscillator power amplifier laser at 1550 nm to support moderate data rates with high peak powers in a compact package suitable for interplanetary optical communications. To accommodate pulse position modulation, the polarization maintaining laser transmitter generates pulses from 0.1 to 1 ns with variable duty cycle over a pulse repetition frequency range of 10 to 100 MHz.

  14. -Regular Modules

    Directory of Open Access Journals (Sweden)

    Areej M. Abduldaim


    Full Text Available We introduced and studied -regular modules as a generalization of -regular rings to modules as well as regular modules (in the sense of Fieldhouse. An -module is called -regular if for each and , there exist and a positive integer such that . The notion of -pure submodules was introduced to generalize pure submodules and proved that an -module is -regular if and only if every submodule of is -pure iff   is a -regular -module for each maximal ideal of . Many characterizations and properties of -regular modules were given. An -module is -regular iff is a -regular ring for each iff is a -regular ring for finitely generated module . If is a -regular module, then .

  15. Advanced Test Accelerator (ATA) pulse power technology development

    Energy Technology Data Exchange (ETDEWEB)

    Reginato, L.L.; Branum, D.; Cook, E.


    The Advanced Test Accelerator (ATA) is a pulsed linear induction accelerator with the following design parameters: 50 MeV, 10 kA, 70 ns, and 1 kHz in a ten-pulse burst. Acceleration is accomplished by means of 190 ferrite-loaded cells, each capable of maintaining a 250 kV voltage pulse for 70 ns across a 1-inch gap. The unique characteristic of this machine is its 1 kHz burst mode capability at very high currents. This paper dscribes the pulse power development program which used the Experimental Test Accelerator (ETA) technology as a starting base. Considerable changes have been made both electrically and mechanically in the pulse power components with special consideration being given to the design to achieve higher reliability. A prototype module which incorporates all the pulse power components has been built and tested for millions of shots. Prototype components and test results are described.

  16. Optical Fiber Lasers and All Solid-State Passively Modulated Microchip Lasers

    Institute of Scientific and Technical Information of China (English)

    Junewen; Chen; Pie-Yau; Chien; Yu-Ting; Lee


    Erbium fiber lasers of continuous mode outputs and of pulsed picosecond and sub-picosecond pulses train are reported. Compact all solid state passively modulated microchip lasers are also developed to the same degree.

  17. RCEP Modulation on Evolution of Two-color Femtosecond Pulses and Spectrum in a Dense V-type Medium%稠密V型介质中双色飞秒脉冲 及频谱演化的RCEP调制

    Institute of Scientific and Technical Information of China (English)

    梁变; 贾克宁; 梁颖; 仝殿民; 樊锡君


    In one-photon resonance and detuning case*, effect of relative carrier-envelope phase ( RCEP) on evolution of two-color sech-type femtosecond pulses and spectrum in a dense V-type three-level atomic medium is investigated with full Maxwell-Bloch equations. Modulation of RCEP on pulse shape and spectral property of two-color pulses in detuning case is more evident than that in single-photon resonance case. And in detuning case we get spectrum broadening much greater than that in resonance case. Supercontinuum with the highest frequency of 18 times of incident frequency appears.%利用不含慢变振幅近似和旋波近似的全波Maxwell-Bloch方程组的数值解,研究单光子共振和失谐两种条件下,相对载波包络相位(RCEP)对在稠密V型三能级原子介质中传播的双色sech型飞秒超短脉冲及频谱演化的影响.结果表明,RCEP对双色脉冲的传播形式及频谱特性的调制在失谐情况比在单光子共振情况显著,在失谐条件下调节RCEP可获得比单光子共振条件下大得多的频谱展宽,出现了最高频率达到入射脉冲中心频率18倍的超连续谱.

  18. 便携式脉冲调制型医用半导体激光器的驱动电源及光学透镜系统的设计%The design of pulse modulation driving circuit and optical lens system for portable medical semiconductor laser

    Institute of Scientific and Technical Information of China (English)

    闫振宇; 黄时俊; 龚琬玲; 陈仲本


    针对脉冲激光器穴位照射治疗的特点,对半导体激光二极管(LD)的驱动电路及光学镜头系统的设计进行了研究。本文设计了一款新型的锂电池供电便携式脉冲医用激光器,介绍了采用脉冲调制恒流驱动的原理以及采用透镜组和电路调整的方法改变激光照射功率密度的光学镜头的设计方法。该款脉冲激光器适用于激光体外穴位照射,对激光临床应用有一定的意义。%In the view of the laser therapy of acupuncture with pulsed laser, we study a semiconductor laser diode driving circuit and a new design of the optical lens system. This paper devises a new type of lithium battery powered medical pulsed laser with the advantages of portable. We describe the basic principle of the pulse signal modulation circuit for LD, and illuminate the design method of the optical lens system which adjusts the lens system and circuit parameter to change the laser power density. This type of device is applicable to the therapy that low intensive laser irradiates directly on the acupuncture point, and has certain significance to the application of laser in clinical medicine.

  19. CIDME: Short distances measured with long chirp pulses (United States)

    Doll, Andrin; Qi, Mian; Godt, Adelheid; Jeschke, Gunnar


    Frequency-swept pulses have recently been introduced as pump pulses into double electron-electron resonance (DEER) experiments. A limitation of this approach is that the pump pulses need to be short in comparison to dipolar evolution periods. The "chirp-induced dipolar modulation enhancement" (CIDME) pulse sequence introduced in this work circumvents this limitation by means of longitudinal storage during the application of one single or two consecutive pump pulses. The resulting six-pulse sequence is closely related to the five-pulse "relaxation-induced dipolar modulation enhancement" (RIDME) pulse sequence: While dipolar modulation in RIDME is due to stochastic spin flips during longitudinal storage, modulation in CIDME is due to the pump pulse during longitudinal storage. Experimentally, CIDME is examined for Gd-Gd and nitroxide-nitroxide distance determination using a high-power Q-band spectrometer. Since longitudinal storage results in a 50% signal loss, comparisons between DEER using short chirp pump pulses of 64 ns duration and CIDME using longer pump pulses are in favor of DEER. While the lower sensitivity restrains the applicability of CIDME for routine distance determination on high-power spectrometers, this result is not to be generalized to spectrometers having lower power and to specialized "non-routine" applications or different types of spin labels. In particular, the advantage of prolonged CIDME pump pulses is demonstrated for experiments at large frequency offset between the pumped and observed spins. At a frequency separation of 1 GHz, where broadening due to dipolar pseudo-secular contributions becomes largely suppressed, a Gd-Gd modulation depth larger than 10% is achieved. Moreover, a CIDME experiment at deliberately reduced power underlines the potential of the new technique for spectrometers with lower power, as often encountered at higher microwave frequencies. With longitudinal storage times T below 10 μs, however, CIDME appears rather

  20. Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains. (United States)

    Miller, Charles A; Hu, Ning; Zhang, Fawen; Robinson, Barbara K; Abbas, Paul J


    Most auditory prostheses use modulated electric pulse trains to excite the auditory nerve. There are, however, scant data regarding the effects of pulse trains on auditory nerve fiber (ANF) responses across the duration of such stimuli. We examined how temporal ANF properties changed with level and pulse rate across 300-ms pulse trains. Four measures were examined: (1) first-spike latency, (2) interspike interval (ISI), (3) vector strength (VS), and (4) Fano factor (FF, an index of the temporal variability of responsiveness). Data were obtained using 250-, 1,000-, and 5,000-pulse/s stimuli. First-spike latency decreased with increasing spike rate, with relatively small decrements observed for 5,000-pulse/s trains, presumably reflecting integration. ISIs to low-rate (250 pulse/s) trains were strongly locked to the stimuli, whereas ISIs evoked with 5,000-pulse/s trains were dominated by refractory and adaptation effects. Across time, VS decreased for low-rate trains but not for 5,000-pulse/s stimuli. At relatively high spike rates (>200 spike/s), VS values for 5,000-pulse/s trains were lower than those obtained with 250-pulse/s stimuli (even after accounting for the smaller periods of the 5,000-pulse/s stimuli), indicating a desynchronizing effect of high-rate stimuli. FF measures also indicated a desynchronizing effect of high-rate trains. Across a wide range of response rates, FF underwent relatively fast increases (i.e., within 100 ms) for 5,000-pulse/s stimuli. With a few exceptions, ISI, VS, and FF measures approached asymptotic values within the 300-ms duration of the low- and high-rate trains. These findings may have implications for designs of cochlear implant stimulus protocols, understanding electrically evoked compound action potentials, and interpretation of neural measures obtained at central nuclei, which depend on understanding the output of the auditory nerve.

  1. Spectral Modulation by Rotational Wave Packets (United States)

    Baertschy, Mark; Hartinger, Klaus


    Periodic rephasing of molecular rotational wave packets can create rapid fluctuations in the optical properties of a molecular gas which can be used to manipulate the temporal phase and spectral content of ultrashort light pulses. We have demonstrated spectral control of a time-delayed ultrafast probe pulse propagating through the rotational wave packet prepared by a pump laser pulse. The spectrum of the probe pulse can be either broadened or compressed, depending on the relative sign of the temporal phase modulation and the initial chirp of the probe pulse. Adjustment of the spectral phase at the output of the interaction region allows controlled temporal pulse streching^1 and compression^2. The degree to which the spectrum of an ultrafast pulse can be modified depends on the strength and shape of the rotational wavepacket. We are studying the optimization of the rotational wave packet excitation with complex, shaped pump laser pulses for the purpose of optimizing probe pulse spectra modulation. ^1 Klaus Hartinger and Randy A. Bartels, Opt. Lett., submitted (2005). ^2 R.A. Bartels, T.C. Weinacht, N. Wagner, M. Baertschy, Chris H. Greene, M.M. Murnane, and H.C. Kapteyn , Phys. Rev. Lett., 88, 013903 (2002). This work was supported by the NSF.

  2. PulseSoar

    Energy Technology Data Exchange (ETDEWEB)

    Carter, P.; Peglow, S.


    This paper is an introduction to the PulseSoar concept. PulseSoar is a hypervelocity airplane that uses existing airport facilities and current technologies to fly at the very edge of space. It will be shown that PulseSoar can fly between any two points on the globe in less than two hours with fuel efficiency exceeding current state of the art commercial airliners. In addition, it will be shown that PulseSoar avoids environmental issues concerning the ozone layer and sonic booms because of its unique flight profile. All of this can be achieved with current technology. PulseSoar does not require the development of enabling technology. It is a concept which can be demonstrated today. The importance of this idea goes beyond the technical significance`s of PulseSoar in terms of feasibility and performance. PulseSoar could provide a crucial economic advantage to America`s largest export market: commercial aircraft. PulseSoar is a breakthrough concept for addressing the emerging markets of long range and high speed aircraft. Application of PulseSoar to commercial transport could provide the US Aerospace industry a substantial lead in offering high speed/long range aircraft to the world`s airlines. The rapid emergence of a US developed high speed aircraft could also be important to our competitiveness in the Pacific Rim and South American economies. A quick and inexpensive demonstration vehicle is proposed to bang the concept to reality within two years. This discussion will address all the major technical subjects encompassed by PulseSoar and identifies several near-term, and low risk, applications which may be further explored with the initial demonstration vehicle. What is PulseSoar? PulseSoar could enable high speed, high altitude and long range flight without many of the difficulties encountered by traditional hypersonic vehicles.

  3. Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers. (United States)

    Kuzin, Evgeny; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph; Rojas-Laguna, Roberto


    We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.

  4. Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers (United States)

    Kuzin, Evgeny A.; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph W.; Rojas-Laguna, Roberto


    We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.

  5. Pulse Tube Refrigerator (United States)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  6. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude


    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  7. Pulse oximeter for cyclists in smartphone (United States)

    Martins, L.; Gaidos, O.; dos Santos, I.


    The monitoring of cyclists during physical activity is an important factor to improve their performance. We discuss a new approaches based on smartphone for monitoring physiological signal wirelessly for cyclists, using a pulse oximeter sensor attached to the rider's forehead. This paper presents a wireless pulse Oximeter that was developed with a Nellcor's module, which uses the Standard Host Interface Protocol (SHIP) for communication with the Bluetooth module and sends data for a Smartphone with Android O.S. Then these data are shown in the screen: the heartbeat and saturation percentage. The application was created with App Inventor and the data are sent to Google Maps via Twitter. The results demonstrate the possibility of developing a successful prototype.

  8. A Self-Biasing Pulsed Depressed Collector

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A.; Jensen, Aaron; Neilson, Jeff; /SLAC


    Depressed collectors have been utilized successfully for many years to improve the electrical efficiency of vacuum electron devices. Increasingly, pulsed, high-peak power accelerator applications are placing a premium on electrical efficiency. As RF systems are responsible for a large percentage of the overall energy usage at accelerator laboratories, methods to improve upon the state-of-the-art in pulsed high-power sources are desired. This paper presents a technique for self-biasing the stages in a multistage depressed collector. With this technique, the energy lost during the rise and fall times of the pulse can be recovered, separate power supplies are not needed, and existing modulators can be retrofitted. Calculations show that significant cost savings can be realized with the implementation of this device in high-power systems. In this paper, the technique is described along with experimental demonstration. (auth)

  9. GHz modulation detection using a streak camera: Suitability of streak cameras in the AWAKE experiment (United States)

    Rieger, K.; Caldwell, A.; Reimann, O.; Muggli, P.


    Using frequency mixing, a modulated light pulse of ns duration is created. We show that, with a ps-resolution streak camera that is usually used for single short pulse measurements, we can detect via an FFT detection approach up to 450 GHz modulation in a pulse in a single measurement. This work is performed in the context of the AWAKE plasma wakefield experiment where modulation frequencies in the range of 80-280 GHz are expected.

  10. AIP GHz modulation detection using a streak camera: Suitability of streak cameras in the AWAKE experiment

    CERN Document Server

    Rieger, K; Reimann, O; Muggli, P


    Using frequency mixing, a modulated light pulse of ns duration is created. We show that, with a ps-resolution streak camera that is usually used for single short pulse measurements, we can detect via an FFT detection approach up to 450 GHz modulation in a pulse in a single measurement. This work is performed in the context of the AWAKE plasma wakefield experiment where modulation frequencies in the range of 80–280 GHz are expected.

  11. Performance comparison of binary modulation schemes for visible light communication

    KAUST Repository

    Park, Kihong


    In this paper, we investigate the power spectral density of several binary modulation schemes including variable on-off keying, variable pulse position modulation, and pulse dual slope modulation which were previously proposed for visible light communication with dimming control. We also propose a novel slope-based modulation called differential chip slope modulation (DCSM) and develop a chip-based hard-decision receiver to demodulate the resulting signal, detect the chip sequence, and decode the input bit sequence. We show that the DCSM scheme can exploit spectrum density more efficiently than the reference schemes while providing an error rate performance comparable to them. © 2015 IEEE.

  12. RF pulse compression for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.


    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0--1.5 TeV, 5 TeV and 25 TeV. In order keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0--1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150--200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30--40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-11 system) can be used to reduce the klystron peak power by about a factor of two, or alternately, to cut the number of klystrons in half for a 1.0--1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  13. Single-cycle optical pulse shaping (United States)

    Shverdin, Miroslav Y.

    Observation and control of ultrafast processes such as chemical reactions, biological interactions, and atomic processes is at the heart of the field of ultrafast physics. Decreasing the pulse duration enables probing ever-shorter events. The main contribution of this work is the generation and the characterization of single-cycle optical pulses. When the shape of the electric field consists of a single oscillation under the temporal envelope, we approach a new regime in physics: the electronic motion is now controlled directly by the electric field. We describe a Fourier approach to ultrashort pulse generation which consists of combining discrete, appropriately phased spectral components of a very wide coherent spectrum. In our experiments, all of the sidebands are generated by exciting a Raman transition in a diatomic gas near maximum coherence using two intense pulsed lasers. The resulting molecular motion modulates the two driving lasers to produce over four octaves of bandwidth from vacuum ultraviolet to near infrared. The spectral components are mutually coherent and are spaced by the frequency of the Raman transition. We select a subset of the produced spectrum and electronically adjust the phases of the individual sidebands using a liquid crystal spatial light modulator. The synthesized waveforms are characterized by measuring the UV signal generated by four-wave nonresonant mixing inside a xenon cell.

  14. High power solid state laser modulator (United States)

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.


    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  15. Pulsed Plasma Electron Sources (United States)

    Krasik, Yakov


    Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).


    Cowper, G.


    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  17. Short pulse generation and high speed communication system (United States)

    Fan, Honglei

    Ultrahigh-speed optical time-division-multiplexing (TDM) transmission technologies are essential to construct ultrahigh-speed all-optical networks needed in the multimedia era. In order to realize high-speed optical TDM systems, ultra-short pulses should be generated. In this dissertation, the gain switching and mode locking techniques have been analyzed and used to produce ultra- short pulses. Gain-switched pulses with a width of ~18ps have been obtained. The theoretical analysis on gain-switching phenomena has been carried out. A new approach for the simulation of the spectrum of a gain- switched laser has been developed. The principle of mode locking has been discussed. ~6.5ps, pulses have been obtained from a monolithic mode-locked distributed Bragg reflector (DBR) laser, which are the shortest pulses from the actively mode- locked DBR lasers as we know. ~1.1ps pulses have been achieved from a colliding-pulse mode-locked (CPM) laser. The operation principle of CPM lasers has been discussed. Pulse compression using dispersion-compensating fiber has been applied in order to get shorter pulses. The semiconductor optical amplifier (SOA) plays a very important role in TDM systems. The cross gain modulation (XGM) measurements on a 2-section SOA, using both cw and pulsed pump and probe beams, have been performed. A theoretical analysis has been carried out. Wavelength conversion and fiber transmission experiments have been achieved at different bit rates. The basic idea of TDM system has been discussed. Multiplexing has been achieved using fibers. Demulitplexing has been demonstrated using XGM in SOA, four-wave mixing (FWM) in SOA, and cascaded modulators. The operation principles have been discussed in detail. The FWM experiments between two optical pulses have been performed.

  18. High power microwave system based on power combining and pulse compression of conventional klystrons

    CERN Document Server

    Xiong, Zheng-Feng; Cheng, Cheng; Ning, Hui; Tang, Chuan-Xiang


    A high power microwave system based on power combining and pulse compression of conventional klystrons is introduced in this paper. This system mainly consists of pulse modulator, power combiner, driving source of klystrons and pulse compressor. A solid state induction modulator and pulse transformer were used to drive two 50 MW S-band klystrons with pulse widths 4 {\\mu}s in parallel, after power combining and pulse compression, the tested peak power had reached about 210 MW with pulse widths nearly 400 ns at 25 Hz, while the experimental maximum output power was just limited by the power capacity of loads. This type of high power microwave system has widely application prospect in RF system of large scale particle accelerators, high power radar transmitters and high level electromagnetic environment generators.

  19. Plasma optical modulators for intense lasers

    CERN Document Server

    Yu, Lu-Le; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D A; Mori, W B; Zhang, Jie


    Optical modulators can be made nowadays with high modulation speed, broad bandwidth, while being compact, owing to the recent advance in material science and microfabrication technology. However, these optical modulators usually work for low intensity light beams. Here, we present an ultrafast, plasma-based optical modulator, which can directly modulate high power lasers with intensity up to 10^16 W/cm^2 level to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser beams in a sub-mm-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser beam is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are presented. Such optical modulators may enable new applications in the high field physics.

  20. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.


    Florida State University is investigating the concept of pulsed electron beams for fly ash precipitation. This report describes the results and data on three of the subtasks of this project and preliminary work only on the remaining five subtasks. Described are the modification of precharger for pulsed and DC energization of anode; installation of the Q/A measurement system; and modification and installation of pulsed power supply to provide both pulsed and DC energization of the anode. The other tasks include: measurement of the removal efficiency for monodisperse simulated fly ash particles; measurement of particle charge; optimization of pulse energization schedule for maximum removal efficiency; practical assessment of results; and measurement of the removal efficiency for polydisperse test particles. 15 figs., 1 tab. (CK)